
DB2 Version 9.5

for Linux, UNIX, and Windows

SQL Reference, Volume 1
Updated April, 2009

SC23-5861-02

���

DB2 Version 9.5

for Linux, UNIX, and Windows

SQL Reference, Volume 1
Updated April, 2009

SC23-5861-02

���

Note

Before using this information and the product it supports, read the general information under Appendix O, “Notices,” on

page 765.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book ix

Who should use this book ix

How this book is structured ix

How to read the syntax diagrams x

Conventions used in this manual xii

Error conditions xii

Highlighting conventions xii

Related documentation xii

Chapter 1. Concepts 1

Databases 1

Structured Query Language (SQL) 1

Queries and table expressions 2

DB2 Call level interface (CLI) and open database

connectivity (ODBC) 2

Java database connectivity (JDBC) and embedded

SQL for Java (SQLJ) programs 2

Schemas 3

Tables 4

Constraints 4

Indexes 5

Triggers 6

Views 8

Table or view aliases 9

Packages 9

Authorization, privileges, and object ownership . . 9

System catalog views 15

Application processes, concurrency, and recovery . . 15

Isolation levels 17

Table spaces 20

Character conversion 22

National language support and SQL statements . . 24

Connecting to distributed relational databases . . . 25

Event monitors 26

Database partitioning across multiple database

partitions 27

Large object behavior in partitioned tables 28

DB2 federated systems 29

Federated systems 29

What is a data source? 30

The federated database 31

The SQL compiler 31

Wrappers and wrapper modules 31

Server definitions and server options 32

User mappings 33

Nicknames and data source objects 34

Nickname column options 34

Data type mappings 35

The federated server 36

Supported data sources 36

The federated database system catalog 40

The query optimizer 41

Collating sequences 41

Chapter 2. Language elements 45

Characters 45

Tokens 46

Identifiers 47

Data types 69

Data type list 70

Promotion of data types 84

Casting between data types 85

Assignments and comparisons 92

Rules for result data types 106

Rules for string conversions 109

String comparisons in a Unicode database . . . 111

Database partition-compatible data types . . . 112

Constants 113

Special registers 117

CURRENT CLIENT_ACCTNG 120

CURRENT CLIENT_APPLNAME 120

CURRENT CLIENT_USERID 120

CURRENT CLIENT_WRKSTNNAME 121

CURRENT DATE 121

CURRENT DBPARTITIONNUM 121

CURRENT DECFLOAT ROUNDING MODE 122

CURRENT DEFAULT TRANSFORM GROUP 123

CURRENT DEGREE 123

CURRENT EXPLAIN MODE 124

CURRENT EXPLAIN SNAPSHOT 125

CURRENT FEDERATED ASYNCHRONY . . . 125

CURRENT IMPLICIT XMLPARSE OPTION . . 126

CURRENT ISOLATION 126

CURRENT LOCK TIMEOUT 127

CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 127

CURRENT MDC ROLLOUT MODE 128

CURRENT OPTIMIZATION PROFILE 128

CURRENT PACKAGE PATH 128

CURRENT PATH 129

CURRENT QUERY OPTIMIZATION 129

CURRENT REFRESH AGE 130

CURRENT SCHEMA 130

CURRENT SERVER 130

CURRENT TIME 131

CURRENT TIMESTAMP 131

CURRENT TIMEZONE 132

CURRENT USER 132

SESSION_USER 132

SYSTEM_USER 133

USER 133

Global variables 133

Functions 134

Methods 142

Expressions 149

Datetime operations and durations 158

CASE expression 163

CAST specification 165

XMLCAST specification 169

ARRAY element specification 170

Dereference operation 170

© Copyright IBM Corp. 1993, 2009 iii

OLAP specifications 172

Method invocation 180

Subtype treatment 181

Sequence reference 182

ROW CHANGE expression 185

Predicates 186

Predicate processing for queries 187

Search conditions 190

Basic predicate 192

Quantified predicate 193

BETWEEN predicate 195

EXISTS predicate 195

IN predicate 196

LIKE predicate 197

NULL predicate 202

TYPE predicate 203

VALIDATED predicate 204

XMLEXISTS predicate 206

Chapter 3. Functions 209

Functions overview 209

Supported functions and administrative SQL

routines and views 210

Aggregate functions 237

ARRAY_AGG 238

AVG 239

CORRELATION 240

COUNT 241

COUNT_BIG 242

COVARIANCE 243

GROUPING 244

MAX 245

MIN 246

Regression functions 247

STDDEV 250

SUM 251

VARIANCE 252

XMLAGG 252

XMLGROUP 254

Scalar functions 257

ABS or ABSVAL 257

ACOS 257

ASCII 258

ASIN 258

ATAN 259

ATAN2 259

ATANH 259

BIGINT 260

BITAND, BITANDNOT, BITOR, BITXOR, and

BITNOT 261

BLOB 263

CARDINALITY 263

CEILING 264

CHAR 264

CHARACTER_LENGTH 268

CHR 270

CLOB 270

COALESCE 271

COLLATION_KEY_BIT 271

COMPARE_DECFLOAT 273

CONCAT 274

COS 274

COSH 274

COT 275

DATAPARTITIONNUM 275

DATE 276

DAY 277

DAYNAME 278

DAYOFWEEK 278

DAYOFWEEK_ISO 278

DAYOFYEAR 279

DAYS 279

DBCLOB 280

DBPARTITIONNUM 280

DECFLOAT 282

DECIMAL 283

DECODE 286

DECRYPT_BIN and DECRYPT_CHAR 287

DEGREES 288

DEREF 289

DIFFERENCE 289

DIGITS 290

DOUBLE 291

ENCRYPT 292

EVENT_MON_STATE 293

EXP 294

FLOAT 294

FLOOR 295

GENERATE_UNIQUE 295

GETHINT 297

GRAPHIC 297

GREATEST 299

HASHEDVALUE 299

HEX 300

HOUR 302

IDENTITY_VAL_LOCAL 302

INSERT 306

INTEGER 309

JULIAN_DAY 310

LCASE 311

LCASE (Locale sensitive) 311

LEAST 311

LEFT 312

LENGTH 314

LN 316

LOCATE scalar function 317

LOG10 320

LONG_VARCHAR 320

LONG_VARGRAPHIC 321

LOWER 321

LOWER (Locale sensitive) 321

LTRIM 323

MAX 324

MAX_CARDINALITY 324

MICROSECOND 325

MIDNIGHT_SECONDS 325

MIN 326

MINUTE 327

MOD 328

MONTH 328

MONTHNAME 329

MULTIPLY_ALT 329

iv SQL Reference, Volume 1

NORMALIZE_ DECFLOAT 330

NULLIF 331

NVL 331

OCTET_LENGTH 332

OVERLAY 332

PARAMETER 336

POSITION scalar function 336

POSSTR scalar function 339

POWER 341

QUANTIZE 342

QUARTER 343

RADIANS 343

RAISE_ERROR 344

RAND 345

REAL 345

REC2XML 346

REPEAT 350

REPLACE 350

RID_BIT and RID 352

RIGHT 353

ROUND 356

RTRIM 358

SECLABEL 358

SECLABEL_BY_NAME 359

SECLABEL_TO_CHAR 360

SECOND 361

SIGN 362

SIN 363

SINH 363

SMALLINT 363

SOUNDEX 364

SPACE 365

SQRT 365

STRIP 366

SUBSTR 366

SUBSTRING 369

TABLE_NAME 371

TABLE_SCHEMA 372

TAN 373

TANH 374

TIME 374

TIMESTAMP 375

TIMESTAMP_FORMAT 376

TIMESTAMP_ISO 379

TIMESTAMPDIFF 379

TO_CHAR 380

TO_DATE 381

TOTALORDER 381

TRANSLATE scalar function 382

TRIM 384

TRUNCATE 385

TYPE_ID 386

TYPE_NAME 387

TYPE_SCHEMA 387

UCASE 388

UCASE (Locale sensitive) 388

UPPER 388

UPPER (Locale sensitive) 388

VALUE 390

VARCHAR 390

VARCHAR_BIT_FORMAT 392

VARCHAR_FORMAT 393

VARCHAR_FORMAT_BIT 395

VARGRAPHIC 396

WEEK 398

WEEK_ISO 398

XMLATTRIBUTES 399

XMLCOMMENT 400

XMLCONCAT 401

XMLDOCUMENT 402

XMLELEMENT 403

XMLFOREST 408

XMLNAMESPACES 411

XMLPARSE 413

XMLPI 415

XMLQUERY 416

XMLROW 418

XMLSERIALIZE 420

XMLTEXT 422

XMLVALIDATE 423

XMLXSROBJECTID 427

XSLTRANSFORM 428

YEAR 431

Table functions 432

XMLTABLE 432

User-defined functions 436

Chapter 4. Procedures 439

Procedures overview 439

XSR_ADDSCHEMADOC procedure 439

XSR_COMPLETE procedure 440

XSR_DTD procedure 441

XSR_EXTENTITY procedure 442

XSR_REGISTER procedure 444

XSR_UPDATE procedure 445

Chapter 5. SQL queries 447

Subselect 447

Fullselect 485

Select-statement 489

Appendix A. SQL and XML limits . . . 501

Appendix B. SQLCA (SQL

communications area) 511

Appendix C. SQLDA (SQL descriptor

area) 517

Appendix D. System catalog views 527

Road map to the catalog views 528

SYSCAT.ATTRIBUTES 532

SYSCAT.AUDITPOLICIES 533

SYSCAT.AUDITUSE 535

SYSCAT.BUFFERPOOLDBPARTITIONS 535

SYSCAT.BUFFERPOOLS 536

SYSCAT.CASTFUNCTIONS 536

SYSCAT.CHECKS 537

SYSCAT.COLAUTH 538

SYSCAT.COLCHECKS 539

Contents v

SYSCAT.COLDIST 539

SYSCAT.COLGROUPCOLS 540

SYSCAT.COLGROUPDIST 540

SYSCAT.COLGROUPDISTCOUNTS 541

SYSCAT.COLGROUPS 541

SYSCAT.COLIDENTATTRIBUTES 542

SYSCAT.COLOPTIONS 542

SYSCAT.COLUMNS 543

SYSCAT.COLUSE 547

SYSCAT.CONSTDEP 548

SYSCAT.CONTEXTATTRIBUTES 548

SYSCAT.CONTEXTS 548

SYSCAT.DATAPARTITIONEXPRESSION 549

SYSCAT.DATAPARTITIONS 549

SYSCAT.DATATYPES 550

SYSCAT.DBAUTH 552

SYSCAT.DBPARTITIONGROUPDEF 554

SYSCAT.DBPARTITIONGROUPS 554

SYSCAT.EVENTMONITORS 555

SYSCAT.EVENTS 556

SYSCAT.EVENTTABLES 557

SYSCAT.FULLHIERARCHIES 558

SYSCAT.FUNCMAPOPTIONS 559

SYSCAT.FUNCMAPPARMOPTIONS 559

SYSCAT.FUNCMAPPINGS 559

SYSCAT.HIERARCHIES 560

SYSCAT.HISTOGRAMTEMPLATEBINS 561

SYSCAT.HISTOGRAMTEMPLATES 561

SYSCAT.HISTOGRAMTEMPLATEUSE 561

SYSCAT.INDEXAUTH 562

SYSCAT.INDEXCOLUSE 562

SYSCAT.INDEXDEP 563

SYSCAT.INDEXES 564

SYSCAT.INDEXEXPLOITRULES 569

SYSCAT.INDEXEXTENSIONDEP 570

SYSCAT.INDEXEXTENSIONMETHODS 571

SYSCAT.INDEXEXTENSIONPARMS 571

SYSCAT.INDEXEXTENSIONS 572

SYSCAT.INDEXOPTIONS 572

SYSCAT.INDEXXMLPATTERNS 573

SYSCAT.KEYCOLUSE 573

SYSCAT.NAMEMAPPINGS 574

SYSCAT.NICKNAMES 574

SYSCAT.PACKAGEAUTH 577

SYSCAT.PACKAGEDEP 578

SYSCAT.PACKAGES 579

SYSCAT.PARTITIONMAPS 584

SYSCAT.PASSTHRUAUTH 584

SYSCAT.PREDICATESPECS 584

SYSCAT.REFERENCES 585

SYSCAT.ROLEAUTH 586

SYSCAT.ROLES 586

SYSCAT.ROUTINEAUTH 586

SYSCAT.ROUTINEDEP 587

SYSCAT.ROUTINEOPTIONS 588

SYSCAT.ROUTINEPARMOPTIONS 589

SYSCAT.ROUTINEPARMS 589

SYSCAT.ROUTINES 591

SYSCAT.ROUTINESFEDERATED 598

SYSCAT.SCHEMAAUTH 600

SYSCAT.SCHEMATA 600

SYSCAT.SECURITYLABELACCESS 601

SYSCAT.

SECURITYLABELCOMPONENTELEMENTS . . . 601

SYSCAT.SECURITYLABELCOMPONENTS . . . 602

SYSCAT.SECURITYLABELS 602

SYSCAT.SECURITYPOLICIES 602

SYSCAT. SECURITYPOLICYCOMPONENTRULES 603

SYSCAT.SECURITYPOLICYEXEMPTIONS 604

SYSCAT.SEQUENCEAUTH 605

SYSCAT.SEQUENCES 605

SYSCAT.SERVEROPTIONS 607

SYSCAT.SERVERS 607

SYSCAT.SERVICECLASSES 607

SYSCAT.STATEMENTS 608

SYSCAT.SURROGATEAUTHIDS 609

SYSCAT.TABAUTH 610

SYSCAT.TABCONST 611

SYSCAT.TABDEP 612

SYSCAT.TABDETACHEDDEP 613

SYSCAT.TABLES 614

SYSCAT.TABLESPACES 619

SYSCAT.TABOPTIONS 621

SYSCAT.TBSPACEAUTH 621

SYSCAT.THRESHOLDS 621

SYSCAT.TRANSFORMS 623

SYSCAT.TRIGDEP 624

SYSCAT.TRIGGERS 624

SYSCAT.TYPEMAPPINGS 626

SYSCAT.USEROPTIONS 628

SYSCAT.VARIABLEAUTH 629

SYSCAT.VARIABLEDEP 629

SYSCAT.VARIABLES 630

SYSCAT.VIEWS 631

SYSCAT.WORKACTIONS 632

SYSCAT.WORKACTIONSETS 634

SYSCAT.WORKCLASSES 634

SYSCAT.WORKCLASSSETS 635

SYSCAT.WORKLOADAUTH 636

SYSCAT.WORKLOADCONNATTR 636

SYSCAT.WORKLOADS 637

SYSCAT.WRAPOPTIONS 638

SYSCAT.WRAPPERS 638

SYSCAT.XDBMAPGRAPHS 638

SYSCAT.XDBMAPSHREDTREES 638

SYSCAT.XSROBJECTAUTH 639

SYSCAT.XSROBJECTCOMPONENTS 639

SYSCAT.XSROBJECTDEP 640

SYSCAT.XSROBJECTHIERARCHIES 641

SYSCAT.XSROBJECTS 641

SYSIBM.SYSDUMMY1 642

SYSSTAT.COLDIST 642

SYSSTAT.COLGROUPDIST 643

SYSSTAT.COLGROUPDISTCOUNTS 643

SYSSTAT.COLGROUPS 644

SYSSTAT.COLUMNS 644

SYSSTAT.INDEXES 645

SYSSTAT.ROUTINES 648

SYSSTAT.TABLES 649

Appendix E. Federated systems . . . 651

Valid server types in SQL statements 651

vi SQL Reference, Volume 1

Function mapping options for federated systems 652

Default forward data type mappings 652

DB2 Database for Linux, UNIX, and Windows

data sources 652

DB2 for System i data sources 653

DB2 for VM and VSE data sources 654

DB2 for z/OS data sources 655

Informix data sources 655

Microsoft SQL Server data sources 656

ODBC data sources 658

Oracle NET8 data sources 659

Sybase data sources 659

Teradata data sources 661

Default reverse data type mappings 661

DB2 Database for Linux, UNIX, and Windows

data sources 662

DB2 for System i data sources 663

DB2 for VM and VSE data sources 663

DB2 for z/OS data sources 664

Informix data sources 665

Microsoft SQL Server data sources 665

Oracle NET8 data sources 666

Sybase data sources 667

Teradata data sources 667

Appendix F. The SAMPLE database 669

Appendix G. Reserved schema names

and reserved words 697

Appendix H. Examples of interaction

between triggers and referential

constraints 701

Appendix I. Explain tables 703

ADVISE_INDEX table 703

ADVISE_INSTANCE table 707

ADVISE_MQT table 707

ADVISE_PARTITION table 708

ADVISE_TABLE table 710

ADVISE_WORKLOAD table 710

EXPLAIN_ARGUMENT table 711

EXPLAIN_DIAGNOSTIC table 717

EXPLAIN_DIAGNOSTIC_DATA table 718

EXPLAIN_INSTANCE table 719

EXPLAIN_OBJECT table 722

EXPLAIN_OPERATOR table 724

EXPLAIN_PREDICATE table 726

EXPLAIN_STATEMENT table 729

EXPLAIN_STREAM table 731

Appendix J. Explain register values 735

Appendix K. Exception tables 741

Appendix L. SQL statements allowed

in routines 745

Appendix M. CALL invoked from a

compiled statement 749

Appendix N. Overview of the DB2

technical information 755

DB2 technical library in hardcopy or PDF format 755

Ordering printed DB2 books 758

Displaying SQL state help from the command line

processor 759

Accessing different versions of the DB2

Information Center 759

Displaying topics in your preferred language in the

DB2 Information Center 759

Updating the DB2 Information Center installed on

your computer or intranet server 760

DB2 tutorials 762

DB2 troubleshooting information 762

Terms and Conditions 762

Appendix O. Notices 765

Index 769

Contents vii

viii SQL Reference, Volume 1

About this book

The SQL Reference in its two volumes defines the SQL language used by DB2®

Database for Linux®, UNIX®, and Windows®. It includes:

v Information about relational database concepts, language elements, functions,

and the forms of queries (Volume 1)

v Information about the syntax and semantics of SQL statements (Volume 2)

Who should use this book

This book is intended for anyone who wants to use the Structured Query

Language (SQL) to access a database. It is primarily for programmers and database

administrators, but it can also be used by those who access databases through the

command line processor (CLP).

This book is a reference rather than a tutorial. It assumes that you will be writing

application programs and therefore presents the full functions of the database

manager.

How this book is structured

The first volume of the SQL Reference contains information about relational

database concepts, language elements, functions, and the forms of queries. The

specific chapters and appendixes in that volume are briefly described here.

v “Concepts” discusses the basic concepts of relational databases and SQL.

v “Language elements” describes the basic syntax of SQL and the language

elements that are common to many SQL statements.

v “Functions” contains syntax diagrams, semantic descriptions, rules, and usage

examples of SQL aggregate and scalar functions.

v “Procedures” contains syntax diagrams, semantic descriptions, rules, and usage

examples of procedures.

v “SQL queries” describes the various forms of a query.

v “SQL and XML limits” lists the SQL limitations.

v “SQLCA (SQL communications area)” describes the SQLCA structure.

v “SQLDA (SQL descriptor area)” describes the SQLDA structure.

v “System catalog views” describes the system catalog views.

v “Federated systems” describes options and type mappings for federated systems.

v “The SAMPLE database” introduces the SAMPLE database, which contains the

tables that are used in many examples.

v “Reserved schema names and reserved words” contains the reserved schema

names and the reserved words for the IBM® SQL and ISO/ANSI SQL2003

standards.

v “Examples of interaction between triggers and referential constraints” discusses

the interaction of triggers and referential constraints.

v “Explain tables” describes the explain tables.

v “Explain register values” describes the interaction of the CURRENT EXPLAIN

MODE and CURRENT EXPLAIN SNAPSHOT special register values with each

other and with the PREP and BIND commands.

© Copyright IBM Corp. 1993, 2009 ix

v “Exception tables” contains information about user-created tables that are used

with the SET INTEGRITY statement.

v “SQL statements allowed in routines” lists the SQL statements that are allowed

to execute in routines with different SQL data access contexts.

v “CALL invoked from a compiled statement” describes the CALL statement that

can be invoked from a compiled statement.

How to read the syntax diagrams

The following information will help you to understand the structure of syntax

diagrams:

Read the syntax diagrams from left to right and top to bottom, following the path

of the line.

The ��─── symbol indicates the beginning of a syntax diagram.

The ───� symbol indicates that the syntax is continued on the next line.

The �─── symbol indicates that the syntax is continued from the previous line.

The ──�� symbol indicates the end of a syntax diagram.

Syntax fragments start with the ├─── symbol and end with the ───┤ symbol.

Required items appear on the horizontal line (the main path).

�� required_item ��

Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on

execution, and is used only for readability.

��

required_item
 optional_item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

How this book is structured

x SQL Reference, Volume 1

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it will appear above the main path, and the

remaining choices will be shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

An arrow returning to the left, above the main line, indicates an item that can be

repeated. In this case, repeated items must be separated by one or more blanks.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in lowercase (for example, column-name). They

represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are

shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For

example, in the following diagram, the variable parameter-block represents the

whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

parameter-block:

 parameter1

parameter2

parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in any

sequence.

How to read the syntax diagrams

About this book xi

�� required_item item1 * item2 * item3 * item4 ��

The above diagram shows that item2 and item3 may be specified in either order.

Both of the following are valid:

 required_item item1 item2 item3 item4

 required_item item1 item3 item2 item4

Conventions used in this manual

Error conditions

An error condition is indicated within the text of the manual by listing the

SQLSTATE associated with the error in parentheses. For example:

 A duplicate signature returns an SQL error (SQLSTATE 42723).

Highlighting conventions

The following conventions are used in this book.

 Bold Indicates commands, keywords, and other items whose names are

predefined by the system.

Italics Indicates one of the following:

v Names or values (variables) that must be supplied by the user

v General emphasis

v The introduction of a new term

v A reference to another source of information

Monospace Indicates one of the following:

v Files and directories

v Information that you are instructed to type at a command prompt or in a

window

v Examples of specific data values

v Examples of text similar to what might be displayed by the system

v Examples of system messages

Related documentation

The following publications might prove useful when you are preparing

applications:

v Getting Started with Database Application Development

– Provides an introduction to DB2 application development, including platform

prerequisites; supported development software; and guidance on the benefits

and limitations of the supported programming APIs.
v DB2 for i5/OS SQL Reference

– This book defines SQL as supported by DB2 Query Manager and SQL

Development Kit on System i™. It contains reference information for the tasks

of system administration, database administration, application programming,

and operation. This manual includes syntax, usage notes, keywords, and

examples for each of the SQL statements used on i5/OS® systems running

DB2.
v DB2 for z/OS SQL Reference

How to read the syntax diagrams

xii SQL Reference, Volume 1

– This book defines SQL used in DB2 for z/OS®. It provides query forms, SQL

statements, SQL procedure statements, DB2 limits, SQLCA, SQLDA, catalog

tables, and SQL reserved words for z/OS systems running DB2.
v DB2 Spatial Extender User’s Guide and Reference

– This book discusses how to write applications to create and use a geographic

information system (GIS). Creating and using a GIS involves supplying a

database with resources and then querying the data to obtain information

such as locations, distances, and distributions within areas.
v IBM SQL Reference

– This book contains all the common elements of SQL that span IBM’s database

products. It provides limits and rules that assist in preparing portable

programs using IBM databases. This manual provides a list of SQL extensions

and incompatibilities among the following standards and products: SQL92E,

XPG4-SQL, IBM-SQL, and the IBM relational database products.
v American National Standard X3.135-1992, Database Language SQL

– Contains the ANSI standard definition of SQL.
v ISO/IEC 9075:1992, Database Language SQL

– Contains the 1992 ISO standard definition of SQL.
v ISO/IEC 9075-2:2003, Information technology -- Database Languages -- SQL -- Part 2:

Foundation (SQL/Foundation)

– Contains a large portion of the 2003 ISO standard definition of SQL.
v ISO/IEC 9075-4:2003, Information technology -- Database Languages -- SQL -- Part 4:

Persistent Stored Modules (SQL/PSM)

– Contains the 2003 ISO standard definition for SQL procedure control

statements.

Related documentation

About this book xiii

Related documentation

xiv SQL Reference, Volume 1

Chapter 1. Concepts

Databases

A DB2 database is a relational database. The database stores all data in tables that are

related to one another. Relationships are established between tables such that data

is shared and duplication is minimized.

A relational database is a database that is treated as a set of tables and manipulated

in accordance with the relational model of data. It contains a set of objects used to

store, manage, and access data. Examples of such objects are tables, views, indexes,

functions, triggers, and packages. Objects can be either defined by the system

(system-defined objects) or defined by the user (user-defined objects).

A distributed relational database consists of a set of tables and other objects that are

spread across different but interconnected computer systems. Each computer

system has a relational database manager to manage the tables in its environment.

The database managers communicate and cooperate with each other in a way that

allows a given database manager to execute SQL statements on another computer

system.

A partitioned relational database is a relational database whose data is managed

across multiple database partitions. This separation of data across database

partitions is transparent to users of most SQL statements. However, some data

definition language (DDL) statements take database partition information into

consideration (for example, CREATE DATABASE PARTITION GROUP). DDL is the

subset of SQL statements used to describe data relationships in a database.

A federated database is a relational database whose data is stored in multiple data

sources (such as separate relational databases). The data appears as if it were all in

a single large database and can be accessed through traditional SQL queries.

Changes to the data can be explicitly directed to the appropriate data source.

Structured Query Language (SQL)

SQL is a standardized language for defining and manipulating data in a relational

database. In accordance with the relational model of data, the database is treated

as a set of tables, relationships are represented by values in tables, and data is

retrieved by specifying a result table that can be derived from one or more base

tables.

SQL statements are executed by a database manager. One of the functions of the

database manager is to transform the specification of a result table into a sequence

of internal operations that optimize data retrieval. The transformation occurs in

two phases: preparation and binding.

All executable SQL statements must be prepared before they can be executed. The

result of preparation is the executable or operational form of the statement. The

method of preparing an SQL statement and the persistence of its operational form

distinguish static SQL from dynamic SQL.

© Copyright IBM Corp. 1993, 2009 1

Queries and table expressions

A query is a component of certain SQL statements; it specifies a (temporary) result

table.

A table expression creates a temporary result table from a simple query. Clauses

further refine the result table. For example, you can use a table expression as a

query to select all of the managers from several departments, specify that they

must have over 15 years of working experience, and be located at the New York

branch office.

A common table expression is like a temporary view within a complex query. It can

be referenced in other places within the query, and can be used in place of a view.

Each use of a specific common table expression within a complex query shares the

same temporary view.

Recursive use of a common table expression within a query can be used to support

applications such as airline reservation systems, bill of materials (BOM) generators,

and network planning.

DB2 Call level interface (CLI) and open database connectivity (ODBC)

The DB2 call level interface is an application programming interface that provides

functions for processing dynamic SQL statements to application programs. CLI

programs can also be compiled using an open database connectivity Software

Developer’s Kit (available from Microsoft® or other vendors), which enables access

to ODBC data sources. Unlike embedded SQL, this interface requires no

precompilation. Applications can be run against a variety of databases without

having to be compiled against each of these databases. Applications use procedure

calls at run time to connect to databases, issue SQL statements, and retrieve data

and status information.

The DB2 CLI interface provides many features not available in embedded SQL. For

example:

v CLI provides function calls that support a way of querying database catalogs

that is consistent across the DB2 family. This reduces the need to write catalog

queries that must be tailored to specific database servers.

v CLI provides the ability to scroll through a cursor:

– Forward by one or more rows

– Backward by one or more rows

– Forward from the first row by one or more rows

– Backward from the last row by one or more rows

– From a previously stored location in the cursor.
v Stored procedures called from application programs that were written using CLI

can return result sets to those programs.

Java database connectivity (JDBC) and embedded SQL for Java

(SQLJ) programs

DB2 implements two standards-based Java™ programming APIs: Java database

connectivity (JDBC) and embedded SQL for Java (SQLJ). Both can be used to create

Java applications and applets that access DB2:

Queries and table expressions

2 SQL Reference, Volume 1

v JDBC calls are translated into DB2 CLI calls through Java native methods. JDBC

requests flow from the DB2 client through DB2 CLI to the DB2 server. JDBC

cannot use static SQL.

v SQLJ applications use JDBC as a foundation for such tasks as connecting to

databases and handling SQL errors, but can also contain embedded static SQL

statements in the SQLJ source files. An SQLJ source file must be translated by

the SQLJ translator before the resulting Java source code can be compiled.

Schemas

A schema is a collection of named objects; it provides a way to group those objects

logically. A schema is also a name qualifier; it provides a way to use the same

natural name for several objects, and to prevent ambiguous references to those

objects.

For example, the schema names ’INTERNAL’ and ’EXTERNAL’ make it easy to

distinguish two different SALES tables (INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database

without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,

which is a standard that describes the structure and validates the content of XML

documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and

other objects. A schema is itself a database object. It is explicitly created using the

CREATE SCHEMA statement, with the current user or a specified authorization ID

recorded as the schema owner. It can also be implicitly created when another

object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the

object is specifically qualified with a schema name when created, the object is

assigned to that schema. If no schema name is specified when the object is created,

the default schema name is used (specified in the CURRENT SCHEMA special

register).

For example, a user with DBADM authority creates a schema called C for user A:

 CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema

C (provided that user A has the CREATETAB database authority):

 CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the

SYSIBM schema, and the pre-installed user-defined functions belong to the

SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all

users have IMPLICIT_SCHEMA authority. With this authority, users implicitly

create a schema whenever they create an object with a schema name that does not

already exist. When schemas are implicitly created, CREATEIN privileges are

granted which allows any user to create other objects in this schema. The ability to

create objects such as aliases, distinct types, functions, and triggers is extended to

Java database connectivity (JDBC) and embedded SQL for Java (SQLJ) programs

Chapter 1. Concepts 3

implicitly-created schemas. The default privileges on an implicitly-created schema

provide backward compatibility with previous versions.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be

explicitly created using the CREATE SCHEMA statement, or implicitly created by

users (such as those with DBADM authority) who have been granted

IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority

from PUBLIC increases control over the use of schema names, it can result in

authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users

have the privilege to create, alter, copy, and drop objects in the schema. This

provides a way to control the manipulation of a subset of objects in the database.

A schema owner is initially given all of these privileges on the schema, with the

ability to grant the privileges to others. An implicitly-created schema is owned by

the system, and all users are initially given the privilege to create objects in such a

schema. A user with SYSADM or DBADM authority can change the privileges that

are held by users on any schema. Therefore, access to create, alter, copy, and drop

objects in any schema (even one that was implicitly created) can be controlled.

Tables

Tables are logical structures maintained by the database manager. Tables are made

up of columns and rows.

At the intersection of every column and row is a specific data item called a value.

A column is a set of values of the same type or one of its subtypes. A row is a

sequence of values arranged so that the nth value is a value of the nth column of

the table.

An application program can determine the order in which the rows are populated

into the table, but the actual order of rows is determined by the database manager,

and typically cannot be controlled. Multidimensional clustering (MDC) provides

some sense of clustering, but not actual ordering between the rows.

Constraints

Within any business, data must often adhere to certain restrictions or rules. For

example, an employee number must be unique. The database manager provides

constraints as a way to enforce such rules.

The following types of constraints are available:

v NOT NULL constraints

v Unique (or unique key) constraints

v Primary key constraints

v Foreign key (or referential integrity) constraints

v (Table) Check constraints

v Informational constraints

Constraints are only associated with tables and are either defined as part of the

table creation process (using the CREATE TABLE statement) or are added to a

table’s definition after the table has been created (using the ALTER TABLE

statement). You can use the ALTER TABLE statement to modify constraints. In

Schemas

4 SQL Reference, Volume 1

most cases, existing constraints can be dropped at any time; this action does not

affect the table’s structure or the data stored in it.

Note: Unique and primary constraints are only associated with table objects, they

are often enforced through the use of one or more unique or primary key indexes.

Indexes

An index is a set of one or more keys, each key pointing to a row in a table. The

SQL optimizer automatically chooses the most efficient way to access data in tables.

The optimizer takes indexes into consideration when determining the fastest access

path to data.

Note: Not all indexes point to rows in a table. MDC block indexes point to extents

(or blocks) of the data. XML indexes for XML data use particular XML pattern

expressions to index paths and values in XML documents stored within a single

column. The data type of that column must be XML. Both MDC block indexes and

XML indexes are system generated indexes.

Indexes are used by the database manager to:

v Improve performance. In most cases, access to data is faster with an index.

Although an index cannot be created for a view, an index created for the table

on which a view is based can sometimes improve the performance of operations

on that view.

v Ensure uniqueness. A table with a unique index cannot have rows with identical

keys.

As data is added to a table, unless other actions have been carried out on the table

or the data being added, the data is simply appended to the bottom of the table.

There is no order to the data. When searching for a particular row of data, each

row of the table from first to last must be checked. Indexes are used as a means to

access the data within the table in an order that might otherwise not be available.

A column value in a row of data can be used to identify the entire row. One or

more columns might be needed to identify the row. Such columns are known as a

key. A column can be used in more than one key.

An index is ordered by the values within a key. Keys can be unique or non-unique.

Each table should have at least one unique key; but can also have other,

non-unique keys. Each index has exactly one key. For example, you might use the

employee ID number (unique) as the key for one index and the department

number (non-unique) as the key for a different index.

Example

Table A in Figure 1 on page 6 has an index based on the employee numbers in the

table. This key value provides a pointer to the rows in the table. For example,

employee number 19 points to employee KMP. An index allows efficient access to

rows in a table by creating a path to the data through pointers.

Unique indexes can be created to ensure uniqueness of the index key. An index key

is a column or an ordered collection of columns on which an index is defined.

Using a unique index will ensure that the value of each index key in the indexed

column or columns is unique.

Constraints

Chapter 1. Concepts 5

Figure 1 shows the relationship between an index and a table.

Figure 2 illustrates the relationships among some database objects. It also shows

that tables, indexes, and long data are stored in table spaces.

Triggers

A trigger defines a set of actions that are performed in response to an insert,

update, or delete operation on a specified table. When such an SQL operation is

executed, the trigger is said to have been activated. Triggers are optional and are

defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to

enforce data integrity rules. Triggers can also be used to cause updates to other

tables, automatically generate or transform values for inserted or updated rows, or

invoke functions to perform tasks such as issuing alerts.

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

Figure 1. Relationship between an index and a table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

Figure 2. Relationships among selected database objects

Indexes

6 SQL Reference, Volume 1

Triggers are a useful mechanism for defining and enforcing transitional business

rules, which are rules that involve different states of the data (for example, a salary

that cannot be increased by more than 10 percent).

Using triggers places the logic that enforces business rules inside the database. This

means that applications are not responsible for enforcing these rules. Centralized

logic that is enforced on all of the tables means easier maintenance, because

changes to application programs are not required when the logic changes.

The following are specified when creating a trigger:

v The subject table specifies the table for which the trigger is defined.

v The trigger event defines a specific SQL operation that modifies the subject table.

The event can be an insert, update, or delete operation.

v The trigger activation time specifies whether the trigger should be activated before

or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected rows.

These are the rows of the subject table that are being inserted, updated, or deleted.

The trigger granularity specifies whether the actions of the trigger are performed

once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of statements

that are executed whenever the trigger is activated. The statements are only

executed if the search condition evaluates to true. If the trigger activation time is

before the trigger event, triggered actions can include statements that select, set

transition variables, or signal SQL states. If the trigger activation time is after the

trigger event, triggered actions can include statements that select, insert, update,

delete, or signal SQL states.

The triggered action can refer to the values in the set of affected rows using

transition variables. Transition variables use the names of the columns in the subject

table, qualified by a specified name that identifies whether the reference is to the

old value (before the update) or the new value (after the update). The new value

can also be changed using the SET Variable statement in before, insert, or update

triggers.

Another means of referring to the values in the set of affected rows is to use

transition tables. Transition tables also use the names of the columns in the subject

table, but specify a name to allow the complete set of affected rows to be treated as

a table. Transition tables can only be used in AFTER triggers (that is, not with

BEFORE and INSTEAD OF triggers), and separate transition tables can be defined

for old and new values.

Multiple triggers can be specified for a combination of table, event (INSERT,

UPDATE, DELETE, INSTEAD OF), or activation time (BEFORE, AFTER). When

more than one trigger exists for a particular table, event, and activation time, the

order in which the triggers are activated is the same as the order in which they

were created. Thus, the most recently created trigger is the last trigger to be

activated.

The activation of a trigger might cause trigger cascading, which is the result of the

activation of one trigger that executes statements that cause the activation of other

triggers or even the same trigger again. The triggered actions might also cause

updates resulting from the application of referential integrity rules for deletions

that can, in turn, result in the activation of additional triggers. With trigger

Triggers

Chapter 1. Concepts 7

cascading, a chain of triggers and referential integrity delete rules can be activated,

causing significant change to the database as a result of a single INSERT, UPDATE,

or DELETE statement.

When multiple triggers have insert, update, or delete actions against the same

object, conflict resolution mechanism, like temporary tables, are used to resolve

access conflicts, and this can have a noticeable impact on performance, particularly

in partitioned database environments.

Views

A view is an efficient way of representing data without the need to maintain it. A

view is not an actual table and requires no permanent storage. A “virtual table” is

created and used.

A view provides a different way of looking at the data in one or more tables; it is a

named specification of a result table. The specification is a SELECT statement that

is run whenever the view is referenced in an SQL statement. A view has columns

and rows just like a table. All views can be used just like tables for data retrieval.

Whether a view can be used in an insert, update, or delete operation depends on

its definition.

A view can include all or some of the columns or rows contained in the tables on

which it is based. For example, you can join a department table and an employee

table in a view, so that you can list all employees in a particular department.

Figure 3 shows the relationship between tables and views.

 You can use views to control access to sensitive data, because views allow multiple

users to see different presentations of the same data. For example, several users

might be accessing a table of data about employees. A manager sees data about his

or her employees but not employees in another department. A recruitment officer

Column

Row

Database

Table B

19

81

87

93

47

17

85

ABS

QRS

FCP

MLI

CJP

DJS

KMP

Table A

View AB

CREATE VIEW_AB
AS SELECT. . .

FROM TABLE_A, TABLE_B
WHERE. . .

View A

CREATE VIEW_A
AS SELECT. . .

FROM TABLE_A
WHERE. . .

Figure 3. Relationship between tables and views

Triggers

8 SQL Reference, Volume 1

sees the hire dates of all employees, but not their salaries; a financial officer sees

the salaries, but not the hire dates. Each of these users works with a view derived

from the table. Each view appears to be a table and has its own name.

When the column of a view is directly derived from the column of a base table,

that view column inherits any constraints that apply to the table column. For

example, if a view includes a foreign key of its table, insert and update operations

using that view are subject to the same referential constraints as is the table. Also,

if the table of a view is a parent table, delete and update operations using that

view are subject to the same rules as are delete and update operations on the table.

A view can derive the data type of each column from the result table, or base the

types on the attributes of a user-defined structured type. This is called a typed view.

Similar to a typed table, a typed view can be part of a view hierarchy. A subview

inherits columns from its superview. The term subview applies to a typed view and

to all typed views that are below it in the view hierarchy. A proper subview of a

view V is a view below V in the typed view hierarchy.

A view can become inoperative (for example, if the table is dropped); if this occurs,

the view is no longer available for SQL operations.

Table or view aliases

An alias is an alternative name for a table or a view. It can be used to reference a

table or a view if an existing table or view can be referenced.

An alias cannot be used in all contexts; for example, it cannot be used in the check

condition of a check constraint. An alias cannot reference a declared temporary

table.

Like tables or views, an alias can be created, dropped, and have comments

associated with it. However, unlike tables, aliases can refer to each other in a

process called chaining. Aliases are publicly referenced names, so no special

authority or privilege is required to use them. Access to the table or the view

referred to by an alias, however, does require the authorization associated with

these objects.

There are other types of aliases, such as database and network aliases. Aliases can

also be created for nicknames that refer to data tables or views located on federated

systems.

Packages

A package is an object produced during program preparation that contains all of the

sections in a single source file. A section is the compiled form of an SQL statement.

Although every section corresponds to one statement, not every statement has a

section. The sections created for static SQL are comparable to the bound, or

operational, form of SQL statements. The sections created for dynamic SQL are

comparable to placeholder control structures used at run time.

Authorization, privileges, and object ownership

Users (identified by an authorization ID) can successfully execute SQL or XQuery

statements only if they have the authority to perform the specified function. To

create a table, a user must be authorized to create tables; to alter a table, a user

must be authorized to alter the table; and so forth.

Views

Chapter 1. Concepts 9

There are three forms of authorization, administrative authority, privileges, and LBAC

credentials, discussed below.

The database manager requires that each user be specifically authorized, either

implicitly or explicitly, to use each database function needed to perform a specific

task. Explicit authorities or privileges are granted to the user (GRANTEETYPE of U

in the database catalogs). Implicit authorities or privileges are granted to a group to

which the user belongs (GRANTEETYPE of G in the database catalogs) or to a role

in which the user, the group or another role is a member (GRANTEETYPE of R in

the database catalogs).

Administrative authority

The person or persons holding administrative authority are charged with the task

of controlling the database manager and are responsible for the safety and integrity

of the data. Those with administrative authority levels of SYSADM and DBADM

implicitly have all privileges on all objects except objects pertaining to database

security and control who will have access to the database manager and the extent

of this access.

Authority levels provide a method of grouping privileges and higher-level database

manager maintenance and utility operations. Database authorities enable users to

perform activities at the database level. A user, group, or role can have one or

more of the following authorities:

v Administrative authority level that operates at the instance level, SYSADM

(system administrator)

The SYSADM authority level provides control over all the resources created and

maintained by the database manager. The system administrator possesses all the

authorities of DBADM, SYSCTRL, SYSMAINT, and SYSMON, and the authority

to grant and revoke DBADM authority and SECADM authority.

The user who has SYSADM authority is responsible both for controlling the

database manager, and for ensuring the safety and integrity of the data.

SYSADM authority provides implicit DBADM authority within a database but

does not provide implicit SECADM authority within a database.

v Administrative authority levels that operate at the database level:

– DBADM (database administrator)

The DBADM authority level applies at the database level and provides

administrative authority over a single database. This database administrator

possesses the privileges required to create objects, issue database commands,

and access table data. The database administrator can also grant and revoke

CONTROL and individual privileges.

– SECADM (security administrator)

The SECADM authority level applies at the database level and is the

authority required to create, alter (where applicable), and drop roles, trusted

contexts, audit policies, security label components, security policies, and

security labels, which are used to protect tables. It is also the authority

required to grant and revoke roles, security labels and exemptions as well as

to grant and revoke the SETSESSIONUSER privilege. A user with the

SECADM authority can transfer the ownership of objects that they do not

own. They can also use the AUDIT statement to associate an audit policy

with a particular database or database object at the server.

The SECADM authority has no inherent privilege to access data stored in

tables and has no other additional inherent privilege. It can only be granted

Authorization, privileges, and object ownership

10 SQL Reference, Volume 1

by a user with SYSADM authority. The SECADM authority can be granted to

a user but cannot be granted to a group, a role or to PUBLIC.
v System control authority levels that operate at the instance level:

– SYSCTRL (system control)

The SYSCTRL authority level provides control over operations that affect

system resources. For example, a user with SYSCTRL authority can create,

update, start, stop, or drop a database. This user can also start or stop an

instance, but cannot access table data. Users with SYSCTRL authority also

have SYSMON authority.

– SYSMAINT (system maintenance)

The SYSMAINT authority level provides the authority required to perform

maintenance operations on all databases associated with an instance. A user

with SYSMAINT authority can update the database configuration, backup a

database or table space, restore an existing database, and monitor a database.

Like SYSCTRL, SYSMAINT does not provide access to table data. Users with

SYSMAINT authority also have SYSMON authority.
v The SYSMON (system monitor) authority level

SYSMON provides the authority required to use the database system monitor. It

operates at the instance level.

v Database authorities

To perform activities such as creating a table or a routine, or for loading data

into a table, specific database authorities are required. For example, the LOAD

database authority is required for use of the load utility to load data into tables

(a user must also have INSERT privilege on the table).

Figure 4 illustrates the relationship between authorities and their span of control

(database, database manager).

SYSADM

SYSCTRL

Authority levels Instance

CUSTOMER

Database
authorities

EMPLOYEE

Database
authorities

SYSMAINT

SYSMON

Figure 4. Hierarchy of Authorities

Authorization, privileges, and object ownership

Chapter 1. Concepts 11

Privileges

Privileges are those activities that a user is allowed to perform. Authorized users

can create objects, have access to objects they own, and can pass on privileges on

their own objects to other users by using the GRANT statement.

Privileges may be granted to individual users, to groups, or to PUBLIC. PUBLIC is

a special group that consists of all users, including future users. Users that are

members of a group will indirectly take advantage of the privileges granted to the

group, where groups are supported.

The CONTROL privilege: Possessing the CONTROL privilege on an object allows a

user to access that database object, and to grant and revoke privileges to or from

other users on that object.

Note: The CONTROL privilege only apples to tables, views, nicknames, indexes,

and packages.

If a different user requires the CONTROL privilege to that object, a user with

SYSADM or DBADM authority could grant the CONTROL privilege to that object.

The CONTROL privilege cannot be revoked from the object owner, however, the

object owner can be changed by using the TRANSFER OWNERSHIP statement.

In some situations, the creator of an object automatically obtains the CONTROL

privilege on that object.

Individual privileges: Individual privileges can be granted to allow a user to carry

out specific tasks on specific objects. Users with administrative authority (SYSADM

or DBADM) or the CONTROL privilege can grant and revoke privileges to and

from users.

Individual privileges and database authorities allow a specific function, but do not

include the right to grant the same privileges or authorities to other users. The

right to grant table, view, schema, package, routine, and sequence privileges to

others can be extended to other users through the WITH GRANT OPTION on the

GRANT statement. However, the WITH GRANT OPTION does not allow the

person granting the privilege to revoke the privilege once granted. You must have

SYSADM authority, DBADM authority, or the CONTROL privilege to revoke the

privilege.

Privileges on objects in a package or routine: When a user has the privilege to execute

a package or routine, they do not necessarily require specific privileges on the

objects used in the package or routine. If the package or routine contains static

SQL or XQuery statements, the privileges of the owner of the package are used for

those statements. If the package or routine contains dynamic SQL or XQuery

statements, the authorization ID used for privilege checking depends on the setting

of the DYNAMICRULES bind option of the package issuing the dynamic query

statements, and whether those statements are issued when the package is being

used in the context of a routine.

A user or group can be authorized for any combination of individual privileges or

authorities. When a privilege is associated with an object, that object must exist.

For example, a user cannot be given the SELECT privilege on a table unless that

table has previously been created.

Authorization, privileges, and object ownership

12 SQL Reference, Volume 1

Note: Care must be taken when an authorization name representing a user or a

group is granted authorities and privileges and there is no user, or group created

with that name. At some later time, a user or a group can be created with that

name and automatically receive all of the authorities and privileges associated with

that authorization name.

The REVOKE statement is used to revoke previously granted privileges. The

revoking of a privilege from an authorization name revokes the privilege granted

by all authorization names.

Revoking a privilege from an authorization name does not revoke that same

privilege from any other authorization names that were granted the privilege by

that authorization name. For example, assume that CLAIRE grants SELECT WITH

GRANT OPTION to RICK, then RICK grants SELECT to BOBBY and CHRIS. If

CLAIRE revokes the SELECT privilege from RICK, BOBBY and CHRIS still retain

the SELECT privilege.

LBAC credentials

Label-based access control (LBAC) lets the security administrator decide exactly

who has write access and who has read access to individual rows and individual

columns. The security administrator configures the LBAC system by creating

security policies. A security policy describes the criteria used to decide who has

access to what data. Only one security policy can be used to protect any one table

but different tables can be protected by different security policies.

After creating a security policy, the security administrator creates database objects,

called security labels and exemptions that are part of that policy. A security label

describes a certain set of security criteria. An exemption allows a rule for

comparing security labels not to be enforced for the user who holds the exemption,

when they access data protected by that security policy.

Once created, a security label can be associated with individual columns and rows

in a table to protect the data held there. Data that is protected by a security label is

called protected data. A security administrator allows users access to protected

data by granting them security labels. When a user tries to access protected data,

that user’s security label is compared to the security label protecting the data. The

protecting label blocks some security labels and does not block others.

Object ownership

When an object is created, one authorization ID is assigned ownership of the object.

Ownership means the user is authorized to reference the object in any applicable

SQL or XQuery statement.

When an object is created within a schema, the authorization ID of the statement

must have the required privilege to create objects in the implicitly or explicitly

specified schema. That is, the authorization name must either be the owner of the

schema, or possess the CREATEIN privilege on the schema.

Note: This requirement is not applicable when creating table spaces, buffer pools

or database partition groups. These objects are not created in schemas.

When an object is created, the authorization ID of the statement is the definer of

that object and by default becomes the owner of the object after it is created.

Authorization, privileges, and object ownership

Chapter 1. Concepts 13

Note: One exception exists. If the AUTHORIZATION option is specified for the

CREATE SCHEMA statement, any other object that is created as part of the

CREATE SCHEMA operation is owned by the authorization ID specified by the

AUTHORIZATION option. Any objects that are created in the schema after the

initial CREATE SCHEMA operation, however, are owned by the authorization ID

associated with the specific CREATE statement.

For example, the statement CREATE SCHEMA SCOTTSTUFF AUTHORIZATION SCOTT

CREATE TABLE T1 (C1 INT) creates the schema SCOTTSTUFF and the table

SCOTTSTUFF.T1, which are both owned by SCOTT. Assume that the user BOBBY is

granted the CREATEIN privilege on the SCOTTSTUFF schema and creates an index

on the SCOTTSTUFF.T1 table. Because the index is created after the schema, BOBBY

owns the index on SCOTTSTUFF.T1.

Privileges are assigned to the object owner based on the type of object being

created:

v The CONTROL privilege is implicitly granted on newly created tables, indexes,

and packages. This privilege allows the object creator to access the database

object, and to grant and revoke privileges to or from other users on that object.

If a different user requires the CONTROL privilege to that object, a user with

SYSADM or DBADM authority must grant the CONTROL privilege to that

object. The CONTROL privilege cannot be revoked by the object owner.

v The CONTROL privilege is implicitly granted on newly created views if the

object owner has the CONTROL privilege on all the tables, views, and

nicknames referenced by the view definition.

v Other objects like triggers, routines, sequences, table spaces, and buffer pools do

not have a CONTROL privilege associated with them. The object owner does,

however, automatically receive each of the privileges associated with the object

(and can provide these privileges to other users, where supported, by using the

WITH GRANT option of the GRANT statement). In addition, the object owner

can alter, add a comment on, or drop the object. These authorizations are

implicit for the object owner and cannot be revoked.

Certain privileges on the object, such as altering a table, can be granted by the

owner, and can be revoked from the owner by a user who has SYSADM or

DBADM authority. Certain privileges on the object, such as commenting on a table,

cannot be granted by the owner and cannot be revoked from the owner. Use the

TRANSFER OWNERSHIP statement to move these privileges to another user.

When an object is created, the authorization ID of the statement is the definer of

that object and by default becomes the owner of the object after it is created.

However, when a package is created and the OWNER bind option is specified, the

owner of objects created by the static SQL statements in the package is the value of

the OWNER bind option. In addition, if the AUTHORIZATION clause is specified

on a CREATE SCHEMA statement, the authorization name specified after the

AUTHORIZATION keyword is the owner of the schema.

A security administrator or the object owner can use the TRANSFER OWNERSHIP

statement to change the ownership of a database object. An administrator can

therefore create an object on behalf of an authorization ID, by creating the object

using the authorization ID as the qualifier, and then using the TRANSFER

OWNERSHIP statement to transfer the ownership that the administrator has on the

object to the authorization ID.

Authorization, privileges, and object ownership

14 SQL Reference, Volume 1

System catalog views

The database manager maintains a set of tables and views that contain information

about the data under its control. These tables and views are collectively known as

the system catalog.

The system catalog contains information about the logical and physical structure of

database objects such as tables, views, indexes, packages, and functions. It also

contains statistical information. The database manager ensures that the descriptions

in the system catalog are always accurate.

The system catalog views are like any other database view. SQL statements can be

used to query the data in the system catalog views. A set of updatable system

catalog views can be used to modify certain values in the system catalog.

Application processes, concurrency, and recovery

All SQL programs execute as part of an application process or agent. An application

process involves the execution of one or more programs, and is the unit to which

the database manager allocates resources and locks. Different application processes

may involve the execution of different programs, or different executions of the

same program.

More than one application process may request access to the same data at the same

time. Locking is the mechanism used to maintain data integrity under such

conditions, preventing, for example, two application processes from updating the

same row of data simultaneously.

The database manager acquires locks to prevent uncommitted changes made by

one application process from being accidentally perceived by any other process.

The database manager releases all locks it has acquired and retained on behalf of

an application process when that process ends. However, an application process

can explicitly request that locks be released sooner. This is done using a commit

operation, which releases locks acquired during the unit of work and also commits

database changes made during the unit of work.

The database manager provides a means of backing out uncommitted changes

made by an application process. This might be necessary in the event of a failure

on the part of an application process, or in the case of a deadlock, or a lock

time-out situation. An application process can explicitly request that its database

changes be backed out. This is done using a rollback operation.

A unit of work is a recoverable sequence of operations within an application

process. A unit of work is initiated when an application process is started, or when

the previous unit of work is ended by something other than the termination of the

application process. A unit of work is ended by a commit operation, a rollback

operation, or the end of an application process. A commit or rollback operation

affects only the database changes made within the unit of work it is ending.

As long as these changes remain uncommitted, other application processes are

unable to perceive them, and they can be backed out. This is not true, however,

when the isolation level is uncommitted read (UR). Once committed, these

database changes are accessible by other application processes and can no longer

be backed out through a rollback.

System catalog views

Chapter 1. Concepts 15

Both DB2 call level interface (CLI) and embedded SQL allow for a connection

mode called concurrent transactions, which supports multiple connections, each of

which is an independent transaction. An application can have multiple concurrent

connections to the same database.

Locks acquired by the database manager on behalf of an application process are

held until the end of a unit of work. This is not true, however, when the isolation

level is cursor stability (CS, in which the lock is released as the cursor moves from

row to row) or uncommitted read (UR, in which locks are not obtained).

An application process is never prevented from performing operations because of

its own locks. However, if an application uses concurrent transactions, the locks

from one transaction may affect the operation of a concurrent transaction.

The initiation and the termination of a unit of work define points of consistency

within an application process. For example, a banking transaction may involve the

transfer of funds from one account to another. Such a transaction would require

that these funds be subtracted from the first account, and then added to the second

account. Following the subtraction step, the data is inconsistent. Only after the

funds have been added to the second account is consistency reestablished. When

both steps are complete, the commit operation can be used to end the unit of work,

thereby making the changes available to other application processes. If a failure

occurs before the unit of work ends, the database manager will roll back

uncommitted changes to restore the data consistency that it assumes existed when

the unit of work was initiated.

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure 5. Unit of Work with a COMMIT Statement

Application processes, concurrency, and recovery

16 SQL Reference, Volume 1

Isolation levels

The isolation level associated with an application process defines the degree of

isolation of that application process from other concurrently executing application

processes. The isolation level of an application process therefore specifies:

v The degree to which the rows read and updated by the application are available

to other concurrently executing application processes.

v The degree to which the update activity of other concurrently executing

application processes can affect the application.

The isolation level for static SQL statements is specified as an attribute of a

package and applies to the application processes that use the package. The

isolation level is specified in the program preparation process by setting the

ISOLATION bind or precompile option. For dynamic SQL statements, the default

isolation level is the isolation level specified for the package preparing the

statement. Use of the SET CURRENT ISOLATION statement allows for alternate

isolation levels to be specified for dynamic SQL issued within a session. For more

information, see “CURRENT ISOLATION special register”. For both static SQL

statements and dynamic SQL statements, the isolation-clause in a select-statement

overrides both the special register (if set) and the bind option value. For more

information, see “Select-statement”.

Depending on the type of lock, this limits or prevents access to the data by

concurrent application processes. Declared temporary tables and their rows cannot

be locked because they are only accessible to the application that declared them.

The database manager supports three general categories of locks:

Share Limits concurrent application processes to read-only operations on the

data.

Update

Limits concurrent application processes to read-only operations on the

data, if these processes have not declared that they might update the row.

The database manager assumes that the process currently looking at a row

may update it.

Exclusive

Prevents concurrent application processes from accessing the data in any

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure 6. Unit of Work with a ROLLBACK Statement

Isolation levels

Chapter 1. Concepts 17

way. Does not apply to application processes with an isolation level of

uncommitted read, which can read but not modify the data.

 Locking occurs at the base table row. The database manager, however, can replace

multiple row locks with a single table lock. This is called lock escalation. An

application process is guaranteed at least the minimum requested lock level.

The database manager supports four isolation levels. Regardless of the isolation

level, the database manager places exclusive locks on every row that is inserted,

updated, or deleted. Thus, all isolation levels ensure that any row that is changed

by this application process during a unit of work is not changed by any other

application processes until the unit of work is complete. The isolation levels are:

v Repeatable Read (RR)

This level ensures that:

– Any row read during a unit of work is not changed by other application

processes until the unit of work is complete. The rows are read in the same

unit of work as the corresponding OPEN statement. Use of the optional

WITH RELEASE clause on the CLOSE statement means that any guarantees

against non-repeatable reads and phantom reads no longer apply to any

previously accessed rows if the cursor is reopened.

– Any row changed by another application process cannot be read until it is

committed by that application process.
The Repeatable Read level does not allow phantom rows to be viewed (see Read

Stability).

In addition to any exclusive locks, an application process running at the RR level

acquires at least share locks on all the rows it references. Furthermore, the

locking is performed so that the application process is completely isolated from

the effects of concurrent application processes.

v Read Stability (RS)

Like the Repeatable Read level, the Read Stability level ensures that:

– Any row read during a unit of work is not changed by other application

processes until the unit of work is complete. The rows are read in the same

unit of work as the corresponding OPEN statement. Use of the optional

WITH RELEASE clause on the CLOSE statement means that any guarantees

against non-repeatable reads no longer apply to any previously accessed rows

if the cursor is reopened.

– Any row changed by another application process cannot be read until it is

committed by that application process.
Unlike Repeatable Read, Read Stability does not completely isolate the

application process from the effects of concurrent application processes. At the

RS level, application processes that issue the same query more than once may

see additional rows caused by other application processes appending new

information to the database. These additional rows are called phantom rows.

For example, a phantom row can occur in the following situation:

1. Application process P1 reads the set of rows n that satisfy some search

condition.

2. Application process P2 then inserts one or more rows that satisfy the search

condition and commits those new inserts.

3. P1 reads the set of rows again with the same search condition and obtains

both the original rows and the rows inserted by P2.
In addition to any exclusive locks, an application process running at the RS

isolation level acquires at least share locks on all the qualifying rows.

Isolation levels

18 SQL Reference, Volume 1

v Cursor Stability (CS)

Like the Repeatable Read level, the Cursor Stability level ensures that any row

that was changed by another application process cannot be read until it is

committed by that application process.

Unlike Repeatable Read, Cursor Stability only ensures that the current row of

every updatable cursor is not changed by other application processes. Thus, the

rows that were read during a unit of work can be changed by other application

processes.

In addition to any exclusive locks, an application process running at the CS

isolation level acquires at least a share lock on the current row of every cursor.

v Uncommitted Read (UR)

For SELECT INTO, FETCH with a read-only cursor, fullselect in an INSERT, row

fullselect in an UPDATE, or scalar fullselect (wherever it is used), the

Uncommitted Read level allows:

– Any row read during a unit of work to be changed by other application

processes.

– Any row changed by another application process to be read, even if the

change has not been committed by that application process.
For other operations, rules associated with the CS level apply.

Comparison of isolation levels

The following table summarizes information about isolation levels.

 UR CS RS RR

Can the application see uncommitted changes

made by other application processes?

Yes No No No

Can the application update uncommitted

changes made by other application processes?

No No No No

Can the re-execution of a statement be affected

by other application processes? See phenomenon

P3 (phantom) below.

Yes Yes Yes No3

Can “updated” rows be updated by other

application processes? See Note 1 below.

No No No No

Can “updated” rows be read by other

application processes that are running at an

isolation level other than UR?

No No No No

Can “updated” rows be read by other

application processes that are running at the UR

isolation level?

Yes Yes Yes Yes

Can “accessed” rows be updated by other

application processes? See phenomenon P2

(nonrepeatable read) below.

Yes Yes No No

Can “accessed” rows be read by other

application processes?

Yes Yes Yes Yes

Can “current” row be updated or deleted by

other application processes? See phenomenon P1

(dirty-read) below.

See Note

2 below.

See Note

2 below.

No No

Isolation levels

Chapter 1. Concepts 19

UR CS RS RR

Note:

1. The isolation level offers no protection to the application if the application is both

reading and writing a table. For example, an application opens a cursor on a table and

then performs an insert, update, or delete operation on the same table. The application

may see inconsistent data when more rows are fetched from the open cursor.

2. If the cursor is not updatable, with CS the current row may be updated or deleted by

other application processes in some cases. For example, buffering may cause the current

row at the client to be different than what the current row actually is at the server.

3. If your label-based access control (LBAC) credentials change between reads, the results

of the second read might be different because you have access to different rows.

Examples of Phenomena:

P1 Dirty Read. Unit of work UW1 modifies a row. Unit of work UW2 reads that row

before UW1 performs a COMMIT. If UW1 then performs a ROLLBACK, UW2 has

read a nonexistent row.

P2 Nonrepeatable Read. Unit of work UW1 reads a row. Unit of work UW2 modifies

that row and performs a COMMIT. If UW1 then re-reads the row, it might receive a

modified value.

P3 Phantom. Unit of work UW1 reads the set of n rows that satisfies some search

condition. Unit of work UW2 then INSERTs one or more rows that satisfies the

search condition and performs a COMMIT. If UW1 then repeats the initial read

with the same search condition, it obtains the original rows plus the inserted rows.

Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long

data. Table spaces reside in database partition groups. They allow you to assign the

location of database and table data directly onto containers. (A container can be a

directory name, a device name, or a file name.) This can provide improved

performance and more flexible configuration.

Since table spaces reside in database partition groups, the table space selected to

hold a table defines how the data for that table is distributed across the database

partitions in a database partition group. A single table space can span several

containers. It is possible for multiple containers (from one or more table spaces) to

be created on the same physical disk (or drive). If you are using automatic storage

table spaces, this is handled by the database manager. If you are not using

automatic storage table spaces, for improved performance, each container should

use a different disk.

Figure 7 on page 21 illustrates the relationship between tables and table spaces

within a database, and the containers associated with that database.

Isolation levels

20 SQL Reference, Volume 1

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,

which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table

space in container 4. This example shows each container existing on a separate

disk.

The database manager attempts to balance the data load across containers. As a

result, all containers are used to store data. The number of pages that the database

manager writes to a container before using a different container is called the extent

size. The database manager does not always start storing table data in the first

container.

Figure 8 on page 22 shows the HUMANRES table space with an extent size of two

4 KB pages, and four containers, each with a small number of allocated extents.

The DEPARTMENT and EMPLOYEE tables both have seven pages, and span all

four containers.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 7. Table spaces and tables in a database

Table spaces

Chapter 1. Concepts 21

Character conversion

A string is a sequence of bytes that may represent characters. All the characters

within a string have a common coding representation. In some cases, it may be

necessary to convert these characters to a different coding representation, a process

known as character conversion. Character conversion, when required, is automatic,

and when successful, it is transparent to the application.

Character conversion can occur when an SQL statement is executed remotely.

Consider, for example, the following scenarios in which the coding representations

may be different at the sending and receiving systems:

v The values of host variables are sent from the application requester to the

application server.

v The values of result columns are sent from the application server to the

application requester.

Following is a list of terms used when discussing character conversion:

character set

A defined set of characters. For example, the following character set

appears in several code pages:

v 26 non-accented letters A through Z

v 26 non-accented letters a through z

v digits 0 through 9

v . , : ; ? () ’ ″ / - _ & + % * = < >

code page

A set of assignments of characters to code points. In the ASCII encoding

scheme for code page 850, for example, ″A″ is assigned code point X’41’,

and ″B″ is assigned code point X’42’. Within a code page, each code point

has only one specific meaning. A code page is an attribute of the database.

When an application program connects to the database, the database

manager determines the code page of the application.

code point

A unique bit pattern that represents a character.

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 8. Containers and extents in a table space

Character conversion

22 SQL Reference, Volume 1

encoding scheme

A set of rules used to represent character data, for example:

v Single-Byte ASCII

v Single-Byte EBCDIC

v Double-Byte ASCII

v Mixed single- and double-byte ASCII

 The following figure shows how a typical character set might map to different

code points in two different code pages. Even with the same encoding scheme,

there are many different code pages, and the same code point can represent a

different character in different code pages. Furthermore, a byte in a character string

does not necessarily represent a character from a single-byte character set (SBCS).

Character strings are also used for mixed and bit data. Mixed data is a mixture of

single-byte, double-byte, or multi-byte characters. Bit data (columns defined as FOR

BIT DATA, or BLOBs, or binary strings) is not associated with any character set.

 The database manager determines code page attributes for all character strings

when an application is bound to a database. The possible code page attributes are:

Database code page

The database code page is stored in the database configuration file. The

value is specified when the database is created and cannot be altered.

FE

Ä

Ã

Á

Å

Â

À

Ö

®

5
8

2 3 4 50

0

1

1

2

3

4

5

E

F

%

/

0

1

2

3

4

5

@

A

B

C

D

E

N

0

>.

*

P

Q

R

S

T

U

code page: pp1 (ASCII)

character set ss1
(in code page pp1)

code point: 2F

0

1

2

3

4

5

E

F

FE0 1 A B

s

t

u

v

#

$

%

*

(

S

T

U

V

Â

C D

0

1

2

3

4

5

}

{ÁÀ ¢

! :

;

A

B

C

D

E

J

K

L

M

N

code page: pp2 (EBCDIC)

character set ss1
(in code page pp2)

"

Figure 9. Mapping a Character Set in Different Code Pages

Character conversion

Chapter 1. Concepts 23

Application code page

The code page under which the application runs. This is not necessarily

the same code page under which the application was bound.

Section code page

The code page under which the SQL statement runs. Typically, the section

code page is the database code page. However, the Unicode code page

(UTF-8) is used as the section code page if:

v The statement references a table that is created with the Unicode

encoding scheme in a non-Unicode database

v The statement references a table function that is defined with

PARAMETER CCSID UNICODE in a non-Unicode database

Code Page 0

This represents a string that is derived from an expression that contains a

FOR BIT DATA value or a BLOB value.

 Character string code pages have the following attributes:

v Columns can be in the database code page, the Unicode code page (UTF-8), or

code page 0 (if defined as FOR BIT DATA or BLOB).

v Constants and special registers (for example, USER, CURRENT SERVER) are in

the section code page. Constants are converted, if necessary, from the application

code page to the database code page, and then to the section code page when an

SQL statement is bound to the database.

v Input host variables are in the application code page. As of Version 8, string data

in input host variables is converted, if necessary, from the application code page

to the section code page before being used. The exception occurs when a host

variable is used in a context where it is to be interpreted as bit data; for

example, when the host variable is to be assigned to a column that is defined as

FOR BIT DATA.

A set of rules is used to determine code page attributes for operations that

combine string objects, such as scalar operations, set operations, or concatenation.

Code page attributes are used to determine requirements for code page conversion

of strings at run time.

National language support and SQL statements

The coding of SQL statements is not language dependent. The SQL keywords must

be typed as shown, although they may be typed in uppercase, lowercase, or mixed

case. The names of database objects, host variables and program labels that occur

in an SQL statement must be characters supported by your application code page.

The server does not convert file names. To code a file name, either use the ASCII

invariant set, or provide the path in the hexadecimal values that are physically

stored in the file system.

In a multi-byte environment, there are four characters which are considered special

that do not belong to the invariant character set. These characters are:

v The double-byte percentage and double-byte underscore characters used in LIKE

processing.

v The double-byte space character, used for, among other things, blank padding in

graphic strings.

Character conversion

24 SQL Reference, Volume 1

v The double-byte substitution character, used as a replacement during code page

conversion when no mapping exists between a source code page and a target

code page.

The code points for each of these characters, by code page, is as follows:

 Table 1. Code Points for Special Double-Byte Characters

Code Page

Double-Byte

Percentage

Double-Byte

Underscore

Double-Byte

Space

Double-Byte

Substitution

Character

932 X’8193’ X’8151’ X’8140’ X’FCFC’

938 X’8193’ X’8151’ X’8140’ X’FCFC’

942 X’8193’ X’8151’ X’8140’ X’FCFC’

943 X’8193’ X’8151’ X’8140’ X’FCFC’

948 X’8193’ X’8151’ X’8140’ X’FCFC’

949 X’A3A5’ X’A3DF’ X’A1A1’ X’AFFE’

950 X’A248’ X’A1C4’ X’A140’ X’C8FE’

954 X’A1F3’ X’A1B2’ X’A1A1’ X’F4FE’

964 X’A2E8’ X’A2A5’ X’A1A1’ X’FDFE’

970 X’A3A5’ X’A3DF’ X’A1A1’ X’AFFE’

1381 X’A3A5’ X’A3DF’ X’A1A1’ X’FEFE’

1383 X’A3A5’ X’A3DF’ X’A1A1’ X’A1A1’

13488 X’FF05’ X’FF3F’ X’3000’ X’FFFD’

1363 X’A3A5’ X’A3DF’ X’A1A1’ X’A1E0’

1386 X’A3A5’ X’A3DF’ X’A1A1’ X’FEFE’

5039 X’8193’ X’8151’ X’8140’ X’FCFC’

For Unicode databases, the GRAPHIC space is X’0020’, which is different from the

GRAPHIC space of X’3000’ used for euc-Japan and euc-Taiwan databases. Both

X’0020’ and X’3000’ are space characters in the Unicode standard. The difference in

the GRAPHIC space code points should be taken into consideration when

comparing data from these EUC databases to data from a Unicode database.

Connecting to distributed relational databases

Distributed relational databases are built on formal requester-server protocols and

functions.

An application requester supports the application end of a connection. It transforms

a database request from the application into communication protocols suitable for

use in the distributed database network. These requests are received and processed

by a database server at the other end of the connection. Working together, the

application requester and the database server handle communication and location

considerations, so that the application can operate as if it were accessing a local

database.

An application process must connect to a database manager’s application server

before SQL statements that reference tables or views can be executed. The

CONNECT statement establishes a connection between an application process and

its server.

National language support and SQL statements

Chapter 1. Concepts 25

There are two types of CONNECT statements:

v CONNECT (Type 1) supports the single database per unit of work (Remote Unit

of Work) semantics.

v CONNECT (Type 2) supports the multiple databases per unit of work

(Application-Directed Distributed Unit of Work) semantics.

The DB2 call level interface (CLI) and embedded SQL support a connection mode

called concurrent transactions, which allows multiple connections, each of which is

an independent transaction. An application can have multiple concurrent

connections to the same database.

The application server can be local to or remote from the environment in which the

process is initiated. An application server is present, even if the environment is not

using distributed relational databases. This environment includes a local directory

that describes the application servers that can be identified in a CONNECT

statement.

The application server runs the bound form of a static SQL statement that

references tables or views. The bound statement is taken from a package that the

database manager has previously created through a bind operation.

For the most part, an application connected to an application server can use

statements and clauses that are supported by the application server’s database

manager. This is true even if an application is running through the application

requester of a database manager that does not support some of those statements

and clauses.

Event monitors

Event monitors are used to collect information about the database and any

connected applications when specified events occur. Events represent transitions in

database activity such as connections, deadlocks, statements, or transactions. You

can define an event monitor by the type of event or events you want it to monitor.

For example, a deadlock event monitor waits for a deadlock to occur; when one

does, it collects information about the applications involved and the locks in

contention.

By default, all databases have an event monitor defined named

DB2DETAILDEADLOCK, which records detailed information about deadlock

events. The DB2DETAILDEADLOCK event monitor starts automatically when the

database starts.

Whereas the snapshot monitor is typically used for preventative maintenance and

problem analysis, event monitors are used to alert administrators to immediate

problems or to track impending ones.

To create an event monitor, use the CREATE EVENT MONITOR SQL statement.

Event monitors collect event data only when they are active. To activate or

deactivate an event monitor, use the SET EVENT MONITOR STATE SQL

statement. The status of an event monitor (whether it is active or inactive) can be

determined by the SQL function EVENT_MON_STATE.

When the CREATE EVENT MONITOR SQL statement is executed, the definition of

the event monitor it creates is stored in the following database system catalog

tables:

Connecting to distributed relational databases

26 SQL Reference, Volume 1

v SYSCAT.EVENTMONITORS: event monitors defined for the database.

v SYSCAT.EVENTS: events monitored for the database.

v SYSCAT.EVENTTABLES: target tables for table event monitors.

Each event monitor has its own private logical view of the instance’s data in the

monitor elements. If a particular event monitor is deactivated and then reactivated,

its view of these counters is reset. Only the newly activated event monitor is

affected; all other event monitors will continue to use their view of the counter

values (plus any new additions).

Event monitor output can be directed to non-partitioned SQL tables, a file, or a

named pipe.

Database partitioning across multiple database partitions

The database manager allows great flexibility in spreading data across multiple

database partitions (nodes) of a partitioned database. Users can choose how to

distribute their data by declaring distribution keys, and can determine which and

how many database partitions their table data can be spread across by selecting the

database partition group and table space in which the data should be stored.

In addition, a distribution map (which is updatable) specifies the mapping of

distribution key values to database partitions. This makes it possible for flexible

workload parallelization across a partitioned database for large tables, while

allowing smaller tables to be stored on one or a small number of database

partitions if the application designer so chooses. Each local database partition may

have local indexes on the data it stores to provide high performance local data

access.

In a partitioned database, the distribution key is used to distribute table data

across a set of database partitions. Index data is also partitioned with its

corresponding tables, and stored locally at each database partition.

Before database partitions can be used to store data, they must be defined to the

database manager. Database partitions are defined in a file called db2nodes.cfg.

The distribution key for a table in a table space on a partitioned database partition

group is specified in the CREATE TABLE statement or the ALTER TABLE

statement. If not specified, a distribution key for a table is created by default from

the first column of the primary key. If no primary key is defined, the default

distribution key is the first column defined in that table that has a data type other

than a long or a LOB data type. Tables in partitioned databases must have at least

one column that is neither a long nor a LOB data type. A table in a table space that

is in a single partition database partition group will have a distribution key only if

it is explicitly specified.

Rows are placed in a database partition as follows:

1. A hashing algorithm (database partitioning function) is applied to all of the

columns of the distribution key, which results in the generation of a

distribution map index value.

2. The database partition number at that index value in the distribution map

identifies the database partition in which the row is to be stored.

Event monitors

Chapter 1. Concepts 27

The database manager supports partial declustering, which means that a table can be

distributed across a subset of database partitions in the system (that is, a database

partition group). Tables do not have to be distributed across all of the database

partitions in the system.

The database manager has the capability of recognizing when data being accessed

for a join or a subquery is located at the same database partition in the same

database partition group. This is known as table collocation. Rows in collocated

tables with the same distribution key values are located on the same database

partition. The database manager can choose to perform join or subquery processing

at the database partition in which the data is stored. This can have significant

performance advantages.

Collocated tables must:

v Be in the same database partition group, one that is not being redistributed.

(During redistribution, tables in the database partition group may be using

different distribution maps – they are not collocated.)

v Have distribution keys with the same number of columns.

v Have the corresponding columns of the distribution key be database

partition-compatible.

v Be in a single partition database partition group defined on the same database

partition.

Large object behavior in partitioned tables

A partitioned table uses a data organization scheme in which table data is divided

across multiple storage objects, called data partitions or ranges, according to values

in one or more table partitioning key columns of the table. Data from a given table

is partitioned into multiple storage objects based on the specifications provided in

the PARTITION BY clause of the CREATE TABLE statement. These storage objects

can be in different table spaces, in the same table space, or a combination of both.

A large object for a partitioned table is, by default, stored in the same table space

as its corresponding data object. This applies to partitioned tables that use only one

table space or use multiple table spaces. When a partitioned table’s data is stored

in multiple table spaces, the large object data is also stored in multiple table

spaces.

Use the LONG IN clause of the CREATE TABLE statement to override this default

behavior. You can specify a list of table spaces for the table where long data is to

be stored. If you choose to override the default behavior, the table space specified

in the LONG IN clause must be a large table space. If you specify that long data

be stored in a separate table space for one or more data partitions, you must do so

for all the data partitions of the table. That is, you cannot have long data stored

remotely for some data partitions and stored locally for others. Whether you are

using the default behavior or the LONG IN clause to override the default behavior,

a long object is created to correspond to each data partition. For SMS table spaces,

the long data must reside in the same table space as the data object it belongs to.

All the table spaces used to store long data objects corresponding to each data

partition must have the same: pagesize, extentsize, storage mechanism (DMS or

SMS), and type (regular or large). Remote large table spaces must be of type

LARGE and cannot be SMS.

For example, the following CREATE TABLE statement creates objects for the CLOB

data for each data partition in the same table space as the data:

Database partitioning across multiple database partitions

28 SQL Reference, Volume 1

CREATE TABLE document(id INT, contents CLOB)

PARTITION BY RANGE(id)

(STARTING FROM 1 ENDING AT 100 IN tbsp1,

 STARTING FROM 101 ENDING AT 200 IN tbsp2,

 STARTING FROM 201 ENDING AT 300 IN tbsp3,

 STARTING FROM 301 ENDING AT 400 IN tbsp4);

You can use LONG IN to place the CLOB data in one or more large table spaces,

distinct from those the data is in.

CREATE TABLE document(id INT, contents CLOB)

PARTITION BY RANGE(id)

(STARTING FROM 1 ENDING AT 100 IN tbsp1 LONG IN large1,

STARTING FROM 101 ENDING AT 200 IN tbsp2 LONG IN large1,

STARTING FROM 201 ENDING AT 300 IN tbsp3 LONG IN large2,

STARTING FROM 301 ENDING AT 400 IN tbsp4 LONG IN large2);

Note: Only a single LONG IN clause is allowed at the table level and for each

data partition.

DB2 federated systems

Federated systems

A federated system is a special type of distributed database management system

(DBMS). A federated system consists of a DB2 instance that operates as a federated

server, a database that acts as the federated database, one or more data sources,

and clients (users and applications) that access the database and data sources.

With a federated system, you can send distributed requests to multiple data

sources within a single SQL statement. For example, you can join data that is

located in a DB2 table, an Oracle table, and an XML tagged file in a single SQL

statement. The following figure shows the components of a federated system and a

sample of the data sources you can access.

Large object behavior in partitioned tables

Chapter 1. Concepts 29

The power of a federated system is in its ability to:

v Correlate data from local tables and remote data sources, as if all the data is

stored locally in the federated database

v Update data in relational data sources, as if the data is stored in the federated

database

v Move data to and from relational data sources

v Take advantage of the data source processing strengths, by sending requests to

the data sources for processing

v Compensate for SQL limitations at the data source by processing parts of a

distributed request at the federated server

What is a data source?

In a federated system, a data source can be a relational database (such as Oracle or

Sybase) or a nonrelational data source (such as a BLAST search algorithm or an

XML tagged file).

Through some data sources you can access other data sources. For example, with

the ODBC wrapper you can access WebSphere® Classic Federation Server for z/OS

data sources such as DB2 UDB for z/OS, IMS™, CA-IDMS, CA-Datacom, Software

AG Adabas, and VSAM.

The method, or protocol, used to access a data source depends on the type of data

source. For example, DRDA® is used to access DB2 for z/OS data sources.

Figure 10. The components of a federated system

Federated systems

30 SQL Reference, Volume 1

Data sources are autonomous. For example, the federated server can send queries

to Oracle data sources at the same time that Oracle applications can access these

data sources. A federated system does not monopolize or restrict access to the

other data sources, beyond integrity and locking constraints.

The federated database

To end users and client applications, data sources appear as a single collective

database in DB2. Users and applications interface with the federated database that is

managed by the federated server.

The federated database contains a system catalog that stores information about

data. The federated database system catalog contains entries that identify data

sources and their characteristics. The federated server consults the information

stored in the federated database system catalog and the data source wrapper to

determine the best plan for processing SQL statements.

The federated system processes SQL statements as if the data from the data sources

were ordinary relational tables or views within the federated database. As a result:

v The federated system can correlate relational data with data in nonrelational

formats. This is true even when the data sources use different SQL dialects, or

do not support SQL at all.

v The characteristics of the federated database take precedence when there are

differences between the characteristics of the federated database and the

characteristics of the data sources. Query results conform to DB2 semantics, even

if data from other non-DB2 data sources is used to compute the query result.

Examples:

– The code page that the federated server uses is different than the code page

used that the data source uses. In this case, character data from the data

source is converted based on the code page used by the federated database,

when that data is returned to a federated user.

– The collating sequence that the federated server uses is different than the

collating sequence that the data source uses. In this case, any sort operations

on character data are performed at the federated server instead of at the data

source.

The SQL compiler

The DB2 SQL compiler gathers information to help it process queries.

To obtain data from data sources, users and applications submit queries in SQL to

the federated database. When a query is submitted, the DB2 SQL compiler consults

information in the global catalog and the data source wrapper to help it process

the query. This includes information about connecting to the data source, server

information, mappings, index information, and processing statistics.

Wrappers and wrapper modules

Wrappers are mechanisms by which the federated database interacts with data

sources. The federated database uses routines stored in a library called a wrapper

module to implement a wrapper.

These routines allow the federated database to perform operations such as

connecting to a data source and retrieving data from it iteratively. Typically, the

What is a data source?

Chapter 1. Concepts 31

federated instance owner uses the CREATE WRAPPER statement to register a

wrapper in the federated database. You can register a wrapper as fenced or trusted

using the DB2_FENCED wrapper option.

You create one wrapper for each type of data source that you want to access. For

example, you want to access three DB2 for z/OS database tables, one DB2 for

System i table, two Informix® tables, and one Informix view. In this case, you need

to create one wrapper for the DB2 data source objects and one wrapper for the

Informix data source objects. After these wrappers are registered in the federated

database, you can use these wrappers to access other objects from those data

sources. For example, you can use the DRDA wrapper with all DB2 family data

source objects—DB2 Database for Linux, UNIX, and Windows, DB2 for z/OS, DB2

for System i, and DB2 Server for VM and VSE.

You use the server definitions and nicknames to identify the specifics (name,

location, and so forth) of each data source object.

A wrapper performs many tasks. Some of these tasks are:

v It connects to the data source. The wrapper uses the standard connection API of

the data source.

v It submits queries to the data source.

– For data sources that support SQL, the query is submitted in SQL.

– For data sources that do not support SQL, the query is translated into the

native query language of the source or into a series of source API calls.
v It receives results sets from the data source. The wrapper uses the data source

standard APIs for receiving results set.

v It responds to federated database queries about the default data type mappings

for a data source. The wrapper contains the default type mappings that are used

when nicknames are created for a data source object. For relational wrappers,

data type mappings that you create override the default data type mappings.

User-defined data type mappings are stored in the global catalog.

v It responds to federated database queries about the default function mappings

for a data source. The federated database needs data type mapping information

for query planning purposes. The wrapper contains information that the

federated database needs to determine if DB2 functions are mapped to functions

of the data source, and how the functions are mapped. This information is used

by the SQL Compiler to determine if the data source is able to perform the

query operations. For relational wrappers, function mappings that you create

override the default function type mappings. User-defined function mappings

are stored in the global catalog.

Wrapper options are used to configure the wrapper or to define how WebSphere

Federation Server uses the wrapper.

Server definitions and server options

After wrappers are created for the data sources, the federated instance owner

defines the data sources to the federated database.

The instance owner supplies a name to identify the data source, and other

information that pertains to the data source. This information includes:

v The type and version of the data source

v The database name for the data source (RDBMS only)

v Metadata that is specific to the data source

Wrappers and wrapper modules

32 SQL Reference, Volume 1

For example, a DB2 family data source can have multiple databases. The definition

must specify which database the federated server can connect to. In contrast, an

Oracle data source has one database, and the federated server can connect to the

database without knowing its name. The database name is not included in the

federated server definition of an Oracle data source.

The name and other information that the instance owner supplies to the federated

server are collectively called a server definition. Data sources answer requests for

data and are servers in their own right.

The CREATE SERVER and ALTER SERVER statements are used to create and

modify a server definition.

Some of the information within a server definition is stored as server options. When

you create server definitions, it is important to understand the options that you

can specify about the server.

Server options can be set to persist over successive connections to the data source,

or set for the duration of a single connection.

User mappings

A user mapping is an association between an authorization ID on the federated

server and the information that is required to connect to the remote data source.

To create a user mapping, you use the CREATE USER MAPPING statement. In the

statement, you specify the local authorization ID, the local name of the remote data

source server as specified in the server definition, and the remote ID and

password.

For example, assume that you created a server definition for a remote server and

specified ’argon’ as the local name for the remote server. To give Mary access to

the remote server, create this user mapping:

CREATE USER MAPPING FOR Mary

SERVER argon

OPTIONS (REMOTE_AUTHID ’remote_ID’, REMOTE_PASSWORD ’remote_pw’)

When Mary issues an SQL statement to connect to the remote server, the federated

server performs these steps:

1. Retrieves Mary’s user mapping

2. Decrypts the remote password ’remote_pw’ that is associated with the remote

server

3. Calls the wrapper to connect to the remote server

4. Passes the remote ID ’remote_ID’ and the decrypted remote password to the

wrapper

5. Creates a connection to the remote server for Mary

By default, the federated server stores user mapping in the

SYSCAT.USEROPTIONS view in the global catalog and encrypts the remote

passwords. As an alternative, you can use an external repository, for example a file

or an LDAP server, to store user mappings. To provide the interface between the

federated server and the external repository, you create a user mapping plug-in.

Server definitions and server options

Chapter 1. Concepts 33

No matter how you store user mappings, carefully restrict access to them. If user

mappings are compromised, data in the remote databases may be vulnerable to

unauthorized activity.

Nicknames and data source objects

A nickname is an identifier that you use to identify the data source object that you

want to access. The object that a nickname identifies is referred to as adata source

object.

A nickname is not an alternative name for a data source object in the same way

that an alias is an alternative name. A nickname is the pointer by which the

federated server references the object. Nicknames are typically defined with the

CREATE NICKNAME statement along with specific nickname column options and

nickname options.

When a client application or a user submits a distributed request to the federated

server, the request does not need to specify the data sources. Instead, the request

references the data source objects by their nicknames. The nicknames are mapped

to specific objects at the data source. These mappings eliminate the need to qualify

the nicknames by data source names. The location of the data source objects is

transparent to the client application or the user.

Suppose that you define the nickname DEPT to represent an Informix database

table called NFX1.PERSON. The statement SELECT * FROM DEPT is allowed from

the federated server. However, the statement SELECT * FROM NFX1.PERSON is

not allowed from the federated server (except in a pass-through session) unless

there is a local table on the federated server namedNFX1.PERSON.

When you create a nickname for a data source object, metadata about the object is

added to the global catalog. The query optimizer uses this metadata, as well as

information in the wrapper, to facilitate access to the data source object. For

example, if a nickname is for a table that has an index, the global catalog contains

information about the index, and the wrapper contains the mappings between the

DB2 data types and the data source data types.

Nicknames for objects that use label-based access control (LBAC) are not cached.

Therefore, data in the object remains secure. For example, if you use the Oracle

(Net8) wrapper to create a nickname on a table that uses Oracle Label Security, the

table is automatically identified as secure. The resulting nickname data cannot be

cached. As a result, materialized query tables cannot be created on it. Using LBAC

ensures that the information is viewed only by users who have the appropriate

security privileges. For nicknames that were created before LBAC was supported,

you must use the ALTER NICKNAME statement to disallow caching. LBAC is

supported by both the DRDA (for data sources that use DB2 for Linux, UNIX, and

Windows version 9.1 and later) and the Net8 wrapper.

Nickname column options

You can supply the global catalog with additional metadata information about the

nicknamed object. This metadata describes values in certain columns of the data

source object. You assign this metadata to parameters that are called nickname

column options.

The nickname column options tell the wrapper to handle the data in a column

differently than it normally would handle it. The SQL complier and query

optimizer use the metadata to develop better plans for accessing the data.

User mappings

34 SQL Reference, Volume 1

Nickname column options are used to provide other information to the wrapper as

well. For example for XML data sources, a nickname column option is used to tell

the wrapper the XPath expression to use when the wrapper parses the column out

of the XML document.

With federation, the DB2 server treats the data source object that a nickname

references as if it is a local DB2 table. As a result, you can set nickname column

options for any data source object that you create a nickname for. Some nickname

column options are designed for specific types of data sources and can be applied

only to those data sources.

Suppose that a data source has a collating sequence that differs from the federated

database collating sequence. The federated server typically would not sort any

columns containing character data at the data source. It would return the data to

the federated database and perform the sort locally. However, suppose that the

column is a character data type (CHAR or VARCHAR) and contains only numeric

characters (’0’,’1’,...,’9’). You can indicate this by assigning a value of ’Y’ to the

NUMERIC_STRING nickname column option. This gives the DB2 query optimizer

the option of performing the sort at the data source. If the sort is performed

remotely, you can avoid the overhead of porting the data to the federated server

and performing the sort locally.

You can define nickname column options for relational nicknames using the

ALTER NICKNAME statements. You can define nickname column options for

nonrelational nicknames using the CREATE NICKNAME and ALTER NICKNAME

statements.

Data type mappings

The data types at the data source must map to corresponding DB2 data types so

that the federated server can retrieve data from data sources.

Some examples of default data type mappings are:

v The Oracle type FLOAT maps to the DB2 type DOUBLE

v The Oracle type DATE maps to the DB2 type TIMESTAMP

v The DB2 for z/OS™ type DATE maps to the DB2 type DATE

For most data sources, the default type mappings are in the wrappers. The default

type mappings for DB2 data sources are in the DRDA wrapper. The default type

mappings for Informix are in the INFORMIX wrapper, and so forth.

For some nonrelational data sources, you must specify data type information in the

CREATE NICKNAME statement. The corresponding DB2 data types must be

specified for each column of the data source object when the nickname is created.

Each column must be mapped to a particular field or column in the data source

object.

For relational data sources, you can override the default data type mappings. For

example, by default the Informix INTEGER data type maps to the DB2 INTEGER

data type. You could override the default mappings and map Informix’s INTEGER

data type to DB2 DECIMAL(10,0) data type.

Nickname column options

Chapter 1. Concepts 35

The federated server

The DB2 server in a federated system is referred to as the federated server. Any

number of DB2 instances can be configured to function as federated servers. You

can use existing DB2 instances as your federated servers, or you can create new

ones specifically for the federated system.

The DB2 instance that manages the federated system is called a server because it

responds to requests from end users and client applications. The federated server

often sends parts of the requests it receives to the data sources for processing. A

pushdown operation is an operation that is processed remotely. The DB2 instance

that manages the federated system is referred to as the federated server, even

though it acts as a client when it pushes down requests to the data sources.

Like any other application server, the federated server is a database manager

instance. Application processes connect and submit requests to the database within

the federated server. However, two main features distinguish it from other

application servers:

v A federated server is configured to receive requests that might be partially or

entirely intended for data sources. The federated server distributes these

requests to the data sources.

v Like other application servers, a federated server uses DRDA communication

protocols (over TCP/IP) to communicate with DB2 family instances. However,

unlike other application servers, a federated server uses the native client of the

data source to access the data source. For example, a federated server uses the

Sybase Open Client to access Sybase data sources and an Microsoft SQL Server

ODBC Driver to access Microsoft SQL Server data sources.

Supported data sources

There are many data sources that you can access using a federated system.

WebSphere Federation Server supports the data sources shown in the following

tables. The first table lists the requirements for data client software. The client

software must be acquired separately unless specified otherwise.

You must install the client software for the data sources that you want to access.

The client software must be installed on the same system as WebSphere Federation

Server. You also need the appropriate Java SDK to use some tools such as the DB2

Control Center and to create and run Java applications, including stored

procedures and user-defined functions.

For the most up-to-date information, see the Data source requirements page on the

Web.

 Table 2. Supported data sources, client software requirements, and support from 32-bit

operating systems.

32-bit hardware architecture and

operating system

X86-32 X86-32

Data source Supported

versions

Client software Linux, RedHat

Enterprise Linux

(RHEL), SUSE

Windows

BioRS 5.2 None Y Y

The federated server

36 SQL Reference, Volume 1

http://www.ibm.com/support/docview.wss?uid=swg27008401

Table 2. Supported data sources, client software requirements, and support from 32-bit

operating systems. (continued)

32-bit hardware architecture and

operating system

X86-32 X86-32

Data source Supported

versions

Client software Linux, RedHat

Enterprise Linux

(RHEL), SUSE

Windows

Blast 2.2.1, 2.2.3, 2.2.4,

2.2.9

Blast daemon

(supplied)

Y Y

DB2 for Linux,

UNIX, and

Windows

8.1.x, 8.2.x, 9.1 None Y Y

DB2 for z/OS 7.x, 8.x DB2® Connect™

V9.1

Y Y

DB2 for iSeries® 5.2, 5.3, 5.4 DB2 Connect

V9.1

Y Y

DB2 Server for

VSE and VM

7.2 , 7.4 DB2 Connect

V9.1

Y Y

Entrez None Y Y

Flat files None Y Y

HMMER 2.3, 2.3.2 HMMER

daemon

(supplied)

Y Y

Informix Informix XPS

8.40, 8.50, 8.51

and Informix IDS

IDS 7.31, IDS

9.40, IDS 10.0

Informix Client

SDK version

2.81.TC2 or later

Y Y

Microsoft Excel 2000,2002,2003 Excel 2000,2002

or 2003

Y

Microsoft SQL

Server

Microsoft SQL

Server 2000/SP3,

2005

For Windows,

Microsoft SQL

Server Client

ODBC 3.0 (or

later) driver.

For Unix,

DataDirect

ODBC 5.0

!ENTITY! 5.1

Y Y

ODBC 3.0 ODBC drivers

that comply with

ODBC 3.0 **

Y Y

OLE DB 2.7, 2.8 OLE DB 2.0, or

later

Y Y

Oracle 8.1.7, 9.2, 10g,

10gR2

Oracle NET

client 9.0 - 9.2.0.5

& 10.0 - 10.1.x or

NET8 client

8.1.7.x

Y Y

Supported data sources

Chapter 1. Concepts 37

Table 2. Supported data sources, client software requirements, and support from 32-bit

operating systems. (continued)

32-bit hardware architecture and

operating system

X86-32 X86-32

Data source Supported

versions

Client software Linux, RedHat

Enterprise Linux

(RHEL), SUSE

Windows

Sybase Sybase ASE 12.5,

15.0

Sybase Open

Client 12.5 - 15.0

Y Y

Teradata 2.4, 2.5, 2.6 For Windows

Teradata client

TTU 7.0 or later

and the Teradata

API library

CLIv2 4.7.0 or

later. For Unix

Teradata

Call-Level

Interface Version

2 CLIv2 Release

04.06, 04.07

Y

WebSphere

Business

Integration for

PeopleSoft 2.6

PeopleSoft 8.x None Y Y

WebSphere

Business

Integration for

SAP 2.6

SAP 3.x, 4.x None Y Y

WebSphere

Business

Integration for

Seibel 2.6

Seibel 7, 7.5, 2000 None Y Y

Web Services WSDL 1.0, 1.1

SOAP 1.0, 1.1

None Y Y

XML XML1.0, XML1.1 None Y Y

** ODBC can be used to access RedBrick 6.20cu5 and WebSphere Information Integrator

Classic Federation V8.2.x , among other data sources.

 Table 3. Support from 64-bit operating systems.

64-bit

hardware

architecture

X86-64 X86-64 Power Itanium® Power Sparc zSeries®

Operating

system

Linux

RHEL

SUSE

Windows AIX® HP-UX Linux

RHEL

SUSE

Solaris Linux

RHEL

SUSE

Data

source

BioRS Y Y Y Y Y Y Y

Blast Y Y Y Y Y Y Y

Supported data sources

38 SQL Reference, Volume 1

Table 3. Support from 64-bit operating systems. (continued)

64-bit

hardware

architecture

X86-64 X86-64 Power Itanium® Power Sparc zSeries®

Operating

system

Linux

RHEL

SUSE

Windows AIX® HP-UX Linux

RHEL

SUSE

Solaris Linux

RHEL

SUSE

Data

source

DB2 for

Linux,

UNIX,

and

Windows

Y Y Y Y Y Y Y

DB2 for

z/OS

Y Y Y Y Y Y Y

DB2 for

System i

Y Y Y Y Y Y Y

DB2

Server for

VSE and

VM

Y Y Y Y Y Y Y

Entrez Y Y Y Y Y Y Y

HMMER Y Y Y Y Y Y Y

Informix Y Y Y Y Y Y

Microsoft

Excel

Microsoft

SQL

Server

Y Y Y Y Y

ODBC Y Y Y*** Y Y***

OLE DB Y Y

Oracle Y Y Y Y Y Y Y

Script Y Y Y Y Y Y Y

Sybase Y Y Y Y Y

Teradata Y Y Y

WebSphere

Business

Integration

for

PeopleSoft

2.6

Y Y Y Y Y Y Y

WebSphere

Business

Integration

for SAP

2.6

Y Y Y Y Y Y Y

Supported data sources

Chapter 1. Concepts 39

Table 3. Support from 64-bit operating systems. (continued)

64-bit

hardware

architecture

X86-64 X86-64 Power Itanium® Power Sparc zSeries®

Operating

system

Linux

RHEL

SUSE

Windows AIX® HP-UX Linux

RHEL

SUSE

Solaris Linux

RHEL

SUSE

Data

source

WebSphere

Business

Integration

for Seibel

2.6

Y Y Y Y Y Y Y

Web

Services

Y Y Y Y Y Y Y

XML Y Y Y Y Y Y Y

*** ODBC can be used to access RedBrick 6.20cu5 and WebSphere Information Integrator

Classic Federation using 32-bit and 64-bit clients.

The federated database system catalog

The federated database system catalog contains information about the objects in

the federated database and information about objects at the data sources.

The catalog in a federated database is called the global catalog because it contains

information about the entire federated system. DB2 query optimizer uses the

information in the global catalog and the data source wrapper to plan the best way

to process SQL statements. The information stored in the global catalog includes

remote and local information, such as column names, column data types, column

default values, index information, and statistics information.

Remote catalog information is the information or name used by the data source.

Local catalog information is the information or name used by the federated

database. For example, suppose a remote table includes a column with the name of

EMPNO. The global catalog would store the remote column name as EMPNO.

Unless you designate a different name, the local column name will be stored as

EMPNO. You can change the local column name to Employee_Number. Users

submitting queries which include this column will use Employee_Number in their

queries instead of EMPNO. You use the ALTER NICKNAME statement to change

the local name of the data source columns.

For relational and nonrelational data sources, the information stored in the global

catalog includes both remote and local information.

To see the data source table information that is stored in the global catalog, query

the SYSCAT.TABLES, SYSCAT.NICKNAMES, SYSCAT.TABOPTIONS,

SYSCAT.INDEXES, SYSCAT.INDEXOPTIONS, SYSCAT.COLUMNS, and

SYSCAT.COLOPTIONS catalog views in the federated database.

The global catalog also includes other information about the data sources. For

example, the global catalog includes information that the federated server uses to

connect to the data source and map the federated user authorizations to the data

Supported data sources

40 SQL Reference, Volume 1

source user authorizations. The global catalog contains attributes about the data

source that you explicitly set, such as server options.

The query optimizer

As part of the SQL compiler process, the query optimizer analyzes a query. The

compiler develops alternative strategies, called access plans, for processing the

query.

Access plans might call for the query to be:

v Processed by the data sources

v Processed by the federated server

v Processed partly by the data sources and partly by the federated server

The query optimizer evaluates the access plans primarily on the basis of

information about the data source capabilities and the data. The wrapper and the

global catalog contain this information. The query optimizer decomposes the query

into segments that are called query fragments. Typically it is more efficient to

pushdown a query fragment to a data source, if the data source can process the

fragment. However, the query optimizer takes into account other factors such as:

v The amount of data that needs to be processed

v The processing speed of the data source

v The amount of data that the fragment will return

v The communication bandwidth

v Whether there is a usable materialized query table on the federated server that

represents the same query result

The query optimizer generates access plan alternatives for processing a query

fragment. The plan alternatives perform varying amounts of work locally on the

federated server and on the remote data sources. Because the query optimizer is

cost-based, it assigns resource consumption costs to the access plan alternatives.

The query optimizer then chooses the plan that will process the query with the

least resource consumption cost.

If any of the fragments are to be processed by data sources, the federated database

submits these fragments to the data sources. After the data sources process the

fragments, the results are retrieved and returned to the federated database. If the

federated database performed any part of the processing, it combines its results

with the results retrieved from the data source. The federated database then

returns all results to the client.

Collating sequences

The order in which character data is sorted in a database depends on the structure

of the data and the collating sequence defined for the database.

Suppose that the data in a database is all uppercase letters and does not contain

any numeric or special characters. A sort of the data should result in the same

output, regardless of whether the data is sorted at the data source or at the

federated database. The collating sequence used by each database should not

impact the sort results. Likewise, if the data in the database is all lowercase letters

or all numeric characters, a sort of the data should produce the same results

regardless of where the sort actually is performed.

If the data consists of any of the following structures:

The federated database system catalog

Chapter 1. Concepts 41

v A combination of letters and numeric characters

v Both uppercase and lowercase letters

v Special characters such as @, #, €

Sorting this data can result in different outputs, if the federated database and the

data source use different collating sequences.

In general terms, a collating sequence is a defined ordering for character data that

determines whether a particular character sorts higher, lower, or the same as

another character.

How collating sequences determine sort orders

A collating sequence determines the sort order of the characters in a coded

character set.

A character set is the aggregate of characters that are used in a computer system or

programming language. In a coded character set, each character is assigned to a

different number within the range of 0 to 255 (or the hexadecimal equivalent

thereof). The numbers are called code points; the assignments of numbers to

characters in a set are collectively called a code page.

In addition to being assigned to a character, a code point can be mapped to the

character’s position in a sort order. In technical terms, then, a collating sequence is

the collective mapping of a character set’s code points to the sort order positions of

the set’s characters. A character’s position is represented by a number; this number

is called the weight of the character. In the simplest collating sequence, called an

identity sequence, the weights are identical to the code points.

Example: Database ALPHA uses the default collating sequence of the EBCDIC

code page. Database BETA uses the default collating sequence of the ASCII code

page. Sort orders for character strings at these two databases would differ:

SELECT.....

 ORDER BY COL2

EBCDIC-Based Sort ASCII-Based Sort

COL2 COL2

---- ----

V1G 7AB

Y2W V1G

7AB Y2W

Example: Similarly, character comparisons in a database depend on the collating

sequence defined for that database. Database ALPHA uses the default collating

sequence of the EBCDIC code page. Database BETA uses the default collating

sequence of the ASCII code page. Character comparisons at these two databases

would yield different results:

SELECT.....

 WHERE COL2 > ’TT3’

EBCDIC-Based Results ASCII-Based Results

COL2 COL2

---- ----

TW4 TW4

X82 X82

39G

Collating sequences

42 SQL Reference, Volume 1

Setting the local collating sequence to optimize queries

Administrators can create federated databases with a particular collating sequence

that matches a data source collating sequence.

Then for each data source server definition, the COLLATING_SEQUENCE server

option is set to ’Y’. This setting tells the federated database that the collating

sequences of the federated database and the data source match.

You set the federated database collating sequence as part of the CREATE

DATABASE command. Through this command, you can specify one of the

following sequences:

v An identity sequence

v A system sequence (the sequence used by the operating system that supports the

database)

v A customized sequence (a predefined sequence that DB2 supplies or that you

define yourself)

Suppose that the data source is DB2 for z/OS. Sorts that are defined in an ORDER

BY clause are implemented by a collating sequence based on an EBCDIC code

page. To retrieve DB2 for z/OS data sorted in accordance with ORDER BY clauses,

configure the federated database so that it uses the predefined collating sequence

based on the appropriate EBCDIC code page.

Setting the local collating sequence to optimize queries

Chapter 1. Concepts 43

Setting the local collating sequence to optimize queries

44 SQL Reference, Volume 1

Chapter 2. Language elements

Characters

The basic symbols of keywords and operators in the SQL language are single-byte

characters that are part of all IBM character sets. Characters of the language are

classified as letters, digits, or special characters.

A letter is any of the 26 uppercase (A through Z) or 26 lowercase (a through z)

letters, plus the three characters $, #, and @, which are included for compatibility

with host database products. For example, in code page 850, $ is at X’24’, # is at

X’23’, and @ is at X’40’. Letters also include the alphabetics from the extended

character sets. Extended character sets contain additional alphabetic characters; for

example, those with diacritical marks (u is an example of a diacritical mark). The

available characters depend on the code page in use.

A digit is any of the characters 0 through 9.

A special character is any of the characters listed below:

 Character Description Character Description

 space or blank - minus sign

″ quotation mark or

double quote or

double quotation

mark

. period

% percent / slash

& ampersand : colon

’ apostrophe or single

quote or single

quotation mark

; semicolon

(left parenthesis < less than

) right parenthesis = equals

* asterisk > greater than

+ plus sign ? question mark

, comma _ underline or

underscore

| vertical bar1 ^ caret

! exclamation mark [left bracket

{ left brace] right bracket

} right brace \ reverse solidus or

back slash2

1 Using the vertical bar (|) character might inhibit code portability between IBM relational

products. Use the CONCAT operator in place of the || operator.

2 Some code pages do not have a code point for the reverse solidus (\) character. When

entering Unicode string constants, the UESCAPE clause can be used to specify a Unicode

escape character other than reverse solidus.

All multi-byte characters are treated as letters, except for the double-byte blank,

which is a special character.

© Copyright IBM Corp. 1993, 2009 45

Tokens

Tokens are the basic syntactical units of SQL. A token is a sequence of one or more

characters. A token cannot contain blank characters, unless it is a string constant or

a delimited identifier, which may contain blanks.

Tokens are classified as ordinary or delimiter:

v An ordinary token is a numeric constant, an ordinary identifier, a host identifier,

or a keyword.

Examples

 1 .1 +2 SELECT E 3

v A delimiter token is a string constant, a delimited identifier, an operator symbol,

or any of the special characters shown in the syntax diagrams. A question mark

is also a delimiter token when it serves as a parameter marker.

Examples

 , ’string’ "fld1" = .

Spaces: A space is a sequence of one or more blank characters. Tokens other than

string constants and delimited identifiers must not include a space. Any token may

be followed by a space. Every ordinary token must be followed by a space or a

delimiter token if allowed by the syntax.

Comments: SQL comments are either bracketed (introduced by /* and end with

*/) or simple (introduced by two consecutive hyphens and end with the end of

line). Static SQL statements can include host language comments or SQL

comments. Comments can be specified wherever a space can be specified, except

within a delimiter token or between the keywords EXEC and SQL.

Case sensitivity: Any token may include lowercase letters, but a lowercase letter in

an ordinary token is folded to uppercase, except for host variables in the C

language, which has case-sensitive identifiers. Delimiter tokens are never folded to

uppercase. Thus, the statement:

 select * from EMPLOYEE where lastname = ’Smith’;

is equivalent, after folding, to:

 SELECT * FROM EMPLOYEE WHERE LASTNAME = ’Smith’;

Multi-byte alphabetic letters are not folded to uppercase. Single-byte characters (a

to z) are folded to uppercase.

For characters in Unicode:

v A character is folded to uppercase, if applicable, if the uppercase character in

UTF-8 has the same length as the lowercase character in UTF-8. For example, the

Turkish lowercase dotless ’i’ is not folded, because in UTF-8, that character has

the value X’C4B1’, but the uppercase dotless ’I’ has the value X’49’.

v The folding is done in a locale-insensitive manner. For example, the Turkish

lowercase dotted ’i’ is folded to the English uppercase (dotless) ’I’.

v Both halfwidth and fullwidth alphabetic letters are folded to uppercase. For

example, the fullwidth lowercase ’a’ (U+FF41) is folded to the fullwidth

uppercase ’A’ (U+FF21).

Tokens

46 SQL Reference, Volume 1

Identifiers

An identifier is a token that is used to form a name. An identifier in an SQL

statement is either an SQL identifier or a host identifier.

v SQL identifiers

There are two types of SQL identifiers: ordinary and delimited.

– An ordinary identifier is an uppercase letter followed by zero or more

characters, each of which is an uppercase letter, a digit, or the underscore

character. Note that ordinary identifiers are converted to uppercase. An

ordinary identifier should not be a reserved word.

Examples

 WKLYSAL WKLY_SAL

– A delimited identifier is a sequence of one or more characters enclosed by

double quotation marks. Two consecutive quotation marks are used to

represent one quotation mark within the delimited identifier. In this way an

identifier can include lowercase letters.

Examples

 "WKLY_SAL" "WKLY SAL" "UNION" "wkly_sal"

Character conversion of identifiers created on a double-byte code page, but used

by an application or database on a multi-byte code page, may require special

consideration: After conversion, such identifiers may exceed the length limit for

an identifier.

v Host identifiers

A host identifier is a name declared in the host program. The rules for forming a

host identifier are the rules of the host language. A host identifier should not be

greater than 255 bytes in length and should not begin with SQL or DB2 (in

uppercase or lowercase characters).

Naming conventions and implicit object name qualifications

The rules for forming the name of an object depend on the object type. Database

object names may be made up of a single identifier, or they may be

schema-qualified objects made up of two identifiers. Schema-qualified object names

may be specified without the schema name; in such cases, the schema name is

implicit.

In dynamic SQL statements, a schema-qualified object name implicitly uses the

CURRENT SCHEMA special register value as the qualifier for unqualified object

name references. By default it is set to the current authorization ID. If the dynamic

SQL statement is contained in a package that exhibits bind, define, or invoke

behaviour, the CURRENT SCHEMA special register is not used for qualification. In

a bind behaviour package, the package default qualifier is used as the value for

implicit qualification of unqualified object references. In a define behaviour

package, the authorization ID of the routine definer is used as the value for

implicit qualification of unqualified object references within that routine. In an

invoke behaviour package, the statement authorization ID in effect when the

routine is invoked is used as the value for implicit qualification of unqualified

object references within dynamic SQL statements within that routine. For more

information, see “Dynamic SQL characteristics at run time” on page 54.

In static SQL statements, the QUALIFIER precompile/bind option implicitly

specifies the qualifier for unqualified database object names. By default, this value

is set to the package authorization ID.

Identifiers

Chapter 2. Language elements 47

The following object names, when used in the context of an SQL procedure, are

permitted to use only the characters allowed in an ordinary identifier, even if the

names are delimited:

v condition-name

v label

v parameter-name

v procedure-name

v SQL-variable-name

v statement-name

The syntax diagrams use different terms for different types of names. The

following list defines these terms.

alias-name

A schema-qualified name that designates an alias.

attribute-name

An identifier that designates an attribute of a structured data type.

authorization-name

An identifier that designates a user, group, or role. For a user or a group:

v Valid characters are: ’A’ through ’Z’; ’a’ through ’z’; ’0’ through ’9’; ’#’;

’@’; ’$’; ’_’; ’!’; ’ ’(’; ’)’; ’{’; ’}’; ’-’; ’.’; and ’^’.

v The following characters must be delimited with quotation marks when

entered through the command line processor: ’!’; ’ ’(’; ’)’; ’{’; ’}’; ’-’; ’.’;

and ’^’.

v The name must not begin with the characters ’SYS’, ’IBM’, or ’SQL’.

v The name must not be: ’ADMINS’, ’GUESTS’, ’LOCAL’, ’PUBLIC’, or

’USERS’.

v A delimited authorization ID must not contain lowercase letters.

bufferpool-name

An identifier that designates a buffer pool.

column-name

A qualified or unqualified name that designates a column of a table or

view. The qualifier is a table name, a view name, a nickname, or a

correlation name.

component-name

An identifier that designates a security label component.

condition-name

An identifier that designates a condition in an SQL procedure.

constraint-name

An identifier that designates a referential constraint, primary key

constraint, unique constraint, or a table check constraint.

correlation-name

An identifier that designates a result table.

cursor-name

An identifier that designates an SQL cursor. For host compatibility, a

hyphen character may be used in the name.

data-source-name

An identifier that designates a data source. This identifier is the first part

of a three-part remote object name.

Identifiers

48 SQL Reference, Volume 1

db-partition-group-name

An identifier that designates a database partition group.

descriptor-name

A colon followed by a host identifier that designates an SQL descriptor

area (SQLDA). For the description of a host identifier, see “References to

host variables” on page 63. Note that a descriptor name never includes an

indicator variable.

distinct-type-name

A qualified or unqualified name that designates a distinct type. An

unqualified distinct type name in an SQL statement is implicitly qualified

by the database manager, depending on context.

event-monitor-name

An identifier that designates an event monitor.

function-mapping-name

An identifier that designates a function mapping.

function-name

A qualified or unqualified name that designates a function. An unqualified

function name in an SQL statement is implicitly qualified by the database

manager, depending on context.

global-variable-name

A qualified or unqualified name that designates a global variable. An

unqualified global variable name in an SQL statement is implicitly

qualified by the database manager, depending on context.

group-name

An unqualified identifier that designates a transform group defined for a

structured type.

host-variable

A sequence of tokens that designates a host variable. A host variable

includes at least one host identifier, explained in “References to host

variables” on page 63.

index-name

A schema-qualified name that designates an index or an index

specification.

label An identifier that designates a label in an SQL procedure.

method-name

An identifier that designates a method. The schema context for a method is

determined by the schema of the subject type (or a supertype of the subject

type) of the method.

nickname

A schema-qualified name that designates a federated server reference to a

table or a view.

package-name

A schema-qualified name that designates a package. If a package has a

version ID that is not the empty string, the package name also includes the

version ID at the end of the name, in the form: schema-id.package-
id.version-id.

parameter-name

An identifier that designates a parameter that can be referenced in a

procedure, user-defined function, method, or index extension.

Identifiers

Chapter 2. Language elements 49

partition-name

An identifier that designates a data partition in a partitioned table.

procedure-name

A qualified or unqualified name that designates a procedure. An

unqualified procedure name in an SQL statement is implicitly qualified by

the database manager, depending on context.

remote-authorization-name

An identifier that designates a data source user. The rules for authorization

names vary from data source to data source.

remote-function-name

A name that designates a function registered to a data source database.

remote-object-name

A three-part name that designates a data source table or view, and that

identifies the data source in which the table or view resides. The parts of

this name are data-source-name, remote-schema-name, and

remote-table-name.

remote-schema-name

A name that designates the schema to which a data source table or view

belongs. This name is the second part of a three-part remote object name.

remote-table-name

A name that designates a table or view at a data source. This name is the

third part of a three-part remote object name.

remote-type-name

A data type supported by a data source database. Do not use the long

form for built-in types (use CHAR instead of CHARACTER, for example).

savepoint-name

An identifier that designates a savepoint.

schema-name

An identifier that provides a logical grouping for SQL objects. A schema

name used as a qualifier for the name of an object may be implicitly

determined:

v from the value of the CURRENT SCHEMA special register

v from the value of the QUALIFIER precompile/bind option

v on the basis of a resolution algorithm that uses the CURRENT PATH

special register

v on the basis of the schema name for another object in the same SQL

statement.

To avoid complications, it is recommended that the name SESSION not be

used as a schema, except as the schema for declared global temporary

tables (which must use the schema name SESSION).

security-label-name

A qualified or unqualified name that designates a security label. An

unqualified security label name in an SQL statement is implicitly qualified

by the applicable security-policy-name, when one applies. If no

security-policy-name is implicitly applicable, the name must be qualified.

security-policy-name

An identifier that designates a security policy.

Identifiers

50 SQL Reference, Volume 1

sequence-name

An identifier that designates a sequence.

server-name

An identifier that designates an application server. In a federated system,

the server name also designates the local name of a data source.

specific-name

A qualified or unqualified name that designates a specific name. An

unqualified specific name in an SQL statement is implicitly qualified by the

database manager, depending on context.

SQL-variable-name

The name of a local variable in an SQL procedure statement. SQL variable

names can be used in other SQL statements where a host variable name is

allowed. The name can be qualified by the label of the compound

statement that declared the SQL variable.

statement-name

An identifier that designates a prepared SQL statement.

supertype-name

A qualified or unqualified name that designates the supertype of a type.

An unqualified supertype name in an SQL statement is implicitly qualified

by the database manager, depending on context.

table-name

A schema-qualified name that designates a table.

tablespace-name

An identifier that designates a table space.

trigger-name

A schema-qualified name that designates a trigger.

type-mapping-name

An identifier that designates a data type mapping.

type-name

A qualified or unqualified name that designates a type. An unqualified

type name in an SQL statement is implicitly qualified by the database

manager, depending on context.

typed-table-name

A schema-qualified name that designates a typed table.

typed-view-name

A schema-qualified name that designates a typed view.

view-name

A schema-qualified name that designates a view.

wrapper-name

An identifier that designates a wrapper.

XML-schema-name

A qualified or unqualified name that designates an XML schema.

xsrobject-name

A qualified or unqualified name that designates an object in the XML

schema repository.

Identifiers

Chapter 2. Language elements 51

Aliases

A table alias can be thought of as an alternative name for a table or a view. A table

or view, therefore, can be referred to in an SQL statement by its name or by a table

alias.

An alias can be used wherever a table or a view name can be used. An alias can be

created even if the object does not exist (although it must exist by the time a

statement referring to it is compiled). It can refer to another alias if no circular or

repetitive references are made along the chain of aliases. An alias can only refer to

a table, view, or alias within the same database. An alias name cannot be used

where a new table or view name is expected, such as in the CREATE TABLE or

CREATE VIEW statements; for example, if the alias name PERSONNEL has been

created, subsequent statements such as CREATE TABLE PERSONNEL... will return

an error.

The option of referring to a table or a view by an alias is not explicitly shown in

the syntax diagrams, or mentioned in the descriptions of SQL statements.

A new unqualified alias cannot have the same fully-qualified name as an existing

table, view, or alias.

The effect of using an alias in an SQL statement is similar to that of text

substitution. The alias, which must be defined by the time that the SQL statement

is compiled, is replaced at statement compilation time by the qualified base table

or view name. For example, if PBIRD.SALES is an alias for

DSPN014.DIST4_SALES_148, then at compilation time:

 SELECT * FROM PBIRD.SALES

effectively becomes

 SELECT * FROM DSPN014.DIST4_SALES_148

In a federated system, the aforementioned uses and restrictions apply, not only to

table aliases, but also to aliases for nicknames. Thus, a nickname’s alias can be

used instead of the nickname in an SQL statement; an alias can be created for a

nickname that does not yet exist, provided that the nickname is created before

statements that reference the alias are compiled; an alias for a nickname can refer

to another alias for that nickname; and so on.

For syntax toleration of applications running under other relational database

management systems, SYNONYM can be used in place of ALIAS in the CREATE

ALIAS and DROP ALIAS statements.

Authorization IDs and authorization names

An authorization ID is a character string that is obtained by the database manager

when a connection is established between the database manager and either an

application process or a program preparation process. It designates a set of

privileges. It may also designate a user or a group of users, but this property is not

controlled by the database manager.

Authorization IDs are used by the database manager to provide:

v Authorization checking of SQL statements

Identifiers

52 SQL Reference, Volume 1

v A default value for the QUALIFIER precompile/bind option and the CURRENT

SCHEMA special register. The authorization ID is also included in the default

CURRENT PATH special register and the FUNCPATH precompile/bind option.

An authorization ID applies to every SQL statement. The authorization ID that

applies to a static SQL statement is the authorization ID that is used during

program binding. The authorization ID that applies to a dynamic SQL statement is

based on the DYNAMICRULES option supplied at bind time, and on the current

runtime environment for the package issuing the dynamic SQL statement:

v In a package that has bind behavior, the authorization ID used is the

authorization ID of the package owner.

v In a package that has define behavior, the authorization ID used is the

authorization ID of the corresponding routine’s definer.

v In a package that has run behavior, the authorization ID used is the current

authorization ID of the user executing the package.

v In a package that has invoke behavior, the authorization ID used is the

authorization ID currently in effect when the routine is invoked. This is called

the runtime authorization ID.

For more information, see “Dynamic SQL characteristics at run time” on page 54.

An authorization name specified in an SQL statement should not be confused with

the authorization ID of the statement. An authorization name is an identifier that is

used within various SQL statements. An authorization name is used in the

CREATE SCHEMA statement to designate the owner of the schema. An

authorization name is used in the GRANT and REVOKE statements to designate a

target of the grant or revoke operation. Granting privileges to X means that X (or a

member of the group or role X) will subsequently be the authorization ID of

statements that require those privileges.

Examples:

v Assume that SMITH is the user ID and the authorization ID that the database

manager obtained when a connection was established with the application

process. The following statement is executed interactively:

 GRANT SELECT ON TDEPT TO KEENE

SMITH is the authorization ID of the statement. Therefore, in a dynamic SQL

statement, the default value of the CURRENT SCHEMA special register is

SMITH, and in static SQL, the default value of the QUALIFIER precompile/bind

option is SMITH. The authority to execute the statement is checked against

SMITH, and SMITH is the table-name implicit qualifier based on qualification

rules described in “Naming conventions and implicit object name qualifications”

on page 47.

KEENE is an authorization name specified in the statement. KEENE is given the

SELECT privilege on SMITH.TDEPT.

v Assume that SMITH has administrative authority and is the authorization ID of

the following dynamic SQL statements, with no SET SCHEMA statement issued

during the session:

 DROP TABLE TDEPT

Removes the SMITH.TDEPT table.

 DROP TABLE SMITH.TDEPT

Removes the SMITH.TDEPT table.

Identifiers

Chapter 2. Language elements 53

DROP TABLE KEENE.TDEPT

Removes the KEENE.TDEPT table. Note that KEENE.TDEPT and SMITH.TDEPT

are different tables.

 CREATE SCHEMA PAYROLL AUTHORIZATION KEENE

KEENE is the authorization name specified in the statement that creates a

schema called PAYROLL. KEENE is the owner of the schema PAYROLL and is

given CREATEIN, ALTERIN, and DROPIN privileges, with the ability to grant

them to others.

Dynamic SQL characteristics at run time

The BIND option DYNAMICRULES determines the authorization ID that is used

for checking authorization when dynamic SQL statements are processed. In

addition, the option also controls other dynamic SQL attributes, such as the

implicit qualifier that is used for unqualified object references, and whether certain

SQL statements can be invoked dynamically.

The set of values for the authorization ID and other dynamic SQL attributes is

called the dynamic SQL statement behavior. The four possible behaviors are run,

bind, define, and invoke. As the following table shows, the combination of the

value of the DYNAMICRULES BIND option and the runtime environment

determines which of the behaviors is used. DYNAMICRULES RUN, which implies

run behavior, is the default.

 Table 4. How DYNAMICRULES and the runtime environment determine dynamic SQL

statement behavior

DYNAMICRULES value

Behavior of dynamic SQL statements

Standalone program

environment Routine environment

BIND Bind behavior Bind behavior

RUN Run behavior Run behavior

DEFINEBIND Bind behavior Define behavior

DEFINERUN Run behavior Define behavior

INVOKEBIND Bind behavior Invoke behavior

INVOKERUN Run behavior Invoke behavior

Run behavior

DB2 uses the authorization ID of the user (the ID that initially connected to

DB2) executing the package as the value to be used for authorization

checking of dynamic SQL statements and for the initial value used for

implicit qualification of unqualified object references within dynamic SQL

statements.

Bind behavior

At run time, DB2 uses all the rules that apply to static SQL for

authorization and qualification. It takes the authorization ID of the package

owner as the value to be used for authorization checking of dynamic SQL

statements, and the package default qualifier for implicit qualification of

unqualified object references within dynamic SQL statements.

Define behavior

Define behavior applies only if the dynamic SQL statement is in a package

Identifiers

54 SQL Reference, Volume 1

that is run within a routine context, and the package was bound with

DYNAMICRULES DEFINEBIND or DYNAMICRULES DEFINERUN. DB2

uses the authorization ID of the routine definer (not the routine’s package

binder) as the value to be used for authorization checking of dynamic SQL

statements, and for implicit qualification of unqualified object references

within dynamic SQL statements within that routine.

Invoke behavior

Invoke behavior applies only if the dynamic SQL statement is in a package

that is run within a routine context, and the package was bound with

DYNAMICRULES INVOKEBIND or DYNAMICRULES INVOKERUN. DB2

uses the statement authorization ID in effect when the routine is invoked

as the value to be used for authorization checking of dynamic SQL, and for

implicit qualification of unqualified object references within dynamic SQL

statements within that routine. This is summarized by the following table.

 Invoking Environment ID Used

any static SQL implicit or explicit value of the OWNER of

the package the SQL invoking the routine

came from

used in definition of view or trigger definer of the view or trigger

dynamic SQL from a bind behavior package implicit or explicit value of the OWNER of

the package the SQL invoking the routine

came from

dynamic SQL from a run behavior package ID used to make the initial connection to

DB2

dynamic SQL from a define behavior

package

definer of the routine that uses the package

that the SQL invoking the routine came from

dynamic SQL from an invoke behavior

package

the current authorization ID invoking the

routine

Restricted statements when run behavior does not apply

When bind, define, or invoke behavior is in effect, you cannot use the following

dynamic SQL statements: GRANT, REVOKE, ALTER, CREATE, DROP, COMMENT,

RENAME, SET INTEGRITY, SET EVENT MONITOR STATE; or queries that

reference a nickname.

Considerations regarding the DYNAMICRULES option

The CURRENT SCHEMA special register cannot be used to qualify unqualified

object references within dynamic SQL statements executed from bind, define or

invoke behavior packages. This is true even after you issue the SET CURRENT

SCHEMA statement to change the CURRENT SCHEMA special register; the

register value is changed but not used.

In the event that multiple packages are referenced during a single connection, all

dynamic SQL statements prepared by those packages will exhibit the behavior

specified by the DYNAMICRULES option for that specific package and the

environment in which they are used.

It is important to keep in mind that when a package exhibits bind behavior, the

binder of the package should not have any authorities granted that the user of the

package should not receive, because a dynamic statement will be using the

Identifiers

Chapter 2. Language elements 55

authorization ID of the package owner. Similarly, when a package exhibits define

behavior, the definer of the routine should not have any authorities granted that

the user of the package should not receive.

Authorization IDs and statement preparation

If the VALIDATE BIND option is specified at bind time, the privileges required to

manipulate tables and views must also exist at bind time. If these privileges or the

referenced objects do not exist, and the SQLERROR NOPACKAGE option is in

effect, the bind operation will be unsuccessful. If the SQLERROR CONTINUE

option is specified, the bind operation will be successful, and any statements in

error will be flagged. Any attempt to execute such a statement will result in an

error.

If a package is bound with the VALIDATE RUN option, all normal bind processing

is completed, but the privileges required to use the tables and views that are

referenced in the application need not exist yet. If a required privilege does not

exist at bind time, an incremental bind operation is performed whenever the

statement is first executed in an application, and all privileges required for the

statement must exist. If a required privilege does not exist, execution of the

statement is unsuccessful.

Authorization checking at run time is performed using the authorization ID of the

package owner.

Column names

The meaning of a column name depends on its context. A column name can be used

to:

v Declare the name of a column, as in a CREATE TABLE statement.

v Identify a column, as in a CREATE INDEX statement.

v Specify values of the column, as in the following contexts:

– In a column function, a column name specifies all values of the column in the

group or intermediate result table to which the function is applied. For

example, MAX(SALARY) applies the function MAX to all values of the

column SALARY in a group.

– In a GROUP BY or ORDER BY clause, a column name specifies all values in

the intermediate result table to which the clause is applied. For example,

ORDER BY DEPT orders an intermediate result table by the values of the

column DEPT.

– In an expression, a search condition, or a scalar function, a column name

specifies a value for each row or group to which the construct is applied. For

example, when the search condition CODE = 20 is applied to some row, the

value specified by the column name CODE is the value of the column CODE

in that row.
v Temporarily rename a column, as in the correlation-clause of a table-reference in a

FROM clause.

Qualified column names

A qualifier for a column name may be a table, view, nickname, alias, or correlation

name.

Whether a column name may be qualified depends on its context:

Identifiers

56 SQL Reference, Volume 1

v Depending on the form of the COMMENT ON statement, a single column name

may need to be qualified. Multiple column names must be unqualified.

v Where the column name specifies values of the column, it may be qualified at

the user’s option.

v In the assignment-clause of an UPDATE statement, it may be qualified at the

user’s option.

v In all other contexts, a column name must not be qualified.

Where a qualifier is optional, it can serve two purposes. They are described under

“Column name qualifiers to avoid ambiguity” on page 59 and “Column name

qualifiers in correlated references” on page 61.

Correlation names

A correlation name can be defined in the FROM clause of a query and in the first

clause of an UPDATE or DELETE statement. For example, the clause FROM

X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

 FROM X.MYTABLE Z

With Z defined as a correlation name for X.MYTABLE, only Z can be used to

qualify a reference to a column of that instance of X.MYTABLE in that SELECT

statement.

A correlation name is associated with a table, view, nickname, alias, nested table

expression, table function, or data change table reference only within the context in

which it is defined. Hence, the same correlation name can be defined for different

purposes in different statements, or in different clauses of the same statement.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a

correlated reference. It can also be used merely as a shorter name for a table

reference. In the example, Z might have been used merely to avoid having to enter

X.MYTABLE more than once.

If a correlation name is specified for a table, view, nickname, or alias name, any

qualified reference to a column of that instance of the table, view, nickname, or

alias must use the correlation name, rather than the table, view, nickname, or alias

name. For example, the reference to EMPLOYEE.PROJECT in the following

example is incorrect, because a correlation name has been specified for

EMPLOYEE:

Example

 FROM EMPLOYEE E

 WHERE EMPLOYEE.PROJECT=’ABC’ * incorrect*

The qualified reference to PROJECT should instead use the correlation name, ″E″,

as shown below:

 FROM EMPLOYEE E

 WHERE E.PROJECT=’ABC’

Names specified in a FROM clause are either exposed or non-exposed. A table, view,

nickname, or alias name is said to be exposed in the FROM clause if a correlation

name is not specified. A correlation name is always an exposed name. For example,

Identifiers

Chapter 2. Language elements 57

in the following FROM clause, a correlation name is specified for EMPLOYEE but

not for DEPARTMENT, so DEPARTMENT is an exposed name, and EMPLOYEE is

not:

 FROM EMPLOYEE E, DEPARTMENT

A table, view, nickname, or alias name that is exposed in a FROM clause may be

the same as any other table name, view name or nickname exposed in that FROM

clause or any correlation name in the FROM clause. This may result in ambiguous

column name references which returns an error (SQLSTATE 42702).

The first two FROM clauses shown below are correct, because each one contains no

more than one reference to EMPLOYEE that is exposed:

1. Given the FROM clause:

 FROM EMPLOYEE E1, EMPLOYEE

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the

second instance of EMPLOYEE in the FROM clause. A qualified reference to the

first instance of EMPLOYEE must use the correlation name “E1” (E1.PROJECT).

2. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE E2

a qualified reference such as EMPLOYEE.PROJECT denotes a column of the

first instance of EMPLOYEE in the FROM clause. A qualified reference to the

second instance of EMPLOYEE must use the correlation name “E2”

(E2.PROJECT).

3. Given the FROM clause:

 FROM EMPLOYEE, EMPLOYEE

the two exposed table names included in this clause (EMPLOYEE and

EMPLOYEE) are the same. This is allowed, but references to specific column

names would be ambiguous (SQLSTATE 42702).

4. Given the following statement:

 SELECT *

 FROM EMPLOYEE E1, EMPLOYEE E2 * incorrect *

 WHERE EMPLOYEE.PROJECT = ’ABC’

the qualified reference EMPLOYEE.PROJECT is incorrect, because both

instances of EMPLOYEE in the FROM clause have correlation names. Instead,

references to PROJECT must be qualified with either correlation name

(E1.PROJECT or E2.PROJECT).

5. Given the FROM clause:

 FROM EMPLOYEE, X.EMPLOYEE

a reference to a column in the second instance of EMPLOYEE must use

X.EMPLOYEE (X.EMPLOYEE.PROJECT). If X is the CURRENT SCHEMA

special register value in dynamic SQL or the QUALIFIER precompile/bind

option in static SQL, then the columns cannot be referenced since any such

reference would be ambiguous.

The use of a correlation name in the FROM clause also allows the option of

specifying a list of column names to be associated with the columns of the result

table. As with a correlation name, these listed column names become the exposed

names of the columns that must be used for references to the columns throughout

the query. If a column name list is specified, then the column names of the

underlying table become non-exposed.

Given the FROM clause:

 FROM DEPARTMENT D (NUM,NAME,MGR,ANUM,LOC)

Identifiers

58 SQL Reference, Volume 1

a qualified reference such as D.NUM denotes the first column of the

DEPARTMENT table that is defined in the table as DEPTNO. A reference to

D.DEPTNO using this FROM clause is incorrect since the column name DEPTNO

is a non-exposed column name.

Column name qualifiers to avoid ambiguity

In the context of a function, a GROUP BY clause, ORDER BY clause, an expression,

or a search condition, a column name refers to values of a column in some table,

view, nickname, nested table expression or table function. The tables, views,

nicknames, nested table expressions and table functions that might contain the

column are called the object tables of the context. Two or more object tables might

contain columns with the same name; one reason for qualifying a column name is

to designate the table from which the column comes. Qualifiers for column names

are also useful in SQL procedures to distinguish column names from SQL variable

names used in SQL statements.

A nested table expression or table function will consider table-references that precede

it in the FROM clause as object tables. The table-references that follow are not

considered as object tables.

Table designators

A qualifier that designates a specific object table is called a table designator. The

clause that identifies the object tables also establishes the table designators for

them. For example, the object tables of an expression in a SELECT clause are

named in the FROM clause that follows it:

 SELECT CORZ.COLA, OWNY.MYTABLE.COLA

 FROM OWNX.MYTABLE CORZ, OWNY.MYTABLE

Table designators in the FROM clause are established as follows:

v A name that follows a table, view, nickname, alias, nested table expression or

table function is both a correlation name and a table designator. Thus, CORZ is a

table designator. CORZ is used to qualify the first column name in the select list.

v An exposed table, view name, nickname or alias is a table designator. Thus,

OWNY.MYTABLE is a table designator. OWNY.MYTABLE is used to qualify the

second column name in the select list.

When qualifying a column with the exposed table name form of a table designator,

either the qualified or unqualified form of the exposed table name can be used. If

the qualified form is used, the qualifier must be the same as the default qualifier

for the exposed table name.

For example, assume that the current schema is CORPDATA.

SELECT CORPDATA.EMPLOYEE.WORKDEPT FROM EMPLOYEE

is valid because the EMPLOYEE table referenced in the FROM clause fully

qualifies to CORPDATA.EMPLOYEE, which matches the qualifier for the

WORKDEPT column.

SELECT EMPLOYEE.WORKDEPT, REGEMP.WORKDEPT

 FROM CORPDATA.EMPLOYEE, REGION.EMPLOYEE REGEMP

is also valid, because the first select list column references the unqualified exposed

table designator CORPDATA.EMPLOYEE, which is in the FROM clause, and the

Identifiers

Chapter 2. Language elements 59

second select list column references the correlation name REGEMP of the table

object REGION.EMPLOYEE, which is also in the FROM clause.

Now assume that the current schema is REGION.

SELECT CORPDATA.EMPLOYEE.WORKDEPT FROM EMPLOYEE

is not valid because the EMPLOYEE table referenced in the FROM clause fully

qualifies to REGION.EMPLOYEE, and the qualifier for the WORKDEPT column

represents the CORPDATA.EMPLOYEE table.

Each table designator should be unique within a particular FROM clause to avoid

the possibility of ambiguous references to columns.

Avoiding undefined or ambiguous references

When a column name refers to values of a column, exactly one object table must

include a column with that name. The following situations are considered errors:

v No object table contains a column with the specified name. The reference is

undefined.

v The column name is qualified by a table designator, but the table designated

does not include a column with the specified name. Again the reference is

undefined.

v The name is unqualified, and more than one object table includes a column with

that name. The reference is ambiguous.

v The column name is qualified by a table designator, but the table designated is

not unique in the FROM clause and both occurrences of the designated table

include the column. The reference is ambiguous.

v The column name is in a nested table expression which is not preceded by the

TABLE keyword or in a table function or nested table expression that is the right

operand of a right outer join or a full outer join and the column name does not

refer to a column of a table-reference within the nested table expression’s

fullselect. The reference is undefined.

Avoid ambiguous references by qualifying a column name with a uniquely defined

table designator. If the column is contained in several object tables with different

names, the table names can be used as designators. Ambiguous references can also

be avoided without the use of the table designator by giving unique names to the

columns of one of the object tables using the column name list following the

correlation name.

When qualifying a column with the exposed table name form of a table designator,

either the qualified or unqualified form of the exposed table name may be used.

However, the qualifier used and the table used must be the same after fully

qualifying the table name, view name or nickname and the table designator.

1. If the authorization ID of the statement is CORPDATA:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT

 FROM EMPLOYEE

is a valid statement.

2. If the authorization ID of the statement is REGION:

 SELECT CORPDATA.EMPLOYEE.WORKDEPT

 FROM EMPLOYEE * incorrect *

is invalid, because EMPLOYEE represents the table REGION.EMPLOYEE, but

the qualifier for WORKDEPT represents a different table,

CORPDATA.EMPLOYEE.

Identifiers

60 SQL Reference, Volume 1

Column name qualifiers in correlated references

A fullselect is a form of a query that may be used as a component of various SQL

statements. A fullselect used within a search condition of any statement is called a

subquery. A fullselect used to retrieve a single value as an expression within a

statement is called a scalar fullselect or scalar subquery. A fullselect used in the

FROM clause of a query is called a nested table expression. Subqueries in search

conditions, scalar subqueries and nested table expressions are referred to as

subqueries through the remainder of this topic.

A subquery may include subqueries of its own, and these may, in turn, include

subqueries. Thus an SQL statement may contain a hierarchy of subqueries. Those

elements of the hierarchy that contain subqueries are said to be at a higher level

than the subqueries they contain.

Every element of the hierarchy contains one or more table designators. A subquery

can reference not only the columns of the tables identified at its own level in the

hierarchy, but also the columns of the tables identified previously in the hierarchy,

back to the highest level of the hierarchy. A reference to a column of a table

identified at a higher level is called a correlated reference.

For compatibility with existing standards for SQL, both qualified and unqualified

column names are allowed as correlated references. However, it is good practice to

qualify all column references used in subqueries; otherwise, identical column

names may lead to unintended results. For example, if a table in a hierarchy is

altered to contain the same column name as the correlated reference and the

statement is prepared again, the reference will apply to the altered table.

When a column name in a subquery is qualified, each level of the hierarchy is

searched, starting at the same subquery as the qualified column name appears and

continuing to the higher levels of the hierarchy until a table designator that

matches the qualifier is found. Once found, it is verified that the table contains the

given column. If the table is found at a higher level than the level containing

column name, then it is a correlated reference to the level where the table

designator was found. A nested table expression must be preceded with the

optional TABLE keyword in order to search the hierarchy above the fullselect of

the nested table expression.

When the column name in a subquery is not qualified, the tables referenced at

each level of the hierarchy are searched, starting at the same subquery where the

column name appears and continuing to higher levels of the hierarchy, until a

match for the column name is found. If the column is found in a table at a higher

level than the level containing column name, then it is a correlated reference to the

level where the table containing the column was found. If the column name is

found in more than one table at a particular level, the reference is ambiguous and

considered an error.

In either case, T, used in the following example, refers to the table designator that

contains column C. A column name, T.C (where T represents either an implicit or

an explicit qualifier), is a correlated reference if, and only if, these conditions are

met:

v T.C is used in an expression of a subquery.

v T does not designate a table used in the from clause of the subquery.

v T designates a table used at a higher level of the hierarchy that contains the

subquery.

Identifiers

Chapter 2. Language elements 61

Since the same table, view or nickname can be identified at many levels, unique

correlation names are recommended as table designators. If T is used to designate

a table at more than one level (T is the table name itself or is a duplicate

correlation name), T.C refers to the level where T is used that most directly

contains the subquery that includes T.C. If a correlation to a higher level is needed,

a unique correlation name must be used.

The correlated reference T.C identifies a value of C in a row or group of T to which

two search conditions are being applied: condition 1 in the subquery, and condition

2 at some higher level. If condition 2 is used in a WHERE clause, the subquery is

evaluated for each row to which condition 2 is applied. If condition 2 is used in a

HAVING clause, the subquery is evaluated for each group to which condition 2 is

applied.

For example, in the following statement, the correlated reference X.WORKDEPT (in

the last line) refers to the value of WORKDEPT in table EMPLOYEE at the level of

the first FROM clause. (That clause establishes X as a correlation name for

EMPLOYEE.) The statement lists employees who make less than the average salary

for their department.

 SELECT EMPNO, LASTNAME, WORKDEPT

 FROM EMPLOYEE X

 WHERE SALARY < (SELECT AVG(SALARY)

 FROM EMPLOYEE

 WHERE WORKDEPT = X.WORKDEPT)

The next example uses THIS as a correlation name. The statement deletes rows for

departments that have no employees.

 DELETE FROM DEPARTMENT THIS

 WHERE NOT EXISTS(SELECT *

 FROM EMPLOYEE

 WHERE WORKDEPT = THIS.DEPTNO)

References to variables

A variable in an SQL statement specifies a value that can be changed when the SQL

statement is executed. There are several types of variables used in SQL statements:

host variable

Host variables are defined by statements of a host language. For more

information about how to refer to host variables, see “References to host

variables” on page 63.

transition variable

Transition variables are defined in a trigger and refer to either the old or

new values of columns. For more information about how to refer to

transition variables, see “CREATE TRIGGER statement” in the SQL

Reference, Volume 2 .

SQL variable

SQL variables are defined by an SQL compound statement in an SQL

function, SQL method, SQL procedure, trigger, or dynamic SQL statement.

For more information about SQL variables, see “References to SQL

parameters, SQL variables, and global variables” in the SQL Reference,

Volume 2 .

global variable

Global variables are defined by the CREATE VARIABLE statement. For

Identifiers

62 SQL Reference, Volume 1

more information about global variables, see “CREATE VARIABLE” and

“References to SQL parameters, SQL variables, and global variables” in the

SQL Reference, Volume 2 .

SQL parameter

SQL parameters are defined by a CREATE FUNCTION, CREATE

METHOD, or CREATE PROCEDURE statement. For more information

about SQL parameters, see “References to SQL parameters, SQL variables,

and global variables” in the SQL Reference, Volume 2 .

parameter marker

Parameter markers are specified in a dynamic SQL statement where host

variables would be specified if the statement were a static SQL statement.

An SQL descriptor or parameter binding is used to associate a value with a

parameter marker during dynamic SQL statement processing. For more

information about parameter markers, see Parameter markers.

References to host variables

A host variable is either:

v A variable in a host language such as a C variable, a C++ variable, a COBOL

data item, a FORTRAN variable, or a Java variable

or:

v A host language construct that was generated by an SQL precompiler from a

variable declared using SQL extensions

that is referenced in an SQL statement. Host variables are either directly defined by

statements in the host language or are indirectly defined using SQL extensions.

A host variable in an SQL statement must identify a host variable described in the

program according to the rules for declaring host variables.

All host variables used in an SQL statement must be declared in an SQL

DECLARE section in all host languages except REXX™. No variables may be

declared outside an SQL DECLARE section with names identical to variables

declared inside an SQL DECLARE section. An SQL DECLARE section begins with

BEGIN DECLARE SECTION and ends with END DECLARE SECTION.

The meta-variable host-variable, as used in the syntax diagrams, shows a reference

to a host variable. A host-variable in the VALUES INTO clause or the INTO clause

of a FETCH or a SELECT INTO statement, identifies a host variable to which a

value from a column of a row or an expression is assigned. In all other contexts a

host-variable specifies a value to be passed to the database manager from the

application program.

Host variables in dynamic SQL

In dynamic SQL statements, parameter markers are used instead of host variables.

A parameter marker is a question mark (?) representing a position in a dynamic

SQL statement where the application will provide a value; that is, where a host

variable would be found if the statement string were a static SQL statement. The

following example shows a static SQL statement using host variables:

 INSERT INTO DEPARTMENT

 VALUES (:hv_deptno, :hv_deptname, :hv_mgrno, :hv_admrdept)

This example shows a dynamic SQL statement using parameter markers:

Identifiers

Chapter 2. Language elements 63

r0000975.dita#r0000975/l975

INSERT INTO DEPARTMENT VALUES (?, ?, ?, ?)

The meta-variable host-variable in syntax diagrams can generally be expanded to:

�� :host-identifier

INDICATOR

:host-identifier

 ��

Each host-identifier must be declared in the source program. The variable

designated by the second host-identifier must have a data type of small integer.

The first host-identifier designates the main variable. Depending on the operation, it

either provides a value to the database manager or is provided a value from the

database manager. An input host variable provides a value in the runtime

application code page. An output host variable is provided a value that, if

necessary, is converted to the runtime application code page when the data is

copied to the output application variable. A given host variable can serve as both

an input and an output variable in the same program.

The second host-identifier designates its indicator variable. The purposes of the

indicator variable are to:

v Specify the null value. A negative value of the indicator variable specifies the

null value. A value of -2 indicates a numeric conversion or arithmetic expression

error occurred in deriving the result

v Record the original length of a truncated string (if the source of the value is not

a large object type)

v Record the seconds portion of a time if the time is truncated on assignment to a

host variable.

For example, if :HV1:HV2 is used to specify an insert or update value, and if HV2

is negative, the value specified is the null value. If HV2 is not negative the value

specified is the value of HV1.

Similarly, if :HV1:HV2 is specified in a VALUES INTO clause or in a FETCH or

SELECT INTO statement, and if the value returned is null, HV1 is not changed,

and HV2 is set to a negative value. If the database is configured with

DFT_SQLMATHWARN yes (or was during binding of a static SQL statement),

HV2 could be -2. If HV2 is -2, a value for HV1 could not be returned because of an

error converting to the numeric type of HV1, or an error evaluating an arithmetic

expression that is used to determine the value for HV1. When accessing a database

with a client version earlier than DB2® Universal Database™ Version 5, HV2 will be

-1 for arithmetic exceptions. If the value returned is not null, that value is assigned

to HV1 and HV2 is set to zero (unless the assignment to HV1 requires string

truncation of a non-LOB string; in which case HV2 is set to the original length of

the string). If an assignment requires truncation of the seconds part of a time, HV2

is set to the number of seconds.

If the second host identifier is omitted, the host-variable does not have an indicator

variable. The value specified by the host-variable reference :HV1 is always the

value of HV1, and null values cannot be assigned to the variable. Thus, this form

should not be used in an INTO clause unless the corresponding column cannot

contain null values. If this form is used and the column contains nulls, the

database manager will generate an error at run time.

Identifiers

64 SQL Reference, Volume 1

An SQL statement that references host variables must be within the scope of the

declaration of those host variables. For host variables referenced in the SELECT

statement of a cursor, that rule applies to the OPEN statement rather than to the

DECLARE CURSOR statement.

Example

Using the PROJECT table, set the host variable PNAME (VARCHAR(26)) to the

project name (PROJNAME), the host variable STAFF (dec(5,2)) to the mean staffing

level (PRSTAFF), and the host variable MAJPROJ (char(6)) to the major project

(MAJPROJ) for project (PROJNO) ‘IF1000’. Columns PRSTAFF and MAJPROJ may

contain null values, so provide indicator variables STAFF_IND (smallint) and

MAJPROJ_IND (smallint).

 SELECT PROJNAME, PRSTAFF, MAJPROJ

 INTO :PNAME, :STAFF :STAFF_IND, :MAJPROJ :MAJPROJ_IND

 FROM PROJECT

 WHERE PROJNO = ’IF1000’

MBCS Considerations: Whether multi-byte characters can be used in a host

variable name depends on the host language.

References to BLOB, CLOB, and DBCLOB host variables

Regular BLOB, CLOB, and DBCLOB variables, LOB locator variables (see

“References to locator variables”), and LOB file reference variables (see “References

to BLOB, CLOB, and DBCLOB file reference variables” on page 66) can be defined

in all host languages. Where LOBs are allowed, the term host-variable in a syntax

diagram can refer to a regular host variable, a locator variable, or a file reference

variable. Since these are not native data types, SQL extensions are used and the

precompilers generate the host language constructs necessary to represent each

variable. In the case of REXX, LOBs are mapped to strings.

It is sometimes possible to define a large enough variable to hold an entire large

object value. If this is true and if there is no performance benefit to be gained by

deferred transfer of data from the server, a locator is not needed. However, since

host language or space restrictions will often dictate against storing an entire large

object in temporary storage at one time and/or because of performance benefit, a

large object may be referenced via a locator and portions of that object may be

selected into or updated from host variables that contain only a portion of the

large object at one time.

References to locator variables

A locator variable is a host variable that contains the locator representing a LOB

value on the application server.

A locator variable in an SQL statement must identify a locator variable described

in the program according to the rules for declaring locator variables. This is always

indirectly through an SQL statement.

The term locator variable, as used in the syntax diagrams, shows a reference to a

locator variable. The meta-variable locator-variable can be expanded to include a

host-identifier the same as that for host-variable.

As with all other host variables, a large object locator variable may have an

associated indicator variable. Indicator variables for large object locator host

Identifiers

Chapter 2. Language elements 65

variables behave in the same way as indicator variables for other data types. When

a null value is returned from the database, the indicator variable is set and the

locator host variable is unchanged. This means a locator can never point to a null

value.

If a locator-variable that does not currently represent any value is referenced, an

error is raised (SQLSTATE 0F001).

At transaction commit, or any transaction termination, all locators acquired by that

transaction are released.

References to BLOB, CLOB, and DBCLOB file reference

variables

BLOB, CLOB, and DBCLOB file reference variables are used for direct file input

and output for LOBs, and can be defined in all host languages. Since these are not

native data types, SQL extensions are used and the precompilers generate the host

language constructs necessary to represent each variable. In the case of REXX,

LOBs are mapped to strings.

A file reference variable represents (rather than contains) the file, just as a LOB

locator represents, rather than contains, the LOB bytes. Database queries, updates

and inserts may use file reference variables to store or to retrieve single column

values.

A file reference variable has the following properties:

Data Type

BLOB, CLOB, or DBCLOB. This property is specified when the variable is

declared.

Direction

This must be specified by the application program at run time (as part of

the File Options value). The direction is one of:

v Input (used as a source of data on an EXECUTE statement, an OPEN

statement, an UPDATE statement, an INSERT statement, or a DELETE

statement).

v Output (used as the target of data on a FETCH statement or a SELECT

INTO statement).

File name

This must be specified by the application program at run time. It is one of:

v The complete path name of the file (which is advised).

v A relative file name. If a relative file name is provided, it is appended to

the current path of the client process.

Within an application, a file should only be referenced in one file reference

variable.

File Name Length

This must be specified by the application program at run time. It is the

length of the file name (in bytes).

File Options

An application must assign one of a number of options to a file reference

variable before it makes use of that variable. Options are set by an

INTEGER value in a field in the file reference variable structure. One of the

following values must be specified for each file reference variable:

Identifiers

66 SQL Reference, Volume 1

v Input (from client to server)

SQL_FILE_READ

This is a regular file that can be opened, read and closed. (The

option is SQL-FILE-READ in COBOL, sql_file_read in

FORTRAN, and READ in REXX.)
v Output (from server to client)

SQL_FILE_CREATE

Create a new file. If the file already exists, an error is returned.

(The option is SQL-FILE-CREATE in COBOL, sql_file_create in

FORTRAN, and CREATE in REXX.)

SQL_FILE_OVERWRITE (Overwrite)

If an existing file with the specified name exists, it is

overwritten; otherwise a new file is created. (The option is

SQL-FILE-OVERWRITE in COBOL, sql_file_overwrite in

FORTRAN, and OVERWRITE in REXX.)

SQL_FILE_APPEND

If an existing file with the specified name exists, the output is

appended to it; otherwise a new file is created. (The option is

SQL-FILE-APPEND in COBOL, sql_file_append in FORTRAN,

and APPEND in REXX.)

Data Length

This is unused on input. On output, the implementation sets the

data length to the length of the new data written to the file. The

length is in bytes.

As with all other host variables, a file reference variable may have an associated

indicator variable.

Example of an output file reference variable (in C)

Given a declare section coded as:

 EXEC SQL BEGIN DECLARE SECTION

 SQL TYPE IS CLOB_FILE hv_text_file;

 char hv_patent_title[64];

 EXEC SQL END DECLARE SECTION

Following preprocessing this would be:

 EXEC SQL BEGIN DECLARE SECTION

 /* SQL TYPE IS CLOB_FILE hv_text_file; */

 struct {

 unsigned long name_length; // File Name Length

 unsigned long data_length; // Data Length

 unsigned long file_options; // File Options

 char name[255]; // File Name

 } hv_text_file;

 char hv_patent_title[64];

 EXEC SQL END DECLARE SECTION

Then, the following code can be used to select from a CLOB column in the

database into a new file referenced by :hv_text_file.

 strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");

 hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");

 hv_text_file.file_options = SQL_FILE_CREATE;

 EXEC SQL SELECT content INTO :hv_text_file from papers

 WHERE TITLE = ’The Relational Theory behind Juggling’;

Identifiers

Chapter 2. Language elements 67

Example of an input file reference variable (in C)

Given the same declare section as above, the following code can be used to insert

the data from a regular file referenced by :hv_text_file into a CLOB column.

 strcpy(hv_text_file.name, "/u/gainer/patents/chips.13");

 hv_text_file.name_length = strlen("/u/gainer/patents/chips.13");

 hv_text_file.file_options = SQL_FILE_READ:

 strcpy(:hv_patent_title, "A Method for Pipelining Chip Consumption");

 EXEC SQL INSERT INTO patents(title, text)

 VALUES(:hv_patent_title, :hv_text_file);

References to structured type host variables

Structured type variables can be defined in all host languages except FORTRAN,

REXX, and Java. Since these are not native data types, SQL extensions are used and

the precompilers generate the host language constructs necessary to represent each

variable.

As with all other host variables, a structured type variable may have an associated

indicator variable. Indicator variables for structured type host variables behave in

the same way as indicator variables for other data types. When a null value is

returned from the database, the indicator variable is set and the structured type

host variable is unchanged.

The actual host variable for a structured type is defined as a built-in data type. The

built-in data type associated with the structured type must be assignable:

v from the result of the FROM SQL transform function for the structured type as

defined by the specified TRANSFORM GROUP option of the precompile

command; and

v to the parameter of the TO SQL transform function for the structured type as

defined by the specified TRANSFORM GROUP option of the precompile

command.

If using a parameter marker instead of a host variable, the appropriate parameter

type characteristics must be specified in the SQLDA. This requires a ″doubled″ set

of SQLVAR structures in the SQLDA, and the SQLDATATYPE_NAME field of the

secondary SQLVAR must be filled with the schema and type name of the

structured type. If the schema is omitted in the SQLDA structure, an error results

(SQLSTATE 07002).

Example

Define the host variables hv_poly and hv_point (of type POLYGON, using built-in

type BLOB(1048576)) in a C program.

 EXEC SQL BEGIN DECLARE SECTION;

 static SQL

 TYPE IS POLYGON AS BLOB(1M)

 hv_poly, hv_point;

 EXEC SQL END DECLARE SECTION;

Identifiers

68 SQL Reference, Volume 1

Data types

The smallest unit of data that can be manipulated in SQL is called a value. Values

are interpreted according to the data type of their source. Sources include:

v Constants

v Columns

v Functions

v Expressions

v Special registers.

v Variables (such as host variables, SQL variables, global variables, parameter

markers and parameters of routines)

DB2 supports a number of built-in data types. It also provides support for

user-defined data types. Figure 11 on page 70 shows the supported built-in data

types.

Data types

Chapter 2. Language elements 69

All data types include the null value. The null value is a special value that is

distinct from all non-null values and thereby denotes the absence of a (non-null)

value. Although all data types include the null value, columns defined as NOT

NULL cannot contain null values.

Data type list

Numbers

The numeric data types are integer, decimal, floating-point, and decimal

floating-point.

The numeric data types are categorized as follows:

built-in data types

time timestamp date approximatedecimal
floating point

binary

varying length

varying
length

fixed
length

double
precision

single
precision

CHAR

varying
length

fixed
length

GRAPHIC REAL DOUBLE

VARCHAR CLOB VARGRAPHIC DBCLOB

binary integer

DECFLOAT

character graphic

BLOB

decimal

floating point

exact

packed16 bit 32 bit 64 bit

SMALLINT INTEGER BIGINT DECIMAL

TIME TIMESTAMP DATE

extensible
markup
language

signed
numeric

XML

stringdatetime

Figure 11. The DB2 Built-in Data Types

Data types

70 SQL Reference, Volume 1

v Exact numerics: integer and decimal

v Decimal floating-point

v Approximate numerics: floating-point

Integer includes small integer, large integer, and big integer. Integer numbers are

exact representations of integers. Decimal numbers are exact representations of

numbers with a fixed precision and scale. Integer and decimal numbers are

considered exact numeric types.

Decimal floating-point numbers can have a precision of 16 or 34. Decimal

floating-point supports both exact representations of real numbers and

approximation of real numbers and so is not considered either an exact numeric

type or an approximate numeric type.

Floating-point includes single precision and double precision. Floating-point

numbers are approximations of real numbers and are considered approximate

numeric types.

All numbers have a sign, a precision, and a scale. For all numbers except decimal

floating-point, if a column value is zero, the sign is positive. Decimal floating-point

numbers include negative and positive zeros. Decimal floating-point has distinct

values for a number and the same number with various exponents (for example:

0.0, 0.00, 0.0E5, 1.0, 1.00, 1.0000). The precision is the total number of decimal

digits, excluding the sign. The scale is the total number of decimal digits to the

right of the decimal point. If there is no decimal point, the scale is zero.

See also the data type section in the description of the CREATE TABLE statement.

Small integer (SMALLINT)

A small integer is a two-byte integer with a precision of 5 digits. The range of small

integers is -32 768 to 32 767.

Large integer (INTEGER)

A large integer is a four-byte integer with a precision of 10 digits. The range of large

integers is -2 147 483 648 to +2 147 483 647.

Big integer (BIGINT)

A big integer is an eight-byte integer with a precision of 19 digits. The range of big

integers is -9 223 372 036 854 775 808 to +9 223 372 036 854 775 807.

Decimal (DECIMAL or NUMERIC)

A decimal value is a packed decimal number with an implicit decimal point. The

position of the decimal point is determined by the precision and the scale of the

number. The scale, which is the number of digits in the fractional part of the

number, cannot be negative or greater than the precision. The maximum precision

is 31 digits.

All values in a decimal column have the same precision and scale. The range of a

decimal variable or the numbers in a decimal column is -n to +n, where the

absolute value of n is the largest number that can be represented with the

applicable precision and scale. The maximum range is -1031+1 to 1031-1.

Numbers

Chapter 2. Language elements 71

Single-precision floating-point (REAL)

A single-precision floating-point number is a 32-bit approximation of a real number.

The number can be zero or can range from -3.4028234663852886e+38 to

-1.1754943508222875e-38, or from 1.1754943508222875e-38 to

3.4028234663852886e+38.

Double-precision floating-point (DOUBLE or FLOAT)

A double-precision floating-point number is a 64-bit approximation of a real number.

The number can be zero or can range from -1.7976931348623158e+308 to

-2.2250738585072014e-308, or from 2.2250738585072014e-308 to

1.7976931348623158e+308.

Decimal floating-point (DECFLOAT)

A decimal floating-point value is an IEEE 754r number with a decimal point. The

position of the decimal point is stored in each decimal floating-point value. The

maximum precision is 34 digits. The range of a decimal floating-point number is

either 16 or 34 digits of precision, and an exponent range of 10-383 to 10+384 or 10-6143

to 10+6144, respectively. The minimum exponent, Emin, for DECFLOAT values is -383

for DECFLOAT(16) and -6143 for DECFLOAT(34). The maximum exponent, Emax,

for DECFLOAT values is 384 for DECFLOAT(16) and 6144 for DECFLOAT(34).

In addition to finite numbers, decimal floating-point numbers are able to represent

one of the following named decimal floating-point special values:

v Infinity - a value that represents a number whose magnitude is infinitely large

v Quiet NaN - a value that represents undefined results and that does not cause

an invalid number condition

v Signalling NaN - a value that represents undefined results and that causes an

invalid number condition if used in any numerical operation

When a number has one of these special values, its coefficient and exponent are

undefined. The sign of an infinity value is significant, because it is possible to have

positive or negative infinity. The sign of a NaN value has no meaning for

arithmetic operations.

Subnormal numbers and underflow

Non-zero numbers whose adjusted exponents are less than Emin

are called

subnormal numbers. These subnormal numbers are accepted as operands for all

operations and can result from any operation.

For a subnormal result, the minimum values of the exponent become Emin

-

(precision-1), called Etiny, where precision is the working precision. If necessary, the

result is rounded to ensure that the exponent is no smaller than Etiny. If the result

becomes inexact during rounding, an underflow condition is returned. A

subnormal result does not always return the underflow condition.

When a number underflows to zero during a calculation, its exponent will be Etiny.

The maximum value of the exponent is unaffected.

The maximum value of the exponent for subnormal numbers is the same as the

minimum value of the exponent that can arise during operations that do not result

in subnormal numbers. This occurs when the length of the coefficient in decimal

digits is equal to the precision.

Numbers

72 SQL Reference, Volume 1

Character strings

A character string is a sequence of bytes. The length of the string is the number of

bytes in the sequence. If the length is zero, the value is called the empty string. This

value should not be confused with the null value.

Fixed-length character string (CHAR)

All values in a fixed-length string column have the same length, which is

determined by the length attribute of the column. The length attribute must be

between 1 and 254, inclusive.

Varying-length character strings

There are two types of varying-length character string:

v A VARCHAR value can be up to 32 672 bytes long.

v A CLOB (character large object) value can be up to 2 gigabytes (2 147 483 647

bytes) long. A CLOB is used to store large SBCS or mixed (SBCS and MBCS)

character-based data (such as documents written with a single character set) and,

therefore, has an SBCS or mixed code page associated with it.

Special restrictions apply to expressions resulting in a CLOB data type, and to

structured type columns; such expressions and columns are not permitted in:

v A SELECT list preceded by the DISTINCT clause

v A GROUP BY clause

v An ORDER BY clause

v A subselect of a set operator other than UNION ALL

v A basic, quantified, BETWEEN, or IN predicate

v A column function

v VARGRAPHIC, TRANSLATE, and datetime scalar functions

v The pattern operand in a LIKE predicate, or the search string operand in a

POSSTR function

v The string representation of a datetime value.

The functions in the SYSFUN schema taking a VARCHAR as an argument will not

accept VARCHARs greater than 4 000 bytes long as an argument. However, many

of these functions also have an alternative signature accepting a CLOB(1M). For

these functions, the user may explicitly cast the greater than 4 000 VARCHAR

strings into CLOBs and then recast the result back into VARCHARs of desired

length.

NUL-terminated character strings found in C are handled differently, depending on

the standards level of the precompile option.

Each character string is further defined as one of:

Bit data

Data that is not associated with a code page.

Single-byte character set (SBCS) data

Data in which every character is represented by a single byte.

Mixed data

Data that may contain a mixture of characters from a single-byte character

set and a multi-byte character set (MBCS).

Character strings

Chapter 2. Language elements 73

Note: The LONG VARCHAR data type continues to be supported but is

deprecated, not recommended, and might be removed in a future release.

String units in built-in functions

The ability to specify string units for certain built-in functions allows you to

process string data in a more ″character-based manner″ than a ″byte-based

manner″. The string unit determines the length in which an operation is to occur.

You can specify CODEUNITS16, CODEUNITS32, or OCTETS as the string unit for

an operation.

CODEUNITS16

Specifies that Unicode UTF-16 is the unit for the operation. CODEUNITS16

is useful when an application is processing data in code units that are two

bytes in width. Note that some characters, known as supplementary

characters, require two UTF-16 code units to be encoded. For example, the

musical symbol G clef requires two UTF-16 code units (X’D834’ and

X’DD1E’ in UTF-16BE).

CODEUNITS32

Specifies that Unicode UTF-32 is the unit for the operation. CODEUNITS32

is useful for applications that process data in a simple, fixed-length format,

and that must return the same answer regardless of the storage format of

the data (ASCII, UTF-8, or UTF-16).

OCTETS

Specifies that bytes are the units for the operation. OCTETS is often used

when an application is interested in allocating buffer space or when

operations need to use simple byte processing.

The calculated length of a string computed using OCTETS (bytes) might differ

from that computed using CODEUNITS16 or CODEUNITS32. When using

OCTETS, the length of the string is determined by simply counting the number of

bytes in the string. When using CODEUNITS16 or CODEUNITS32, the length of

the string is determined by counting the number of 16-bit or 32-bit code units

necessary to represent the string in UTF-16 or UTF-32, respectively. The length

determined using CODEUNITS16 and CODEUNITS32 will be identical unless the

data contains supplementary characters (see “Difference between CODEUNITS16

and CODEUNITS32” on page 75).

For example, assume that NAME, a VARCHAR(128) column encoded in Unicode

UTF-8, contains the value ’Jürgen’. The following two queries, which count the

length of the string in CODEUNITS16 and CODEUNITS32, respectively, return the

same value (6).

 SELECT CHARACTER_LENGTH(NAME,CODEUNITS16) FROM T1

 WHERE NAME = ’Jürgen’

 SELECT CHARACTER_LENGTH(NAME,CODEUNITS32) FROM T1

 WHERE NAME = ’Jürgen’

The next query, which counts the length of the string in OCTETS, returns the value

7.

 SELECT CHARACTER_LENGTH(NAME,OCTETS) FROM T1

 WHERE NAME = ’Jürgen’

These values represent the length of the string expressed in the specified string

unit.

Character strings

74 SQL Reference, Volume 1

The following table shows the UTF-8, UTF-16BE (big-endian), and UTF-32BE

(big-endian) representations of the name ’Jürgen’:

Format Representation of the name ’Jürgen’

-------- --------------------------------------

UTF-8 X’4AC3BC7267656E’

UTF-16BE X’004A00FC007200670065006E’

UTF-32BE X’0000004A000000FC0000007200000067000000650000006E’

The representation of the character ’ü’ differs among the three string units:

v The UTF-8 representation of the character ’ü’ is X’C3BC’.

v The UTF-16BE representation of the character ’ü’ is X’00FC’.

v The UTF-32BE representation of the character ’ü’ is X’000000FC’.

Specifying string units for a built-in function does not affect the data type or the

code page of the result of the function. If necessary, DB2 converts the data to

Unicode for evaluation when CODEUNITS16 or CODEUNITS32 is specified.

When OCTETS is specified for the LOCATE or POSITION function, and the code

pages of the string arguments differ, DB2 converts the data to the code page of the

source-string argument. In this case, the result of the function is in the code page of

the source-string argument. When OCTETS is specified for functions that take a

single string argument, the data is evaluated in the code page of the string

argument, and the result of the function is in the code page of the string argument.

Difference between CODEUNITS16 and CODEUNITS32

When CODEUNITS16 or CODEUNITS32 is specified, the result is the same except

when the data contains Unicode supplementary characters. This is because a

supplementary character is represented by two UTF-16 code units or one UTF-32

code unit. In UTF-8, a non-supplementary character is represented by 1 to 3 bytes,

and a supplementary character is represented by 4 bytes. In UTF-16, a

non-supplementary character is represented by one CODEUNITS16 code unit or 2

bytes, and a supplementary character is represented by two CODEUNITS16 code

units or 4 bytes. In UTF-32, a character is represented by one CODEUNITS32 code

unit or 4 bytes.

For example, the following table shows the hexadecimal values for the

mathematical bold capital A and the Latin capital letter A. The mathematical bold

capital A is a supplementary character that is represented by 4 bytes in UTF-8,

UTF-16, and UTF-32.

Character UTF-8 representation

UTF-16BE

representation

UTF-32BE

representation

Unicode value

X’1D400’ - ’A’;

mathematical bold

capital A

X’F09D9080’ X’D835DC00’ X’0001D400’

Unicode value

X’0041’ - ’A’; latin

capital letter A

X’41’ X’0041’ X’00000041’

Assume that C1 is a VARCHAR(128) column, encoded in Unicode UTF-8, and that

table T1 contains one row with the value of the mathematical bold capital A

(X’F09D9080’). The following queries return different results:

Character strings

Chapter 2. Language elements 75

Query Returns

----- -------

SELECT CHARACTER_LENGTH(C1,CODEUNITS16) FROM T1 2

SELECT CHARACTER_LENGTH(C1,CODEUNITS32) FROM T1 1

SELECT CHARACTER_LENGTH(C1,OCTETS) FROM T1 4

Graphic strings

A graphic string is a sequence of bytes that represents double-byte character data.

The length of the string is the number of double-byte characters in the sequence. If

the length is zero, the value is called the empty string. This value should not be

confused with the null value.

Graphic strings are not checked to ensure that their values contain only

double-byte character code points. (The exception to this rule is an application

precompiled with the WCHARTYPE CONVERT option. In this case, validation

does occur.) Rather, the database manager assumes that double-byte character data

is contained in graphic data fields. The database manager does check that a graphic

string value is an even number of bytes long.

NUL-terminated graphic strings found in C are handled differently, depending on

the standards level of the precompile option. This data type cannot be created in a

table. It can only be used to insert data into and retrieve data from the database.

Fixed-length graphic strings (GRAPHIC)

All values in a fixed-length graphic string column have the same length, which is

determined by the length attribute of the column. The length attribute must be

between 1 and 127, inclusive.

Varying-length graphic strings

There are two types of varying-length graphic string:

v A VARGRAPHIC value can be up to 16 336 double-byte characters long.

v A DBCLOB (double-byte character large object) value can be up to

1 073 741 823 double-byte characters long. A DBCLOB is used to store large

DBCS character-based data (such as documents written with a single character

set) and, therefore, has a DBCS code page associated with it.

Special restrictions apply to an expression that results in a varying-length graphic

string whose maximum length is greater than 127 bytes. These restrictions are the

same as those specified in “Varying-length character strings” on page 73.

Note: The LONG VARGRAPHIC data type continues to be supported but is

deprecated, not recommended, and might be removed in a future release.

Binary strings

A binary string is a sequence of bytes. Unlike character strings, which usually

contain text data, binary strings are used to hold non-traditional data such as

pictures, voice, or mixed media. Character strings of the FOR BIT DATA subtype

may be used for similar purposes, but the two data types are not compatible. The

BLOB scalar function can be used to cast a FOR BIT DATA character string to a

Character strings

76 SQL Reference, Volume 1

binary string. Binary strings are not associated with a code page. They have the

same restrictions as character strings (for details, see “Varying-length character

strings” on page 73).

Binary large object (BLOB)

A binary large object is a varying-length binary string that can be up to 2 gigabytes

(2 147 483 647 bytes) long. BLOBs can hold structured data for exploitation by

user-defined types and user-defined functions. Like FOR BIT DATA character

strings, BLOB strings are not associated with a code page.

Large objects (LOBs)

The term large object and the generic acronym LOB refer to the BLOB, CLOB, or

DBCLOB data type. LOB values are subject to restrictions that apply to LONG

VARCHAR values, as described in “Varying-length character strings” on page 73.

These restrictions apply even if the length attribute of the LOB string is 254 bytes

or less.

LOB values can be very large, and the transfer of these values from the database

server to client application program host variables can be time consuming. Because

application programs typically process LOB values one piece at a time, rather than

as a whole, applications can reference a LOB value by using a large object locator.

A large object locator, or LOB locator, is a host variable whose value represents a

single LOB value on the database server.

An application program can select a LOB value into a LOB locator. Then, using the

LOB locator, the application program can request database operations on the LOB

value (such as applying the scalar functions SUBSTR, CONCAT, VALUE, or

LENGTH; performing an assignment; searching the LOB with LIKE or POSSTR; or

applying user-defined functions against the LOB) by supplying the locator value as

input. The resulting output (data assigned to a client host variable) would typically

be a small subset of the input LOB value.

LOB locators can represent more than just base values; they can also represent the

value associated with a LOB expression. For example, a LOB locator might

represent the value associated with:

 SUBSTR(<lob 1> CONCAT <lob 2> CONCAT <lob 3>, <start>, <length>)

When a null value is selected into a normal host variable, the indicator variable is

set to -1, signifying that the value is null. In the case of LOB locators, however, the

meaning of indicator variables is slightly different. Because a locator host variable

can itself never be null, a negative indicator variable value indicates that the LOB

value represented by the LOB locator is null. The null information is kept local to

the client by virtue of the indicator variable value — the server does not track null

values with valid locators.

It is important to understand that a LOB locator represents a value, not a row or a

location in the database. Once a value is selected into a locator, there is no

operation that one can perform on the original row or table that will affect the

value which is referenced by the locator. The value associated with a locator is

valid until the transaction ends, or until the locator is explicitly freed, whichever

comes first. Locators do not force extra copies of the data to provide this function.

Instead, the locator mechanism stores a description of the base LOB value. The

materialization of the LOB value (or expression, as shown above) is deferred until

Binary strings

Chapter 2. Language elements 77

it is actually assigned to some location — either a user buffer in the form of a host

variable, or another record in the database.

A LOB locator is only a mechanism used to refer to a LOB value during a

transaction; it does not persist beyond the transaction in which it was created. It is

not a database type; it is never stored in the database and, as a result, cannot

participate in views or check constraints. However, because a LOB locator is a

client representation of a LOB type, there are SQLTYPEs for LOB locators so that

they can be described within an SQLDA structure used by FETCH, OPEN, or

EXECUTE statements.

Datetime values

The datetime data types include DATE, TIME, and TIMESTAMP. Although

datetime values can be used in certain arithmetic and string operations, and are

compatible with certain strings, they are neither strings nor numbers.

Date

A date is a three-part value (year, month, and day). The range of the year part is

0001 to 9999. The range of the month part is 1 to 12. The range of the day part is 1

to x, where x depends on the month.

The internal representation of a date is a string of 4 bytes. Each byte consists of 2

packed decimal digits. The first 2 bytes represent the year, the third byte the

month, and the last byte the day.

The length of a DATE column, as described in the SQLDA, is 10 bytes, which is

the appropriate length for a character string representation of the value.

Time

A time is a three-part value (hour, minute, and second) designating a time of day

under a 24-hour clock. The range of the hour part is 0 to 24. The range of the other

parts is 0 to 59. If the hour is 24, the minute and second specifications are zero.

The internal representation of a time is a string of 3 bytes. Each byte consists of 2

packed decimal digits. The first byte represents the hour, the second byte the

minute, and the last byte the second.

The length of a TIME column, as described in the SQLDA, is 8 bytes, which is the

appropriate length for a character string representation of the value.

Timestamp

A timestamp is a seven-part value (year, month, day, hour, minute, second, and

microsecond) designating a date and time as defined above, except that the time

includes a fractional specification of microseconds.

The internal representation of a timestamp is a string of 10 bytes. Each byte

consists of 2 packed decimal digits. The first 4 bytes represent the date, the next 3

bytes the time, and the last 3 bytes the microseconds.

The length of a TIMESTAMP column, as described in the SQLDA, is 26 bytes,

which is the appropriate length for the character string representation of the value.

Large objects (LOBs)

78 SQL Reference, Volume 1

String representations of datetime values

Values whose data types are DATE, TIME, or TIMESTAMP are represented in an

internal form that is transparent to the user. Date, time, and timestamp values can,

however, also be represented by strings. This is useful because there are no

constants or variables whose data types are DATE, TIME, or TIMESTAMP. Before it

can be retrieved, a datetime value must be assigned to a string variable. The

CHAR function or the GRAPHIC function (for Unicode databases only) can be

used to change a datetime value to a string representation. The string

representation is normally the default format of datetime values associated with

the territory code of the application, unless overridden by specification of the

DATETIME option when the program is precompiled or bound to the database.

No matter what its length, a large object string, a LONG VARCHAR value, or a

LONG VARGRAPHIC value cannot be used to represent a datetime value

(SQLSTATE 42884).

When a valid string representation of a datetime value is used in an operation with

an internal datetime value, the string representation is converted to the internal

form of the date, time, or timestamp value before the operation is performed.

Date, time and timestamp strings must contain only characters and digits.

Date strings

A string representation of a date is a string that starts with a digit and has a length

of at least 8 characters. Trailing blanks may be included; leading zeros may be

omitted from the month and day portions.

Valid string formats for dates are listed in the following table. Each format is

identified by name and associated abbreviation.

 Table 5. Formats for String Representations of Dates

Format Name Abbreviation Date Format Example

International Standards

Organization

ISO yyyy-mm-dd 1991-10-27

IBM USA standard USA mm/dd/yyyy 10/27/1991

IBM European standard EUR dd.mm.yyyy 27.10.1991

Japanese Industrial Standard

Christian Era

JIS yyyy-mm-dd 1991-10-27

Site-defined LOC Depends on the

territory code of

the application

—

Time strings

A string representation of a time is a string that starts with a digit and has a length

of at least 4 characters. Trailing blanks can be included; a leading zero can be

omitted from the hour part of the time, and seconds can be omitted entirely. If

seconds are omitted, an implicit specification of 0 seconds is assumed. Thus, 13:30

is equivalent to 13:30:00.

Valid string formats for times are listed in the following table. Each format is

identified by name and associated abbreviation.

Datetime values

Chapter 2. Language elements 79

Table 6. Formats for String Representations of Times

Format Name Abbreviation Time Format Example

International Standards

Organization

ISO hh.mm.ss 13.30.05

IBM USA standard USA hh:mm AM or

PM

1:30 PM

IBM European standard EUR hh.mm.ss 13.30.05

Japanese Industrial Standard

Christian Era

JIS hh:mm:ss 13:30:05

Site-defined LOC Depends on the

territory code of

the application

—

Note:

1. In ISO, EUR, or JIS format, .ss (or :ss) is optional.

2. The International Standards Organization changed the time format so that it is

identical to the Japanese Industrial Standard Christian Era format. Therefore,

use the JIS format if an application requires the current International Standards

Organization format.

3. In the USA time string format, the minutes specification can be omitted,

indicating an implicit specification of 00 minutes. Thus, 1 PM is equivalent to

1:00 PM.

4. In the USA time string format, the hour must not be greater than 12 and cannot

be 0, except in the special case of 00:00 AM. There is a single space before ’AM’

or ’PM’. ’AM’ and ’PM’ can be represented in lowercase or uppercase

characters.

Using the JIS format of the 24-hour clock, the correspondence between the USA

format and the 24-hour clock is as follows:

v 12:01 AM through 12:59 AM corresponds to 00:01:00 through 00:59:00.

v 01:00 AM through 11:59 AM corresponds to 01:00:00 through 11:59:00.

v 12:00 PM (noon) through 11:59 PM corresponds to 12:00:00 through 23:59:00.

v 12:00 AM (midnight) corresponds to 24:00:00 and 00:00 AM (midnight)

corresponds to 00:00:00.

Timestamp strings

A string representation of a timestamp is a string that starts with a digit and has a

length of at least 16 characters. The complete string representation of a timestamp

has the form yyyy-mm-dd-hh.mm.ss.nnnnnn. Trailing blanks may be included.

Leading zeros may be omitted from the month, day, and hour part of the

timestamp, and microseconds may be truncated or entirely omitted. If any trailing

zero digits are omitted in the microseconds portion, an implicit specification of 0 is

assumed for the missing digits. Thus, 1991-3-2-8.30.00 is equivalent to

1991-03-02-08.30.00.000000.

SQL statements also support the ODBC string representation of a timestamp, but

as an input value only. The ODBC string representation of a timestamp has the

form yyyy-mm-dd hh:mm:ss.nnnnnn.

Datetime values

80 SQL Reference, Volume 1

XML values

An XML value represents well-formed XML in the form of an XML document,

XML content, or a sequence of XML nodes. An XML value that is stored in a table

as a value of a column defined with the XML data type must be a well-formed

XML document. XML values are processed in an internal representation that is not

comparable to any string value. An XML value can be transformed into a serialized

string value representing the XML document using the XMLSERIALIZE function.

Similarly, a string value that represents an XML document can be transformed into

an XML value using the XMLPARSE function. An XML value can be implicitly

parsed or serialized when exchanged with application string and binary data

types.

Special restrictions apply to expressions that result in an XML data type value;

such expressions and columns are not permitted in (SQLSTATE 42818):

v A SELECT list preceded by the DISTINCT clause

v A GROUP BY clause

v An ORDER BY clause

v A subselect of a set operator other than UNION ALL

v A basic, quantified, BETWEEN, IN, or LIKE predicate

v An aggregate function with DISTINCT

User-defined types

There are four types of user-defined data type:

v Distinct type

v Structured type

v Reference type

v Array type

Each of these types is described in the following sections.

Distinct type

A distinct type is a user-defined data type that shares its internal representation

with an existing type (its “source” type), but is considered to be a separate and

incompatible type for most operations. For example, one might want to define a

picture type, a text type, and an audio type, all of which have quite different

semantics, but which use the built-in data type BLOB for their internal

representation.

The following example illustrates the creation of a distinct type named AUDIO:

 CREATE TYPE AUDIO AS BLOB (1M)

Although AUDIO has the same representation as the built-in data type BLOB, it is

considered to be a separate type; this allows the creation of functions written

specifically for AUDIO, and assures that these functions will not be applied to

values of any other data type (pictures, text, and so on).

Distinct types have qualified identifiers. If the schema name is not used to qualify

the distinct type name when used in other than the CREATE TYPE (Distinct),

DROP, or COMMENT statements, the SQL path is searched in sequence for the

first schema with a distinct type that matches.

XML values

Chapter 2. Language elements 81

Distinct types support strong typing by ensuring that only those functions and

operators explicitly defined on a distinct type can be applied to its instances. For

this reason, a distinct type does not automatically acquire the functions and

operators of its source type, because these may not be meaningful. (For example,

the LENGTH function of the AUDIO type might return the length of its object in

seconds rather than in bytes.)

Distinct types sourced on LONG VARCHAR, LONG VARGRAPHIC, or LOB types

are subject to the same restrictions as their source type.

However, certain functions and operators of the source type can be explicitly

specified to apply to the distinct type. This can be done by creating user-defined

functions that are sourced on functions defined on the source type of the distinct

type. The comparison operators are automatically generated for user-defined

distinct types, except those using LONG VARCHAR, LONG VARGRAPHIC, BLOB,

CLOB, or DBCLOB as the source type. In addition, functions are generated to

support casting from the source type to the distinct type, and from the distinct

type to the source type.

Structured type

A structured type is a user-defined data type that has a structure that is defined in

the database. It contains a sequence of named attributes, each of which has a data

type. A structured type also includes a set of method specifications.

A structured type may be used as the type of a table, view, or column. When used

as a type for a table or view, that table or view is known as a typed table or typed

view, respectively. For typed tables and typed views, the names and data types of

the attributes of the structured type become the names and data types of the

columns of this typed table or typed view. Rows of the typed table or typed view

can be thought of as a representation of instances of the structured type. When

used as a data type for a column, the column contains values of that structured

type (or values of any of that type’s subtypes, as defined below). Methods are used

to retrieve or manipulate attributes of a structured column object.

Terminology: A supertype is a structured type for which other structured types,

called subtypes, have been defined. A subtype inherits all the attributes and

methods of its supertype and may have additional attributes and methods defined.

The set of structured types that are related to a common supertype is called a type

hierarchy and the type that does not have any supertype is called the root type of

the type hierarchy.

The term subtype applies to a user-defined structured type and all user-defined

structured types that are below it in the type hierarchy. Therefore, a subtype of a

structured type T is T and all structured types below T in the hierarchy. A proper

subtype of a structured type T is a structured type below T in the type hierarchy.

There are restrictions on having recursive type definitions in a type hierarchy. For

this reason, it is necessary to develop a shorthand way of referring to the specific

type of recursive definitions that are allowed. The following definitions are used:

v Directly uses: A type A is said to directly use another type B, if and only if one of

the following is true:

1. type A has an attribute of type B

2. type B is a subtype of A, or a supertype of A

User-defined types

82 SQL Reference, Volume 1

v Indirectly uses: A type A is said to indirectly use a type B, if one of the following

is true:

1. type A directly uses type B

2. type A directly uses some type C, and type C indirectly uses type B

A type may not be defined so that one of its attribute types directly or indirectly

uses itself. If it is necessary to have such a configuration, consider using a

reference as the attribute. For example, with structured type attributes, there

cannot be an instance of ″employee″ with an attribute of ″manager″ when

″manager″ is of type ″employee″. There can, however, be an attribute of ″manager″

with a type of REF(employee).

A type cannot be dropped if certain other objects use the type, either directly or

indirectly. For example, a type cannot be dropped if a table or view column makes

direct or indirect use of the type.

Reference type

A reference type is a companion type to a structured type. Similar to a distinct type,

a reference type is a scalar type that shares a common representation with one of

the built-in data types. This same representation is shared for all types in the type

hierarchy. The reference type representation is defined when the root type of a type

hierarchy is created. When using a reference type, a structured type is specified as

a parameter of the type. This parameter is called the target type of the reference.

The target of a reference is always a row in a typed table or a typed view. When a

reference type is used, it may have a scope defined. The scope identifies a table

(called the target table) or view (called the target view) that contains the target row

of a reference value. The target table or view must have the same type as the target

type of the reference type. An instance of a scoped reference type uniquely

identifies a row in a typed table or typed view, called the target row.

Array type

An array is a structure that contains an ordered collection of data elements in

which each element can be referenced by its ordinal position in the collection. If N

is the cardinality (number of elements) in an array, the ordinal position associated

with each element is an integer value greater than or equal to 1 and less than or

equal to N. All elements in an array have the same data type.

An array type is a data type that is defined as an array of another data type. Every

array type has a maximum cardinality, which is specified on the CREATE TYPE

statement. If A is an array type with maximum cardinality M, the cardinality of a

value of type A can be any value between 0 and M, inclusive. Unlike the

maximum cardinality of arrays in programming languages such as C, the

maximum cardinality of SQL arrays is not related to their physical representation.

Instead, the maximum cardinality is used by the system at run time to ensure that

subscripts are within bounds. The amount of memory required to represent an

array value is usually proportional to its cardinality, and not to the maximum

cardinality of its type.

When an array is being referenced, all of the values in the array are stored in main

memory. Therefore, arrays that contain a large amount of data will consume large

amounts of main memory.

User-defined types

Chapter 2. Language elements 83

Promotion of data types

Data types can be classified into groups of related data types. Within such groups,

a precedence order exists where one data type is considered to precede another

data type. This precedence is used to allow the promotion of one data type to a data

type later in the precedence ordering. For example, the data type CHAR can be

promoted to VARCHAR; INTEGER can be promoted to DOUBLE-PRECISION; but

CLOB is NOT promotable to VARCHAR.

Promotion of data types is used when:

v Performing function resolution

v Casting user-defined types

v Assigning user-defined types to built-in data types

Table 7 shows the precedence list (in order) for each data type and can be used to

determine the data types to which a given data type can be promoted. The table

shows that the best choice is always the same data type instead of choosing to

promote to another data type.

 Table 7. Data Type Precedence Table

Data Type Data Type Precedence List (in best-to-worst order)

CHAR CHAR, VARCHAR, LONG VARCHAR, CLOB

VARCHAR VARCHAR, LONG VARCHAR, CLOB

LONG

VARCHAR

LONG VARCHAR, CLOB

GRAPHIC GRAPHIC, VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

VARGRAPHIC VARGRAPHIC, LONG VARGRAPHIC, DBCLOB

LONG

VARGRAPHIC

LONG VARGRAPHIC, DBCLOB

BLOB BLOB

CLOB CLOB

DBCLOB DBCLOB

SMALLINT SMALLINT, INTEGER, BIGINT, decimal, real, double, DECFLOAT

INTEGER INTEGER, BIGINT, decimal, real, double, DECFLOAT

BIGINT BIGINT, decimal, real, double, DECFLOAT

decimal decimal, real, double, DECFLOAT

real real, double, DECFLOAT

double double, DECFLOAT

DECFLOAT DECFLOAT

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP

udt udt (same name) or a supertype of udt

REF(T) REF(S) (provided that S is a supertype of T)

Promotion of data types

84 SQL Reference, Volume 1

Table 7. Data Type Precedence Table (continued)

Data Type Data Type Precedence List (in best-to-worst order)

Note:

1. The lowercase types above are defined as follows:

v decimal = DECIMAL(p,s) or NUMERIC(p,s)

v real = REAL or FLOAT(n), where n is not greater than 24

v double = DOUBLE, DOUBLE-PRECISION, FLOAT or FLOAT(n), where n is greater

than 24

v udt = a user-defined type

Shorter and longer form synonyms of the listed data types are considered to be the same

as the listed form.

2. For a Unicode database, the following are considered to be equivalent data types:

v CHAR and GRAPHIC

v VARCHAR and VARGRAPHIC

v LONG VARCHAR and LONG VARGRAPHIC

v CLOB and DBCLOB

When resolving a function within a Unicode database, if a user-defined function and a

built-in function are both applicable for a given function invocation, then generally the

built-in function will be invoked. The UDF will be invoked only if its schema precedes

SYSIBM in the CURRENT PATH special register and if its argument data types match all

the function invocation argument data types, regardless of Unicode data type

equivalence.

Casting between data types

There are many occasions where a value with a given data type needs to be cast to

a different data type or to the same data type with a different length, precision, or

scale. Data type promotion is one example where the promotion of one data type

to another data type requires that the value be cast to the new data type. A data

type that can be cast to another data type is castable from the source data type to

the target data type.

The casting of one data type to another can occur implicitly or explicitly. The cast

functions, CAST specification, or XMLCAST specification can be used to explicitly

change a data type, depending on the data types involved. The database manager

might implicitly cast data types during assignments that involve a distinct type. In

addition, when a sourced user-defined function is created, the data types of the

parameters of the source function must be castable to the data types of the

function that is being created.

The supported casts between built-in data types are shown in Table 8 on page 87.

The first column represents the data type of the cast operand (source data type),

and the data types across the top represent the target data type of the cast

operation. A ’Y’ indicates that the CAST specification can be used for the

combination of source and target data types. Cases in which only the XMLCAST

specification can be used are noted.

In a Unicode database, if a truncation occurs when a character or graphic string is

cast to another data type, a warning returns if any nonblank characters are

truncated. This truncation behavior is unlike the assignment of character or graphic

strings to a target when an error occurs if any nonblank characters are truncated.

Promotion of data types

Chapter 2. Language elements 85

The following casts involving distinct types are supported (using the CAST

specification unless noted otherwise):

v Cast from distinct type DT to its source data type S

v Cast from the source data type S of distinct type DT to distinct type DT

v Cast from distinct type DT to the same distinct type DT

v Cast from a data type A to distinct type DT where A is promotable to the source

data type S of distinct type DT

v Cast from an INTEGER to distinct type DT with a source data type SMALLINT

v Cast from a DOUBLE to distinct type DT with a source data type REAL

v Cast from a DECFLOAT to distinct type DT with a source data type of

DECFLOAT

v Cast from a VARCHAR to distinct type DT with a source data type CHAR

v Cast from a VARGRAPHIC to distinct type DT with a source data type

GRAPHIC

v For a Unicode database, cast from a VARCHAR or a VARGRAPHIC to distinct

type DT with a source data type CHAR or GRAPHIC

v Cast from a distinct type DT with a source data type S to XML using the

XMLCAST specification

v Cast from an XML to a distinct type DT with a source data type of any built-in

data type, using the XMLCAST specification depending on the XML schema

data type of the XML value

FOR BIT DATA character types cannot be cast to CLOB.

It is not possible to cast a structured type value to something else. A structured

type ST should not need to be cast to one of its supertypes, because all methods on

the supertypes of ST are applicable to ST. If the desired operation is only

applicable to a subtype of ST, use the subtype-treatment expression to treat ST as

one of its subtypes.

When a user-defined data type involved in a cast is not qualified by a schema

name, the SQL path is used to find the first schema that includes the user-defined

data type by that name.

The following casts involving reference types are supported:

v cast from reference type RT to its representation data type S

v cast from the representation data type S of reference type RT to reference type

RT

v cast from reference type RT with target type T to a reference type RS with target

type S where S is a supertype of T.

v cast from a data type A to reference type RT, where A is promotable to the

representation data type S of reference type RT.

When the target type of a reference data type involved in a cast is not qualified by

a schema name, the SQL path is used to find the first schema that includes the

user-defined data type by that name.

Casting between data types

86 SQL Reference, Volume 1

Table 8. Supported Casts between Built-in Data Types

Source Data Type

Target Data Type

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 D

E

C

I

M

A

L

 R

E

A

L

 D

O

U

B

L

E

 D

E

C

F

L

O

A

T

 C

H

A

R

 C

H

A

R

F

B

D2

 V

A

R

C

H

A

R

V

A

R

C

H

A

R

F

B

D2

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

 B

L

O

B

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 X

M

L

SMALLINT Y Y Y Y Y Y Y Y Y - - - - - - - - - - Y3

INTEGER Y Y Y Y Y Y Y Y Y - - - - - - - - - - Y3

BIGINT Y Y Y Y Y Y Y Y Y - - - - - - - - - - Y3

DECIMAL Y Y Y Y Y Y Y Y Y - - - - - - - - - - Y3

REAL Y Y Y Y Y Y Y Y Y - - - - - - - - - - Y3

DOUBLE Y Y Y Y Y Y Y Y Y - - - - - - - - - - Y3

DECFLOAT Y Y Y Y Y Y Y Y Y - - - - - - - - - - -

CHAR Y Y Y Y - - Y Y Y Y Y Y Y1 Y1 Y1 Y Y Y Y Y4

CHAR FOR BIT DATA Y Y Y Y - - Y Y Y Y Y - - - - Y Y Y Y Y3

VARCHAR Y Y Y Y - - Y Y Y Y Y Y Y1 Y1 Y1 Y Y Y Y Y4

VARCHAR FOR BIT

DATA

Y Y Y Y - - Y Y Y Y Y - - - - Y Y Y Y Y3

CLOB - - - - - - - Y - Y - Y Y1 Y1 Y1 Y - - - Y4

GRAPHIC Y1 Y1 Y1 Y1 - - Y1 Y1 - Y1 - Y1 Y Y Y Y Y1 Y1 Y1 Y3

VARGRAPHIC Y1 Y1 Y1 Y1 - - Y1 Y1 - Y1 - Y1 Y Y Y Y Y1 Y1 Y1 Y3

DBCLOB - - - - - - - Y1 - Y1 - Y1 Y Y Y Y - - - Y3

BLOB - - - - - - - - - Y Y - - - - Y - - - Y4

DATE - Y Y Y - - - Y Y Y Y - Y1 Y1 - - Y - - Y3

TIME - Y Y Y - - - Y Y Y Y - Y1 Y1 - - - Y - Y3

TIMESTAMP - - Y Y - - - Y Y Y Y - Y1 Y1 - - Y Y Y Y3

XML Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y

Casting between data types

Chapter 2. Language elements 87

Table 8. Supported Casts between Built-in Data Types (continued)

Source Data Type

Target Data Type

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 D

E

C

I

M

A

L

 R

E

A

L

 D

O

U

B

L

E

 D

E

C

F

L

O

A

T

 C

H

A

R

 C

H

A

R

F

B

D2

 V

A

R

C

H

A

R

V

A

R

C

H

A

R

F

B

D2

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

 B

L

O

B

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 X

M

L

Notes

v See the description preceding the table for information on supported casts involving user-defined types and

reference types.

v It is not possible to cast a structured type value to anything else.

v The LONG VARCHAR and LONG VARGRAPHIC data types continue to be supported but are deprecated, not

recommended, and might be removed in a future release.

1 Cast is only supported for Unicode databases.

2 FOR BIT DATA

3 Cast can only be performed using XMLCAST.

4 An XMLPARSE function is implicitly processed to convert a string to XML on assignment (INSERT or UPDATE) of

a string to an XML column. The string must be a well-formed XML document for the assignment to succeed.

5 Cast can only be performed using XMLCAST and depends on the underlying XML schema data type of the XML

value. For details, see “XMLCAST”.

Table Table 9 shows where to find information about the rules that apply when

casting to the identified target data types.

 Table 9. Rules for Casting to a Data Type

Target Data Type Rules

SMALLINT “SMALLINT scalar function” in SQL

Reference, Volume 1

INTEGER “INTEGER scalar function” in SQL Reference,

Volume 1

BIGINT “BIGINT scalar function” in SQL Reference,

Volume 1

DECIMAL “DECIMAL scalar function” in SQL

Reference, Volume 1

NUMERIC “NUMERIC scalar function” in SQL

Reference, Volume 1

REAL “REAL scalar function” in SQL Reference,

Volume 1

DOUBLE “DOUBLE scalar function” in SQL Reference,

Volume 1

DECFLOAT “DECFLOAT scalar function” in SQL

Reference, Volume 1

Casting between data types

88 SQL Reference, Volume 1

Table 9. Rules for Casting to a Data Type (continued)

Target Data Type Rules

CHAR “CHAR scalar function” in SQL Reference,

Volume 1

VARCHAR “VARCHAR scalar function” in SQL

Reference, Volume 1

CLOB “CLOB scalar function” in SQL Reference,

Volume 1

GRAPHIC “GRAPHIC scalar function” in SQL

Reference, Volume 1

VARGRAPHIC “VARGRAPHIC scalar function” in SQL

Reference, Volume 1

DBCLOB “DBCLOB scalar function” in SQL Reference,

Volume 1

BLOB “BLOB scalar function” in SQL Reference,

Volume 1

DATE “DATE scalar function” in SQL Reference,

Volume 1

TIME “TIME scalar function” in SQL Reference,

Volume 1

TIMESTAMP If the source type is a character string, see

“TIMESTAMP scalar function” in SQL

Reference, Volume 1 , where one operand is

specified. If the source data type is a DATE,

the timestamp is composed of the specified

date and a time of 00:00:00. If the source

data type is a TIME, the timestamp is

composed of the CURRENT DATE and the

specified time.

Casting non-XML values to XML values

 Table 10. Supported Casts from Non-XML Values to XML Values

Source Data Type

Target Data Type

XML Resulting XML Schema Type

SMALLINT Y xs:short

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL or NUMERIC Y xs:decimal

REAL Y xs:float

DOUBLE Y xs:double

DECFLOAT N -

CHAR Y xs:string

VARCHAR Y xs:string

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

Casting between data types

Chapter 2. Language elements 89

Table 10. Supported Casts from Non-XML Values to XML Values (continued)

Source Data Type

Target Data Type

XML Resulting XML Schema Type

DATE Y xs:date

TIME Y xs:time

TIMESTAMP Y xs:dateTime

BLOB Y xs:base64Binary

character type FOR BIT DATA Y xs:base64Binary

distinct type use this chart with the source type of

the distinct type

Note:

v The LONG VARCHAR and LONG VARGRAPHIC data types continue to be supported

but are deprecated, not recommended, and might be removed in a future release.

When character string values are cast to XML values, the resulting xs:string atomic

value cannot contain illegal XML characters (SQLSTATE 0N002). If the input

character string is not in Unicode, the input characters are converted to Unicode.

Casting to SQL binary types results in XQuery atomic values with the type

xs:base64Binary.

Casting XML values to non-XML values

An XMLCAST from an XML value to a non-XML value can be described as two

casts: an XQuery cast that converts the source XML value to an XQuery type

corresponding to the SQL target type, followed by a cast from the corresponding

XQuery type to the actual SQL type.

An XMLCAST is supported if the target type has a corresponding XQuery target

type that is supported, and if there is a supported XQuery cast from the source

value’s type to the corresponding XQuery target type. The target type that is used

in the XQuery cast is based on the corresponding XQuery target type and might

contain some additional restrictions.

The following table lists the XQuery types that result from such conversion.

 Table 11. Supported Casts from XML Values to Non-XML Values

Target Data Type

Source Data Type

XML Corresponding XQuery Target Type

SMALLINT Y xs:short

INTEGER Y xs:int

BIGINT Y xs:long

DECIMAL or NUMERIC Y xs:decimal

REAL Y xs:float

DOUBLE Y xs:double

DECFLOAT Y no matching type1

CHAR Y xs:string

VARCHAR Y xs:string

Casting between data types

90 SQL Reference, Volume 1

Table 11. Supported Casts from XML Values to Non-XML Values (continued)

Target Data Type

Source Data Type

XML Corresponding XQuery Target Type

CLOB Y xs:string

GRAPHIC Y xs:string

VARGRAPHIC Y xs:string

DBCLOB Y xs:string

DATE Y xs:date

TIME (without time zone) Y xs:time

TIMESTAMP (without time zone) Y xs:dateTime

BLOB Y xs:base64Binary

CHAR FOR BIT DATA N not castable

VARCHAR FOR BIT DATA Y xs:base64Binary

distinct type use this chart with the source type of

the distinct type

row, reference, structured or abstract

data type (ADT), other

N not castable

Notes

1 DB2 supports XML Schema 1.0, which does not provide a matching XML schema type for

a DECFLOAT. Processing of the XQuery cast step of XMLCAST is handled as follows:

v If the source value is typed with an XML schema numeric type, use that numeric type.

v If the source value is typed with the XML schema type xs:boolean, use xs:double.

v Otherwise, use xs:string with additional checking for a valid numeric format.

In the following restriction cases, a derived by restriction XML schema data type is

effectively used as the target data type for the XQuery cast.

v XML values that are to be converted to string types must fit within the length

limits of those DB2 types without truncation of any characters or bytes. The

name used for the derived XML schema type is the uppercase SQL type name

followed by an underscore character and the maximum length of the string; for

example, VARCHAR_20 if the XMLCAST target data type is VARCHAR(20).

v XML values that are to be converted to DECIMAL values must fit within the

precision of the specified DECIMAL values, and must not contain more non-zero

digits after the decimal point than the scale. The name used for the derived

XML schema type is DECIMAL_precision_scale, where precision is the precision of

the target SQL data type, and scale is the scale of the target SQL data type; for

example, DECIMAL_9_2 if the XMLCAST target data type is DECIMAL(9,2).

v XML values that are to be converted to TIME values cannot contain a seconds

component with non-zero digits after the decimal point. The name used for the

derived XML schema type is TIME.

The derived XML schema type name only appears in a message if an XML value

does not conform to one of these restrictions. This type name helps one to

understand the error message, and does not correspond to any defined XQuery

type. If the input value does not conform to the base type of the derived XML

schema type (the corresponding XQuery target type), the error message might

indicate that type instead. Because this derived XML schema type name format

might change in the future, it should not be used as a programming interface.

Casting between data types

Chapter 2. Language elements 91

Before an XML value is processed by the XQuery cast, any document node in the

sequence is removed and each direct child of the removed document node

becomes an item in the sequence. If the document node has multiple direct

children nodes, the revised sequence will have more items than the original

sequence. The XML value without any document nodes is then atomized using the

XQuery fn:data function, with the resulting atomized sequence value used in the

XQuery cast. If the atomized sequence value is an empty sequence, a null value is

returned from the cast without any further processing. If there are multiple items

in the atomized sequence value, an error is returned (SQLSTATE 10507).

If the target type of XMLCAST is the SQL data type DATE, TIME, or TIMESTAMP,

the resulting XML value from the XQuery cast is also adjusted to UTC, and the

time zone component of the value is removed.

When the corresponding XQuery target type value is converted to the SQL target

type, binary XML data types, such as xs:base64Binary or xs:hexBinary, are

converted from character form to actual binary data.

If an xs:double or xs:float value of INF, -INF, or NaN is cast (using XMLCAST) to

an SQL data type DOUBLE or REAL value, an error is returned (SQLSTATE 22003).

An xs:double or xs:float value of -0 is converted to +0.

The target type can be a user-defined distinct type if the source operand is not a

user-defined distinct type. In this case, the source value is cast to the source type

of the user-defined distinct type (that is, the target type) using the XMLCAST

specification, and then this value is cast to the user-defined distinct type using the

CAST specification.

In a non-Unicode database, casting from an XML value to a non-XML target type

involves code page conversion from an internal UTF-8 format to the database code

page. This conversion will result in the introduction of substitution characters if

any code point in the XML value is not present in the database code page.

Assignments and comparisons

The basic operations of SQL are assignment and comparison. Assignment

operations are performed during the execution of INSERT, UPDATE, FETCH,

SELECT INTO, VALUES INTO and SET transition-variable statements. Arguments

of functions are also assigned when invoking a function. Comparison operations

are performed during the execution of statements that include predicates and other

language elements such as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

One basic rule for both operations is that the data type of the operands involved

must be compatible. The compatibility rule also applies to set operations.

Another basic rule for assignment operations is that a null value cannot be

assigned to a column that cannot contain null values, nor to a host variable that

does not have an associated indicator variable.

Assignments and comparisons involving both character and graphic data are only

supported when one of the strings is a literal.

Following is a compatibility matrix showing the data type compatibilities for

assignment and comparison operations.

Casting between data types

92 SQL Reference, Volume 1

Table 12. Data Type Compatibility for Assignments and Comparisons

Operands

Binary

Integer

Decimal

Number

Floating-

point

Decimal

Floating-
point

Character

String

Graphic

String Date Time

Time-

stamp

Binary

String UDT

Binary

Integer

Yes Yes Yes Yes No No No No No No

2

Decimal

Number

Yes Yes Yes Yes No No No No No No

2

Floating-
point

Yes Yes Yes Yes No No No No No No

2

Decimal

Floating-
point

Yes Yes Yes Yes No No No No No No

2

Character

String

No No No No Yes Yes

5,6 1 1 1 No

3 2

Graphic

String

No No No No Yes

5,6 Yes

1 1 1 No

2

Date No No No No

1 1 Yes No No No

2

Time No No No No

1 1 No Yes No No

2

Timestamp No No No No

1 1 No No Yes No

2

Binary String No No No No No

3 No No No No Yes

2

UDT

2 2 2 2 2 2 2 2 2 2 Yes

1 The compatibility of datetime values and strings is limited to assignment and comparison:

v Datetime values can be assigned to string columns and to string variables.

v A valid string representation of a date can be assigned to a date column or compared with a date.

v A valid string representation of a time can be assigned to a time column or compared with a time.

v A valid string representation of a timestamp can be assigned to a timestamp column or compared with a timestamp.

(Graphic string support is only available for Unicode databases.)

2 A user-defined distinct type value is only comparable to a value defined with the same user-defined distinct type. In general, assignments are

supported between a distinct type value and its source data type. A user-defined structured type is not comparable and can only be assigned to an

operand of the same structured type or one of its supertypes. For additional information see “User-defined type assignments” on page 99.

3 Note that this means that character strings defined with the FOR BIT DATA attribute are also not compatible with binary strings.

4 For information on assignment and comparison of reference types, see “Reference type assignments” on page 100 and “Reference type comparisons”

on page 105.

5 Only supported for Unicode databases.

6 Bit data and graphic strings are not compatible.

Numeric assignments

For numeric assignments, overflow is not allowed.

v When assigning to an exact numeric data type, overflow occurs if any digit of

the whole part of the number would be eliminated. If necessary, the fractional

part of a number is truncated.

v When assigning to an approximate numeric data type or decimal floating-point,

overflow occurs if the most significant digit of the whole part of the number is

eliminated. For floating-point and decimal floating-point numbers, the whole

part of the number is the number that would result if the floating-point or

decimal floating-point number were converted to a decimal number with

unlimited precision. If necessary, rounding may cause the least significant digits

of the number to be eliminated.

For decimal floating-point, truncation of the whole part of the number is not

allowed and results in an error.

Assignments and comparisons

Chapter 2. Language elements 93

For floating-point numbers, underflow is also not allowed. Underflow occurs for

numbers between 1 and -1 if the most significant digit other than zero would be

eliminated. For decimal floating-point, underflow is allowed and depending on

the rounding mode, results in zero or the smallest positive number or the largest

negative number that can be represented along with a warning.

An overflow or underflow warning is returned instead of an error if an overflow

or underflow occurs on assignment to a host variable with an indicator variable.

In this case, the number is not assigned to the host variable and the indicator

variable is set to negative 2.

For decimal floating-point numbers, the CURRENT DECFLOAT ROUNDING

MODE special register indicates the rounding mode in effect.

Assignments to integer

When a decimal, floating-point, or decimal floating-point number is assigned to an

integer column or variable, the fractional part of the number is eliminated. As a

result, a number between 1 and -1 is reduced to 0.

Assignments to decimal

When an integer is assigned to a decimal column or variable, the number is first

converted to a temporary decimal number and then, if necessary, to the precision

and scale of the target. The precision and scale of the temporary decimal number is

5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big integer.

When a decimal number is assigned to a decimal column or variable, the number

is converted, if necessary, to the precision and the scale of the target. The necessary

number of leading zeros is added, and in the fractional part of the decimal number

the necessary number of trailing zeros is added, or the necessary number of

trailing digits is eliminated.

When a floating-point number is assigned to a decimal column or variable, the

number is first converted to a temporary decimal number of precision 31, and

then, if necessary, truncated to the precision and scale of the target. In this

conversion, the number is rounded (using floating-point arithmetic) to a precision

of 31 decimal digits. As a result, a number between 1 and -1 that is less than the

smallest positive number or greater than the largest negative number that can be

represented in the decimal column or variable is reduced to 0. The scale is given

the largest possible value that allows the whole part of the number to be

represented without loss of significance.

When a decimal floating-point number is assigned to a decimal column or variable,

the number is rounded to the precision and scale of the decimal column or

variable. As a result, a number between 1 and -1 that is less than the smallest

positive number or greater than the largest negative number that can be

represented in the decimal column or variable is reduced to 0 or rounded to the

smallest positive or largest negative value that can be represented in the decimal

column or variable, depending on the rounding mode.

Assignments to floating-point

Floating-point numbers are approximations of real numbers. Hence, when an

integer, decimal, floating-point, or decimal floating-point number is assigned to a

floating-point column or variable, the result may not be identical to the original

number. The number is rounded to the precision of the floating-point column or

Assignments and comparisons

94 SQL Reference, Volume 1

variable using floating-point arithmetic. A decimal floating-point value is first

converted to a string representation, and is then converted to a floating-point

number.

Assignments to decimal floating-point

When an integer number is assigned to a decimal floating-point column or

variable, the number is first converted to a temporary decimal number and then to

a decimal floating-point number. The precision and scale of the temporary decimal

number is 5,0 for a small integer, 11,0 for a large integer, or 19,0 for a big integer.

Rounding may occur when assigning a BIGINT to a DECFLOAT(16) column or

variable.

When a decimal number is assigned to a decimal floating-point column or variable,

the number is converted to the precision (16 or 34) of the target. Leading zeros are

eliminated. Depending on the precision and scale of the decimal number and the

precision of the target, the value might be rounded.

When a floating-point number is assigned to a decimal floating-point column or

variable, the number is first converted to a temporary string representation of the

floating-point number. The string representation of the number is then converted to

decimal floating-point.

When a DECFLOAT(16) number is assigned to a DECFLOAT(34) column or

variable, the resulting value is identical to the DECFLOAT(16) number.

When a DECFLOAT(34) number is assigned to a DECFLOAT(16) column or

variable, the exponent of the source is converted to the corresponding exponent in

the result format. The mantissa of the DECFLOAT(34) number is rounded to the

precision of the target.

String assignments

There are two types of assignments:

v In storage assignment, a value is assigned and truncation of significant data is not

desirable; for example, when assigning a value to a column

v In retrieval assignment, a value is assigned and truncation is allowed; for

example, when retrieving data from the database

The rules for string assignment differ based on the assignment type.

Storage assignment

The basic rule is that the length of the string assigned to the target must not be

greater than the length attribute of the target. If the length of the string is greater

than the length attribute of the target, the following actions might occur:

v The string is assigned with trailing blanks truncated (from all string types except

LOB strings) to fit the length attribute of the target

v An error is returned (SQLSTATE 22001) when:

– Non-blank characters would be truncated from other than a LOB string

– Any character (or byte) would be truncated from a LOB string

If a string is assigned to a fixed-length target, and the length of the string is less

than the length attribute of the target, the string is padded to the right with the

Assignments and comparisons

Chapter 2. Language elements 95

necessary number of single-byte, double-byte, or UCS-2 blanks. The pad character

is always a blank, even for columns defined with the FOR BIT DATA attribute.

(UCS-2 defines several SPACE characters with different properties. For a Unicode

database, the database manager always uses the ASCII SPACE at position x’0020’

as UCS-2 blank. For an EUC database, the IDEOGRAPHIC SPACE at position

x’3000’ is used for padding GRAPHIC strings.)

Retrieval assignment

The length of a string that is assigned to a target can be longer than the length

attribute of the target. When a string is assigned to a target, and the length of the

string is longer than the length attribute of the target, the string is truncated on the

right by the necessary number of characters (or bytes). When this occurs, a

warning is returned (SQLSTATE 01004), and the value ’W’ is assigned to the

SQLWARN1 field of the SQLCA.

Furthermore, if an indicator variable is provided, and the source of the value is not

a LOB, the indicator variable is set to the original length of the string.

If a character string is assigned to a fixed-length target, and the length of the string

is less than the length attribute of the target, the string is padded to the right with

the necessary number of single-byte, double-byte, or UCS-2 blanks. The pad

character is always a blank, even for strings defined with the FOR BIT DATA

attribute. (UCS-2 defines several SPACE characters with different properties. For a

Unicode database, the database manager always uses the ASCII SPACE at position

x’0020’ as UCS-2 blank. For an EUC database, the IDEOGRAPHIC SPACE at

position x’3000’ is used for padding GRAPHIC strings.)

Retrieval assignment of C NUL-terminated host variables is handled on the basis

of options that are specified with the PREP or BIND command.

Conversion rules for string assignments

A character string or graphic string assigned to a column or host variable is first

converted, if necessary, to the code page of the target. Character conversion is

necessary only if all of the following are true:

v The code pages are different.

v The string is neither null nor empty.

v Neither string has a code page value of 0 (FOR BIT DATA).

For Unicode databases, character strings can be assigned to a graphic column, and

graphic strings can be assigned to a character column.

MBCS considerations for character string assignments

There are several considerations when assigning character strings that could

contain both single and multi-byte characters. These considerations apply to all

character strings, including those defined as FOR BIT DATA.

v Blank padding is always done using the single-byte blank character (X’20’).

v Blank truncation is always done based on the single-byte blank character (X’20’).

The double-byte blank character is treated like any other character with respect

to truncation.

v Assignment of a character string to a host variable may result in fragmentation

of MBCS characters if the target host variable is not large enough to contain the

Assignments and comparisons

96 SQL Reference, Volume 1

entire source string. If an MBCS character is fragmented, each byte of the MBCS

character fragment in the target is set to a single-byte blank character (X’20’), no

further bytes are moved from the source, and SQLWARN1 is set to ’W’ to

indicate truncation. Note that the same MBCS character fragment handling

applies even when the character string is defined as FOR BIT DATA.

DBCS considerations for graphic string assignments

Graphic string assignments are processed in a manner analogous to that for

character strings. For non-Unicode databases, graphic string data types are

compatible only with other graphic string data types, and never with numeric,

character string, or datetime data types. For Unicode databases, graphic string data

types are compatible with character string data types. However, graphic and

character string data types cannot be used interchangeably in the SELECT INTO or

the VALUES INTO statement.

If a graphic string value is assigned to a graphic string column, the length of the

value must not be greater than the length of the column.

If a graphic string value (the ’source’ string) is assigned to a fixed length graphic

string data type (the ’target’, which can be a column or host variable), and the

length of the source string is less than that of the target, the target will contain a

copy of the source string which has been padded on the right with the necessary

number of double-byte blank characters to create a value whose length equals that

of the target.

If a graphic string value is assigned to a graphic string host variable and the length

of the source string is greater than the length of the host variable, the host variable

will contain a copy of the source string which has been truncated on the right by

the necessary number of double-byte characters to create a value whose length

equals that of the host variable. (Note that for this scenario, truncation need not be

concerned with bisection of a double-byte character; if bisection were to occur,

either the source value or target host variable would be an ill-defined graphic

string data type.) The warning flag SQLWARN1 in the SQLCA will be set to ’W’.

The indicator variable, if specified, will contain the original length (in double-byte

characters) of the source string. In the case of DBCLOB, however, the indicator

variable does not contain the original length.

Retrieval assignment of C NUL-terminated host variables (declared using wchar_t)

is handled based on options specified with the PREP or BIND command.

Datetime assignments

The basic rule for datetime assignments is that a DATE, TIME, or TIMESTAMP

value can only be assigned to a column with a matching data type (whether DATE,

TIME, or TIMESTAMP), a variable with a matching data type, or to a fixed- or

varying-length string variable or string column. The assignment must not be to a

CLOB, DBCLOB, or BLOB variable or column.

When a datetime value is assigned to a string variable or string column,

conversion to a string representation is automatic. Leading zeros are not omitted

from any part of the date, time, or timestamp. The required length of the target

will vary, depending on the format of the string representation. If the length of the

target is greater than required, and the target is a fixed-length string, it is padded

on the right with blanks. If the length of the target is less than required, the result

depends on the type of datetime value involved, and on the type of target.

Assignments and comparisons

Chapter 2. Language elements 97

When the target is a string variable that is not a host variable, the following rules

apply:

v For a DATE: If the variable length is less than 10 characters, an error is returned.

v For a TIME: If the variable length is less than 8 characters, an error is returned.

v For a TIMESTAMP: If the host variable is less than 26 characters, an error is

returned.

When the target is a host variable, the following rules apply:

v For a DATE: If the host variable length is less than 10 characters, an error is

returned.

v For a TIME: If the USA format is used, the length of the host variable must not

be less than 8 characters; in other formats the length must not be less than 5

characters.

If ISO or JIS formats are used, and if the length of the host variable is less than 8

characters, the seconds part of the time is omitted from the result and assigned

to the indicator variable, if provided. The SQLWARN1 field of the SQLCA is set

to indicate the omission.

v For a TIMESTAMP: If the host variable is less than 19 characters, an error is

returned. If the length is less than 26 characters, but greater than or equal to 19

characters, trailing digits of the microseconds part of the value are omitted. The

SQLWARN1 field of the SQLCA is set to indicate the omission.

XML assignments

The general rule for XML assignments is that only an XML value can be assigned

to XML columns or to XML variables. There are exceptions to this rule, as follows.

v Processing of input XML host variables: This is a special case of the XML

assignment rule, because the host variable is based on a string value. To make

the assignment to XML within SQL, the string value is implicitly parsed into an

XML value using the setting of the CURRENT IMPLICIT XMLPARSE OPTION

special register. This determines whether to preserve or to strip whitespace,

unless the host variable is an argument of the XMLVALIDATE function, which

always strips unnecessary whitespace.

v Assigning strings to input parameter markers of data type XML: If an input

parameter marker has an implicit or explicit data type of XML, the value bound

(assigned) to that parameter marker could be a character string variable, graphic

string variable, or binary string variable. In this case, the string value is

implicitly parsed into an XML value using the setting of the CURRENT

IMPLICIT XMLPARSE OPTION special register to determine whether to

preserve or to strip whitespace, unless the parameter marker is an argument of

the XMLVALIDATE function, which always strips unnecessary whitespace.

v Assigning strings directly to XML columns in data change statements: If

assigning directly to a column of type XML in a data change statement, the

assigned expression can also be a character string or a binary string. In this case,

the result of XMLPARSE (DOCUMENT expression STRIP WHITESPACE) is assigned to

the target column. The supported string data types are defined by the supported

arguments for the XMLPARSE function. Note that this XML assignment

exception does not allow character or binary string values to be assigned to SQL

variables or to SQL parameters of data type XML.

v Assigning XML to strings on retrieval: If retrieving XML values into host

variables using a FETCH INTO statement or an EXECUTE INTO statement in

embedded SQL, the data type of the host variable can be CLOB, DBCLOB, or

BLOB. If using other application programming interfaces (such as CLI, JDBC, or

Assignments and comparisons

98 SQL Reference, Volume 1

.NET), XML values can be retrieved into the character, graphic, or binary string

types that are supported by the application programming interface. In all of

these cases, the XML value is implicitly serialized to a string encoded in UTF-8

and, for character or graphic string variables, converted into the client code

page.

Character string or binary string values cannot be retrieved into XML host

variables. Values in XML host variables cannot be assigned to columns, SQL

variables, or SQL parameters of a character string data type or a binary string data

type.

User-defined type assignments

For distinct types and structured types, different rules are applied for assignments

to host variables than are used for all other assignments.

Distinct Types: Assignment to host variables is done based on the source type of

the distinct type. That is, it follows the rule:

v A value of a distinct type on the right hand side of an assignment is assignable

to a host variable on the left hand side if and only if the source type of this

distinct type is assignable to this host variable.

If the target of the assignment is a column based on a distinct type, the source data

type must be castable to the target data type.

Structured Types: Assignment to and from host variables is based on the declared

type of the host variable; that is, it follows the rule:

v A value of a structured type on the right hand side of an assignment is

assignable to a host variable on the left hand side if and only if the declared

type of the host variable is the structured type or a supertype of the structured

type.

If the target of the assignment is a column of a structured type, the source data

type must be the target data type or a subtype of the target data type.

For array types, different rules are applied for assignments to SQL variables and

parameters. The validity of an assignment to an SQL variable or parameter is

determined according to the following rules:

v If the right hand side of the assignment is an SQL variable or parameter, a call

to the TRIM_ARRAY function, or a CAST expression, then its type must be the

same as the type of the SQL variable or parameter on the left hand side of the

assignment.

v If the right hand side of the assignment is a call to an array constructor or to the

ARRAY_AGG function, then it is implicitly cast to the type of the SQL variable

or parameter on the left hand side.

For example, assuming that the type of variable V is MYARRAY, the statement:

 SET V = ARRAY[1,2,3];

is equivalent to:

SET V = CAST(ARRAY[1,2,3] AS MYARRAY);

And the statement:

SELECT ARRAY_AGG(C1) INTO V FROM T

Assignments and comparisons

Chapter 2. Language elements 99

is equivalent to:

SELECT CAST(ARRAY_AGG(C1) AS MYARRAY) INTO V FROM T

Reference type assignments

A reference type with a target type of T can be assigned to a reference type column

that is also a reference type with target type of S where S is a supertype of T. If an

assignment is made to a scoped reference column or variable, no check is

performed to ensure that the actual value being assigned exists in the target table

or view defined by the scope.

Assignment to host variables is done based on the representation type of the

reference type. That is, it follows the rule:

v A value of a reference type on the right hand side of an assignment is assignable

to a host variable on the left hand side if and only if the representation type of

this reference type is assignable to this host variable.

If the target of the assignment is a column, and the right hand side of the

assignment is a host variable, the host variable must be explicitly cast to the

reference type of the target column.

Numeric comparisons

Numbers are compared algebraically; that is, with regard to sign. For example, -2

is less than +1.

If one number is an integer and the other is decimal, the comparison is made with

a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is

made with a temporary copy of one of the numbers that has been extended with

trailing zeros so that its fractional part has the same number of digits as the other

number.

If one number is floating-point and the other is integer or decimal, the comparison

is made with a temporary copy of the other number, which has been converted to

double-precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their

normalized forms are identical.

If one number is decimal floating-point and the other number is integer, decimal,

single precision floating-point, or double precision floating-point, the comparison is

made with a temporary copy of the other number, which has been converted to

decimal floating-point.

If one number is DECFLOAT(16) and the other number is DECFLOAT(34), the

DECFLOAT(16) value is converted to DECFLOAT(34) before the comparison is

made.

The decimal floating-point data type supports both positive and negative zero.

Positive and negative zero have different binary representations, but the = (equal)

predicate will return true for comparisons of negative and positive zero.

Assignments and comparisons

100 SQL Reference, Volume 1

The COMPARE_DECFLOAT and TOTALORDER scalar functions can be used to

perform comparisons at a binary level if, for example, a comparison of 2.0 <> 2.00

is required.

The decimal floating-point data type supports the specification of negative and

positive NaN (quiet and signalling), and negative and positive infinity. From an

SQL perspective, INFINITY = INFINITY, NAN = NAN, SNAN = SNAN, and -0 =

0.

The comparison and ordering rules for special values are as follows:

v (+/-) INFINITY compares equal only to (+/-) INFINITY of the same sign.

v (+/-) NAN compares equal only to (+/-) NAN of the same sign.

v (+/-) SNAN compares equal only to (+/-) SNAN of the same sign.

The ordering among different special values is as follows: -NAN < -SNAN <

-INFINITY < 0 < INFINITY < SNAN < NAN

String comparisons

Character strings are compared according to the collating sequence specified when

the database was created, except those with a FOR BIT DATA attribute, which are

always compared according to their bit values.

When comparing character strings of unequal lengths, the comparison is made

using a logical copy of the shorter string, which is padded on the right with blanks

sufficient to extend its length to that of the longer string. This logical extension is

done for all character strings, including those tagged as FOR BIT DATA.

Character strings (except character strings tagged as FOR BIT DATA) are compared

according to the collating sequence specified when the database was created. For

example, the default collating sequence supplied by the database manager may

give lowercase and uppercase versions of the same character the same weight. The

database manager performs a two-pass comparison to ensure that only identical

strings are considered equal to each other. In the first pass, strings are compared

according to the database collating sequence. If the weights of the characters in the

strings are equal, a second ″tie-breaker″ pass is performed to compare the strings

on the basis of their actual code point values.

Two strings are equal if they are both empty or if all corresponding bytes are

equal. If either operand is null, the result is unknown.

LOB strings are not supported in any comparison operations that use the basic

comparison operators (=, <>, <, >, <=, and >=). They are supported in comparisons

using the LIKE predicate and the POSSTR function.

Portions of strings of up to 4 000 bytes can be compared using the SUBSTR and

VARCHAR scalar functions. For example, given the columns:

 MY_SHORT_CLOB CLOB(300)

 MY_LONG_VAR VARCHAR(8000)

then the following is valid:

 WHERE VARCHAR(MY_SHORT_CLOB) > VARCHAR(SUBSTR(MY_LONG_VAR,1,300))

Examples:

Assignments and comparisons

Chapter 2. Language elements 101

For these examples, ’A’, ’Á’, ’a’, and ’á’, have the code point values X’41’, X’C1’,

X’61’, and X’E1’ respectively.

Consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have weights

136, 139, 135, and 138. Then the characters sort in the order of their weights as

follows:

’a’ < ’A’ < ’á’ < ’Á’

Now consider four DBCS characters D1, D2, D3, and D4 with code points 0xC141,

0xC161, 0xE141, and 0xE161, respectively. If these DBCS characters are in CHAR

columns, they sort as a sequence of bytes according to the collation weights of

those bytes. First bytes have weights of 138 and 139, therefore D3 and D4 come

before D2 and D1; second bytes have weights of 135 and 136. Hence, the order is

as follows:

D4 < D3 < D2 < D1

However, if the values being compared have the FOR BIT DATA attribute, or if

these DBCS characters were stored in a GRAPHIC column, the collation weights

are ignored, and characters are compared according to their code points as follows:

 ’A’ < ’a’ < ’Á’ < ’á’

The DBCS characters sort as sequence of bytes, in the order of code points as

follows:

D1 < D2 < D3 < D4

Now consider a collating sequence where the characters ’A’, ’Á’, ’a’, ’á’ have

(non-unique) weights 74, 75, 74, and 75. Considering collation weights alone (first

pass), ’a’ is equal to ’A’, and ’á’ is equal to ’Á’. The code points of the characters

are used to break the tie (second pass) as follows:

’A’ < ’a’ < ’Á’ < ’á’

DBCS characters in CHAR columns sort a sequence of bytes, according to their

weights (first pass) and then according to their code points to break the tie (second

pass). First bytes have equal weights, so the code points (0xC1 and 0xE1) break the

tie. Therefore, characters D1 and D2 sort before characters D3 and D4. Then the

second bytes are compared in similar way, and the final result is as follows:

D1 < D2 < D3 < D4

Once again, if the data in CHAR columns have the FOR BIT DATA attribute, or if

the DBCS characters are stored in a GRAPHIC column, the collation weights are

ignored, and characters are compared according to their code points:

D1 < D2 < D3 < D4

For this particular example, the result happens to be the same as when collation

weights were used, but obviously this is not always the case.

Conversion rules for comparison

When two strings are compared, one of the strings is first converted, if necessary,

to the encoding scheme and code page of the other string.

Ordering of results

Results that require sorting are ordered based on the string comparison rules

discussed in “String comparisons” on page 101. The comparison is performed at

Assignments and comparisons

102 SQL Reference, Volume 1

the database server. On returning results to the client application, code page

conversion may be performed. This subsequent code page conversion does not

affect the order of the server-determined result set.

MBCS considerations for string comparisons

Mixed SBCS/MBCS character strings are compared according to the collating

sequence specified when the database was created. For databases created with

default (SYSTEM) collation sequence, all single-byte ASCII characters are sorted in

correct order, but double-byte characters are not necessarily in code point

sequence. For databases created with IDENTITY sequence, all double-byte

characters are correctly sorted in their code point order, but single-byte ASCII

characters are sorted in their code point order as well. For databases created with

COMPATIBILITY sequence, a compromise order is used that sorts properly for

most double-byte characters, and is almost correct for ASCII. This was the default

collation table in DB2 Version 2.

Mixed character strings are compared byte-by-byte. This may result in unusual

results for multi-byte characters that occur in mixed strings, because each byte is

considered independently.

Example:

For this example, ’A’, ’B’, ’a’, and ’b’ double-byte characters have the code point

values X’8260’, X’8261’, X’8281’, and X’8282’, respectively.

Consider a collating sequence where the code points X’8260’, X’8261’, X’8281’, and

X’8282’ have weights 96, 65, 193, and 194. Then:

 ’B’ < ’A’ < ’a’ < ’b’

and

 ’AB’ < ’AA’ < ’Aa’ < ’Ab’ < ’aB’ < ’aA’ < ’aa’ < ’ab’

Graphic string comparisons are processed in a manner analogous to that for

character strings.

Graphic string comparisons are valid between all graphic string data types except

DBCLOB.

For graphic strings, the collating sequence of the database is not used. Instead,

graphic strings are always compared based on the numeric (binary) values of their

corresponding bytes.

Using the previous example, if the literals were graphic strings, then:

 ’A’ < ’B’ < ’a’ < ’b’

and

 ’AA’ < ’AB’ < ’Aa’ < ’Ab’ < ’aA’ < ’aB’ < ’aa’ < ’ab’

When comparing graphic strings of unequal lengths, the comparison is made using

a logical copy of the shorter string which is padded on the right with double-byte

blank characters sufficient to extend its length to that of the longer string.

Assignments and comparisons

Chapter 2. Language elements 103

Two graphic values are equal if they are both empty or if all corresponding

graphics are equal. If either operand is null, the result is unknown. If two values

are not equal, their relation is determined by a simple binary string comparison.

As indicated in this section, comparing strings on a byte by byte basis can produce

unusual results; that is, a result that differs from what would be expected in a

character by character comparison. The examples shown here assume the same

MBCS code page, however, the situation can be further complicated when using

different multi-byte code pages with the same national language. For example,

consider the case of comparing a string from a Japanese DBCS code page and a

Japanese EUC code page.

Datetime comparisons

A DATE, TIME, or TIMESTAMP value may be compared either with another value

of the same data type or with a string representation of that data type. All

comparisons are chronological, which means the farther a point in time is from

January 1, 0001, the greater the value of that point in time.

Comparisons involving TIME values and string representations of time values

always include seconds. If the string representation omits seconds, zero seconds is

implied.

Comparisons involving TIMESTAMP values are chronological without regard to

representations that might be considered equivalent.

Example:

 TIMESTAMP(’1990-02-23-00.00.00’) > ’1990-02-22-24.00.00’

User-defined type comparisons

Values with a user-defined distinct type can only be compared with values of

exactly the same user-defined distinct type. The user-defined distinct type must

have been defined using the WITH COMPARISONS clause.

Example:

Given the following YOUTH distinct type and CAMP_DB2_ROSTER table:

 CREATE TYPE YOUTH AS INTEGER WITH COMPARISONS

 CREATE TABLE CAMP_DB2_ROSTER

 (NAME VARCHAR(20),

 ATTENDEE_NUMBER INTEGER NOT NULL,

 AGE YOUTH,

 HIGH_SCHOOL_LEVEL YOUTH)

The following comparison is valid:

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > HIGH_SCHOOL_LEVEL

The following comparison is not valid:

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > ATTENDEE_NUMBER

However, AGE can be compared to ATTENDEE_NUMBER by using a function or

CAST specification to cast between the distinct type and the source type. The

following comparisons are all valid:

Assignments and comparisons

104 SQL Reference, Volume 1

SELECT * FROM CAMP_DB2_ROSTER

 WHERE INTEGER(AGE) > ATTENDEE_NUMBER

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE CAST(AGE AS INTEGER) > ATTENDEE_NUMBER

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > YOUTH(ATTENDEE_NUMBER)

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > CAST(ATTENDEE_NUMBER AS YOUTH)

Values with a user-defined structured type cannot be compared with any other

value (the NULL predicate and the TYPE predicate can be used).

Reference type comparisons

Reference type values can be compared only if their target types have a common

supertype. The appropriate comparison function will only be found if the schema

name of the common supertype is included in the SQL path. The comparison is

performed using the representation type of the reference types. The scope of the

reference is not considered in the comparison.

XML comparisons in a non-Unicode database

When performed in a non-Unicode database, comparisons between XML data and

character or graphic string values require a code page conversion of one of the two

sets of data being compared. Character or graphic values used in an SQL or

XQuery statement, either as a query predicate or as a host variable with a

character or graphic string data type, are converted to the database code page prior

to comparison. If any characters included in this data have code points that are not

part of the database code page, substitution characters are added in their place,

potentially causing unexpected results for the query.

For example, a client with a UTF-8 code page is used to connect to a database

server created with the Greek encoding ISO8859-7. The expression ΣGΣM

is sent as

the predicate of an XQuery statement, where ΣG

represents the Greek sigma

character in Unicode (U+03A3) and ΣM

represents the mathematical symbol sigma

in Unicode (U+2211). This expression is first converted to the database code page,

so that both ″Σ″ characters are converted to the equivalent code point for sigma in

the Greek database code page, 0xD3. We may denote this code point as ΣA. The

newly converted expression ΣAΣA

is then converted again to UTF-8 for comparison

with the target XML data. Since the distinction between these two code points was

lost as a result of the code page conversion required to pass the predicate

expression into the database, the two initially distinct values ΣG

and ΣM

are passed

to the XML parser as the expression ΣGΣG. This expression then fails to match when

compared to the value ΣGΣM

in an XML document.

One way to avoid the unexpected query results that may be caused by code page

conversion issues is to ensure that all characters used in a query expression have

matching code points in the database code page. Characters that do not have

matching code points can be included through the use of a Unicode character

entity reference. A character entity reference will always bypass code page

conversion. For example, using the character entity reference ࢣ in place of

the ΣM

character ensures that the correct Unicode code point is used for the

comparison, regardless of the database code page.

Assignments and comparisons

Chapter 2. Language elements 105

Rules for result data types

The data types of a result are determined by rules which are applied to the

operands in an operation. This section explains those rules.

These rules apply to:

v Corresponding columns in fullselects of set operations (UNION, INTERSECT

and EXCEPT)

v Result expressions of a CASE expression and the DECODE scalar function

v Arguments of the scalar function COALESCE (also NVL and VALUE)

v Arguments of the scalar functions GREATEST, LEAST, MAX, and MIN

v Expression values of the in list of an IN predicate

v Corresponding expressions of a multiple row VALUES clause.

These rules are applied subject to other restrictions on LOB strings for the various

operations.

The rules involving various data types follow. In some cases, a table is used to

show the possible result data types. The LONG VARCHAR and LONG

VARGRAPHIC data types continue to be supported but are deprecated and not

recommended.

These tables identify the data type of the result, including the applicable length or

precision and scale. The result type is determined by considering the operands. If

there is more than one pair of operands, start by considering the first pair. This

gives a result type which is considered with the next operand to determine the

next result type, and so on. The last intermediate result type and the last operand

determine the result type for the operation. Processing of operations is done from

left to right so that the intermediate result types are important when operations are

repeated. For example, consider a situation involving:

 CHAR(2) UNION CHAR(4) UNION VARCHAR(3)

The first pair results in a type of CHAR(4). The result values always have 4 bytes.

The final result type is VARCHAR(4). Values in the result from the first UNION

operation will always have a length of 4.

Character strings

A character string value is compatible with another character string value.

Character strings include data types CHAR, VARCHAR, and CLOB.

 If one operand is... And the other operand

is...

The data type of the result is...

CHAR(x) CHAR(y) CHAR(z) where z = max(x,y)

CHAR(x) VARCHAR(y) VARCHAR(z) where z = max(x,y)

VARCHAR(x) CHAR(y) or

VARCHAR(y)

VARCHAR(z) where z = max(x,y)

CLOB(x) CHAR(y), VARCHAR(y),

or CLOB(y)

CLOB(z) where z = max(x,y)

The code page of the result character string will be derived based on the rules for

string conversions.

Rules for result data types

106 SQL Reference, Volume 1

Graphic strings

A graphic string value is compatible with another graphic string value. Graphic

strings include data types GRAPHIC, VARGRAPHIC, and DBCLOB.

 If one operand is... And the other operand

is...

The data type of the result is...

GRAPHIC(x) GRAPHIC(y) GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) GRAPHIC(y) OR

VARGRAPHIC(y)

VARGRAPHIC(z) where z = max(x,y)

DBCLOB(x) GRAPHIC(y),

VARGRAPHIC(y), or

DBCLOB(y)

DBCLOB(z) where z = max (x,y)

The code page of the result graphic string will be derived based on the rules for

string conversions.

Character and graphic strings in a Unicode database

In a Unicode database, a character string value is compatible with a graphic string

value.

 If one operand is... And the other operand

is...

The data type of the result is...

GRAPHIC(x) CHAR(y) or

GRAPHIC(y)

GRAPHIC(z) where z = max(x,y)

VARGRAPHIC(x) CHAR(y) or

VARCHAR(y)

VARGRAPHIC(z) where z = max(x,y)

VARCHAR(x) GRAPHIC(y) or

VARGRAPHIC

VARGRAPHIC(z) where z = max(x,y)

DBCLOB(x) CHAR(y) or

VARCHAR(y) or

CLOB(y)

DBCLOB(z) where z = max(x,y)

CLOB(x) GRAPHIC(y) or

VARGRAPHIC(y)

DBCLOB(z) where z = max(x,y)

Binary large object (BLOB)

A binary string (BLOB) value is compatible only with another binary string (BLOB)

value. The BLOB scalar function can be used to cast from other types if they

should be treated as BLOB types. The length of the result BLOB is the largest

length of all the data types.

Numeric

Numeric types are compatible with other numeric types, character-string data

types, and in a Unicode database, graphic-string data types. Numeric types include

SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE, and DECFLOAT.

 If one operand is... And the other operand

is...

The data type of the result is...

SMALLINT SMALLINT SMALLINT

Rules for result data types

Chapter 2. Language elements 107

If one operand is... And the other operand

is...

The data type of the result is...

INTEGER SMALLINT INTEGER

INTEGER INTEGER INTEGER

BIGINT SMALLINT BIGINT

BIGINT INTEGER BIGINT

BIGINT BIGINT BIGINT

DECIMAL(w,x) SMALLINT

 DECIMAL(p,x) where

p = x+max(w-x,5)1

DECIMAL(w,x) INTEGER

 DECIMAL(p,x) where

p = x+max(w-x,11)1

DECIMAL(w,x) BIGINT

 DECIMAL(p,x) where

p = x+max(w-x,19)1

DECIMAL(w,x) DECIMAL(y,z)

 DECIMAL(p,s) where

p = max(x,z)+max(w-x,y-z)1s

 = max(x,z)

REAL REAL REAL

REAL SMALLINT, INTEGER,

BIGINT, or DECIMAL

DOUBLE

DOUBLE SMALLINT, INTEGER,

BIGINT, DECIMAL,

REAL, or DOUBLE

DOUBLE

DECFLOAT(n) SMALLINT, INTEGER,

DECIMAL (<=16,s),

REAL, or DOUBLE

DECFLOAT(n)

DECFLOAT(n) BIGINT DECFLOAT(34)

DECFLOAT(n) DECIMAL (>16,s) DECFLOAT(34)

DECFLOAT(n) DECFLOAT(m) DECFLOAT(MAX(n,m))

1 Precision cannot exceed 31.

DATE

A date value is compatible with another date value, or any CHAR or VARCHAR

expression that contains a valid string representation of a date. The data type of

the result is DATE.

TIME

A time value is compatible with another time value, or any CHAR or VARCHAR

expression that contains a valid string representation of a time. The data type of

the result is TIME.

TIMESTAMP

A timestamp value is compatible with another timestamp value, or any CHAR or

VARCHAR expression that contains a valid string representation of a timestamp.

Rules for result data types

108 SQL Reference, Volume 1

The data type of the result is TIMESTAMP.

XML

An XML value is compatible with another XML value. The data type of the result

is XML.

Distinct types

A user-defined distinct type value is compatible only with another value of the

same user-defined distinct type. The data type of the result is the user-defined

distinct type.

Reference types

A reference type value is compatible with another value of the same reference type

provided that their target types have a common supertype. The data type of the

result is a reference type having the common supertype as the target type. If all

operands have the identical scope table, the result has that scope table. Otherwise

the result is unscoped.

Structured types

A structured type value is compatible with another value of the same structured

type provided that they have a common supertype. The static data type of the

resulting structured type column is the structured type that is the least common

supertype of either column.

For example, consider the following structured type hierarchy,

 A

 / \

 B C

 / \

 D E

 / \

F G

Structured types of the static type E and F are compatible with the resulting static

type of B, which is the least common super type of E and F.

Nullable attribute of result

With the exception of INTERSECT and EXCEPT, the result allows nulls unless both

operands do not allow nulls.

v For INTERSECT, if either operand does not allow nulls the result does not allow

nulls (the intersection would never be null).

v For EXCEPT, if the first operand does not allow nulls the result does not allow

nulls (the result can only be values from the first operand).

Rules for string conversions

The code page used to perform an operation is determined by rules which are

applied to the operands in that operation. This section explains those rules.

These rules apply to:

Rules for result data types

Chapter 2. Language elements 109

v Corresponding string columns in fullselects with set operations (UNION,

INTERSECT and EXCEPT)

v Operands of concatenation

v Operands of predicates (with the exception of LIKE)

v Result expressions of a CASE expression and the DECODE scalar function

v Arguments of the scalar function COALESCE (also NVL and VALUE)

v Arguments of the scalar functions GREATEST, LEAST, MAX, and MIN

v The source-string and insert-string arguments of the scalar function OVERLAY

(and INSERT)

v Expression values of the in list of an IN predicate

v Corresponding expressions of a multiple row VALUES clause.

In each case, the code page of the result is determined at bind time, and the

execution of the operation may involve conversion of strings to the code page

identified by that code page. A character that has no valid conversion is mapped to

the substitution character for the character set and SQLWARN10 is set to ’W’ in the

SQLCA.

The code page of the result is determined by the code pages of the operands. The

code pages of the first two operands determine an intermediate result code page,

this code page and the code page of the next operand determine a new

intermediate result code page (if applicable), and so on. The last intermediate

result code page and the code page of the last operand determine the code page of

the result string or column. For each pair of code pages, the result is determined

by the sequential application of the following rules:

v If the code pages are equal, the result is that code page.

v If either code page is BIT DATA (code page 0), the result code page is BIT

DATA.

v In a Unicode database, if one code page denotes data in an encoding scheme

that is different from the other code page, the result is UCS-2 over UTF-8 (that

is, the graphic data type over the character data type). (In a non-Unicode

database, conversion between different encoding schemes is not supported.)

v For operands that are host variables (whose code page is not BIT DATA), the

result code page is the database code page. Input data from such host variables

is converted from the application code page to the database code page before

being used.

Conversions to the code page of the result are performed, if necessary, for:

v An operand of the concatenation operator

v The selected argument of the COALESCE (also NVL and VALUE) scalar function

v The selected argument of the scalar functions GREATEST, LEAST, MAX, and

MIN

v The source-string and insert-string arguments of the scalar function OVERLAY

(and INSERT)

v The selected result expression of the CASE expression and the DECODE scalar

function

v The expressions of the in list of the IN predicate

v The corresponding expressions of a multiple row VALUES clause

v The corresponding columns involved in set operations.

Character conversion is necessary if all of the following are true:

Rules for string conversions

110 SQL Reference, Volume 1

v The code pages are different

v Neither string is BIT DATA

v The string is neither null nor empty

Examples

Example 1: Given the following in a database created with code page 850:

 Expression Type Code Page

COL_1 column 850

HV_2 host variable 437

When evaluating the predicate:

 COL_1 CONCAT :HV_2

the result code page of the two operands is 850, because the host variable data will

be converted to the database code page before being used.

Example 2: Using information from the previous example when evaluating the

predicate:

 COALESCE(COL_1, :HV_2:NULLIND,)

the result code page is 850; therefore, the result code page for the COALESCE

scalar function will be code page 850.

String comparisons in a Unicode database

Pattern matching is one area where the behavior of existing MBCS databases is

slightly different from the behavior of a Unicode database.

For MBCS databases in DB2 Database for Linux, UNIX, and Windows, the current

behavior is as follows: If the match-expression contains MBCS data, the pattern can

include both SBCS and non-SBCS characters. The special characters in the pattern

are interpreted as follows:

v An SBCS halfwidth underscore refers to one SBCS character.

v A non-SBCS fullwidth underscore refers to one non-SBCS character.

v A percent (either SBCS halfwidth or non-SBCS fullwidth) refers to zero or more

SBCS or non-SBCS characters.

In a Unicode database, there is really no distinction between ″single-byte″ and

″non-single-byte″ characters. Although the UTF-8 format is a ″mixed-byte″

encoding of Unicode characters, there is no real distinction between SBCS and

non-SBCS characters in UTF-8. Every character is a Unicode character, regardless of

the number of bytes in UTF-8 format. In a Unicode graphic column, every

non-supplementary character, including the halfwidth underscore (U+005F) and

halfwidth percent (U+0025), is two bytes in width. For Unicode databases, the

special characters in the pattern are interpreted as follows:

v For character strings, a halfwidth underscore (X’5F’) or a fullwidth underscore

(X’EFBCBF’) refers to one Unicode character. A halfwidth percent (X’25’) or a

fullwidth percent (X’EFBC85’) refers to zero or more Unicode characters.

v For graphic strings, a halfwidth underscore (U+005F) or a fullwidth underscore

(U+FF3F) refers to one Unicode character. A halfwidth percent (U+0025) or a

fullwidth percent (U+FF05) refers to zero or more Unicode characters.

Rules for string conversions

Chapter 2. Language elements 111

Note: You need two underscores to match a Unicode supplementary graphic

character because such a character is represented by two UCS-2 characters in a

GRAPHIC column. Only one underscore is needed to match a Unicode

supplementary character in a CHAR column.

For the optional ″escape expression″, which specifies a character to be used to

modify the special meaning of the underscore and percent sign characters, the

expression can be specified by any one of:

v A constant

v A special register

v A host variable

v A scalar function whose operands are any of the above

v An expression concatenating any of the above

with the restrictions that:

v No element in the expression can be of type LONG VARCHAR, CLOB, LONG

VARGRAPHIC, or DBCLOB. In addition, it cannot be a BLOB file reference

variable.

v For CHAR columns, the result of the expression must be one character or a

binary string containing exactly one (1) byte (SQLSTATE 22019). For GRAPHIC

columns, the result of the expression must be one character (SQLSTATE 22019).

Database partition-compatible data types

Database partition compatibility is defined between the base data types of

corresponding columns of distribution keys. Database partition-compatible data

types have the property that two variables, one of each type, with the same value,

are mapped to the same distribution map index by the same database partitioning

function.

Table 13 on page 113 shows the compatibility of data types in database partitions.

Database partition compatibility has the following characteristics:

v Internal formats are used for DATE, TIME, and TIMESTAMP. They are not

compatible with each other, and none are compatible with character or graphic

data types.

v Partition compatibility is not affected by the nullability of a column.

v Partition compatibility is affected by collation. Locale-sensitive UCA-based

collations require an exact match in collation, except that the strength (S)

attribute of the collation is ignored. All other collations are considered equivalent

for the purposes of determining partition compatibility.

v Character columns defined with FOR BIT DATA are only compatible with

character columns without FOR BIT DATA when a collation other than a

locale-sensitive UCA-based collation is used.

v NULL values of compatible data types are treated identically. Different results

might be produced for NULL values of non-compatible data types.

v Base data type of the UDT is used to analyze database partition compatibility.

v Decimals of the same value in the distribution key are treated identically, even if

their scale and precision differ.

v Trailing blanks in character strings (CHAR, VARCHAR, GRAPHIC or

VARGRAPHIC) are ignored by the system-provided hashing function.

String comparisons in a Unicode database

112 SQL Reference, Volume 1

v When a locale-sensitive UCA-based collation is used, CHAR, VARCHAR,

GRAPHIC, and VARGRAPHIC are compatible data types. When other collations

are used, CHAR and VARCHAR are compatible types and GRAPHIC and

VARGRAPHIC are compatible types, but CHAR and VARCHAR are not

compatible types with GRAPHIC and VARGRAPHIC. CHAR or VARCHAR of

different lengths are compatible data types.

v DECFLOAT values that are equal are treated identically even if their precision

differs. DECFLOAT values that are numerically equal are treated identically even

if they have a different number of significant digits.

 Table 13. Database Partition Compatibilities

Operands

Binary

Integer

Decimal

Number

Floating-

point

Decimal

Floating-
point

Character

String

Graphic

String Date Time

Time-

stamp

Distinct

Type

Structured

Type

Binary

Integer

Yes No No No No No No No No

1 No

Decimal

Number

No Yes No No No No No No No

1 No

Floating-
point

No No Yes No No No No No No

1 No

Decimal

Floating-
point

No No No Yes No No No No No

1 No

Character

String4

No No No No Yes2 2, 3 No No No

1 No

Graphic

String4

No No No No 2, 3 Yes2 No No No

1 No

Date No No No No No No Yes No No

1 No

Time No No No No No No No Yes No

1 No

Timestamp No No No No No No No No Yes

1 No

Distinct

Type

1 1 1 1 1 1 1 1 1 1 No

Structured

Type4

No No No No No No No No No No No

Note:

1 A user-defined distinct type (UDT) value is database partition compatible with the source type of the UDT or any other

UDT with a database partition compatible source type.

2 Character and graphic string types are compatible when they have compatible collations.

3 Character and graphic string types are compatible when a locale-sensitive UCA-based collation is in effect. Otherwise,

they are not compatible types.

4 User-defined structured types and data types LONG VARCHAR, LONG VARGRAPHIC, CLOB, DBCLOB, and BLOB are

not applicable for database partition compatibility, because they are not supported in distribution keys.

Constants

A constant (sometimes called a literal) specifies a value. Constants are classified as

string constants or numeric constants. Numeric constants are further classified as

integer, floating-point, or decimal.

All constants have the NOT NULL attribute.

A negative zero value in a numeric constant (-0) is the same value as a zero

without the sign (0).

Database partition-compatible data types

Chapter 2. Language elements 113

User-defined types have strong typing. This means that a user-defined type is only

compatible with its own type. A constant, however, has a built-in type. Therefore,

an operation involving a user-defined type and a constant is only possible if the

user-defined type has been cast to the constant’s built-in type, or if the constant

has been cast to the user-defined type. For example, using the table and distinct

type in “User-defined type comparisons” on page 104, the following comparisons

with the constant 14 are valid:

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > CAST(14 AS YOUTH)

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE CAST(AGE AS INTEGER) > 14

The following comparison is not valid:

 SELECT * FROM CAMP_DB2_ROSTER

 WHERE AGE > 14

Integer constants

An integer constant specifies an integer as a signed or unsigned number with a

maximum of 19 digits that does not include a decimal point. The data type of an

integer constant is large integer if its value is within the range of a large integer.

The data type of an integer constant is big integer if its value is outside the range

of large integer but within the range of a big integer. A constant that is defined

outside the range of big integer values is considered a decimal constant.

Note that the smallest literal representation of a large integer constant is

-2 147 483 647, and not -2 147 483 648, which is the limit for integer values.

Similarly, the smallest literal representation of a big integer constant is

-9 223 372 036 854 775 807, and not -9 223 372 036 854 775 808, which is the

limit for big integer values.

Examples:

 64 -15 +100 32767 720176 12345678901

In syntax diagrams, the term ’integer’ is used for a large integer constant that must

not include a sign.

Floating-point constants

A floating-point constant specifies a floating-point number as two numbers separated

by an E. The first number may include a sign and a decimal point; the second

number may include a sign but not a decimal point. The data type of a

floating-point constant is double-precision. The value of the constant is the product

of the first number and the power of 10 specified by the second number; it must

be within the range of floating-point numbers. The number of bytes in the constant

must not exceed 30.

Examples:

 15E1 2.E5 2.2E-1 +5.E+2

Decimal constants

A decimal constant is a signed or unsigned number that consists of no more than 31

digits and either includes a decimal point or is not within the range of binary

integers. It must be within the range of decimal numbers. The precision is the total

Constants

114 SQL Reference, Volume 1

number of digits (including leading and trailing zeros); the scale is the number of

digits to the right of the decimal point (including trailing zeros).

Examples:

 25.5 1000. -15. +37589.3333333333

Decimal floating-point constants

There are no decimal floating-point constants except for the decimal floating-point

special values, which are interpreted as DECFLOAT(34).

These special values are: INFINITY, NAN, and SNAN. INFINITY represents

infinity, a number whose magnitude is infinitely large. INFINITY can be preceded

by an optional sign. INF can be specified in place of INFINITY. NAN represents

Not a Number (NaN) and is sometimes called quiet NaN. It is a value that

represents undefined results which does not cause a warning or exception. SNAN

represents signaling NaN (sNaN). It is a value that represents undefined results

which will cause a warning or exception if used in any operation that is defined in

any numerical operation. Both NAN and SNAN can be preceded by an optional

sign, but the sign is not significant. SNAN can be used in non-numerical

operations without causing a warning or exception, for example in the VALUES

list of an INSERT or as a constant compared in a predicate.

SNAN -INFINITY

All non-special values are interpreted as integer, floating-point or decimal

constants, in accordance with the rules specified above. To obtain a numeric

decimal floating-point value, use the DECFLOAT cast function with a character

string constant. It is not recommended to use floating-point constants as arguments

to the DECFLOAT function, because floating-point is not exact and the resulting

decimal floating-point value might be different than the decimal digit characters

that make up the argument. Instead, use character constants as arguments to the

DECFLOAT function.

For example, DECFLOAT(’6.0221415E23’, 34) returns the decimal floating-point

value 6.0221415E+23, but DECFLOAT(6.0221415E23, 34) returns the decimal

floating-point value 6.0221415000000003E+23.

Character string constants

A character string constant specifies a varying-length character string. There are

three forms of a character string constant:

v A sequence of characters that starts and ends with a string delimiter, which is an

apostrophe (’). The number of bytes between the string delimiters cannot be

greater than 32 672. Two consecutive string delimiters are used to represent one

string delimiter within the character string. Two consecutive string delimiters

that are not contained within a string represent the empty string.

v X followed by a sequence of characters that starts and ends with a string

delimiter. This form of a character string constant is also called a hexadecimal

constant. The characters between the string delimiters must be an even number

of hexadecimal digits. Blanks between the string delimiters are ignored. The

number of hexadecimal digits must not exceed 32 672. A hexadecimal digit is a

digit or any of the letters A through F (uppercase or lowercase). Under the

conventions of hexadecimal notation, each pair of hexadecimal digits represents

a character. This form of a character string constant allows you to specify

characters that do not have a keyboard representation.

Constants

Chapter 2. Language elements 115

v U& followed by a sequence of characters that starts and ends with a string

delimiter and that is optionally followed by the UESCAPE clause. This form of a

character string constant is also called a Unicode string constant. The number of

bytes between the string delimiters cannot be greater than 32 672. The Unicode

string constant is converted from UTF-8 to the section code page during

statement compilation. Two consecutive string delimiters are used to represent

one string delimiter within the character string. Two consecutive Unicode escape

characters are used to represent one Unicode escape character within the

character string, but these characters count as one character when calculating the

lengths of character constants. Two consecutive string delimiters that are not

contained within a string represent the empty string. Because a character in

UTF-8 can range from 1 to 4 bytes, a Unicode string constant of the maximum

length might actually represent fewer than 32 672 characters.

A character can be expressed by either its typographical character (glyph) or its

Unicode code point. The code point of a Unicode character ranges from

X’000000’ to X’10FFFF’. To express a Unicode character through its code point,

use the Unicode escape character followed by 4 hexadecimal digits, or the

Unicode escape character followed by a plus sign (+) and 6 hexadecimal digits.

The default Unicode escape character is the reverse solidus (\), but a different

character can be specified with the UESCAPE clause. The UESCAPE clause is

specified as the UESCAPE keyword followed by a single character between

string delimiters. The Unicode escape character cannot be a plus sign (+), a

double quotation mark (“), a single quotation mark (’), a blank, or any of the

characters 0 through 9 or A through F, in either uppercase or lowercase

(SQLSTATE 42604). An example of the two ways in which the Latin capital letter

A can be specified as a Unicode code point is \0041 and \+000041.

The constant value is always converted to the database code page when it is

bound to the database. It is considered to be in the database code page. Therefore,

if used in an expression that combines a constant with a FOR BIT DATA column,

and whose result is FOR BIT DATA, the constant value will not be converted from

its database code page representation when used.

Examples:

’12/14/1985’ ’32’ ’DON’’T CHANGE’ ’’

X’FFFF’ X’46 72 61 6E 6B’

U&’\0141ód\017A is a city in Poland’ U&’c:\\temp’ U&’@+01D11E’ UESCAPE ’@’

The rightmost string on the second line in the example represents the VARCHAR

pattern of the ASCII string ’Frank’. The last line corresponds to: ’	ód	 is a city in

Poland’, ’c:\temp’, and a single character representing the musical symbol G clef.

Graphic string constants

A graphic string constant specifies a varying-length graphic string consisting of a

sequence of double-byte characters that starts and ends with a single-byte

apostrophe (’), and that is preceded by a single-byte G or N. The characters

between the apostrophes must represent an even number of bytes, and the length

of the graphic string must not exceed 16 336 bytes.

Examples:

 G’double-byte character string’

 N’double-byte character string’

The apostrophe must not appear as part of an MBCS character to be considered a

delimiter.

Constants

116 SQL Reference, Volume 1

In a Unicode database, a hexadecimal graphic string constant that specifies a

varying-length graphic string is also supported. The format of a hexadecimal

graphic string constant is: GX followed by a sequence of characters that starts and

ends with an apostrophe. The characters between the apostrophes must be an even

multiple of four hexadecimal digits. The number of hexadecimal digits must not

exceed 16 336; otherwise, an error is returned (SQLSTATE -54002). If a hexadecimal

graphic string constant is improperly formed, an error is returned (SQLSTATE

42606). Each group of four digits represents a single graphic character. In a

Unicode database, this would be a single UCS-2 graphic character.

Examples:

 GX’FFFF’

represents the bit pattern ’1111111111111111’ in a Unicode database.

 GX’005200690063006B’

represents the VARGRAPHIC pattern of the ASCII string ’Rick’ in a Unicode

database.

UCS-2 graphic string constants

In a Unicode database, a hexadecimal UCS-2 graphic string that specifies a

varying-length UCS-2 graphic string constant is supported. The format of a

hexadecimal UCS-2 graphic string constant is: UX followed by a sequence of

characters that starts and ends with an apostrophe. The characters between the

apostrophes must be an even multiple of four hexadecimal digits. The number of

hexadecimal digits must not exceed 16 336; otherwise, an error is returned

(SQLSTATE -54002). If a hexadecimal UCS-2 graphic string constant is improperly

formed, an error is returned (SQLSTATE 42606). Each group of four digits

represents a single UCS-2 graphic character.

Example:

 UX’0042006F006200620079’

represents the VARGRAPHIC pattern of the ASCII string ’Bobby’.

Special registers

A special register is a storage area that is defined for an application process by the

database manager. It is used to store information that can be referenced in SQL

statements. A reference to a special register is a reference to a value provided by

the current server. If the value is a string, its CCSID is a default CCSID of the

current server. The special registers can be referenced as follows:

Constants

Chapter 2. Language elements 117

�� CURRENT CLIENT_ACCTNG

CLIENT ACCTNG

CURRENT CLIENT_APPLNAME

CLIENT APPLNAME

CURRENT CLIENT_USERID

CLIENT USERID

CURRENT CLIENT_WRKSTNNAME

CLIENT WRKSTNNAME

CURRENT DATE

(1)

CURRENT_DATE

CURRENT DBPARTITIONNUM

CURRENT DECFLOAT ROUNDING MODE

CURRENT DEFAULT TRANSFORM GROUP

CURRENT DEGREE

CURRENT EXPLAIN MODE

CURRENT EXPLAIN SNAPSHOT

CURRENT FEDERATED ASYNCHRONY

CURRENT IMPLICIT XMLPARSE OPTION

CURRENT ISOLATION

CURRENT LOCK TIMEOUT

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

CURRENT MDC ROLLOUT MODE

CURRENT OPTIMIZATION PROFILE

CURRENT PACKAGE PATH

CURRENT PATH

(1)

CURRENT_PATH

CURRENT QUERY OPTIMIZATION

CURRENT REFRESH AGE

CURRENT SCHEMA

(1)

CURRENT_SCHEMA

CURRENT SERVER

(1)

CURRENT_SERVER

CURRENT TIME

(1)

CURRENT_TIME

CURRENT TIMESTAMP

(1)

CURRENT_TIMESTAMP

CURRENT TIMEZONE

(1)

CURRENT_TIMEZONE

CURRENT USER

(1)

CURRENT_USER

SESSION_USER

USER

SYSTEM_USER

 ��

Notes:

1 The SQL2003 Core standard uses the form with the underscore.

Some special registers can be updated using the SET statement. The following table

shows which of the special registers can be updated.

Special registers

118 SQL Reference, Volume 1

Table 14. Special Registers

Special Register Updatable

CURRENT CLIENT_ACCTNG No

CURRENT CLIENT_APPLNAME No

CURRENT CLIENT_USERID No

CURRENT CLIENT_WRKSTNNAME No

CURRENT DATE No

CURRENT DBPARTITIONNUM No

CURRENT DECFLOAT ROUNDING MODE No

CURRENT DEFAULT TRANSFORM GROUP Yes

CURRENT DEGREE Yes

CURRENT EXPLAIN MODE Yes

CURRENT EXPLAIN SNAPSHOT Yes

CURRENT FEDERATED ASYNCHRONY Yes

CURRENT IMPLICIT XMLPARSE OPTION Yes

CURRENT ISOLATION Yes

CURRENT LOCK TIMEOUT Yes

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION Yes

CURRENT MDC ROLLOUT MODE Yes

CURRENT OPTIMIZATION PROFILE Yes

CURRENT PACKAGE PATH Yes

CURRENT PATH Yes

CURRENT QUERY OPTIMIZATION Yes

CURRENT REFRESH AGE Yes

CURRENT SCHEMA Yes

CURRENT SERVER No

CURRENT TIME No

CURRENT TIMESTAMP No

CURRENT TIMEZONE No

CURRENT USER No

SESSION_USER Yes

SYSTEM_USER No

USER Yes

When a special register is referenced in a routine, the value of the special register

in the routine depends on whether the special register is updatable or not. For

non-updatable special registers, the value is set to the default value for the special

register. For updatable special registers, the initial value is inherited from the

invoker of the routine and can be changed with a subsequent SET statement inside

the routine.

Special registers

Chapter 2. Language elements 119

CURRENT CLIENT_ACCTNG

The CURRENT CLIENT_ACCTNG (or CLIENT ACCTNG) special register contains

the value of the accounting string from the client information specified for this

connection. The data type of the register is VARCHAR(255). The default value of

this register is an empty string.

The value of the accounting string can be changed by using the Set Client

Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code page,

and the special register value is stored in the database code page. Depending on

the data values used when setting the client information, truncation of the data

value stored in the special register may occur during code page conversion.

Example: Get the current value of the accounting string for this connection.

 VALUES (CURRENT CLIENT_ACCTNG)

 INTO :ACCT_STRING

CURRENT CLIENT_APPLNAME

The CURRENT CLIENT_APPLNAME (or CLIENT APPLNAME) special register

contains the value of the application name from the client information specified for

this connection. The data type of the register is VARCHAR(255). The default value

of this register is an empty string.

The value of the application name can be changed by using the Set Client

Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code page,

and the special register value is stored in the database code page. Depending on

the data values used when setting the client information, truncation of the data

value stored in the special register may occur during code page conversion.

Example: Select which departments are allowed to use the application being used in

this connection.

 SELECT DEPT

 FROM DEPT_APPL_MAP

 WHERE APPL_NAME = CURRENT CLIENT_APPLNAME

CURRENT CLIENT_USERID

The CURRENT CLIENT_USERID (or CLIENT USERID) special register contains

the value of the client user ID from the client information specified for this

connection. The data type of the register is VARCHAR(255). The default value of

this register is an empty string.

The value of the client user ID can be changed by using the Set Client Information

(sqleseti) API.

Note that the value provided via the sqleseti API is in the application code page,

and the special register value is stored in the database code page. Depending on

the data values used when setting the client information, truncation of the data

value stored in the special register may occur during code page conversion.

CURRENT CLIENT_ACCTNG

120 SQL Reference, Volume 1

Example: Find out in which department the current client user ID works.

 SELECT DEPT

 FROM DEPT_USERID_MAP

 WHERE USER_ID = CURRENT CLIENT_USERID

CURRENT CLIENT_WRKSTNNAME

The CURRENT CLIENT_WRKSTNNAME (or CLIENT WRKSTNNAME) special

register contains the value of the workstation name from the client information

specified for this connection. The data type of the register is VARCHAR(255). The

default value of this register is an empty string.

The value of the workstation name can be changed by using the Set Client

Information (sqleseti) API.

Note that the value provided via the sqleseti API is in the application code page,

and the special register value is stored in the database code page. Depending on

the data values used when setting the client information, truncation of the data

value stored in the special register may occur during code page conversion.

Example: Get the workstation name being used for this connection.

 VALUES (CURRENT CLIENT_WRKSTNNAME)

 INTO :WS_NAME

CURRENT DATE

The CURRENT DATE (or CURRENT_DATE) special register specifies a date that is

based on a reading of the time-of-day clock when the SQL statement is executed at

the application server. If this special register is used more than once within a single

SQL statement, or used with CURRENT TIME or CURRENT TIMESTAMP within a

single statement, all values are based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT DATE is not inherited

from the invoking statement.

In a federated system, CURRENT DATE can be used in a query intended for data

sources. When the query is processed, the date returned will be obtained from the

CURRENT DATE register at the federated server, not from the data sources.

Example: Run the following command from the DB2 CLP to obtain the current date.

 db2 values CURRENT DATE

Example: Using the PROJECT table, set the project end date (PRENDATE) of the

MA2111 project (PROJNO) to the current date.

 UPDATE PROJECT

 SET PRENDATE = CURRENT DATE

 WHERE PROJNO = ’MA2111’

CURRENT DBPARTITIONNUM

The CURRENT DBPARTITIONNUM special register specifies an INTEGER value

that identifies the coordinator node number for the statement. For statements

issued from an application, the coordinator is the database partition to which the

application connects. For statements issued from a routine, the coordinator is the

database partition from which the routine is invoked.

CURRENT CLIENT_USERID

Chapter 2. Language elements 121

When used in an SQL statement inside a routine, CURRENT DBPARTITIONNUM

is never inherited from the invoking statement.

CURRENT DBPARTITIONNUM returns 0 if the database instance is not defined to

support database partitioning. (In other words, if there is no db2nodes.cfg file. For

partitioned databases, the db2nodes.cfg file exists and contains database partition

definitions.)

CURRENT DBPARTITIONNUM can be changed through the CONNECT

statement, but only under certain conditions.

For compatibility with versions earlier than Version 8, the keyword NODE can be

substituted for DBPARTITIONNUM.

Example: Set the host variable APPL_NODE (integer) to the number of the database

partition to which the application is connected.

 VALUES CURRENT DBPARTITIONNUM

 INTO :APPL_NODE

CURRENT DECFLOAT ROUNDING MODE

The CURRENT DECFLOAT ROUNDING MODE special register specifies the

rounding mode that is used for DECFLOAT values.

The data type is VARCHAR(128). The following rounding modes are supported:

v ROUND_CEILING rounds the value towards positive infinity. If all of the

discarded digits are zero or if the sign is negative, the result is unchanged

(except for the removal of the discarded digits). Otherwise, the result coefficient

is incremented by 1.

v ROUND_DOWN rounds the value towards 0 (truncation). The discarded digits

are ignored.

v ROUND_FLOOR rounds the value towards negative infinity. If all of the

discarded digits are zero or if the sign is positive, the result is unchanged

(except for the removal of the discarded digits). Otherwise, the sign is negative

and the result coefficient is incremented by 1.

v ROUND_HALF_EVEN rounds the value to the nearest value. If the values are

equidistant, rounds the value so that the final digit is even. If the discarded

digits represent more than half of the value of a number in the next left position,

the result coefficient is incremented by 1. If they represent less than half, the

result coefficient is not adjusted (that is, the discarded digits are ignored).

Otherwise, the result coefficient is unaltered if its rightmost digit is even, or

incremented by 1 if its rightmost digit is odd (to make an even digit).

v ROUND_HALF_UP rounds the value to the nearest value. If the values are

equidistant, rounds the value up. If the discarded digits represent half or more

than half of the value of a number in the next left position, the result coefficient

is incremented by 1. Otherwise, the discarded digits are ignored.

The value of the DECFLOAT rounding mode on a client can be confirmed to

match that of the server by invoking the SET CURRENT DECFLOAT ROUNDING

MODE statement. However, this statement cannot be used to change the rounding

mode of the server. The initial value of CURRENT DECFLOAT ROUNDING

MODE is determined by the decflt_rounding database configuration parameter

and can only be changed by changing the value of this database configuration

parameter.

CURRENT DBPARTITIONNUM

122 SQL Reference, Volume 1

CURRENT DEFAULT TRANSFORM GROUP

The CURRENT DEFAULT TRANSFORM GROUP special register specifies a

VARCHAR(18) value that identifies the name of the transform group used by

dynamic SQL statements for exchanging user-defined structured type values with

host programs. This special register does not specify the transform groups used in

static SQL statements, or in the exchange of parameters and results with external

functions or methods.

Its value can be set by the SET CURRENT DEFAULT TRANSFORM GROUP

statement. If no value is set, the initial value of the special register is the empty

string (a VARCHAR with a length of zero).

In a dynamic SQL statement (that is, one which interacts with host variables), the

name of the transform group used for exchanging values is the same as the value

of this special register, unless this register contains the empty string. If the register

contains the empty string (no value was set by using the SET CURRENT

DEFAULT TRANSFORM GROUP statement), the DB2_PROGRAM transform

group is used for the transform. If the DB2_PROGRAM transform group is not

defined for the structured type subject, an error is raised at run time (SQLSTATE

42741).

Examples:

Set the default transform group to MYSTRUCT1. The TO SQL and FROM SQL

functions defined in the MYSTRUCT1 transform are used to exchange user-defined

structured type variables with the host program.

 SET CURRENT DEFAULT TRANSFORM GROUP = MYSTRUCT1

Retrieve the name of the default transform group assigned to this special register.

 VALUES (CURRENT DEFAULT TRANSFORM GROUP)

CURRENT DEGREE

The CURRENT DEGREE special register specifies the degree of intra-partition

parallelism for the execution of dynamic SQL statements. (For static SQL, the

DEGREE bind option provides the same control.) The data type of the register is

CHAR(5). Valid values are ANY or the string representation of an integer between

1 and 32 767, inclusive.

If the value of CURRENT DEGREE represented as an integer is 1 when an SQL

statement is dynamically prepared, the execution of that statement will not use

intra-partition parallelism.

If the value of CURRENT DEGREE represented as an integer is greater than 1 and

less than or equal to 32 767 when an SQL statement is dynamically prepared, the

execution of that statement can involve intra-partition parallelism with the

specified degree.

If the value of CURRENT DEGREE is ANY when an SQL statement is dynamically

prepared, the execution of that statement can involve intra-partition parallelism

using a degree determined by the database manager.

The actual runtime degree of parallelism will be the lower of:

CURRENT DEFAULT TRANSFORM GROUP

Chapter 2. Language elements 123

v The value of the maximum query degree (max_querydegree) configuration

parameter

v The application runtime degree

v The SQL statement compilation degree.

If the intra_parallel database manager configuration parameter is set to NO, the

value of the CURRENT DEGREE special register will be ignored for the purpose of

optimization, and the statement will not use intra-partition parallelism.

The value can be changed by invoking the SET CURRENT DEGREE statement.

The initial value of CURRENT DEGREE is determined by the dft_degree database

configuration parameter.

CURRENT EXPLAIN MODE

The CURRENT EXPLAIN MODE special register holds a VARCHAR(254) value

which controls the behavior of the Explain facility with respect to eligible dynamic

SQL statements. This facility generates and inserts Explain information into the

Explain tables. This information does not include the Explain snapshot. Possible

values are YES, EXPLAIN, NO, REOPT, RECOMMEND INDEXES, and EVALUATE

INDEXES. (For static SQL, the EXPLAIN bind option provides the same control. In

the case of the PREP and BIND commands, the EXPLAIN option values are: YES,

NO, and ALL.)

YES Enables the Explain facility and causes Explain information for a dynamic

SQL statement to be captured when the statement is compiled.

EXPLAIN

Enables the facility, but dynamic statements are not executed.

NO Disables the Explain facility.

REOPT

Enables the Explain facility and causes Explain information for a dynamic

(or incremental-bind) SQL statement to be captured only when the

statement is reoptimized using real values for the input variables (host

variables, special registers, global variables, or parameter markers).

RECOMMEND INDEXES

Recommends a set of indexes for each dynamic query. Populates the

ADVISE_INDEX table with the set of indexes.

EVALUATE INDEXES

Explains dynamic queries as though the recommended indexes existed.

The indexes are picked up from the ADVISE_INDEX table.

The initial value is NO. The value can be changed by invoking the SET CURRENT

EXPLAIN MODE statement.

The CURRENT EXPLAIN MODE and CURRENT EXPLAIN SNAPSHOT special

register values interact when the Explain facility is invoked. The CURRENT

EXPLAIN MODE special register also interacts with the EXPLAIN bind option.

RECOMMEND INDEXES and EVALUATE INDEXES can only be set for the

CURRENT EXPLAIN MODE register, and must be set using the SET CURRENT

EXPLAIN MODE statement.

CURRENT DEGREE

124 SQL Reference, Volume 1

Example: Set the host variable EXPL_MODE (VARCHAR(254)) to the value

currently in the CURRENT EXPLAIN MODE special register.

 VALUES CURRENT EXPLAIN MODE

 INTO :EXPL_MODE

CURRENT EXPLAIN SNAPSHOT

The CURRENT EXPLAIN SNAPSHOT special register holds a CHAR(8) value that

controls the behavior of the Explain snapshot facility. This facility generates

compressed information, including access plan information, operator costs, and

bind-time statistics.

Only the following statements consider the value of this register: CALL,

Compound SQL (Dynamic), DELETE, INSERT, MERGE, REFRESH, SELECT,

SELECT INTO, SET INTEGRITY, UPDATE, VALUES, or VALUES INTO. Possible

values are YES, EXPLAIN, NO, and REOPT. (For static SQL, the EXPLSNAP bind

option provides the same control. In the case of the PREP and BIND commands,

the EXPLSNAP option values are: YES, NO, and ALL.)

YES Enables the Explain snapshot facility and takes a snapshot of the internal

representation of a dynamic SQL statement as the statement is compiled.

EXPLAIN

Enables the Explain snapshot facility, but dynamic statements are not

executed.

NO Disables the Explain snapshot facility.

REOPT

Enables the Explain facility and causes Explain information for a dynamic

(or incremental-bind) SQL statement to be captured only when the

statement is reoptimized using real values for the input variables (host

variables, special registers, global variables, or parameter markers).

The initial value is NO. The value can be changed by invoking the SET CURRENT

EXPLAIN SNAPSHOT statement.

The CURRENT EXPLAIN SNAPSHOT and CURRENT EXPLAIN MODE special

register values interact when the Explain facility is invoked. The CURRENT

EXPLAIN SNAPSHOT special register also interacts with the EXPLSNAP bind

option.

Example: Set the host variable EXPL_SNAP (char(8)) to the value currently in the

CURRENT EXPLAIN SNAPSHOT special register.

 VALUES CURRENT EXPLAIN SNAPSHOT

 INTO :EXPL_SNAP

CURRENT FEDERATED ASYNCHRONY

The CURRENT FEDERATED ASYNCHRONY special register specifies the degree

of asynchrony for the execution of dynamic SQL statements. (The

FEDERATED_ASYNCHRONY bind option provides the same control for static

SQL.) The data type of the register is INTEGER. Valid values are ANY

(representing -1) or an integer between 0 and 32 767, inclusive. If, when an SQL

statement is dynamically prepared, the value of CURRENT FEDERATED

ASYNCHRONY is:

v 0, the execution of that statement will not use asynchrony

CURRENT EXPLAIN MODE

Chapter 2. Language elements 125

v Greater than 0 and less than or equal to 32 767, the execution of that statement

can involve asynchrony using the specified degree

v ANY (representing -1), the execution of that statement can involve asynchrony

using a degree that is determined by the database manager

The value of the CURRENT FEDERATED ASYNCHRONY special register can be

changed by invoking the SET CURRENT FEDERATED ASYNCHRONY statement.

The initial value of the CURRENT FEDERATED ASYNCHRONY special register is

determined by the federated_async database manager configuration parameter if

the dynamic statement is issued through the command line processor (CLP). The

initial value is determined by the FEDERATED_ASYNCHRONY bind option if the

dynamic statement is part of an application that is being bound.

Example: Set the host variable FEDASYNC (INTEGER) to the value of the

CURRENT FEDERATED ASYNCHRONY special register.

 VALUES CURRENT FEDERATED ASYNCHRONY INTO :FEDASYNC

CURRENT IMPLICIT XMLPARSE OPTION

The CURRENT IMPLICIT XMLPARSE OPTION special register specifies the

whitespace handling options that are to be used when serialized XML data is

implicitly parsed by the DB2 server, without validation. An implicit non-validating

parse operation occurs when an SQL statement is processing an XML host variable

or an implicitly or explicitly typed XML parameter marker that is not an argument

of the XMLVALIDATE function. The data type of the register is VARCHAR(19).

The value of the CURRENT IMPLICIT XMLPARSE OPTION special register can be

changed by invoking the SET CURRENT IMPLICIT XMLPARSE OPTION

statement. Its initial value is ’STRIP WHITESPACE’.

Examples:

Retrieve the value of the CURRENT IMPLICIT XMLPARSE OPTION special

register into a host variable named CURXMLPARSEOPT:

 EXEC SQL VALUES (CURRENT IMPLICIT XMLPARSE OPTION) INTO :CURXMLPARSEOPT;

Set the CURRENT IMPLICIT XMLPARSE OPTION special register to ’PRESERVE

WHITESPACE’.

 SET CURRENT IMPLICIT XMLPARSE OPTION = ’PRESERVE WHITESPACE’

Whitespace is then preserved when the following SQL statement executes:

 INSERT INTO T1 (XMLCOL1) VALUES (?)

CURRENT ISOLATION

The CURRENT ISOLATION special register holds a CHAR(2) value that identifies

the isolation level (in relation to other concurrent sessions) for any dynamic SQL

statements issued within the current session.

The possible values are:

(blanks)

Not set; use the isolation attribute of the package.

CURRENT FEDERATED ASYNCHRONY

126 SQL Reference, Volume 1

UR Uncommitted Read

CS Cursor Stability

RR Repeatable Read

RS Read Stability

The value of the CURRENT ISOLATION special register can be changed by the

SET CURRENT ISOLATION statement.

Until a SET CURRENT ISOLATION statement is issued within a session, or after

RESET has been specified for SET CURRENT ISOLATION, the CURRENT

ISOLATION special register is set to blanks and is not applied to dynamic SQL

statements; the isolation level used is taken from the isolation attribute of the

package which issued the dynamic SQL statement. Once a SET CURRENT

ISOLATION statement has been issued, the CURRENT ISOLATION special register

provides the isolation level for any subsequent dynamic SQL statement compiled

within the session, regardless of the settings for the package issuing the statement.

This will remain in effect until the session ends or until a SET CURRENT

ISOLATION statement is issued with the RESET option.

Example: Set the host variable ISOLATION_MODE (CHAR(2)) to the value

currently stored in the CURRENT ISOLATION special register.

 VALUES CURRENT ISOLATION

 INTO :ISOLATION_MODE

CURRENT LOCK TIMEOUT

The CURRENT LOCK TIMEOUT special register specifies the number of seconds

to wait for a lock before returning an error indicating that a lock cannot be

obtained. This special register impacts row, table, index key, MDC block, and XML

path (XPath) locks. The data type of the register is INTEGER.

Valid values for the CURRENT LOCK TIMEOUT special register are integers

between -1 and 32767, inclusive. This special register can also be set to the null

value. A value of -1 specifies that timeouts are not to take place, and that the

application is to wait until the lock is released or a deadlock is detected. A value of

0 specifies that the application is not to wait for a lock; if a lock cannot be

obtained, an error is to be returned immediately.

The value of the CURRENT LOCK TIMEOUT special register can be changed by

invoking the SET CURRENT LOCK TIMEOUT statement. Its initial value is null; in

this case, the current value of the locktimeout database configuration parameter is

used when waiting for a lock, and this value will be returned for the special

register.

CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

The CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION special

register specifies a VARCHAR(254) value that identifies the types of tables that can

be considered when optimizing the processing of dynamic SQL queries.

Materialized query tables are never considered by static embedded SQL queries.

The initial value of CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION is SYSTEM. Its value can be changed by the SET CURRENT

MAINTAINED TABLE TYPES FOR OPTIMIZATION statement.

CURRENT ISOLATION

Chapter 2. Language elements 127

CURRENT MDC ROLLOUT MODE

The CURRENT MDC ROLLOUT MODE special register specifies the behavior on

multidimensional clustering (MDC) tables of DELETE statements that qualify for

rollout processing.

The default value of this register is determined by the DB2_MDC_ROLLOUT

registry variable. The value can be changed by invoking the SET CURRENT MDC

ROLLOUT MODE statement. When the CURRENT MDC ROLLOUT MODE

special register is set to a particular value, the execution behavior of subsequent

DELETE statements that qualify for rollout is impacted. The DELETE statement

does not need to be recompiled for the behavior to change.

CURRENT OPTIMIZATION PROFILE

The CURRENT OPTIMIZATION PROFILE special register specifies the qualified

name of the optimization profile to be used by DML statements that are

dynamically prepared for optimization.

The initial value is the null value. The value can be changed by invoking the SET

CURRENT OPTIMIZATION PROFILE statement. An optimization profile that is

not qualified with a schema name will be implicitly qualified with the value of the

CURRENT DEFAULT SCHEMA special register.

Example 1: Set the optimization profile to ’JON.SALES’.

 SET CURRENT OPTIMIZATION PROFILE = JON.SALES

Example 2: Get the current value of the optimization profile name for this

connection.

 VALUES (CURRENT OPTIMIZATION PROFILE) INTO :PROFILE

CURRENT PACKAGE PATH

The CURRENT PACKAGE PATH special register specifies a VARCHAR(4096)

value that identifies the path to be used when resolving references to packages that

are needed when executing SQL statements.

The value can be an empty or a blank string, or a list of one or more schema

names that are delimited with double quotation marks and separated by commas.

Any double quotation marks appearing as part of the string will need to be

represented as two double quotation marks, as is common practice with delimited

identifiers. The delimiters and commas contribute to the length of the special

register.

This special register applies to both static and dynamic statements.

The initial value of CURRENT PACKAGE PATH in a user-defined function,

method, or procedure is inherited from the invoking application. In other contexts,

the initial value of CURRENT PACKAGE PATH is an empty string. The value is a

list of schemas only if the application process has explicitly specified a list of

schemas by means of the SET CURRENT PACKAGE PATH statement.

Examples:

CURRENT MDC ROLLOUT MODE

128 SQL Reference, Volume 1

An application will be using multiple SQLJ packages (in schemas SQLJ1 and

SQLJ2) and a JDBC package (in schema DB2JAVA). Set the CURRENT PACKAGE

PATH special register to check SQLJ1, SQLJ2, and DB2JAVA, in that order.

 SET CURRENT PACKAGE PATH = "SQLJ1", "SQLJ2", "DB2JAVA"

Set the host variable HVPKLIST to the value currently stored in the CURRENT

PACKAGE PATH special register.

 VALUES CURRENT PACKAGE PATH INTO :HVPKLIST

CURRENT PATH

The CURRENT PATH (or CURRENT_PATH) special register specifies a

VARCHAR(2048) value that identifies the SQL path to be used when resolving

function references and data type references in dynamically prepared SQL

statements. CURRENT FUNCTION PATH is a synonym for CURRENT PATH.

CURRENT PATH is also used to resolve stored procedure references in CALL

statements. The initial value is the default value specified below. For static SQL,

the FUNCPATH bind option provides an SQL path that is used for function and

data type resolution.

The CURRENT PATH special register contains a list of one or more schema names

that are enclosed by double quotation marks and separated by commas. For

example, an SQL path specifying that the database manager is to look first in the

FERMAT schema, then in the XGRAPHIC schema, and finally in the SYSIBM

schema, is returned in the CURRENT PATH special register as:

"FERMAT","XGRAPHIC","SYSIBM"

The default value is “SYSIBM”,“SYSFUN”,“SYSPROC”,“SYSIBMADM”,X, where X

is the value of the USER special register, delimited by double quotation marks. The

value can be changed by invoking the SET CURRENT PATH statement. The

schema SYSIBM does not need to be specified. If it is not included in the SQL path,

it is implicitly assumed to be the first schema. SYSIBM does not take up any of the

2048 bytes if it is implicitly assumed.

A data type that is not qualified with a schema name will be implicitly qualified

with the first schema in the SQL path that contains a data type with the same

unqualified name. There are exceptions to this rule, as outlined in the descriptions

of the following statements: CREATE TYPE (Distinct), CREATE FUNCTION,

COMMENT, and DROP.

Example: Using the SYSCAT.ROUTINES catalog view, find all user-defined routines

that can be invoked without qualifying the routine name, because the CURRENT

PATH special register contains the schema name.

 SELECT ROUTINENAME, ROUTINESCHEMA FROM SYSCAT.ROUTINES

 WHERE POSITION (ROUTINESCHEMA, CURRENT PATH, CODEUNITS16) <> 0

CURRENT QUERY OPTIMIZATION

The CURRENT QUERY OPTIMIZATION special register specifies an INTEGER

value that controls the class of query optimization performed by the database

manager when binding dynamic SQL statements. The QUERYOPT bind option

controls the class of query optimization for static SQL statements. The possible

values range from 0 to 9. For example, if the query optimization class is set to 0

(minimal optimization), then the value in the special register is 0. The default value

CURRENT PACKAGE PATH

Chapter 2. Language elements 129

is determined by the dft_queryopt database configuration parameter. The value

can be changed by invoking the SET CURRENT QUERY OPTIMIZATION

statement.

Example: Using the SYSCAT.PACKAGES catalog view, find all plans that were

bound with the same setting as the current value of the CURRENT QUERY

OPTIMIZATION special register.

 SELECT PKGNAME, PKGSCHEMA FROM SYSCAT.PACKAGES

 WHERE QUERYOPT = CURRENT QUERY OPTIMIZATION

CURRENT REFRESH AGE

The CURRENT REFRESH AGE special register specifies a timestamp duration

value with a data type of DECIMAL(20,6). It is the maximum duration since a

particular timestamped event occurred to a cached data object (for example, a

REFRESH TABLE statement processed on a system-maintained REFRESH

DEFERRED materialized query table), such that the cached data object can be used

to optimize the processing of a query. If CURRENT REFRESH AGE has a value of

99 999 999 999 999, and the query optimization class is 5 or more, the types of

tables specified in CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

are considered when optimizing the processing of a dynamic SQL query.

The value of CURRENT REFRESH AGE must be 0 or 99 999 999 999 999. The

initial value is 0. The value can be changed by invoking the SET CURRENT

REFRESH AGE statement.

CURRENT SCHEMA

The CURRENT SCHEMA (or CURRENT_SCHEMA) special register specifies a

VARCHAR(128) value that identifies the schema name used to qualify database

object references, where applicable, in dynamically prepared SQL statements. For

compatibility with DB2 for z/OS, CURRENT SQLID (or CURRENT_SQLID) can be

specified in place of CURRENT SCHEMA.

The initial value of CURRENT SCHEMA is the authorization ID of the current

session user. The value can be changed by invoking the SET SCHEMA statement.

The QUALIFIER bind option controls the schema name used to qualify database

object references, where applicable, for static SQL statements.

Example: Set the schema for object qualification to ’D123’.

 SET CURRENT SCHEMA = ’D123’

CURRENT SERVER

The CURRENT SERVER (or CURRENT_SERVER) special register specifies a

VARCHAR(18) value that identifies the current application server. The register

contains the actual name of the application server, not an alias.

CURRENT SERVER can be changed through the CONNECT statement, but only

under certain conditions.

When used in an SQL statement inside a routine, CURRENT SERVER is not

inherited from the invoking statement.

CURRENT QUERY OPTIMIZATION

130 SQL Reference, Volume 1

Example: Set the host variable APPL_SERVE (VARCHAR(18)) to the name of the

application server to which the application is connected.

 VALUES CURRENT SERVER INTO :APPL_SERVE

CURRENT TIME

The CURRENT TIME (or CURRENT_TIME) special register specifies a time that is

based on a reading of the time-of-day clock when the SQL statement is executed at

the application server. If this special register is used more than once within a single

SQL statement, or used with CURRENT DATE or CURRENT TIMESTAMP within

a single statement, all values are based on a single clock reading.

When used in an SQL statement inside a routine, CURRENT TIME is not inherited

from the invoking statement.

In a federated system, CURRENT TIME can be used in a query intended for data

sources. When the query is processed, the time returned will be obtained from the

CURRENT TIME register at the federated server, not from the data sources.

Example: Run the following command from the DB2 CLP to obtain the current

time.

 db2 values CURRENT TIME

Example: Using the CL_SCHED table, select all the classes (CLASS_CODE) that

start (STARTING) later today. Today’s classes have a value of 3 in the DAY column.

 SELECT CLASS_CODE FROM CL_SCHED

 WHERE STARTING > CURRENT TIME AND DAY = 3

CURRENT TIMESTAMP

The CURRENT TIMESTAMP (or CURRENT_TIMESTAMP) special register specifies

a timestamp that is based on a reading of the time-of-day clock when the SQL

statement is executed at the application server. If this special register is used more

than once within a single SQL statement, or used with CURRENT DATE or

CURRENT TIME within a single statement, all values are based on a single clock

reading. It is possible for separate CURRENT TIMESTAMP special register requests

to return the same value; if unique values are required, consider using the

GENERATE_UNIQUE function, a sequence, or an identity column.

When used in an SQL statement inside a routine, CURRENT TIMESTAMP is not

inherited from the invoking statement.

In a federated system, CURRENT TIMESTAMP can be used in a query intended

for data sources. When the query is processed, the timestamp returned will be

obtained from the CURRENT TIMESTAMP register at the federated server, not

from the data sources.

Example: Insert a row into the IN_TRAY table. The value of the RECEIVED column

should be a timestamp that indicates when the row was inserted. The values for

the other three columns come from the host variables SRC (char(8)), SUB (char(64)),

and TXT (VARCHAR(200)).

 INSERT INTO IN_TRAY

 VALUES (CURRENT TIMESTAMP, :SRC, :SUB, :TXT)

CURRENT SERVER

Chapter 2. Language elements 131

CURRENT TIMEZONE

The CURRENT TIMEZONE (or CURRENT_TIMEZONE) special register specifies

the difference between UTC (Coordinated Universal Time, formerly known as

GMT) and local time at the application server. The difference is represented by a

time duration (a decimal number in which the first two digits are the number of

hours, the next two digits are the number of minutes, and the last two digits are

the number of seconds). The number of hours is between -24 and 24 exclusive.

Subtracting CURRENT TIMEZONE from a local time converts that local time to

UTC. The time is calculated from the operating system time at the moment the

SQL statement is executed. (The CURRENT TIMEZONE value is determined from

C runtime functions.)

The CURRENT TIMEZONE special register can be used wherever an expression of

the DECIMAL(6,0) data type is used; for example, in time and timestamp

arithmetic.

When used in an SQL statement inside a routine, CURRENT TIMEZONE is not

inherited from the invoking statement.

Example: Insert a record into the IN_TRAY table, using a UTC timestamp for the

RECEIVED column.

 INSERT INTO IN_TRAY VALUES (

 CURRENT TIMESTAMP - CURRENT TIMEZONE,

 :source,

 :subject,

 :notetext)

CURRENT USER

The CURRENT USER (or CURRENT_USER) special register specifies the

authorization ID that is to be used for statement authorization. For static SQL

statements, the value represents the authorization ID that is used when the

package is bound. For dynamic SQL statements, the value is the same as the value

of the SESSION_USER special register for packages bound with the

DYNAMICRULES(RUN) bind option. The data type of the register is

VARCHAR(128).

Example: Select table names whose schema matches the value of the CURRENT

USER special register.

 SELECT TABNAME FROM SYSCAT.TABLES

 WHERE TABSCHEMA = CURRENT USER AND TYPE = ’T’

If this statement is executed as a static SQL statement, it returns the tables whose

schema name matches the binder of the package that includes the statement. If this

statement is executed as a dynamic SQL statement, it returns the tables whose

schema name matches the current value of the SESSION_USER special register.

SESSION_USER

The SESSION_USER special register specifies the authorization ID that is to be

used for the current session. The value of this register is used for authorization

checking of dynamic SQL statements when DYNAMICRULES run behavior is in

effect for the package. The data type of the register is VARCHAR(128).

CURRENT TIMEZONE

132 SQL Reference, Volume 1

The initial value of SESSION_USER for a new connection is the same as the value

of the SYSTEM_USER special register. Its value can be changed by invoking the

SET SESSION AUTHORIZATION statement.

SESSION_USER is a synonym for the USER special register.

Example: Determine what routines can be executed using dynamic SQL. Assume

DYNAMICRULES run behavior is in effect for the package that will issue the

dynamic SQL statement that invokes the routine.

 SELECT SCHEMA, SPECIFICNAME FROM SYSCAT.ROUTINEAUTH

 WHERE GRANTEE = SESSION_USER

 AND EXECUTEAUTH IN (’Y’, ’G’)

SYSTEM_USER

The SYSTEM_USER special register specifies the authorization ID of the user that

connected to the database. The value of this register can only be changed by

connecting as a user with a different authorization ID. The data type of the register

is VARCHAR(128).

See “Example” in the description of the SET SESSION AUTHORIZATION

statement.

USER

The USER special register specifies the run-time authorization ID passed to the

database manager when an application starts on a database. The data type of the

register is VARCHAR(128).

When used in an SQL statement inside a routine, USER is not inherited from the

invoking statement.

Example: Select all notes from the IN_TRAY table that were placed there by the user.

 SELECT * FROM IN_TRAY

 WHERE SOURCE = USER

Global variables

Global variables are named memory variables that you can access and modify

through SQL statements.

Global variables enable you to share relational data between SQL statements

without the need for application logic to support this data transfer. You can control

access to global variables through the GRANT (Global Variable Privileges) and

REVOKE (Global Variable Privileges) statements.

DB2 supports created session global variables. A session global variable is associated

with a specific session, and contains a value that is unique to that session. A

created session global variable is available to any active SQL statement running

against the database on which the variable was defined. A session global variable

can be associated with more than one session, but its value will be specific to each

session. Created session global variables and the privileges that are associated with

them are defined in the system catalog.

SESSION_USER

Chapter 2. Language elements 133

Global variable names are qualified two-part names. When a global variable is

referenced without the schema name, the SQL path is used for name resolution.

For static SQL statements, the SQL path is specified using the FUNCPATH bind

option. For dynamic SQL statements, the SQL path is the value of the CURRENT

PATH special register.

For static SQL statements in packages, global variables are resolved during a bind

operation. In views, triggers, and SQL routines they are resolved when the

database object is created. If resolution is performed again on any global variable,

it could change the behavior if, for example, a new global variable has been added

with the same name in a different schema that is also on the SQL path. To avoid

this, the database manager applies conservative binding semantics wherever

necessary. That means that only global variables in the SQL path that were defined

before the last explicit bind timestamp are considered for global variable name

resolution.

When a global variable is referenced within an SQL statement or within a trigger,

view, or routine, a dependency on the fully qualified global variable name is

recorded for the statement or object. Also, if applicable, the authorization ID being

used for the statement is checked for the READ privilege on the global variable.

Global variables can be referenced within any expression that does not need to be

deterministic. Deterministic expressions are required in the following situations,

which preclude the use of global variables:

v Check constraints

v Definitions of generated columns

v Refresh immediate materialized query tables (MQTs)

The value of a global variable can be changed using the SET, SELECT INTO, or

VALUES INTO statement. It can also be changed if it is an argument of an OUT or

INOUT parameter in a CALL statement.

Functions

A function is an operation denoted by a function name followed by one or more

operands that are enclosed in parentheses. For example, the TIMESTAMP function

can be passed input data values of type DATE and TIME, and the result is a

TIMESTAMP. Functions can be either built-in or user-defined.

v Built-in functions are provided with the database manager. They return a single

result value and are identified as part of the SYSIBM schema. Such functions

include column functions (for example, AVG), operator functions (for example,

+), and casting functions (for example, DECIMAL).

v User-defined functions are functions that are registered to a database in

SYSCAT.ROUTINES (using the CREATE FUNCTION statement). User-defined

functions are never part of the SYSIBM schema. One set of such functions is

provided with the database manager in a schema called SYSFUN.

User-defined functions extend the capabilities of the database system by adding

function definitions (provided by users or third party vendors) that can be

applied in the database engine itself. Extending database functions lets the

database exploit the same functions in the engine that an application uses,

providing more synergy between application and database.

Global variables

134 SQL Reference, Volume 1

External, SQL, and sourced user-defined functions

A user-defined function can be an external function, an SQL function, or a sourced

function. An external function is defined to the database with a reference to an

object code library, and a function within that library that will be executed when

the function is invoked. External functions cannot be column functions. An SQL

function is defined to the database using only the SQL RETURN statement. It can

return either a scalar value, a row, or a table. SQL functions cannot be column

functions. A sourced function is defined to the database with a reference to another

built-in or user-defined function that is already known to the database. Sourced

functions can be scalar functions or column functions. They are useful for

supporting existing functions with user-defined types.

Scalar, column, row, and table user-defined functions

Each user-defined function is also categorized as a scalar, column, or table

function. A scalar function is a function that returns a single-valued answer each

time it is called. For example, the built-in function SUBSTR() is a scalar function.

Scalar UDFs can be either external or sourced.

A column function is one which conceptually is passed a set of like values (a

column) and returns a single-valued answer. These are also sometimes called

aggregating functions in DB2. An example of a column function is the built-in

function AVG(). An external column UDF cannot be defined to DB2, but a column

UDF, which is sourced upon one of the built-in column functions, can be defined.

This is useful for distinct types. For example, if there is a distinct type SHOESIZE

defined with base type INTEGER, a UDF AVG(SHOESIZE), which is sourced on

the built-in function AVG(INTEGER), could be defined, and it would be a column

function.

A row function is a function that returns one row of values. It may only be used as

a transform function, mapping attribute values of a structured type into values in a

row. A row function must be defined as an SQL function.

A table function is a function that returns a table to the SQL statement which

references it. It may only be referenced in the FROM clause of a SELECT

statement. Such a function can be used to apply SQL language processing power to

data that is not DB2 data, or to convert such data into a DB2 table. It could, for

example, take a file and convert it into a table, sample data from the World Wide

Web and tabularize it, or access a Lotus Notes® database and return information

about mail messages, such as the date, sender, and the text of the message. This

information can be joined with other tables in the database. A table function can be

defined as an external function or as an SQL function. (A table function cannot be

a sourced function.)

Function signatures

A function is identified by its schema, a function name, the number of parameters,

and the data types of its parameters. This is called a function signature, which must

be unique within the database; for example, TEST.RISK(INTEGER). There can be

more than one function with the same name in a schema, provided that the

number of parameters or the data types of the parameters are different. A function

name for which there are multiple function instances is called an overloaded

function. A function name can be overloaded within a schema, in which case there

is more than one function by that name in the schema. These functions must have

different parameter types. A function name can also be overloaded in an SQL path,

Functions

Chapter 2. Language elements 135

in which case there is more than one function by that name in the path. These

functions do not necessarily have different parameter types.

A function can be invoked by referring (in an allowable context) to its qualified

name (schema and function name), followed by the list of arguments enclosed in

parentheses. A function can also be invoked without the schema name, resulting in

a choice of possible functions in different schemas with the same or acceptable

parameters. In this case, the SQL path is used to assist in function resolution. The

SQL path is a list of schemas that are searched to identify a function with the same

name, number of parameters and acceptable data types. For static SQL statements,

the SQL path is specified using the FUNCPATH bind option. For dynamic SQL

statements, the SQL path is the value of the CURRENT PATH special register.

Access to functions is controlled through the EXECUTE privilege. GRANT and

REVOKE statements are used to specify who can or cannot execute a specific

function or a set of functions. The EXECUTE privilege (or DBADM authority) is

needed to invoke a function. The definer of the function automatically receives the

EXECUTE privilege. The definer of an external function or an SQL function having

the WITH GRANT option on all underlying objects also receives the WITH

GRANT option with the EXECUTE privilege on the function. The definer (or

SYSADM or DBADM) must then grant it to the user who wants to invoke the

function from any SQL statement, reference the function in any DDL statement

(such as CREATE VIEW, CREATE TRIGGER, or when defining a constraint), or

create another function sourced on this function. If the EXECUTE privilege is not

granted to a user, the function will not be considered by the function resolution

algorithm, even if it is a better match. Built-in functions (SYSIBM functions) and

SYSFUN functions have the EXECUTE privilege implicitly granted to PUBLIC.

Function resolution

After function invocation, the database manager must decide which of the possible

functions with the same name is the “best fit”. This includes resolving functions

from the built-in and user-defined functions.

An argument is a value passed to a function upon invocation. When a function is

invoked in SQL, it is passed a list of zero or more arguments. They are positional

in that the semantics of an argument are determined by its position in the

argument list. A parameter is a formal definition of an input to a function. When a

function is defined to the database, either internally (a built-in function) or by a

user (a user-defined function), its parameters (zero or more) are specified, and the

order of their definitions defines their positions and their semantics. Therefore,

every parameter is a particular positional input to a function. On invocation, an

argument corresponds to a particular parameter by virtue of its position in the list

of arguments.

The database manager uses the name of the function given in the invocation,

EXECUTE privilege on the function, the number and data types of the arguments,

all the functions with the same name in the SQL path, and the data types of their

corresponding parameters as the basis for deciding whether or not to select a

function. The following are the possible outcomes of the decision process:

v A particular function is deemed to be the best fit. For example, given the

functions named RISK in the schema TEST with signatures defined as:

 TEST.RISK(INTEGER)

 TEST.RISK(DOUBLE)

Functions

136 SQL Reference, Volume 1

an SQL path including the TEST schema and the following function reference

(where DB is a DOUBLE column):

 SELECT ... RISK(DB) ...

then, the second RISK will be chosen.

The following function reference (where SI is a SMALLINT column):

 SELECT ... RISK(SI) ...

would choose the first RISK, because SMALLINT can be promoted to INTEGER

and is a better match than DOUBLE which is further down the precedence list.

When considering arguments that are structured types, the precedence list

includes the supertypes of the static type of the argument. The best fit is the

function defined with the supertype parameter that is closest in the structured

type hierarchy to the static type of the function argument.

v No function is deemed to be an acceptable fit. For example, given the same two

functions in the previous case and the following function reference (where C is a

CHAR(5) column):

 SELECT ... RISK(C) ...

the argument is inconsistent with the parameter of both RISK functions.

v A particular function is selected based on the SQL path and the number and

data types of the arguments passed on invocation. For example, given functions

named RANDOM with signatures defined as:

 TEST.RANDOM(INTEGER)

 PROD.RANDOM(INTEGER)

and an SQL path of:

 "TEST","PROD"

the following function reference:

 SELECT ... RANDOM(432) ...

will choose TEST.RANDOM, because both RANDOM functions are equally good

matches (exact matches in this particular case), and both schemas are in the

path, but TEST precedes PROD in the SQL path.

Determining the best fit

A comparison of the data types of the arguments with the defined data types of

the parameters of the functions under consideration forms the basis for the

decision of which function in a group of like-named functions is the “best fit”.

Note that the data types of the results of the functions, or the type of function

(column, scalar, or table) under consideration do not enter into this determination.

Function resolution is performed using the following steps:

1. First, find all functions from the catalog (SYSCAT.ROUTINES), and built-in

functions, such that all of the following are true:

v For invocations where the schema name was specified (a qualified reference),

the schema name and the function name match the invocation name.

v For invocations where the schema name was not specified (an unqualified

reference), the function name matches the invocation name and has a schema

name that matches one of the schemas in the SQL path.

v The invoker has the EXECUTE privilege on the function.

Functions

Chapter 2. Language elements 137

v The number of defined parameters matches the invocation.

v Each invocation argument matches the function’s corresponding defined

parameter in data type, or is “promotable” to it.
2. Next, consider each argument of the function invocation, from left to right. For

each argument, eliminate all functions that are not the best match for that

argument. The best match for a given argument is the first data type appearing

in the precedence list corresponding to the argument data type for which there

exists a function with a parameter of that data type. Length, precision, scale,

and the FOR BIT DATA attribute are not considered in this comparison. For

example, a DECIMAL(9,1) argument is considered an exact match for a

DECIMAL(6,5) parameter, a DECFLOAT(34) argument is considered an exact

match for a DECFLOAT(16) parameter, and a VARCHAR(19) argument is an

exact match for a VARCHAR(6) parameter.

The best match for a user-defined structured-type argument is itself; the next

best match is its immediate supertype, and so on for each supertype of the

argument. Note that only the static type (declared type) of the structured-type

argument is considered, not the dynamic type (most specific type).

3. If more than one candidate function remains after Step 2, all remaining

candidate functions must have identical signatures but be in different schemas.

Choose the function whose schema is earliest in the user’s SQL path.

4. If there are no candidate functions remaining after step 2, an error is returned

(SQLSTATE 42884).

SQL path considerations for built-in functions

Built-in functions reside in a special schema called SYSIBM. Additional functions

are available in the SYSFUN and SYSPROC schemas, but are not considered

built-in functions because they are developed as user-defined functions and have

no special processing considerations. Users cannot define additional functions in

the SYSIBM, SYSFUN, or SYSPROC schemas (or in any other schema whose name

begins with the letters ’SYS’).

As already stated, the built-in functions participate in the function resolution

process exactly as do the user-defined functions. One difference between built-in

and user-defined functions, from a function resolution perspective, is that the

built-in functions must always be considered during function resolution. Therefore,

omission of SYSIBM from the path results in the assumption (for function and data

type resolution) that SYSIBM is the first schema on the path.

For example, if a user’s SQL path is defined as:

 "SHAREFUN","SYSIBM","SYSFUN"

and there is a LENGTH function defined in schema SHAREFUN with the same

number and types of arguments as SYSIBM.LENGTH, then an unqualified

reference to LENGTH in this user’s SQL statement will result in selecting

SHAREFUN.LENGTH. However, if the user’s SQL path is defined as:

 "SHAREFUN","SYSFUN"

and the same SHAREFUN.LENGTH function exists, then an unqualified reference

to LENGTH in this user’s SQL statement will result in selecting SYSIBM.LENGTH,

because SYSIBM implicitly appears first in the path.

To minimize potential problems in this area:

v Never use the names of built-in functions for user-defined functions.

Functions

138 SQL Reference, Volume 1

v If, for some reason, it is necessary to create a user-defined function with the

same name as a built-in function, be sure to qualify any references to it.

Note: An unqualified reference to a function named function-name invokes the

built-in function function-name that is in the schema SYSIBM. This function cannot

be explicitly qualified with the schema name.

Example of function resolution

Following is an example of successful function resolution. (Note that not all

required keywords are shown.)

There are seven ACT functions, in three different schemas, registered as:

 CREATE FUNCTION AUGUSTUS.ACT (CHAR(5), INT, DOUBLE) SPECIFIC ACT_1 ...

 CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_2 ...

 CREATE FUNCTION AUGUSTUS.ACT (INT, INT, DOUBLE, INT) SPECIFIC ACT_3 ...

 CREATE FUNCTION JULIUS.ACT (INT, DOUBLE, DOUBLE) SPECIFIC ACT_4 ...

 CREATE FUNCTION JULIUS.ACT (INT, INT, DOUBLE) SPECIFIC ACT_5 ...

 CREATE FUNCTION JULIUS.ACT (SMALLINT, INT, DOUBLE) SPECIFIC ACT_6 ...

 CREATE FUNCTION JULIUS.ACT (INT, INT, DECFLOAT) SPECIFIC ACT_7 ...

 CREATE FUNCTION NERO.ACT (INT, INT, DEC(7,2)) SPECIFIC ACT_8 ...

The function reference is as follows (where I1 and I2 are INTEGER columns, and D

is a DECIMAL column):

 SELECT ... ACT(I1, I2, D) ...

Assume that the application making this reference has an SQL path established as:

 "JULIUS","AUGUSTUS","CAESAR"

Following through the algorithm...

v The function with specific name ACT_8 is eliminated as a candidate, because the

schema NERO is not included in the SQL path.

v The function with specific name ACT_3 is eliminated as a candidate, because it

has the wrong number of parameters. ACT_1 and ACT_6 are eliminated because,

in both cases, the first argument cannot be promoted to the data type of the first

parameter.

v Because there is more than one candidate remaining, the arguments are

considered in order.

v For the first argument, the remaining functions, ACT_2, ACT_4, ACT_5, and

ACT_7 are an exact match with the argument type. No functions can be

eliminated from consideration; therefore the next argument must be examined.

v For this second argument, ACT_2, ACT_5, and ACT_7 are exact matches, but

ACT_4 is not, so it is eliminated from consideration. The next argument is

examined to determine some differentiation among ACT_2, ACT_5, and ACT_7.

v For the third and last argument, neither ACT_2, ACT_5, nor ACT_7 match the

argument type exactly. Although ACT_2 and ACT_5 are equally good, ACT_7 is

not as good as the other two because the type DOUBLE is closer to DECIMAL

than is DECFLOAT. ACT_7 is eliminated..

v There are two functions remaining, ACT_2 and ACT_5, with identical parameter

signatures. The final tie-breaker is to see which function’s schema comes first in

the SQL path, and on this basis, ACT_5 is the function chosen.

Functions

Chapter 2. Language elements 139

Function invocation

Once the function is selected, there are still possible reasons why the use of the

function may not be permitted. Each function is defined to return a result with a

specific data type.If this result data type is not compatible with the context in

which the function is invoked, an error will occur. For example, given functions

named STEP defined, this time, with different data types as the result:

 STEP(SMALLINT) returns CHAR(5)

 STEP(DOUBLE) returns INTEGER

and the following function reference (where S is a SMALLINT column):

 SELECT ... 3 + STEP(S) ...

then, because there is an exact match on argument type, the first STEP is

chosen.An error occurs on the statement because the result type is CHAR(5)

instead of a numeric type as required for an argument of the addition operator.

A couple of other examples where this can happen are as follows, both of which

will result in an error on the statement:

v The function was referenced in a FROM clause, but the function selected by the

function resolution step was a scalar or column function.

v The reverse case, where the context calls for a scalar or column function, and

function resolution selects a table function.

In cases where the arguments of the function invocation were not an exact match

to the data types of the parameters of the selected function, the arguments are

converted to the data type of the parameter at execution using the same rules as

assignment to columns. This includes the case where precision, scale, or length

differs between the argument and the parameter.

Conservative binding semantics

There are instances in which routines, data types, and global variables are resolved

when a statement is processed, and the database manager must be able to repeat

this resolution. This is true in:

v Static DML statements in packages

v Views

v Triggers

v Check constraints

v SQL routines

For static DML statements in packages, the routine, data type, or global variable

references are resolved during a bind operation. Routine, data type, and global

variable references in views, triggers, SQL routines, and check constraints are

resolved when the database object is created.

If routine resolution is performed again on any routine references in these objects,

it could change the behavior if:

v A new routine has been added with a signature that is a better match, but the

actual executable performs different operations.

v The definer has been granted the execute privilege on a routine with a signature

that is a better match, but the actual executable performs different operations.

Functions

140 SQL Reference, Volume 1

Similarly, if resolution is performed again on any data type, global variable, or

routine in these objects, it could change the behavior if a new data type, global

variable, or routine has been added with the same name in a different schema that

is also on the SQL path. To avoid this, the database manager applies conservative

binding semantics wherever necessary. This ensures that routine, data type, and

global variable references will be resolved using the same SQL path and the set of

routines to which it previously resolved when it was bound. The creation

timestamp of routines, data types, and global variables considered during

resolution is not later than the time when the statement was bound. (Built-in

functions added starting with Version 6.1 have a creation timestamp that is based

on the time of database creation or migration.) In this way, only the routines, data

types, and global variables that were considered during routine, data type, and

global variable resolution when the statement was originally processed will be

considered. Hence, newly created or authorized routines, data types, and global

variables are not considered when conservative binding semantics are applied.

Consider a database with two functions that have the signatures

SCHEMA1.BAR(INTEGER) and SCHEMA2.BAR(DOUBLE). Assume the SQL path

contains both schemas SCHEMA1 and SCHEMA2 (although their order within the

SQL path does not matter). USER1 has been granted the EXECUTE privilege on

the function SCHEMA2.BAR(DOUBLE). Suppose USER1 creates a view that calls

BAR(INT_VAL). This will resolve to the function SCHEMA2.BAR(DOUBLE). The

view will always use SCHEMA2.BAR(DOUBLE), even if someone grants USER1

the EXECUTE privilege on SCHEMA1.BAR(INTEGER) after the view has been

created.

For static DML in packages, the packages can rebind implicitly, or by explicitly

issuing the REBIND command (or corresponding API), or the BIND command (or

corresponding API). The implicit rebind is always performed to resolve routines,

data types, and global variables with conservative binding semantics. The REBIND

command provides the option to resolve with conservative binding semantics

(RESOLVE CONSERVATIVE) or to resolve by considering any new routines, data

types, or global variables (RESOLVE ANY, the default option).

Implicit rebind of a package always resolves the same routine. Even if EXECUTE

privilege on a better-matched routine was granted, that routine will not be

considered. Explicit rebind of a package can result in a different routine being

selected. (But if RESOLVE CONSERVATIVE is specified, routine resolution will

follow conservative binding semantics).

If a routine is specified during the creation of a view, trigger, constraint, or SQL

routine body, the specific instance of the routine to be used is determined by

routine resolution at the time the object is created. Subsequent granting of the

EXECUTE privilege after the object has been created will not change the specific

routine that the object uses.

Consider a database with two functions that have the signatures

SCHEMA1.BAR(INTEGER) and SCHEMA2.BAR(DOUBLE). USER1 has been

granted the EXECUTE privilege on the function SCHEMA2.BAR(DOUBLE).

Suppose USER1 creates a view that calls BAR(INT_VAL). This will resolve to the

function SCHEMA2.BAR(DOUBLE). The view will always use

SCHEMA2.BAR(DOUBLE), even if someone grants USER1 the EXECUTE privilege

on SCHEMA1.BAR(INTEGER) after the view has been created.

The same behavior occurs in other database objects. For example, if a package is

implicitly rebound (perhaps after dropping an index), the package will refer to the

Functions

Chapter 2. Language elements 141

same specific routine both before and after the implicit rebind. An explicit rebind of

a package, however, can result in a different routine being selected.

Methods

A database method of a structured type is a relationship between a set of input

data values and a set of result values, where the first input value (or subject

argument) has the same type, or is a subtype of the subject type (also called the

subject parameter), of the method. For example, a method called CITY, of type

ADDRESS, can be passed input data values of type VARCHAR, and the result is

an ADDRESS (or a subtype of ADDRESS).

Methods are defined implicitly or explicitly, as part of the definition of a

user-defined structured type.

Implicitly defined methods are created for every structured type. Observer methods

are defined for each attribute of the structured type. Observer methods allow

applications to get the value of an attribute for an instance of the type. Mutator

methods are also defined for each attribute, allowing applications to mutate the type

instance by changing the value for an attribute of a type instance. The CITY

method described above is an example of a mutator method for the type

ADDRESS.

Explicitly defined methods, or user-defined methods, are methods that are registered

to a database in SYSCAT.ROUTINES, by using a combination of CREATE TYPE (or

ALTER TYPE ADD METHOD) and CREATE METHOD statements. All methods

defined for a structured type are defined in the same schema as the type.

User-defined methods for structured types extend the function of the database

system by adding method definitions (provided by users or third party vendors)

that can be applied to structured type instances in the database engine. Defining

database methods lets the database exploit the same methods in the engine that an

application uses, providing more synergy between application and database.

External and SQL user-defined methods

A user-defined method can be either external or based on an SQL expression. An

external method is defined to the database with a reference to an object code

library and a function within that library that will be executed when the method is

invoked. A method based on an SQL expression returns the result of the SQL

expression when the method is invoked. Such methods do not require any object

code library, because they are written completely in SQL.

A user-defined method can return a single-valued answer each time it is called.

This value can be a structured type. A method can be defined as type preserving

(using SELF AS RESULT), to allow the dynamic type of the subject argument to be

returned as the returned type of the method. All implicitly defined mutator

methods are type preserving.

Method signatures

A method is identified by its subject type, a method name, the number of

parameters, and the data types of its parameters. This is called a method signature,

and it must be unique within the database.

Functions

142 SQL Reference, Volume 1

There can be more than one method with the same name for a structured type,

provided that:

v The number of parameters or the data types of the parameters are different, or

v The methods are part of the same method hierarchy (that is, the methods are in

an overriding relationship or override the same original method), or

v The same function signature (using the subject type or any of its subtypes or

supertypes as the first parameter) does not exist.

A method name that has multiple method instances is called an overloaded method.

A method name can be overloaded within a type, in which case there is more than

one method by that name for the type (all of which have different parameter

types). A method name can also be overloaded in the subject type hierarchy, in

which case there is more than one method by that name in the type hierarchy.

These methods must have different parameter types.

A method can be invoked by referring (in an allowable context) to the method

name, preceded by both a reference to a structured type instance (the subject

argument), and the double dot operator. A list of arguments enclosed in

parentheses must follow. Which method is actually invoked depends on the static

type of the subject type, using the method resolution process described in the

following section. Methods defined WITH FUNCTION ACCESS can also be

invoked using function invocation, in which case the regular rules for function

resolution apply.

If function resolution results in a method defined WITH FUNCTION ACCESS, all

subsequent steps of method invocation are processed.

Access to methods is controlled through the EXECUTE privilege. GRANT and

REVOKE statements are used to specify who can or cannot execute a specific

method or a set of methods. The EXECUTE privilege (or DBADM authority) is

needed to invoke a method. The definer of the method automatically receives the

EXECUTE privilege. The definer of an external method or an SQL method having

the WITH GRANT option on all underlying objects also receives the WITH

GRANT option with the EXECUTE privilege on the method. The definer (or

SYSADM or DBADM) must then grant it to the user who wants to invoke the

method from any SQL statement, or reference the method in any DDL statement

(such as CREATE VIEW, CREATE TRIGGER, or when defining a constraint). If the

EXECUTE privilege is not granted to a user, the method will not be considered by

the method resolution algorithm, even if it is a better match.

Method resolution

After method invocation, the database manager must decide which of the possible

methods with the same name is the “best fit”. Functions (built-in or user-defined)

are not considered during method resolution.

An argument is a value passed to a method upon invocation. When a method is

invoked in SQL, it is passed the subject argument (of some structured type) and a

list of zero or more arguments. They are positional in that the semantics of an

argument are determined by its position in the argument list. A parameter is a

formal definition of an input to a method. When a method is defined to the

database, either implicitly (system-generated for a type) or by a user (a

user-defined method), its parameters are specified (with the subject parameter as

the first parameter), and the order of their definitions defines their positions and

their semantics. Therefore, every parameter is a particular positional input to a

Methods

Chapter 2. Language elements 143

method. On invocation, an argument corresponds to a particular parameter by

virtue of its position in the list of arguments.

The database manager uses the name of the method given in the invocation,

EXECUTE privilege on the method, the number and data types of the arguments,

all the methods with the same name for the subject argument’s static type (and it’s

supertypes), and the data types of their corresponding parameters as the basis for

deciding whether or not to select a method. The following are the possible

outcomes of the decision process:

v A particular method is deemed to be the best fit. For example, given the

methods named RISK for the type SITE with signatures defined as:

 PROXIMITY(INTEGER) FOR SITE

 PROXIMITY(DOUBLE) FOR SITE

the following method invocation (where ST is a SITE column, DB is a DOUBLE

column):

 SELECT ST..PROXIMITY(DB) ...

then, the second PROXIMITY will be chosen.

The following method invocation (where SI is a SMALLINT column):

 SELECT ST..PROXIMITY(SI) ...

would choose the first PROXIMITY, because SMALLINT can be promoted to

INTEGER and is a better match than DOUBLE, which is further down the

precedence list.

When considering arguments that are structured types, the precedence list

includes the supertypes of the static type of the argument. The best fit is the

function defined with the supertype parameter that is closest in the structured

type hierarchy to the static type of the function argument.

v No method is deemed to be an acceptable fit. For example, given the same two

functions in the previous case and the following function reference (where C is a

CHAR(5) column):

 SELECT ST..PROXIMITY(C) ...

the argument is inconsistent with the parameter of both PROXIMITY functions.

v A particular method is selected based on the methods in the type hierarchy and

the number and data types of the arguments passed on invocation. For example,

given methods named RISK for the types SITE and DRILLSITE (a subtype of

SITE) with signatures defined as:

 RISK(INTEGER) FOR DRILLSITE

 RISK(DOUBLE) FOR SITE

and the following method invocation (where DRST is a DRILLSITE column, DB

is a DOUBLE column):

 SELECT DRST..RISK(DB) ...

the second RISK will be chosen, because DRILLSITE can be promoted to SITE.

The following method reference (where SI is a SMALLINT column):

 SELECT DRST..RISK(SI) ...

would choose the first RISK, because SMALLINT can be promoted to INTEGER,

which is closer on the precedence list than DOUBLE, and DRILLSITE is a better

match than SITE, which is a supertype.

Methods

144 SQL Reference, Volume 1

Methods within the same type hierarchy cannot have the same signatures,

considering parameters other than the subject parameter.

Determining the best fit

A comparison of the data types of the arguments with the defined data types of

the parameters of the methods under consideration forms the basis for the decision

of which method in a group of like-named methods is the “best fit”. Note that the

data types of the results of the methods under consideration do not enter into this

determination.

Method resolution is performed using the following steps:

1. First, find all methods from the catalog (SYSCAT.ROUTINES) such that all of

the following are true:

v The method name matches the invocation name, and the subject parameter is

the same type or is a supertype of the static type of the subject argument.

v The invoker has the EXECUTE privilege on the method.

v The number of defined parameters matches the invocation.

v Each invocation argument matches the method’s corresponding defined

parameter in data type, or is “promotable” to it.
2. Next, consider each argument of the method invocation, from left to right. The

leftmost argument (and thus the first argument) is the implicit SELF parameter.

For example, a method defined for type ADDRESS_T has an implicit first

parameter of type ADDRESS_T. For each argument, eliminate all functions that

are not the best match for that argument. The best match for a given argument

is the first data type appearing in the precedence list corresponding to the

argument data type for which there exists a function with a parameter of that

data type. Length, precision, scale, and the FOR BIT DATA attribute are not

considered in this comparison. For example, a DECIMAL(9,1) argument is

considered an exact match for a DECIMAL(6,5) parameter, a DECFLOAT(34)

argument is considered an exact match for a DECFLOAT(16) parameter, and a

VARCHAR(19) argument is an exact match for a VARCHAR(6) parameter.

The best match for a user-defined structured-type argument is itself; the next

best match is its immediate supertype, and so on for each supertype of the

argument. Note that only the static type (declared type) of the structured-type

argument is considered, not the dynamic type (most specific type).

3. At most, one candidate method remains after Step 2. This is the method that is

chosen.

4. If there are no candidate methods remaining after step 2, an error is returned

(SQLSTATE 42884).

Example of method resolution

Following is an example of successful method resolution.

There are seven FOO methods for three structured types defined in a hierarchy of

GOVERNOR as a subtype of EMPEROR as a subtype of HEADOFSTATE,

registered with the following signatures:

 CREATE METHOD FOO (CHAR(5), INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_1 ...

 CREATE METHOD FOO (INT, INT, DOUBLE) FOR HEADOFSTATE SPECIFIC FOO_2 ...

 CREATE METHOD FOO (INT, INT, DOUBLE, INT) FOR HEADOFSTATE SPECIFIC FOO_3 ...

 CREATE METHOD FOO (INT, DOUBLE, DOUBLE) FOR EMPEROR SPECIFIC FOO_4 ...

 CREATE METHOD FOO (INT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_5 ...

 CREATE METHOD FOO (SMALLINT, INT, DOUBLE) FOR EMPEROR SPECIFIC FOO_6 ...

 CREATE METHOD FOO (INT, INT, DEC(7,2)) FOR GOVERNOR SPECIFIC FOO_7 ...

Methods

Chapter 2. Language elements 145

The method reference is as follows (where I1 and I2 are INTEGER columns, D is a

DECIMAL column and E is an EMPEROR column):

 SELECT E..FOO(I1, I2, D) ...

Following through the algorithm...

v FOO_7 is eliminated as a candidate, because the type GOVERNOR is a subtype

(not a supertype) of EMPEROR.

v FOO_3 is eliminated as a candidate, because it has the wrong number of

parameters.

v FOO_1 and FOO_6 are eliminated because, in both cases, the first argument (not

the subject argument) cannot be promoted to the data type of the first

parameter. Because there is more than one candidate remaining, the arguments

are considered in order.

v For the subject argument, FOO_2 is a supertype, while FOO_4 and FOO_5 match

the subject argument.

v For the first argument, the remaining methods, FOO_4 and FOO_5, are an exact

match with the argument type. No methods can be eliminated from

consideration; therefore the next argument must be examined.

v For this second argument, FOO_5 is an exact match, but FOO_4 is not, so it is

eliminated from consideration. This leaves FOO_5 as the method chosen.

Method invocation

Once the method is selected, there are still possible reasons why the use of the

method may not be permitted.

Each method is defined to return a result with a specific data type. If this result

data type is not compatible with the context in which the method is invoked, an

error will occur. For example, assume that the following methods named STEP are

defined, each with a different data type as the result:

 STEP(SMALLINT) FOR TYPEA RETURNS CHAR(5)

 STEP(DOUBLE) FOR TYPEA RETURNS INTEGER

and the following method reference (where S is a SMALLINT column and TA is a

column of TYPEA):

 SELECT 3 + TA..STEP(S) ...

then, because there is an exact match on argument type, the first STEP is chosen.

An error occurs on the statement, because the result type is CHAR(5) instead of a

numeric type, as required for an argument of the addition operator.

Starting from the method that has been chosen, the algorithm described in

“Dynamic dispatch of methods” is used to build the set of dispatchable methods at

compile time. Exactly which method is invoked is described in “Dynamic dispatch

of methods”.

Note that when the selected method is a type preserving method:

v the static result type following function resolution is the same as the static type

of the subject argument of the method invocation

v the dynamic result type when the method is invoked is the same as the dynamic

type of the subject argument of the method invocation.

Methods

146 SQL Reference, Volume 1

This may be a subtype of the result type specified in the type preserving method

definition, which in turn may be a supertype of the dynamic type that is actually

returned when the method is processed.

In cases where the arguments of the method invocation were not an exact match to

the data types of the parameters of the selected method, the arguments are

converted to the data type of the parameter at execution using the same rules as

assignment to columns. This includes the case where precision, scale, or length

differs between the argument and the parameter, but excludes the case where the

dynamic type of the argument is a subtype of the parameter’s static type.

Dynamic dispatch of methods

Methods provide the functionality and encapsulate the data of a type. A method is

defined for a type and can always be associated with this type. One of the

method’s parameters is the implicit SELF parameter. The SELF parameter is of the

type for which the method has been declared. The argument that is passed as the

SELF argument when the method is invoked in a DML statement is called subject.

When a method is chosen using method resolution (see “Method resolution” on

page 143), or a method has been specified in a DDL statement, this method is

known as the “most specific applicable authorized method”. If the subject is of a

structured type, that method could have one or more overriding methods. DB2

must then determine which of these methods to invoke, based on the dynamic

type (most specific type) of the subject at run time. This determination is called

“determining the most specific dispatchable method”. That process is described

here.

1. Find the original method in the method hierarchy that the most specific

applicable authorized method is part of. This is called the root method.

2. Create the set of dispatchable methods, which includes the following:

v The most specific applicable authorized method.

v Any method that overrides the most specific applicable authorized method,

and which is defined for a type that is a subtype of the subject of this

invocation.
3. Determine the most specific dispatchable method, as follows:

a. Start with an arbitrary method that is an element of the set of dispatchable

methods and that is a method of the dynamic type of the subject, or of one

of its supertypes. This is the initial most specific dispatchable method.

b. Iterate through the elements of the set of dispatchable methods. For each

method: If the method is defined for one of the proper subtypes of the type

for which the most specific dispatchable method is defined, and if it is

defined for one of the supertypes of the most specific type of the subject,

then repeat step 2 with this method as the most specific dispatchable

method; otherwise, continue iterating.
4. Invoke the most specific dispatchable method.

Example:

Given are three types, ″Person″, ″Employee″, and ″Manager″. There is an original

method ″income″, defined for ″Person″, which computes a person’s income. A

person is by default unemployed (a child, a retiree, and so on). Therefore, ″income″

for type ″Person″ always returns zero. For type ″Employee″ and for type

Methods

Chapter 2. Language elements 147

″Manager″, different algorithms have to be applied to calculate the income. Hence,

the method ″income″ for type ″Person″ is overridden in ″Employee″ and

″Manager″.

Create and populate a table as follows:

 CREATE TABLE aTable (id integer, personColumn Person);

 INSERT INTO aTable VALUES (0, Person()), (1, Employee()), (2, Manager());

List all persons who have a minimum income of $40000:

 SELECT id, person, name

 FROM aTable

 WHERE person..income() >= 40000;

The method ″income″ for type ″Person″ is chosen, using method resolution, to be

the most specific applicable authorized method.

1. The root method is ″income″ for ″Person″ itself.

2. The second step of the algorithm above is carried out to construct the set of

dispatchable methods:

v The method ″income″ for type ″Person″ is included, because it is the most

specific applicable authorized method.

v The method ″income″ for type ″Employee″, and ″income″ for ″Manager″ is

included, because both methods override the root method, and both

″Employee″ and ″Manager″ are subtypes of ″Person″.
Therefore, the set of dispatchable methods is: {″income″ for ″Person″, ″income″

for ″Employee″, ″income″ for ″Manager″}.

3. Determine the most specific dispatchable method:

v For a subject whose most specific type is ″Person″:

a. Let the initial most specific dispatchable method be ″income″ for type

″Person″.

b. Because there is no other method in the set of dispatchable methods that

is defined for a proper subtype of ″Person″ and for a supertype of the

most specific type of the subject, ″income″ for type ″Person″ is the most

specific dispatchable method.
v For a subject whose most specific type is ″Employee″:

a. Let the initial most specific dispatchable method be ″income″ for type

″Person″.

b. Iterate through the set of dispatchable methods. Because method

″income″ for type ″Employee″ is defined for a proper subtype of ″Person″

and for a supertype of the most specific type of the subject (Note: A type

is its own super- and subtype.), method ″income″ for type ″Employee″ is

a better match for the most specific dispatchable method. Repeat this step

with method ″income″ for type ″Employee″ as the most specific

dispatchable method.

c. Because there is no other method in the set of dispatchable methods that

is defined for a proper subtype of ″Employee″ and for a supertype of the

most specific type of the subject, method ″income″ for type ″Employee″ is

the most specific dispatchable method.
v For a subject whose most specific type is ″Manager″:

a. Let the initial most specific dispatchable method be ″income″ for type

″Person″.

b. Iterate through the set of dispatchable methods. Because method

″income″ for type ″Manager″ is defined for a proper subtype of ″Person″

Methods

148 SQL Reference, Volume 1

and for a supertype of the most specific type of the subject (Note: A type

is its own super- and subtype.), method ″income″ for type ″Manager″ is a

better match for the most specific dispatchable method. Repeat this step

with method ″income″ for type ″Manager″ as the most specific

dispatchable method.

c. Because there is no other method in the set of dispatchable methods that

is defined for a proper subtype of ″Manager″ and for a supertype of the

most specific type of the subject, method ″income″ for type ″Manager″ is

the most specific dispatchable method.
4. Invoke the most specific dispatchable method.

Expressions

An expression specifies a value. It can be a simple value, consisting of only a

constant or a column name, or it can be more complex. When repeatedly using

similar complex expressions, an SQL function to encapsulate a common expression

can be considered.

In a Unicode database, an expression that accepts a character or graphic string will

accept any string types for which conversion is supported.

expression:

�

 operator

function-invocation

+

(expression)

-

constant

column-name

variable

special-register

(1)

(scalar-fullselect)

(2)

labeled-duration

(3)

case-expression

(4)

cast-specification

(5)

xmlcast-specification

(6)

array-element-specification

(7)

dereference-operation

(8)

method-invocation

(9)

OLAP-specification

(10)

row-change-expression

(11)

sequence-reference

(12)

subtype-treatment

Methods

Chapter 2. Language elements 149

operator:

 (13)

CONCAT

/

*

+

-

Notes:

1 See “Scalar fullselect” on page 158 for more information.

2 See “Durations” on page 158 for more information.

3 See “CASE expression” on page 163 for more information.

4 See “CAST specification” on page 165 for more information.

5 See “XMLCAST specification” on page 169 for more information.

6 See “ARRAY element specification” on page 170 for more information.

7 See “Dereference operation” on page 170 for more information.

8 See “Method invocation” on page 180 for more information.

9 See “OLAP specifications” on page 172 for more information.

10 See “ROW CHANGE expression” on page 185 for more information.

11 See “Sequence reference” on page 182 for more information.

12 See “Subtype treatment” on page 181 for more information.

13 || can be used as a synonym for CONCAT.

Expressions without operators

If no operators are used, the result of the expression is the specified value.

Examples:

 SALARY:SALARY’SALARY’MAX(SALARY)

Expressions with the concatenation operator

The concatenation operator (CONCAT) links two string operands to form a string

expression.

The operands of concatenation must be compatible strings. Note that a binary

string cannot be concatenated with a character string, including character strings

defined as FOR BIT DATA (SQLSTATE 42884).

In a Unicode database, concatenation involving both character string operands and

graphic string operands will first convert the character operands to graphic

operands. Note that in a non-Unicode database, concatenation cannot involve both

character and graphic operands.

If either operand can be null, the result can be null, and if either is null, the result

is the null value. Otherwise, the result consists of the first operand string followed

by the second. Note that no check is made for improperly formed mixed data

when doing concatenation.

Expressions

150 SQL Reference, Volume 1

The length of the result is the sum of the lengths of the operands.

The data type and length attribute of the result is determined from that of the

operands as shown in the following table:

 Table 15. Data Type and Length of Concatenated Operands

Operands

Combined

Length

Attributes Result

CHAR(A) CHAR(B) <255 CHAR(A+B)

CHAR(A) CHAR(B) >254 VARCHAR(A+B)

CHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

CHAR(A) VARCHAR(B) >4000 LONG VARCHAR

CHAR(A) LONG VARCHAR - LONG VARCHAR

VARCHAR(A) VARCHAR(B) <4001 VARCHAR(A+B)

VARCHAR(A) VARCHAR(B) >4000 LONG VARCHAR

VARCHAR(A) LONG VARCHAR - LONG VARCHAR

LONG VARCHAR LONG VARCHAR - LONG VARCHAR

CLOB(A) CHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) VARCHAR(B) - CLOB(MIN(A+B, 2G))

CLOB(A) LONG VARCHAR - CLOB(MIN(A+32K, 2G))

CLOB(A) CLOB(B) - CLOB(MIN(A+B, 2G))

GRAPHIC(A) GRAPHIC(B) <128 GRAPHIC(A+B)

GRAPHIC(A) GRAPHIC(B) >127 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

GRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

GRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

VARGRAPHIC(A) VARGRAPHIC(B) <2001 VARGRAPHIC(A+B)

VARGRAPHIC(A) VARGRAPHIC(B) >2000 LONG VARGRAPHIC

VARGRAPHIC(A) LONG VARGRAPHIC - LONG VARGRAPHIC

LONG VARGRAPHIC LONG

VARGRAPHIC

- LONG VARGRAPHIC

DBCLOB(A) GRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) VARGRAPHIC(B) - DBCLOB(MIN(A+B, 1G))

DBCLOB(A) LONG VARGRAPHIC - DBCLOB(MIN(A+16K, 1G))

DBCLOB(A) DBCLOB(B) - DBCLOB(MIN(A+B, 1G))

BLOB(A) BLOB(B) - BLOB(MIN(A+B, 2G))

Note that, for compatibility with previous versions, there is no automatic escalation

of results involving LONG data types to LOB data types. For example,

concatenation of a CHAR(200) value and a completely full LONG VARCHAR

value would result in an error rather than in a promotion to a CLOB data type.

The code page of the result is considered a derived code page and is determined

by the code page of its operands.

Expressions

Chapter 2. Language elements 151

One operand may be a parameter marker. If a parameter marker is used, then the

data type and length attributes of that operand are considered to be the same as

those for the non-parameter marker operand. The order of operations must be

considered to determine these attributes in cases with nested concatenation.

Example 1: If FIRSTNME is Pierre and LASTNAME is Fermat, then the following:

 FIRSTNME CONCAT ’ ’ CONCAT LASTNAME

returns the value Pierre Fermat.

Example 2: Given:

v COLA defined as VARCHAR(5) with value ’AA’

v :host_var defined as a character host variable with length 5 and value ’BB ’

v COLC defined as CHAR(5) with value ’CC’

v COLD defined as CHAR(5) with value ’DDDDD’

The value of COLA CONCAT :host_var CONCAT COLC CONCAT COLD is

’AABB CC DDDDD’

The data type is VARCHAR, the length attribute is 17 and the result code page is

the database code page.

Example 3: Given:

v COLA defined as CHAR(10)

v COLB defined as VARCHAR(5)

The parameter marker in the expression:

 COLA CONCAT COLB CONCAT ?

is considered VARCHAR(15), because COLA CONCAT COLB is evaluated first, giving a

result that is the first operand of the second CONCAT operation.

User-defined types

A user-defined type cannot be used with the concatenation operator, even if it is a

distinct type with a source data type that is a string type. To concatenate, create a

function with the CONCAT operator as its source. For example, if there were

distinct types TITLE and TITLE_DESCRIPTION, both of which had VARCHAR(25)

data types, the following user-defined function, ATTACH, could be used to

concatenate them.

 CREATE FUNCTION ATTACH (TITLE, TITLE_DESCRIPTION)

 RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Alternately, the concatenation operator could be overloaded using a user-defined

function to add the new data types.

 CREATE FUNCTION CONCAT (TITLE, TITLE_DESCRIPTION)

 RETURNS VARCHAR(50) SOURCE CONCAT (VARCHAR(), VARCHAR())

Expressions with arithmetic operators

If arithmetic operators are used, the result of the expression is a value derived

from the application of the operators to the values of the operands.

Expressions

152 SQL Reference, Volume 1

If any operand can be null, or the database is configured with

DFT_SQLMATHWARN set to yes, the result can be null.

If any operand has the null value, the result of the expression is the null value.

Arithmetic operators can be applied to signed numeric types and datetime types

(see “Datetime arithmetic in SQL” on page 159). For example, USER+2 is invalid.

Sourced functions can be defined for arithmetic operations on distinct types with a

source type that is a signed numeric type.

The prefix operator + (unary plus) does not change its operand. The prefix

operator - (unary minus) reverses the sign of a nonzero non decimal floating-point

operand. The prefix operator - (unary minus) reverses the sign of all decimal

floating-point operands, including zero and special values; that is, signalling and

non-signalling NaNs and plus and minus infinity. If the data type of A is small

integer, the data type of -A is large integer. The first character of the token

following a prefix operator must not be a plus or minus sign.

The infix operators +, -, *, and / specify addition, subtraction, multiplication, and

division, respectively. The value of the second operand of division must not be

zero. These operators can also be treated as functions. Thus, the expression ″+″(a,b)

is equivalent to the expression a+b. “operator” function.

Arithmetic errors

If an arithmetic error such as divide by zero or a numeric overflow occurs during

the processing of an non-decimal floating-point expression, an error is returned

(SQLSTATE 22003 or 22012). For decimal floating-point expressions, a warning is

returned (SQLSTATEs 0168C, 0168D, 0168E, or 0168F) which depends on the nature

of the arithmetic condition.

A database can be configured (using DFT_SQLMATHWARN set to yes) so that

arithmetic errors return a null value for the non-decimal floating-point expression,

the query returns a warning (SQLSTATE 01519 or 01564), and proceeds with

processing the SQL statement.

For decimal floating-point expressions, DFT_SQLMATHWARN has no effect;

arithmetic conditions return an appropriate value (possibly a decimal floating-point

special value), the query returns a warning (SQLSTATEs 0168C, 0168D, 0168E, or

0168F), and proceeds with processing of the SQL statement. Special values returned

include plus and minus infinity and not a number. Arithmetic expressions

involving one or more decimal floating-point numbers never evaluate to a null

value unless one or more of the arguments to the expression are null.

When arithmetic errors are treated as nulls, there are implications on the results of

SQL statements. The following are some examples of these implications.

v An arithmetic error that occurs in the expression that is the argument of a

column function causes the row to be ignored in the determining the result of

the column function. If the arithmetic error was an overflow, this may

significantly impact the result values.

v An arithmetic error that occurs in the expression of a predicate in a WHERE

clause can cause rows to not be included in the result.

v An arithmetic error that occurs in the expression of a predicate in a check

constraint results in the update or insert proceeding since the constraint is not

false.

Expressions

Chapter 2. Language elements 153

If these types of impacts are not acceptable, additional steps should be taken to

handle the arithmetic error to produce acceptable results. Some examples are:

v add a case expression to check for zero divide and set the desired value for such

a situation

v add additional predicates to handle nulls (like a check constraint on not nullable

columns could become:

 check (c1*c2 is not null and c1*c2>5000)

to cause the constraint to be violated on an overflow).

Two integer operands

If both operands of an arithmetic operator are integers, the operation is performed

in binary and the result is a large integer unless either (or both) operand is a big

integer, in which case the result is a big integer. Any remainder of division is lost.

The result of an integer arithmetic operation (including unary minus) must be

within the range of the result type.

Integer and decimal operands

If one operand is an integer and the other is a decimal, the operation is performed

in decimal using a temporary copy of the integer that has been converted to a

decimal number with precision p and scale 0; p is 19 for a big integer, 11 for a large

integer, and 5 for a small integer.

Two decimal operands

If both operands are decimal, the operation is performed in decimal. The result of

any decimal arithmetic operation is a decimal number with a precision and scale

that are dependent on the operation and the precision and scale of the operands. If

the operation is addition or subtraction and the operands do not have the same

scale, the operation is performed with a temporary copy of one of the operands.

The copy of the shorter operand is extended with trailing zeros so that its

fractional part has the same number of digits as the longer operand.

The result of a decimal operation must not have a precision greater than 31. The

result of decimal addition, subtraction, and multiplication is derived from a

temporary result which may have a precision greater than 31. If the precision of

the temporary result is not greater than 31, the final result is the same as the

temporary result.

Decimal arithmetic in SQL

The following formulas define the precision and scale of the result of decimal

operations in SQL. The symbols p and s denote the precision and scale of the first

operand, and the symbols p’ and s’ denote the precision and scale of the second

operand.

Addition and subtraction

The precision is min(31,max(p-s,p’-s’) +max(s,s’)+1). The scale of the result of

addition and subtraction is max (s,s’).

Expressions

154 SQL Reference, Volume 1

Multiplication

The precision of the result of multiplication is min (31,p+ p’) and the scale is

min(31,s+s’).

Division

The precision of the result of division is 31. The scale is 31-p+s-s’. The scale must

not be negative.

Note: The min_dec_div_3 database configuration parameter alters the scale for

decimal arithmetic operations involving division. If the parameter value is set to

NO, the scale is calculated as 31-p+s-s’. If the parameter is set to YES, the scale is

calculated as MAX(3, 31-p+ s-s’). This ensures that the result of decimal division

always has a scale of at least 3 (precision is always 31).

Floating-point operands

If either operand of an arithmetic operator is floating-point, but not decimal

floating-point, the operation is performed in floating-point. The operands are first

converted to double-precision floating-point numbers, if necessary. Thus, if any

element of an expression is a floating-point number, the result of the expression is

a double-precision floating-point number.

An operation involving a floating-point number and an integer is performed with

a temporary copy of the integer which has been converted to double-precision

floating-point. An operation involving a floating-point number and a decimal

number is performed with a temporary copy of the decimal number which has

been converted to double-precision floating-point. The result of a floating-point

operation must be within the range of floating-point numbers.

The order in which floating-point operands (or arguments to functions) are

processed can slightly affect results because floating-point operands are

approximate representations of real numbers. Since the order in which operands

are processed may be implicitly modified by the optimizer (for example, the

optimizer may decide what degree of parallelism to use and what access plan to

use), an application that uses floating-point operands should not depend on the

results being precisely the same each time an SQL statement is executed.

Decimal floating-point operands

If either operand of an arithmetic operator is decimal floating-point, the operation

is performed in decimal floating-point.

Integer and decimal floating-point operands

If one operand is a small integer or large integer and the other is a

DECFLOAT(n) number, the operation is performed in DECFLOAT(n) using

a temporary copy of the integer that has been converted to a

DECFLOAT(n) number. If one operand is a big integer, and the other is a

decimal floating-point number, a temporary copy of the big integer is

converted to a DECFLOAT(34) number. The rules for two-decimal

floating-point operands then apply.

Decimal and decimal floating-point operands

If one operand is a decimal and the other is a decimal floating-point

number, the operation is performed in decimal floating-point using a

temporary copy of the decimal number that has been converted to a

Expressions

Chapter 2. Language elements 155

decimal floating-point number based on the precision of the decimal

number. If the decimal number has a precision less than 17, the decimal

number is converted to a DECFLOAT(16) number; otherwise, the decimal

number is converted to a DECFLOAT(34) number. The rules for

two-decimal floating-point operands then apply.

Floating-point and decimal floating-point operands

If one operand is a floating-point number (REAL or DOUBLE) and the

other is a DECFLOAT(n) number, the operation is performed in decimal

floating-point using a temporary copy of the floating-point number that

has been converted to a DECFLOAT(n) number.

Two decimal floating-point operands

If both operands are DECFLOAT(n), the operation is performed in

DECFLOAT(n). If one operand is DECFLOAT(16) and the other is

DECFLOAT(34), the operation is performed in DECFLOAT(34).

General arithmetic operation rules for decimal floating-point

The following general rules apply to all arithmetic operations on the decimal

floating-point data type:

v Every operation on finite numbers is carried out as though an exact

mathematical result is computed, using integer arithmetic on the coefficient,

where possible.

If the coefficient of the theoretical exact result has no more than the number of

digits that reflect its precision (16 or 34), it is used for the result without change

(unless there is an underflow or overflow condition). If the coefficient has more

than the number of digits that reflect its precision, it is rounded to exactly the

number of digits that reflect its precision (16 or 34), and the exponent is

increased by the number of digits that are removed.

The CURRENT DECFLOAT ROUNDING MODE special register determines the

rounding mode.

If the value of the adjusted exponent of the result is less than Emin, the calculated

coefficient and exponent form the result, unless the value of the exponent is less

than Etiny, in which case the exponent is set to Etiny, the coefficient is rounded

(possibly to zero) to match the adjustment of the exponent, and the sign remains

unchanged. If this rounding gives an inexact result, an underflow exception

condition is returned.

If the value of the adjusted exponent of the result is larger than Emax, an

overflow exception condition is returned. In this case, the result is defined as an

overflow exception condition and might be infinite. It has the same sign as the

theoretical result.

v Arithmetic that uses the special value infinity follows the usual rules, where

negative infinity is less than every finite number and positive infinity is greater

than every finite number. Under these rules, an infinite result is always exact.

Certain uses of infinity return an invalid operation condition. The following list

shows the operations that can cause an invalid operation condition. The result of

such an operation is NaN when one of the operands is infinity but the other

operand is not NaN or sNaN.

– Add +infinity to -infinity during an addition or subtraction operation

– Multiply 0 by +infinity or -infinity

– Divide either +infinity or -infinity by either +infinity or -infinity

– Either argument of the QUANTIZE function is +infinity or -infinity

– The second argument of the POWER function is +infinity or -infinity

Expressions

156 SQL Reference, Volume 1

– Signaling NaNs used as operands to arithmetic operations

The following rules apply to arithmetic operations and the NaN value:

– The result of any arithmetic operation that has a NaN (quiet or signalling)

operand is NaN. The sign of the result is copied from the first operand that is

a signalling NaN; if neither operand is signalling, the sign is copied from the

first operand that is a NaN. Whenever a result is a NaN, the sign of the result

depends only on the copied operand.

– The sign of the result of a multiplication or division operation is negative

only if the operands have different signs and neither is a NaN.

– The sign of the result of an addition or subtraction operation is negative only

if the result is less than zero and neither operand is a NaN, except for the

following cases where the result is a negative 0:

- A result is rounded to zero, and the value, before rounding, had a negative

sign

- -0 is added to 0

- 0 is subtracted from -0

- Operands with opposite signs are added, or operands with the same sign

are subtracted; the result has a coefficient of 0, and the rounding mode is

ROUND_FLOOR

- Operands are multiplied or divided, the result has a coefficient of 0, and

the signs of the operands are different

- The first argument of the POWER function is -0, and the second argument

is a positive odd number

- The argument of the CEIL, FLOOR, or SQRT function is -0

- The first argument of the ROUND or TRUNCATE function is -0

The following examples show special decimal floating-point values as operands:

 INFINITY + 1 = INFINITY

 INFINITY + INFINITY = INFINITY

 INFINITY + -INFINITY = NAN -- warning

 NAN + 1 = NAN

 NAN + INFINITY = NAN

 1 - INFINITY = -INFINITY

 INFINITY - INFINITY = NAN -- warning

 -INFINITY - -INFINITY = NAN -- warning

 -0.0 - 0.0E1 = -0.0

 -1.0 * 0.0E1 = -0.0

 1.0E1 / 0 = INFINITY -- warning

 -1.0E5 / 0.0 = -INFINITY -- warning

 1.0E5 / -0 = -INFINITY -- warning

 INFINITY / -INFINITY = NAN -- warning

 INFINITY / 0 = INFINITY

 -INFINITY / 0 = -INFINITY

 -INFINITY / -0 = INFINITY

User-defined types as operands

A user-defined type cannot be used with arithmetic operators, even if its source

data type is numeric. To perform an arithmetic operation, create a function with

the arithmetic operator as its source. For example, if there were distinct types

INCOME and EXPENSES, both of which had DECIMAL(8,2) data types, then the

following user-defined function, REVENUE, could be used to subtract one from the

other.

 CREATE FUNCTION REVENUE (INCOME, EXPENSES)

 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Expressions

Chapter 2. Language elements 157

Alternately, the - (minus) operator could be overloaded using a user-defined

function to subtract the new data types.

 CREATE FUNCTION "-" (INCOME, EXPENSES)

 RETURNS DECIMAL(8,2) SOURCE "-" (DECIMAL, DECIMAL)

Precedence of operations

Expressions within parentheses and dereference operations are evaluated first from

left to right. (Parentheses are also used in subselect statements, search conditions,

and functions. However, they should not be used to arbitrarily group sections

within SQL statements.) When the order of evaluation is not specified by

parentheses, prefix operators are applied before multiplication and division, and

multiplication and division are applied before addition and subtraction. Operators

at the same precedence level are applied from left to right.

Scalar fullselect

A scalar fullselect, as supported in an expression, is a fullselect, enclosed in

parentheses, that returns a single row consisting of a single column value. If the

fullselect does not return a row, the result of the expression is the null value. If the

select list element is an expression that is simply a column name or a dereference

operation, the result column name is based on the name of the column. The

authorization required for a scalar fullselect is the same as that required for an

SQL query.

Datetime operations and durations

Datetime values can be incremented, decremented, and subtracted. These

operations can involve decimal numbers called durations. The following sections

describe duration types and detail the rules for datetime arithmetic.

Durations

A duration is a number representing an interval of time. There are four types of

durations.

labeled-duration:

1 4 32

1.10 * (Salary + Bonus) + Salary / :VAR3

Figure 12. Precedence of Operations

Expressions

158 SQL Reference, Volume 1

function

(expression)

constant

column-name

global-variable

host-variable

 YEAR

YEARS

MONTH

MONTHS

DAY

DAYS

HOUR

HOURS

MINUTE

MINUTES

SECOND

SECONDS

MICROSECOND

MICROSECONDS

A labeled duration represents a specific unit of time as expressed by a number

(which can be the result of an expression) followed by one of the seven duration

keywords: YEARS, MONTHS, DAYS, HOURS, MINUTES, SECONDS, or

MICROSECONDS. (The singular form of these keywords is also acceptable: YEAR,

MONTH, DAY, HOUR, MINUTE, SECOND, and MICROSECOND.) The number

specified is converted as if it were assigned to a DECIMAL(15,0) number. A labeled

duration can only be used as an operand of an arithmetic operator in which the

other operand is a value of data type DATE, TIME, or TIMESTAMP. Thus, the

expression HIREDATE + 2 MONTHS + 14 DAYS is valid, whereas the expression

HIREDATE + (2 MONTHS + 14 DAYS) is not. In both of these expressions, the

labeled durations are 2 MONTHS and 14 DAYS.

A date duration represents a number of years, months, and days, expressed as a

DECIMAL(8,0) number. To be properly interpreted, the number must have the

format yyyymmdd., where yyyy represents the number of years, mm the number of

months, and dd the number of days. (The period in the format indicates a

DECIMAL data type.) The result of subtracting one date value from another, as in

the expression HIREDATE - BRTHDATE, is a date duration.

A time duration represents a number of hours, minutes, and seconds, expressed as a

DECIMAL(6,0) number. To be properly interpreted, the number must have the

format hhmmss., where hh represents the number of hours, mm the number of

minutes, and ss the number of seconds. (The period in the format indicates a

DECIMAL data type.) The result of subtracting one time value from another is a

time duration.

A timestamp duration represents a number of years, months, days, hours, minutes,

seconds, and microseconds, expressed as a DECIMAL(20,6) number. To be properly

interpreted, the number must have the format yyyymmddhhmmss.nnnnnn, where

yyyy, mm, dd, hh, mm, ss, and nnnnnn represent, respectively, the number of years,

months, days, hours, minutes, seconds, and microseconds. The result of subtracting

one timestamp value from another is a timestamp duration.

Datetime arithmetic in SQL

The only arithmetic operations that can be performed on datetime values are

addition and subtraction. If a datetime value is the operand of addition, the other

operand must be a duration. The specific rules governing the use of the addition

operator with datetime values follow.

v If one operand is a date, the other operand must be a date duration or labeled

duration of YEARS, MONTHS, or DAYS.

Datetime operations and durations

Chapter 2. Language elements 159

v If one operand is a time, the other operand must be a time duration or a labeled

duration of HOURS, MINUTES, or SECONDS.

v If one operand is a timestamp, the other operand must be a duration. Any type

of duration is valid.

v Neither operand of the addition operator can be a parameter marker.

The rules for the use of the subtraction operator on datetime values are not the

same as those for addition because a datetime value cannot be subtracted from a

duration, and because the operation of subtracting two datetime values is not the

same as the operation of subtracting a duration from a datetime value. The specific

rules governing the use of the subtraction operator with datetime values follow.

v If the first operand is a date, the second operand must be a date, a date

duration, a string representation of a date, or a labeled duration of YEARS,

MONTHS, or DAYS.

v If the second operand is a date, the first operand must be a date, or a string

representation of a date.

v If the first operand is a time, the second operand must be a time, a time

duration, a string representation of a time, or a labeled duration of HOURS,

MINUTES, or SECONDS.

v If the second operand is a time, the first operand must be a time, or string

representation of a time.

v If the first operand is a timestamp, the second operand must be a timestamp, a

string representation of a timestamp, or a duration.

v If the second operand is a timestamp, the first operand must be a timestamp or

a string representation of a timestamp.

v Neither operand of the subtraction operator can be a parameter marker.

Date arithmetic

Dates can be subtracted, incremented, or decremented.

v The result of subtracting one date (DATE2) from another (DATE1) is a date

duration that specifies the number of years, months, and days between the two

dates. The data type of the result is DECIMAL(8,0). If DATE1 is greater than or

equal to DATE2, DATE2 is subtracted from DATE1. If DATE1 is less than

DATE2, however, DATE1 is subtracted from DATE2, and the sign of the result is

made negative. The following procedural description clarifies the steps involved

in the operation result = DATE1 - DATE2.

 If DAY(DATE2) <= DAY(DATE1)

 then DAY(RESULT) = DAY(DATE1) - DAY(DATE2).

 If DAY(DATE2) > DAY(DATE1)

 then DAY(RESULT) = N + DAY(DATE1) - DAY(DATE2)

 where N = the last day of MONTH(DATE2).

 MONTH(DATE2) is then incremented by 1.

 If MONTH(DATE2) <= MONTH(DATE1)

 then MONTH(RESULT) = MONTH(DATE1) - MONTH(DATE2).

 If MONTH(DATE2) > MONTH(DATE1)

 then MONTH(RESULT) = 12 + MONTH(DATE1) - MONTH(DATE2).

 YEAR(DATE2) is then incremented by 1.

 YEAR(RESULT) = YEAR(DATE1) - YEAR(DATE2).

For example, the result of DATE(’3/15/2000’) - ’12/31/1999’ is 00000215. (or, a

duration of 0 years, 2 months, and 15 days).

v The result of adding a duration to a date, or of subtracting a duration from a

date, is itself a date. (For the purposes of this operation, a month denotes the

Datetime operations and durations

160 SQL Reference, Volume 1

equivalent of a calendar page. Adding months to a date, then, is like turning the

pages of a calendar, starting with the page on which the date appears.) The

result must fall between the dates January 1, 0001 and December 31, 9999

inclusive.

If a duration of years is added or subtracted, only the year portion of the date is

affected. The month is unchanged, as is the day unless the result would be

February 29 of a non-leap-year. In this case, the day is changed to 28, and a

warning indicator in the SQLCA is set to indicate the adjustment.

Similarly, if a duration of months is added or subtracted, only months and, if

necessary, years are affected. The day portion of the date is unchanged unless

the result would be invalid (September 31, for example). In this case, the day is

set to the last day of the month, and a warning indicator in the SQLCA is set to

indicate the adjustment.

Adding or subtracting a duration of days will, of course, affect the day portion

of the date, and potentially the month and year.

Date durations, whether positive or negative, may also be added to and

subtracted from dates. As with labeled durations, the result is a valid date, and a

warning indicator is set in the SQLCA whenever an end-of-month adjustment is

necessary.

When a positive date duration is added to a date, or a negative date duration is

subtracted from a date, the date is incremented by the specified number of

years, months, and days, in that order. Thus, DATE1 + X, where X is a positive

DECIMAL(8,0) number, is equivalent to the expression:

 DATE1 + YEAR(X) YEARS + MONTH(X) MONTHS + DAY(X) DAYS.

When a positive date duration is subtracted from a date, or a negative date

duration is added to a date, the date is decremented by the specified number of

days, months, and years, in that order. Thus, DATE1 - X, where X is a positive

DECIMAL(8,0) number, is equivalent to the expression:

 DATE1 - DAY(X) DAYS - MONTH(X) MONTHS - YEAR(X) YEARS.

When adding durations to dates, adding one month to a given date gives the

same date one month later unless that date does not exist in the later month. In

that case, the date is set to that of the last day of the later month. For example,

January 28 plus one month gives February 28; and one month added to January

29, 30, or 31 results in either February 28 or, for a leap year, February 29.

Note: If one or more months is added to a given date and then the same

number of months is subtracted from the result, the final date is not necessarily

the same as the original date.

Time arithmetic

Times can be subtracted, incremented, or decremented.

v The result of subtracting one time (TIME2) from another (TIME1) is a time

duration that specifies the number of hours, minutes, and seconds between the

two times. The data type of the result is DECIMAL(6,0).

If TIME1 is greater than or equal to TIME2, TIME2 is subtracted from TIME1.

If TIME1 is less than TIME2, however, TIME1 is subtracted from TIME2, and the

sign of the result is made negative. The following procedural description

clarifies the steps involved in the operation result = TIME1 - TIME2.

 If SECOND(TIME2) <= SECOND(TIME1)

 then SECOND(RESULT) = SECOND(TIME1) - SECOND(TIME2).

Datetime operations and durations

Chapter 2. Language elements 161

If SECOND(TIME2) > SECOND(TIME1)

 then SECOND(RESULT) = 60 + SECOND(TIME1) - SECOND(TIME2).

 MINUTE(TIME2) is then incremented by 1.

 If MINUTE(TIME2) <= MINUTE(TIME1)

 then MINUTE(RESULT) = MINUTE(TIME1) - MINUTE(TIME2).

 If MINUTE(TIME1) > MINUTE(TIME1)

 then MINUTE(RESULT) = 60 + MINUTE(TIME1) - MINUTE(TIME2).

 HOUR(TIME2) is then incremented by 1.

 HOUR(RESULT) = HOUR(TIME1) - HOUR(TIME2).

For example, the result of TIME(’11:02:26’) - ’00:32:56’ is 102930. (a duration of 10

hours, 29 minutes, and 30 seconds).

v The result of adding a duration to a time, or of subtracting a duration from a

time, is itself a time. Any overflow or underflow of hours is discarded, thereby

ensuring that the result is always a time. If a duration of hours is added or

subtracted, only the hours portion of the time is affected. The minutes and

seconds are unchanged.

Similarly, if a duration of minutes is added or subtracted, only minutes and, if

necessary, hours are affected. The seconds portion of the time is unchanged.

Adding or subtracting a duration of seconds will, of course, affect the seconds

portion of the time, and potentially the minutes and hours.

Time durations, whether positive or negative, also can be added to and

subtracted from times. The result is a time that has been incremented or

decremented by the specified number of hours, minutes, and seconds, in that

order. TIME1 + X, where “X” is a DECIMAL(6,0) number, is equivalent to the

expression:

 TIME1 + HOUR(X) HOURS + MINUTE(X) MINUTES + SECOND(X) SECONDS

Note: Although the time ’24:00:00’ is accepted as a valid time, it is never

returned as the result of time addition or subtraction, even if the duration

operand is zero (for example, time(’24:00:00’)±0 seconds = ’00:00:00’).

Timestamp arithmetic

Timestamps can be subtracted, incremented, or decremented.

v The result of subtracting one timestamp (TS2) from another (TS1) is a timestamp

duration that specifies the number of years, months, days, hours, minutes,

seconds, and microseconds between the two timestamps. The data type of the

result is DECIMAL(20,6).

If TS1 is greater than or equal to TS2, TS2 is subtracted from TS1. If TS1 is less

than TS2, however, TS1 is subtracted from TS2 and the sign of the result is made

negative. The following procedural description clarifies the steps involved in the

operation result = TS1 - TS2:

 If MICROSECOND(TS2) <= MICROSECOND(TS1)

 then MICROSECOND(RESULT) = MICROSECOND(TS1) -

 MICROSECOND(TS2).

 If MICROSECOND(TS2) > MICROSECOND(TS1)

 then MICROSECOND(RESULT) = 1000000 +

 MICROSECOND(TS1) - MICROSECOND(TS2)

 and SECOND(TS2) is incremented by 1.

The seconds and minutes part of the timestamps are subtracted as specified in

the rules for subtracting times.

 If HOUR(TS2) <= HOUR(TS1)

 then HOUR(RESULT) = HOUR(TS1) - HOUR(TS2).

Datetime operations and durations

162 SQL Reference, Volume 1

If HOUR(TS2) > HOUR(TS1)

 then HOUR(RESULT) = 24 + HOUR(TS1) - HOUR(TS2)

 and DAY(TS2) is incremented by 1.

The date part of the timestamps is subtracted as specified in the rules for

subtracting dates.

v The result of adding a duration to a timestamp, or of subtracting a duration

from a timestamp is itself a timestamp. Date and time arithmetic is performed as

previously defined, except that an overflow or underflow of hours is carried into

the date part of the result, which must be within the range of valid dates.

Microseconds overflow into seconds.

CASE expression

case-expression:

CASE

searched-when-clause

simple-when-clause

 ELSE NULL

ELSE

result-expression

END

searched-when-clause:

�

WHEN

search-condition

THEN

result-expression

NULL

simple-when-clause:

�

expression

WHEN

expression

THEN

result-expression

NULL

CASE expressions allow an expression to be selected based on the evaluation of

one or more conditions. In general, the value of the case-expression is the value of

the result-expression following the first (leftmost) case that evaluates to true. If no

case evaluates to true and the ELSE keyword is present then the result is the value

of the result-expression or NULL. If no case evaluates to true and the ELSE keyword

is not present then the result is NULL. Note that when a case evaluates to

unknown (because of NULLs), the case is not true and hence is treated the same

way as a case that evaluates to false.

If the CASE expression is in a VALUES clause, an IN predicate, a GROUP BY

clause, or an ORDER BY clause, the search-condition in a searched-when-clause

cannot be a quantified predicate, IN predicate using a fullselect, or an EXISTS

predicate (SQLSTATE 42625).

When using the simple-when-clause, the value of the expression prior to the first

WHEN keyword is tested for equality with the value of the expression following the

WHEN keyword. The data type of the expression prior to the first WHEN keyword

must therefore be comparable to the data types of each expression following the

WHEN keyword(s). The expression prior to the first WHEN keyword in a

simple-when-clause cannot include a function that is variant or has an external action

(SQLSTATE 42845).

Datetime operations and durations

Chapter 2. Language elements 163

A result-expression is an expression following the THEN or ELSE keywords. There

must be at least one result-expression in the CASE expression (NULL cannot be

specified for every case) (SQLSTATE 42625). All result expressions must have

compatible data types (SQLSTATE 42804).

Examples

v If the first character of a department number is a division in the organization,

then a CASE expression can be used to list the full name of the division to

which each employee belongs:

 SELECT EMPNO, LASTNAME,

 CASE SUBSTR(WORKDEPT,1,1)

 WHEN ’A’ THEN ’Administration’

 WHEN ’B’ THEN ’Human Resources’

 WHEN ’C’ THEN ’Accounting’

 WHEN ’D’ THEN ’Design’

 WHEN ’E’ THEN ’Operations’

 END

 FROM EMPLOYEE;

v The number of years of education are used in the EMPLOYEE table to give the

education level. A CASE expression can be used to group these and to show the

level of education.

 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,

 CASE

 WHEN EDLEVEL < 15 THEN ’SECONDARY’

 WHEN EDLEVEL < 19 THEN ’COLLEGE’

 ELSE ’POST GRADUATE’

 END

 FROM EMPLOYEE

v Another interesting example of CASE statement usage is in protecting from

division by 0 errors. For example, the following code finds the employees who

earn more than 25% of their income from commission, but who are not fully

paid on commission:

 SELECT EMPNO, WORKDEPT, SALARY+COMM FROM EMPLOYEE

 WHERE (CASE WHEN SALARY=0 THEN NULL

 ELSE COMM/SALARY

 END) > 0.25;

v The following CASE expressions are the same:

 SELECT LASTNAME,

 CASE

 WHEN LASTNAME = ’Haas’ THEN ’President’

 ...

 SELECT LASTNAME,

 CASE LASTNAME

 WHEN ’Haas’ THEN ’President’

 ...

There are two scalar functions, NULLIF and COALESCE, that are specialized to

handle a subset of the functionality provided by CASE. Table 16 shows the

equivalent expressions using CASE or these functions.

 Table 16. Equivalent CASE Expressions

Expression Equivalent Expression

CASE

 WHEN e1=e2 THEN NULL

 ELSE e1

END

NULLIF(e1,e2)

CASE expression

164 SQL Reference, Volume 1

Table 16. Equivalent CASE Expressions (continued)

Expression Equivalent Expression

CASE

 WHEN e1 IS NOT NULL THEN e1

 ELSE e2

END

COALESCE(e1,e2)

CASE

 WHEN e1 IS NOT NULL THEN e1

 ELSE COALESCE(e2,...,eN)

END

COALESCE(e1,e2,...,eN)

CASE

 WHEN c1=var1 OR (c1 IS NULL AND var1 IS NULL)

 THEN ’a’

 WHEN c1=var2 OR (c1 IS NULL AND var2 IS NULL)

 THEN ’b’

 ELSE NULL

END

DECODE(c1,var1, ’a’, var2,

’b’)

CAST specification

cast-specification:

 CAST (expression

NULL

parameter-marker

 AS data-type �

�)

(1)

SCOPE

typed-table-name

typed-view-name

data-type:

 built-in-type

distinct-type-name

structured-type-name

REF

(type-name2)

built-in-type:

CASE expression

Chapter 2. Language elements 165

SMALLINT

INTEGER

INT

BIGINT

(5,0)

DECIMAL

DEC

,0

NUMERIC

(integer

)

NUM

,integer

(53)

FLOAT

(integer)

REAL

PRECISION

DOUBLE

(34)

DECFLOAT

(16)

(1)

CHARACTER

CHAR

(integer)

FOR BIT DATA

VARCHAR

(integer)

FOR SBCS DATA

CHARACTER

VARYING

FOR MIXED DATA

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(integer

)

CHAR

K

M

G

(1)

GRAPHIC

(integer)

VARGRAPHIC

(integer)

(1M)

DBCLOB

(integer

)

K

M

G

(1M)

BLOB

BINARY LARGE OBJECT

(integer

)

K

M

G

DATE

TIME

TIMESTAMP

XML

SYSPROC.

DB2SECURITYLABEL

Notes:

1 The SCOPE clause only applies to the REF data type.

The CAST specification returns the cast operand (the first operand) cast to the type

specified by the data-type. If the cast is not supported, an error is returned

(SQLSTATE 42846).

CAST specification

166 SQL Reference, Volume 1

expression

If the cast operand is an expression (other than parameter marker or NULL),

the result is the argument value converted to the specified target data-type.

 When casting character strings (other than CLOBs) to a character string with a

different length, a warning (SQLSTATE 01004) is returned if truncation of other

than trailing blanks occurs. When casting graphic character strings (other than

DBCLOBs) to a graphic character string with a different length, a warning

(SQLSTATE 01004) is returned if truncation of other than trailing blanks occurs.

For BLOB, CLOB and DBCLOB cast operands, the warning is issued if any

characters are truncated.

When casting an array, the target data type must be a user-defined array data

type (SQLSTATE 42821). The data type of the elements of the array must be the

same as the data type of the elements of the target array data type (SQLSTATE

42846). The cardinality of the array must be less than or equal to the maximum

cardinality of the target array data type (SQLSTATE 2202F).

NULL

If the cast operand is the keyword NULL, the result is a null value that has the

specified data-type.

parameter-marker

A parameter marker (specified as a question mark character) is normally

considered an expression, but is documented separately in this case because it

has a special meaning. If the cast operand is a parameter-marker, the specified

data-type is considered a promise that the replacement will be assignable to the

specified data type (using store assignment for strings). Such a parameter

marker is considered a typed parameter marker. Typed parameter markers will be

treated like any other typed value for the purpose of function resolution,

DESCRIBE of a select list or for column assignment.

data-type

The name of an existing data type. If the type name is not qualified, the SQL

path is used to perform data type resolution. A data type that has associated

attributes, such as length or precision and scale, should include these attributes

when specifying data-type. (CHAR defaults to a length of 1, DECIMAL defaults

to a precision of 5 and a scale of 0, and DECFLOAT defaults to a precision of

34 if not specified.) The FOR SBCS DATA clause or the FOR MIXED DATA

clause (only one is supported depending on whether or not the database

supports the graphic data type) can be used to cast a FOR BIT DATA string to

the database code page. Restrictions on the supported data types are based on

the specified cast operand.

v For a cast operand that is an expression, the supported target data types

depend on the data type of the cast operand (source data type).

v For a cast operand that is the keyword NULL, any existing data type can be

used.

v For a cast operand that is a parameter marker, the target data type can be

any existing data type. If the data type is a user-defined distinct type, the

application using the parameter marker will use the source data type of the

user-defined distinct type. If the data type is a user-defined structured type,

the application using the parameter marker will use the input parameter

type of the TO SQL transform function for the user-defined structured type.

SCOPE

When the data type is a reference type, a scope may be defined that identifies

the target table or target view of the reference.

CAST specification

Chapter 2. Language elements 167

typed-table-name

The name of a typed table. The table must already exist (SQLSTATE 42704).

The cast must be to data-type REF(S), where S is the type of typed-table-name

(SQLSTATE 428DM).

typed-view-name

The name of a typed view. The view must exist or have the same name as

the view being created that includes the cast as part of the view definition

(SQLSTATE 42704). The cast must be to data-type REF(S), where S is the

type of typed-view-name (SQLSTATE 428DM).

When numeric data is cast to character data, the result data type is a fixed-length

character string. When character data is cast to numeric data, the result data type

depends on the type of number specified. For example, if cast to integer, it

becomes a large integer.

Examples

v An application is only interested in the integer portion of the SALARY (defined

as decimal(9,2)) from the EMPLOYEE table. The following query, including the

employee number and the integer value of SALARY, could be prepared.

 SELECT EMPNO, CAST(SALARY AS INTEGER) FROM EMPLOYEE

v Assume the existence of a distinct type called T_AGE that is defined on

SMALLINT and used to create column AGE in PERSONNEL table. Also assume

the existence of a distinct type called R_YEAR that is defined on INTEGER and

used to create column RETIRE_YEAR in PERSONNEL table. The following

update statement could be prepared.

 UPDATE PERSONNEL SET RETIRE_YEAR =?

 WHERE AGE = CAST(? AS T_AGE)

The first parameter is an untyped parameter marker that would have a data

type of R_YEAR, although the application will use an integer for this parameter

marker. This does not require the explicit CAST specification because it is an

assignment.

The second parameter marker is a typed parameter marker that is cast as a

distinct type T_AGE. This satisfies the requirement that the comparison must be

performed with compatible data types. The application will use the source data

type (which is SMALLINT) for processing this parameter marker.

Successful processing of this statement assumes that the SQL path includes the

schema name of the schema (or schemas) where the two distinct types are

defined.

v An application supplies a value that is a series of bits, for example an audio

stream, and it should not undergo code page conversion before being used in an

SQL statement. The application could use the following CAST:

 CAST(? AS VARCHAR(10000) FOR BIT DATA)

v Assume that an array type and a table have been created as follows:

 CREATE TYPE PHONELIST AS DECIMAL(10, 0) ARRAY[5]

 CREATE TABLE EMP_PHONES

 (ID INTEGER,

 PHONENUMBER DECIMAL(10,0))

The following procedure returns an array with the phone numbers for the

employee with ID 1775. If there are more than five phone numbers for this

employee, an error is returned (SQLSTATE 2202F).

CAST specification

168 SQL Reference, Volume 1

CREATE PROCEDURE GET_PHONES(OUT EPHONES PHONELIST)

 BEGIN

 SELECT CAST(ARRAY_AGG(PHONENUMBER) AS PHONELIST)

 INTO EPHONES

 FROM EMP_PHONES

 WHERE ID = 1775;

 END

XMLCAST specification

xmlcast-specification:

 XMLCAST (expression AS data-type)

NULL

parameter-marker

The XMLCAST specification returns the cast operand (the first operand) cast to the

type specified by the data type. XMLCAST supports casts involving XML values,

including conversions between non-XML data types and the XML data type. If the

cast is not supported, an error is returned (SQLSTATE 22003).

expression

If the cast operand is an expression (other than a parameter marker or NULL),

the result is the argument value converted to the specified target data type.

The expression or the target data type must be the XML data type (SQLSTATE

42846).

NULL

If the cast operand is the keyword NULL, the target data type must be the

XML data type (SQLSTATE 42846). The result is a null XML value.

parameter-marker

If the cast operand is a parameter marker, the target data type must be XML

(SQLSTATE 42846). A parameter marker (specified as a question mark

character) is normally considered to be an expression, but is documented

separately in this case because it has special meaning. If the cast operand is a

parameter marker, the specified data type is considered to be a promise that

the replacement will be assignable to the specified (XML) data type (using

store assignment). Such a parameter marker is considered to be a typed

parameter marker, which is treated like any other typed value for the purpose

of function resolution, a describe operation on a select list, or column

assignment.

data-type

The name of an existing SQL data type. If the name is not qualified, the SQL

path is used to perform data type resolution. If a data type has associated

attributes, such as length or precision and scale, these attributes should be

included when specifying a value for data-type. CHAR defaults to a length of 1,

and DECIMAL defaults to a precision of 5 and a scale of 0 if not specified.

Restrictions on the supported data types are based on the specified cast

operand.

v For a cast operand that is an expression, the supported target data types

depend on the data type of the cast operand (source data type).

v For a cast operand that is the keyword NULL, the target data type must be

XML.

v For a cast operand that is a parameter marker, the target data type must be

XML.

CAST specification

Chapter 2. Language elements 169

Note:

1. Support in non-Unicode databases: When XMLCAST is used to convert an

XML value to an SQL data type, code page conversion is performed. The

encoding of the cast expression is converted from UTF-8 to the database code

page. Characters in the original expression that are not present in the database

code page are replaced by substitution characters as a result of this conversion.

2. Support in multiple database partition databases: The XMLCAST specification

is supported only in a database with a single database partition (SQLSTATE

42997).

Examples

v Create a null XML value.

 XMLCAST(NULL AS XML)

v Convert a value extracted from an XMLQUERY expression into an INTEGER:

 XMLCAST(XMLQUERY(’$m/PRODUCT/QUANTITY’

 PASSING BY REF xmlcol AS "m" RETURNING SEQUENCE) AS INTEGER)

v Convert a value extracted from an XMLQUERY expression into a varying-length

character string:

 XMLCAST(XMLQUERY(’$m/PRODUCT/ADD-TIMESTAMP’

 PASSING BY REF xmlcol AS "m" RETURNING SEQUENCE) AS VARCHAR(30))

v Convert a value extracted from an SQL scalar subquery into an XML value.

 XMLCAST((SELECT quantity FROM product AS p

 WHERE p.id = 1077) AS XML)

ARRAY element specification

array-element-specification:

 array-variable

CAST

(

parameter-marker

AS

data-type

)
 [expression]

The ARRAY element specification returns the element from an array specified by

expression. If any argument to expression is null, the null value is returned.

array-variable

Specifies a variable or parameter of type ARRAY in an SQL procedure

(SQLSTATE 428H0).

CAST (parameter-marker AS data-type)

A parameter marker (specified as a question mark character) is normally

considered to be an expression, but in this case it must explicitly be cast to a

user-defined array data type.

[expression]

Specifies the subindex of the element that is to be extracted from the array. The

subindex must be of an exact numeric type with scale zero (SQLSTATE 428H1);

its value must be between 1 and the cardinality of the array (SQLSTATE

2202E).

Dereference operation

dereference-operation:

XMLCAST specification

170 SQL Reference, Volume 1

scoped-ref-expression -> name1

�

(

)

,

expression

The scope of the scoped reference expression is a table or view called the target

table or view. The scoped reference expression identifies a target row. The target row

is the row in the target table or view (or in one of its subtables or subviews) whose

object identifier (OID) column value matches the reference expression. The

dereference operation can be used to access a column of the target row, or to

invoke a method, using the target row as the subject of the method. The result of a

dereference operation can always be null. The dereference operation takes

precedence over all other operators.

scoped-ref-expression

An expression that is a reference type that has a scope (SQLSTATE 428DT). If

the expression is a host variable, parameter marker or other unscoped

reference type value, a CAST specification with a SCOPE clause is required to

give the reference a scope.

name1

Specifies an unqualified identifier.

 If no parentheses follow name1, and name1 matches the name of an attribute of

the target type, then the value of the dereference operation is the value of the

named column in the target row. In this case, the data type of the column

(made nullable) determines the result type of the dereference operation. If no

target row exists whose object identifier matches the reference expression, then

the result of the dereference operation is null. If the dereference operation is

used in a select list and is not included as part of an expression, name1

becomes the result column name.

If parentheses follow name1, or if name1 does not match the name of an

attribute of the target type, then the dereference operation is treated as a

method invocation. The name of the invoked method is name1. The subject of

the method is the target row, considered as an instance of its structured type. If

no target row exists whose object identifier matches the reference expression,

the subject of the method is a null value of the target type. The expressions

inside parentheses, if any, provide the remaining parameters of the method

invocation. The normal process is used for resolution of the method invocation.

The result type of the selected method (made nullable) determines the result

type of the dereference operation.

The authorization ID of the statement that uses a dereference operation must have

SELECT privilege on the target table of the scoped-ref-expression (SQLSTATE 42501).

A dereference operation can never modify values in the database. If a dereference

operation is used to invoke a mutator method, the mutator method modifies a

copy of the target row and returns the copy, leaving the database unchanged.

Examples

v Assume the existence of an EMPLOYEE table that contains a column called

DEPTREF which is a reference type scoped to a typed table based on a type that

includes the attribute DEPTNAME. The values of DEPTREF in the table

EMPLOYEE should correspond to the OID column values in the target table of

DEPTREF column.

Dereference operation

Chapter 2. Language elements 171

SELECT EMPNO, DEPTREF->DEPTNAME

 FROM EMPLOYEE

v Using the same tables as in the previous example, use a dereference operation to

invoke a method named BUDGET, with the target row as subject parameter, and

’1997’ as an additional parameter.

 SELECT EMPNO, DEPTREF->BUDGET(’1997’) AS DEPTBUDGET97

 FROM EMPLOYEE

OLAP specifications

OLAP-specification:

 ordered-OLAP-specification

numbering-specification

aggregation-specification

ordered-OLAP-specification:

 lag-function

lead-function

RANK ()

DENSE_RANK ()

 OVER (

window-partition-clause
 �

� window-order-clause)

lag-function:

 LAG (expression �

�)

,

offset

,

default-value

,

’RESPECT NULLS’

’IGNORE NULLS’

lead-function:

 LEAD (expression �

�)

,

offset

,

default-value

,

’RESPECT NULLS’

’IGNORE NULLS’

window-partition-clause:

�

 ,

PARTITION BY

partitioning-expression

Dereference operation

172 SQL Reference, Volume 1

window-order-clause:

ORDER BY

�

 ,

sort-key-expression

asc-option

desc-option

ORDER OF

table-designator

asc-option:

 ASC NULLS LAST

NULLS FIRST

desc-option:

 NULLS FIRST

DESC

NULLS LAST

numbering-specification:

 ROW_NUMBER () OVER (

window-partition-clause
 �

�)

window-order-clause

aggregation-specification:

 (1)

column-function

OVER

OLAP-column-function

(

window-partition-clause

�

�
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW

window-order-clause

window-aggregation-group-clause

)

OLAP-column-function:

 first-value-function

last-value-function

first-value-function:

 FIRST_VALUE (expression)

,

’RESPECT NULLS’

’IGNORE NULLS’

OLAP specifications

Chapter 2. Language elements 173

last-value-function:

 LAST_VALUE (expression)

,

’RESPECT NULLS’

’IGNORE NULLS’

window-aggregation-group-clause:

 ROWS

RANGE
 group-start

group-between

group-end

group-start:

 UNBOUNDED PRECEDING

unsigned-constant

PRECEDING

CURRENT ROW

group-between:

 BETWEEN group-bound1 AND group-bound2

group-bound1:

 UNBOUNDED PRECEDING

unsigned-constant

PRECEDING

unsigned-constant

FOLLOWING

CURRENT ROW

group-bound2:

 UNBOUNDED FOLLOWING

unsigned-constant

PRECEDING

unsigned-constant

FOLLOWING

CURRENT ROW

group-end:

 UNBOUNDED FOLLOWING

unsigned-constant

FOLLOWING

Notes:

1 ARRAY_AGG is not supported as a column function in aggregation-
specification (SQLSTATE 42887).

On-Line Analytical Processing (OLAP) functions provide the ability to return

ranking, row numbering and existing column function information as a scalar

value in a query result. An OLAP function can be included in expressions in a

select-list or the ORDER BY clause of a select-statement (SQLSTATE 42903). An

OLAP function cannot be used within an argument to an XMLQUERY or

XMLEXISTS expression (SQLSTATE 42903). An OLAP function cannot be used as

OLAP specifications

174 SQL Reference, Volume 1

an argument of a column function (SQLSTATE 42607). The query result to which

the OLAP function is applied is the result table of the innermost subselect that

includes the OLAP function.

When specifying an OLAP function, a window is specified that defines the rows

over which the function is applied, and in what order. When used with a column

function, the applicable rows can be further refined, relative to the current row, as

either a range or a number of rows preceding and following the current row. For

example, within a partition by month, an average can be calculated over the

previous three month period.

The ranking function computes the ordinal rank of a row within the window.

Rows that are not distinct with respect to the ordering within their window are

assigned the same rank. The results of ranking may be defined with or without

gaps in the numbers resulting from duplicate values.

If RANK is specified, the rank of a row is defined as 1 plus the number of rows

that strictly precede the row. Thus, if two or more rows are not distinct with

respect to the ordering, then there will be one or more gaps in the sequential rank

numbering.

If DENSE_RANK (or DENSERANK) is specified, the rank of a row is defined as 1

plus the number of preceding rows that are distinct with respect to the ordering.

Therefore, there will be no gaps in the sequential rank numbering.

The ROW_NUMBER (or ROWNUMBER) function computes the sequential row

number of the row within the window defined by the ordering, starting with 1 for

the first row. If the ORDER BY clause is not specified in the window, the row

numbers are assigned to the rows in arbitrary order, as returned by the subselect

(not according to any ORDER BY clause in the select-statement).

If the FETCH FIRST n ROWS ONLY clause is used along with the ROW_NUMBER

function, the row numbers might not be displayed in order. The FETCH FIRST

clause is applied after the result set (including any ROW_NUMBER assignments) is

generated; therefore, if the row number order is not the same as the order of the

result set, some assigned numbers might be missing from the sequence.

The data type of the result of RANK, DENSE_RANK or ROW_NUMBER is

BIGINT. The result cannot be null.

The LAG function returns the expression value for the row at offset rows before the

current row. The offset must be a positive integer (SQLSTATE 42815). An offset

value of 0 means the current row. If a window-partition-clause is specified, offset

means offset rows before the current row and within the current partition. If offset is

not specified, the value 1 is used. If default-value (which can be an expression) is

specified, it will be returned if the offset goes beyond the scope of the current

partition. Otherwise, the null value is returned. If ’IGNORE NULLS’ is specified,

all rows where the expression value for the row is the null value are not

considered in the calculation. If ’IGNORE NULLS’ is specified and all rows are

null, default-value (or the null value if default-value was not specified) is returned.

The LEAD function returns the expression value for the row at offset rows after the

current row. The offset must be a positive integer (SQLSTATE 42815). An offset

value of 0 means the current row. If a window-partition-clause is specified, offset

means offset rows after the current row and within the current partition. If offset is

not specified, the value 1 is used. If default-value (which can be an expression) is

OLAP specifications

Chapter 2. Language elements 175

specified, it will be returned if the offset goes beyond the scope of the current

partition. Otherwise, the null value is returned. If ’IGNORE NULLS’ is specified,

all rows where the expression value for the row is the null value are not

considered in the calculation. If ’IGNORE NULLS’ is specified and all rows are

null, default-value (or the null value if default-value was not specified) is returned.

The FIRST_VALUE function returns the expression value for the first row in an

OLAP window. If ’IGNORE NULLS’ is specified, all rows where the expression

value for the row is the null value are not considered in the calculation. If

’IGNORE NULLS’ is specified and all values in the OLAP window are null,

FIRST_VALUE returns the null value.

The LAST_VALUE function returns the expression value for the last row in an

OLAP window. If ’IGNORE NULLS’ is specified, all rows where the expression

value for the row is the null value are not considered in the calculation. If

’IGNORE NULLS’ is specified and all values in the OLAP window are null,

LAST_VALUE returns the null value.

The data type of the result of FIRST_VALUE, LAG, LAST_VALUE, and LEAD is

the data type of the expression. The result can be null.

PARTITION BY (partitioning-expression,...)

Defines the partition within which the function is applied. A

partitioning-expression is an expression that is used in defining the partitioning

of the result set. Each column-name that is referenced in a partitioning-expression

must unambiguously reference a result set column of the OLAP function

subselect statement (SQLSTATE 42702 or 42703). A partitioning-expression cannot

include a scalar fullselect or an XMLQUERY or XMLEXISTS expression

(SQLSTATE 42822), or any function or query that is not deterministic or that

has an external action (SQLSTATE 42845).

window-order-clause

ORDER BY (sort-key-expression,...)

Defines the ordering of rows within a partition that determines the value

of the OLAP function or the meaning of the ROW values in the

window-aggregation-group-clause (it does not define the ordering of the

query result set).

sort-key-expression

An expression used in defining the ordering of the rows within a window

partition. Each column name referenced in a sort-key-expression must

unambiguously reference a column of the result set of the subselect,

including the OLAP function (SQLSTATE 42702 or 42703). A

sort-key-expression cannot include a scalar fullselect or an XMLQUERY or

XMLEXISTS expression (SQLSTATE 42822), or any function or query that is

not deterministic or that has an external action (SQLSTATE 42845). This

clause is required for the RANK and DENSE_RANK functions (SQLSTATE

42601).

ASC

Uses the values of the sort-key-expression in ascending order.

DESC

Uses the values of the sort-key-expression in descending order.

NULLS FIRST

The window ordering considers null values before all non-null values in the

sort order.

OLAP specifications

176 SQL Reference, Volume 1

NULLS LAST

The window ordering considers null values after all non-null values in the

sort order.

ORDER OF table-designator

Specifies that the same ordering used in table-designator should be applied

to the result table of the subselect. There must be a table reference

matching table-designator in the FROM clause of the subselect that specifies

this clause (SQLSTATE 42703). The subselect (or fullselect) corresponding

to the specified table-designator must include an ORDER BY clause that is

dependant on the data (SQLSTATE 428FI). The ordering that is applied is

the same as if the columns of the ORDER BY clause in the nested subselect

(or fullselect) were included in the outer subselect (or fullselect), and these

columns were specified in place of the ORDER OF clause.

window-aggregation-group-clause

The aggregation group of a row R is a set of rows defined in relation to R (in

the ordering of the rows of R’s partition). This clause specifies the aggregation

group. If this clause is not specified and a window-order-clause is also not

specified, the aggregation group consists of all the rows of the window

partition. This default can be specified explicitly using RANGE (as shown) or

ROWS.

 If window-order-clause is specified, the default behavior is different when

window-aggregation-group-clause is not specified. The window aggregation

group consists of all rows of the partition of R that precede R or that are peers

of R in the window ordering of the window partition defined by the

window-order-clause.

ROWS

Indicates the aggregation group is defined by counting rows.

RANGE

Indicates the aggregation group is defined by an offset from a sort key.

group-start

Specifies the starting point for the aggregation group. The aggregation

group end is the current row. Specification of the group-start clause is

equivalent to a group-between clause of the form ″BETWEEN group-start

AND CURRENT ROW″.

group-between

Specifies the aggregation group start and end based on either ROWS or

RANGE.

group-end

Specifies the ending point for the aggregation group. The aggregation

group start is the current row. Specification of the group-end clause is

equivalent to a group-between clause of the form ″BETWEEN CURRENT

ROW AND group-end″.

UNBOUNDED PRECEDING

Includes the entire partition preceding the current row. This can be

specified with either ROWS or RANGE. Also, this can be specified with

multiple sort-key-expressions in the window-order-clause.

UNBOUNDED FOLLOWING

Includes the entire partition following the current row. This can be

specified with either ROWS or RANGE. Also, this can be specified with

multiple sort-key-expressions in the window-order-clause.

OLAP specifications

Chapter 2. Language elements 177

CURRENT ROW

Specifies the start or end of the aggregation group based on the current

row. If ROWS is specified, the current row is the aggregation group

boundary. If RANGE is specified, the aggregation group boundary includes

the set of rows with the same values for the sort-key-expressions as the

current row. This clause cannot be specified in group-bound2 if group-bound1

specifies value FOLLOWING.

value PRECEDING

Specifies either the range or number of rows preceding the current row. If

ROWS is specified, then value is a positive integer indicating a number of

rows. If RANGE is specified, then the data type of value must be

comparable to the type of the sort-key-expression of the

window-order-clause. There can only be one sort-key-expression, and the

data type of the sort-key-expression must allow subtraction. This clause

cannot be specified in group-bound2 if group-bound1 is CURRENT ROW or

value FOLLOWING.

value FOLLOWING

Specifies either the range or number of rows following the current row. If

ROWS is specified, then value is a positive integer indicating a number of

rows. If RANGE is specified, then the data type of value must be

comparable to the type of the sort-key-expression of the

window-order-clause. There can only be one sort-key-expression, and the

data type of the sort-key-expression must allow addition.

Examples

v Display the ranking of employees, in order by surname, according to their total

salary (based on salary plus bonus) that have a total salary more than $30,000.

 SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,

 RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY

 FROM EMPLOYEE WHERE SALARY+BONUS > 30000

 ORDER BY LASTNAME

Note that if the result is to be ordered by the ranking, then replace ORDER BY

LASTNAME with:

 ORDER BY RANK_SALARY

or

 ORDER BY RANK() OVER (ORDER BY SALARY+BONUS DESC)

v Rank the departments according to their average total salary.

 SELECT WORKDEPT, AVG(SALARY+BONUS) AS AVG_TOTAL_SALARY,

 RANK() OVER (ORDER BY AVG(SALARY+BONUS) DESC) AS RANK_AVG_SAL

 FROM EMPLOYEE

 GROUP BY WORKDEPT

 ORDER BY RANK_AVG_SAL

v Rank the employees within a department according to their education level.

Having multiple employees with the same rank in the department should not

increase the next ranking value.

 SELECT WORKDEPT, EMPNO, LASTNAME, FIRSTNME, EDLEVEL,

 DENSE_RANK() OVER

 (PARTITION BY WORKDEPT ORDER BY EDLEVEL DESC) AS RANK_EDLEVEL

 FROM EMPLOYEE

 ORDER BY WORKDEPT, LASTNAME

v Provide row numbers in the result of a query.

OLAP specifications

178 SQL Reference, Volume 1

SELECT ROW_NUMBER() OVER (ORDER BY WORKDEPT, LASTNAME) AS NUMBER,

 LASTNAME, SALARY

 FROM EMPLOYEE

 ORDER BY WORKDEPT, LASTNAME

v List the top five wage earners.

 SELECT EMPNO, LASTNAME, FIRSTNME, TOTAL_SALARY, RANK_SALARY

 FROM (SELECT EMPNO, LASTNAME, FIRSTNME, SALARY+BONUS AS TOTAL_SALARY,

 RANK() OVER (ORDER BY SALARY+BONUS DESC) AS RANK_SALARY

 FROM EMPLOYEE) AS RANKED_EMPLOYEE

 WHERE RANK_SALARY < 6

 ORDER BY RANK_SALARY

Note that a nested table expression was used to first compute the result,

including the rankings, before the rank could be used in the WHERE clause. A

common table expression could also have been used.

v For each department, list employee salaries and show how much less each

person makes compared to the employee in that department with the next

highest salary.

 SELECT EMPNO, WORKDEPT, LASTNAME, FIRSTNME, JOB, SALARY,

 LEAD(SALARY, 1) OVER (PARTITION BY WORKDEPT

 ORDER BY SALARY) - SALARY AS DELTA_SALARY

 FROM EMPLOYEE

 ORDER BY WORKDEPT, SALARY

v Calculate an employee’s salary relative to the salary of the employee who was

first hired for the same type of job.

 SELECT JOB, HIREDATE, EMPNO, LASTNAME, FIRSTNME, SALARY,

 FIRST_VALUE(SALARY) OVER (PARTITION BY JOB

 ORDER BY HIREDATE) AS FIRST_SALARY,

 SALARY - FIRST_VALUE(SALARY) OVER (PARTITION BY JOB

 ORDER BY HIREDATE) AS DELTA_SALARY

 FROM EMPLOYEE

 ORDER BY JOB, HIREDATE

v Calculate the average close price for stock XYZ during the month of January,

2006. If a stock doesn’t trade on a given day, its close price in the

DAILYSTOCKDATA table is the null value. Instead of returning the null value

for days that a stock doesn’t trade, use the COALESCE function and LAG

function to return the close price for the most recent day the stock was traded.

Limit the search for a previous not-null close value to one month prior to

January 1st, 2006.

 WITH V1(SYMBOL, TRADINGDATE, CLOSEPRICE) AS

 (

 SELECT SYMBOL, TRADINGDATE,

 COALESCE(CLOSEPRICE,

 LAG(CLOSEPRICE,

 1,

 CAST(NULL AS DECIMAL(8,2)),

 ’IGNORE NULLS’)

 OVER (PARTITION BY SYMBOL

 ORDER BY TRADINGDATE)

)

 FROM DAILYSTOCKDATA

 WHERE SYMBOL = ’XYZ’ AND

 TRADINGDATE BETWEEN ’2005-12-01’ AND ’2006-01-31’

)

 SELECT SYMBOL, AVG(CLOSEPRICE) AS AVG

 FROM V1

 WHERE TRADINGDATE BETWEEN ’2006-01-01’ AND ’2006-01-31’

 GROUP BY SYMBOL

v Calculate the 30-day moving average for stocks ABC and XYZ during the year

2005.

OLAP specifications

Chapter 2. Language elements 179

WITH V1(SYMBOL, TRADINGDATE, MOVINGAVG30DAY) AS

 (

 SELECT SYMBOL, TRADINGDATE,

 AVG(CLOSEPRICE) OVER (PARTITION BY SYMBOL

 ORDER BY TRADINGDATE

 ROWS BETWEEN 29 PRECEDING AND CURRENT ROW)

 FROM DAILYSTOCKDATA

 WHERE SYMBOL IN (’ABC’, ’XYZ’)

 AND TRADINGDATE BETWEEN DATE(’2005-01-01’) - 2 MONTHS

 AND ’2005-12-31’

)

 SELECT SYMBOL, TRADINGDATE, MOVINGAVG30DAY

 FROM V1

 WHERE TRADINGDATE BETWEEN ’2005-01-01’ AND ’2005-12-31’

 ORDER BY SYMBOL, TRADINGDATE

v Use an expression to define the cursor position and query a sliding window of

50 rows before that position.

 SELECT DATE, FIRST_VALUE(CLOSEPRICE + 100) OVER

 (PARTITION BY SYMBOL

 ORDER BY DATE

 ROWS BETWEEN 50 PRECEDING AND 1 PRECEDING) AS FV

 FROM DAILYSTOCKDATA

 ORDER BY DATE

Method invocation

method-invocation:

�

 subject-expression..method-name

(

)

,

expression

Both system-generated observer and mutator methods, as well as user-defined

methods are invoked using the double-dot operator.

subject-expression

An expression with a static result type that is a user-defined structured type.

method-name

The unqualified name of a method. The static type of subject-expression or one

of its supertypes must include a method with the specified name.

(expression,...)

The arguments of method-name are specified within parentheses. Empty

parentheses can be used to indicate that there are no arguments. The

method-name and the data types of the specified argument expressions are used

to resolve to the specific method, based on the static type of subject-expression.

The double-dot operator used for method invocation is a high precedence left to

right infix operator. For example, the following two expressions are equivalent:

 a..b..c + x..y..z

and

 ((a..b)..c) + ((x..y)..z)

If a method has no parameters other than its subject, it can be invoked with or

without parentheses. For example, the following two expressions are equivalent:

OLAP specifications

180 SQL Reference, Volume 1

point1..x

 point1..x()

Null subjects in method calls are handled as follows:

v If a system-generated mutator method is invoked with a null subject, an error

results (SQLSTATE 2202D)

v If any method other than a system-generated mutator is invoked with a null

subject, the method is not executed, and its result is null. This rule includes

user-defined methods with SELF AS RESULT.

When a database object (a package, view, or trigger, for example) is created, the

best fit method that exists for each of its method invocations is found.

Note: Methods of types defined WITH FUNCTION ACCESS can also be invoked

using the regular function notation. Function resolution considers all functions, as

well as methods with function access as candidate functions. However, functions

cannot be invoked using method invocation. Method resolution considers all

methods and does not consider functions as candidate methods. Failure to resolve

to an appropriate function or method results in an error (SQLSTATE 42884).

Example

v Use the double-dot operator to invoke a method called AREA. Assume the

existence of a table called RINGS, with a column CIRCLE_COL of structured

type CIRCLE. Also, assume that the method AREA has been defined previously

for the CIRCLE type as AREA() RETURNS DOUBLE.

 SELECT CIRCLE_COL..AREA() FROM RINGS

Subtype treatment

subtype-treatment:

 TREAT (expression AS data-type)

The subtype-treatment is used to cast a structured type expression into one of its

subtypes. The static type of expression must be a user-defined structured type, and

that type must be the same type as, or a supertype of, data-type. If the type name

in data-type is unqualified, the SQL path is used to resolve the type reference. The

static type of the result of subtype-treatment is data-type, and the value of the

subtype-treatment is the value of the expression. At run time, if the dynamic type

of the expression is not data-type or a subtype of data-type, an error is returned

(SQLSTATE 0D000).

Example

v If an application knows that all column object instances in a column

CIRCLE_COL have the dynamic type COLOREDCIRCLE, use the following

query to invoke the method RGB on such objects. Assume the existence of a

table called RINGS, with a column CIRCLE_COL of structured type CIRCLE.

Also, assume that COLOREDCIRCLE is a subtype of CIRCLE and that the

method RGB has been defined previously for COLOREDCIRCLE as RGB()

RETURNS DOUBLE.

 SELECT TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()

 FROM RINGS

Method invocation

Chapter 2. Language elements 181

At run time, if there are instances of dynamic type CIRCLE, an error is raised

(SQLSTATE 0D000). This error can be avoided by using the TYPE predicate in a

CASE expression, as follows:

 SELECT (CASE

 WHEN CIRCLE_COL IS OF (COLOREDCIRCLE)

 THEN TREAT (CIRCLE_COL AS COLOREDCIRCLE)..RGB()

 ELSE NULL

 END)

 FROM RINGS

Sequence reference

sequence-reference:

 nextval-expression

prevval-expression

nextval-expression:

 NEXT VALUE FOR sequence-name

prevval-expression:

 PREVIOUS VALUE FOR sequence-name

NEXT VALUE FOR sequence-name

A NEXT VALUE expression generates and returns the next value for the

sequence specified by sequence-name.

PREVIOUS VALUE FOR sequence-name

A PREVIOUS VALUE expression returns the most recently generated value for

the specified sequence for a previous statement within the current application

process. This value can be referenced repeatedly by using PREVIOUS VALUE

expressions that specify the name of the sequence. There may be multiple

instances of PREVIOUS VALUE expressions specifying the same sequence

name within a single statement; they all return the same value. In a partitioned

database environment, a PREVIOUS VALUE expression may not return the

most recently generated value.

 A PREVIOUS VALUE expression can only be used if a NEXT VALUE

expression specifying the same sequence name has already been referenced in

the current application process, in either the current or a previous transaction

(SQLSTATE 51035).

Notes

v A new value is generated for a sequence when a NEXT VALUE expression

specifies the name of that sequence. However, if there are multiple instances of a

NEXT VALUE expression specifying the same sequence name within a query,

the counter for the sequence is incremented only once for each row of the result,

and all instances of NEXT VALUE return the same value for a row of the result.

v The same sequence number can be used as a unique key value in two separate

tables by referencing the sequence number with a NEXT VALUE expression for

the first row (this generates the sequence value), and a PREVIOUS VALUE

expression for the other rows (the instance of PREVIOUS VALUE refers to the

sequence value most recently generated in the current session), as shown below:

Subtype treatment

182 SQL Reference, Volume 1

INSERT INTO order(orderno, cutno)

 VALUES (NEXT VALUE FOR order_seq, 123456);

 INSERT INTO line_item (orderno, partno, quantity)

 VALUES (PREVIOUS VALUE FOR order_seq, 987654, 1);

v NEXT VALUE and PREVIOUS VALUE expressions can be specified in the

following places:

– select-statement or SELECT INTO statement (within the select-clause,

provided that the statement does not contain a DISTINCT keyword, a

GROUP BY clause, an ORDER BY clause, a UNION keyword, an INTERSECT

keyword, or EXCEPT keyword)

– INSERT statement (within a VALUES clause)

– INSERT statement (within the select-clause of the fullselect)

– UPDATE statement (within the SET clause (either a searched or a positioned

UPDATE statement), except that NEXT VALUE cannot be specified in the

select-clause of the fullselect of an expression in the SET clause)

– SET Variable statement (except within the select-clause of the fullselect of an

expression; a NEXT VALUE expression can be specified in a trigger, but a

PREVIOUS VALUE expression cannot)

– VALUES INTO statement (within the select-clause of the fullselect of an

expression)

– CREATE PROCEDURE statement (within the routine-body of an SQL

procedure)

– CREATE TRIGGER statement within the triggered-action (a NEXT VALUE

expression may be specified, but a PREVIOUS VALUE expression cannot)
v NEXT VALUE and PREVIOUS VALUE expressions cannot be specified

(SQLSTATE 428F9) in the following places:

– Join condition of a full outer join

– DEFAULT value for a column in a CREATE or ALTER TABLE statement

– Generated column definition in a CREATE OR ALTER TABLE statement

– Summary table definition in a CREATE TABLE or ALTER TABLE statement

– Condition of a CHECK constraint

– CREATE TRIGGER statement (a NEXT VALUE expression may be specified,

but a PREVIOUS VALUE expression cannot)

– CREATE VIEW statement

– CREATE METHOD statement

– CREATE FUNCTION statement

– An argument list of an XMLQUERY, XMLEXISTS, or XMLTABLE expression
v In addition, a NEXT VALUE expression cannot be specified (SQLSTATE 428F9)

in the following places:

– CASE expression

– Parameter list of an aggregate function

– Subquery in a context other than those explicitly allowed above

– SELECT statement for which the outer SELECT contains a DISTINCT

operator

– Join condition of a join

– SELECT statement for which the outer SELECT contains a GROUP BY clause

– SELECT statement for which the outer SELECT is combined with another

SELECT statement using the UNION, INTERSECT, or EXCEPT set operator

Sequence reference

Chapter 2. Language elements 183

– Nested table expression

– Parameter list of a table function

– WHERE clause of the outer-most SELECT statement, or a DELETE or

UPDATE statement

– ORDER BY clause of the outer-most SELECT statement

– select-clause of the fullselect of an expression, in the SET clause of an

UPDATE statement

– IF, WHILE, DO ... UNTIL, or CASE statement in an SQL routine
v When a value is generated for a sequence, that value is consumed, and the next

time that a value is requested, a new value will be generated. This is true even

when the statement containing the NEXT VALUE expression fails or is rolled

back.

If an INSERT statement includes a NEXT VALUE expression in the VALUES list

for the column, and if an error occurs at some point during the execution of the

INSERT (it could be a problem in generating the next sequence value, or a

problem with the value for another column), then an insertion failure occurs

(SQLSTATE 23505), and the value generated for the sequence is considered to be

consumed. In some cases, reissuing the same INSERT statement might lead to

success.

For example, consider an error that is the result of the existence of a unique

index for the column for which NEXT VALUE was used and the sequence value

generated already exists in the index. It is possible that the next value generated

for the sequence is a value that does not exist in the index and so the

subsequent INSERT would succeed.

v If in generating a value for a sequence, the maximum value for the sequence is

exceeded (or the minimum value for a descending sequence) and cycles are not

permitted, then an error occurs (SQLSTATE 23522). In this case, the user could

ALTER the sequence to extend the range of acceptable values, or enable cycles

for the sequence, or DROP and CREATE a new sequence with a different data

type that has a larger range of values.

For example, a sequence may have been defined with a data type of SMALLINT,

and eventually the sequence runs out of assignable values. DROP and re-create

the sequence with the new definition to redefine the sequence as INTEGER.

v A reference to a NEXT VALUE expression in the select statement of a cursor

refers to a value that is generated for a row of the result table. A sequence value

is generated for a NEXT VALUE expression for each row that is fetched from the

database. If blocking is done at the client, the values may have been generated

at the server prior to the processing of the FETCH statement. This can occur

when there is blocking of the rows of the result table. If the client application

does not explicitly FETCH all the rows that the database has materialized, then

the application will not see the results of all the generated sequence values (for

the materialized rows that were not returned).

v A reference to a PREVIOUS VALUE expression in the select statement of a

cursor refers to a value that was generated for the specified sequence prior to

the opening of the cursor. However, closing the cursor can affect the values

returned by PREVIOUS VALUE for the specified sequence in subsequent

statements, or even for the same statement in the event that the cursor is

reopened. This would be the case when the select statement of the cursor

included a reference to NEXT VALUE for the same sequence name.

v Compatibilities

– For compatibility with previous versions of DB2:

Sequence reference

184 SQL Reference, Volume 1

- NEXTVAL and PREVVAL can be specified in place of NEXT VALUE and

PREVIOUS VALUE
– For compatibility with IBM IDS:

- sequence-name.NEXTVAL can be specified in place of NEXT VALUE FOR

sequence-name

- sequence-name.CURRVAL can be specified in place of PREVIOUS VALUE

FOR sequence-name

Examples

Assume that there is a table called ″order″, and that a sequence called ″order_seq″

is created as follows:

 CREATE SEQUENCE order_seq

 START WITH 1

 INCREMENT BY 1

 NO MAXVALUE

 NO CYCLE

 CACHE 24

Following are some examples of how to generate an ″order_seq″ sequence number

with a NEXT VALUE expression:

 INSERT INTO order(orderno, custno)

 VALUES (NEXT VALUE FOR order_seq, 123456);

or

 UPDATE order

 SET orderno = NEXT VALUE FOR order_seq

 WHERE custno = 123456;

or

 VALUES NEXT VALUE FOR order_seq INTO :hv_seq;

ROW CHANGE expression

row-change-expression:

 ROW CHANGE TOKEN

TIMESTAMP
 FOR table-designator

A ROW CHANGE expression returns a token or a timestamp that represents the

last change to a row.

TOKEN

Specifies that a BIGINT value representing a relative point in the modification

sequence of a row is to be returned. If the row has not been changed, the result

is a token that represents when the initial value was inserted. The result can be

null. ROW CHANGE TOKEN is not deterministic.

TIMESTAMP

Specifies that a TIMESTAMP value representing the last time that a row was

changed is to be returned. If the row has not been changed, the result is the

time that the initial value was inserted. The result can be null. ROW CHANGE

TIMESTAMP is not deterministic.

FOR table-designator

Identifies the table in which the expression is referenced. The table-designator

Sequence reference

Chapter 2. Language elements 185

must uniquely identify a base table, view, or nested table expression

(SQLSTATE 42867). If table-designator identifies a view or a nested table

expression, the ROW CHANGE expression returns the TOKEN or

TIMESTAMP of the base table of the view or nested table expression. The view

or nested table expression must contain only one base table in its outer

subselect (SQLSTATE 42867). The table-designator must be deletable (SQLSTATE

42703). For information about deletable views, see the “Notes” section of

“CREATE VIEW”. The table designator of a ROW CHANGE TIMESTAMP

expression must resolve to a base table that contains a row change timestamp

column (SQLSTATE 55068).

Notes

v The values returned by the ROW CHANGE TOKEN expression can be used

with the RID_BIT scalar function by applications that use optimistic locking.

Examples

v Return a timestamp value that corresponds to the most recent change to each

row from the EMPLOYEE table for employees in department 20. Assume that

the EMPLOYEE table has been altered to contain a column defined with the

ROW CHANGE TIMESTAMP clause.

 SELECT ROW CHANGE TIMESTAMP FOR EMPLOYEE

 FROM EMPLOYEE WHERE DEPTNO = 20

v Return a BIGINT value that represents a relative point in the modification

sequence of the row corresponding to employee number 3500. Also return the

RID_BIT scalar function value that is to be used in an optimistic locking

DELETE scenario. Specify the WITH UR option to get the latest ROW CHANGE

TOKEN value.

 SELECT ROW CHANGE TOKEN FOR EMPLOYEE, RID_BIT (EMPLOYEE)

 FROM EMPLOYEE WHERE EMPNO = ’3500’ WITH UR

The above statement succeeds whether or not there is a row change timestamp

column in the EMPLOYEE table. The following searched DELETE statement

deletes the row specified by the ROW CHANGE TOKEN and RID_BIT values

from the above SELECT statement, assuming the two parameter marker values

are set to the values obtained from the above statement.

 DELETE FROM EMPLOYEE E

 WHERE RID_BIT (E) = ? AND ROW CHANGE TOKEN FOR E = ?

Predicates

A predicate specifies a condition that is true, false, or unknown about a given row

or group.

The following rules apply to all types of predicates:

v All values specified in a predicate must be compatible.

v An expression used in a basic, quantified, IN, or BETWEEN predicate must not

result in a character string with a length attribute greater than 4000, a graphic

string with a length attribute greater than 2000, or a LOB string of any size.

v The value of a host variable can be null (that is, the variable may have a

negative indicator variable).

v The code page conversion of operands of predicates involving two or more

operands, with the exception of LIKE, is done according to the rules for string

conversions.

ROW CHANGE expression

186 SQL Reference, Volume 1

v Use of a structured type value is limited to the NULL predicate and the TYPE

predicate.

v In a Unicode database, all predicates that accept a character or graphic string

will accept any string type for which conversion is supported.

A fullselect is a form of the SELECT statement that, when used in a predicate, is

also called a subquery.

Predicate processing for queries

A predicate is an element of a search condition that expresses or implies a

comparison operation. Predicates can be grouped into four categories that are

determined by how and when the predicate is used in the evaluation process. The

categories are listed below, ordered in terms of performance starting with the most

favorable:

v Range delimiting predicates are those used to bracket an index scan; they

provide start or stop key values for the index search. These predicates are

evaluated by the index manager.

v Index sargable predicates are not used to bracket a search, but are evaluated

from the index if one is chosen, because the columns involved in the predicate

are part of the index key. These predicates are also evaluated by the index

manager.

v Data sargable predicates are predicates that cannot be evaluated by the index

manager, but can be evaluated by Data Management Services (DMS). Typically,

these predicates require the access of individual rows from a base table. If

necessary, DMS will retrieve the columns needed to evaluate the predicate, as

well as any others to satisfy the columns in the SELECT list that could not be

obtained from the index.

v Residual predicates are those that require I/O beyond the simple accessing of a

base table. Examples of residual predicates include those using quantified

subqueries (subqueries with ANY, ALL, SOME, or IN), or reading LONG

VARCHAR or large object (LOB) data that is stored separately from the table.

These predicates are evaluated by Relational Data Services (RDS) and are the

most expensive of the four categories of predicates.

The following table provides examples of various predicates and identifies their

type based on the context in which they are used.

Note: In these examples, assume that a multi-column ascending index exists on

(c1, c2, c3) and is used in evaluating the predicates where appropriate. If any

column in the index is in descending order, the start and stop keys might be

switched for range delimiting predicates.

 Table 17. Predicate processing for different queries

Predicates Column c1 Column c2 Column c3 Comments

c1 = 1 and c2

= 2 and c3 =

3

Range

delimiting

(start-stop)

Range

delimiting

(start-stop)

Range

delimiting

(start-stop)

The equality predicates on

all the columns of the index

can be applied as start-stop

keys.

c1 = 1 and c2

= 2 and c3 ≥ 3

Range

delimiting

(start-stop)

Range

delimiting

(start-stop)

Range

delimiting

(start)

Columns c1 and c2 are

bound by equality

predicates, and the predicate

on c3 is only applied as a

start key.

Predicates

Chapter 2. Language elements 187

Table 17. Predicate processing for different queries (continued)

Predicates Column c1 Column c2 Column c3 Comments

c1 ≥1 and c2

= 2

Range

delimiting

(start)

Range

delimiting

(start-stop)

Not

applicable

The leading column c1 has a

≥ predicate and can be used

as a start key. The following

column c2 has an equality

predicate, and therefore can

also be applied as a

start-stop key.

c1 = 1 and c3

= 3

Range

delimiting

(start-stop)

Not

applicable

Index

sargable

The predicate on c3 cannot

be used as a start-stop key,

because there is no predicate

on c2. It can, however, be

applied as an index sargable

predicate.

c1 = 1 and c2

> 2 and c3 =

3

Range

delimiting

(start-stop)

Range

delimiting

(start)

Index

sargable

The predicate on c3 cannot

be applied as a start-stop

predicate because the

previous column has a >

predicate. Had it been a ≥

instead, we would be able to

use it as a start-stop key.

c1 = 1 and c2

≤ 2 and c4 = 4

Range

delimiting

(start-stop)

Range

delimiting

(stop)

Data sargable Here the predicate on c2 is a

≤ predicate. It can be used as

a stop key. The predicate on

c4 cannot be applied on the

index and is applied as a

data sargable predicate

during the FETCH.

c2 = 2 and

UDF_with_

external_action

(c4)

Not

applicable

Index

sargable

Residual The leading column c1 does

not have a predicate, and

therefore the predicate on c2

can be applied as an index

sargable predicate where the

whole index is scanned. The

predicate involving the

user-defined function with

external action is applied as

a residual predicate.

c1 = 1 or c2 =

2

Index

sargable

Index

sargable

Not

applicable

The presence of an OR does

not allow us this

multi-column index to be

used as start-stop keys. This

might have been possible

had there been two indexes,

one with a leading column

on c1, and the other with a

leading column on c2, and

the DB2 optimizer chose an

″index-ORing″ plan.

However, in this case the

two predicates are treated as

index sargable predicates.

Predicate processing for queries

188 SQL Reference, Volume 1

Table 17. Predicate processing for different queries (continued)

Predicates Column c1 Column c2 Column c3 Comments

c1 < 5 and (c2

= 2 or c3 = 3)

Range

delimiting

(stop)

Index

sargable

Index

sargable

Here the leading column c1

is exploited to stop the

index scan from using the

predicate with a stop key.

The OR predicate on c2 and

c3 are applied as index

sargable predicates.

The DB2 optimizer employs the query rewrite mechanism to transform many

complex user-written predicates into better performing queries, as shown in the

following table:

 Table 18. Query rewrite predicates

Original predicate or

query

Optimized predicates Comments

c1 between 5 and 10 c1 ≥ 5 and c1 ≤ 10 The BETWEEN predicates are

rewritten into the equivalent range

delimiting predicates so that they

can be used internally as though the

user specified the range delimiting

predicates.

c1 not between 5 and 10 c1 < 5 or c1 > 10 The presence of the OR predicate

does not allow the use of a

start-stop key unless the DB2

optimizer chooses an index-ORing

plan.

SELECT * FROM t1

WHERE EXISTS (SELECT

c1 FROM t2 WHERE t1.c1

= t2.c1)

SELECT t1.* FROM t1

EOJOIN t2 WHERE

t1.c1= t2.c1

The subquery might be transformed

into a join.

SELECT * FROM t1

WHERE t1.c1 IN (SELECT

c1 FROM t2)

SELECT t1* FROM t1

EOJOIN t2 WHERE

t1.c1= t2.c1

This is similar to the transformation

for the EXISTS predicate example

above.

c1 like ’abc%’ c1 ≥ ’abc X X X ’ and c1

≤ ’abc Y Y Y’

If we have c1 as the leading column

of an index, DB2 generates these

predicates so that they can be

applied as range-delimiting

start-stop predicates. Here the

characters X and Y are symbolic of

the lowest and highest collating

character.

c1 like ’abc%def’ c1 ≥ ’abc X X X ’ and c1

≤ ’abc Y Y Y’ and c1 like

’abc%def’

This is similar to the previous case,

except that we have to also apply

the original predicate as an index

sargable predicate. This ensures that

the characters def match correctly.

Predicate processing for queries

Chapter 2. Language elements 189

Search conditions

search-condition:

NOT
 predicate

SELECTIVITY

numeric-constant

(search-condition)

 �

�

�

AND

predicate

OR

NOT

SELECTIVITY

numeric-constant

(search-condition)

A search condition specifies a condition that is “true,” “false,” or “unknown” about

a given row.

The result of a search condition is derived by application of the specified logical

operators (AND, OR, NOT) to the result of each specified predicate. If logical

operators are not specified, the result of the search condition is the result of the

specified predicate.

AND and OR are defined in Table 19, in which P and Q are any predicates:

 Table 19. Truth Tables for AND and OR

P Q P AND Q P OR Q

True True True True

True False False True

True Unknown Unknown True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

Unknown False False Unknown

Unknown Unknown Unknown Unknown

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown.

Search conditions within parentheses are evaluated first. If the order of evaluation

is not specified by parentheses, NOT is applied before AND, and AND is applied

before OR. The order in which operators at the same precedence level are

evaluated is undefined to allow for optimization of search conditions.

Search conditions

190 SQL Reference, Volume 1

SELECTIVITY value

The SELECTIVITY clause is used to indicate to DB2 what the expected

selectivity percentage is for the predicate. SELECTIVITY can be specified only

when the predicate is a user-defined predicate.

 A user-defined predicate is a predicate that consists of a user-defined function

invocation, in the context of a predicate specification that matches the predicate

specification on the PREDICATES clause of CREATE FUNCTION. For example,

if the function foo is defined with PREDICATES WHEN=1..., then the

following use of SELECTIVITY is valid:

 SELECT *

 FROM STORES

 WHERE foo(parm,parm) = 1 SELECTIVITY 0.004

The selectivity value must be a numeric literal value in the inclusive range

from 0 to 1 (SQLSTATE 42615). If SELECTIVITY is not specified, the default

value is 0.01 (that is, the user-defined predicate is expected to filter out all but

one percent of all the rows in the table). The SELECTIVITY default can be

changed for any given function by updating its SELECTIVITY column in the

SYSSTAT.ROUTINES view. An error will be returned if the SELECTIVITY

clause is specified for a non user-defined predicate (SQLSTATE 428E5).

A user-defined function (UDF) can be applied as a user-defined predicate and,

hence, is potentially applicable for index exploitation if:

v the predicate specification is present in the CREATE FUNCTION statement

v the UDF is invoked in a WHERE clause being compared (syntactically) in

the same way as specified in the predicate specification

v there is no negation (NOT operator)

Examples

In the following query, the within UDF specification in the WHERE clause satisfies

all three conditions and is considered a user-defined predicate.

 SELECT *

 FROM customers

 WHERE within(location, :sanJose) = 1 SELECTIVITY 0.2

However, the presence of within in the following query is not index-exploitable

due to negation and is not considered a user-defined predicate.

 SELECT *

 FROM customers

 WHERE NOT(within(location, :sanJose) = 1) SELECTIVITY 0.3

1

1

32

2 or 3 2 or 3

MAJPROJ = 'MA2100' DEPTNO = 'D11' DEPTNO = 'B03' DEPTNO = 'E11'AND OR OR

MAJPROJ = 'MA2100' (DEPTNO = 'D11' DEPTNO = 'B03') DEPTNO = 'E11'AND OR OR

Figure 13. Search Conditions Evaluation Order

Search conditions

Chapter 2. Language elements 191

In the next example, consider identifying customers and stores that are within a

certain distance of each other. The distance from one store to another is computed

by the radius of the city in which the customers live.

 SELECT *

 FROM customers, stores

 WHERE distance(customers.loc, stores.loc) <

 CityRadius(stores.loc) SELECTIVITY 0.02

In the above query, the predicate in the WHERE clause is considered a

user-defined predicate. The result produced by CityRadius is used as a search

argument to the range producer function.

However, since the result produced by CityRadius is used as a range producer

function, the above user-defined predicate will not be able to make use of the

index extension defined on the stores.loc column. Therefore, the UDF will make

use of only the index defined on the customers.loc column.

Basic predicate

�� expression =

(1)

<>

<

>

(1)

<=

(1)

>=

 expression ��

Notes:

1 The following forms of the comparison operators are also supported in basic

and quantified predicates: ^=, ^<, ^>, !=, !<, and !>. In code pages 437, 819,

and 850, the forms ¬=, ¬<, and ¬> are supported. All of these product-specific

forms of the comparison operators are intended only to support existing SQL

statements that use these operators, and are not recommended for use when

writing new SQL statements.

A basic predicate compares two values.

If the value of either operand is null, the result of the predicate is unknown.

Otherwise the result is either true or false.

For values x and y:

Predicate

Is True If and Only If...

x = y x is equal to y

x <> y x is not equal to y

x < y x is less than y

x > y x is greater than y

x >= y x is greater than or equal to y

x <= y x is less than or equal to y

Search conditions

192 SQL Reference, Volume 1

Examples:

 EMPNO=’528671’

 SALARY < 20000

 PRSTAFF <> :VAR1

 SALARY > (SELECT AVG(SALARY) FROM EMPLOYEE)

Quantified predicate

��

�

 expression1 = SOME (fullselect1)

(1)

ANY

<>

ALL

<

>

<=

>=

,

(

expression2

)

=

SOME

(fullselect2)

ANY

 ��

Notes:

1 The following forms of the comparison operators are also supported in basic

and quantified predicates: ^=, ^<, ^>, !=, !<, and !>. In code pages 437, 819,

and 850, the forms ¬=, ¬<, and ¬> are supported. All of these product-specific

forms of the comparison operators are intended only to support existing SQL

statements that use these operators, and are not recommended for use when

writing new SQL statements.

A quantified predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the number of

expressions specified to the left of the predicate operator (SQLSTATE 428C4). The

fullselect may return any number of rows.

When ALL is specified:

v The result of the predicate is true if the fullselect returns no values or if the

specified relationship is true for every value returned by the fullselect.

v The result is false if the specified relationship is false for at least one value

returned by the fullselect.

v The result is unknown if the specified relationship is not false for any values

returned by the fullselect and at least one comparison is unknown because of

the null value.

When SOME or ANY is specified:

v The result of the predicate is true if the specified relationship is true for each

value of at least one row returned by the fullselect.

v The result is false if the fullselect returns no rows or if the specified relationship

is false for at least one value of every row returned by the fullselect.

v The result is unknown if the specified relationship is not true for any of the

rows and at least one comparison is unknown because of a null value.

Examples: Use the following tables when referring to the following examples.

Basic predicate

Chapter 2. Language elements 193

Example 1

 SELECT COLA FROM TBLAB

 WHERE COLA = ANY(SELECT COLX FROM TBLXY)

Results in 2,3. The subselect returns (2,3). COLA in rows 2 and least one of these

values.

Example 2

 SELECT COLA FROM TBLAB

 WHERE COLA > ANY(SELECT COLX FROM TBLXY)

Results in 3,4. The subselect returns (2,3). COLA in rows 3 and 4 is greater than at

least one of these values.

Example 3

 SELECT COLA FROM TBLAB

 WHERE COLA > ALL(SELECT COLX FROM TBLXY)

Results in 4. The subselect returns (2,3). COLA in row 4 is the only one that is

greater than both these values.

Example 4

 SELECT COLA FROM TBLAB

 WHERE COLA > ALL(SELECT COLX FROM TBLXY

 WHERE COLX<0)

Results in 1,2,3,4, null. The subselect returns no values. Thus, the predicate is true

for all rows in TBLAB.

Example 5

SELECT * FROM TBLAB

 WHERE (COLA,COLB+10) = SOME (SELECT COLX, COLY FROM TBLXY)

The subselect returns all entries from TBLXY. The predicate is true for the

subselect, hence the result is as follows:

COLA COLB

----------- -----------

 2 12

 3 13

Example 6

SELECT * FROM TBLAB

 WHERE (COLA,COLB) = ANY (SELECT COLX,COLY-10 FROM TBLXY)

The subselect returns COLX and COLY-10 from TBLXY. The predicate is true for

the subselect, hence the result is as follows:

TBL :AB TBL :XY
COLX

2
3

COLY

22
23

COLA

1
2
3
4
-

COLB

12
12
13
14
-

Figure 14. Tables for quantified predicate examples

Quantified predicate

194 SQL Reference, Volume 1

COLA COLB

----------- -----------

 2 12

 3 13

BETWEEN predicate

�� expression

NOT
 BETWEEN expression AND expression ��

The BETWEEN predicate compares a value with a range of values.

The BETWEEN predicate:

 value1 BETWEEN value2 AND value3

is equivalent to the search condition:

value1 >= value2 AND value1 <= value3

The BETWEEN predicate:

 value1 NOT BETWEEN value2 AND value3

is equivalent to the search condition:

 NOT(value1 BETWEEN value2 AND value3); that is,

 value1 < value2 OR value1 > value3.

The first operand (expression) cannot include a function that is variant or has an

external action (SQLSTATE 426804).

Given a mixture of datetime values and string representations of datetime values,

all values are converted to the data type of the datetime operand.

Examples

Example 1

 EMPLOYEE.SALARY BETWEEN 20000 AND 40000

Results in all salaries between $20,000.00 and $40,000.00.

Example 2

 SALARY NOT BETWEEN 20000 + :HV1 AND 40000

Assuming :HV1 is 5000, results in all salaries below $25,000.00 and above

$40,000.00.

EXISTS predicate

�� EXISTS (fullselect) ��

The EXISTS predicate tests for the existence of certain rows.

The fullselect may specify any number of columns, and

v The result is true only if the number of rows specified by the fullselect is not

zero.

Quantified predicate

Chapter 2. Language elements 195

v The result is false only if the number of rows specified is zero

v The result cannot be unknown.

Example

 EXISTS (SELECT * FROM TEMPL WHERE SALARY < 10000)

IN predicate

��

�

�

 expression1 IN (fullselect1)

NOT

,

(

expression2

)

expression2

,

(

expression3

)

IN

(fullselect2)

NOT

 ��

The IN predicate compares a value or values with a collection of values.

The fullselect must identify a number of columns that is the same as the number of

expressions specified to the left of the IN keyword (SQLSTATE 428C4). The

fullselect may return any number of rows.

v An IN predicate of the form:

 expression IN expression

is equivalent to a basic predicate of the form:

 expression = expression

v An IN predicate of the form:

 expression IN (fullselect)

is equivalent to a quantified predicate of the form:

 expression = ANY (fullselect)

v An IN predicate of the form:

 expression NOT IN (fullselect)

is equivalent to a quantified predicate of the form:

 expression <> ALL (fullselect)

v An IN predicate of the form:

 expression IN (expressiona, expressionb, ..., expressionk)

is equivalent to:

 expression = ANY (fullselect)

where fullselect in the values-clause form is:

 VALUES (expressiona), (expressionb), ..., (expressionk)

v An IN predicate of the form:

 (expressiona, expressionb,..., expressionk) IN (fullselect)

is equivalent to a quantified predicate of the form:

 (expressiona, expressionb,..., expressionk) = ANY (fullselect)

EXISTS predicate

196 SQL Reference, Volume 1

The values for expression1 and expression2 or the column of fullselect1 in the IN

predicate must be compatible. Each expression3 value and its corresponding column

of fullselect2 in the IN predicate must be compatible. The rules for result data types

can be used to determine the attributes of the result used in the comparison.

The values for the expressions in the IN predicate (including corresponding

columns of a fullselect) can have different code pages. If a conversion is necessary,

the code page is determined by applying rules for string conversions to the IN list

first, and then to the predicate, using the derived code page for the IN list as the

second operand.

Examples

Example 1: The following evaluates to true if the value in the row under evaluation

in the DEPTNO column contains D01, B01, or C01:

 DEPTNO IN (’D01’, ’B01’, ’C01’)

Example 2: The following evaluates to true only if the EMPNO (employee number)

on the left side matches the EMPNO of an employee in department E11:

 EMPNO IN (SELECT EMPNO FROM EMPLOYEE WHERE WORKDEPT = ’E11’)

Example 3: Given the following information, this example evaluates to true if the

specific value in the row of the COL_1 column matches any of the values in the

list:

 Table 20. IN Predicate example

Expressions Type Code Page

COL_1 column 850

HV_2 host variable 437

HV_3 host variable 437

CON_1 constant 850

When evaluating the predicate:

 COL_1 IN (:HV_2, :HV_3, CON_4)

the two host variables will be converted to code page 850, based on the rules for

string conversions.

Example 4: The following evaluates to true if the specified year in EMENDATE (the

date an employee activity on a project ended) matches any of the values specified

in the list (the current year or the two previous years):

 YEAR(EMENDATE) IN (YEAR(CURRENT DATE),

 YEAR(CURRENT DATE - 1 YEAR),

 YEAR(CURRENT DATE - 2 YEARS))

Example 5: The following evaluates to true if both ID and DEPT on the left side

match MANAGER and DEPTNUMB respectively for any row of the ORG table.

 (ID, DEPT) IN (SELECT MANAGER, DEPTNUMB FROM ORG)

LIKE predicate

�� match-expression

NOT
 LIKE pattern-expression �

IN predicate

Chapter 2. Language elements 197

�
ESCAPE

escape-expression
 ��

The LIKE predicate searches for strings that have a certain pattern. The pattern is

specified by a string in which the underscore and the percent sign may have

special meanings. Trailing blanks in a pattern are part of the pattern.

If the value of any of the arguments is null, the result of the LIKE predicate is

unknown.

The values for match-expression, pattern-expression, and escape-expression are

compatible string expressions. There are slight differences in the types of string

expressions supported for each of the arguments. The valid types of expressions

are listed under the description of each argument.

None of the expressions can yield a distinct type. However, it can be a function

that casts a distinct type to its source type.

match-expression

An expression that specifies the string that is to be examined to see if it

conforms to a certain pattern of characters.

 The expression can be specified by:

v A constant

v A special register

v A global variable

v A host variable (including a locator variable or a file reference variable)

v A scalar function

v A large object locator

v A column name

v An expression concatenating any of the above

pattern-expression

An expression that specifies the string that is to be matched.

 The expression can be specified by:

v A constant

v A special register

v A global variable

v A host variable

v A scalar function whose operands are any of the above

v An expression concatenating any of the above

v An SQL procedure parameter

with the following restrictions:

v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC, or DBCLOB. In addition it cannot be a BLOB file

reference variable.

v The actual length of pattern-expression cannot be more than 32 672 bytes.

The following are examples of invalid string expressions or strings:

v SQL user-defined function parameters

v Trigger transition variables

LIKE predicate

198 SQL Reference, Volume 1

v Local variables in dynamic compound statements

A simple description of the use of the LIKE predicate is that the pattern is

used to specify the conformance criteria for values in the match-expression,

where:

v The underscore character (_) represents any single character.

v The percent sign (%) represents a string of zero or more characters.

v Any other character represents itself.

If the pattern-expression needs to include either the underscore or the percent

character, the escape-expression is used to specify a character to precede either

the underscore or the percent character in the pattern.

A rigorous description of the use of the LIKE predicate follows. Note that this

description ignores the use of the escape-expression; its use is covered later.

v Let m denote the value of match-expression and let p denote the value of

pattern-expression. The string p is interpreted as a sequence of the minimum

number of substring specifiers so each character of p is part of exactly one

substring specifier. A substring specifier is an underscore, a percent sign, or

any non-empty sequence of characters other than an underscore or a percent

sign.

The result of the predicate is unknown if m or p is the null value. Otherwise,

the result is either true or false. The result is true if m and p are both empty

strings or there exists a partitioning of m into substrings such that:

– A substring of m is a sequence of zero or more contiguous characters and

each character of m is part of exactly one substring.

– If the nth substring specifier is an underscore, the nth substring of m is

any single character.

– If the nth substring specifier is a percent sign, the nth substring of m is

any sequence of zero or more characters.

– If the nth substring specifier is neither an underscore nor a percent sign,

the nth substring of m is equal to that substring specifier and has the

same length as that substring specifier.

– The number of substrings of m is the same as the number of substring

specifiers.
Thus, if p is an empty string and m is not an empty string, the result is false.

Similarly, it follows that if m is an empty string and p is not an empty string

(except for a string containing only percent signs), the result is false.

The predicate m NOT LIKE p is equivalent to the search condition NOT (m

LIKE p).

When the escape-expression is specified, the pattern-expression must not contain

the escape character identified by the escape-expression, except when

immediately followed by the escape character, the underscore character, or the

percent sign character (SQLSTATE 22025).

If the match-expression is a character string in an MBCS database, it can contain

mixed data. In this case, the pattern can include both SBCS and non-SBCS

characters. For non-Unicode databases, the special characters in the pattern are

interpreted as follows:

v An SBCS halfwidth underscore refers to one SBCS character.

v A non-SBCS fullwidth underscore refers to one non-SBCS character.

v An SBCS halfwidth or non-SBCS fullwidth percent sign refers to zero or

more SBCS or non-SBCS characters.

LIKE predicate

Chapter 2. Language elements 199

In a Unicode database, there is really no distinction between ″single-byte″ and

″non-single-byte″ characters. Although the UTF-8 format is a ″mixed-byte″

encoding of Unicode characters, there is no real distinction between SBCS and

non-SBCS characters in UTF-8. Every character is a Unicode character,

regardless of the number of bytes in UTF-8 format.

In a Unicode graphic column, every non-supplementary character, including

the halfwidth underscore character (U&’\005F’) and the halfwidth percent sign

character (U&’\0025’), is two bytes in width. In a Unicode database, special

characters in a pattern are interpreted as follows:

v For character strings, a halfwidth underscore character (X’5F’) or a fullwidth

underscore character (X’EFBCBF’) refers to one Unicode character, and a

halfwidth percent sign character (X’25’) or a fullwidth percent sign character

(X’EFBC85’) refers to zero or more Unicode characters.

v For graphic strings, a halfwidth underscore character (U&’\005F’) or a

fullwidth underscore character (U&’\FF3F’) refers to one Unicode character,

and a halfwidth percent sign character (U&’\0025’) or a fullwidth percent

sign character (U&’\FF05’) refers to zero or more Unicode characters.

v To be recognized as special characters when a locale-sensitive UCA-based

collation is in effect, the underscore character and the percent sign character

must not be followed by non-spacing combining marks (diacritics). For

example, the pattern U&’%\0300’ (percent sign character followed by

non-spacing combining grave accent) will be interpreted as a search for

and not as a search for zero or more Unicode characters followed by a letter

with a grave accent.

A Unicode supplementary character is stored as two graphic code points in a

Unicode graphic column. To match a Unicode supplementary character in a

Unicode graphic column, use one underscore if the database uses

locale-sensitive UCA-based collation, and two underscores otherwise. To match

a Unicode supplementary character in a Unicode character column, use one

underscore for all collations. To match a base character with one or more

trailing non-spacing combining characters, use one underscore if the database

uses locale-sensitive UCA-based collation. Otherwise, use as many underscore

characters as the number of non-spacing combining characters plus the base

character.

escape-expression

This optional argument is an expression that specifies a character to be used to

modify the special meaning of the underscore (_) and percent (%) characters in

the pattern-expression. This allows the LIKE predicate to be used to match

values that contain the actual percent and underscore characters.

 The expression can be specified by any one of:

v A constant

v A special register

v A global variable

v A host variable

v A scalar function whose operands are any of the above

v An expression concatenating any of the above

with the restrictions that:

v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC, or DBCLOB. In addition, it cannot be a BLOB file

reference variable.

LIKE predicate

200 SQL Reference, Volume 1

v For character columns, the result of the expression must be one character, or

a binary string containing exactly one byte (SQLSTATE 22019).

v For graphic columns, the result of the expression must be one character

(SQLSTATE 22019).

v The result of the expression must not be a non-spacing combining character

sequence (for example, U&’\0301’, Combining Acute Accent).

When escape characters are present in the pattern string, an underscore,

percent sign, or escape character can represent a literal occurrence of itself.

This is true if the character in question is preceded by an odd number of

successive escape characters. It is not true otherwise.

In a pattern, a sequence of successive escape characters is treated as follows:

v Let S be such a sequence, and suppose that S is not part of a larger sequence

of successive escape characters. Suppose also that S contains a total of n

characters. Then the rules governing S depend on the value of n:

– If n is odd, S must be followed by an underscore or percent sign

(SQLSTATE 22025). S and the character that follows it represent (n-1)/2

literal occurrences of the escape character followed by a literal occurrence

of the underscore or percent sign.

– If n is even, S represents n/2 literal occurrences of the escape character.

Unlike the case where n is odd, S could end the pattern. If it does not end

the pattern, it can be followed by any character (except, of course, an

escape character, which would violate the assumption that S is not part of

a larger sequence of successive escape characters). If S is followed by an

underscore or percent sign, that character has its special meaning.

Following is an illustration of the effect of successive occurrences of the escape

character which, in this case, is the back slash (\).

Pattern string

Actual Pattern

\% A percent sign

\\% A back slash followed by zero or more arbitrary characters

\\\% A back slash followed by a percent sign

The code page used in the comparison is based on the code page of the

match-expression value.

v The match-expression value is never converted.

v If the code page of pattern-expression is different from the code page of

match-expression, the value of pattern-expression is converted to the code page of

match-expression, unless either operand is defined as FOR BIT DATA (in which

case there is no conversion).

v If the code page of escape-expression is different from the code page of

match-expression, the value of escape-expression is converted to the code page of

match-expression, unless either operand is defined as FOR BIT DATA (in which

case there is no conversion).

Notes

v The number of trailing blanks is significant in both the match-expression and the

pattern-expression. If the strings are not the same length, the shorter string is not

padded with blank spaces. For example, the expression ’PADDED ’ LIKE

’PADDED’ would not result in a match.

LIKE predicate

Chapter 2. Language elements 201

v If the pattern specified in a LIKE predicate is a parameter marker, and a

fixed-length character host variable is used to replace the parameter marker, the

value specified for the host variable must have the correct length. If the correct

length is not specified, the select operation will not return the intended results.

For example, if the host variable is defined as CHAR(10), and the value WYSE%

is assigned to that host variable, the host variable is padded with blanks on

assignment. The pattern used is:

’WYSE% ’

The database manager searches for all values that start with WYSE and that end

with five blank spaces. If you want to search only for values that start with

’WYSE’, assign a value of ’WSYE%%%%%%’ to the host variable.

v The pattern is matched using the collation of the database, unless either operand

is defined as FOR BIT DATA, in which case the pattern is matched using a

binary comparison.

Examples

v Search for the string ’SYSTEMS’ appearing anywhere within the PROJNAME

column in the PROJECT table.

 SELECT PROJNAME FROM PROJECT

 WHERE PROJECT.PROJNAME LIKE ’%SYSTEMS%’

v Search for a string with a first character of ’J’ that is exactly two characters long

in the FIRSTNME column of the EMPLOYEE table.

 SELECT FIRSTNME FROM EMPLOYEE

 WHERE EMPLOYEE.FIRSTNME LIKE ’J_’

v Search for a string of any length, with a first character of ’J’, in the FIRSTNME

column of the EMPLOYEE table.

 SELECT FIRSTNME FROM EMPLOYEE

 WHERE EMPLOYEE.FIRSTNME LIKE ’J%’

v In the CORP_SERVERS table, search for a string in the LA_SERVERS column

that matches the value in the CURRENT SERVER special register.

 SELECT LA_SERVERS FROM CORP_SERVERS

 WHERE CORP_SERVERS.LA_SERVERS LIKE CURRENT SERVER

v Retrieve all strings that begin with the character sequence ’\’ in column A of

table T.

 SELECT A FROM T

 WHERE T.A LIKE ’_\\%’ ESCAPE ’\’

v Use the BLOB scalar function to obtain a one-byte escape character that is

compatible with the match and pattern data types (both BLOBs).

 SELECT COLBLOB FROM TABLET

 WHERE COLBLOB LIKE :pattern_var ESCAPE BLOB(X’OE’)

v In a Unicode database defined with the case insensitive collation

UCA500R1_LEN_S1, find all names that start with ’Bill’.

SELECT NAME FROM CUSTDATA WHERE NAME LIKE ’Bill%’

The will return the names ’Bill Smith’, ’billy simon’, and ’BILL JONES’.

NULL predicate

�� expression IS

NOT
 NULL ��

LIKE predicate

202 SQL Reference, Volume 1

The NULL predicate tests for null values.

The result of a NULL predicate cannot be unknown. If the value of the expression

is null, the result is true. If the value is not null, the result is false. If NOT is

specified, the result is reversed.

Examples

 PHONENO IS NULL

 SALARY IS NOT NULL

TYPE predicate

�� expression IS OF

NOT

IS

OF DYNAMIC TYPE

NOT

 �

�

�

 ,

(

typename

)

ONLY

��

A TYPE predicate compares the type of an expression with one or more

user-defined structured types.

The dynamic type of an expression involving the dereferencing of a reference type

is the actual type of the referenced row from the target typed table or view. This

may differ from the target type of an expression involving the reference which is

called the static type of the expression.

If the value of expression is null, the result of the predicate is unknown. The result

of the predicate is true if the dynamic type of the expression is a subtype of one of

the structured types specified by typename, otherwise the result is false. If ONLY

precedes any typename the proper subtypes of that type are not considered.

If typename is not qualified, it is resolved using the SQL path. Each typename must

identify a user-defined type that is in the type hierarchy of the static type of

expression (SQLSTATE 428DU).

The DEREF function should be used whenever the TYPE predicate has an

expression involving a reference type value. The static type for this form of

expression is the target type of the reference.

The syntax IS OF and OF DYNAMIC TYPE are equivalent alternatives for the

TYPE predicate. Similarly, IS NOT OF and NOT OF DYNAMIC TYPE are

equivalent alternatives.

Examples

A table hierarchy exists with root table EMPLOYEE of type EMP and subtable

MANAGER of type MGR. Another table, ACTIVITIES, includes a column called

NULL predicate

Chapter 2. Language elements 203

WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE. The

following is a type predicate that evaluates to true when a row corresponding to

WHO_RESPONSIBLE is a manager:

 DEREF (WHO_RESPONSIBLE) IS OF (MGR)

If a table contains a column EMPLOYEE of type EMP, EMPLOYEE may contain

values of type EMP as well as values of its subtypes like MGR. The following

predicate

 EMPL IS OF (MGR)

returns true when EMPL is not null and is actually a manager.

VALIDATED predicate

�� XML-expression IS VALIDATED

NOT

according-to-clause
 ��

according-to-clause:

�

 ACCORDING TO XMLSCHEMA XML-schema-identification

,

IN

(

XML-schema-identification

)

XML-schema-identification:

 ID XML-schema-name

URI

XML-uri1

NO NAMESPACE

LOCATION

XML-uri2

The VALIDATED predicate tests whether or not the value specified by

XML-expression has been validated using the XMLVALIDATE function. If the value

specified is null, the result of the validation constraint is unknown; otherwise, the

result of the validation constraint is either true or false. The value you specify must

be of type XML.

If the ACCORDING TO XMLSCHEMA clause is not specified, then XML schemas

used for validation do not impact the result of the validation constraint.

Description

XML-expression

Specifies the XML value tested, where XML-expression can consist of an XML

document, XML content, a sequence of XML nodes, an XML column-name, or

an XML correlation-name.

 If an XML column-name is specified, the predicate evaluates whether or not

XML documents associated with the specified column name have been

validated.

See ″CREATE TRIGGER″ for information about specifying correlation names of

type XML as part of triggers.

IS VALIDATED or IS NOT VALIDATED

Specifies the required validation state for the XML-expression operand.

TYPE predicate

204 SQL Reference, Volume 1

For a constraint that specifies IS VALIDATED to evaluate as true, the operand

must have been validated. If an optional ACCORDING TO XMLSCHEMA

clause includes one or several XML schemas, the operand must have been

validated using one of the identified XML schemas.

For a constraint that specifies IS NOT VALIDATED to evaluate as false, the

operand must be in an validated state. If an optional ACCORDING TO

XMLSCHEMA clause includes one or several XML schemas, the operand must

have been validated using one of the identified XML schemas.

according-to-clause

Specifies one or several XML schemas against which the operand must or must

not have been validated. Only XML schemas previously registered with the

XML schema repository may be specified.

ACCORDING TO XMLSCHEMA

ID XML-schema-name

Specifies an SQL identifier for the XML schema. The name, including

the implicit or explicit SQL schema qualifier, must uniquely identify an

existing XML schema in the XML schema repository at the current

server. If no XML schema by this name exists in the implicitly or

explicitly specified SQL schema, an error is returned (SQLSTATE

42704).

URI XML-uri1

Specifies the target namespace URI of the XML schema. The value of

XML-uri1 specifies a URI as a character string constant that is not

empty. The URI must be the target namespace of a registered XML

schema (SQLSTATE 4274A) and, if no LOCATION clause is specified, it

must uniquely identify the registered XML schema (SQLSTATE 4274B).

NO NAMESPACE

Specifies that the XML schema has no target namespace. The target

namespace URI is equivalent to an empty character string that cannot

be specified as an explicit target namespace URI.

LOCATION XML-uri2

Specifies the XML schema location URI of the XML schema. The value

of XML-uri2 specifies a URI as a character string constant that is not

empty. The XML schema location URI, combined with the target

namespace URI, must identify a registered XML schema (SQLSTATE

4274A), and there must be only one such XML schema registered

(SQLSTATE 4274B).

Examples

Example 1: Assume that column XMLCOL is defined in table T1. Retrieve only the

XML values that have been validated by any XML schema.

 SELECT XMLCOL FROM T1

 WHERE XMLCOL IS VALIDATED

Example 2: Assume that column XMLCOL is defined in table T1. Enforce the rule

that values cannot be inserted or updated unless they have been validated.

 ALTER TABLE T1 ADD CONSTRAINT CK_VALIDATED

 CHECK (XMLCOL IS VALIDATED)

VALIDATED predicate

Chapter 2. Language elements 205

Example 3: Assume that you want to select only those rows from table T1 with

XML column XMLCOL that have been validated with the XML schema URI

http://www.posample.org.

 SELECT XMLCOL FROM T1

 WHERE XMLCOL IS VALIDATED

 ACCORDING TO XMLSCHEMA URI

 ’http://www.posample.org’

XMLEXISTS predicate

�� XMLEXISTS (xquery-expression-constant �

�

�

,

(1)

BY REF

PASSING

xquery-argument

) ��

xquery-argument:

 (2)

xquery-variable-expression

AS

identifier

BY REF

Notes:

1 The data type cannot be DECFLOAT.

2 The data type of the expression cannot be DECFLOAT.

The XMLEXISTS predicate tests whether an XQuery expression returns a sequence

of one or more items.

xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an XQuery

expression. The constant string is converted directly to UTF-8 without

conversion to the database or section code page. The XQuery expression

executes using an optional set of input XML values, and returns an output

sequence that is tested to determine the result of the XMLEXISTS predicate.

The value for xquery-expression-constant must not be an empty string or a string

of blank characters (SQLSTATE 10505).

PASSING

Specifies input values and the manner in which these values are passed to the

XQuery expression specified by xquery-expression-constant. By default, every

unique column name that is in the scope where the function is invoked is

implicitly passed to the XQuery expression using the name of the column as

the variable name. If an identifier in a specified xquery-argument matches an

in-scope column name, then the explicit xquery-argument is passed to the

XQuery expression overriding that implicit column.

BY REF

Specifies that the default passing mechanism is by reference for any

xquery-variable-expression of data type XML. When XML values are passed

by reference, the XQuery evaluation uses the input node trees, if any,

directly from the specified input expressions, preserving all properties,

including the original node identities and document order. If two

arguments pass the same XML value, node identity comparisons and

VALIDATED predicate

206 SQL Reference, Volume 1

document ordering comparisons involving some nodes contained between

the two input arguments might refer to nodes within the same XML node

tree.

 This clause has no impact on how non-XML values are passed. The

non-XML values create a new copy of the value during the cast to XML.

xquery-argument

Specifies an argument that is to be passed to the XQuery expression

specified by xquery-expression-constant. An argument specifies a value and

the manner in which that value is to be passed. The argument includes an

SQL expression that is evaluated.

v If the resulting value is of type XML, it becomes an input-xml-value. A

null XML value is converted to an XML empty sequence.

v If the resulting value is not of type XML, it must be castable to the XML

data type. A null value is converted to an XML empty sequence. The

converted value becomes an input-xml-value.

When the xquery-expression-constant is evaluated, an XQuery variable is

presented with a value equal to input-xml-value and a name specified by

the AS clause.

xquery-variable-expression

Specifies an SQL expression whose value is available to the XQuery

expression specified by xquery-expression-constant during execution. The

expression cannot contain a sequence reference (SQLSTATE 428F9) or

an OLAP function (SQLSTATE 42903). The data type of the expression

cannot be DECFLOAT.

AS identifier

Specifies that the value generated by xquery-variable-expression will be

passed to xquery-expression-constant as an XQuery variable. The variable

name will be identifier. The leading dollar sign ($) that precedes

variable names in the XQuery language is not included in identifier.

The identifier must be a valid XQuery variable name and is restricted

to an XML NCName. The identifier must not be greater than 128 bytes

in length. Two arguments within the same PASSING clause cannot use

the same identifier (SQLSTATE 42711).

BY REF

Indicates that an XML input value is to be passed by reference. When

XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node

identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree. If BY REF is not specified

following an xquery-variable-expression, XML arguments are passed by

way of the default passing mechanism that is provided through the

syntax that follows the PASSING keyword. This option cannot be

specified for non-XML values. When a non-XML value is passed, the

value is converted to XML; this process creates a copy.

Notes

The XMLEXISTS predicate cannot be:

XMLEXISTS predicate

Chapter 2. Language elements 207

v Part of the ON clause that is associated with a JOIN operator or a MERGE

statement (SQLSTATE 42972)

v Part of the GENERATE KEY USING or RANGE THROUGH clause in the

CREATE INDEX EXTENSION statement (SQLSTATE 428E3)

v Part of the FILTER USING clause in the CREATE FUNCTION (External Scalar)

statement, or the FILTER USING clause in the CREATE INDEX EXTENSION

statement (SQLSTATE 428E4)

v Part of a check constraint or a column generation expression (SQLSTATE 42621)

v Part of a group-by-clause (SQLSTATE 42822)

v Part of an argument for a column-function (SQLSTATE 42607)

An XMLEXISTS predicate that involves a subquery might be restricted by

statements that restrict subqueries.

The XMLEXISTS predicate can be used only in a database with a single database

partition (SQLSTATE 42997).

Example

 SELECT c.cid FROM customer c

 WHERE XMLEXISTS(’$d/*:customerinfo/*:addr[*:city = "Aurora"]’

 PASSING info AS "d")

XMLEXISTS predicate

208 SQL Reference, Volume 1

Chapter 3. Functions

Functions overview

A function is an operation that is denoted by a function name followed by a pair of

parentheses enclosing the specification of arguments (there may be no arguments).

Built-in functions are provided with the database manager; they return a single

result value, and are identified as part of the SYSIBM schema. Built-in functions

include column functions (such as AVG), operator functions (such as “+”), casting

functions (such as DECIMAL), and others (such as SUBSTR).

User-defined functions are registered to a database in SYSCAT.ROUTINES (using the

CREATE FUNCTION statement). User-defined functions are never part of the

SYSIBM schema. One such set of functions is provided with the database manager

in a schema called SYSFUN, and another in a schema called SYSPROC.

Functions are classified as aggregate (column) functions, scalar functions, row

functions, or table functions.

v The argument of an aggregate function is a collection of like values. An aggregate

function returns a single value (possibly null), and can be specified in an SQL

statement wherever an expression can be used.

v The arguments of a scalar function are individual scalar values, which can be of

different types and have different meanings. A scalar function returns a single

value (possibly null), and can be specified in an SQL statement wherever an

expression can be used.

v The argument of a row function is a structured type. A row function returns a

row of built-in data types and can only be specified as a transform function for a

structured type.

v The arguments of a table function are individual scalar values, which can be of

different types and have different meanings. A table function returns a table to

the SQL statement, and can be specified only within the FROM clause of a

SELECT statement.

The function name, combined with the schema, gives the fully qualified name of a

function. The combination of schema, function name, and input parameters make

up a function signature.

In some cases, the input parameter type is specified as a specific built-in data type,

and in other cases, it is specified through a general variable like any-numeric-type. If

a particular data type is specified, an exact match will only occur with the

specified data type. If a general variable is used, each of the data types associated

with that variable results in an exact match.

Additional functions may be available, because user-defined functions can be

created in different schemas, using one of the function signatures as a source. You

can also create external functions in your applications.

© Copyright IBM Corp. 1993, 2009 209

Supported functions and administrative SQL routines and views

Table 21 summarizes information about the supported functions. The function

name, combined with the schema, gives the fully qualified name of a function. The

“Input” column shows the expected data type for each argument during function

invocation. Many of the functions include variations of the input parameters,

allowing either different data types or different numbers of arguments to be used.

The combination of schema, function name and input parameters makes up a

function signature. The “Returns” column shows the possible data types of values

returned by the function. For the administrative SQL routines and views, refer to

the reference information for the input and return information.

For lists of the supported built-in functions classified by type, see the following

tables:

v Aggregate functions (Table 22 on page 229)

v Cast scalar functions (Table 23 on page 230)

v Partitioning scalar functions (Table 24 on page 230)

v Datetime scalar functions (Table 25 on page 231)

v Numeric scalar functions (Table 26 on page 232)

v Security scalar functions (Table 27 on page 233)

v XML functions (Table 28 on page 233)

v String scalar functions (Table 29 on page 234)

v Miscellaneous scalar functions (Table 30 on page 236)

For lists of the supported administrative SQL routines and views classified by

functionality, see “Supported administrative SQL routines and views” in

Administrative Routines and Views . These routines and views are grouped as

follows:

v Activity monitor administrative SQL routines

v ADMIN_CMD stored procedure and associated administrative SQL routines

v Configuration administrative SQL routines and views

v Environment administrative views

v Health snapshot administrative SQL routines

v MQSeries® administrative SQL routines

v Security administrative SQL routines and views

v Snapshot administrative SQL routines and views

v SQL procedures administrative SQL routines

v Stepwise redistribute administrative SQL routines

v Storage management tool administrative SQL routines

v Miscellaneous administrative SQL routines and views

 Table 21. Supported functions

Function name Schema Input Returns Description

“ABS or ABSVAL” on page

257

SYSIBM Any expression that returns

a built-in numeric data

type.

Same data type and length

as the argument.

This scalar function returns the absolute

value of the argument.

“ABS or ABSVAL” on page

257

SYSFUN

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

This scalar function returns the absolute

value of the argument.

Supported functions and administrative SQL routines and views

210 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“ACOS” on page 257

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the arccosine

of the argument as an angle expressed in

radians.

“ARRAY_AGG” on page

238

SYSIBM

v any-type8

v any-type8, any-type

v an array

v an array

This aggregate function aggregates a set of

elements into an array.

“ASCII” on page 258

SYSFUN

v CHAR

v VARCHAR(4000)

v CLOB(1M)

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the ASCII

code value of the leftmost character of the

argument as an integer.

“ASIN” on page 258

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the arcsine of

the argument as an angle expressed in

radians.

“ATAN” on page 259

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the arctangent

of the argument as an angle expressed in

radians.

“ATANH” on page 259

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the hyperbolic

arctangent of the argument, where the

argument is an angle expressed in radians.

“ATAN2” on page 259

SYSIBM

v DOUBLE, DOUBLE v DOUBLE

This scalar function returns the arctangent

of x and y coordinates — specified by the

first and second arguments —

respectively, as an angle expressed in

radians.

“AVG” on page 239

SYSIBM

v numeric-type4

v numeric-type1

This aggregate function returns the

average of a set of numbers.

“BIGINT” on page 260

SYSIBM

v numeric-type

v VARCHAR

v BIGINT

v BIGINT

This scalar function returns a 64-bit

integer representation of a number or a

character string in the form of an integer

constant.

“BITAND, BITANDNOT,

BITOR, BITXOR, and

BITNOT” on page 261

SYSIBM

v See the complete

description of these

functions.

v See the complete

description of these

functions.

These bitwise functions operate on the

″two’s complement″ representation of the

integer value of the input arguments and

return the result as a corresponding base

10 integer value in a data type based on

the data type of the input arguments.

“BLOB” on page 263

SYSIBM

v string-type

v string-type, INTEGER

v BLOB

v BLOB

This scalar function casts from source type

to BLOB, with optional length.

“CARDINALITY” on page

263

SYSIBM

v an array v BIGINT

This scalar function returns the number of

elements of an array

“CEILING” on page 264

SYSIBM

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

This scalar function returns the smallest

integer that is greater than or equal to the

argument.

“CHAR” on page 264

SYSIBM

v character-type

v character-type, INTEGER

v datetime-type

v datetime-type, keyword2

v SMALLINT

v INTEGER

v BIGINT

v DECIMAL

v DECIMAL, VARCHAR

v DECFLOAT(n)

v CHAR

v CHAR(integer)

v CHAR

v CHAR

v CHAR(6)

v CHAR(11)

v CHAR(20)

v CHAR(2+precision)

v CHAR(2+precision)

v CHAR(42)

This scalar function returns a string

representation of the source type.

“CHAR” on page 264

SYSFUN

v DOUBLE v CHAR(24)

This scalar function returns a character

string representation of a floating-point

number.

“CHARACTER_LENGTH”

on page 268

SYSIBM

v string-type, string-unit v INTEGER

This scalar function returns the length of

an expression in the specified string-unit.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 211

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“CHR” on page 270

SYSFUN

v INTEGER v CHAR(1)

This scalar function returns the character

that has the ASCII code value specified by

the argument. The value of the argument

should be between 0 and 255; otherwise,

the return value is null.

“CLOB” on page 270

SYSIBM

v character-type

v character-type, INTEGER

v CLOB

v CLOB

This scalar function casts from source type

to CLOB, with optional length.

“COALESCE” on page 271

3

SYSIBM

v any-type,

any-union-compatible-
type,...

v any-type

This scalar function returns the first

non-null argument in the set of

arguments.

“COLLATION_KEY_BIT”

on page 271

SYSIBM

v CHAR, a string that

specifies a collation

v VARCHAR, a string that

specifies a collation

v GRAPHIC, a string that

specifies a collation

v VARGRAPHIC, a string

that specifies a collation

v CHAR, a string that

specifies a collation,

INTEGER

v VARCHAR, a string that

specifies a collation,

INTEGER

v GRAPHIC, a string that

specifies a collation,

INTEGER

v VARGRAPHIC, a string

that specifies a collation,

INTEGER

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

This scalar function returns a string

representing the collation key of the

specified string-expression in the specified

collation-name.

“COMPARE_DECFLOAT”

on page 273

SYSIBM

v DECFLOAT(n),

DECFLOAT(n)

v INTEGER

This scalar function returns a SMALLINT

value that indicates whether the two

arguments are equal or unordered, or

whether one argument is greater than the

other.

“CONCAT” on page 274

SYSIBM

v string-type,

compatible-string-type

v max-string-type

This scalar function returns the

concatenation of two string arguments.

“CORRELATION” on page

240

SYSIBM

v numeric-type, numeric-type

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n),

numeric-type

v numeric-type,

DECFLOAT(n)

v DOUBLE

v DOUBLE

v DECFLOAT(34)

v DECFLOAT(34)

This aggregate function returns the

coefficient of correlation of a set of

number pairs.

“COS” on page 274

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the cosine of

the argument, where the argument is an

angle expressed in radians.

“COSH” on page 274

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the hyperbolic

cosine of the argument, where the

argument is an angle expressed in radians.

“COT” on page 275

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the cotangent

of the argument, where the argument is

an angle expressed in radians.

“COUNT” on page 241

SYSIBM

v any-builtin-type4

v INTEGER

This aggregate function returns the

number of rows or values in a set of rows

or values.

“COUNT_BIG” on page 242

SYSIBM

v any-builtin-type4

v DECIMAL(31,0)

This aggregate function returns the

number of rows or values in a set of rows

or values. The result can be greater than

the maximum value of INTEGER.

Supported functions and administrative SQL routines and views

212 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“COVARIANCE” on page

243

SYSIBM

v numeric-type, numeric-type

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n),

numeric-type

v numeric-type,

DECFLOAT(n)

v DOUBLE

v DOUBLE

v DECFLOAT(34)

v DECFLOAT(34)

This aggregate function returns the

covariance of a set of number pairs.

“DATAPARTITIONNUM”

on page 275

SYSIBM

v any-type v INTEGER

This scalar function returns the sequence

number (SYSDATAPARTITIONS.SEQNO)

of the data partition in which the row

resides. The argument is any column

name within the table.

“DATE” on page 276

SYSIBM

v DATE

v TIMESTAMP

v DOUBLE

v VARCHAR

v DECFLOAT(n)

v DATE

v DATE

v DATE

v DATE

v DATE

This scalar function returns a date from a

single input value.

“DAY” on page 277

SYSIBM

v VARCHAR

v DATE

v TIMESTAMP

v DECIMAL

v INTEGER

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the day part

of a value.

“DAYNAME” on page 278

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v VARCHAR(100)

v VARCHAR(100)

v VARCHAR(100)

This scalar function returns a mixed case

character string containing the name of

the day (for example, Friday) for the day

portion of the argument, based on what

the locale was when db2start was issued.

“DAYOFWEEK” on page

278

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the day of the

week in the argument as an integer value

in the range 1-7, where 1 represents

Sunday.

“DAYOFWEEK_ISO” on

page 278

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the day of the

week in the argument as an integer value

in the range 1-7, where 1 represents

Monday.

“DAYOFYEAR” on page

279

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the day of the

year in the argument as an integer value

in the range 1-366.

“DAYS” on page 279

SYSIBM

v VARCHAR

v TIMESTAMP

v DATE

v INTEGER

v INTEGER

v INTEGER

This scalar function returns an integer

representation of a date.

“DBCLOB” on page 280

SYSIBM

v graphic-type

v graphic-type, INTEGER

v DBCLOB

v DBCLOB

This scalar function casts from source type

to DBCLOB, with optional length.

“DBPARTITIONNUM” on

page 280

3

SYSIBM

v any-type v INTEGER

This scalar function returns the database

partition number of the row. The

argument is any column name within the

table.

“DECFLOAT” on page 282

SYSIBM

v numeric-type

v numeric-type, INTEGER

v DECFLOAT(34)

v DECFLOAT(n), where n

is the (optional) second

argument of type

INTEGER, either 16 or 34

This scalar function returns the decimal

floating-point representation of a number

with optional precision.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 213

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“DECFLOAT” on page 282

SYSIBM

v VARCHAR

v VARCHAR, INTEGER

v VARCHAR, INTEGER,

VARCHAR

v DECFLOAT(34)

v DECFLOAT(n), where n

is the (optional) second

argument of type

INTEGER, either 16 or 34

v DECFLOAT(n), where n

is the (optional) second

argument of type

INTEGER, either 16 or 34

This scalar function returns the decimal

floating-point representation of a number

with optional precision and decimal

character.

“DECIMAL” on page 283

SYSIBM

v numeric-type

v numeric-type, INTEGER

v numeric-type INTEGER,

INTEGER

v DECIMAL

v DECIMAL

v DECIMAL

This scalar function returns the decimal

representation of a number, with optional

precision and scale.

“DECIMAL” on page 283

SYSIBM

v VARCHAR

v VARCHAR, INTEGER

v VARCHAR, INTEGER,

INTEGER

v VARCHAR, INTEGER,

INTEGER, VARCHAR

v DECIMAL

v DECIMAL

v DECIMAL

v DECIMAL

This scalar function returns the decimal

representation of a character string, with

optional precision, scale, and decimal

character.

“DECODE” on page 286

SYSIBM

v any-type v any-type

This scalar function compares each

specified expression2 to expression1. If

expression1 is equal to expression2, or both

expression1 and expression2 are null, the

value of the following result-expresssion is

returned. If no expression2 matches

expression1, the value of else-expression is

returned; otherwise a null value is

returned.

“DECRYPT_BIN and

DECRYPT_CHAR” on page

287

SYSIBM

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA, VARCHAR

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

This scalar function returns a value that is

the result of decrypting encrypted data

using a password string.

“DECRYPT_BIN and

DECRYPT_CHAR” on page

287

SYSIBM

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA, VARCHAR

v VARCHAR

v VARCHAR

This scalar function returns a value that is

the result of decrypting encrypted data

using a password string.

“DEGREES” on page 288

SYSIBM

v DOUBLE

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

This scalar function returns the number of

degrees converted from the argument

expressed in radians.

“DEGREES” on page 288

SYSFUN

v DOUBLE v DOUBLE

This scalar function returns the number of

degrees converted from the argument

expressed in radians.

“DEREF” on page 289

SYSIBM

v REF(any-structured-type)

with defined scope

v any-structured-type (same

as input target type)

This scalar function returns an instance of

the target type of the reference type

argument.

“DIFFERENCE” on page

289

SYSFUN

v VARCHAR(4000),

VARCHAR(4000)

v INTEGER

This scalar function returns the difference

between the sounds of the words in the

two argument strings, as determined by

the SOUNDEX function. A value of 4

means the strings sound the same.

“DIGITS” on page 290

SYSIBM

v DECIMAL v CHAR

This scalar function returns the character

string representation of a number.

“DOUBLE” on page 291

SYSIBM

v numeric-type v DOUBLE

This scalar function returns the

floating-point representation of a number.

“DOUBLE” on page 291

SYSFUN

v VARCHAR v DOUBLE

This scalar function returns the

floating-point number corresponding to

the character string representation of a

number. Leading and trailing blanks in

argument are ignored.

Supported functions and administrative SQL routines and views

214 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

EMPTY_BLOB,

EMPTY_CLOB, and

EMPTY_DBCLOB scalar

functions

SYSIBM

v no argument v BLOB

The EMPTY_BLOB scalar function returns

a zero-length value.

EMPTY_BLOB,

EMPTY_CLOB, and

EMPTY_DBCLOB scalar

functions

SYSIBM

v no argument v CLOB

The EMPTY_CLOB scalar function returns

a zero-length value.

EMPTY_BLOB,

EMPTY_CLOB, and

EMPTY_DBCLOB scalar

functions

SYSIBM

v no argument v DBCLOB

The EMPTY_DBCLOB scalar function

returns a zero-length value.

“ENCRYPT” on page 292

SYSIBM

v VARCHAR

v VARCHAR, VARCHAR

v VARCHAR, VARCHAR,

VARCHAR

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

v VARCHAR FOR BIT

DATA

This scalar function returns a value that is

the result of encrypting a data string

expression.

“EVENT_MON_STATE” on

page 293

SYSIBM

v VARCHAR v INTEGER

This scalar function returns the

operational state of particular event

monitor.

“EXP” on page 294

SYSIBM

v DOUBLE

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(34)

This scalar function returns the

exponential function of the argument.

“EXP” on page 294

SYSFUN

v DOUBLE v DOUBLE

This scalar function returns the

exponential function of the argument.

“FLOAT” on page 294

SYSIBM This scalar function is the same as

DOUBLE.

“FLOOR” on page 295

SYSIBM

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

This scalar function returns the largest

integer that is less than or equal to the

argument.

“GENERATE_UNIQUE” on

page 295

SYSIBM

v no argument v CHAR(13) FOR BIT

DATA

This scalar function returns a bit data

character string that is unique compared

to any other execution of the same

function.

“GETHINT” on page 297

SYSIBM

v VARCHAR or CLOB v VARCHAR

This scalar function returns the password

hint if one is found.

“GRAPHIC” on page 297

SYSIBM

v graphic-type

v graphic-type, INTEGER

v GRAPHIC

v GRAPHIC

This scalar function casts from source type

to GRAPHIC, with optional length.

“GREATEST” on page 299

SYSIBM

v any-builtin-type9

v same as input type

This scalar function returns the maximum

value in a set of values.

“GROUPING” on page 244

SYSIBM

v any-type v SMALLINT

This aggregate function is used with

grouping-sets and super-groups to

indicate sub-total rows generated by a

grouping set. The value returned is 0 or 1.

A value of 1 means that the value of the

argument in the returned row is a null

value, and the row was generated for a

grouping set. This generated row provides

a sub-total for a grouping set.

“HASHEDVALUE” on page

299

3

SYSIBM

v any-type v INTEGER

This scalar function returns the

distribution map index (0 to 4095) of the

row. The argument is a column name

within a table.

“HEX” on page 300

SYSIBM

v any-builtin-type v VARCHAR

This scalar function returns the

hexadecimal representation of a value.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 215

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“HOUR” on page 302

SYSIBM

v VARCHAR

v TIME

v TIMESTAMP

v DECIMAL

v INTEGER

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the hour part

of a value.

“IDENTITY_VAL_LOCAL”

on page 302

SYSIBM

v DECIMAL

This scalar function returns the most

recently assigned value for an identity

column.

“INSERT” on page 306

SYSIBM

v See the complete

description of this

function.

v See the complete

description of this

function.

This scalar function returns a string in

which, beginning at start in the specified

source-string, length of the specified code

units have been deleted and insert-string

has been inserted.

“INSERT” on page 306

SYSFUN

v VARCHAR(4000),

INTEGER, INTEGER,

VARCHAR(4000)

v CLOB(1M), INTEGER,

INTEGER, CLOB(1M)

v BLOB(1M), INTEGER,

INTEGER, BLOB(1M)

v VARCHAR(4000)

v CLOB(1M)

v BLOB(1M)

This scalar function returns a string,

where argument3 bytes have been deleted

from argument1 (beginning at argument2),

and argument4 has been inserted into

argument1 (beginning at argument2).

“INTEGER” on page 309

SYSIBM

v numeric-type

v VARCHAR

v INTEGER

v INTEGER

This scalar function returns the integer

representation of a number.

“JULIAN_DAY” on page

310

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns an integer

value representing the number of days

from January 1, 4712 B.C. (the start of the

Julian date calendar) to the date value

specified in the argument.

“LCASE” on page 311

SYSIBM This scalar function is the same as

LOWER.

“LCASE (Locale sensitive)”

on page 311

SYSIBM This scalar function is the same as

LOWER.

“LEAST” on page 311

SYSIBM

v any-builtin-type9

v same as input type

This scalar function returns the minimum

value in a set of values.

“LEFT” on page 312

SYSIBM

v CHAR or VARCHAR,

INTEGER

v CLOB, INTEGER

v GRAPHIC or

VARGRAPHIC, INTEGER

v DBCLOB, INTEGER

v VARCHAR

v CLOB

v VARGRAPHIC

v DBCLOB

This scalar function returns the leftmost

string of string-expression of length

expressed in the specified string unit. If

string-expression is a character string, the

result is a character string. If

string-expression is a graphic string, the

result is a graphic string.

“LEFT” on page 312

SYSFUN

v VARCHAR(4000),

INTEGER

v CLOB(1M), INTEGER

v BLOB(1M), INTEGER

v VARCHAR(4000)

v CLOB(1M)

v BLOB(1M)

This scalar function returns a string

consisting of the leftmost argument2 bytes

in argument1.

“LENGTH” on page 314

SYSIBM

v any-builtin-type

v any-builtin-type, string-unit

v INTEGER

v INTEGER

This scalar function returns the length of

the operand in bytes (except for

double-byte string types, which return the

length in double-byte characters).

“LOWER” on page 321

SYSIBM

v CHAR

v VARCHAR

v CHAR

v VARCHAR

This scalar function returns a string in

which all the characters have been

converted to lowercase characters.

“LN” on page 316

SYSIBM

v DOUBLE

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

This scalar function returns the natural

logarithm of the argument (same as LOG).

“LN” on page 316

SYSFUN

v DOUBLE v DOUBLE

This scalar function returns the natural

logarithm of the argument (same as LOG).

Supported functions and administrative SQL routines and views

216 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“LOCATE scalar function”

on page 317

SYSIBM

v string-type,

compatible-string-type

v string-type,

compatible-string-type,

INTEGER

v string-type,

compatible-string-type,

string-unit

v string-type,

compatible-string-type,

INTEGER, string-unit

v INTEGER

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the starting

position of the first occurrence of

argument1 within argument2. If the

optional INTEGER argument is specified,

it indicates the character position in

argument2 at which the search is to begin.

If argument1 is not found within

argument2, the value 0 is returned.

“LOG10” on page 320

SYSIBM

v DOUBLE

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

This scalar function returns the base 10

logarithm of the argument.

“LOG10” on page 320

SYSFUN

v DOUBLE v DOUBLE

This scalar function returns the base 10

logarithm of the argument.

“LOWER (Locale sensitive)”

on page 321

SYSIBM

v CHAR, a string that

specifies a locale

v VARCHAR, a string that

specifies a locale

v GRAPHIC, a string that

specifies a locale

v VARGRAPHIC, a string

that specifies a locale

v CHAR, a string that

specifies a locale,

INTEGER

v VARCHAR, a string that

specifies a locale,

INTEGER

v GRAPHIC, a string that

specifies a locale,

INTEGER

v VARGRAPHIC, a string

that specifies a locale,

INTEGER

v VARCHAR

v VARCHAR

v VARGRAPHIC

v VARGRAPHIC

v VARCHAR

v VARCHAR

v VARGRAPHIC

v VARGRAPHIC

This scalar function returns a string in

which all characters have been converted

to lowercase characters using the rules

from the Unicode standard associated

with the specified locale.

“LTRIM” on page 323

SYSIBM

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

v VARCHAR

v VARCHAR

v VARGRAPHIC

v VARGRAPHIC

This scalar function returns the characters

of the argument with leading blanks

removed.

“MAX” on page 245

SYSIBM

v any-builtin-type5

v same as input type

This aggregate function returns the

maximum value in a set of values.

“MAX” on page 324

SYSIBM

v any-builtin-type9

v same as input type

This scalar function returns the maximum

value in a set of values.

“MAX_CARDINALITY” on

page 324

SYSIBM

v an array v BIGINT

This scalar function returns the maximum

number of elements that an array can

contain.

“MICROSECOND” on page

325

SYSIBM

v VARCHAR

v TIMESTAMP

v DECIMAL

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the

microsecond (time-unit) part of a value.

“MIDNIGHT_SECONDS”

on page 325

SYSFUN

v VARCHAR(26)

v TIME

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns an integer

value in the range 0 to 86 400,

representing the number of seconds

between midnight and the time value

specified in the argument.

“MIN” on page 246

SYSIBM

v any-builtin-type5

v same as input type

This aggregate function returns the

minimum value in a set of values.

“MIN” on page 326

SYSIBM

v any-builtin-type9

v same as input type

This scalar function returns the minimum

value in a set of values.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 217

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“MINUTE” on page 327

SYSIBM

v VARCHAR

v TIME

v TIMESTAMP

v DECIMAL

v INTEGER

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the minute

part of a value.

“MOD” on page 328

SYSFUN

v SMALLINT, SMALLINT

v INTEGER, INTEGER

v BIGINT, BIGINT

v SMALLINT

v INTEGER

v BIGINT

This scalar function returns the remainder

(modulus) of argument1 divided by

argument2. The result is negative only if

argument1 is negative.

“MONTH” on page 328

SYSIBM

v VARCHAR

v DATE

v TIMESTAMP

v DECIMAL

v INTEGER

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the month

part of a value.

“MONTHNAME” on page

329

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v VARCHAR(100)

v VARCHAR(100)

v VARCHAR(100)

This scalar function returns a mixed case

character string containing the name of

the month (for example, January) for the

month portion of the argument that is a

date or a timestamp, based on what the

locale was when the database was started.

“MULTIPLY_ALT” on page

329

SYSIBM

v exact-numeric-type,

exact-numeric-type

v DECIMAL

This scalar function returns the product of

two arguments as a decimal value. This

function is useful when the sum of the

argument precisions is greater than 31.

“NORMALIZE_

DECFLOAT” on page 330

SYSIBM

v DECFLOAT(n) v DECFLOAT(n)

This scalar function returns a decimal

floating-point value that is the result of

the argument set to its simplest form.

“NULLIF” on page 331

3

SYSIBM

v any-type5,

any-comparable-type5

v any-type

This scalar function returns NULL if the

arguments are equal, or returns the first

argument if they are not equal.

“NVL” on page 331

SYSIBM

v any-type,

any-union-compatible-
type,...

v any-type

This scalar function returns the first

argument that is not null.

“OCTET_LENGTH” on

page 332

SYSIBM

v string-type v INTEGER

This scalar function returns the length of

an expression in octets (bytes).

“OVERLAY” on page 332

SYSIBM

v See the complete

description of this

function.

v See the complete

description of this

function.

This scalar function returns a string in

which, beginning at start in the specified

source-string, length of the specified code

units have been deleted and insert-string

has been inserted.

“PARAMETER” on page

336

SYSIBM

v INTEGER v See the complete

description of this

function.

This scalar function represents a position

in an SQL statement where the value is

provided dynamically by XQuery as part

of the invocation of the db2-fn:sqlquery

function.

“POSITION scalar function”

on page 336

SYSIBM

v string-type, string-type,

string-unit

v INTEGER

This scalar function returns the starting

position of argument2 within argument1.

“POSSTR scalar function”

on page 339

SYSIBM

v string-type,

compatible-string-type

v INTEGER

This scalar function returns the position at

which one string is contained in another.

“POWER” on page 341

SYSIBM

v INTEGER, INTEGER

v BIGINT, BIGINT

v DOUBLE, INTEGER

v DOUBLE, DOUBLE

v DECFLOAT(n)

v INTEGER

v BIGINT

v DOUBLE

v DOUBLE

v DECFLOAT(34)

This scalar function returns the value of

argument1 to the power of argument2.

“POWER” on page 341

SYSFUN

v INTEGER, INTEGER

v BIGINT, BIGINT

v DOUBLE, INTEGER

v DOUBLE, DOUBLE

v INTEGER

v BIGINT

v DOUBLE

v DOUBLE

This scalar function returns the value of

argument1 to the power of argument2.

Supported functions and administrative SQL routines and views

218 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“QUANTIZE” on page 342

SYSIBM

v numeric-type, numeric-type v DECFLOAT(n), where n

is 16 if both arguments

are DECFLOAT(16);

otherwise DECFLOAT(34)

This scalar function returns a decimal

floating-point number that is equal in

value and sign to the first argument, and

whose exponent is equal to the exponent

of the second argument.

“QUARTER” on page 343

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns an integer

value in the range 1 to 4, representing the

quarter of the year for the date specified

in the argument.

“RADIANS” on page 343

SYSIBM

v DOUBLE

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

This scalar function returns the number of

radians converted from the argument,

which is expressed in degrees.

“RADIANS” on page 343

SYSFUN

v DOUBLE v DOUBLE

This scalar function returns the number of

radians converted from the argument,

which is expressed in degrees.

“RAISE_ERROR” on page

344

3

SYSIBM

v VARCHAR, VARCHAR v any-type6

This scalar function raises an error in the

SQLCA. The sqlstate that is to be returned

is indicated by argument1. The second

argument contains any text that is to be

returned.

“RAND” on page 345

SYSFUN

v no argument

v INTEGER

v DOUBLE

v DOUBLE

This scalar function returns a random

floating point value between 0 and 1,

using the argument as an optional seed

value.

“REAL” on page 345

SYSIBM

v numeric-type v REAL

This scalar function returns the

single-precision floating-point

representation of a number.

“REC2XML” on page 346

SYSIBM

v DECIMAL, VARCHAR,

VARCHAR, any-type7

v VARCHAR

This scalar function returns a string

formatted with XML tags, containing

column names and column data.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_AVGX aggregate function

returns quantities used to compute

diagnostic statistics.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_AVGY aggregate function

returns quantities used to compute

diagnostic statistics.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v INTEGER

v DECFLOAT(n)

The REGR_COUNT aggregate function

returns the number of non-null number

pairs used to fit the regression line.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_INTERCEPT or REGR_ICPT

aggregate function returns the y-intercept

of the regression line.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_R2 aggregate function returns

the coefficient of determination for the

regression.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_SLOPE aggregate function

returns the slope of the line.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_SXX aggregate function returns

quantities used to compute diagnostic

statistics.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_SXY aggregate function returns

quantities used to compute diagnostic

statistics.

“Regression functions” on

page 247

SYSIBM

v non-decfloat-numeric-type,

non-decfloat-numeric-type

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

The REGR_SYY aggregate function returns

quantities used to compute diagnostic

statistics.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 219

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“REPEAT” on page 350

SYSFUN

v VARCHAR(4000),

INTEGER

v CLOB(1M), INTEGER

v BLOB(1M), INTEGER

v VARCHAR(4000)

v CLOB(1M)

v BLOB(1M)

This scalar function returns a character

string composed of argument1 repeated

argument2 times.

“REPLACE” on page 350

SYSFUN

v VARCHAR(4000),

VARCHAR(4000),

VARCHAR(4000)

v CLOB(1M), CLOB(1M),

CLOB(1M)

v BLOB(1M), BLOB(1M),

BLOB(1M)

v VARCHAR(4000)

v CLOB(1M)

v BLOB(1M)

This scalar function replaces all

occurrences of argument2 in argument1

with argument3.

“RID_BIT and RID” on

page 352

SYSIBM

v Table designator v VARCHAR(16) FOR BIT

DATA

The RID_BIT scalar function returns the

row identifier (RID) of a row in a

character string format. The RID_BIT

function is preferred over the RID

function.

“RID_BIT and RID” on

page 352

SYSIBM

v Table designator v BIGINT

The RID scalar function returns the RID of

a row in large integer format. This

function is not supported in partitioned

database environments.

“RIGHT” on page 353

SYSIBM

v CHAR or VARCHAR,

INTEGER

v CLOB, INTEGER

v GRAPHIC or

VARGRAPHIC, INTEGER

v DBCLOB, INTEGER

v VARCHAR

v CLOB

v VARGRAPHIC

v DBCLOB

This scalar function returns the rightmost

string of string-expression of length,

expressed in the specified string unit. If

string-expression is a character string, the

result is a character string. If

string-expression is a graphic string, the

result is a graphic string.

“RIGHT” on page 353

SYSFUN

v VARCHAR(4000),

INTEGER

v CLOB(1M), INTEGER

v BLOB(1M), INTEGER

v VARCHAR(4000)

v CLOB(1M)

v BLOB(1M)

This scalar function returns a string

consisting of the rightmost argument2

bytes in argument1.

“ROUND” on page 356

SYSIBM

v INTEGER, INTEGER

v BIGINT, INTEGER

v DOUBLE, INTEGER

v DECFLOAT(n), INTEGER

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

This scalar function returns the first

argument rounded to argument2 places

right of the decimal point. If argument2 is

negative, argument1 is rounded to the

absolute value of argument2 places to the

left of the decimal point.

“RTRIM” on page 358

SYSIBM

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

v VARCHAR

v VARCHAR

v VARGRAPHIC

v VARGRAPHIC

This scalar function returns the characters

of the argument with trailing blanks

removed.

“SECLABEL” on page 358

SYSIBM

v CHAR, a string in

security label string

format

v VARCHAR, a string in

security label string

format

v GRAPHIC, a string in

security label string

format

v VARGRAPHIC, a string

in security label string

format

v DB2SECURITYLABEL

This scalar function returns an unnamed

security label.

Supported functions and administrative SQL routines and views

220 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“SECLABEL_BY_NAME”

on page 359

SYSIBM

v CHAR,

DB2SECURITYLABEL

v VARCHAR,

DB2SECURITYLABEL

v GRAPHIC,

DB2SECURITYLABEL

v VARGRAPHIC,

DB2SECURITYLABEL

v DB2SECURITYLABEL

This scalar function returns a specific

security label.

“SECLABEL_TO_CHAR”

on page 360

SYSIBM

v CHAR,

DB2SECURITYLABEL

v VARCHAR,

DB2SECURITYLABEL

v GRAPHIC,

DB2SECURITYLABEL

v VARGRAPHIC,

DB2SECURITYLABEL

v a string in security label

string format

This scalar function accepts a security

label and returns a string that contains all

elements in the security label.

“SECOND” on page 361

SYSIBM

v VARCHAR

v TIME

v TIMESTAMP

v DECIMAL

v INTEGER

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the second

(time unit) part of a value.

“SIGN” on page 362

SYSIBM

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

This scalar function returns an indicator of

the sign of the argument. If the argument

is less than zero, -1 is returned. If the

argument equals zero, 0 is returned. If the

argument is greater than zero, 1 is

returned.

“SIGN” on page 362

SYSFUN

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

v SMALLINT

v INTEGER

v BIGINT

v DOUBLE

This scalar function returns an indicator of

the sign of the argument. If the argument

is less than zero, -1 is returned. If the

argument equals zero, 0 is returned. If the

argument is greater than zero, 1 is

returned.

“SIN” on page 363

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the sine of the

argument, where the argument is an angle

expressed in radians.

“SINH” on page 363

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the hyperbolic

sine of the argument, where the argument

is an angle expressed in radians.

“SMALLINT” on page 363

SYSIBM

v numeric-type

v VARCHAR

v SMALLINT

v SMALLINT

This scalar function returns the small

integer representation of a number.

“SOUNDEX” on page 364

SYSFUN

v VARCHAR(4000) v CHAR(4)

This scalar function returns a 4-character

code representing the sound of the words

in the argument. This result can be

compared with the sound of other strings.

“SPACE” on page 365

SYSFUN

v INTEGER v VARCHAR(4000)

This scalar function returns a character

string consisting of argument1 blanks.

“SQRT” on page 365

SYSIBM

v DOUBLE

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

This scalar function returns the square

root of the argument.

“SQRT” on page 365

SYSFUN

v DOUBLE v DOUBLE

This scalar function returns the square

root of the argument.

“STDDEV” on page 250

SYSIBM

v DOUBLE

v DECFLOAT(n)

v DOUBLE

v DECFLOAT(n)

This aggregate function returns the

standard deviation of a set of numbers.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 221

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“STRIP” on page 366

SYSIBM

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

v CHAR, CHAR

v VARCHAR, CHAR

v GRAPHIC, CHAR

v VARGRAPHIC, CHAR

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

This scalar function removes leading or

trailing blanks or other specified leading

or trailing characters from a string

expression.

“SUBSTR” on page 366

SYSIBM

v string-type, INTEGER

v string-type, INTEGER,

INTEGER

v string-type

v string-type

This scalar function returns a substring of

string argument1, starting at argument2.

The substring is argument3 bytes long. If

argument3 is not specified, the remainder

of the string is assumed.

“SUBSTRING” on page 369

SYSIBM

v string-type, INTEGER,

string-unit

v string-type, INTEGER,

INTEGER, string-unit

v string-type

v string-type

This scalar function returns a substring of

string argument1, starting at argument2.

The substring is argument3 characters

long. If the second INTEGER argument is

not specified, the remainder of the string

is assumed.

“SUM” on page 251

SYSIBM

v numeric-type4

v max-numeric-type1

This aggregate function returns the sum of

a set of numbers.

“TABLE_NAME” on page

371

SYSIBM

v VARCHAR

v VARCHAR, VARCHAR

v VARCHAR(128)

v VARCHAR(128)

This scalar function returns an unqualified

name of a table or view based on the

object name specified in argument1, and

the optional schema name specified in

argument2. The returned value is used to

resolve aliases.

“TABLE_SCHEMA” on

page 372

SYSIBM

v VARCHAR

v VARCHAR, VARCHAR

v VARCHAR(128)

v VARCHAR(128)

This scalar function returns the schema

name portion of a two-part table or view

name (given by the object name in

argument1 and the optional schema name

in argument2). The returned value is used

to resolve aliases.

“TAN” on page 373

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the tangent of

the argument, where the argument is an

angle expressed in radians.

“TANH” on page 374

SYSIBM

v DOUBLE v DOUBLE

This scalar function returns the hyperbolic

tangent of the argument, where the

argument is an angle expressed in radians.

“TIME” on page 374

SYSIBM

v TIME

v TIMESTAMP

v VARCHAR

v TIME

v TIME

v TIME

This scalar function returns a time from a

value.

“TIMESTAMP” on page 375

SYSIBM

v TIMESTAMP

v VARCHAR

v VARCHAR, VARCHAR

v VARCHAR, TIME

v DATE, VARCHAR

v DATE, TIME

v TIMESTAMP

v TIMESTAMP

v TIMESTAMP

v TIMESTAMP

v TIMESTAMP

v TIMESTAMP

This scalar function returns a timestamp

from a value or a pair of values.

“TIMESTAMP_FORMAT”

on page 376

SYSIBM

v VARCHAR, VARCHAR v TIMESTAMP

This scalar function returns a timestamp

from a character string (argument1) that

has been interpreted using a format

template (argument2).

“TIMESTAMP_ISO” on

page 379

SYSFUN

v DATE

v TIME

v TIMESTAMP

v VARCHAR(26)

v TIMESTAMP

v TIMESTAMP

v TIMESTAMP

v TIMESTAMP

This scalar function returns a timestamp

value based on a date, time, or timestamp

argument. If the argument is a date, it

inserts zero for all the time elements. If

the argument is a time, it inserts the value

of CURRENT DATE for the date elements,

and zero for the fractional time element.

Supported functions and administrative SQL routines and views

222 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“TIMESTAMPDIFF” on

page 379

SYSFUN

v INTEGER, CHAR(22) v INTEGER

This scalar function returns an estimated

number of intervals of type argument1,

based on the difference between two

timestamps. The second argument is the

result of subtracting two timestamp types

and converting the result to CHAR. Valid

interval types are:

1 Fractions of a second

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

“TO_CHAR” on page 380

SYSIBM

v same as

VARCHAR_FORMAT

v same as

VARCHAR_FORMAT

This scalar function returns a character

representation of a timestamp.

“TO_DATE” on page 381

SYSIBM

v same as

TIMESTAMP_FORMAT

v same as

TIMESTAMP_FORMAT

This scalar function returns a timestamp

from a character string.

“TOTALORDER” on page

381

SYSIBM

v DECFLOAT(n),

DECFLOAT(n)

v SMALLINT

This scalar function returns a SMALLINT

value of -1, 0, or 1 that indicates the

comparison order of two arguments.

“TRANSLATE scalar

function” on page 382

SYSIBM

v CHAR

v VARCHAR

v CHAR, VARCHAR,

VARCHAR

v VARCHAR, VARCHAR,

VARCHAR

v CHAR, VARCHAR,

VARCHAR, VARCHAR

v VARCHAR, VARCHAR,

VARCHAR, VARCHAR

v GRAPHIC,

VARGRAPHIC,

VARGRAPHIC

v VARGRAPHIC,

VARGRAPHIC,

VARGRAPHIC

v GRAPHIC,

VARGRAPHIC,

VARGRAPHIC,

VARGRAPHIC

v VARGRAPHIC,

VARGRAPHIC,

VARGRAPHIC,

VARGRAPHIC

v CHAR

v VARCHAR

v CHAR

v VARCHAR

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

v GRAPHIC

v VARGRAPHIC

This scalar function returns a string in

which one or more characters may have

been converted into other characters.

“TRIM” on page 384

SYSIBM

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

v CHAR, CHAR

v CHAR, VARCHAR

v CHAR, GRAPHIC

v CHAR, VARGRAPHIC

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

v CHAR

v VARCHAR

v GRAPHIC

v VARGRAPHIC

This scalar function removes leading or

trailing blanks or other specified leading

or trailing characters from a string

expression.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 223

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“TRUNCATE” on page 385

SYSIBM

v INTEGER, INTEGER

v BIGINT, INTEGER

v DOUBLE, INTEGER

v DECFLOAT(n), INTEGER

v INTEGER

v BIGINT

v DOUBLE

v DECFLOAT(n)

This scalar function returns argument1

truncated to argument2 places right of the

decimal point. If argument2 is negative,

argument1 is truncated to the absolute

value of argument2 places to the left of the

decimal point.

“TYPE_ID” on page 386

3

SYSIBM

v any-structured-type v INTEGER

This scalar function returns the internal

data type identifier of the dynamic data

type of the argument. Note that the result

of this function is not portable across

databases.

“TYPE_NAME” on page

387

3

SYSIBM

v any-structured-type v VARCHAR(18)

This scalar function returns the

unqualified name of the dynamic data

type of the argument.

“TYPE_SCHEMA” on page

387

3

SYSIBM

v any-structured-type v VARCHAR(128)

This scalar function returns the schema

name of the dynamic type of the

argument.

“UCASE” on page 388 SYSIBM This scalar function is the same as UPPER.

“UCASE (Locale sensitive)”

on page 388

SYSIBM This scalar function is the same as UPPER.

“UPPER” on page 388

SYSFUN

v VARCHAR v VARCHAR

This scalar function returns a string in

which all the characters have been

converted to uppercase characters.

“UPPER” on page 388

SYSIBM

v CHAR

v VARCHAR

v CHAR

v VARCHAR

This scalar function returns a string in

which all the characters have been

converted to uppercase characters.

“UPPER (Locale sensitive)”

on page 388

SYSIBM

v CHAR, a string that

specifies a locale

v VARCHAR, a string that

specifies a locale

v GRAPHIC, a string that

specifies a locale

v VARGRAPHIC, a string

that specifies a locale

v CHAR, a string that

specifies a locale,

INTEGER

v VARCHAR, a string that

specifies a locale,

INTEGER

v GRAPHIC, a string that

specifies a locale,

INTEGER

v VARGRAPHIC, a string

that specifies a locale,

INTEGER

v VARCHAR

v VARCHAR

v VARGRAPHIC

v VARGRAPHIC

v VARCHAR

v VARCHAR

v VARGRAPHIC

v VARGRAPHIC

This scalar function returns a string in

which all characters have been converted

to uppercase characters using the rules

from the Unicode standard associated

with the specified locale.

“VALUE” on page 390

3

SYSIBM This scalar function is the same as

COALESCE.

“VARCHAR” on page 390

SYSIBM

v character-type

v character-type, INTEGER

v datetime-type

v VARCHAR

v VARCHAR

v VARCHAR

This scalar function returns a VARCHAR

representation of the first argument. If a

second argument is present, it specifies

the length of the result.

“VARCHAR_FORMAT” on

page 393

SYSIBM

v TIMESTAMP, VARCHAR

v VARCHAR, VARCHAR

v VARCHAR

v VARCHAR

This scalar function returns a character

representation of a timestamp (argument1),

formatted according to a template

(argument2).

“VARGRAPHIC” on page

396

SYSIBM

v graphic-type

v graphic-type, INTEGER

v VARCHAR

v VARGRAPHIC

v VARGRAPHIC

v VARGRAPHIC

This scalar function returns a

VARGRAPHIC representation of the first

argument. If a second argument is

present, it specifies the length of the

result.

“VARIANCE” on page 252

SYSIBM

v DOUBLE

v DECFLOAT(n), INTEGER

v DOUBLE

v DECFLOAT(n)

This aggregate function returns the

variance of a set of numbers.

Supported functions and administrative SQL routines and views

224 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“WEEK” on page 398

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the week of

the year in the argument as an integer

value in the range of 1-54.

“WEEK_ISO” on page 398

SYSFUN

v VARCHAR(26)

v DATE

v TIMESTAMP

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the week of

the year in the argument as an integer

value in the range of 1-53. The first day of

a week is Monday. Week 1 is the first

week of the year to contain a Thursday.

“XMLAGG” on page 252

SYSIBM

v XML v XML

This aggregate function returns an XML

sequence containing an item for each

non-null value in a set of XML values.

“XMLATTRIBUTES” on

page 399

SYSIBM

v Any SQL expression, but

not a structured type;

cannot include a scalar

fullselect.

v XML

This scalar function constructs XML

attributes from the arguments.

“XMLCOMMENT” on page

400

SYSIBM

v character-type v XML

This scalar function returns an XML value

with a single XQuery comment node with

the input argument as the content.

“XMLCONCAT” on page

401

SYSIBM

v XML v XML

This scalar function returns a sequence

containing the concatenation of a variable

number of XML input arguments.

“XMLDOCUMENT” on

page 402

SYSIBM

v XML v XML

This scalar function returns an XML value

with a single XQuery document node

with zero or more children nodes.

“XMLELEMENT” on page

403

SYSIBM

v XML v XML

This scalar function returns an XML value

that is an XML element node.

“XMLFOREST” on page 408

SYSIBM

v Any SQL expression, but

not a structured type;

cannot include a scalar

fullselect.

v XML

This scalar function returns an XML value

that is a sequence of XML element nodes.

“XMLGROUP” on page 254

SYSIBM

v Any SQL expression, but

not a structured type.

v XML

This aggregate function returns an XML

value with a single XQuery document

node containing one top-level element

node.

“XMLNAMESPACES” on

page 411

SYSIBM

v character-type v XML

This scalar function constructs namespace

declarations from the arguments.

“XMLPARSE” on page 413

SYSIBM

v character-type

v BLOB

v XML

v XML

This scalar function parses the argument

as an XML document and returns an XML

value.

“XMLPI” on page 415

SYSIBM

v character-type v XML

This scalar function returns an XML value

with a single XQuery processing

instruction node.

“XMLQUERY” on page 416

SYSIBM

v character-type v XML

This scalar function returns an XML value

from the evaluation of an XQuery

expression possibly using specified input

arguments as XQuery variables.

“XMLROW” on page 418

SYSIBM

v Any SQL expression, but

not a structured type.

v XML

This scalar function returns an XML value

with a single XQuery document node

containing one top-level element node.

“XMLSERIALIZE” on page

420

SYSIBM

v character-type

v BLOB

v XML

v XML

This scalar function returns a serialized

XML value of the specified data type

generated from the argument.

“XMLTABLE” on page 432

SYSIBM

v See the complete

description of this

function.

v A table based on columns

specified in input

arguments.

This table function returns a table from

the evaluation of XQuery expressions,

possibly using specified input arguments

as XQuery variables. Each sequence item

in the result sequence of the row XQuery

expression represents a row of the result

table.

“XMLTEXT” on page 422

SYSIBM

v character-type v XML

This scalar function returns an XML value

with a single XQuery text node having the

input argument as the content.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 225

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

“XMLVALIDATE” on page

423

SYSIBM

v XML v XML

This scalar function returns a copy of the

input XML value augmented with

information obtained from XML schema

validation, including default values and

type annotations.

“XMLXSROBJECTID” on

page 427

SYSIBM

v XML v BIGINT

This scalar function returns the XSR object

identifier of the XML schema used to

validate the XML document that is

specified in the argument.

“XSLTRANSFORM” on

page 428

SYSIBM

v XML v XML

This scalar function converts XML data

into other formats, including the

conversion of XML documents that

conform to one XML schema into

documents that conform to another

schema.

“YEAR” on page 431

SYSIBM

v VARCHAR

v DATE

v TIMESTAMP

v DECIMAL

v INTEGER

v INTEGER

v INTEGER

v INTEGER

This scalar function returns the year part

of a value.

″+″

SYSIBM

v numeric-type, numeric-type v max-numeric-type

Adds two numeric operands. If either

operand is a special decimal floating-point

value, the rules for general arithmetic

operations for decimal floating-point

apply. See “General arithmetic operation

rules for decimal floating-point” in

“General arithmetic operation rules for

decimal floating-point” on page 156.

″+″

SYSIBM

v numeric-type v numeric-type

Unary plus operator.

″+″

SYSIBM

v DATE, DECIMAL(8,0)

v TIME, DECIMAL(6,0)

v TIMESTAMP,

DECIMAL(20,6)

v DECIMAL(8,0), DATE

v DECIMAL(6,0), TIME

v DECIMAL(20,6),

TIMESTAMP

v datetime-type, DOUBLE,

labeled-duration-code

v datetime-type, DECFLOAT,

labeled-duration-code

v DATE

v TIME

v TIMESTAMP

v DATE

v TIME

v TIMESTAMP

v datetime-type

v datetime-type

Datetime plus operator.

″-″

SYSIBM

v numeric-type, numeric-type v max-numeric-type

Subtracts two numeric operands. If either

operand is a special decimal floating-point

value, the rules for general arithmetic

operations for decimal floating-point

apply. See “General arithmetic operation

rules for decimal floating-point” in

“General arithmetic operation rules for

decimal floating-point” on page 156.

″-″

SYSIBM

v numeric-type v numeric-type1

Unary minus operator.

Supported functions and administrative SQL routines and views

226 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

″-″

SYSIBM

v DATE, DATE

v TIME, TIME

v TIMESTAMP,

TIMESTAMP

v DATE, VARCHAR

v TIME, VARCHAR

v TIMESTAMP, VARCHAR

v VARCHAR, DATE

v VARCHAR, TIME

v VARCHAR, TIMESTAMP

v DATE, DECIMAL(8,0)

v TIME, DECIMAL(6,0)

v TIMESTAMP,

DECIMAL(20,6)

v datetime-type, DOUBLE,

labeled-duration-code

v datetime-type, DECFLOAT,

labeled-duration-code

v DECIMAL(8,0)

v DECIMAL(6,0)

v DECIMAL(20,6)

v DECIMAL(8,0)

v DECIMAL(6,0)

v DECIMAL(20,6)

v DECIMAL(8,0)

v DECIMAL(6,0)

v DECIMAL(20,6)

v DATE

v TIME

v TIMESTAMP

v datetime-type

v datetime-type

Datetime minus operator.

″*″

SYSIBM

v numeric-type, numeric-type v max-numeric-type

Multiplies two numeric operands. If either

operand is a special decimal floating-point

value, the rules for general arithmetic

operations for decimal floating-point

apply. See “General arithmetic operation

rules for decimal floating-point” in

“General arithmetic operation rules for

decimal floating-point” on page 156.

″/″

SYSIBM

v numeric-type, numeric-type v max-numeric-type

Divides two numeric operands. If either

operand is a special decimal floating-point

value, the rules for general arithmetic

operations for decimal floating-point

apply. See “General arithmetic operation

rules for decimal floating-point” in

“General arithmetic operation rules for

decimal floating-point” on page 156.

″{″ SYSIBM Same as CONCAT.

Notes

v References to string data types that are not qualified by a length should be assumed to support the maximum length for the data type.

v References to a DECIMAL data type without precision and scale should be assumed to allow any supported precision and scale.

v The LONG_VARCHAR scalar function and LONG_VARGRAPHIC scalar function continue to be supported but are deprecated and might be

removed in a future release.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 227

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

Key to Table

any-builtin-type

Any data type that is not a distinct type.

any-type Any type defined to the database.

any-structured-type

Any user-defined structured type defined to the database.

any-comparable-type

Any type that is comparable with other argument types as defined in “Assignments and comparisons” on page 92.

any-union-compatible-type

Any type that is compatible with other argument types as defined in “Rules for result data types” on page 106.

character-type

Any of the character string types: CHAR, VARCHAR, CLOB.

compatible-string-type

A string type that comes from the same grouping as the other argument (for example, if one argument is a character-type the other must

also be a character-type).

datetime-type

Any of the datetime types: DATE, TIME, TIMESTAMP.

exact-numeric-type

Any of the exact numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL.

graphic-type

Any of the double byte character string types: GRAPHIC, VARGRAPHIC, DBCLOB.

labeled-duration-code

As a type this is a SMALLINT. If the function is invoked using the infix form of the plus or minus operator, labeled-durations as defined

in “Expressions” can be used. For a source function that does not use the plus or minus operator character as the name, the following

values must be used for the labeled-duration-code argument when invoking the function.

1 YEAR or YEARS

2 MONTH or MONTHS

3 DAY or DAYS

4 HOUR or HOURS

5 MINUTE or MINUTES

6 SECOND or SECONDS

7 MICROSECOND or MICROSECONDS

LOB-type Any of the large object types: BLOB, CLOB, DBCLOB.

max-numeric-type

The maximum numeric type of the arguments where maximum is defined as the rightmost numeric-type.

max-string-type

The maximum string type of the arguments where maximum is defined as the rightmost character-type or graphic-type. If arguments are

BLOB, the max-string-type is BLOB.

non-decfloat-numeric-type

Any of the numeric types except decimal floating point: SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE.

numeric-type

Any of the numeric types: SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE, DECFLOAT.

string-unit

Specifies the unit to use when determining the length of a string; can be OCTETS, CODEUNITS16, or CODEUNITS32.

string-type

Any type from character-type, graphic-type or BLOB.

Supported functions and administrative SQL routines and views

228 SQL Reference, Volume 1

Table 21. Supported functions (continued)

Function name Schema Input Returns Description

Table Footnotes

1 When the input parameter is SMALLINT, the result type is INTEGER. When the input parameter is REAL, the result type is DOUBLE.

2 Keywords allowed are ISO, USA, EUR, JIS, and LOCAL. This function signature is not supported as a sourced function.

3 This function cannot be used as a source function.

4 The keyword ALL or DISTINCT may be used before the first parameter. If DISTINCT is specified, the use of LOB-type or a user-defined

structured type is not supported.

5 The use of LOB-type or a user-defined structured type is not supported.

6 The type returned by RAISE_ERROR depends upon the context of its use. RAISE_ERROR, if not cast to a particular type, will return a

type appropriate to its invocation within a CASE expression.

7 The use of graphic-type or LOB-type is not supported.

8 The use of REFERENCE, SYSPROC.DB2SECURITYLABEL, XML, or user-defined types is not supported.

9 The use of ARRAY, LOB-type, XML, a distinct type based on any of these types, or a structured type is not supported.

 Table 22. Aggregate functions

Function Description

“ARRAY_AGG” on page 238 Aggregates a set of elements into an array.

“AVG” on page 239 Returns the average of a set of numbers.

“CORRELATION” on page

240

Returns the coefficient of correlation of a set of number

pairs.

“COUNT” on page 241 Returns the number of rows or values in a set of rows or

values.

“COUNT_BIG” on page 242 Returns the number of rows or values in a set of rows or

values. The result can be greater than the maximum value

of INTEGER.

“COVARIANCE” on page 243 Returns the covariance of a set of number pairs.

“GROUPING” on page 244 Used with grouping-sets and super-groups to indicate

sub-total rows generated by a grouping set. The value

returned is 0 or 1. A value of 1 means that the value of the

argument in the returned row is a null value, and the row

was generated for a grouping set. This generated row

provides a sub-total for a grouping set.

“MAX” on page 245 Returns the maximum value in a set of values.

“MIN” on page 246 Returns the minimum value in a set of values.

“Regression functions” on

page 247

The REGR_AVGX aggregate function returns quantities

used to compute diagnostic statistics.

“Regression functions” on

page 247

The REGR_AVGY aggregate function returns quantities

used to compute diagnostic statistics.

“Regression functions” on

page 247

The REGR_COUNT aggregate function returns the number

of non-null number pairs used to fit the regression line.

“Regression functions” on

page 247

The REGR_INTERCEPT or REGR_ICPT aggregate function

returns the y-intercept of the regression line.

“Regression functions” on

page 247

The REGR_R2 aggregate function returns the coefficient of

determination for the regression.

“Regression functions” on

page 247

The REGR_SLOPE aggregate function returns the slope of

the line.

“Regression functions” on

page 247

The REGR_SXX aggregate function returns quantities used

to compute diagnostic statistics.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 229

Table 22. Aggregate functions (continued)

Function Description

“Regression functions” on

page 247

The REGR_SXY aggregate function returns quantities used

to compute diagnostic statistics.

“Regression functions” on

page 247

The REGR_SYY aggregate function returns quantities used

to compute diagnostic statistics.

“STDDEV” on page 250 Returns the standard deviation of a set of numbers.

“SUM” on page 251 Returns the sum of a set of numbers.

“VARIANCE” on page 252 Returns the variance of a set of numbers.

 Table 23. Cast scalar functions

Function Description

“BIGINT” on page 260 Returns a 64-bit integer representation of a number or a

character string in the form of an integer constant.

“BLOB” on page 263 Returns a BLOB representation of a string of any type.

“CHAR” on page 264 Returns a CHARACTER representation of a value.

“CLOB” on page 270 Returns a CLOB representation of a value.

“DATE” on page 276 Returns a DATE from a value.

“DBCLOB” on page 280 Returns a DBCLOB representation of a string.

“DECFLOAT” on page 282 Returns the decimal floating-point representation of a

number.

“DECIMAL” on page 283 Returns a DECIMAL representation of a number.

“DOUBLE” on page 291 Returns a DOUBLE PRECISION representation of a

number.

EMPTY_BLOB,

EMPTY_CLOB, and

EMPTY_DBCLOB scalar

functions

Return a zero-length value of the associated data type.

“FLOAT” on page 294 Returns a FLOAT representation of a number.

“GRAPHIC” on page 297 Returns a GRAPHIC representation of a string.

“INTEGER” on page 309 Returns an INTEGER representation of a number.

“REAL” on page 345 Returns a REAL representation of a number.

“SMALLINT” on page 363 Returns a SMALLINT representation of a number.

“TIME” on page 374 Returns a TIME from a value.

“TIMESTAMP” on page 375 Returns a TIMESTAMP from a value or a pair of values.

“VARCHAR” on page 390 Returns a VARCHAR representation of a value.

“VARGRAPHIC” on page 396 Returns a VARGRAPHIC representation of a value.

 Table 24. Partitioning scalar functions

Function Description

“DATAPARTITIONNUM” on

page 275

Returns the sequence number

(SYSDATAPARTITIONS.SEQNO) of the data partition in

which the row resides. The argument is any column name

within the table.

“DBPARTITIONNUM” on

page 280

Returns the database partition number of the row. The

argument is any column name within the table.

Supported functions and administrative SQL routines and views

230 SQL Reference, Volume 1

Table 24. Partitioning scalar functions (continued)

Function Description

“HASHEDVALUE” on page

299

Returns the distribution map index (0 to 4095) of the row.

The argument is a column name within a table.

 Table 25. Datetime scalar functions

Function Description

“DAY” on page 277 Returns the day part of a value.

“DAYNAME” on page 278 Returns a mixed case character string containing the name

of the day (for example, Friday) for the day portion of the

argument, based on what the locale was when db2start was

issued.

“DAYOFWEEK” on page 278 Returns the day of the week from a value, where 1 is

Sunday and 7 is Saturday.

“DAYOFWEEK_ISO” on page

278

Returns the day of the week from a value, where 1 is

Monday and 7 is Sunday.

“DAYOFYEAR” on page 279 Returns the day of the year from a value.

“DAYS” on page 279 Returns an integer representation of a date.

“HOUR” on page 302 Returns the hour part of a value.

“JULIAN_DAY” on page 310 Returns an integer value representing the number of days

from January 1, 4712 B.C. to the date specified in the

argument.

“MICROSECOND” on page

325

Returns the microsecond part of a value.

“MIDNIGHT_SECONDS” on

page 325

Returns an integer value representing the number of

seconds between midnight and a specified time value.

“MINUTE” on page 327 Returns the minute part of a value.

“MONTH” on page 328 Returns the month part of a value.

“MONTHNAME” on page

329

Returns a mixed case character string containing the name

of the month (for example, January) for the month portion

of the argument that is a date or a timestamp, based on

what the locale was when the database was started.

“QUARTER” on page 343 Returns an integer that represents the quarter of the year in

which a date resides.

“SECOND” on page 361 Returns the seconds part of a value.

“TIMESTAMP_FORMAT” on

page 376

Returns a timestamp from a character string (argument1)

that has been interpreted using a format template

(argument2).

“TIMESTAMP_ISO” on page

379

Returns a timestamp value based on a date, time, or

timestamp argument. If the argument is a date, it inserts

zero for all the time elements. If the argument is a time, it

inserts the value of CURRENT DATE for the date elements,

and zero for the fractional time element.

“TIMESTAMPDIFF” on page

379

Returns an estimated number of intervals of type

argument1, based on the difference between two

timestamps. The second argument is the result of

subtracting two timestamp types and converting the result

to CHAR.

“TO_CHAR” on page 380 Returns a CHARACTER representation of a timestamp.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 231

Table 25. Datetime scalar functions (continued)

Function Description

“TO_DATE” on page 381 Returns a timestamp from a character string.

“VARCHAR_FORMAT” on

page 393

Returns a CHARACTER representation of a timestamp

(argument1), formatted according to a template (argument2).

“WEEK” on page 398 Returns the week of the year from a value, where the week

starts with Sunday.

“WEEK_ISO” on page 398 Returns the week of the year from a value, where the week

starts with Monday.

“YEAR” on page 431 Returns the year part of a value.

 Table 26. Numeric scalar functions

Function Description

“ABS or ABSVAL” on page

257

Returns the absolute value of a number.

“ACOS” on page 257 Returns the arc cosine of a number, in radians.

“ASIN” on page 258 Returns the arc sine of a number, in radians.

“ATAN” on page 259 Returns the arc tangent of a number, in radians.

“ATANH” on page 259 Returns the hyperbolic arc tangent of a number, in radians.

“ATAN2” on page 259 Returns the arc tangent of x and y coordinates as an angle

expressed in radians.

“CEILING” on page 264 Returns the smallest integer value that is greater than or

equal to a number.

“COMPARE_DECFLOAT” on

page 273

Returns a SMALLINT value that indicates whether the two

arguments are equal or unordered, or whether one

argument is greater than the other.

“COS” on page 274 Returns the cosine of a number.

“COSH” on page 274 Returns the hyperbolic cosine of a number.

“COT” on page 275 Returns the cotangent of the argument, where the argument

is an angle expressed in radians.

“DEGREES” on page 288 Returns the number of degrees of an angle.

“DIGITS” on page 290 Returns a character-string representation of the absolute

value of a number.

“EXP” on page 294 Returns a value that is the base of the natural logarithm (e)

raised to a power specified by the argument.

“FLOOR” on page 295 Returns the largest integer value that is less than or equal

to a number.

“LN” on page 316 Returns the natural logarithm of a number.

“LOG10” on page 320 Returns the common logarithm (base 10) of a number.

“MOD” on page 328 Returns the remainder of the first argument divided by the

second argument.

“MULTIPLY_ALT” on page

329

Returns the product of two arguments as a decimal value.

This function is useful when the sum of the argument

precisions is greater than 31.

“NORMALIZE_ DECFLOAT”

on page 330

Returns a decimal floating-point value that is the result of

the argument set to its simplest form.

Supported functions and administrative SQL routines and views

232 SQL Reference, Volume 1

Table 26. Numeric scalar functions (continued)

Function Description

“POWER” on page 341 Returns the result of raising the first argument to the power

of the second argument.

“QUANTIZE” on page 342 Returns a decimal floating-point number that is equal in

value and sign to the first argument, and whose exponent

is equal to the exponent of the second argument.

“RADIANS” on page 343 Returns the number of radians for an argument that is

expressed in degrees.

“RAND” on page 345 Returns a random number.

“ROUND” on page 356 Returns a numeric value that has been rounded to the

specified number of decimal places.

“SIGN” on page 362 Returns the sign of a number.

“SIN” on page 363 Returns the sine of a number.

“SINH” on page 363 Returns the hyperbolic sine of a number.

“SQRT” on page 365 Returns the square root of a number.

“TAN” on page 373 Returns the tangent of a number.

“TANH” on page 374 Returns the hyperbolic tangent of a number.

“TOTALORDER” on page 381 Returns a SMALLINT value of -1, 0, or 1 that indicates the

comparison order of two arguments.

“TRUNCATE” on page 385 Returns a number value that has been truncated at a

specified number of decimal places.

 Table 27. Security scalar functions

Function Description

“SECLABEL” on page 358 Returns an unnamed security label.

“SECLABEL_BY_NAME” on

page 359

Returns a specific security label.

“SECLABEL_TO_CHAR” on

page 360

Accepts a security label and returns a string that contains

all elements in the security label.

 Table 28. XML functions

Function Description

“PARAMETER” on page 336 Represents a position in an SQL statement where the value

is provided dynamically by XQuery as part of the

invocation of the db2-fn:sqlquery function.

“XMLAGG” on page 252 Returns an XML sequence containing an item for each

non-null value in a set of XML values.

“XMLATTRIBUTES” on page

399

Constructs XML attributes from the arguments.

“XMLCOMMENT” on page

400

Returns an XML value with a single XQuery comment node

with the input argument as the content.

“XMLCONCAT” on page 401 Returns a sequence containing the concatenation of a

variable number of XML input arguments.

“XMLDOCUMENT” on page

402

Returns an XML value with a single XQuery document

node with zero or more children nodes.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 233

Table 28. XML functions (continued)

Function Description

“XMLELEMENT” on page

403

Returns an XML value that is an XML element node.

“XMLFOREST” on page 408 Returns an XML value that is a sequence of XML element

nodes.

“XMLGROUP” on page 254 Returns an XML value with a single XQuery document

node containing one top-level element node.

“XMLNAMESPACES” on

page 411

Constructs namespace declarations from the arguments.

“XMLPARSE” on page 413 Parses the argument as an XML document and returns an

XML value.

“XMLPI” on page 415 Returns an XML value with a single XQuery processing

instruction node.

“XMLQUERY” on page 416 Returns an XML value from the evaluation of an XQuery

expression possibly using specified input arguments as

XQuery variables.

“XMLROW” on page 418 Returns an XML value with a single XQuery document

node containing one top-level element node.

“XMLSERIALIZE” on page

420

Returns a serialized XML value of the specified data type

generated from the argument.

“XMLTABLE” on page 432 Returns a table from the evaluation of XQuery expressions,

possibly using specified input arguments as XQuery

variables. Each sequence item in the result sequence of the

row XQuery expression represents a row of the result table.

“XMLTEXT” on page 422 Returns an XML value with a single XQuery text node

having the input argument as the content.

“XMLVALIDATE” on page

423

Returns a copy of the input XML value augmented with

information obtained from XML schema validation,

including default values and type annotations.

“XMLXSROBJECTID” on

page 427

Returns the XSR object identifier of the XML schema used

to validate the XML document that is specified in the

argument

“XSLTRANSFORM” on page

428

Converts XML data into other formats, including the

conversion of XML documents that conform to one XML

schema into documents that conform to another schema.

 Table 29. String scalar functions

Function Description

“ASCII” on page 258 Returns the ASCII code value of the leftmost character of

the argument as an integer.

“CHARACTER_LENGTH” on

page 268

Returns the length of an expression in the specified

string-unit.

“CHR” on page 270 Returns the character that has the ASCII code value

specified by the argument.

“COLLATION_KEY_BIT” on

page 271

Returns a VARCHAR FOR BIT DATA string representing

the collation key of the specified string-expression in the

specified collation-name.

“CONCAT” on page 274 Returns a string that is the concatenation of two strings.

Supported functions and administrative SQL routines and views

234 SQL Reference, Volume 1

Table 29. String scalar functions (continued)

Function Description

“DECRYPT_BIN and

DECRYPT_CHAR” on page

287

Returns a value that is the result of decrypting encrypted

data using a password string.

“DIFFERENCE” on page 289 Returns the difference between the sounds of the words in

two argument strings, as determined by the SOUNDEX

function. A value of 4 means the strings sound the same.

“ENCRYPT” on page 292 Returns a value that is the result of encrypting a data string

expression.

“GENERATE_UNIQUE” on

page 295

Returns a bit data character string that is unique compared

to any other execution of the same function.

“GETHINT” on page 297 Returns the password hint if one is found.

“INSERT” on page 306 Returns a string, where argument3 bytes have been deleted

from argument1 (beginning at argument2), and argument4 has

been inserted into argument1 (beginning at argument2).

“LCASE” on page 311 Returns a string in which all the SBCS characters have been

converted to lowercase characters.

“LCASE (Locale sensitive)”

on page 311

Returns a string in which all characters have been

converted to lowercase characters using the rules from the

Unicode standard associated with the specified locale.

“LOWER (Locale sensitive)”

on page 321

Returns a string in which all characters have been

converted to lowercase characters using the rules from the

Unicode standard associated with the specified locale.

“LEFT” on page 312 Returns the leftmost characters from a string.

“LOCATE scalar function” on

page 317

Returns the starting position of one string within another

string.

“LOWER” on page 321 Returns a string in which all the characters have been

converted to lowercase characters.

“LTRIM” on page 323 Removes blanks from the beginning of a string expression.

“OCTET_LENGTH” on page

332

Returns the length of an expression in octets (bytes).

“OVERLAY” on page 332 Returns a string in which, beginning at start in the specified

source-string, length of the specified code units have been

deleted and insert-string has been inserted.

“POSITION scalar function”

on page 336

Returns the starting position of argument2 within argument1.

“POSSTR scalar function” on

page 339

Returns the starting position of one string within another

string.

“REPEAT” on page 350 Returns a character string composed of argument1 repeated

argument2 times.

“REPLACE” on page 350 Replaces all occurrences of argument2 in argument1 with

argument3.

“RIGHT” on page 353 Returns the rightmost characters from a string.

“RTRIM” on page 358 Removes blanks from the end of a string expression.

“SOUNDEX” on page 364 Returns a 4-character code representing the sound of the

words in the argument. This result can be compared with

the sound of other strings.

“SPACE” on page 365 Returns a character string that consists of a specified

number of blanks.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 235

Table 29. String scalar functions (continued)

Function Description

“STRIP” on page 366 Removes leading or trailing blanks or other specified

leading or trailing characters from a string expression.

“SUBSTR” on page 366 Returns a substring of a string.

“SUBSTRING” on page 369 Returns a substring of a string.

“TRANSLATE scalar

function” on page 382

Returns a string in which one or more characters in a string

are converted to other characters.

“TRIM” on page 384 Removes leading or trailing blanks or other specified

leading or trailing characters from a string expression.

“UCASE” on page 388 The UCASE function is identical to the TRANSLATE

function except that only the first argument (char-string-exp)

is specified.

“UCASE (Locale sensitive)”

on page 388

Returns a string in which all characters have been

converted to uppercase characters using the rules from the

Unicode standard associated with the specified locale.

“UPPER” on page 388 Returns a string in which all the characters have been

converted to uppercase characters.

“UPPER (Locale sensitive)”

on page 388

Returns a string in which all characters have been

converted to uppercase characters using the rules from the

Unicode standard associated with the specified locale.

 Table 30. Miscellaneous scalar functions

Function Description

“BITAND, BITANDNOT,

BITOR, BITXOR, and

BITNOT” on page 261

These bitwise functions operate on the ″two’s complement″

representation of the integer value of the input arguments

and return the result as a corresponding base 10 integer

value in a data type based on the data type of the input

arguments.

“CARDINALITY” on page

263

Returns a value of type BIGINT representing the number of

elements of an array

“COALESCE” on page 271 Returns the first argument that is not null.

“DECODE” on page 286 Compares each specified expression2 to expression1. If

expression1 is equal to expression2, or both expression1 and

expression2 are null, the value of the following

result-expresssion is returned. If no expression2 matches

expression1, the value of else-expression is returned; otherwise

a null value is returned.

“DEREF” on page 289 Returns an instance of the target type of the reference type

argument.

“EVENT_MON_STATE” on

page 293

Returns the operational state of particular event monitor.

“GREATEST” on page 299 Returns the maximum value in a set of values.

“HEX” on page 300 Returns a hexadecimal representation of a value.

“IDENTITY_VAL_LOCAL”

on page 302

Returns the most recently assigned value for an identity

column.

“LEAST” on page 311 Returns the minimum value in a set of values.

“LENGTH” on page 314 Returns the length of a value.

“MAX” on page 324 Returns the maximum value in a set of values.

Supported functions and administrative SQL routines and views

236 SQL Reference, Volume 1

Table 30. Miscellaneous scalar functions (continued)

Function Description

“MAX_CARDINALITY” on

page 324

Returns a value of type BIGINT representing the maximum

number of elements that an array can contain.

“MIN” on page 326 Returns the minimum value in a set of values.

“NULLIF” on page 331 Returns a null value if the arguments are equal; otherwise,

it returns the value of the first argument.

“NVL” on page 331 Returns the first argument that is not null.

“RAISE_ERROR” on page 344 Raises an error in the SQLCA. The sqlstate that is to be

returned is indicated by argument1. The second argument

contains any text that is to be returned.

“REC2XML” on page 346 Returns a string formatted with XML tags, containing

column names and column data.

“RID_BIT and RID” on page

352

The RID_BIT scalar function returns the row identifier

(RID) of a row in a character string format. The RID scalar

function returns the RID of a row in large integer format.

The RID function is not supported in partitioned database

environments. The RID_BIT function is preferred over the

RID function.

“TABLE_NAME” on page 371 Returns an unqualified name of a table or view based on

the object name specified in argument1, and the optional

schema name specified in argument2. The returned value is

used to resolve aliases.

“TABLE_SCHEMA” on page

372

Returns the schema name portion of a two-part table or

view name (given by the object name in argument1 and the

optional schema name in argument2). The returned value is

used to resolve aliases.

“TYPE_ID” on page 386 Returns the internal data type identifier of the dynamic

data type of the argument. The result of this function is not

portable across databases.

“TYPE_NAME” on page 387 Returns the unqualified name of the dynamic data type of

the argument.

“TYPE_SCHEMA” on page

387

Returns the schema name of the dynamic data type of the

argument.

“VALUE” on page 390 Returns the first argument that is not null.

Aggregate functions

The argument of an aggregate function is a set of values derived from an

expression. The expression can include columns, but cannot include a

scalar-fullselect, another column function, or an XMLQUERY or XMLEXISTS

expression (SQLSTATE 42607). The scope of the set is a group or an intermediate

result table.

If a GROUP BY clause is specified in a query, and the intermediate result of the

FROM, WHERE, GROUP BY, and HAVING clauses is the empty set, the aggregate

functions are not applied; the result of the query is the empty set; the SQLCODE is

set to +100; and the SQLSTATE is set to ’02000’.

If a GROUP BY clause is not specified in a query, and the intermediate result of the

FROM, WHERE, and HAVING clauses is the empty set, the aggregate functions

are applied to the empty set.

Supported functions and administrative SQL routines and views

Chapter 3. Functions 237

For example, the result of the following SELECT statement is the number of

distinct values of JOBCODE for employees in department D01:

 SELECT COUNT(DISTINCT JOBCODE)

 FROM CORPDATA.EMPLOYEE

 WHERE WORKDEPT = ’D01’

The keyword DISTINCT is not considered to be an argument of the function, but

rather a specification of an operation that is performed before the function is

applied. If DISTINCT is specified, duplicate values are eliminated. When

interpreting the DISTINCT clause for decimal floating-point values that are

numerically equal, the number of significant digits in the value is not considered.

For example, the decimal floating-point number 123.00 is not distinct from the

decimal floating-point number 123. The representation of the number returned

from the query will be any one of the representations encountered (for example,

either 123.00 or 123).

If ALL is implicitly or explicitly specified, duplicate values are not eliminated.

For compatibility with other SQL implementations, UNIQUE can be specified as a

synonym for DISTINCT in aggregate functions.

Expressions can be used in aggregate functions. For example:

 SELECT MAX(BONUS + 1000)

 INTO :TOP_SALESREP_BONUS

 FROM EMPLOYEE

 WHERE COMM > 5000

Aggregate functions can be qualified with a schema name (for example,

SYSIBM.COUNT(*)).

ARRAY_AGG

�� ARRAY_AGG (expression

�

,

ASC

ORDER BY

sort-key

DESC

) ��

The schema is SYSIBM.

The ARRAY_AGG function aggregates a set of elements into an array. The data

type of the expression must be a data type that can be specified in a CREATE

TYPE (Array) statement (SQLSTATE 42884).

If sort-key is specified, it determines the order of the aggregated elements in the

array. If sort-key is not specified, the ordering of elements within the array is not

deterministic. If sort-key is not specified, and ARRAY_AGG is specified more than

once in the same SELECT clause, the same ordering of elements within the array is

used for each result of ARRAY_AGG.

If a SELECT clause has multiple occurrences of XMLAGG or ARRAY_AGG that

specify sort-key, all the sort keys must be identical (SQLSTATE 428GZ).

The ARRAY_AGG function can only be specified within an SQL procedure in the

following specific contexts (SQLSTATE 42887):

Aggregate functions

238 SQL Reference, Volume 1

v The select-list of a SELECT INTO statement

v The select-list of a fullselect in the definition of a cursor that is not scrollable

v The select-list of a scalar subquery on the right side of a SET statement

ARRAY_AGG cannot be used as part of an OLAP function, the SELECT statement

that uses ARRAY_AGG cannot contain an ORDER BY clause or a DISTINCT

clause, and the SELECT or HAVING clause cannot contain a subquery or call an

SQL function.

Example:

v Given the following DDL:

 CREATE TYPE PHONELIST AS DECIMAL(10, 0)ARRAY[10]

 CREATE TABLE EMPLOYEE (

 ID INTEGER NOT NULL,

 PRIORITY INTEGER NOT NULL,

 PHONENUMBER DECIMAL(10, 0),

 PRIMARY KEY(ID, PRIORITY))

Create a procedure that uses a SELECT INTO statement to return the prioritized

list of contact numbers under which an employee can be reached.

 CREATE PROCEDURE GETPHONENUMBERS

 (IN EMPID INTEGER,

 OUT NUMBERS PHONELIST)

 BEGIN

 SELECT ARRAY_AGG(PHONENUMBER ORDER BY PRIORITY)

 INTO NUMBERS

 FROM EMPLOYEE

 WHERE ID = EMPID;

 END

Create a procedure that uses a SET statement to return the list of an employee’s

contact numbers in an arbitrary order.

CREATE PROCEDURE GETPHONENUMBERS

 (IN EMPID INTEGER,

 OUT NUMBERS PHONELIST)

 BEGIN

 SET NUMBERS =

 (SELECT ARRAY_AGG(PHONENUMBER)

 FROM EMPLOYEE

 WHERE ID = EMPID);

 END

AVG

��

AVG

(
 ALL

DISTINCT

expression

)

��

The schema is SYSIBM.

The AVG function returns the average of a set of numbers.

The argument values must be numbers (built-in types only) and their sum must be

within the range of the data type of the result, except for a decimal result data

ARRAY_AGG

Chapter 3. Functions 239

type. For decimal results, their sum must be within the range supported by a

decimal data type having a precision of 31 and a scale identical to the scale of the

argument values. The result can be null.

The data type of the result is the same as the data type of the argument values,

except that:

v The result is a large integer if the argument values are small integers.

v The result is double-precision floating point if the argument values are

single-precision floating point.

v The result is DECFLOAT(34) if the argument is DECFLOAT(n).

If the data type of the argument values is decimal with precision p and scale s, the

precision of the result is 31 and the scale is 31-p+s.

The function is applied to the set of values derived from the argument values by

the elimination of null values. If DISTINCT is specified, redundant duplicate

values are eliminated. When interpreting the DISTINCT clause for decimal

floating-point values that are numerically equal, the number of significant digits in

the value is not considered. For example, the decimal floating-point number 123.00

is not distinct from the decimal floating-point number 123. The representation of

the number returned from the query will be any one of the representations

encountered (for example, either 123.00 or 123).

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the average value of the set.

The order in which the values are added is undefined, but every intermediate

result must be within the range of the result data type.

If the type of the result is integer, the fractional part of the average is lost.

Examples:

v Using the PROJECT table, set the host variable AVERAGE (decimal(5,2)) to the

average staffing level (PRSTAFF) of projects in department (DEPTNO) ’D11’.

 SELECT AVG(PRSTAFF)

 INTO :AVERAGE

 FROM PROJECT

 WHERE DEPTNO = ’D11’

Results in AVERAGE being set to 4.25 (that is 17/4) when using the sample

table.

v Using the PROJECT table, set the host variable ANY_CALC (decimal(5,2)) to the

average of each unique staffing level value (PRSTAFF) of projects in department

(DEPTNO) ’D11’.

 SELECT AVG(DISTINCT PRSTAFF)

 INTO :ANY_CALC

 FROM PROJECT

 WHERE DEPTNO = ’D11’

Results in ANY_CALC being set to 4.66 (that is 14/3) when using the sample

table.

CORRELATION

�� CORRELATION (expression1 , expression2) ��

AVG

240 SQL Reference, Volume 1

The schema is SYSIBM.

The CORRELATION function returns the coefficient of correlation of a set of

number pairs.

The argument values must be numbers.

If either argument is decimal floating-point, the result is DECFLOAT(34);

otherwise, the result is a double-precision floating-point number. The result can be

null. When not null, the result is between -1 and 1.

The function is applied to the set of (expression1, expression2) pairs derived from the

argument values by the elimination of all pairs for which either expression1 or

expression2 is null.

If the function is applied to an empty set, or if either STDDEV(expression1) or

STDDEV(expression2) is equal to zero, the result is a null value. Otherwise, the

result is the correlation coefficient for the value pairs in the set. The result is

equivalent to the following expression:

 COVARIANCE(expression1,expression2)/

 (STDDEV(expression1)*

 STDDEV(expression2))

The order in which the values are aggregated is undefined, but every intermediate

result must be within the range of the result data type.

CORR can be specified in place of CORRELATION.

Example:

v Using the EMPLOYEE table, set the host variable CORRLN (double-precision

floating point) to the correlation between salary and bonus for those employees

in department (WORKDEPT) ’A00’.

 SELECT CORRELATION(SALARY, BONUS)

 INTO :CORRLN

 FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

CORRLN is set to approximately 9.99853953399538E-001 when using the sample

table.

COUNT

��

COUNT

(
 ALL

expression

DISTINCT

*

)

��

The schema is SYSIBM.

The COUNT function returns the number of rows or values in a set of rows or

values.

If DISTINCT is specified, the resulting data type of expression cannot be a LONG

VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, XML, distinct type on

any of these types, or structured type (SQLSTATE 42907). Otherwise the result data

type of expression can be any data type.

CORRELATION

Chapter 3. Functions 241

The result of the function is a large integer. The result cannot be null.

The argument of COUNT(*) is a set of rows. The result is the number of rows in

the set. A row that includes only NULL values is included in the count.

The argument of COUNT(DISTINCT expression) is a set of values. The function is

applied to the set of values derived from the argument values by the elimination

of null and duplicate values. The result is the number of different non-null values

in the set.

The argument of COUNT(expression) or COUNT(ALL expression) is a set of values.

The function is applied to the set of values derived from the argument values by

the elimination of null values. The result is the number of non-null values in the

set, including duplicates.

Examples:

v Using the EMPLOYEE table, set the host variable FEMALE (int) to the number

of rows where the value of the SEX column is ’F’.

 SELECT COUNT(*)

 INTO :FEMALE

 FROM EMPLOYEE

 WHERE SEX = ’F’

Results in FEMALE being set to 13 when using the sample table.

v Using the EMPLOYEE table, set the host variable FEMALE_IN_DEPT (int) to the

number of departments (WORKDEPT) that have at least one female as a

member.

 SELECT COUNT(DISTINCT WORKDEPT)

 INTO :FEMALE_IN_DEPT

 FROM EMPLOYEE

 WHERE SEX = ’F’

Results in FEMALE_IN_DEPT being set to 5 when using the sample table.

(There is at least one female in departments A00, C01, D11, D21, and E11.)

COUNT_BIG

��

COUNT_BIG

(
 ALL

expression

DISTINCT

*

)

��

The schema is SYSIBM.

The COUNT_BIG function returns the number of rows or values in a set of rows

or values. It is similar to COUNT except that the result can be greater than the

maximum value of integer.

If DISTINCT is specified, the resulting data type of expression cannot be a LONG

VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, XML, distinct type on

any of these types, or structured type (SQLSTATE 42907). Otherwise the result data

type of expression can be any data type.

The result of the function is a decimal with precision 31 and scale 0. The result

cannot be null.

COUNT

242 SQL Reference, Volume 1

The argument of COUNT_BIG(*) is a set of rows. The result is the number of rows

in the set. A row that includes only NULL values is included in the count.

The argument of COUNT_BIG(DISTINCT expression) is a set of values. The

function is applied to the set of values derived from the argument values by the

elimination of null and duplicate values. The result is the number of different

non-null values in the set.

The argument of COUNT_BIG(expression) or COUNT_BIG(ALL expression) is a set

of values. The function is applied to the set of values derived from the argument

values by the elimination of null values. The result is the number of non-null

values in the set, including duplicates.

Examples:

v Refer to COUNT examples and substitute COUNT_BIG for occurrences of

COUNT. The results are the same except for the data type of the result.

v Some applications may require the use of COUNT but need to support values

larger than the largest integer. This can be achieved by use of sourced

user-defined functions and setting the SQL path. The following series of

statements shows how to create a sourced function to support COUNT(*) based

on COUNT_BIG and returning a decimal value with a precision of 15. The SQL

path is set such that the sourced function based on COUNT_BIG is used in

subsequent statements such as the query shown.

 CREATE FUNCTION RICK.COUNT() RETURNS DECIMAL(15,0)

 SOURCE SYSIBM.COUNT_BIG();

 SET CURRENT PATH RICK, SYSTEM PATH;

 SELECT COUNT(*) FROM EMPLOYEE;

Note how the sourced function is defined with no parameters to support

COUNT(*). This only works if you name the function COUNT and do not

qualify the function with the schema name when it is used. To get the same

effect as COUNT(*) with a name other than COUNT, invoke the function with

no parameters. Thus, if RICK.COUNT had been defined as RICK.MYCOUNT

instead, the query would have to be written as follows:

 SELECT MYCOUNT() FROM EMPLOYEE;

If the count is taken on a specific column, the sourced function must specify the

type of the column. The following statements created a sourced function that

will take any CHAR column as a argument and use COUNT_BIG to perform the

counting.

 CREATE FUNCTION RICK.COUNT(CHAR()) RETURNS DOUBLE

 SOURCE SYSIBM.COUNT_BIG(CHAR());

 SELECT COUNT(DISTINCT WORKDEPT) FROM EMPLOYEE;

COVARIANCE

�� COVARIANCE (expression1 , expression2) ��

The schema is SYSIBM.

The COVARIANCE function returns the (population) covariance of a set of number

pairs.

The argument values must be numbers.

COUNT_BIG

Chapter 3. Functions 243

If either argument is decimal floating-point, the result is DECFLOAT(34);

otherwise, the result is a double-precision floating-point number. The result can be

null.

The function is applied to the set of (expression1,expression2) pairs derived from the

argument values by the elimination of all pairs for which either expression1 or

expression2 is null.

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the covariance of the value pairs in the set. The result is equivalent to the

following:

1. Let avgexp1 be the result of AVG(expression1) and let avgexp2 be the result of

AVG(expression2).

2. The result of COVARIANCE(expression1, expression2) is AVG((expression1 -

avgexp1) * (expression2 - avgexp2)

The order in which the values are aggregated is undefined, but every intermediate

result must be within the range of the result data type.

COVAR can be specified in place of COVARIANCE.

Example:

v Using the EMPLOYEE table, set the host variable COVARNCE (double-precision

floating point) to the covariance between salary and bonus for those employees

in department (WORKDEPT) ’A00’.

 SELECT COVARIANCE(SALARY, BONUS)

 INTO :COVARNCE

 FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

COVARNCE is set to approximately 1.68888888888889E+006 when using the

sample table.

GROUPING

�� GROUPING (expression) ��

The schema is SYSIBM.

Used in conjunction with grouping-sets and super-groups, the GROUPING

function returns a value that indicates whether or not a row returned in a GROUP

BY answer set is a row generated by a grouping set that excludes the column

represented by expression.

The argument can be of any type, but must be an item of a GROUP BY clause.

The result of the function is a small integer. It is set to one of the following values:

1 The value of expression in the returned row is a null value, and the row

was generated by the super-group. This generated row can be used to

provide sub-total values for the GROUP BY expression.

0 The value is other than the above.

Example:

COVARIANCE

244 SQL Reference, Volume 1

The following query:

 SELECT SALES_DATE, SALES_PERSON,

 SUM(SALES) AS UNITS_SOLD,

 GROUPING(SALES_DATE) AS DATE_GROUP,

 GROUPING(SALES_PERSON) AS SALES_GROUP

 FROM SALES

 GROUP BY CUBE (SALES_DATE, SALES_PERSON)

 ORDER BY SALES_DATE, SALES_PERSON

results in:

SALES_DATE SALES_PERSON UNITS_SOLD DATE_GROUP SALES_GROUP

---------- --------------- ----------- ----------- -----------

12/31/1995 GOUNOT 1 0 0

12/31/1995 LEE 6 0 0

12/31/1995 LUCCHESSI 1 0 0

12/31/1995 - 8 0 1

03/29/1996 GOUNOT 11 0 0

03/29/1996 LEE 12 0 0

03/29/1996 LUCCHESSI 4 0 0

03/29/1996 - 27 0 1

03/30/1996 GOUNOT 21 0 0

03/30/1996 LEE 21 0 0

03/30/1996 LUCCHESSI 4 0 0

03/30/1996 - 46 0 1

03/31/1996 GOUNOT 3 0 0

03/31/1996 LEE 27 0 0

03/31/1996 LUCCHESSI 1 0 0

03/31/1996 - 31 0 1

04/01/1996 GOUNOT 14 0 0

04/01/1996 LEE 25 0 0

04/01/1996 LUCCHESSI 4 0 0

04/01/1996 - 43 0 1

- GOUNOT 50 1 0

- LEE 91 1 0

- LUCCHESSI 14 1 0

- - 155 1 1

An application can recognize a SALES_DATE sub-total row by the fact that the

value of DATE_GROUP is 0 and the value of SALES_GROUP is 1. A

SALES_PERSON sub-total row can be recognized by the fact that the value of

DATE_GROUP is 1 and the value of SALES_GROUP is 0. A grand total row can be

recognized by the value 1 for both DATE_GROUP and SALES_GROUP.

MAX

��

MAX

(
 ALL

DISTINCT

expression

)

��

The schema is SYSIBM.

The MAX function returns the maximum value in a set of values.

The argument values can be of any built-in type other than a long string.

The resulting data type of expression cannot be a LONG VARCHAR, LONG

VARGRAPHIC, BLOB, CLOB, DBCLOB, distinct type on any of these types, or

structured type (SQLSTATE 42907).

GROUPING

Chapter 3. Functions 245

The data type, length and code page of the result are the same as the data type,

length and code page of the argument values. The result is considered to be a

derived value and can be null.

The function is applied to the set of values derived from the argument values by

the elimination of null values.

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the maximum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not

recommended. It is included for compatibility with other relational systems.

Examples:

v Using the EMPLOYEE table, set the host variable MAX_SALARY (decimal(7,2))

to the maximum monthly salary (SALARY/12) value.

 SELECT MAX(SALARY) / 12

 INTO :MAX_SALARY

 FROM EMPLOYEE

Results in MAX_SALARY being set to 4395.83 when using the sample table.

v Using the PROJECT table, set the host variable LAST_PROJ(char(24)) to the

project name (PROJNAME) that comes last in the collating sequence.

 SELECT MAX(PROJNAME)

 INTO :LAST_PROJ

 FROM PROJECT

Results in LAST_PROJ being set to ’WELD LINE PLANNING’ when using the

sample table.

v Similar to the previous example, set the host variable LAST_PROJ (char(40)) to

the project name that comes last in the collating sequence when a project name

is concatenated with the host variable PROJSUPP. PROJSUPP is ’_Support’; it has

a char(8) data type.

 SELECT MAX(PROJNAME CONCAT PROJSUPP)

 INTO :LAST_PROJ

 FROM PROJECT

Results in LAST_PROJ being set to ’WELD LINE PLANNING_SUPPORT’ when

using the sample table.

MIN

��

MIN

(
 ALL

DISTINCT

expression

)

��

The MIN function returns the minimum value in a set of values.

The argument values can be of any built-in type other than a long string.

The resulting data type of expression cannot be a LONG VARCHAR, LONG

VARGRAPHIC, BLOB, CLOB, DBCLOB, distinct type on any of these types, or

structured type (SQLSTATE 42907).

MAX

246 SQL Reference, Volume 1

The data type, length, and code page of the result are the same as the data type,

length, and code page of the argument values. The result is considered to be a

derived value and can be null.

The function is applied to the set of values derived from the argument values by

the elimination of null values.

If this function is applied to an empty set, the result of the function is a null value.

Otherwise, the result is the minimum value in the set.

The specification of DISTINCT has no effect on the result and therefore is not

recommended. It is included for compatibility with other relational systems.

Examples:

v Using the EMPLOYEE table, set the host variable COMM_SPREAD

(decimal(7,2)) to the difference between the maximum and minimum

commission (COMM) for the members of department (WORKDEPT) ’D11’.

 SELECT MAX(COMM) - MIN(COMM)

 INTO :COMM_SPREAD

 FROM EMPLOYEE

 WHERE WORKDEPT = ’D11’

Results in COMM_SPREAD being set to 1118 (that is, 2580 - 1462) when using

the sample table.

v Using the PROJECT table, set the host variable (FIRST_FINISHED (char(10)) to

the estimated ending date (PRENDATE) of the first project scheduled to be

completed.

 SELECT MIN(PRENDATE)

 INTO :FIRST_FINISHED

 FROM PROJECT

Results in FIRST_FINISHED being set to ’1982-09-15’ when using the sample

table.

Regression functions

�� REGR_AVGX

REGR_AVGY

REGR_COUNT

REGR_INTERCEPT

REGR_ICPT

REGR_R2

REGR_SLOPE

REGR_SXX

REGR_SXY

REGR_SYY

 (expression1 , expression2) ��

The schema is SYSIBM.

The regression functions support the fitting of an ordinary-least-squares regression

line of the form y = a * x + b to a set of number pairs. The first element of each

pair (expression1) is interpreted as a value of the dependent variable (that is, a ″y

value″). The second element of each pair (expression2) is interpreted as a value of

the independent variable (that is, an ″x value″).

MIN

Chapter 3. Functions 247

The REGR_COUNT function returns the number of non-null number pairs used to

fit the regression line (see below).

The REGR_INTERCEPT (or REGR_ICPT) function returns the y-intercept of the

regression line (″b″ in the above equation).

The REGR_R2 function returns the coefficient of determination (″R-squared″ or

″goodness-of-fit″) for the regression.

The REGR_SLOPE function returns the slope of the line (″a″ in the above

equation).

The REGR_AVGX, REGR_AVGY, REGR_SXX, REGR_SXY, and REGR_SYY

functions return quantities that can be used to compute various diagnostic statistics

needed for the evaluation of the quality and statistical validity of the regression

model (see below).

The argument values must be numbers.

The data type of the result of REGR_COUNT is integer. For the remaining

functions, if either argument is DECFLOAT(n), the data type of the result is

DECFLOAT(34); otherwise, the data type of the result is double-precision

floating-point. If either argument is a special decimal floating-point value, the rules

for general arithmetic operations for decimal floating-point apply. See “General

arithmetic operation rules for decimal floating-point” in “General arithmetic

operation rules for decimal floating-point” on page 156.

The result can be null. When not null, the result of REGR_R2 is between 0 and 1,

and the result of both REGR_SXX and REGR_SYY is non-negative.

Each function is applied to the set of (expression1, expression2) pairs derived from

the argument values by the elimination of all pairs for which either expression1 or

expression2 is null.

If the set is not empty and VARIANCE(expression2) is positive, REGR_COUNT

returns the number of non-null pairs in the set, and the remaining functions return

results that are defined as follows:

REGR_SLOPE(expression1,expression2) =

COVARIANCE(expression1,expression2)/VARIANCE(expression2)

REGR_INTERCEPT(expression1, expression2) =

AVG(expression1) - REGR_SLOPE(expression1, expression2) * AVG(expression2)

REGR_R2(expression1, expression2) =

POWER(CORRELATION(expression1, expression2), 2) if VARIANCE(expression1)>0

REGR_R2(expression1, expression2) = 1 if VARIANCE(expression1)=0

REGR_AVGX(expression1, expression2) = AVG(expression2)

REGR_AVGY(expression1, expression2) = AVG(expression1)

REGR_SXX(expression1, expression2) =

REGR_COUNT(expression1, expression2) * VARIANCE(expression2)

REGR_SYY(expression1, expression2) =

REGR_COUNT(expression1, expression2) * VARIANCE(expression1)

REGR_SXY(expression1, expression2) =

REGR_COUNT(expression1, expression2) * COVARIANCE(expression1, expression2)

If the set is not empty and VARIANCE(expression2) is equal to zero, then the

regression line either has infinite slope or is undefined. In this case, the functions

REGR_SLOPE, REGR_INTERCEPT, and REGR_R2 each return a null value, and the

Regression functions

248 SQL Reference, Volume 1

remaining functions return values as defined above. If the set is empty,

REGR_COUNT returns zero and the remaining functions return a null value.

The order in which the values are aggregated is undefined, but every intermediate

result must be within the range of the result data type.

The regression functions are all computed simultaneously during a single pass

through the data. In general, it is more efficient to use the regression functions to

compute the statistics needed for a regression analysis than to perform the

equivalent computations using ordinary column functions such as AVERAGE,

VARIANCE, COVARIANCE, and so forth.

The usual diagnostic statistics that accompany a linear-regression analysis can be

computed in terms of the above functions. For example:

Adjusted R2

1 - ((1 - REGR_R2) * ((REGR_COUNT - 1) / (REGR_COUNT - 2)))

Standard error

SQRT((REGR_SYY-(POWER(REGR_SXY,2)/REGR_SXX))/
(REGR_COUNT-2))

Total sum of squares

REGR_SYY

Regression sum of squares

POWER(REGR_SXY,2) / REGR_SXX

Residual sum of squares

(Total sum of squares)-(Regression sum of squares)

t statistic for slope

REGR_SLOPE * SQRT(REGR_SXX) / (Standard error)

t statistic for y-intercept

REGR_INTERCEPT/((Standard error) * SQRT((1/
REGR_COUNT)+(POWER(REGR_AVGX,2)/REGR_SXX))

Example:

v Using the EMPLOYEE table, compute an ordinary-least-squares regression line

that expresses the bonus of an employee in department (WORKDEPT) ’A00’ as a

linear function of the employee’s salary. Set the host variables SLOPE, ICPT,

RSQR (double-precision floating point) to the slope, intercept, and coefficient of

determination of the regression line, respectively. Also set the host variables

AVGSAL and AVGBONUS to the average salary and average bonus, respectively,

of the employees in department ’A00’, and set the host variable CNT (integer) to

the number of employees in department ’A00’ for whom both salary and bonus

data are available. Store the remaining regression statistics in host variables SXX,

SYY, and SXY.

SELECT REGR_SLOPE(BONUS,SALARY), REGR_INTERCEPT(BONUS,SALARY),

REGR_R2(BONUS,SALARY), REGR_COUNT(BONUS,SALARY),

REGR_AVGX(BONUS,SALARY), REGR_AVGY(BONUS,SALARY),

REGR_SXX(BONUS,SALARY), REGR_SYY(BONUS,SALARY),

REGR_SXY(BONUS,SALARY)

INTO :SLOPE, :ICPT,

:RSQR, :CNT,

:AVGSAL, :AVGBONUS,

:SXX, :SYY,

:SXY

FROM EMPLOYEE

WHERE WORKDEPT = ’A00’

Regression functions

Chapter 3. Functions 249

When using the sample table, the host variables are set to the following

approximate values:

SLOPE: +1.71002671916749E-002

ICPT: +1.00871888623260E+002

RSQR: +9.99707928128685E-001

CNT: 3

AVGSAL: +4.28333333333333E+004

AVGBONUS: +8.33333333333333E+002

SXX: +2.96291666666667E+008

SYY: +8.66666666666667E+004

SXY: +5.06666666666667E+006

STDDEV

��

STDDEV

(
 ALL

DISTINCT

expression

)

��

The schema is SYSIBM.

The STDDEV function returns the standard deviation (/n) of a set of numbers. The

formula used to calculate STDDEV is:

 STDDEV = SQRT(VARIANCE)

where SQRT(VARIANCE) is the square root of the variance.

The argument values must be numbers.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is double-precision floating-point. The result can be null.

The function is applied to the set of values derived from the argument values by

the elimination of null values. If DISTINCT is specified, redundant duplicate

values are eliminated. When interpreting the DISTINCT clause for decimal

floating-point values that are numerically equal, the number of significant digits in

the value is not considered. For example, the decimal floating-point number 123.00

is not distinct from the decimal floating-point number 123. The representation of

the number returned from the query will be any one of the representations

encountered (for example, either 123.00 or 123).

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the standard deviation of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate

result must be within the range of the result data type.

Example:

v Using the EMPLOYEE table, set the host variable DEV (double-precision floating

point) to the standard deviation of the salaries of employees in department

(WORKDEPT) ’A00’.

 SELECT STDDEV(SALARY)

 INTO :DEV

 FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

DEV is set to a number with an approximate value of 9938.00.

Regression functions

250 SQL Reference, Volume 1

SUM

��

SUM

(
 ALL

DISTINCT

expression

)

��

The schema is SYSIBM.

The SUM function returns the sum of a set of numbers.

The argument values must be numbers (built-in types only) and their sum must be

within the range of the data type of the result.

The data type of the result is the same as the data type of the argument values,

except that:

v The result is a large integer if the argument values are small integers.

v The result is double-precision floating point if the argument values are

single-precision floating point.

v The result is DECFLOAT(34) if the argument is DECFLOAT(n).

If the data type of the argument values is decimal, the precision of the result is 31

and the scale is the same as the scale of the argument values. The result can be

null.

The function is applied to the set of values derived from the argument values by

the elimination of null values. If DISTINCT is specified, redundant duplicate

values are also eliminated. When interpreting the DISTINCT clause for decimal

floating-point values that are numerically equal, the number of significant digits in

the value is not considered. For example, the decimal floating-point number 123.00

is not distinct from the decimal floating-point number 123. The representation of

the number returned from the query will be any one of the representations

encountered (for example, either 123.00 or 123).

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the sum of the values in the set.

The order in which the values are aggregated is undefined, but every intermediate

result must be within the range of the result data type.

Example:

v Using the EMPLOYEE table, set the host variable JOB_BONUS (decimal(9,2)) to

the total bonus (BONUS) paid to clerks (JOB=’CLERK’).

 SELECT SUM(BONUS)

 INTO :JOB_BONUS

 FROM EMPLOYEE

 WHERE JOB = ’CLERK’

Results in JOB_BONUS being set to 2800 when using the sample table.

SUM

Chapter 3. Functions 251

VARIANCE

��

VARIANCE

(
 ALL

DISTINCT

expression

)

��

The schema is SYSIBM.

The VARIANCE function returns the variance of a set of numbers.

The argument values must be numbers.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is double-precision floating-point. The result can be null.

The function is applied to the set of values derived from the argument values by

the elimination of null values. If DISTINCT is specified, redundant duplicate

values are eliminated. When interpreting the DISTINCT clause for decimal

floating-point values that are numerically equal, the number of significant digits in

the value is not considered. For example, the decimal floating-point number 123.00

is not distinct from the decimal floating-point number 123. The representation of

the number returned from the query will be any one of the representations

encountered (for example, either 123.00 or 123).

If the function is applied to an empty set, the result is a null value. Otherwise, the

result is the variance of the values in the set.

The order in which the values are added is undefined, but every intermediate

result must be within the range of the result data type.

VAR can be specified in place of VARIANCE.

Example:

v Using the EMPLOYEE table, set the host variable VARNCE (double-precision

floating point) to the variance of the salaries for those employees in department

(WORKDEPT) ’A00’.

 SELECT VARIANCE(SALARY)

 INTO :VARNCE

 FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

Results in VARNCE being set to approximately 98763888.88 when using the

sample table.

XMLAGG

�� XMLAGG

�

 (XML-expression)

,

ASC

ORDER BY

sort-key

DESC

 ��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

VARIANCE

252 SQL Reference, Volume 1

The XMLAGG function returns an XML sequence containing an item for each

non-null value in a set of XML values.

XML-expression

Specifies an expression of data type XML.

ORDER BY

Specifies the order of the rows from the same grouping set that are processed

in the aggregation. If the ORDER BY clause is omitted, or if the ORDER BY

clause cannot distinguish the order of the column data, the rows in the same

grouping set are arbitrarily ordered.

sort-key

The sort key can be a column name or a sort-key-expression. Note that if the sort

key is a constant, it does not refer to the position of the output column (as in

the ordinary ORDER BY clause), but it is simply a constant, which implies no

sort key.

The data type of the result is XML.

The function is applied to the set of values derived from the argument values by

the elimination of null values.

If the XML-expression argument can be null, the result can be null. If the set of

values is empty, the result is the null value. Otherwise, the result is an XML

sequence containing an item for each value in the set.

Note:

1. Support in multiple database partition databases: The result, at the outer level

of XML value function nesting, must be an argument of the XMLSERIALIZE

function.

2. Support in OLAP expressions: XMLAGG cannot be used as a column function

of an OLAP aggregation function (SQLSTATE 42601).

Example:

Note: XMLAGG does not insert blank spaces or new line characters in the output.

All example output has been formatted to enhance readability.

v Construct a department element for each department, containing a list of

employees sorted by last name.

 SELECT XMLSERIALIZE(

 CONTENT XMLELEMENT(

 NAME "Department", XMLATTRIBUTES(

 E.WORKDEPT AS "name"

),

 XMLAGG(

 XMLELEMENT(

 NAME "emp", E.LASTNAME

)

 ORDER BY E.LASTNAME

)

)

 AS CLOB(110)

)

 AS "dept_list"

 FROM EMPLOYEE E

 WHERE E.WORKDEPT IN (’C01’,’E21’)

 GROUP BY WORKDEPT

XMLAGG

Chapter 3. Functions 253

This query produces the following result:

dept_list

-----------------------...

<Department name="C01">

 <emp>KWAN</emp>

 <emp>NICHOLLS</emp>

 <emp>QUINTANA</emp>

</Department>

<Department name="E21">

 <emp>GOUNOT</emp>

 <emp>LEE</emp>

 <emp>MEHTA</emp>

 <emp>SPENSER</emp>

</Department>

XMLGROUP

The XMLGROUP function returns an XML value with a single XQuery document

node containing one top-level element node. This is an aggregate expression that

will return a single-rooted XML document from a group of rows where each row is

mapped to a row subelement.

��

�

 ,

XMLGROUP

(

expression

AS

qname-identifier

�

�

�

,

ASC

ORDER BY

sort-key

DESC

 �

�

�

(1)

ROW

″row″

OPTION

ROW

row-name

ROOT

″rowset″

ROOT

root-name

AS ATTRIBUTES

) ��

Notes:

1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

expression

The content of each generated XML element node (or the value of each

generated attribute) is specified by an expression. The data type of expression

cannot be a structured type (SQLSTATE 42884). The expression can be any SQL

expression. If the expression is not a simple column reference, a qname-identifier

must be specified.

AS qname-identifier

Specifies the XML element name or attribute name as an SQL identifier. The

qname-identifier must be of the form of an XML qualified name, or QName

XMLAGG

254 SQL Reference, Volume 1

(SQLSTATE 42634). See the W3C XML namespace specifications for more

details on valid names. If the name is qualified, the namespace prefix must be

declared within the scope (SQLSTATE 42635). If qname-identifier is not specified,

expression must be a column name (SQLSTATE 42703). The element name or

attribute name is created from the column name using the fully escaped

mapping from a column name to an QName.

OPTION

Specifies additional options for constructing the XML value. If no OPTION

clause is specified, the default behavior applies.

ROW row-name

Specifies the name of the element to which each row is mapped. If this option

is not specified, the default element name is ″row″.

ROOT root-name

Specifies the name of the root element node. If this option is not specified, the

default root element name is ″rowset″

AS ATTRIBUTES

Specifies that each expression is mapped to an attribute value with column

name or qname-identifier serving as the attribute name.

ORDER BY

Specifies the order of the rows from the same grouping set that are processed

in the aggregation. If the ORDER BY clause is omitted, or if the ORDER BY

clause cannot distinguish the order of the column data, the rows in the same

grouping set are arbitrarily ordered.

sort-key

The sort key can be a column name or a sort-key-expression. Note that if the sort

key is a constant, it does not refer to the position of the output column (as in

the ordinary ORDER BY clause), but it is simply a constant, which implies no

sort key.

Notes

The default behavior defines a simple mapping between a result set and an XML

value. Some additional notes about function behavior apply:

v By default, each row is transformed into an XML element named ″row″ and each

column is transformed into a nested element with the column name serving as

the element name.

v The null handling behavior is NULL ON NULL. A NULL value in a column

maps to the absence of the subelement. If all column values are NULL, no row

element will be generated.

v The binary encoding scheme for BLOB and FOR BIT DATA data types is

base64Binary encoding.

v By default, the elements corresponding to the rows in a group are children of a

root element named ″rowset″.

v The order of the row subelements in the root element will be the same as the

order in which the rows are returned in the query result set.

v A document node will be added implicitly to the root element to make the XML

result a well-formed single-rooted XML document

XMLGROUP

Chapter 3. Functions 255

Examples

Assume the following table T1 with integer columns C1 and C2 that contain

numeric data stored in a relational format.

C1 C2

----------- -----------

 1 2

 - 2

 1 -

 - -

 4 record(s) selected.

v The following example shows an XMLGroup query and output fragment with

default behavior, using a single top-level element to represent the table:

SELECT XMLGROUP(C1, C2)FROM T1

<rowset>

 <row>

 <C1>1</C1>

 <C2>2</C2>

 </row>

 <row>

 <C2>2</C2>

 </row>

 <row>

 <C1>1</C1>

 </row>

</rowset>

 1 record(s) selected.

v The following example shows an XMLGroup query and output fragment with

attribute centric mapping. Instead of appearing as nested elements as in the

previous example, relational data is mapped to element attributes:

SELECT XMLGROUP(C1, C2 OPTION AS ATTRIBUTES) FROM T1

<rowset>

 <row C1="1" C2="2"/>

 <row C2="2"/>

 <row C1="1"/>

</rowset>

 1 record(s) selected.

v The following example shows an XMLGroup query and output fragment with

the default <rowset> root element replaced by <document> and the default

<row> element replaced by <entry>. Columns C1 and C2 are returned as

<column1> and <column2> elements, and the return set is ordered by column

C1:

SELECT XMLGROUP(

 C1 AS "column1", C2 AS "column2"

 ORDER BY C1 OPTION ROW "entry" ROOT "document")

FROM T1

<document>

 <entry>

 <column1>1</column1>

 <column2>2</column2>

 </entry>

 <entry>

 <column1>1</column1>

 </entry>

 <entry>

 <column2>2</column2>

 </entry>

</document>

XMLGROUP

256 SQL Reference, Volume 1

Scalar functions

A scalar function can be used wherever an expression can be used. However, the

restrictions that apply to the use of expressions and column functions also apply

when an expression or column function is used within a scalar function. For

example, the argument of a scalar function can be a column function only if a

column function is allowed in the context in which the scalar function is used.

The restrictions on the use of column functions do not apply to scalar functions,

because a scalar function is applied to a single value rather than to a set of values.

The result of the following SELECT statement has as many rows as there are

employees in department D01:

 SELECT EMPNO, LASTNAME, YEAR(CURRENT DATE - BRTHDATE)

 FROM EMPLOYEE

 WHERE WORKDEPT = ’D01’

Scalar functions can be qualified with a schema name (for example,

SYSIBM.CHAR(123)).

In a Unicode database, all scalar functions that accept a character or graphic string

will accept any string types for which conversion is supported.

ABS or ABSVAL

�� ABS

ABSVAL
 (expression) ��

The schema is SYSIBM.

This function was first available in FixPak 2 of Version 7.1. The SYSFUN version of

the ABS (or ABSVAL) function continues to be available.

Returns the absolute value of the argument. The argument can be any built-in

numeric data type.

The result has the same data type and length attribute as the argument. The result

can be null; if the argument is null, the result is the null value. If the argument is

the maximum negative value for SMALLINT, INTEGER or BIGINT, the result is an

overflow error.

Example:

 ABS(-51234)

returns an INTEGER with a value of 51234.

ACOS

�� ACOS (expression) ��

The schema is SYSIBM. (The SYSFUN version of the ACOS function continues to

be available.)

Scalar functions

Chapter 3. Functions 257

Returns the arccosine of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type (except for DECFLOAT). It

is converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

Example:

Assume that the host variable ACOSINE is a DECIMAL(10,9) host variable with a

value of 0.070737202.

 SELECT ACOS(:ACOSINE)

 FROM SYSIBM.SYSDUMMY1

This statement returns the approximate value 1.49.

ASCII

�� ASCII (expression) ��

The schema is SYSFUN.

Returns the ASCII code value of the leftmost character of the argument as an

integer.

The argument can be of any built-in character string type. In a Unicode database, if

a supplied argument is a graphic string, it is first converted to a character string

before the function is executed. For a VARCHAR, the maximum length is 4 000

bytes, and for a CLOB, the maximum length is 1 048 576 bytes. LONG VARCHAR

is converted to CLOB for processing by the function.

The result of the function is always INTEGER.

The result can be null; if the argument is null, the result is the null value.

ASIN

�� ASIN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the ASIN function continues to be

available.)

Returns the arcsine on the argument as an angle expressed in radians.

The argument can be of any built-in numeric type (except for DECFLOAT). It is

converted to a double-precision floating-point number for processing by the

function.

ACOS

258 SQL Reference, Volume 1

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

ATAN

�� ATAN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the ATAN function continues to

be available.)

Returns the arctangent of the argument as an angle expressed in radians.

The argument can be of any built-in numeric data type (except for DECFLOAT). It

is converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

ATAN2

�� ATAN2 (expression , expression) ��

The schema is SYSIBM. (The SYSFUN version of the ATAN2 function continues to

be available.)

Returns the arctangent of x and y coordinates as an angle expressed in radians.

The x and y coordinates are specified by the first and second arguments,

respectively.

The first and the second arguments can be of any built-in numeric data type

(except for DECFLOAT). Both are converted to a double-precision floating-point

number for processing by the function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

ATANH

�� ATANH (expression) ��

The schema is SYSIBM.

Returns the hyperbolic arctangent of the argument, where the argument is an angle

expressed in radians.

ASIN

Chapter 3. Functions 259

The argument can be of any built-in numeric data type (except for DECFLOAT). It

is converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

BIGINT

�� BIGINT (numeric-expression

character-expression

datetime-expression

) ��

The schema is SYSIBM.

The BIGINT function returns a 64-bit integer representation of a number, character

string, date, time, or timestamp in the form of an integer constant. In a Unicode

database, if a supplied argument is a graphic string, it is first converted to a

character string before the function is executed.

numeric-expression

An expression that returns a value of any built-in numeric data type.

 If the argument is a numeric-expression, the result is the same number that

would occur if the argument were assigned to a big integer column or variable.

If the whole part of the argument is not within the range of big integers, an

error occurs. The decimal part of the argument is truncated if present.

character-expression

An expression that returns a character string value of length not greater than

the maximum length of a character constant. Leading and trailing blanks are

eliminated and the resulting string must conform to the rules for forming an

SQL integer constant (SQLSTATE 22018). The character string cannot be a long

string.

 If the argument is a character-expression, the result is the same number that

would occur if the corresponding integer constant were assigned to a big

integer column or variable.

datetime-expression

An expression that is of one of the following data types:

v DATE. The result is a BIGINT value representing the date as yyyymmdd.

v TIME. The result is a BIGINT value representing the time as hhmmss.

v TIMESTAMP. The result is a BIGINT value representing the timestamp as

yyyymmddhhmmss. The microseconds portion of the timestamp value is not

included in the result.

The result of the function is a big integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

Examples:

v From ORDERS_HISTORY table, count the number of orders and return the

result as a big integer value.

ATANH

260 SQL Reference, Volume 1

SELECT BIGINT (COUNT_BIG(*))

 FROM ORDERS_HISTORY

v Using the EMPLOYEE table, select the EMPNO column in big integer form for

further processing in the application.

 SELECT BIGINT (EMPNO) FROM EMPLOYEE

v Assume that the column RECEIVED (timestamp) has an internal value

equivalent to ’1988-12-22-14.07.21.136421’.

 BIGINT(RECEIVED)

results in the value 19 881 222 140 721.

v Assume that the column STARTTIME (time) has an internal value equivalent to

’12:03:04’.

 BIGINT(STARTTIME)

results in the value 120 304.

BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT

�� BITAND

BITANDNOT

BITOR

BITXOR

 (expression1 , expression2) ��

�� BITNOT (expression) ��

The schema is SYSIBM.

These bitwise functions operate on the ″two’s complement″ representation of the

integer value of the input arguments and return the result as a corresponding base

10 integer value in a data type based on the data type of the input arguments.

 Table 31. The bit manipulation functions

Function Description

A bit in the two’s

complement representation

of the result is:

BITAND Performs a bitwise AND

operation.

1 only if the corresponding

bits in both arguments are 1.

BITANDNOT Clears any bit in the first

argument that is in the

second argument.

Zero if the corresponding bit

in the second argument is 1;

otherwise, the result is

copied from the

corresponding bit in the first

argument.

BITOR Performs a bitwise OR

operation.

1 unless the corresponding

bits in both arguments are

zero.

BITXOR Performs a bitwise exclusive

OR operation.

1 unless the corresponding

bits in both arguments are

the same.

BITNOT Performs a bitwise NOT

operation.

Opposite of the

corresponding bit in the

argument.

BIGINT

Chapter 3. Functions 261

The arguments must be integer values represented by the data types SMALLINT,

INTEGER, BIGINT, or DECFLOAT. Arguments of type DECIMAL, REAL, or

DOUBLE are cast to DECFLOAT. The value is truncated to a whole number.

The bit manipulation functions can operate on up to 16 bits for SMALLINT, 32 bits

for INTEGER, 64 bits for BIGINT, and 113 bits for DECFLOAT. The range of

supported DECFLOAT values includes integers from -2112 to 2112 -1, and special

values such as NaN or INFINITY are not supported (SQLSTATE 42815). If the two

arguments have different data types, the argument supporting fewer bits is cast to

a value with the data type of the argument supporting more bits. This cast impacts

the bits that are set for negative values. For example, -1 as a SMALLINT value has

16 bits set to 1, which when cast to an INTEGER value has 32 bits set to 1.

The result of the functions with two arguments has the data type of the argument

that is highest in the data type precedence list for promotion. If either argument is

DECFLOAT, the data type of the result is DECFLOAT(34). If either argument can

be null, the result can be null; if either argument is null, the result is the null

value.

The result of the BITNOT function has the same data type as the input argument,

except that DECIMAL, REAL, DOUBLE, or DECFLOAT(16) returns

DECFLOAT(34). If the argument can be null, the result can be null; if the argument

is null, the result is the null value.

Due to differences in internal representation between data types and on different

hardware platforms, using functions (such as HEX) or host language constructs to

view or compare internal representations of BIT function results and arguments is

data type-dependent and not portable. The data type- and platform-independent

way to view or compare BIT function results and arguments is to use the actual

integer values.

Use of the BITXOR function is recommended to toggle bits in a value. Use the

BITANDNOT function to clear bits. BITANDNOT(val, pattern) operates more

efficiently than BITAND(val, BITNOT(pattern)).

Examples:

The following examples are based on an ITEM table with a PROPERTIES column

of type INTEGER.

v Return all items for which the third property bit is set.

 SELECT ITEMID FROM ITEM

 WHERE BITAND(PROPERTIES, 4) = 4

v Return all items for which the fourth or the sixth property bit is set.

 SELECT ITEMID FROM ITEM

 WHERE BITAND(PROPERTIES, 40) <> 0

v Clear the twelfth property of the item whose ID is 3412.

 UPDATE ITEM

 SET PROPERTIES = BITANDNOT(PROPERTIES, 2048)

 WHERE ITEMID = 3412

v Set the fifth property of the item whose ID is 3412.

 UPDATE ITEM

 SET PROPERTIES = BITOR(PROPERTIES, 16)

 WHERE ITEMID = 3412

BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT

262 SQL Reference, Volume 1

v Toggle the eleventh property of the item whose ID is 3412.

 UPDATE ITEM

 SET PROPERTIES = BITXOR(PROPERTIES, 1024)

 WHERE ITEMID = 3412

v Switch all the bits in a 16-bit value that has only the second bit on.

 VALUES BITNOT(CAST(2 AS SMALLINT))

returns -3 (with a data type of SMALLINT).

BLOB

�� BLOB (string-expression

,

integer
) ��

The schema is SYSIBM.

The BLOB function returns a BLOB representation of a string of any type.

string-expression

A string-expression whose value can be a character string, graphic string, or a

binary string.

integer

An integer value specifying the length attribute of the resulting BLOB data

type. If integer is not specified, the length attribute of the result is the same as

the length of the input, except where the input is graphic. In this case, the

length attribute of the result is twice the length of the input.

The result of the function is a BLOB. If the argument can be null, the result can be

null; if the argument is null, the result is the null value.

Examples

v Given a table with a BLOB column named TOPOGRAPHIC_MAP and a

VARCHAR column named MAP_NAME, locate any maps that contain the string

’Pellow Island’ and return a single binary string with the map name

concatenated in front of the actual map.

 SELECT BLOB(MAP_NAME CONCAT ’: ’) CONCAT TOPOGRAPHIC_MAP

 FROM ONTARIO_SERIES_4

 WHERE TOPOGRAPHIC_MAP LIKE BLOB(’%Pellow Island%’)

CARDINALITY

�� CARDINALITY (array-expression) ��

The schema is SYSIBM.

The CARDINALITY function returns a value of type BIGINT representing the

number of elements of an array.

The argument can be either an SQL procedure variable or parameter of an array

data type or a cast specification of a parameter marker to an array data type. The

value returned by the CARDINALITY function is the highest subindex for which

the array has an assigned element. This includes elements that have been assigned

the null value.

BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT

Chapter 3. Functions 263

The function returns 0 if the array is empty. The result can be null; if the argument

is null, the result is the null value.

Example:

Assume that type INT_ARRAY is defined as:

 CREATE TYPE INT_ARRAY

 AS INTEGER ARRAY[100]

The SET statement in the following fragment of SQL PL code assigns variable LEN

the value 4:

 BEGIN

 DECLARE LEN INTEGER;

 DECLARE MYARRAY INT_ARRAY;

 SET INT_ARRAY = ARRAY[0,0,1,1];

 SET LEN = CARDINALITY(MYARRAY);

 END

CEILING

�� CEILING (expression) ��

The schema is SYSIBM. (The SYSFUN version of the CEILING function continues

to be available.)

Returns the smallest integer value greater than or equal to the argument.

The argument can be of any built-in numeric type. The result of the function has

the same data type and length attribute as the argument except that the scale is 0 if

the argument is DECIMAL. For example, an argument with a data type of

DECIMAL(5,5) returns DECIMAL(5,0).

The result can be null if the argument can be null or if the argument is not a

decimal floating-point number and the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

CEIL can be specified in place of CEILING.

CHAR

Character to Character:

�� CHAR (character-expression

,

integer
) ��

Datetime to Character:

CARDINALITY

264 SQL Reference, Volume 1

�� CHAR (datetime-expression

,

ISO

USA

EUR

JIS

LOCAL

) ��

Integer to Character:

�� CHAR (integer-expression) ��

Decimal to Character:

�� CHAR (decimal-expression

,

decimal-character
) ��

Floating-point to Character:

�� CHAR (floating-point-expression

,

decimal-character
) ��

Decimal Floating-point to Character:

�� CHAR (decimal-floating-point-expression)

,

decimal-character
 ��

The schema is SYSIBM. The function name cannot be specified as a qualified name

when keywords are used in the function signature. The SYSFUN.CHAR(floating-
point-expression) signature continues to be available. In this case, the decimal

character is locale sensitive, and therefore returns either a period or a comma,

depending on the locale of the database server.

The CHAR function returns a fixed-length character string representation of:

v A character string, if the first argument is any type of character string

v A datetime value, if the first argument is a date, time, or timestamp

v An integer number, if the first argument is a SMALLINT, INTEGER, or BIGINT

v A decimal number, if the first argument is a decimal number

v A double-precision floating-point number, if the first argument is a DOUBLE or

REAL

v A decimal floating-point number, if the first argument is a DECFLOAT

The first argument must be of a built-in data type. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

Note: The CAST expression can also be used to return a string expression.

The result of the function is a fixed-length character string. If the first argument

can be null, the result can be null. If the first argument is null, the result is the null

value.

CHAR

Chapter 3. Functions 265

Character to Character

character-expression

An expression that returns a value that is of the CHAR, VARCHAR,

LONG VARCHAR, or CLOB data type.

integer

The length attribute of the resulting fixed-length character string. The

value must be between 0 and 254.

If the length of the character expression is less than the length attribute of

the result, the result is padded with blanks up to the length of the result. If

the length of the character expression is greater than the length attribute of

the result, the result is truncated. A warning is returned (SQLSTATE

01004), unless the truncated characters were all blanks, and the character

expression was not a long string (LONG VARCHAR or CLOB).

Datetime to Character

datetime-expression

An expression that is of one of the following three data types:

date The result is the character string representation of the date in

the format specified by the second argument. The length of the

result is 10. An error is returned if the second argument is

specified and is not a valid value (SQLSTATE 42703).

time The result is the character string representation of the time in

the format specified by the second argument. The length of the

result is 8. An error is returned if the second argument is

specified and is not a valid value (SQLSTATE 42703).

timestamp

The result is the character string representation of the

timestamp. The length of the result is 26. The second argument

is not applicable and must not be specified (SQLSTATE 42815).

The code page of the string is the code page of the database at the

application server.

Integer to Character

integer-expression

An expression that returns a value that is of an integer data type

(either SMALLINT, INTEGER, or BIGINT).

 The result is the character string representation of the argument in the

form of an SQL integer constant. The result consists of n characters, which

represent the significant digits in the argument, and is preceded by a

minus sign if the argument is negative. The result is left justified.

v If the first argument is a small integer, the length of the result is 6.

v If the first argument is a large integer, the length of the result is 11.

v If the first argument is a big integer, the length of the result is 20.

If the number of bytes in the result is less than the defined length of the

result, the result is padded on the right with blanks.

The code page of the string is the code page of the database at the

application server.

Decimal to Character

CHAR

266 SQL Reference, Volume 1

decimal-expression

An expression that returns a value that is a decimal data type. If a

different precision and scale are required, the DECIMAL scalar

function can be used first to make the change.

decimal-character

Specifies the single-byte character constant that is used to delimit the

decimal digits in the result character string. The character constant

cannot be a digit, the plus sign (+), the minus sign (-), or a blank

(SQLSTATE 42815). The default is the period (.) character.

 The result is the fixed-length character string representation of the

argument. The result includes a decimal character and p digits, where p is

the precision of the decimal-expression, with a preceding minus sign if the

argument is negative. The length of the result is 2 + p, where p is the

precision of the decimal-expression. This means that a positive value will

always include one trailing blank.

The code page of the string is the code page of the database at the

application server.

Floating-point to Character

floating-point-expression

An expression that returns a value that is a floating-point data type

(DOUBLE or REAL).

decimal-character

Specifies the single-byte character constant that is used to delimit the

decimal digits in the result character string. The character constant

cannot be a digit, the plus sign (+), the minus sign (-), or a blank

(SQLSTATE 42815). The default is the period (.) character.

 The result is the fixed-length character string representation of the

argument in the form of a floating-point constant. The length of the result

is 24. If the argument is negative, the first character of the result is a minus

sign; otherwise, the first character is a digit. If the argument value is zero,

the result is 0E0; otherwise, the result includes the smallest number of

characters that can represent the value of the argument, such that the

mantissa consists of a single digit other than zero followed by the

decimal-character and a sequence of digits. If the number of bytes in the

result is less than 24, the result is padded on the right with blanks.

The code page of the string is the code page of the database at the

application server.

Decimal Floating-point to Character

decimal-floating-point-expression

An expression that returns a value that is a decimal floating-point data

type (DECFLOAT).

decimal-character

Specifies the single-byte character constant that is used to delimit the

decimal digits in the result character string. The character constant

cannot be a digit, the plus sign (+), the minus sign (-), or a blank

(SQLSTATE 42815). The default is the period (.) character.

CHAR

Chapter 3. Functions 267

The result is the fixed-length character string representation of the

argument. The length of the result is 42. If the number of characters in the

result is less than 42, the result is padded on the right with blank

characters to a length of 42.

Examples:

v Assume that the PRSTDATE column has an internal value equivalent to

1988-12-25. The following function returns the value ‘12/25/1988’.

 CHAR(PRSTDATE, USA)

v Assume that the STARTING column has an internal value equivalent to 17:12:30,

and that the host variable HOUR_DUR (decimal(6,0)) is a time duration with a

value of 050000 (that is, 5 hours). The following function returns the value ‘5:12

PM’.

 CHAR(STARTING, USA)

The following function returns the value ‘10:12 PM’.

 CHAR(STARTING + :HOUR_DUR, USA)

v Assume that the RECEIVED column (TIMESTAMP) has an internal value

equivalent to the combination of the PRSTDATE and STARTING columns. The

following function returns the value ‘1988-12-25-17.12.30.000000’.

 CHAR(RECEIVED)

v The LASTNAME column is defined as VARCHAR(15). The following function

returns the values in this column as fixed-length character strings that are 10

bytes long. LASTNAME values that are more than 10 bytes long (excluding

trailing blanks) are truncated and a warning is returned.

 SELECT CHAR(LASTNAME,10) FROM EMPLOYEE

v The EDLEVEL column is defined as SMALLINT. The following function returns

the values in this column as fixed-length character strings. An EDLEVEL value

of 18 is returned as the CHAR(6) value ‘18 ’ (‘18’ followed by four blanks).

 SELECT CHAR(EDLEVEL) FROM EMPLOYEE

v The SALARY column is defined as DECIMAL with a precision of 9 and a scale

of 2. The current value (18357.50) is to be displayed with a comma as the

decimal character (18357,50). The following function returns the value

‘00018357,50’.

 CHAR(SALARY, ’,’)

v Values in the SALARY column are to be subtracted from 20000.25 and displayed

with the default decimal character. The following function returns the value

‘-0001642.75’.

 CHAR(20000.25 - SALARY)

v Assume that the host variable SEASONS_TICKETS is defined as INTEGER and

has a value of 10000. The following function returns the value ‘10000.00 ’.

 CHAR(DECIMAL(:SEASONS_TICKETS,7,2))

v Assume that the host variable DOUBLE_NUM is defined as DOUBLE and has a

value of -987.654321E-35. The following function returns the value

‘-9.87654321E-33 ’. Because the result data type is CHAR(24), there are nine

trailing blanks in the result.

 CHAR(:DOUBLE_NUM)

CHARACTER_LENGTH

CHAR

268 SQL Reference, Volume 1

�� CHARACTER_LENGTH

CHAR_LENGTH
 (expression)

USING

CODEUNITS16

CODEUNITS32

OCTETS

 �

� , CODEUNITS16)

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM.

The CHARACTER_LENGTH function returns the length of expression in the

specified string unit.

expression

An expression that returns a value of a built-in character or graphic string.

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of the result. CODEUNITS16 specifies that the result is

to be expressed in 16-bit UTF-16 code units. CODEUNITS32 specifies that the

result is to be expressed in 32-bit UTF-32 code units. OCTETS specifies that the

result is to be expressed in bytes.

 If a string unit is specified as CODEUNITS16 or CODEUNITS32, and expression

is a binary string or bit data, an error is returned (SQLSTATE 428GC). If a

string unit is specified as OCTETS and expression is a binary string, an error is

returned (SQLSTATE 42815). For more information about CODEUNITS16,

CODEUNITS32, and OCTETS, see “String units in built-in functions” in

“Character strings”.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The length of character and graphic strings includes trailing blanks. The length of

varying-length strings is the actual length and not the maximum length.

Examples:

v Assume that NAME is a VARCHAR(128) column, encoded in Unicode UTF-8,

that contains the value ’Jürgen’. The following two queries return the value 6:

 SELECT CHARACTER_LENGTH(NAME, CODEUNITS32)

 FROM T1 WHERE NAME = ’Jürgen’

 SELECT CHARACTER_LENGTH(NAME, CODEUNITS16)

 FROM T1 WHERE NAME = ’Jürgen’

The following two queries return the value 7:

 SELECT CHARACTER_LENGTH(NAME, OCTETS)

 FROM T1 WHERE NAME = ’Jürgen’

 SELECT LENGTH(NAME)

 FROM T1 WHERE NAME = ’Jürgen’

v The following examples work with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the combining tilde character.

This string is shown below in different Unicode encoding forms:

 ’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

CHARACTER_LENGTH

Chapter 3. Functions 269

’&’ ’N’ ’~’ ’A’ ’B’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

UTF-32BE X’0001D11E’ X’0000004E’ X’00000303’ X’00000041’ X’00000042’

Assume that the variable UTF8_VAR contains the UTF-8 representation of the

string.

 SELECT CHARACTER_LENGTH(UTF8_VAR, CODEUNITS16),

 CHARACTER_LENGTH(UTF8_VAR, CODEUNITS32),

 CHARACTER_LENGTH(UTF8_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 9, respectively.

Assume that the variable UTF16_VAR contains the UTF-16BE representation of

the string.

 SELECT CHARACTER_LENGTH(UTF16_VAR, CODEUNITS16),

 CHARACTER_LENGTH(UTF16_VAR, CODEUNITS32),

 CHARACTER_LENGTH(UTF16_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 12, respectively.

CHR

�� CHR (expression) ��

The schema is SYSFUN.

Returns the character that has the ASCII code value specified by the argument. If

expression is 0, the result is the blank character (X’20’).

The argument can be either INTEGER or SMALLINT. The value of the argument

should be between 0 and 255; otherwise, the return value is the character that has

the ASCII code value corresponding to 255.

The result of the function is CHAR(1). The result can be null; if the argument is

null, the result is the null value.

CLOB

�� CLOB (character-string-expression

,

integer
) ��

The schema is SYSIBM.

The CLOB function returns a CLOB representation of a character string type. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

character-string-expression

An expression that returns a value that is a character string. The expression

cannot be a character string defined as FOR BIT DATA (SQLSTATE 42846).

integer

An integer value specifying the length attribute of the resulting CLOB data

CHARACTER_LENGTH

270 SQL Reference, Volume 1

type. The value must be between 0 and 2 147 483 647. If a value for integer is

not specified, the length of the result is the same as the length of the first

argument.

The result of the function is a CLOB. If the argument can be null, the result can be

null; if the argument is null, the result is the null value.

COALESCE

��

�

COALESCE

(

expression

,

expression

)

��

The schema is SYSIBM.

COALESCE returns the first argument that is not null.

The arguments are evaluated in the order in which they are specified, and the

result of the function is the first argument that is not null. The result can be null

only if all the arguments can be null, and the result is null only if all the

arguments are null. The selected argument is converted, if necessary, to the

attributes of the result.

The arguments must be compatible. They can be of either a built-in or user-defined

data type. (This function cannot be used as a source function when creating a

user-defined function. Because this function accepts any compatible data types as

arguments, it is not necessary to create additional signatures to support

user-defined distinct types.)

Examples:

v When selecting all the values from all the rows in the DEPARTMENT table, if

the department manager (MGRNO) is missing (that is, null), then return a value

of ’ABSENT’.

 SELECT DEPTNO, DEPTNAME, COALESCE(MGRNO, ’ABSENT’), ADMRDEPT

 FROM DEPARTMENT

v When selecting the employee number (EMPNO) and salary (SALARY) from all

the rows in the EMPLOYEE table, if the salary is missing (that is, null), then

return a value of zero.

 SELECT EMPNO, COALESCE(SALARY, 0)

 FROM EMPLOYEE

COLLATION_KEY_BIT

�� COLLATION_KEY_BIT (string-expression , collation-name)

, length
 ��

The schema is SYSIBM.

The COLLATION_KEY_BIT function returns a VARCHAR FOR BIT DATA string

representing the collation key of the string-expression in the specified collation-name.

CLOB

Chapter 3. Functions 271

The results of COLLATION_KEY_BIT for two strings can be binary compared to

determine their order within the specified collation-name. For the comparison to be

meaningful, the results used must be from the same collation-name.

string-expression

An expression that returns a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC

string for which the collation key should be determined. If string-expression is a

CHAR or VARCHAR, the expression must not be FOR BIT DATA (SQLSTATE

429BM).

 If string-expression is not in UTF-16, this function performs code page

conversion of string-expression to UTF-16. If the result of the code page

conversion contains at least one substitution character, this function will return

a collation key of the UTF-16 string with the substitution character(s) and the

warning flag SQLWARN8 in the SQLCA will be set to ’W’.

collation-name

A character constant that specifies the collation to use when determining the

collation key. The value of collation-name is not case sensitive and must be one

of the “Unicode Collation Algorithm-based collations” in Internationalization

Guide or “language-aware collations for Unicode data” in Internationalization

Guide (SQLSTATE 42616).

length

An expression that specifies the length attribute of the result in bytes. If

specified, length must be an integer between 1 and 32 672 (SQLSTATE 42815).

If a value for length is not specified, the length of the result is determined as

follows:

 Table 32. Determining the result length

String Argument Data Type Result Data Type Length

CHAR(n) or VARCHAR(n) Minimum of 12n bytes and 32 672 bytes

GRAPHIC(n) or VARGRAPHIC(n) Minimum of 12n bytes and 32 672 bytes

Regardless of whether length is specified or not, if the length of the collation key is

longer than the length of the result data type, an error is returned (SQLSTATE

42815). The actual result length of the collation key is approximately six times the

length of string-expression after it has been converted to UTF-16.

If string-expression is an empty string, the result is a valid collation key that can

have a non-zero length.

If any argument can be null, the result can be null; if any argument is null, the

result is the null value.

Examples:

The following query orders employees by their surnames using the

language-aware collation for German in code page 923:

 SELECT FIRSTNME, LASTNAME

 FROM EMPLOYEE

 ORDER BY COLLATION_KEY_BIT (LASTNAME, ’SYSTEM_923_DE’)

The following query uses a culturally correct comparison to find the departments

of employees in the province of Québec:

COLLATION_KEY_BIT

272 SQL Reference, Volume 1

SELECT E.WORKDEPT

 FROM EMPLOYEE AS E INNER JOIN SALES AS S

 ON COLLATION_KEY_BIT(E.LASTNAME, ’UCA400R1_LFR’) =

 COLLATION_KEY_BIT(S.SALES_PERSON, ’UCA400R1_LFR’)

 WHERE S.REGION = ’Quebec’

COMPARE_DECFLOAT

�� COMPARE_DECFLOAT (expression1 , expression2) ��

The schema is SYSIBM.

The COMPARE_DECFLOAT function returns a SMALLINT value that indicates

whether the two arguments are equal or unordered, or whether one argument is

greater than the other.

expression1

An expression that returns a value of any built-in numeric data type. If the

argument is not DECFLOAT(34), it is logically converted to DECFLOAT(34) for

processing.

expression2

An expression that returns a value of any built-in numeric data type. If the

argument is not DECFLOAT(34), it is logically converted to DECFLOAT(34) for

processing.

The value of expression1 is compared with the value of expression2, and the result is

returned according to the following rules:

v If both arguments are finite, the comparison is algebraic and follows the

procedure for decimal floating-point subtraction. If the difference is exactly zero

with either sign, the arguments are equal. If a non-zero difference is positive, the

first argument is greater than the second argument. If a non-zero difference is

negative, the first argument is less than the second.

v Positive zero and negative zero compare as equal.

v Positive infinity compares equal to positive infinity.

v Positive infinity compares greater than any finite number.

v Negative infinity compares equal to negative infinity.

v Negative infinity compares less than any finite number.

v Numeric comparison is exact. The result is determined for finite operands as if

range and precision were unlimited. No overflow or underflow condition can

occur.

v If either argument is NaN or sNaN (positive or negative), the result is

unordered.

The result value is as follows:

v 0 if the arguments are exactly equal

v 1 if expression1 is less than expression2

v 2 if expression1 is greater than expression2

v 3 if the arguments are unordered

The result of the function is a SMALLINT value. If either argument can be null, the

result can be null; if either argument is null, the result is the null value.

Examples:

COLLATION_KEY_BIT

Chapter 3. Functions 273

v The following examples show the values that are returned by the

COMPARE_DECFLOAT function, given a variety of input decimal floating-point

values:

COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.17)) = 0

COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(2.170)) = 2

COMPARE_DECFLOAT(DECFLOAT(2.170), DECFLOAT(2.17)) = 1

COMPARE_DECFLOAT(DECFLOAT(2.17), DECFLOAT(0.0)) = 2

COMPARE_DECFLOAT(INFINITY,INFINITY) = 0

COMPARE_DECFLOAT(INFINITY,-INFINITY) = 2

COMPARE_DECFLOAT(DECFLOAT(-2),INFINITY) = 1

COMPARE_DECFLOAT(NAN,NAN) = 3

COMPARE_DECFLOAT(DECFLOAT(-0.1),SNAN) = 3

CONCAT

��
 (1)

CONCAT

(

expression1

,

expression2

)

��

Notes:

1 || can be used as a synonym for CONCAT.

The schema is SYSIBM.

Returns the concatenation of two string arguments. The two arguments must be

compatible types.

The result of the function is a string whose length is the sum of the lengths of the

two arguments. If either argument can be null, the result can be null; if either

argument is null, the result is the null value.

COS

�� COS (expression) ��

The schema is SYSIBM. (The SYSFUN version of the COS function continues to be

available.)

Returns the cosine of the argument, where the argument is an angle expressed in

radians.

The argument can be of any built-in numeric type (except for DECFLOAT). It is

converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

COSH

�� COSH (expression) ��

COMPARE_DECFLOAT

274 SQL Reference, Volume 1

The schema is SYSIBM.

Returns the hyperbolic cosine of the argument, where the argument is an angle

expressed in radians.

The argument can be of any built-in numeric data type (except for DECFLOAT). It

is converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

COT

�� COT (expression) ��

The schema is SYSIBM. (The SYSFUN version of the COT function continues to be

available.)

Returns the cotangent of the argument, where the argument is an angle expressed

in radians.

The argument can be of any built-in numeric type (except for DECFLOAT). It is

converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

DATAPARTITIONNUM

�� DATAPARTITIONNUM (column-name) ��

The schema is SYSIBM.

The DATAPARTITIONNUM function returns the sequence number

(SYSDATAPARTITIONS.SEQNO) of the data partition in which the row resides.

Data partitions are sorted by range, and sequence numbers start at 0. For example,

the DATAPARTITIONNUM function returns 0 for a row that resides in the data

partition with the lowest range.

The argument must be the qualified or unqualified name of any column in the

table. Because row-level information is returned, the result is the same regardless

of which column is specified. The column can have any data type.

If column-name references a column in a view, the expression for the column in the

view must reference a column of the underlying base table, and the view must be

deletable. A nested or common table expression follows the same rules as a view.

COSH

Chapter 3. Functions 275

The data type of the result is INTEGER and is never null.

This function cannot be used as a source function when creating a user-defined

function. Because the function accepts any data type as an argument, it is not

necessary to create additional signatures to support user-defined distinct types.

The DATAPARTITIONNUM function cannot be used within check constraints or in

the definition of generated columns (SQLSTATE 42881). The

DATAPARTITIONNUM function cannot be used in a materialized query table

(MQT) definition (SQLSTATE 428EC).

Example:

v SELECT DATAPARTITIONNUM (EMPNO)

 FROM EMPLOYEE

To convert a sequence number that is returned by DATAPARTITIONNUM (for

example, 0) to a data partition name that can be used in other SQL statements

(such as, for example, ALTER TABLE...DETACH PARTITION), you can query the

SYSCAT.DATAPARTITIONS catalog view. Include the SEQNO obtained from

DATAPARTITIONNUM in the WHERE clause, as shown in the following

example.

 SELECT DATAPARTITIONNAME

 FROM SYSCAT.DATAPARTITIONS

 WHERE TABNAME = ’EMPLOYEE’ AND SEQNO = 0

results in the value ’PART0’.

DATE

�� DATE (expression) ��

The schema is SYSIBM.

The DATE function returns a date from a value.

The argument must be a date, timestamp, a positive number less than or equal to

3 652 059, a valid string representation of a date or timestamp, or a string of

length 7 that is not a CLOB, LONG VARCHAR, DBCLOB, or LONG

VARGRAPHIC.

Only Unicode databases support an argument that is a graphic string

representation of a date or a timestamp. In a Unicode database, if a supplied

argument is a graphic string, it is first converted to a character string before the

function is executed.

If the argument is a string of length 7, it must represent a valid date in the form

yyyynnn, where yyyy are digits denoting a year, and nnn are digits between 001

and 366, denoting a day of that year.

The result of the function is a date. If the argument can be null, the result can be

null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a date, timestamp, or valid string representation of a date or

timestamp:

DATAPARTITIONNUM

276 SQL Reference, Volume 1

– The result is the date part of the value.
v If the argument is a number:

– The result is the date that is n-1 days after January 1, 0001, where n is the

integral part of the number.
v If the argument is a string with a length of 7:

– The result is the date represented by the string.

Examples:

Assume that the column RECEIVED (timestamp) has an internal value equivalent

to ‘1988-12-25-17.12.30.000000’.

v This example results in an internal representation of ‘1988-12-25’.

 DATE(RECEIVED)

v This example results in an internal representation of ‘1988-12-25’.

 DATE(’1988-12-25’)

v This example results in an internal representation of ‘1988-12-25’.

 DATE(’25.12.1988’)

v This example results in an internal representation of ‘0001-02-04’.

 DATE(35)

DAY

�� DAY (expression) ��

The schema is SYSIBM.

The DAY function returns the day part of a value.

The argument must be a date, timestamp, date duration, timestamp duration, or a

valid character string representation of a date or timestamp that is neither a CLOB

nor a LONG VARCHAR. In a Unicode database, if a supplied argument is a

graphic string, it is first converted to a character string before the function is

executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a date, timestamp, or valid string representation of a date or

timestamp:

– The result is the day part of the value, which is an integer between 1 and 31.
v If the argument is a date duration or timestamp duration:

– The result is the day part of the value, which is an integer between -99 and

99. A nonzero result has the same sign as the argument.

Examples:

v Using the PROJECT table, set the host variable END_DAY (smallint) to the day

that the WELD LINE PLANNING project (PROJNAME) is scheduled to stop

(PRENDATE).

DATE

Chapter 3. Functions 277

SELECT DAY(PRENDATE)

 INTO :END_DAY

 FROM PROJECT

 WHERE PROJNAME = ’WELD LINE PLANNING’

Results in END_DAY being set to 15 when using the sample table.

v Assume that the column DATE1 (date) has an internal value equivalent to

2000-03-15 and the column DATE2 (date) has an internal value equivalent to

1999-12-31.

 DAY(DATE1 - DATE2)

Results in the value 15.

DAYNAME

�� DAYNAME (expression) ��

The schema is SYSFUN.

Returns a mixed case character string containing the name of the day (for example,

Friday) for the day portion of the argument based on the locale when the database

was started.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is VARCHAR(100). The result can be null; if the

argument is null, the result is the null value.

DAYOFWEEK

�� DAYOFWEEK (expression) ��

Returns the day of the week in the argument as an integer value in the range 1-7,

where 1 represents Sunday.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

DAYOFWEEK_ISO

�� DAYOFWEEK_ISO (expression) ��

The schema is SYSFUN.

DAY

278 SQL Reference, Volume 1

Returns the day of the week in the argument as an integer value in the range 1-7,

where 1 represents Monday.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

DAYOFYEAR

�� DAYOFYEAR (expression) ��

The schema is SYSFUN.

Returns the day of the year in the argument as an integer value in the range 1-366.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

DAYS

�� DAYS (expression) ��

The schema is SYSIBM.

The DAYS function returns an integer representation of a date.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The result is 1 more than the number of days from January 1, 0001 to D, where D

is the date that would occur if the DATE function were applied to the argument.

Examples:

v Using the PROJECT table, set the host variable EDUCATION_DAYS (int) to the

number of elapsed days (PRENDATE - PRSTDATE) estimated for the project

(PROJNO) ‘IF2000’.

DAYOFWEEK_ISO

Chapter 3. Functions 279

SELECT DAYS(PRENDATE) - DAYS(PRSTDATE)

 INTO :EDUCATION_DAYS

 FROM PROJECT

 WHERE PROJNO = ’IF2000’

Results in EDUCATION_DAYS being set to 396.

v Using the PROJECT table, set the host variable TOTAL_DAYS (int) to the sum of

elapsed days (PRENDATE - PRSTDATE) estimated for all projects in department

(DEPTNO) ‘E21’.

 SELECT SUM(DAYS(PRENDATE) - DAYS(PRSTDATE))

 INTO :TOTAL_DAYS

 FROM PROJECT

 WHERE DEPTNO = ’E21’

Results in TOTAL_DAYS being set to 1584 when using the sample table.

DBCLOB

�� DBCLOB (graphic-expression

,

integer
) ��

The schema is SYSIBM.

The DBCLOB function returns a DBCLOB representation of a graphic string type.

In a Unicode database, if a supplied argument is a character string, it is first

converted to a graphic string before the function is executed. When the output

string is truncated, such that the last character is a high surrogate, that surrogate is

either:

v Left as is, if the supplied argument is a character string

v Converted to the blank character (X’0020’), if the supplied argument is a graphic

string

Do not rely on these behaviors, because they might change in a future release.

The result of the function is a DBCLOB. If the argument can be null, the result can

be null; if the argument is null, the result is the null value.

graphic-expression

An expression that returns a value that is a graphic string.

integer

An integer value specifying the length attribute of the resulting DBCLOB data

type. The value must be between 0 and 1 073 741 823. If integer is not

specified, the length of the result is the same as the length of the first

argument.

DBPARTITIONNUM

�� DBPARTITIONNUM (column-name) ��

The schema is SYSIBM.

DAYS

280 SQL Reference, Volume 1

The DBPARTITIONNUM function returns the database partition number for a row.

For example, if used in a SELECT clause, it returns the database partition number

for each row in the result set.

The argument must be the qualified or unqualified name of any column in the

table. Because row-level information is returned, the result is the same regardless

of which column is specified. The column can have any data type.

If column-name references a column in a view, the expression for the column in the

view must reference a column of the underlying base table, and the view must be

deletable. A nested or common table expression follows the same rules as a view.

The specific row (and table) for which the database partition number is returned

by the DBPARTITIONNUM function is determined from the context of the SQL

statement that uses the function.

The database partition number returned on transition variables and tables is

derived from the current transition values of the distribution key columns. For

example, in a before insert trigger, the function returns the projected database

partition number, given the current values of the new transition variables.

However, the values of the distribution key columns might be modified by a

subsequent before insert trigger. Thus, the final database partition number of the

row when it is inserted into the database might differ from the projected value.

The data type of the result is INTEGER and is never null. If there is no

db2nodes.cfg file, the result is 0.

This function cannot be used as a source function when creating a user-defined

function. Because the function accepts any data type as an argument, it is not

necessary to create additional signatures to support user-defined distinct types.

The DBPARTITIONNUM function cannot be used on replicated tables, within

check constraints, or in the definition of generated columns (SQLSTATE 42881).

For compatibility with previous versions of DB2, NODENUMBER can be specified

in place of DBPARTITIONNUM.

Examples:

v Count the number of instances in which the row for a given employee in the

EMPLOYEE table is on a different database partition than the description of the

employee’s department in the DEPARTMENT table.

 SELECT COUNT(*) FROM DEPARTMENT D, EMPLOYEE E

 WHERE D.DEPTNO=E.WORKDEPT

 AND DBPARTITIONNUM(E.LASTNAME) <> DBPARTITIONNUM(D.DEPTNO)

v Join the EMPLOYEE and DEPARTMENT tables so that the rows of the two

tables are on the same database partition.

 SELECT * FROM DEPARTMENT D, EMPLOYEE E

 WHERE DBPARTITIONNUM(E.LASTNAME) = DBPARTITIONNUM(D.DEPTNO)

v Using a before trigger on the EMPLOYEE table, log the employee number and

the projected database partition number of any new row in the EMPLOYEE

table in a table named EMPINSERTLOG1.

 CREATE TRIGGER EMPINSLOGTRIG1

 BEFORE INSERT ON EMPLOYEE

 REFERENCING NEW AW NEWTABLE

DBPARTITIONNUM

Chapter 3. Functions 281

FOR EACH ROW

 INSERT INTO EMPINSERTLOG1

 VALUES(NEWTABLE.EMPNO, DBPARTITIONNUM

 (NEWTABLE.EMPNO))

DECFLOAT

Numeric to Decimal floating-point::

 , 34

DECFLOAT

(

numeric-expression

)

,

16

Character to Decimal floating-point::

 , 34

,

decimal-character

DECFLOAT

(

string-expression

)

,

16

,

decimal-character

The schema is SYSIBM.

The DECFLOAT function returns a decimal floating-point representation of a

number or a string representation of a number.

numeric-expression

An expression that returns a value of any built-in numeric data type.

string-expression

An expression that returns a character string value whose length is not greater

than the maximum length of a character constant (4000 bytes). It cannot have a

CLOB or LONG VARCHAR data type. Leading and trailing blanks are

removed from the string. The resulting substring must conform to the rules for

forming an SQL integer, decimal, floating-point, or decimal floating-point

constant (SQLSTATE 22018) and not be greater than 42 bytes (SQLSTATE

42820)..

34 or 16

Specifies the number of digits of precision for the result. The default is 34.

decimal-character

Specifies the single-byte character constant used to delimit the decimal digits in

character-expression from the whole part of the number. The character cannot be

a digit, plus (+), minus (-), or blank, and it can appear at most once in

character-expression.

The result is the same number that would result from CAST(string-expression AS

DECFLOAT(n)) or CAST(numeric-expression AS DECFLOAT(n)). Leading and trailing

blanks are removed from the string.

The result of the function is a decimal floating-point number with the implicitly or

explicitly specified number of digits of precision. If the first argument can be null,

the result can be null; if the first argument is null, the result is the null value.

If necessary, the source is rounded to the precision of the target. The CURRENT

DECFLOAT ROUNDING MODE special register determines the rounding mode.

DBPARTITIONNUM

282 SQL Reference, Volume 1

Note: To increase the portability of applications, use the CAST specification.

Note: All numeric values are interpreted as integer, decimal, or floating-point

constants and then cast to decimal floating-point. The use of a floating-point

constant can result in round-off errors and is therefore strongly discouraged. Use

the string to decimal floating-point version of the DECFLOAT function instead.

Example:

v Use the DECFLOAT function in order to force a DECFLOAT data type to be

returned in a select-list for the EDLEVEL column (data type = SMALLINT) in

the EMPLOYEE table. The EMPNO column should also appear in the select list.

SELECT EMPNO, DECFLOAT(EDLEVEL,16)

FROM EMPLOYEE

DECIMAL

Numeric to Decimal:

�� DECIMAL (numeric-expression �

�
,

precision-integer

,

scale-integer

) ��

Character to Decimal:

�� DECIMAL (character-expression �

�
,

precision-integer

,

scale-integer

,

decimal-character

) ��

Datetime to Decimal:

�� DECIMAL (datetime-expression �

�
,

precision-integer

,

scale-integer

) ��

The schema is SYSIBM.

The DECIMAL function returns a decimal representation of:

v A number

v A character string representation of a decimal number

v A character string representation of an integer number

v A character string representation of a floating-point number

v A character string representation of a decimal floating-point number

v A datetime value if the argument is a date, time, or timestamp

In a Unicode database, if a supplied argument is a graphic string, it is first

converted to a character string before the function is executed.

DECFLOAT

Chapter 3. Functions 283

The result of the function is a decimal number with precision p and scale s, where

p and s are the second and third arguments, respectively. If the first argument can

be null, the result can be null; if the first argument is null, the result is the null

value.

Numeric to Decimal

numeric-expression

An expression that returns a value of any numeric data type.

precision-integer

An integer constant with a value in the range of 1 to 31.

 The default for precision-integer depends on the data type of

numeric-expression:

v 31 for decimal floating-point

v 15 for floating-point and decimal

v 19 for big integer

v 11 for large integer

v 5 for small integer.

scale-integer

An integer constant in the range of 0 to the precision-integer value. The

default is zero.

 The result is the same number that would occur if the first argument were

assigned to a decimal column or variable with precision p and scale s,

where p and s are the second and third arguments, respectively. An error

occurs if the number of significant decimal digits required to represent the

whole part of the number is greater than p-s.

Character to Decimal

character-expression

An expression that returns a value that is a character string with a

length not greater than the maximum length of a character constant

(4 000 bytes). It cannot have a CLOB or LONG VARCHAR data type.

Leading and trailing blanks are eliminated from the string. The

resulting substring must conform to the rules for forming an SQL

integer or decimal constant (SQLSTATE 22018).

 The character-expression is converted to the database code page if

required to match the code page of the constant decimal-character.

precision-integer

An integer constant with a value in the range 1 to 31 that specifies the

precision of the result. If not specified, the default is 15.

scale-integer

An integer constant with a value in the range 0 to precision-integer that

specifies the scale of the result. If not specified, the default is 0.

decimal-character

Specifies the single-byte character constant used to delimit the decimal

digits in character-expression from the whole part of the number. The

character cannot be a digit, plus (+), minus (-), or blank, and it can

appear at most once in character-expression (SQLSTATE 42815).

 The result is a decimal number with precision p and scale s, where p and s

are the second and third arguments, respectively. Digits are truncated from

DECIMAL

284 SQL Reference, Volume 1

the end of the decimal number if the number of digits to the right of the

decimal character is greater than the scale. An error occurs if the number

of significant digits to the left of the decimal character (the whole part of

the number) in character-expression is greater than p-s (SQLSTATE 22003).

The default decimal character is not valid in the substring if a different

value for the decimal-character argument is specified (SQLSTATE 22018).

Datetime to Decimal

datetime-expression

An expression that is of one of the following data types:

v DATE. The result is a DECIMAL(8,0) value representing the date as

yyyymmdd.

v TIME. The result is a DECIMAL(6,0) value representing the time as

hhmmss.

v TIMESTAMP. The result is a DECIMAL(20,6) value representing the

timestamp as yyyymmddhhmmss.nnnnnn.

 This function allows the user to specify a precision, or a precision and a

scale. However, a scale cannot be specified without specifying a precision.

The default value for (precision,scale) is (8,0) for DATE, (6,0) for TIME, and

(20,6) for TIMESTAMP.

The result is a decimal number with precision p and scale s, where p and s

are the second and third arguments, respectively. Digits are truncated from

the end if the number of digits to the right of the decimal character is

greater than the scale. An error occurs if the number of significant digits to

the left of the decimal character (the whole part of the number) in

datetime-expression is greater than p-s (SQLSTATE 22003).

DEC can be specified in place of DECIMAL.

Examples:

v Use the DECIMAL function in order to force a DECIMAL data type (with a

precision of 5 and a scale of 2) to be returned in a select-list for the EDLEVEL

column (data type = SMALLINT) in the EMPLOYEE table. The EMPNO column

should also appear in the select list.

 SELECT EMPNO, DECIMAL(EDLEVEL,5,2)

 FROM EMPLOYEE

v Assume the host variable PERIOD is of type INTEGER. Then, in order to use its

value as a date duration it must be ″cast″ as decimal(8,0).

 SELECT PRSTDATE + DECIMAL(:PERIOD,8)

 FROM PROJECT

v Assume that updates to the SALARY column are input through a window as a

character string using comma as a decimal character (for example, the user

inputs 21400,50). Once validated by the application, it is assigned to the host

variable newsalary which is defined as CHAR(10).

 UPDATE STAFF

 SET SALARY = DECIMAL(:newsalary, 9, 2, ’,’)

 WHERE ID = :empid;

The value of newsalary becomes 21400.50.

v Add the default decimal character (.) to a value.

 DECIMAL(’21400,50’, 9, 2, ’.’)

DECIMAL

Chapter 3. Functions 285

This fails because a period (.) is specified as the decimal character, but a comma

(,) appears in the first argument as a delimiter.

v Assume that the column STARTING (time) has an internal value equivalent to

’12:10:00’.

 DECIMAL(STARTING)

results in the value 121 000.

v Assume that the column RECEIVED (timestamp) has an internal value

equivalent to ’1988-12-22-14.07.21.136421’.

 DECIMAL(RECEIVED)

results in the value 19 881 222 140 721.136421.

v The following table shows the decimal result and resulting precision and scale

for various datetime input values.

DECIMAL(arguments)

Precision and

Scale Result

DECIMAL(2000-03-21) (8,0) 20000321

DECIMAL(2000-03-21, 10) (10,0) 20000321

DECIMAL(2000-03-21, 12, 2) (12,2) 20000321.00

DECIMAL(12:02:21) (6,0) 120221

DECIMAL(12:02:21, 10) (10,0) 120221

DECIMAL(12:02:21, 10, 2) (10,2) 120221.00

DECIMAL(2000-03-21-
12.02.21.123456)

(20, 6) 20000321120221.123456

DECIMAL(2000-03-21-
12.02.21.123456, 23)

(23, 6) 20000321120221.123456

DECIMAL(2000-03-21-
12.02.21.123456, 23, 4)

(23, 4) 20000321120221.1234

DECODE

��

�

DECODE

(

expression1

,

expression2

,

result-expression

)

,

else-expression

��

The schema is SYSIBM.

The DECODE function compares each expression2 to expression1. If expression1 is

equal to expression2, or both expression1 and expression2 are null, the value of the

following result-expresssion is returned. If no expression2 matches expression1, the

value of else-expression is returned; otherwise a null value is returned.

The DECODE function is similar to the CASE expression except for the handling of

null values:

v A null value of expression1 will match a corresponding null value of expression2.

v If the NULL keyword is used as an argument in the DECODE function, it must

be cast to an appropriate data type.

The rules for determining the result type of a DECODE expression are based on

the corresponding CASE expression.

DECIMAL

286 SQL Reference, Volume 1

Examples:

The DECODE expression:

 DECODE (c1, 7, ’a’, 6, ’b’, ’c’)

achieves the same result as the following CASE expression:

 CASE c1

 WHEN 7 THEN ’a’

 WHEN 6 THEN ’b’

 ELSE ’c’

 END

Similarly, the DECODE expression:

 DECODE (c1, var1, ’a’, var2, ’b’)

where the values of c1, var1, and var2 could be null values, achieves the same

result as the following CASE expression:

 CASE

 WHEN c1 = var1 OR (c1 IS NULL AND var1 IS NULL) THEN ’a’

 WHEN c1 = var2 OR (c1 IS NULL AND var2 IS NULL) THEN ’b’

 ELSE NULL

 END

Consider also the following query:

 SELECT ID, DECODE(STATUS, ’A’, ’Accepted’,

 ’D’, ’Denied’,

 CAST(NULL AS VARCHAR(1)), ’Unknown’,

 ’Other’)

 FROM CONTRACTS

Here is the same statement using a CASE expression:

 SELECT ID,

 CASE

 WHEN STATUS = ’A’ THEN ’Accepted’

 WHEN STATUS = ’D’ THEN ’Denied’

 WHEN STATUS IS NULL THEN ’Unknown’

 ELSE ’Other’

 END

 FROM CONTRACTS

DECRYPT_BIN and DECRYPT_CHAR

�� DECRYPT_BIN

DECRYPT_CHAR
 (encrypted-data)

,

password-string-expression
 ��

The schema is SYSIBM.

The DECRYPT_BIN and DECRYPT_CHAR functions both return a value that is the

result of decrypting encrypted-data. The password used for decryption is either the

password-string-expression value or the encryption password value that was assigned

by the SET ENCRYPTION PASSWORD statement. The DECRYPT_BIN and

DECRYPT_CHAR functions can only decrypt values that are encrypted using the

ENCRYPT function (SQLSTATE 428FE).

encrypted-data

An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR BIT

DECODE

Chapter 3. Functions 287

DATA value as a complete, encrypted data string. The data string must have

been encrypted using the ENCRYPT function.

password-string-expression

An expression that returns a CHAR or VARCHAR value with at least 6 bytes

and no more than 127 bytes (SQLSTATE 428FC). This expression must be the

same password used to encrypt the data (SQLSTATE 428FD). If the value of

the password argument is null or not provided, the data will be decrypted

using the encryption password value that was assigned for the session by the

SET ENCRYPTION PASSWORD statement (SQLSTATE 51039).

The result of the DECRYPT_BIN function is VARCHAR FOR BIT DATA. The result

of the DECRYPT_CHAR function is VARCHAR. If encrypted-data included a hint,

the hint is not returned by the function. The length attribute of the result is the

length of the data type of encrypted-data minus 8 bytes. The actual length of the

value returned by the function will match the length of the original string that was

encrypted. If encrypted-data includes bytes beyond the encrypted string, these bytes

are not returned by the function.

If the first argument can be null, the result can be null. If the first argument is null,

the result is the null value.

If the data is decrypted on a different system, which uses a code page that is

different from the code page in which the data was encrypted, expansion might

occur when converting the decrypted value to the database code page. In such

situations, the encrypted-data value should be cast to a VARCHAR string with a

larger number of bytes.

Examples:

v Use the SET ENCRYPTION PASSWORD statement to set an encryption

password for the session.

 CREATE TABLE EMP (SSN VARCHAR(24) FOR BIT DATA);

 SET ENCRYPTION PASSWORD = ’Ben123’;

 INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’);

 SELECT DECRYPT_CHAR(SSN)

 FROM EMP;

This query returns the value ’289-46-8832’.

v Pass the encryption password explicitly.

 INSERT INTO EMP (SSN) VALUES ENCRYPT(’289-46-8832’,’Ben123’,’’);

 SELECT DECRYPT_CHAR(SSN,’Ben123’)

 FROM EMP;

This query returns the value ’289-46-8832’.

DEGREES

�� DEGREES (expression) ��

The schema is SYSIBM. (The SYSFUN version of the DEGREES function continues

to be available.)

The DEGREES function returns the number of degrees of the argument, which is

an angle expressed in radians.

DECRYPT_BIN and DECRYPT_CHAR

288 SQL Reference, Volume 1

The argument can be any built-in numeric data type. If the argument is decimal

floating-point, the operation is performed in decimal floating-point; otherwise, the

argument is converted to double-precision floating-point for processing by the

function.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is a double-precision floating-point number. The result can be null; if the argument

is null, the result is the null value.

Example:

v Assume that RAD is a DECIMAL(4,3) host variable with a value of 3.142.

 VALUES DEGREES(:RAD)

Returns the approximate value 180.0.

DEREF

�� DEREF (expression) ��

The DEREF function returns an instance of the target type of the argument.

The argument can be any value with a reference data type that has a defined scope

(SQLSTATE 428DT).

The static data type of the result is the target type of the argument. The dynamic

data type of the result is a subtype of the target type of the argument. The result

can be null. The result is the null value if expression is a null value or if expression is

a reference that has no matching OID in the target table.

The result is an instance of the subtype of the target type of the reference. The

result is determined by finding the row of the target table or target view of the

reference that has an object identifier that matches the reference value. The type of

this row determines the dynamic type of the result. Since the type of the result can

be based on a row of a subtable or subview of the target table or target view, the

authorization ID of the statement must have SELECT privilege on the target table

and all of its subtables or the target view and all of its subviews (SQLSTATE

42501).

Examples:

Assume that EMPLOYEE is a table of type EMP, and that its object identifier

column is named EMPID. Then the following query returns an object of type EMP

(or one of its subtypes), for each row of the EMPLOYEE table (and its subtables).

This query requires SELECT privilege on EMPLOYEE and all its subtables.

 SELECT DEREF(EMPID) FROM EMPLOYEE

DIFFERENCE

�� DIFFERENCE (expression , expression) ��

The schema is SYSFUN.

DEGREES

Chapter 3. Functions 289

Returns a value from 0 to 4 representing the difference between the sounds of two

strings based on applying the SOUNDEX function to the strings. A value of 4 is

the best possible sound match.

The arguments can be character strings that are either CHAR or VARCHAR not

exceeding 4000 bytes. In a Unicode database, if a supplied argument is a graphic

string, it is first converted to a character string before the function is executed. The

function interprets data that is passed to it as if it were ASCII characters, even if it

is encoded in UTF-8.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

Example:

VALUES (DIFFERENCE(’CONSTRAINT’,’CONSTANT’),SOUNDEX(’CONSTRAINT’),

SOUNDEX(’CONSTANT’)),

(DIFFERENCE(’CONSTRAINT’,’CONTRITE’),SOUNDEX(’CONSTRAINT’),

SOUNDEX(’CONTRITE’))

This example returns the following.

1 2 3

----------- ---- ----

 4 C523 C523

 2 C523 C536

In the first row, the words have the same result from SOUNDEX while in the

second row the words have only some similarity.

DIGITS

�� DIGITS (expression) ��

The schema is SYSIBM.

The DIGITS function returns a character-string representation of a number.

The argument must be an expression that returns a value of type SMALLINT,

INTEGER, BIGINT or DECIMAL.

If the argument can be null, the result can be null; if the argument is null, the

result is the null value.

The result of the function is a fixed-length character string representing the

absolute value of the argument without regard to its scale. The result does not

include a sign or a decimal character. Instead, it consists exclusively of digits,

including, if necessary, leading zeros to fill out the string. The length of the string

is:

v 5 if the argument is a small integer

v 10 if the argument is a large integer

v 19 if the argument is a big integer

v p if the argument is a decimal number with a precision of p.

Examples:

DIFFERENCE

290 SQL Reference, Volume 1

v Assume that a table called TABLEX contains an INTEGER column called

INTCOL containing 10-digit numbers. List all distinct four digit combinations of

the first four digits contained in column INTCOL.

 SELECT DISTINCT SUBSTR(DIGITS(INTCOL),1,4)

 FROM TABLEX

v Assume that COLUMNX has the DECIMAL(6,2) data type, and that one of its

values is -6.28. Then, for this value:

 DIGITS(COLUMNX)

returns the value ’000628’.

The result is a string of length six (the precision of the column) with leading

zeros padding the string out to this length. Neither sign nor decimal point

appear in the result.

DOUBLE

Numeric to Double:

�� DOUBLE (numeric-expression)

FLOAT

DOUBLE_PRECISION

 ��

Character String to Double:

�� DOUBLE (string-expression) ��

The schema is SYSIBM. However, the schema for DOUBLE(string-expression) is

SYSFUN.

The DOUBLE function returns a floating-point number corresponding to a:

v number if the argument is a numeric expression

v character string representation of a number if the argument is a string

expression.

In a Unicode database, if a supplied argument is a graphic string, it is first

converted to a character string before the function is executed.

Numeric to Double

numeric-expression

The argument is an expression that returns a value of any built-in

numeric data type.

 The result of the function is a double-precision floating-point number.

If the argument can be null, the result can be null; if the argument is

null, the result is the null value.

The result is the same number that would occur if the argument were

assigned to a double-precision floating-point column or variable.

Character String to Double

string-expression

The argument can be of type CHAR or VARCHAR in the form of a

numeric constant. Leading and trailing blanks in argument are ignored.

DIGITS

Chapter 3. Functions 291

The result of the function is a double-precision floating-point number.

The result can be null; if the argument is null, the result is the null

value.

The result is the same number that would occur if the string was

considered a constant and assigned to a double-precision floating-point

column or variable.

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for employees

whose commission is not zero. The columns involved (SALARY and COMM) have

DECIMAL data types. To eliminate the possibility of out-of-range results, DOUBLE

is applied to SALARY so that the division is carried out in floating point:

 SELECT EMPNO, DOUBLE(SALARY)/COMM

 FROM EMPLOYEE

 WHERE COMM > 0

ENCRYPT

�� ENCRYPT �

� (data-string-expression)

,

password-string-expression

,

hint-string-expression

 ��

The schema is SYSIBM.

The ENCRYPT function returns a value that is the result of encrypting

data-string-expression. The password used for encryption is either the

password-string-expression value or the encryption password value that was assigned

by the SET ENCRYPTION PASSWORD statement. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

data-string-expression

An expression that returns a CHAR or a VARCHAR value that is to be

encrypted. The length attribute for the data type of data-string-expression is

limited to 32663 without a hint-string-expression argument, and 32631 when the

hint-string-expression argument is specified (SQLSTATE 42815).

password-string-expression

An expression that returns a CHAR or a VARCHAR value with at least 6 bytes

and no more than 127 bytes (SQLSTATE 428FC). The value represents the

password used to encrypt data-string-expression. If the value of the password

argument is null or not provided, the data will be encrypted using the

encryption password value that was assigned for the session by the SET

ENCRYPTION PASSWORD statement (SQLSTATE 51039).

hint-string-expression

An expression that returns a CHAR or a VARCHAR value with at most 32

bytes that will help data owners remember passwords (for example, ’Ocean’ as

a hint to remember ’Pacific’). If a hint value is given, the hint is embedded into

the result and can be retrieved using the GETHINT function. If this argument

is null or not provided, no hint will be embedded in the result.

The result data type of the function is VARCHAR FOR BIT DATA.

DOUBLE

292 SQL Reference, Volume 1

v When the optional hint parameter is specified, the length attribute of the result

is equal to the length attribute of the unencrypted data + 8 bytes + the number

of bytes until the next 8-byte boundary + 32 bytes for the length of the hint.

v When the optional hint parameter is not specified, the length attribute of the

result is equal to the length attribute of the unencrypted data + 8 bytes + the

number of bytes until the next 8-byte boundary.

If the first argument can be null, the result can be null. If the first argument is null,

the result is the null value.

Note that the encrypted result is longer than the data-string-expression value.

Therefore, when assigning encrypted values, ensure that the target is declared with

sufficient size to contain the entire encrypted value.

Notes:

v Encryption Algorithm: The internal encryption algorithm is RC2 block cipher

with padding; the 128-bit secret key is derived from the password using an MD5

message digest.

v Encryption Passwords and Data: Password management is the user’s

responsibility. Once the data is encrypted, only the password that was used

when encrypting it can be used to decrypt it (SQLSTATE 428FD).

The encrypted result might contain null terminator and other unprintable

characters. Any assignment or cast to a length that is shorter than the suggested

data length might result in failed decryption in the future, and lost data. Blanks

are valid encrypted data values that might be truncated when stored in a

column that is too short.

v Administration of encrypted data: Encrypted data can only be decrypted on

servers that support the decryption functions corresponding to the ENCRYPT

function. Therefore, replication of columns with encrypted data should only be

done to servers that support the DECRYPT_BIN or the DECRYPT_CHAR

function.

Examples:

v Use the SET ENCRYPTION PASSWORD statement to set an encryption

password for the session.

 CREATE TABLE EMP (SSN VARCHAR(24) FOR BIT DATA);

 SET ENCRYPTION PASSWORD = ’Ben123’;

 INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’);

v Pass the encryption password explicitly.

 INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’,’Ben123’);

v Define a password hint.

 INSERT INTO EMP(SSN) VALUES ENCRYPT(’289-46-8832’,’Pacific’,’Ocean’);

EVENT_MON_STATE

�� EVENT_MON_STATE (string-expression) ��

The schema is SYSIBM.

The EVENT_MON_STATE function returns the current state of an event monitor.

ENCRYPT

Chapter 3. Functions 293

The argument is a string expression with a resulting type of CHAR or VARCHAR

and a value that is the name of an event monitor. If the named event monitor does

not exist in the SYSCAT.EVENTMONITORS catalog table, SQLSTATE 42704 will be

returned. In a Unicode database, if a supplied argument is a graphic string, it is

first converted to a character string before the function is executed.

The result is an integer with one of the following values:

0 The event monitor is inactive.

1 The event monitor is active.

If the argument can be null, the result can be null; if the argument is null, the

result is the null value.

Example:

The following example selects all of the defined event monitors, and indicates

whether each is active or inactive:

 SELECT EVMONNAME,

 CASE

 WHEN EVENT_MON_STATE(EVMONNAME) = 0 THEN ’Inactive’

 WHEN EVENT_MON_STATE(EVMONNAME) = 1 THEN ’Active’

 END

 FROM SYSCAT.EVENTMONITORS

EXP

�� EXP (expression) ��

The schema is SYSIBM. (The SYSFUN version of the EXP function continues to be

available.)

The EXP function returns a value that is the base of the natural logarithm (e)

raised to a power specified by the argument. The EXP and LN functions are

inverse operations.

The argument must be an expression that returns a value of any built-in numeric

data type. If the argument is decimal floating-point, the operation is performed in

decimal floating-point; otherwise, the argument is converted to double-precision

floating-point for processing by the function.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is a double-precision floating-point number. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

Example:

v Assume that E is a DECIMAL(10,9) host variable with a value of 3.453789832.

 VALUES EXP(:E)

Returns the DOUBLE value +3.16200000069145E+001.

FLOAT

EVENT_MON_STATE

294 SQL Reference, Volume 1

�� FLOAT (numeric-expression) ��

The schema is SYSIBM.

The FLOAT function returns a floating-point representation of a number. FLOAT is

a synonym for DOUBLE.

FLOOR

�� FLOOR (expression) ��

The schema is SYSIBM. (The SYSFUN version of the FLOOR function continues to

be available.)

Returns the largest integer value less than or equal to the argument.

The result of the function has the same data type and length attribute as the

argument except that the scale is 0 if the argument is DECIMAL. For example, an

argument with a data type of DECIMAL(5,5) returns DECIMAL(5,0).

The result can be null if the argument can be null or if the argument is not a

decimal floating-point number and the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

Examples:

v Use the FLOOR function to truncate any digits to the right of the decimal point.

 SELECT FLOOR(SALARY)

 FROM EMPLOYEE

v Use the FLOOR function on both positive and negative numbers.

 VALUES FLOOR(3.5), FLOOR(3.1),

 FLOOR(-3.1), FLOOR(-3.5)

This example returns 3., 3., -4., and -4., respectively.

GENERATE_UNIQUE

�� GENERATE_UNIQUE () ��

The schema is SYSIBM.

The GENERATE_UNIQUE function returns a bit data character string 13 bytes

long (CHAR(13) FOR BIT DATA) that is unique compared to any other execution

of the same function. (The system clock is used to generate the internal Universal

Time, Coordinated (UTC) timestamp along with the database partition number on

which the function executes. Adjustments that move the actual system clock

backward could result in duplicate values.) The function is defined as

not-deterministic.

There are no arguments to this function (the empty parentheses must be specified).

FLOAT

Chapter 3. Functions 295

The result of the function is a unique value that includes the internal form of the

Universal Time, Coordinated (UTC) and the database partition number where the

function was processed. The result cannot be null.

The result of this function can be used to provide unique values in a table. Each

successive value will be greater than the previous value, providing a sequence that

can be used within a table. The value includes the database partition number

where the function executed so that a table partitioned across multiple database

partitions also has unique values in some sequence. The sequence is based on the

time the function was executed.

This function differs from using the special register CURRENT TIMESTAMP in

that a unique value is generated for each row of a multiple row insert statement or

an insert statement with a fullselect.

The timestamp value that is part of the result of this function can be determined

using the TIMESTAMP scalar function with the result of GENERATE_UNIQUE as

an argument.

Examples:

v Create a table that includes a column that is unique for each row. Populate this

column using the GENERATE_UNIQUE function. Notice that the UNIQUE_ID

column has ″FOR BIT DATA″ specified to identify the column as a bit data

character string.

 CREATE TABLE EMP_UPDATE

 (UNIQUE_ID CHAR(13) FOR BIT DATA,

 EMPNO CHAR(6),

 TEXT VARCHAR(1000))

 INSERT INTO EMP_UPDATE

 VALUES (GENERATE_UNIQUE(), ’000020’, ’Update entry...’),

 (GENERATE_UNIQUE(), ’000050’, ’Update entry...’)

This table will have a unique identifier for each row provided that the

UNIQUE_ID column is always set using GENERATE_UNIQUE. This can be

done by introducing a trigger on the table.

 CREATE TRIGGER EMP_UPDATE_UNIQUE

 NO CASCADE BEFORE INSERT ON EMP_UPDATE

 REFERENCING NEW AS NEW_UPD

 FOR EACH ROW

 SNEW_UPD.UNIQUE_ID = GENERATE_UNIQUE()

With this trigger defined, the previous INSERT statement could be issued

without the first column as follows.

 INSERT INTO EMP_UPDATE (EMPNO, TEXT)

 VALUES (’000020’, ’Update entry 1...’),

 (’000050’, ’Update entry 2...’)

The timestamp (in UTC) for when a row was added to EMP_UPDATE can be

returned using:

 SELECT TIMESTAMP (UNIQUE_ID), EMPNO, TEXT

 FROM EMP_UPDATE

Therefore, there is no need to have a timestamp column in the table to record

when a row is inserted.

GENERATE_UNIQUE

296 SQL Reference, Volume 1

GETHINT

�� GETHINT (encrypted-data) ��

The schema is SYSIBM.

The GETHINT function will return the password hint if one is found in the

encrypted-data. A password hint is a phrase that will help data owners remember

passwords; for example, ’Ocean’ as a hint to remember ’Pacific’. In a Unicode

database, if a supplied argument is a graphic string, it is first converted to a

character string before the function is executed.

encrypted-data

An expression that returns a CHAR FOR BIT DATA or VARCHAR FOR BIT

DATA value that is a complete, encrypted data string. The data string must

have been encrypted using the ENCRYPT function (SQLSTATE 428FE).

The result of the function is VARCHAR(32). The result can be null; if the hint

parameter was not added to the encrypted-data by the ENCRYPT function or the

first argument is null, the result is the null value.

Example:

In this example the hint ’Ocean’ is stored to help the user remember the encryption

password ’Pacific’.

 INSERT INTO EMP (SSN) VALUES ENCRYPT(’289-46-8832’, ’Pacific’,’Ocean’);

 SELECT GETHINT(SSN)

 FROM EMP;

The value returned is ’Ocean’.

GRAPHIC

Graphic to Graphic:

�� GRAPHIC (graphic-expression

,

integer
) ��

Character to Graphic:

�� GRAPHIC (character-expression) ��

Datetime to Graphic:

�� GRAPHIC (datetime-expression

,

ISO

USA

EUR

JIS

LOCAL

) ��

GETHINT

Chapter 3. Functions 297

The schema is SYSIBM. The function name cannot be specified as a qualified name

when keywords are used in the function signature.

The GRAPHIC function returns a fixed-length graphic string representation of:

v A graphic string, if the first argument is any type of graphic string

v A character string, converting single-byte characters to double-byte characters, if

the first argument is any type of character string

v A datetime value (Unicode database only), if the first argument is a date, time,

or timestamp

In a Unicode database, if a supplied argument is a character string, it is first

converted to a graphic string before the function is executed. When the output

string is truncated, such that the last character is a high surrogate, that surrogate is

converted to the blank character (X’0020’). Do not rely on this behavior, because it

might change in a future release.

The result of the function is a fixed-length graphic string (GRAPHIC data type). If

the first argument can be null, the result can be null; if the first argument is null,

the result is the null value.

Graphic to Graphic

graphic-expression

An expression that returns a value that is a graphic string.

integer

An integer value specifying the length attribute of the resulting

GRAPHIC data type. The value must be between 1 and 127. If a value

is not specified, the length attribute of the result is the same as the

length attribute of the first argument.

Character to Graphic

character-expression

An expression whose value must be of a character string data type

other than LONG VARCHAR or CLOB, and whose maximum length is

16 336 bytes.

The length attribute of the result is equal to the length attribute of the

argument.

Datetime to Graphic

datetime-expression

An expression that is of one of the following three data types:

date The result is the graphic string representation of the date in the

format specified by the second argument. The length of the

result is 10. An error is returned if the second argument is

specified and is not a valid value (SQLSTATE 42703).

time The result is the graphic string representation of the time in the

format specified by the second argument. The length of the

result is 8. An error is returned if the second argument is

specified and is not a valid value (SQLSTATE 42703).

timestamp

The result is the graphic string representation of the

timestamp. The length of the result is 26. The second argument

is not applicable and must not be specified (SQLSTATE 42815).

GRAPHIC

298 SQL Reference, Volume 1

The code page of the string is the code page of the database at the

application server.

GREATEST

��

�

GREATEST

(

expression

,

expression

)

��

The schema is SYSIBM.

The GREATEST function returns the maximum value in a set of values.

The arguments must be compatible and each argument must be an expression that

returns a value of any data type other than ARRAY, LOB, LONG VARCHAR,

LONG VARGRAPHIC, XML, a distinct type based on any of these types, or a

structured type (SQLSTATE 42815). This function cannot be used as a source

function when creating a user-defined function. Because this function accepts any

compatible data types as arguments, it is not necessary to create additional

signatures to support user-defined distinct types.

The selected argument is converted, if necessary, to the attributes of the result. The

attributes of the result are determined by all the operands based on the rules for

result data types.

The result of the function is the largest argument value. If at least one argument

can be null, the result can be null; if either argument is null, the result is the null

value.

The GREATEST scalar function is a synonym for the MAX scalar function.

Examples:

Assume that table T1 contains three columns C1, C2, and C3 with values 1, 7, and

4, respectively. The query:

 SELECT GREATEST (C1, C2, C3) FROM T1

returns 7.

If column C3 has a value of NULL instead of 4, the same query returns NULL.

HASHEDVALUE

�� HASHEDVALUE (column-name) ��

The schema is SYSIBM.

The HASHEDVALUE function returns the distribution map index of the row

obtained by applying the partitioning function on the distribution key value of the

row. For example, if used in a SELECT clause, it returns the distribution map index

for each row of the table that was used to form the result of the SELECT

statement.

GRAPHIC

Chapter 3. Functions 299

The distribution map index returned on transition variables and tables is derived

from the current transition values of the distribution key columns. For example, in

a before insert trigger, the function will return the projected distribution map index

given the current values of the new transition variables. However, the values of the

distribution key columns may be modified by a subsequent before insert trigger.

Thus, the final distribution map index of the row when it is inserted into the

database may differ from the projected value.

The argument must be the qualified or unqualified name of a column in a table.

The column can have any data type. (This function cannot be used as a source

function when creating a user-defined function. Because it accepts any data type as

an argument, it is not necessary to create additional signatures to support

user-defined distinct types.) If column-name references a column of a view the

expression in the view for the column must reference a column of the underlying

base table and the view must be deletable. A nested or common table expression

follows the same rules as a view.

The specific row (and table) for which the distribution map index is returned by

the HASHEDVALUE function is determined from the context of the SQL statement

that uses the function.

The data type of the result is INTEGER in the range 0 to 4095. For a table with no

distribution key, the result is always 0. A null value is never returned. Since

row-level information is returned, the results are the same, regardless of which

column is specified for the table.

The HASHEDVALUE function cannot be used on replicated tables, within check

constraints, or in the definition of generated columns (SQLSTATE 42881).

For compatibility with versions earlier than Version 8, the function name

PARTITION can be substituted for HASHEDVALUE.

Example:

v List the employee numbers (EMPNO) from the EMPLOYEE table for all rows

with a distribution map index of 100.

 SELECT EMPNO FROM EMPLOYEE

 WHERE HASHEDVALUE(PHONENO) = 100

v Log the employee number and the projected distribution map index of the new

row into a table called EMPINSERTLOG2 for any insertion of employees by

creating a before trigger on the table EMPLOYEE.

 CREATE TRIGGER EMPINSLOGTRIG2

 BEFORE INSERT ON EMPLOYEE

 REFERENCING NEW AW NEWTABLE

 FOR EACH ROW

 INSERT INTO EMPINSERTLOG2

 VALUES(NEWTABLE.EMPNO, HASHEDVALUE(NEWTABLE.EMPNO))

HEX

�� HEX (expression) ��

The schema is SYSIBM.

The HEX function returns a hexadecimal representation of a value as a character

string.

HASHEDVALUE

300 SQL Reference, Volume 1

The argument can be an expression that is a value of any built-in data type with a

maximum length of 16 336 bytes.

The result of the function is a character string. If the argument can be null, the

result can be null; if the argument is null, the result is the null value.

The code page is the database code page.

The result is a string of hexadecimal digits. The first two represent the first byte of

the argument, the next two represent the second byte of the argument, and so

forth. If the argument is a datetime value or a numeric value the result is the

hexadecimal representation of the internal form of the argument. The hexadecimal

representation that is returned may be different depending on the application

server where the function is executed. Cases where differences would be evident

include:

v Character string arguments when the HEX function is performed on an ASCII

client with an EBCDIC server or on an EBCDIC client with an ASCII server.

v Numeric arguments (in some cases) when the HEX function is performed where

client and server systems have different byte orderings for numeric values.

The type and length of the result vary based on the type and length of character

string arguments.

v Character string

– Fixed length not greater than 127

- Result is a character string of fixed length twice the defined length of the

argument.
– Fixed length greater than 127

- Result is a character string of varying length twice the defined length of the

argument.
– Varying length

- Result is a character string of varying length with maximum length twice

the defined maximum length of the argument.
v Graphic string

– Fixed length not greater than 63

- Result is a character string of fixed length four times the defined length of

the argument.
v Fixed length greater than 63

– Result is a character string of varying length four times the defined length of

the argument.
v Varying length

– Result is a character string of varying length with maximum length four times

the defined maximum length of the argument.

Examples:

Assume the use of a DB2 for AIX application server for the following examples.

v Using the DEPARTMENT table set the host variable HEX_MGRNO (char(12)) to

the hexadecimal representation of the manager number (MGRNO) for the

‘PLANNING’ department (DEPTNAME).

HEX

Chapter 3. Functions 301

SELECT HEX(MGRNO)

 INTO :HEX_MGRNO

 FROM DEPARTMENT

 WHERE DEPTNAME = ’PLANNING’

HEX_MGRNO will be set to ’303030303230’ when using the sample table

(character value is ’000020’).

v Suppose COL_1 is a column with a data type of char(1) and a value of ’B’. The

hexadecimal representation of the letter ’B’ is X’42’. HEX(COL_1) returns a two

byte long string ’42’.

v Suppose COL_3 is a column with a data type of decimal(6,2) and a value of 40.1.

An eight byte long string ’0004010C’ is the result of applying the HEX function

to the internal representation of the decimal value, 40.1.

HOUR

�� HOUR (expression) ��

The schema is SYSIBM.

The HOUR function returns the hour part of a value.

The argument must be a time, timestamp, time duration, timestamp duration, or a

valid character string representation of a time or timestamp that is neither a CLOB

nor a LONG VARCHAR. In a Unicode database, if a supplied argument is a

graphic string, it is first converted to a character string before the function is

executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a time, timestamp or valid string representation of a time or

timestamp:

– The result is the hour part of the value, which is an integer between 0 and 24.
v If the argument is a time duration or timestamp duration:

– The result is the hour part of the value, which is an integer between -99 and

99. A nonzero result has the same sign as the argument.

Example:

Using the CL_SCHED sample table, select all the classes that start in the afternoon.

 SELECT * FROM CL_SCHED

 WHERE HOUR(STARTING) BETWEEN 12 AND 17

IDENTITY_VAL_LOCAL

�� IDENTITY_VAL_LOCAL () ��

The schema is SYSIBM.

HEX

302 SQL Reference, Volume 1

The IDENTITY_VAL_LOCAL function is a non-deterministic function that returns

the most recently assigned value for an identity column, where the assignment

occurred as a result of a single INSERT statement using a VALUES clause. The

function has no input parameters.

The result is a DECIMAL(31,0), regardless of the actual data type of the

corresponding identity column.

The value returned by the function is the value assigned to the identity column of

the table identified in the most recent single row insert operation. The INSERT

statement must contain a VALUES clause on a table containing an identity column.

The INSERT statement must also be issued at the same level; that is, the value

must be available locally at the level it was assigned, until it is replaced by the

next assigned value. (A new level is initiated each time a trigger or routine is

invoked.)

The assigned value is either a value supplied by the user (if the identity column is

defined as GENERATED BY DEFAULT), or an identity value generated by the

database manager.

The function returns a null value if a single row INSERT statement with a VALUES

clause has not been issued at the current processing level against a table containing

an identity column.

The result of the function is not affected by the following:

v A single row INSERT statement with a VALUES clause for a table without an

identity column

v A multiple row INSERT statement with a VALUES clause

v An INSERT statement with a fullselect

v A ROLLBACK TO SAVEPOINT statement

Notes:

v Expressions in the VALUES clause of an INSERT statement are evaluated prior

to the assignments for the target columns of the insert operation. Thus, an

invocation of an IDENTITY_VAL_LOCAL function inside the VALUES clause of

an INSERT statement will use the most recently assigned value for an identity

column from a previous insert operation. The function returns the null value if

no previous single row INSERT statement with a VALUES clause for a table

containing an identity column has been executed within the same level as the

IDENTITY_VAL_LOCAL function.

v The identity column value of the table for which the trigger is defined can be

determined within a trigger by referencing the trigger transition variable for the

identity column.

v The result of invoking the IDENTITY_VAL_LOCAL function from within the

trigger condition of an insert trigger is a null value.

v It is possible that multiple before or after insert triggers exist for a table. In this

case, each trigger is processed separately, and identity values assigned by one

triggered action are not available to other triggered actions using the

IDENTITY_VAL_LOCAL function. This is true even though the multiple

triggered actions are conceptually defined at the same level.

v It is not generally recommended to use the IDENTITY_VAL_LOCAL function in

the body of a before insert trigger. The result of invoking the

IDENTITY_VAL_LOCAL function from within the triggered action of a before

insert trigger is the null value. The value for the identity column of the table for

IDENTITY_VAL_LOCAL

Chapter 3. Functions 303

which the trigger is defined cannot be obtained by invoking the

IDENTITY_VAL_LOCAL function within the triggered action of a before insert

trigger. However, the value for the identity column can be obtained in the

triggered action by referencing the trigger transition variable for the identity

column.

v The result of invoking the IDENTITY_VAL_LOCAL function from within the

triggered action of an after insert trigger is the value assigned to an identity

column of the table identified in the most recent single row insert operation

invoked in the same triggered action that had a VALUES clause for a table

containing an identity column. (This applies to both FOR EACH ROW and FOR

EACH STATEMENT after insert triggers.) If a single row INSERT statement with

a VALUES clause for a table containing an identity column was not executed

within the same triggered action, prior to the invocation of the

IDENTITY_VAL_LOCAL function, the function returns a null value.

v Because IDENTITY_VAL_LOCAL is a non-deterministic function, the result of

invoking this function within the SELECT statement of a cursor can vary for

each FETCH statement.

v The assigned value is the value actually assigned to the identity column (that is,

the value that would be returned on a subsequent SELECT statement). This

value is not necessarily the value provided in the VALUES clause of the INSERT

statement, or a value generated by the database manager. The assigned value

could be a value specified in a SET transition variable statement, within the

body of a before insert trigger, for a trigger transition variable associated with

the identity column.

v The value returned by the function following a failed single row INSERT

statement with a VALUES clause into a table with an identity column is

unpredictable. It could be the value that would have been returned from the

function had it been invoked prior to the failed insert operation, or it could be

the value that would have been assigned had the insert operation succeeded.

The actual value returned depends on the point of failure, and is therefore

unpredictable.

Examples:

Example 1: Create two tables, T1 and T2, each with an identity column named C1.

Start the identity sequence for table T2 at 10. Insert some values for C2 into T1.

 CREATE TABLE T1

 (C1 INTEGER GENERATED ALWAYS AS IDENTITY,

 C2 INTEGER)

 CREATE TABLE T2

 (C1 DECIMAL(15,0) GENERATED BY DEFAULT AS IDENTITY (START WITH 10),

 C2 INTEGER)

 INSERT INTO T1 (C2) VALUES (5)

 INSERT INTO T1 (C2) VALUES (6)

 SELECT * FROM T1

This query returns:

C1 C2

----------- -----------

 1 5

 2 6

IDENTITY_VAL_LOCAL

304 SQL Reference, Volume 1

Insert a single row into table T2, where column C2 gets its value from the

IDENTITY_VAL_LOCAL function.

 INSERT INTO T2 (C2) VALUES (IDENTITY_VAL_LOCAL())

 SELECT * FROM T2

This query returns:

C1 C2

----------------- -----------

 10. 2

Example 2: In a nested environment involving a trigger, use the

IDENTITY_VAL_LOCAL function to retrieve the identity value assigned at a

particular level, even though there might have been identity values assigned at

lower levels. Assume that there are three tables, EMPLOYEE, EMP_ACT, and

ACCT_LOG. There is an after insert trigger defined on EMPLOYEE that results in

additional inserts into the EMP_ACT and ACCT_LOG tables.

 CREATE TABLE EMPLOYEE

 (EMPNO SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1000),

 NAME CHAR(30),

 SALARY DECIMAL(5,2),

 DEPTNO SMALLINT)

 CREATE TABLE EMP_ACT

 (ACNT_NUM SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 1),

 EMPNO SMALLINT)

 CREATE TABLE ACCT_LOG

 (ID SMALLINT GENERATED ALWAYS AS IDENTITY (START WITH 100),

 ACNT_NUM SMALLINT,

 EMPNO SMALLINT)

 CREATE TRIGGER NEW_HIRE

 AFTER INSERT ON EMPLOYEE

 REFERENCING NEW AS NEW_EMP

 FOR EACH ROW

 BEGIN ATOMIC

 INSERT INTO EMP_ACT (EMPNO) VALUES (NEW_EMP.EMPNO);

 INSERT INTO ACCT_LOG (ACNT_NUM, EMPNO)

 VALUES (IDENTITY_VAL_LOCAL(), NEW_EMP.EMPNO);

 END

The first triggered insert operation inserts a row into the EMP_ACT table. The

statement uses a trigger transition variable for the EMPNO column of the

EMPLOYEE table to indicate that the identity value for the EMPNO column of the

EMPLOYEE table is to be copied to the EMPNO column of the EMP_ACT table.

The IDENTITY_VAL_LOCAL function could not be used to obtain the value

assigned to the EMPNO column of the EMPLOYEE table, because an INSERT

statement has not been issued at this level of the nesting. If the

IDENTITY_VAL_LOCAL function were invoked in the VALUES clause of the

INSERT statement for the EMP_ACT table, it would return a null value. The insert

operation against the EMP_ACT table also results in the generation of a new

identity value for the ACNT_NUM column.

The second triggered insert operation inserts a row into the ACCT_LOG table. The

statement invokes the IDENTITY_VAL_LOCAL function to indicate that the

identity value assigned to the ACNT_NUM column of the EMP_ACT table in the

previous insert operation in the triggered action is to be copied to the ACNT_NUM

column of the ACCT_LOG table. The EMPNO column is assigned the same value

as the EMPNO column of the EMPLOYEE table.

IDENTITY_VAL_LOCAL

Chapter 3. Functions 305

After the following INSERT statement and all of the triggered actions have been

processed:

 INSERT INTO EMPLOYEE (NAME, SALARY, DEPTNO)

 VALUES (’Rupert’, 989.99, 50)

the contents of the three tables are as follows:

 SELECT EMPNO, SUBSTR(NAME,1,10) AS NAME, SALARY, DEPTNO

 FROM EMPLOYEE

EMPNO NAME SALARY DEPTNO

------ ---------- ------- ------

 1000 Rupert 989.99 50

 SELECT ACNT_NUM, EMPNO

 FROM EMP_ACT

ACNT_NUM EMPNO

-------- ------

 1 1000

 SELECT * FROM ACCT_LOG

ID ACNT_NUM EMPNO

------ -------- ------

 100 1 1000

The result of the IDENTITY_VAL_LOCAL function is the most recently assigned

value for an identity column at the same nesting level. After processing the

original INSERT statement and all of the triggered actions, the

IDENTITY_VAL_LOCAL function returns a value of 1000, because this is the value

that was assigned to the EMPNO column of the EMPLOYEE table.

INSERT

�� INSERT (source-string , start , length , insert-string)

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM. The SYSFUN version of the INSERT function continues to

be available.

The INSERT function returns a string where, beginning at start in source-string,

length bytes have been deleted and insert-string has been inserted.

The INSERT function is identical to the OVERLAY function, except that the length

argument is mandatory.

source-string

An expression that specifies the source string. The expression must return a

value that is a built-in character or graphic string data type (SQLSTATE 22011).

start

An expression that returns an integer value. The integer value specifies the

starting point within the source string where the deletion of bytes and the

insertion of another string is to begin. The integer value must be between 1

and the length of source-string plus one (SQLSTATE 42815). If OCTETS is

specified and the result is graphic data, the value must be an odd number

between 1 and twice the length attribute of source-string plus one (SQLSTATE

428GC).

IDENTITY_VAL_LOCAL

306 SQL Reference, Volume 1

length

An expression that specifies the number of code units (in the specified string

units) that are to be deleted from the source string, starting at the position

identified by start. The value must be between 0 and the length of source-string,

expressed in units that are either implicitly or explicitly specified (SQLSTATE

22011). If OCTETS is specified and the result is graphic data, the value must be

an even number between 0 and twice the length attribute of source-string

(SQLSTATE 428GC).

insert-string

An expression that specifies the string to be inserted into source-string, starting

at the position identified by start. The expression must return a value that is a

built-in character or graphic string data type compatible with source-string

(SQLSTATE 22011).

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of start and length.

 CODEUNITS16 specifies that start and length are expressed in 16-bit UTF-16

code units. CODEUNITS32 specifies that start and length are expressed in 32-bit

UTF-32 code units. OCTETS specifies that start and length are expressed in

bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and the

result is a binary string or bit data, an error is returned (SQLSTATE 428GC). If

the string unit is specified as OCTETS, and insert-string and source-string are

binary strings, an error is returned (SQLSTATE 42815). If the string unit is

specified as OCTETS, the operation is performed in the code page of the

source-string. If a string unit is not explicitly specified, the data type of the

result determines the unit that is used. If the result is graphic data, start and

length are expressed in two-byte units; otherwise, they are expressed in bytes.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see

“String units in built-in functions” in “Character strings”.

The data type of the result depends on the data types of source-string and

insert-string, as shown in the following table of supported type combinations.

 Table 33. Data type of the result as a function of the data types of source-string and

insert-string

source-string insert-string Result

CHAR or VARCHAR CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC GRAPHIC or VARGRAPHIC VARGRAPHIC

CLOB CHAR, VARCHAR, or CLOB CLOB

DBCLOB GRAPHIC, VARGRAPHIC,

or DBCLOB

DBCLOB

CHAR or VARCHAR CHAR FOR BIT DATA or

VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA

CHAR FOR BIT DATA or

VARCHAR FOR BIT DATA

CHAR, VARCHAR, CHAR

FOR BIT DATA, or

VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA

For Unicode databases only:

CHAR or VARCHAR GRAPHIC or VARGRAPHIC VARCHAR

GRAPHIC or VARGRAPHIC CHAR or VARCHAR VARGRAPHIC

CLOB GRAPHIC, VARGRAPHIC,

or DBCLOB

CLOB

INSERT

Chapter 3. Functions 307

Table 33. Data type of the result as a function of the data types of source-string and

insert-string (continued)

source-string insert-string Result

DBCLOB CHAR, VARCHAR, or CLOB DBCLOB

A source-string can have a length of 0; in this case, start must be 1 and length must

be 0 (as implied by the bounds for start and length described above), and the result

of the function is a copy of the insert-string.

An insert-string can also have a length of 0. This has the effect of deleting the code

units from positions start to start + length - 1 from the source-string.

The length attribute of the result is the length attribute of source-string plus the

length attribute of insert-string. The actual length of the result is A1 - MIN((A1 - V2

+ 1), V3) + A4, where:

v A1 is the actual length of source-string

v V2 is the value of start

v V3 is the value of length

v A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data

type, an error is returned (SQLSTATE 54006).

If any argument can be null, the result can be null; if any argument is null, the

result is the null value.

Examples:

v Create the strings ’INSISTING’, ’INSISERTING’, and ’INSTING’ from the string

’INSERTING’ by inserting text into the middle of the existing text.

 SELECT INSERT(’INSERTING’,4,2,’IS’),

 INSERT(’INSERTING’,4,0,’IS’),

 INSERT(’INSERTING’,4,2,’’)

 FROM SYSIBM.SYSDUMMY1

v Create the strings ’XXINSERTING’, ’XXNSERTING’, ’XXSERTING’, and

’XXERTING’ from the string ’INSERTING’ by inserting text before the existing

text, using 1 as the starting point.

 SELECT INSERT(’INSERTING’,1,0,’XX’),

 INSERT(’INSERTING’,1,1,’XX’),

 INSERT(’INSERTING’,1,2,’XX’),

 INSERT(’INSERTING’,1,3,’XX’)

 FROM SYSIBM.SYSDUMMY1

v Create the string ’ABCABCXX’ from the string ’ABCABC’ by inserting text after

the existing text. Because the source string is 6 characters long, set the starting

position to 7 (one plus the length of the source string).

 SELECT INSERT(’ABCABC’,7,0,’XX’)

 FROM SYSIBM.SYSDUMMY1

v Change the string ’Hegelstraße’ to ’Hegelstrasse’.

 SELECT INSERT(’Hegelstraße’,10,1,’ss’,CODEUNITS16)

 FROM SYSIBM.SYSDUMMY1

v The following example works with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the combining tilde character.

This string is shown below in different Unicode encoding forms:

INSERT

308 SQL Reference, Volume 1

’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

Assume that the variables UTF8_VAR and UTF16_VAR contain the UTF-8 and

the UTF-16BE representations of the string, respectively. Use the INSERT

function to insert a ’C’ into the Unicode string ’&N~AB’.

 SELECT INSERT(UTF8_VAR, 1, 4, ’C’, CODEUNITS16),

 INSERT(UTF8_VAR, 1, 4, ’C’, CODEUNITS32),

 INSERT(UTF8_VAR, 1, 4, ’C’, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’CAB’, ’CB’, and ’CN~AB’, respectively.

 SELECT INSERT(UTF8_VAR, 5, 1, ’C’, CODEUNITS16),

 INSERT(UTF8_VAR, 5, 1, ’C’, CODEUNITS32),

 INSERT(UTF8_VAR, 5, 1, ’C’, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~CB’, ’&N~AC’, and ’&C~AB’, respectively.

 SELECT INSERT(UTF16_VAR, 1, 4, ’C’, CODEUNITS16),

 INSERT(UTF16_VAR, 1, 4, ’C’, CODEUNITS32),

 INSERT(UTF16_VAR, 1, 4, ’C’, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’CAB’, ’CB’, and ’CN~AB’, respectively.

 SELECT INSERT(UTF16_VAR, 5, 2, ’C’, CODEUNITS16),

 INSERT(UTF16_VAR, 5, 1, ’C’, CODEUNITS32),

 INSERT(UTF16_VAR, 5, 4, ’C’, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~C’, ’&N~AC’, and ’&CAB’, respectively.

INTEGER

�� INTEGER

INT
 (numeric-expression

character-expression

date-expression

time-expression

) ��

The schema is SYSIBM.

The INTEGER function returns an integer representation of a number, character

string, date, or time in the form of an integer constant. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

numeric-expression

An expression that returns a value of any built-in numeric data type.

 If the argument is a numeric-expression, the result is the same number that

would occur if the argument were assigned to a large integer column or

variable. If the whole part of the argument is not within the range of integers,

an error occurs. The decimal part of the argument is truncated if present.

character-expression

An expression that returns a character string value of length not greater than

the maximum length of a character constant. Leading and trailing blanks are

INSERT

Chapter 3. Functions 309

eliminated and the resulting string must conform to the rules for forming an

SQL integer constant (SQLSTATE 22018). The character string cannot be a long

string.

 If the argument is a character-expression, the result is the same number that

would occur if the corresponding integer constant were assigned to a large

integer column or variable.

date-expression

An expression that returns a value of the DATE data type. The result is an

INTEGER value representing the date as yyyymmdd.

time-expression

An expression that returns a value of the TIME data type. The result is an

INTEGER value representing the time as hhmmss.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

Examples:

v Using the EMPLOYEE table, select a list containing salary (SALARY) divided by

education level (EDLEVEL). Truncate any decimal in the calculation. The list

should also contain the values used in the calculation and employee number

(EMPNO). The list should be in descending order of the calculated value.

 SELECT INTEGER (SALARY / EDLEVEL), SALARY, EDLEVEL, EMPNO

 FROM EMPLOYEE

 ORDER BY 1 DESC

v Using the EMPLOYEE table, select the EMPNO column in integer form for

further processing in the application.

 SELECT INTEGER(EMPNO) FROM EMPLOYEE

v Assume that the column BIRTHDATE (date) has an internal value equivalent to

’1964-07-20’.

 INTEGER(BIRTHDATE)

results in the value 19 640 720.

v Assume that the column STARTTIME (time) has an internal value equivalent to

’12:03:04’.

 INTEGER(STARTTIME)

results in the value 120 304.

JULIAN_DAY

�� JULIAN_DAY (expression) ��

The schema is SYSFUN.

Returns an integer value representing the number of days from January 1, 4713

B.C. (the start of the Julian date calendar) to the date value specified in the

argument.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

INTEGER

310 SQL Reference, Volume 1

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

LCASE

�� LCASE (string-expression) ��

The schema is SYSIBM.

The LCASE function returns a string in which all the SBCS characters have been

converted to lowercase characters.

LCASE is a synonym for LOWER.

LCASE (Locale sensitive)

�� LCASE (string-expression , locale-name)

,

code-units

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM.

The LCASE function returns a string in which all characters have been converted

to lowercase characters using the rules associated with the specified locale.

LCASE is a synonym for LOWER.

LEAST

��

�

LEAST

(

expression

,

expression

)

��

The schema is SYSIBM.

The LEAST function returns the minimum value in a set of values.

The arguments must be compatible and each argument must be an expression that

returns a value of any data type other than ARRAY, LOB, LONG VARCHAR,

LONG VARGRAPHIC, XML, a distinct type based on any of these types, or a

structured type (SQLSTATE 42815). This function cannot be used as a source

function when creating a user-defined function. Because this function accepts any

compatible data types as arguments, it is not necessary to create additional

signatures to support user-defined distinct types.

The selected argument is converted, if necessary, to the attributes of the result. The

attributes of the result are determined by all the operands based on the rules for

result data types.

The result of the function is the smallest argument value. If at least one argument

can be null, the result can be null; if either argument is null, the result is the null

value.

JULIAN_DAY

Chapter 3. Functions 311

The LEAST scalar function is a synonym for the MIN scalar function.

Examples:

Assume that table T1 contains three columns C1, C2, and C3 with values 1, 7, and

4, respectively. The query:

 SELECT LEAST (C1, C2, C3) FROM T1

returns 1.

If column C3 has a value of NULL instead of 4, the same query returns NULL.

LEFT

�� LEFT (string-expression , length)

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM. The SYSFUN version of the LEFT function continues to be

available.

The LEFT function returns the leftmost string of string-expression of length length,

expressed in the specified string unit. If string-expression is a character string, the

result is a character string. If string-expression is a graphic string, the result is a

graphic string.

string-expression

An expression that specifies the string from which the result is derived. The

expression must return a value that is a built-in character or graphic string

data type (SQLSTATE 42815). A substring of string-expression is zero or more

contiguous code points of string-expression.

length

An expression that specifies the length of the result. The result must be a

built-in integer data type (SQLSTATE 42815). The value must be between 0 and

the length of string-expression, expressed in units that are either implicitly or

explicitly specified (SQLSTATE 22011). If OCTETS is specified and the result is

graphic data, the value must be an even number between 0 and twice the

length attribute of string-expression (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of length.

 CODEUNITS16 specifies that length is expressed in 16-bit UTF-16 code units.

CODEUNITS32 specifies that length is expressed in 32-bit UTF-32 code units.

OCTETS specifies that length is expressed in bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and

string-expression is a binary string or bit data, an error is returned (SQLSTATE

428GC). If the string unit is specified as OCTETS and string-expression is a

graphic string, length must be an even number; otherwise, an error is returned

(SQLSTATE 428GC). If a string unit is not explicitly specified, the data type of

the result determines the unit that is used. If the result is graphic data, length is

expressed in two-byte units; otherwise, it is expressed in bytes. For more

information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String

units in built-in functions” in “Character strings”.

LEAST

312 SQL Reference, Volume 1

The string-expression is padded on the right with the necessary number of padding

characters so that the specified substring of string-expression always exists. The

character used for padding is the same character that is used to pad the string in

contexts where padding would occur. For more information on padding, see

“String assignments” in “Assignments and comparisons”.

The result of the function is a varying-length string with a length attribute that is

the same as the length attribute of string-expression and a data type that depends

on the data type of string-expression:

v VARCHAR if string-expression is CHAR or VARCHAR

v CLOB if string-expression is CLOB

v VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC

v DBCLOB if string-expression is DBCLOB

The actual length of the result (in string units) is length.

If any argument can be null, the result can be null; if any argument is null, the

result is the null value.

Examples:

v Assume that variable ALPHA has a value of ’ABCDEF’. The following

statement:

 SELECT LEFT(ALPHA,3)

 FROM SYSIBM.SYSDUMMY1

returns ’ABC’, which are the three leftmost characters in ALPHA.

v Assume that variable NAME, which is defined as VARCHAR(50), has a value of

’KATIE AUSTIN’, and that the integer variable FIRSTNAME_LEN has a value of

5. The following statement:

 SELECT LEFT(NAME,FIRSTNAME_LEN)

 FROM SYSIBM.SYSDUMMY1

returns the value ’KATIE’.

v The following statement returns a zero-length string.

 SELECT LEFT(’ABCABC’,0)

 FROM SYSIBM.SYSDUMMY1

v The FIRSTNME column in the EMPLOYEE table is defined as VARCHAR(12).

Find the first name of an employee whose last name is ’BROWN’ and return the

first name in a 10-byte string.

 SELECT LEFT(FIRSTNME, 10)

 FROM EMPLOYEE

 WHERE LASTNAME = ’BROWN’

returns a VARCHAR(12) string that has the value ’DAVID’ followed by five

blank characters.

v In a Unicode database, FIRSTNAME is a VARCHAR(12) column. One of its

values is the 6-character string ’Jürgen’. When FIRSTNAME has this value:

 Function... Returns...

 LEFT(FIRSTNAME,2,CODEUNITS32) ’Jü’ -- x’4AC3BC’

 LEFT(FIRSTNAME,2,CODEUNITS16) ’Jü’ -- x’4AC3BC’

 LEFT(FIRSTNAME,2,OCTETS) ’J’ -- x’4A20’, a truncated string

v The following example works with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the combining tilde character.

This string is shown below in different Unicode encoding forms:

LEFT

Chapter 3. Functions 313

’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

Assume that the variable UTF8_VAR, with a length attribute of 20 bytes,

contains the UTF-8 representation of the string.

 SELECT LEFT(UTF8_VAR, 2, CODEUNITS16),

 LEFT(UTF8_VAR, 2, CODEUNITS32),

 LEFT(UTF8_VAR, 2, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&’, ’&N’, and ’bb’, respectively, where ’b’ represents the

blank character.

 SELECT LEFT(UTF8_VAR, 5, CODEUNITS16),

 LEFT(UTF8_VAR, 5, CODEUNITS32),

 LEFT(UTF8_VAR, 5, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~A’, ’&N~AB’, and ’&N’, respectively.

 SELECT LEFT(UTF8_VAR, 10, CODEUNITS16),

 LEFT(UTF8_VAR, 10, CODEUNITS32),

 LEFT(UTF8_VAR, 10, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~ABbbbb’, ’&N~ABbbbbb’, and ’&N~ABb’, respectively,

where ’b’ represents the blank character.

Assume that the variable UTF16_VAR, with a length attribute of 20 code units,

contains the UTF-16BE representation of the string.

 SELECT LEFT(UTF16_VAR, 2, CODEUNITS16),

 LEFT(UTF16_VAR, 2, CODEUNITS32),

 HEX (LEFT(UTF16_VAR, 2, OCTETS))

 FROM SYSIBM.SYSDUMMY1

returns the values ’&’, ’&N’, and X’D834’, respectively, where X’D834’ is an

unmatched high surrogate.

 SELECT LEFT(UTF16_VAR, 5, CODEUNITS16),

 LEFT(UTF16_VAR, 5, CODEUNITS32),

 LEFT(UTF16_VAR, 6, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~A’, ’&N~AB’, and ’&N’, respectively.

 SELECT LEFT(UTF16_VAR, 10, CODEUNITS16),

 LEFT(UTF16_VAR, 10, CODEUNITS32),

 LEFT(UTF16_VAR, 10, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~ABbbbb’, ’&N~ABbbbbb’, and ’&N~A’, respectively,

where ’b’ represents the blank character.

LENGTH

�� LENGTH (expression)

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

LEFT

314 SQL Reference, Volume 1

The schema is SYSIBM.

The LENGTH function returns the length of expression in the implicit or explicit

string unit.

expression

An expression that returns a value that is a built-in data type. If expression can

be null, the result can be null; if expression is null, the result is the null value.

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of the result. CODEUNITS16 specifies that the result is

to be expressed in 16-bit UTF-16 code units. CODEUNITS32 specifies that the

result is to be expressed in 32-bit UTF-32 code units. OCTETS specifies that the

result is to be expressed in bytes.

 If a string unit is explicitly specified, and if expression is not string data, an

error is returned (SQLSTATE 428GC). If a string unit is specified as

CODEUNITS16 or CODEUNITS32, and expression is a binary string or bit data,

an error is returned (SQLSTATE 428GC). If a string unit is specified as OCTETS

and expression is a binary string, an error is returned (SQLSTATE 42815). For

more information about CODEUNITS16, CODEUNITS32, and OCTETS, see

“String units in built-in functions” in “Character strings”.

If a string unit is not explicitly specified, the data type of the result determines the

unit that is used. If the result is graphic data, the value returned specifies the

length in 2-byte units. Otherwise, the value returned specifies the length in bytes.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The length of character and graphic strings includes trailing blanks. The length of

binary strings includes binary zeroes. The length of varying-length strings is the

actual length and not the maximum length. The length of all other values is the

number of bytes used to represent the value:

v 2 for small integer

v 4 for large integer

v (p/2)+1 for decimal numbers with precision p

v 8 for DECFLOAT(16)

v 16 for DECFLOAT(34)

v The length of the string for binary strings

v The length of the string for character strings

v 4 for single-precision floating-point

v 8 for double-precision floating-point

v 4 for date

v 3 for time

v 10 for timestamp

Examples:

v Assume that the host variable ADDRESS is a varying-length character string

with a value of ’895 Don Mills Road’.

 LENGTH(:ADDRESS)

returns the value 18.

v Assume that START_DATE is a column of type DATE.

LENGTH

Chapter 3. Functions 315

LENGTH(START_DATE)

returns the value 4.

v

 LENGTH(CHAR(START_DATE, EUR))

returns the value 10.

v The following examples work with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the combining tilde character.

This string is shown below in different Unicode encoding forms:

 ’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

UTF-32BE X’0001D11E’ X’0000004E’ X’00000303’ X’00000041’ X’00000042’

Assume that the variable UTF8_VAR contains the UTF-8 representation of the

string.

 SELECT LENGTH(UTF8_VAR, CODEUNITS16),

 LENGTH(UTF8_VAR, CODEUNITS32),

 LENGTH(UTF8_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 9, respectively.

Assume that the variable UTF16_VAR contains the UTF-16BE representation of

the string.

 SELECT LENGTH(UTF16_VAR, CODEUNITS16),

 LENGTH(UTF16_VAR, CODEUNITS32),

 LENGTH(UTF16_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 12, respectively.

LN

�� LN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the LN function continues to be

available.)

The LN function returns the natural logarithm of a number. The LN and EXP

functions are inverse operations.

The argument must be an expression that returns a value of any built-in numeric

data type. If the argument is decimal floating-point, the operation is performed in

decimal floating-point; otherwise, the argument is converted to double-precision

floating-point for processing by the function. The value of the argument must be

greater than zero (SQLSTATE 22003).

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is a double-precision floating-point number. The result can be null; if the argument

is null, the result is the null value.

LENGTH

316 SQL Reference, Volume 1

Syntax alternatives: LOG can be specified in place of LN. It is supported only for

compatibility with previous versions of DB2. LN should be used instead of LOG,

because some database managers and applications implement LOG as the common

logarithm of a number instead of the natural logarithm of a number.

Example:

v Assume that NATLOG is a DECIMAL(4,2) host variable with a value of 31.62.

 VALUES LN(:NATLOG)

Returns the approximate value 3.45.

LOCATE scalar function

�� LOCATE (search-string , source-string)

,

start

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM. The SYSFUN version of the LOCATE function continues to

be available, but it is not sensitive to the database collation.

The LOCATE function returns the starting position of the first occurrence of one

string (called the search-string) within another string (called the source-string). If the

search-string is not found and neither argument is null, the result is zero. If the

search-string is found, the result is a number from 1 to the actual length of the

source-string. The search is done using the collation of the database, unless

search-string or source-string is defined as FOR BIT DATA, in which case the search

is done using a binary comparison.

If the optional start is specified, it indicates the character position in the

source-string at which the search is to begin. An optional string unit can be

specified to indicate in what units the start and result of the function are expressed.

If the search-string has a length of zero, the result returned by the function is 1.

Otherwise, if the source-string has a length of zero, the result returned by the

function is 0. Otherwise:

v If the value of search-string is equal to an identical length of substring of

contiguous positions within the value of source-string, the result returned by the

function is the starting position of the first such substring within the source-string

value.

v Otherwise, the result returned by the function is 0.

search-string

An expression that specifies the string that is the object of the search. The

expression must return a value that is a built-in character string data type,

graphic string data type, or binary string data type with an actual length that

is no greater than 4000 bytes. No element of the expression can be of type

LONG VARCHAR, CLOB, LONG VARGRAPHIC, or DBCLOB. In addition, it

cannot be a BLOB file reference variable. The expression can be specified by

any of the following:

v A constant

v A special register

v A global variable

v A host variable

LN

Chapter 3. Functions 317

v A scalar function whose operands are any of the above

v An expression that concatenates (using CONCAT or ||) any of the above

v An SQL procedure parameter

These rules are similar to those that are described for pattern-expression for the

LIKE predicate.

source-string

An expression that specifies the string in which the search is to take place. The

expression must return a value that is a built-in character string data type,

graphic string data type, or binary string data type. The expression can be

specified by any of the following:

v A constant

v A special register

v A global variable

v A host variable (including a locator variable or a file reference variable)

v A scalar function

v A large object locator

v A column name

v An expression that concatenates (using CONCAT or ||) any of the above

start

An expression that specifies the position within source-string at which the

search is to start. The expression must be an integer that is greater than or

equal to zero. If start is specified, the LOCATE function is similar to:

 POSITION(search-string,

 SUBSTRING(source-string, start, string-unit),

 string-unit) + start - 1

where string-unit is either CODEUNITS16, CODEUNITS32, or OCTETS.

 If start is not specified, the search begins at the first position of the source

string, and the LOCATE function is similar to:

 POSITION(search-string, source-string, string-unit)

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of start and the result. CODEUNITS16 specifies that

start and the result are to be expressed in 16-bit UTF-16 code units.

CODEUNITS32 specifies that start and the result are to be expressed in 32-bit

UTF-32 code units. OCTETS specifies that start and the result are to be

expressed in bytes.

 If a string unit is specified as CODEUNITS16 or CODEUNITS32, and

search-string or source-string is a binary string or bit data, an error is returned

(SQLSTATE 428GC). If a string unit is specified as OCTETS and search-string

and source-string are binary strings, an error is returned (SQLSTATE 42815).

If a string unit is not explicitly specified, the data type of the result determines

the unit that is used. If the result is graphic data, start and the returned

position are expressed in two-byte units; otherwise, they are expressed in

bytes.

If a locale-sensitive UCA-based collation is used for this function, then the

CODEUNITS16 option offers the best performance characteristics.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see

“String units in built-in functions” in “Character strings”.

LOCATE scalar function

318 SQL Reference, Volume 1

The first and second arguments must have compatible string types. For more

information on compatibility, see “Rules for string conversions”. In a Unicode

database, if one string argument is character (not FOR BIT DATA) and the other

string argument is graphic, then the search-string is converted to the data type of

the source-string for processing. If one argument is character FOR BIT DATA, the

other argument must not be graphic (SQLSTATE 42846).

The result of the function is a large integer. If any argument can be null, the result

can be null; if any argument is null, the result is the null value.

Examples:

v Find the location of the first occurrence of the character ’N’ in the string

’DINING’.

 SELECT LOCATE(’N’, ’DINING’)

 FROM SYSIBM.SYSDUMMY1

The result is the value 3.

v For all the rows in the table named IN_TRAY, select the RECEIVED column, the

SUBJECT column, and the starting position of the string ’GOOD’ within the

NOTE_TEXT column.

 SELECT RECEIVED, SUBJECT, LOCATE(’GOOD’, NOTE_TEXT)

 FROM IN_TRAY

 WHERE LOCATE(’GOOD’, NOTE_TEXT) <> 0

v Locate the character ’ß’ in the string ’Jürgen lives on Hegelstraße’, and set the

host variable LOCATION with the position, as measured in CODEUNITS32

units, within the string.

 SET :LOCATION = LOCATE(’ß’, ’Jürgen lives on Hegelstraße’, 1, CODEUNITS32)

The value of host variable LOCATION is set to 26.

v Locate the character ’ß’ in the string ’Jürgen lives on Hegelstraße’, and set the

host variable LOCATION with the position, as measured in CODEUNITS16

units, within the string.

 SET :LOCATION = LOCATE(’ß’, ’Jürgen lives on Hegelstraße’, 1, CODEUNITS16)

The value of host variable LOCATION is set to 26.

v Locate the character ’ß’ in the string ’Jürgen lives on Hegelstraße’, and set the

host variable LOCATION with the position, as measured in OCTETS, within the

string.

 SET :LOCATION = LOCATE(’ß’, ’Jürgen lives on Hegelstraße’, 1, OCTETS)

The value of host variable LOCATION is set to 27.

v The following examples work with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the non-spacing combining tilde

character. This string is shown below in different Unicode encoding forms:

 ’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

Assume that the variable UTF8_VAR contains the UTF-8 representation of the

string.

LOCATE scalar function

Chapter 3. Functions 319

SELECT LOCATE(’~’, UTF8_VAR, CODEUNITS16),

 LOCATE(’~’, UTF8_VAR, CODEUNITS32),

 LOCATE(’~’, UTF8_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 4, 3, and 6, respectively.

Assume that the variable UTF16_VAR contains the UTF-16BE representation of

the string.

 SELECT LOCATE(’~’, UTF16_VAR, CODEUNITS16),

 LOCATE(’~’, UTF16_VAR, CODEUNITS32),

 LOCATE(’~’, UTF16_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 4, 3, and 7, respectively.

v In a Unicode database created with the case insensitive collation

UCA500R1_LEN_S1, find the position of the word ’Brown’ in the phrase ’The

quick brown fox’.

SET :LOCATION = LOCATE(’Brown’, ’The quick brown fox’, CODEUNITS16)

The value of the host variable LOCATION is set to 11.

LOG10

�� LOG10 (expression) ��

The schema is SYSIBM. (The SYSFUN version of the LOG10 function continues to

be available.)

The LOG10 function returns the common logarithm (base 10) of a number.

The argument must be an expression that returns a value of any built-in numeric

data type. If the argument is decimal floating-point, the operation is performed in

decimal floating-point; otherwise, the argument is converted to double-precision

floating-point for processing by the function. The value of the argument must be

greater than zero (SQLSTATE 22003).

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is a double-precision floating-point number. The result can be null; if the argument

is null, the result is the null value.

Example:

v Assume that L is a DECIMAL(4,2) host variable with a value of 31.62.

 VALUES LOG10(:L)

Returns the DOUBLE value +1.49996186559619E+000.

LONG_VARCHAR

�� LONG_VARCHAR (character-string-expression) ��

The LONG_VARCHAR function is deprecated and might be removed in a future

release. The function is compatible with earlier DB2 versions.

LOCATE scalar function

320 SQL Reference, Volume 1

LONG_VARGRAPHIC

�� LONG_VARGRAPHIC (graphic-expression) ��

The LONG_VARGRAPHIC function is deprecated and might be removed in a

future release. The function is compatible with earlier DB2 versions.

LOWER

�� LOWER (string-expression) ��

The schema is SYSIBM. (The SYSFUN version of this function continues to be

available with support for LONG VARCHAR and CLOB arguments.)

The LOWER function returns a string in which all the SBCS characters have been

converted to lowercase characters. That is, the characters A-Z will be converted to

the characters a-z, and other characters will be converted to their lowercase

equivalents, if they exist. For example, in code page 850, É maps to é. If the code

point length of the result character is not the same as the code point length of the

source character, the source character is not converted. Because not all characters

are converted, LOWER(UPPER(string-expression)) does not necessarily return the

same result as LOWER(string-expression).

The argument must be an expression whose value is a CHAR or VARCHAR data

type.

The result of the function has the same data type and length attribute as the

argument. If the argument can be null, the result can be null; if the argument is

null, the result is the null value.

In a Unicode database, if a supplied argument is a graphic string, it is first

converted to a character string before the function is executed.

Example:

Ensure that the characters in the value of column JOB in the EMPLOYEE table are

returned in lowercase characters.

 SELECT LOWER(JOB)

 FROM EMPLOYEE

 WHERE EMPNO = ’000020’;

The result is the value ’manager’.

LOWER (Locale sensitive)

�� LOWER (string-expression , locale-name)

,

code-units

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM.

LONG_VARGRAPHIC

Chapter 3. Functions 321

The LOWER function returns a string in which all characters have been converted

to lowercase characters using the rules associated with the specified locale.

string-expression

An expression that returns a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC

string. If string-expression is CHAR or VARCHAR, the expression must not be

FOR BIT DATA (SQLSTATE 42815).

locale-name

A character constant that specifies the locale that defines the rules for

conversion to lowercase characters. The value of locale-name is not case

sensitive and must be a valid locale (SQLSTATE 42815). For information on

valid locales and their naming, see “Locale names for SQL and XQuery”.

code-units

An integer constant that specifies the number of code units in the result. If

specified, code-units must be an integer between 1 and 32 672 if the result is

character data, or between 1 and 16 336 if the result is graphic data

(SQLSTATE 42815). If code-units is not explicitly specified, it is implicitly the

length attribute of string-expression. If OCTETS is specified and the result is

graphic data, the value of code-units must be even (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of code-units.

 CODEUNITS16 specifies that code-units is expressed in 16-bit UTF-16 code

units. CODEUNITS32 specifies that code-units is expressed in 32-bit UTF-32

code units. OCTETS specifies that code-units is expressed in bytes.

If a string unit is not explicitly specified, the data type of the result determines

the unit that is used. If the result is graphic data, code-units is expressed in

two-byte units; otherwise, it is expressed in bytes. For more information about

CODEUNITS16, CODEUNITS32, and OCTETS, see “String units in built-in

functions” in “Character strings”.

The result of the function is VARCHAR if string-expression is CHAR or VARCHAR,

and VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC.

The length attribute of the result is determined by the implicit or explicit value of

code-units, the implicit or explicit string unit, and the result data type, as shown in

the following table:

 Table 34. Length attribute of the result of LOWER as a function of string unit and result type

String unit Character result type Graphic result type

CODEUNITS16 MIN(code-units * 3, 32672) code-units

CODEUNITS32 MIN(code-units * 4, 32672) MIN(code-units * 2, 16336)

OCTETS code-units MIN(code-units / 2, 16336)

The actual length of the result might be greater than the length of string-expression.

If the actual length of the result is greater than the length attribute of the result, an

error is returned (SQLSTATE 42815). If the number of code units in the result

exceeds the value of code-units, an error is returned (SQLSTATE 42815).

If string-expression is not in UTF-16, this function performs code page conversion of

string-expression to UTF-16, and of the result from UTF-16 to the code page of

string-expression. If either code page conversion results in at least one substitution

LOWER (Locale sensitive)

322 SQL Reference, Volume 1

character, the result includes the substitution character, a warning is returned

(SQLSTATE 01517), and the warning flag SQLWARN8 in the SQLCA is set to ’W’.

If any argument can be null, the result can be null; if any argument is null, the

result is the null value.

Examples:

v Ensure that the characters in the value of column JOB in the EMPLOYEE table

are returned in lowercase characters.

 SELECT LOWER(JOB, ’en_US’)

 FROM EMPLOYEE

 WHERE EMPNO = ’000020’

The result is the value ’manager’.

v Find the lowercase characters for all the ’I’ characters in a Turkish string.

 VALUES LOWER(’I	ıi’, ’tr_TR’, CODEUNITS16)

The result is the string ’ıiıi’.

LTRIM

�� LTRIM (string-expression) ��

The schema is SYSIBM. (The SYSFUN version of this function continues to be

available with support for LONG VARCHAR and CLOB arguments.)

The LTRIM function removes blanks from the beginning of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data

type.

v If the argument is a graphic string in a DBCS or EUC database, then the leading

double byte blanks are removed.

v If the argument is a graphic string in a Unicode database, then the leading

UCS-2 blanks are removed.

v Otherwise, the leading single byte blanks are removed.

The result data type of the function is:

v VARCHAR if the data type of string-expression is VARCHAR or CHAR

v VARGRAPHIC if the data type of string-expression is VARGRAPHIC or

GRAPHIC

The length parameter of the returned type is the same as the length parameter of

the argument data type.

The actual length of the result for character strings is the length of string-expression

minus the number of bytes removed for blank characters. The actual length of the

result for graphic strings is the length (in number of double byte characters) of

string-expression minus the number of double byte blank characters removed. If all

of the characters are removed, the result is an empty, varying-length string (length

is zero).

If the argument can be null, the result can be null; if the argument is null, the

result is the null value.

LOWER (Locale sensitive)

Chapter 3. Functions 323

Example:

Assume that host variable HELLO is defined as CHAR(9) and has a value of ’

Hello’.

 VALUES LTRIM(:HELLO)

The result is ’Hello’.

MAX

��

�

MAX

(

expression

,

expression

)

��

The schema is SYSIBM.

The MAX function returns the maximum value in a set of values.

The arguments must be compatible and each argument must be an expression that

returns a value of any data type other than ARRAY, LOB, LONG VARCHAR,

LONG VARGRAPHIC, XML, a distinct type based on any of these types, or a

structured type (SQLSTATE 42815). This function cannot be used as a source

function when creating a user-defined function. Because this function accepts any

compatible data types as arguments, it is not necessary to create additional

signatures to support user-defined distinct types.

The selected argument is converted, if necessary, to the attributes of the result. The

attributes of the result are determined by all the operands based on the rules for

result data types.

The result of the function is the largest argument value. If at least one argument

can be null, the result can be null; if either argument is null, the result is the null

value.

The MAX scalar function is a synonym for the GREATEST scalar function.

Example:

Return the bonus for an employee, the greater of 500 and 5% of the employee’s

salary.

 SELECT EMPNO, MAX(SALARY * 0.05, 500)

 FROM EMPLOYEE

MAX_CARDINALITY

�� MAX_CARDINALITY (array-expression) ��

The schema is SYSIBM.

The MAX_CARDINALITY function returns a value of type BIGINT representing

the maximum number of elements that an array can contain. This is the cardinality

that was specified in the CREATE TYPE statement for the user-defined array type.

LTRIM

324 SQL Reference, Volume 1

The argument can be either an SQL procedure variable or parameter of an array

data type or a cast specification of a parameter marker to an array data type.

Example:

Assume that type PHONE_LIST is defined as:

 CREATE TYPE PHONE_LIST

 AS INTEGER ARRAY[100]

The array NUMBERS is of type PHONE_LIST. The following SET statement

assigns variable CARD the value 100, in accordance with the definition of

PHONE_LIST:

 SET CARD = MAX_CARDINALITY(NUMBERS)

MICROSECOND

�� MICROSECOND (expression) ��

The schema is SYSIBM.

The MICROSECOND function returns the microsecond part of a value.

The argument must be a timestamp, timestamp duration, or a valid character

string representation of a timestamp that is neither a CLOB nor a LONG

VARCHAR. In a Unicode database, if a supplied argument is a graphic string, it is

first converted to a character string before the function is executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a timestamp or a valid string representation of a timestamp:

– The integer ranges from 0 through 999 999.
v If the argument is a duration:

– The result reflects the microsecond part of the value which is an integer

between -999 999 through 999 999. A nonzero result has the same sign as the

argument.

Example:

v Assume a table TABLEA contains two columns, TS1 and TS2, of type

TIMESTAMP. Select all rows in which the microseconds portion of TS1 is not

zero and the seconds portion of TS1 and TS2 are identical.

 SELECT * FROM TABLEA

 WHERE MICROSECOND(TS1) <> 0

 AND

 SECOND(TS1) = SECOND(TS2)

MIDNIGHT_SECONDS

�� MIDNIGHT_SECONDS (expression) ��

The schema is SYSFUN.

MAX_CARDINALITY

Chapter 3. Functions 325

Returns an integer value in the range 0 to 86 400, representing the number of

seconds between midnight and the time value specified in the argument.

The argument must be a time, timestamp, or a valid character string representation

of a time or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

Examples:

v Find the number of seconds between midnight and 00:10:10, and midnight and

13:10:10.

 VALUES (MIDNIGHT_SECONDS(’00:10:10’), MIDNIGHT_SECONDS(’13:10:10’))

This example returns the following:

1 2

----------- -----------

 610 47410

Since a minute is 60 seconds, there are 610 seconds between midnight and the

specified time. The same follows for the second example. There are 3600 seconds

in an hour, and 60 seconds in a minute, resulting in 47 410 seconds between the

specified time and midnight.

v Find the number of seconds between midnight and 24:00:00, and midnight and

00:00:00.

 VALUES (MIDNIGHT_SECONDS(’24:00:00’), MIDNIGHT_SECONDS(’00:00:00’))

This example returns the following:

1 2

----------- -----------

 86400 0

Note that these two values represent the same point in time, but return different

MIDNIGHT_SECONDS values.

MIN

��

�

MIN

(

expression

,

expression

)

��

The schema is SYSIBM.

The MIN function returns the minimum value in a set of values.

The arguments must be compatible and each argument must be an expression that

returns a value of any data type other than ARRAY, LOB, LONG VARCHAR,

LONG VARGRAPHIC, XML, a distinct type based on any of these types, or a

structured type (SQLSTATE 42815). This function cannot be used as a source

function when creating a user-defined function. Because this function accepts any

compatible data types as arguments, it is not necessary to create additional

signatures to support user-defined distinct types.

MIDNIGHT_SECONDS

326 SQL Reference, Volume 1

The selected argument is converted, if necessary, to the attributes of the result. The

attributes of the result are determined by all the operands based on the rules for

result data types.

The result of the function is the smallest argument value. If at least one argument

can be null, the result can be null; if either argument is null, the result is the null

value.

The MIN scalar function is a synonym for the LEAST scalar function.

Example:

Return the bonus for an employee, the LESSER of 5000 and 5% of the employee’s

salary.

 SELECT EMPNO, MIN(SALARY * 0.05, 5000)

 FROM EMPLOYEE

MINUTE

�� MINUTE (expression) ��

The schema is SYSIBM.

The MINUTE function returns the minute part of a value.

The argument must be a time, timestamp, time duration, timestamp duration, or a

valid character string representation of a time or timestamp that is neither a CLOB

nor a LONG VARCHAR. In a Unicode database, if a supplied argument is a

graphic string, it is first converted to a character string before the function is

executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a time, timestamp or valid string representation of a time or

timestamp:

– The result is the minute part of the value, which is an integer between 0 and

59.
v If the argument is a time duration or timestamp duration:

– The result is the minute part of the value, which is an integer between -99

and 99. A nonzero result has the same sign as the argument.

Example:

v Using the CL_SCHED sample table, select all classes with a duration less than 50

minutes.

 SELECT * FROM CL_SCHED

 WHERE HOUR(ENDING - STARTING) = 0

 AND

 MINUTE(ENDING - STARTING) < 50

MIN

Chapter 3. Functions 327

MOD

�� MOD (expression , expression) ��

The schema is SYSFUN.

Returns the remainder of the first argument divided by the second argument. The

result is negative only if first argument is negative.

The result of the function is:

v SMALLINT if both arguments are SMALLINT

v INTEGER if one argument is INTEGER and the other is INTEGER or

SMALLINT

v BIGINT if one argument is BIGINT and the other argument is BIGINT,

INTEGER or SMALLINT.

The result can be null; if any argument is null, the result is the null value.

MONTH

�� MONTH (expression) ��

The schema is SYSIBM.

The MONTH function returns the month part of a value.

The argument must be a date, timestamp, date duration, timestamp duration, or a

valid character string representation of a date or timestamp that is neither a CLOB

nor a LONG VARCHAR. In a Unicode database, if a supplied argument is a

graphic string, it is first converted to a character string before the function is

executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a date, timestamp, or a valid string representation of a date or

timestamp:

– The result is the month part of the value, which is an integer between 1 and

12.
v If the argument is a date duration or timestamp duration:

– The result is the month part of the value, which is an integer between -99 and

99. A nonzero result has the same sign as the argument.

Example:

v Select all rows from the EMPLOYEE table for people who were born

(BIRTHDATE) in DECEMBER.

 SELECT * FROM EMPLOYEE

 WHERE MONTH(BIRTHDATE) = 12

MOD

328 SQL Reference, Volume 1

MONTHNAME

�� MONTHNAME (expression) ��

The schema is SYSFUN.

Returns a mixed case character string containing the name of the month (for

example, January) for the month portion of the argument, based on the locale

when the database was started.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is VARCHAR(100). The result can be null; if the

argument is null, the result is the null value.

MULTIPLY_ALT

�� MULTIPLY_ALT (exact_numeric_expression , exact_numeric_expression) ��

The schema is SYSIBM.

The MULTIPLY_ALT scalar function returns the product of the two arguments as a

decimal value. It is provided as an alternative to the multiplication operator,

especially when the sum of the precisions of the arguments exceeds 31.

The arguments can be any built-in exact numeric data type (DECIMAL, BIGINT,

INTEGER, or SMALLINT).

The result of the function is a DECIMAL. The precision and scale of the result are

determined as follows, using the symbols p and s to denote the precision and scale

of the first argument, and the symbols p’ and s’ to denote the precision and scale

of the second argument.

v The precision is MIN(31, p + p’)

v The scale is:

– 0 if the scale of both arguments is 0

– MIN(31, s + s’) if p + p’ is less than or equal to 31

– MAX(MIN(3, s + s’), 31 - (p - s + p’ - s’)) if p + p’ is greater than 31.

The result can be null if at least one argument can be null, or if the database is

configured with DFT_SQLMATHWARN set to YES; the result is the null value if

one of the arguments is null.

The MULTIPLY_ALT function is a preferable choice to the multiplication operator

when performing decimal arithmetic where a scale of at least 3 is required and the

sum of the precisions exceeds 31. In these cases, the internal computation is

performed so that overflows are avoided. The final result is then assigned to the

result data type, using truncation where necessary to match the scale. Note that

overflow of the final result is still possible when the scale is 3.

MONTHNAME

Chapter 3. Functions 329

The following is a sample comparing the result types using MULTIPLY_ALT and

the multiplication operator.

 Type of argument 1 Type of argument 2 Result using

MULTIPLY_ALT

Result using

multiplication

operator

DECIMAL(31,3) DECIMAL(15,8) DECIMAL(31,3) DECIMAL(31,11)

DECIMAL(26,23) DECIMAL(10,1) DECIMAL(31,19) DECIMAL(31,24)

DECIMAL(18,17) DECIMAL(20,19) DECIMAL(31,29) DECIMAL(31,31)

DECIMAL(16,3) DECIMAL(17,8) DECIMAL(31,9) DECIMAL(31,11)

DECIMAL(26,5) DECIMAL(11,0) DECIMAL(31,3) DECIMAL(31,5)

DECIMAL(21,1) DECIMAL(15,1) DECIMAL(31,2) DECIMAL(31,2)

Example:

Multiply two values where the data type of the first argument is DECIMAL(26,3)

and the data type of the second argument is DECIMAL(9,8). The data type of the

result is DECIMAL(31,7).

values multiply_alt(98765432109876543210987.654,5.43210987)

1

536504678578875294857887.5277415

Note that the complete product of these two numbers is

536504678578875294857887.52774154498, but the last 4 digits are truncated to

match the scale of the result data type. Using the multiplication operator with the

same values will cause an arithmetic overflow, since the result data type is

DECIMAL(31,11) and the result value has 24 digits left of the decimal, but the

result data type only supports 20 digits.

NORMALIZE_ DECFLOAT

�� NORMALIZE_DECFLOAT (expression) ��

The schema is SYSIBM.

The NORMALIZE_DECFLOAT function returns a decimal floating-point value

equal to the input argument set to its simplest form; that is, a non-zero number

with trailing zeros in the coefficient has those zeros removed. This may require

representing the number in normalized form by dividing the coefficient by the

appropriate power of ten and adjusting the exponent accordingly. A zero value has

its exponent set to 0.

expression

An expression that returns a value of any built-in numeric data type.

Arguments of type SMALLINT, INTEGER, REAL, DOUBLE, or DECIMAL(p,s),

where p <= 16, are converted to DECFLOAT(16) for processing. Arguments of

type BIGINT or DECIMAL(p,s), where p > 16, are converted to DECFLOAT(34)

for processing.

The result of the function is a DECFLOAT(16) value if the data type of expression

after conversion to decimal floating-point is DECFLOAT(16). Otherwise, the result

of the function is a DECFLOAT(34) value. If the argument is a special decimal

MULTIPLY_ALT

330 SQL Reference, Volume 1

floating-point value, the result is the same special decimal floating-point value. If

the argument can be null, the result can be null; if the argument is null, the result

is the null value.

Examples:

v The following examples show the values that are returned by the

NORMALIZE_DECFLOAT function, given a variety of input decimal

floating-point values:

NORMALIZE_DECFLOAT(DECFLOAT(2.1)) = 2.1

NORMALIZE_DECFLOAT(DECFLOAT(-2.0)) = -2

NORMALIZE_DECFLOAT(DECFLOAT(1.200)) = 1.2

NORMALIZE_DECFLOAT(DECFLOAT(-120)) = -1.2E+2

NORMALIZE_DECFLOAT(DECFLOAT(120.00)) = 1.2E+2

NORMALIZE_DECFLOAT(DECFLOAT(0.00)) = 0

NORMALIZE_DECFLOAT(-NAN) = -NaN

NORMALIZE_DECFLOAT(-INFINITY) = -Infinity

NULLIF

�� NULLIF (expression , expression) ��

The schema is SYSIBM.

The NULLIF function returns a null value if the arguments are equal, otherwise it

returns the value of the first argument.

The arguments must be comparable. They can be of either a built-in (other than a

long string) or distinct data type (other than based on a long string). (This function

cannot be used as a source function when creating a user-defined function. Because

this function accepts any compatible data types as arguments, it is not necessary to

create additional signatures to support user-defined distinct types.) The attributes

of the result are the attributes of the first argument.

The result of using NULLIF(e1,e2) is the same as using the expression

 CASE WHEN e1=e2 THEN NULL ELSE e1 END

Note that when e1=e2 evaluates to unknown (because one or both arguments is

NULL), CASE expressions consider this not true. Therefore, in this situation,

NULLIF returns the value of the first argument.

Example:

v Assume host variables PROFIT, CASH, and LOSSES have DECIMAL data types

with the values 4500.00, 500.00, and 5000.00 respectively:

 NULLIF (:PROFIT + :CASH , :LOSSES)

Returns a null value.

NVL

��

�

NVL

(

expression

,

expression

)

��

The schema is SYSIBM.

NORMALIZE_ DECFLOAT

Chapter 3. Functions 331

The NVL function returns the first argument that is not null.

NVL is a synonym for COALESCE.

OCTET_LENGTH

�� OCTET_LENGTH (expression) ��

The schema is SYSIBM.

The OCTET_LENGTH function returns the length of expression in octets (bytes).

expression

An expression that returns a value that is a built-in string data type.

The result of the function is INTEGER. If the argument can be null, the result can

be null; if the argument is null, the result is the null value.

The length of character or graphic strings includes trailing blanks. The length of

binary strings includes binary zeroes. The length of varying-length strings is the

actual length and not the maximum length.

For greater portability, code your application to be able to accept a result of data

type DECIMAL(31).

Examples:

v Assume that table T1 has a GRAPHIC(10) column named C1.

 SELECT OCTET_LENGTH(C1) FROM T1

returns the value 20.

v The following example works with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the combining tilde character.

This string is shown below in different Unicode encoding forms:

 ’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

Assume that the variables UTF8_VAR and UTF16_VAR contain the UTF-8 and

the UTF-16BE representations of the string, respectively.

 SELECT OCTET_LENGTH(UTF8_VAR),

 OCTET_LENGTH(UTF16_VAR)

 FROM SYSIBM.SYSDUMMY1

returns the values 9 and 12, respectively.

OVERLAY

�� OVERLAY �

NVL

332 SQL Reference, Volume 1

� (source-string PLACING insert-string FROM start USING CODEUNITS16)

FOR

length

CODEUNITS32

OCTETS

,

insert-string

,

start

,

CODEUNITS16

,

length

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM.

The OVERLAY function returns a string in which, beginning at start in

source-string, length of the specified code units have been deleted and insert-string

has been inserted.

source-string

An expression that specifies the source string. The expression must return a

value that is a built-in character or graphic string data type (SQLSTATE 42815).

insert-string

An expression that specifies the string to be inserted into source-string, starting

at the position identified by start. The expression must return a value that is a

built-in character or graphic string data type compatible with source-string

(SQLSTATE 22011). If the code page of the insert-string differs from that of the

source-string, insert-string is converted to the code page of the source-string.

start

An expression that returns an integer value. The integer value specifies the

starting point within the source string where the deletion of bytes and the

insertion of another string is to begin. The integer value must be between 1

and the length of source-string plus one (SQLSTATE 42815). If OCTETS is

specified and the result is graphic data, the value must be an odd number

between 1 and twice the length attribute of source-string plus one (SQLSTATE

428GC).

length

An expression that specifies the number of code units (in the specified string

units) that are to be deleted from the source string, starting at the position

identified by start. The value must be between 0 and the length of source-string,

expressed in units that are either implicitly or explicitly specified (SQLSTATE

22011). If OCTETS is specified and the result is graphic data, the value must be

an even number between 0 and twice the length attribute of source-string

(SQLSTATE 428GC).

 Not specifying length is equivalent to specifying a value of 1, except when

OCTETS is specified and the result is graphic data, in which case, not

specifying length is equivalent to specifying a value of 2.

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of start and length.

 CODEUNITS16 specifies that start and length are expressed in 16-bit UTF-16

code units. CODEUNITS32 specifies that start and length are expressed in 32-bit

UTF-32 code units. OCTETS specifies that start and length are expressed in

bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and the

result is a binary string or bit data, an error is returned (SQLSTATE 428GC). If

the string unit is specified as OCTETS, and insert-string and source-string are

binary strings, an error is returned (SQLSTATE 42815). If the string unit is

specified as OCTETS, the operation is performed in the code page of the

source-string. For more information about CODEUNITS16, CODEUNITS32, and

OCTETS, see “String units in built-in functions” in “Character strings”.

OVERLAY

Chapter 3. Functions 333

The data type of the result depends on the data types of source-string and

insert-string, as shown in the following table of supported type combinations.

 Table 35. Data type of the result as a function of the data types of source-string and

insert-string

source-string insert-string Result

CHAR or VARCHAR CHAR or VARCHAR VARCHAR

GRAPHIC or VARGRAPHIC GRAPHIC or VARGRAPHIC VARGRAPHIC

CLOB CHAR, VARCHAR, or CLOB CLOB

DBCLOB GRAPHIC, VARGRAPHIC,

or DBCLOB

DBCLOB

CHAR or VARCHAR CHAR FOR BIT DATA or

VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA

CHAR FOR BIT DATA or

VARCHAR FOR BIT DATA

CHAR, VARCHAR, CHAR

FOR BIT DATA, or

VARCHAR FOR BIT DATA

VARCHAR FOR BIT DATA

For Unicode databases only:

CHAR or VARCHAR GRAPHIC or VARGRAPHIC VARCHAR

GRAPHIC or VARGRAPHIC CHAR or VARCHAR VARGRAPHIC

CLOB GRAPHIC, VARGRAPHIC,

or DBCLOB

CLOB

DBCLOB CHAR, VARCHAR, or CLOB DBCLOB

A source-string can have a length of 0; in this case, start must be 1 and length must

be 0 (as implied by the bounds for start and length described above), and the result

of the function is a copy of the insert-string. If length is not explicitly specified in

this case, an error is returned because the assumed length is non-zero (SQLSTATE

22011).

An insert-string can also have a length of 0. This has the effect of deleting the code

units from positions start to start + length - 1 from the source-string.

The length attribute of the result is the length attribute of source-string plus the

length attribute of insert-string. The actual length of the result is A1 - MIN((A1 - V2

+ 1), V3) + A4, where:

v A1 is the actual length of source-string

v V2 is the value of start

v V3 is the value of length

v A4 is the actual length of insert-string

If the actual length of the result string exceeds the maximum for the return data

type, an error is returned (SQLSTATE 54006).

If any argument can be null, the result can be null; if any argument is null, the

result is the null value.

Examples:

v Create the strings ’INSISTING’, ’INSISERTING’, and ’INSTING’ from the string

’INSERTING’ by inserting text into the middle of the existing text.

OVERLAY

334 SQL Reference, Volume 1

SELECT OVERLAY(’INSERTING’,’IS’,4,2,OCTETS),

 OVERLAY(’INSERTING’,’IS’,4,0,OCTETS),

 OVERLAY(’INSERTING’,’’,4,2,OCTETS)

 FROM SYSIBM.SYSDUMMY1

v Create the strings ’XXINSERTING’, ’XXNSERTING’, ’XXSERTING’, and

’XXERTING’ from the string ’INSERTING’ by inserting text before the existing

text, using 1 as the starting point.

 SELECT OVERLAY(’INSERTING’,’XX’,1,0,CODEUNITS16)),

 OVERLAY(’INSERTING’,’XX’,1,1,CODEUNITS16)),

 OVERLAY(’INSERTING’,’XX’,1,2,CODEUNITS16)),

 OVERLAY(’INSERTING’,’XX’,1,3,CODEUNITS16))

 FROM SYSIBM.SYSDUMMY1

v Create the string ’ABCABCXX’ from the string ’ABCABC’ by inserting text after

the existing text. Because the source string is 6 characters long, set the starting

position to 7 (one plus the length of the source string).

 SELECT OVERLAY(’ABCABC’,’XX’,7,0,CODEUNITS16))

 FROM SYSIBM.SYSDUMMY1

v Change the string ’Hegelstraße’ to ’Hegelstrasse’.

 SELECT OVERLAY(’Hegelstraße’,’ss’,10,1,CODEUNITS16))

 FROM SYSIBM.SYSDUMMY1

v The following example works with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the combining tilde character.

This string is shown below in different Unicode encoding forms:

 ’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

Assume that the variables UTF8_VAR and UTF16_VAR contain the UTF-8 and

the UTF-16BE representations of the string, respectively. Use the OVERLAY

function to insert a ’C’ into the Unicode string ’&N~AB’.

 SELECT OVERLAY(UTF8_VAR, ’C’, 1, CODEUNITS16),

 OVERLAY(UTF8_VAR, ’C’, 1, CODEUNITS32),

 OVERLAY(UTF8_VAR, ’C’, 1, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’C?N~AB’, ’CN~AB’, and ’CbbbN~AB’, respectively, where ’?’

represents X’EDB49E’, which corresponds to the X’DD1E’ in the intermediate

UTF-16 form, and ’bbb’ replaces the UTF-8 incomplete characters X’9D849E’.

 SELECT OVERLAY(UTF8_VAR, ’C’, 5, CODEUNITS16),

 OVERLAY(UTF8_VAR, ’C’, 5, CODEUNITS32),

 OVERLAY(UTF8_VAR, ’C’, 5, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~CB’, ’&N~AC’, and ’&N~AB’, respectively.

 SELECT OVERLAY(UTF16_VAR, ’C’, 1, CODEUNITS16),

 OVERLAY(UTF16_VAR, ’C’, 1, CODEUNITS32)

 FROM SYSIBM.SYSDUMMY1

returns the values ’C?N~AB’ and ’CN~AB’, respectively, where ’?’ represents the

unmatched low surrogate U+DD1E.

 SELECT OVERLAY(UTF16_VAR, ’C’, 5, CODEUNITS16),

 OVERLAY(UTF16_VAR, ’C’, 5, CODEUNITS32)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~CB’ and ’&N~AC’, respectively.

OVERLAY

Chapter 3. Functions 335

PARAMETER

The PARAMETER function represents a position in an SQL statement where the

value is provided dynamically by XQuery as part of the invocation of the

db2-fn:sqlquery function.

�� PARAMETER (integer-constant) ��

The schema is SYSIBM.

The integer-constant is a position index to a value in the arguments of

db2-fn:sqlquery. The value must be between 1 and the total number of the

arguments specified in the db2-fn:sqlquery SQL statement (SQLSTATE 42815).

The PARAMETER function represents a position in an SQL statement where the

value is provided dynamically by XQuery as part of the invocation of the

db2-fn:sqlquery function. The argument of the PARAMETER function determines

which value is substituted for the PARAMETER function when the db2-fn:sqlquery

function is executed. The value supplied by the PARAMETER function can be

referenced multiple times within the same SQL statement.

This function can only be used in a fullselect contained in the string literal

argument of the db2-fn:sqlquery function in an XQuery expression (SQLSTATE

42887).

Example:

In the following example, the db2-fn:sqlquery function call uses one PARAMETER

function call and the XQuery expression $po/@OrderDate, the order date attribute.

The PARAMETER function call returns the value of order date attribute:

 xquery

 declare default element namespace "http://posample.org";

 for $po in db2-fn:xmlcolumn(’PURCHASEORDER.PORDER’)/PurchaseOrder,

 $item in $po/item/partid

 for $p in db2-fn:sqlquery(

 "select description from product where promostart < PARAMETER(1)",

 $po/@OrderDate)

 where $p//@pid = $item

 return

 <RESULT>

 <PoNum>{data($po/@PoNum)}</PoNum>

 <PartID>{data($item)} </PartID>

 <PoDate>{data($po/@OrderDate)}</PoDate>

 </RESULT>

The example returns the purchase ID, part ID, and the purchase date for all the

parts sold after the promotional start date.

POSITION scalar function

�� POSITION �

PARAMETER

336 SQL Reference, Volume 1

� (search-string IN source-string USING CODEUNITS16)

CODEUNITS32

OCTETS

search-string

,

source-string

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM.

The POSITION function returns the starting position of the first occurrence of one

string (called the search-string) within another string (called the source-string). If

search-string is not found and neither argument is null, the result is zero. If the

search-string is found, the result is a number from 1 to the actual length of

source-string, expressed in the string unit that is explicitly specified. The search is

done using the collation of the database, unless search-string or source-string is

defined as FOR BIT DATA, in which case the search is done using a binary

comparison.

If source-string has an actual length of 0, the result of the function is 0. If

search-string has an actual length of 0 and source-string is not null, the result of the

function is 1.

search-string

An expression that specifies the string that is the object of the search. The

expression must return a value that is a built-in character string data type,

graphic string data type, or binary string data type with an actual length that

is no greater than 4000 bytes. No element of the expression can be of type

LONG VARCHAR, CLOB, LONG VARGRAPHIC, or DBCLOB. In addition, it

cannot be a BLOB file reference variable. The expression can be specified by

any of the following:

v A constant

v A special register

v A host variable

v A scalar function whose operands are any of the above

v An expression that concatenates (using CONCAT or ||) any of the above

v An SQL procedure parameter

These rules are similar to those that are described for pattern-expression for the

LIKE predicate.

source-string

An expression that specifies the string in which the search is to take place. The

expression must return a value that is a built-in character string data type,

graphic string data type, or binary string data type. The expression can be

specified by any of the following:

v A constant

v A special register

v A host variable (including a locator variable or a file reference variable)

v A scalar function

v A large object locator

v A column name

v An expression that concatenates (using CONCAT or ||) any of the above

POSITION scalar function

Chapter 3. Functions 337

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of the result. CODEUNITS16 specifies that the result is

to be expressed in 16-bit UTF-16 code units. CODEUNITS32 specifies that the

result is to be expressed in 32-bit UTF-32 code units. OCTETS specifies that the

result is to be expressed in bytes.

 If a string unit is specified as CODEUNITS16 or CODEUNITS32, and

search-string or source-string is a binary string or bit data, an error is returned

(SQLSTATE 428GC). If a string unit is specified as OCTETS and search-string

and source-string are binary strings, an error is returned (SQLSTATE 42815).

If a locale-sensitive UCA-based collation is used for this function, then the

CODEUNITS16 option offers the best performance characteristics.

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see

“String units in built-in functions” in “Character strings”.

The first and second arguments must have compatible string types. For more

information on compatibility, see “Rules for string conversions”. In a Unicode

database, if one string argument is character (not FOR BIT DATA) and the other

string argument is graphic, then the search-string is converted to the data type of

the source-string for processing. If one argument is character FOR BIT DATA, the

other argument must not be graphic (SQLSTATE 42846).

The result of the function is a large integer. If any argument can be null, the result

can be null; if any argument is null, the result is the null value.

Examples:

v Select the RECEIVED column, the SUBJECT column, and the starting position of

the string ’GOOD BEER’ within the NOTE_TEXT column for all rows in the

IN_TRAY table that contain that string.

 SELECT RECEIVED, SUBJECT, POSITION(’GOOD BEER’, NOTE_TEXT, OCTETS)

 FROM IN_TRAY

 WHERE POSITION(’GOOD BEER’, NOTE_TEXT, OCTETS) <> 0

v Find the position of the character ’ß’ in the string ’Jürgen lives on Hegelstraße’,

and set the host variable LOCATION with the position, as measured in

CODEUNITS32 units, within the string.

 SET :LOCATION = POSITION(

 ’ß’, ’Jürgen lives on Hegelstraße’, CODEUNITS32

)

The value of host variable LOCATION is set to 26.

v Find the position of the character ’ß’ in the string ’Jürgen lives on Hegelstraße’,

and set the host variable LOCATION with the position, as measured in OCTETS,

within the string.

 SET :LOCATION = POSITION(

 ’ß’, ’Jürgen lives on Hegelstraße’, OCTETS

)

The value of host variable LOCATION is set to 27.

v The following examples work with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the non-spacing combining tilde

character. This string is shown below in different Unicode encoding forms:

 ’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

POSITION scalar function

338 SQL Reference, Volume 1

’&’ ’N’ ’~’ ’A’ ’B’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

Assume that the variable UTF8_VAR contains the UTF-8 representation of the

string.

 SELECT POSITION(’N’, UTF8_VAR, CODEUNITS16),

 POSITION(’N’, UTF8_VAR, CODEUNITS32),

 POSITION(’N’, UTF8_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 3, 2, and 5, respectively.

Assume that the variable UTF16_VAR contains the UTF-16BE representation of

the string.

 SELECT POSITION(’B’, UTF16_VAR, CODEUNITS16),

 POSITION(’B’, UTF16_VAR, CODEUNITS32),

 POSITION(’B’, UTF16_VAR, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values 6, 5, and 11, respectively.

v In a Unicode database created with the case insensitive collation

UCA500R1_LEN_S1, find the position of the word ’Brown’ in the phrase ’The

quick brown fox’.

SET :LOCATION = POSITION(’Brown’, ’The quick brown fox’, CODEUNITS16)

The value of the host variable LOCATION is set to 11.

POSSTR scalar function

�� POSSTR (source-string , search-string) ��

The schema is SYSIBM.

The POSSTR function returns the starting position of the first occurrence of one

string (called the search-string) within another string (called the source-string).

Numbers for the search-string position start at 1 (not 0).

The result of the function is a large integer. If either of the arguments can be null,

the result can be null; if either of the arguments is null, the result is the null value.

source-string

An expression that specifies the source string in which the search is to take

place.

 The expression can be specified by any one of:

v A constant

v A special register

v A global variable

v A host variable (including a locator variable or a file reference variable)

v A scalar function

v A large object locator

v A column name

v An expression concatenating any of the above

POSITION scalar function

Chapter 3. Functions 339

search-string

An expression that specifies the string that is to be searched for.

 The expression can be specified by any one of:

v A constant

v A special register

v A global variable

v A host variable

v A scalar function whose operands are any of the above

v An expression concatenating any of the above

v An SQL procedure parameter

with the restrictions that:

v No element in the expression can be of type LONG VARCHAR, CLOB,

LONG VARGRAPHIC or DBCLOB. In addition, it cannot be a BLOB file

reference variable.

v The actual length of search-string cannot be more than 4 000 bytes.

The following are examples of invalid string expressions or strings:

v SQL user-defined function parameters

v Trigger transition variables

v Local variables in dynamic compound statements

In a Unicode database, if one argument is character (not FOR BIT DATA) and the

other argument is graphic, then the search-string is converted to the data type of

the source-string for processing. If one argument is character FOR BIT DATA, the

other argument must not be graphic (SQLSTATE 42846).

Both search-string and source-string have zero or more contiguous positions. If the

strings are character or binary strings, a position is a byte. If the strings are graphic

strings, a position is a graphic (DBCS) character.

The POSSTR function accepts mixed data strings. However, POSSTR operates on a

strict byte-count basis, oblivious to the database collation and to changes between

single and multi-byte characters.

The following rules apply:

v The data types of source-string and search-string must be compatible, otherwise an

error is raised (SQLSTATE 42884).

– If source-string is a character string, then search-string must be a character

string, but not a CLOB or LONG VARCHAR, with an actual length of 32 672

bytes or less.

– If source-string is a graphic string, then search-string must be a graphic string,

but not a DBCLOB or LONG VARGRAPHIC, with an actual length of 16 336

double-byte characters or less.

– If source-string is a binary string, then search-string must be a binary string

with an actual length of 32 672 bytes or less.
v If search-string has a length of zero, the result returned by the function is 1.

v Otherwise:

– If source-string has a length of zero, the result returned by the function is zero.

– Otherwise:

POSSTR scalar function

340 SQL Reference, Volume 1

- If the value of search-string is equal to an identical length substring of

contiguous positions from the value of source-string, then the result

returned by the function is the starting position of the first such substring

within the source-string value.

- Otherwise, the result returned by the function is 0.

Example

v Select RECEIVED and SUBJECT columns as well as the starting position of the

words ’GOOD BEER’ within the NOTE_TEXT column for all entries in the

IN_TRAY table that contain these words.

 SELECT RECEIVED, SUBJECT, POSSTR(NOTE_TEXT, ’GOOD BEER’)

 FROM IN_TRAY

 WHERE POSSTR(NOTE_TEXT, ’GOOD BEER’) <> 0

POWER

�� POWER (expression1 , expression2) ��

The schema is SYSIBM. (The SYSFUN version of the POWER function continues to

be available.)

The POWER function returns the result of raising the first argument to the power

of the second argument.

The arguments can be of any built-in numeric data type. DECIMAL and REAL

arguments are converted to a double-precision floating-point number. If either

argument is decimal floating-point, the arguments are converted to DECFLOAT(34)

for processing by the function.

The result of the function is:

v INTEGER if both arguments are INTEGER or SMALLINT

v BIGINT if one argument is BIGINT and the other argument is BIGINT,

INTEGER or SMALLINT

v DECFLOAT(34) if one of the arguments is decimal floating-point. If either

argument is a DECFLOAT and one of the following statements is true, the result

is NAN and an invalid operation condition:

– Both arguments are zero

– The second argument has a non-zero fractional part

– The second argument has more than 9 digits

– The second argument is INFINITY
v DOUBLE otherwise

If the argument is a special decimal floating-point value, the rules for general

arithmetic operations for decimal floating-point apply. See “General arithmetic

operation rules for decimal floating-point” in “General arithmetic operation rules

for decimal floating-point” on page 156.

The result can be null; if any argument is null, the result is the null value.

Example:

v Assume that the host variable HPOWER is an integer with a value of 3.

 VALUES POWER(2,:HPOWER)

POSSTR scalar function

Chapter 3. Functions 341

Returns the value 8.

QUANTIZE

�� QUANTIZE (numeric-expression , exp-expression) ��

The schema is SYSIBM.

The QUANTIZE function returns a decimal floating-point value that is equal in

value (except for any rounding) and sign to numeric-expression and that has an

exponent equal to the exponent of exp-expression. The number of digits (16 or 34) is

the same as the number of digits in numeric-expression.

numeric-expression

An expression that returns a value of any built-in numeric data type. If the

argument is not a decimal floating-point value, it is converted to

DECFLOAT(34) for processing.

exp-expression

An expression that returns a value of any built-in numeric data type. If the

argument is not a decimal floating-point value, it is converted to

DECFLOAT(34) for processing. The exp-expression is used as an example pattern

for rescaling numeric-expression. The sign and coefficient of exp-expression are

ignored.

The coefficient of the result is derived from that of numeric-expression. It is rounded,

if necessary (if the exponent is being increased), multiplied by a power of ten (if

the exponent is being decreased), or remains unchanged (if the exponent is already

equal to that of exp-expression).

The CURRENT DECFLOAT ROUNDING MODE special register determines the

rounding mode.

Unlike other arithmetic operations on the decimal floating-point data type, if the

length of the coefficient after the quantize operation is greater than the precision

specified by exp-expression, the result is NaN and a warning is returned (SQLSTATE

0168D). This ensures that, unless there is a warning condition, the exponent of the

result of QUANTIZE is always equal to that of exp-expression.

v if either argument is NaN, NaN is returned

v if either argument is sNaN, NaN is returned and a warning is returned

(SQLSTATE 01565)

v if both arguments are infinity (positive or negative), infinity with the same sign

as the first argument is returned

v if one argument is infinity (positive or negative) and the other argument is not

infinity, NaN is returned and a warning is returned (SQLSTATE 0168D)

The result of the function is a DECFLOAT(16) value if both arguments are

DECFLOAT(16). Otherwise, the result of the function is a DECFLOAT(34) value.

The result can be null; if any argument is null, the result is the null value.

Examples:

v The following examples show the values that are returned by the QUANTIZE

function given a variety of input decimal floating-point values and assuming a

rounding mode of ROUND_HALF_UP:

POWER

342 SQL Reference, Volume 1

QUANTIZE(2.17, DECFLOAT(0.001)) = 2.170

QUANTIZE(2.17, DECFLOAT(0.01)) = 2.17

QUANTIZE(2.17, DECFLOAT(0.1)) = 2.2

QUANTIZE(2.17, DECFLOAT(’1E+0’)) = 2

QUANTIZE(2.17, DECFLOAT(’1E+1’)) = 0E+1

QUANTIZE(2, DECFLOAT(INFINITY)) = NaN -- warning

QUANTIZE(0, DECFLOAT(’1E+5’)) = 0E+5

QUANTIZE(217, DECFLOAT(’1E-1’)) = 217.0

QUANTIZE(217, DECFLOAT(’1E+0’)) = 217

QUANTIZE(217, DECFLOAT(’1E+1’)) = 2.2E+2

QUANTIZE(217, DECFLOAT(’1E+2’)) = 2E+2

v In the following example the value -0 is returned for the QUANTIZE function.

The CHAR function is used to avoid the potential removal of the minus sign by

a client program:

CHAR(QUANTIZE(-0.1, DECFLOAT(1))) = -0

QUARTER

�� QUARTER (expression) ��

The schema is SYSFUN.

Returns an integer value in the range 1 to 4, representing the quarter of the year

for the date specified in the argument.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

RADIANS

�� RADIANS (expression) ��

The schema is SYSIBM. (The SYSFUN version of the RADIANS function continues

to be available.)

The RADIANS function returns the number of radians for an argument that is

expressed in degrees.

The argument can be any built-in numeric data type. If the argument is decimal

floating-point, the operation is performed in decimal floating-point; otherwise, the

argument is converted to double-precision floating-point for processing by the

function.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is a double-precision floating-point number. The result can be null; if the argument

is null, the result is the null value.

Example:

QUANTIZE

Chapter 3. Functions 343

v Assume that host variable HDEG is an INTEGER with a value of 180. The

following statement:

 VALUES RADIANS(:HDEG)

Returns the value +3.14159265358979E+000.

RAISE_ERROR

�� RAISE_ERROR (sqlstate , diagnostic-string) ��

The schema is SYSIBM.

The RAISE_ERROR function causes the statement that includes the function to

return an error with the specified SQLSTATE, SQLCODE -438, and diagnostic-string.

The RAISE_ERROR function always returns NULL with an undefined data type. In

a Unicode database, if a supplied argument is a graphic string, it is first converted

to a character string before the function is executed.

sqlstate

A character string containing exactly 5 bytes. It must be of type CHAR defined

with a length of 5 or type VARCHAR defined with a length of 5 or greater.

The sqlstate value must follow the rules for application-defined SQLSTATEs as

follows:

v Each character must be from the set of digits (’0’ through ’9’) or

non-accented upper case letters (’A’ through ’Z’)

v The SQLSTATE class (first two characters) cannot be ’00’, ’01’ or ’02’ since

these are not error classes.

v If the SQLSTATE class (first two characters) starts with the character ’0’

through ’6’ or ’A’ through ’H’, then the subclass (last three characters) must

start with a letter in the range ’I’ through ’Z’

v If the SQLSTATE class (first two characters) starts with the character ’7’, ’8’,

’9’ or ’I’ though ’Z’, then the subclass (last three characters) can be any of ’0’

through ’9’ or ’A’ through ’Z’.

If the SQLSTATE does not conform to these rules an error occurs (SQLSTATE

428B3).

diagnostic-string

An expression of type CHAR or VARCHAR that returns a character string of

up to 70 bytes that describes the error condition. If the string is longer than 70

bytes, it will be truncated.

To use this function in a context where the rules for result data types do not apply

(such as alone in a select list), a cast specification must be used to give the null

returned value a data type. A CASE expression is where the RAISE_ERROR

function will be most useful.

Example:

List employee numbers and education levels as Post Graduate, Graduate and

Diploma. If an education level is greater than 20, raise an error.

 SELECT EMPNO,

 CASE WHEN EDUCLVL < 16 THEN ’Diploma’

 WHEN EDUCLVL < 18 THEN ’Graduate’

 WHEN EDUCLVL < 21 THEN ’Post Graduate’

RADIANS

344 SQL Reference, Volume 1

ELSE RAISE_ERROR(’70001’,

 ’EDUCLVL has a value greater than 20’)

 END

 FROM EMPLOYEE

RAND

�� RAND ()

expression
 ��

The schema is SYSFUN.

The RAND function returns a floating point value between 0 and 1.

If an expression is specified, it is used as the seed value. The expression must be a

built-in SMALLINT or INTEGER data type with a value between 0 and

2 147 483 647.

The data type of the result is double-precision floating point. If the argument is

null, the result is the null value.

A specific seed value will produce the same sequence of random numbers for a

specific instance of a RAND function in a query each time the query is executed. If

a seed value is not specified, a different sequence of random numbers is produced

each time the query is executed within the same session. To produce a set of

random numbers that varies from session to session, specify a random seed; for

example, one that is based on the current time.

RAND is a non-deterministic function.

REAL

�� REAL (numeric-expression) ��

The schema is SYSIBM.

The REAL function returns a single-precision floating-point representation of a

number.

The argument is an expression that returns a value of any built-in numeric data

type.

The result of the function is a single-precision floating-point number. If the

argument can be null, the result can be null; if the argument is null, the result is

the null value.

The result is the same number that would occur if the argument were assigned to

a single-precision floating-point column or variable.

Example:

Using the EMPLOYEE table, find the ratio of salary to commission for employees

whose commission is not zero. The columns involved (SALARY and COMM) have

DECIMAL data types. The result is desired in single-precision floating point.

RAISE_ERROR

Chapter 3. Functions 345

Therefore, REAL is applied to SALARY so that the division is carried out in

floating point (actually double-precision) and then REAL is applied to the complete

expression to return the result in single-precision floating point.

 SELECT EMPNO, REAL(REAL(SALARY)/COMM)

 FROM EMPLOYEE

 WHERE COMM > 0

REC2XML

�� REC2XML (decimal-constant , format-string , row-tag-string �

�

�

,

column-name

)

��

The schema is SYSIBM.

The REC2XML function returns a string formatted with XML tags, containing

column names and column data. In a Unicode database, if a supplied argument is

a graphic string, it is first converted to a character string before the function is

executed.

decimal-constant

The expansion factor for replacing column data characters. The decimal value

must be greater than 0.0 and less than or equal to 6.0. (SQLSTATE 42820).

 The decimal-constant value is used to calculate the result length of the function.

For every column with a character data type, the length attribute of the

column is multiplied by this expansion factor before it is added in to the result

length.

To specify no expansion, use a value of 1.0. Specifying a value less than 1.0

reduces the calculated result length. If the actual length of the result string is

greater than the calculated result length of the function, then an error is raised

(SQLSTATE 22001).

format-string

The string constant that specifies which format the function is to use during

execution.

 The format-string is case-sensitive, so the following values must be specified in

uppercase to be recognized.

COLATTVAL or COLATTVAL_XML

These formats return a string with columns as attribute values.

�� < row-tag-string > �

�

�

<

column-name

=

″column-name″

>

column-value

</

column

>

null=″true″

/>

�

REAL

346 SQL Reference, Volume 1

� </ row-tag-string > ��

 Column names may or may not be valid XML attribute values. For column

names which are not valid XML attribute values, character replacement is

performed on the column name before it is included in the result string.

Column values may or may not be valid XML element names. If the

format-string COLATTVAL is specified, then for the column names which are

not valid XML element values, character replacement is performed on the

column value before it is included in the result string. If the format-string

COLATTVAL_XML is specified, then character replacement is not performed

on column values (although character replacement is still performed on

column names).

row-tag-string

A string constant that specifies the tag used for each row. If an empty string is

specified, then a value of ’row’ is assumed.

 If a string of one or more blank characters is specified, then no beginning

row-tag-string or ending row-tag-string (including the angle bracket delimiters)

will appear in the result string.

column-name

A qualified or unqualified name of a table column. The column must have one

of the following data types (SQLSTATE 42815):

v numeric (SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE)

v character string (CHAR, VARCHAR; a character string with a subtype of BIT

DATA is not allowed)

v datetime (DATE, TIME, TIMESTAMP)

v a user-defined type based on one of the above types

The same column name cannot be specified more than once (SQLSTATE

42734).

The result of the function is VARCHAR. The maximum length is 32 672 bytes

(SQLSTATE 54006).

Consider the following invocation:

 REC2XML (dc, fs, rt, c1, c2, ..., cn)

If the value of ″fs″ is either ″COLATTVAL″ or ″COLATTVAL_XML″, then the result

is the same as this expression:

’<’ CONCAT rt CONCAT ’>’ CONCAT y1

CONCAT y2

CONCAT ... CONCAT yn

CONCAT ’</’ CONCAT rt CONCAT ’>’

where yn

is equivalent to:

’<column name="’ CONCAT xvcn

CONCAT vn

and vn is equivalent to:

’">’ CONCAT rn

CONCAT ’</column>’

if the column is not null, and

’" null="true"/>’

if the column value is null.

REC2XML

Chapter 3. Functions 347

xvcn

is equivalent to a string representation of the column name of cn, where any

characters appearing in Table 37 are replaced with the corresponding

representation. This ensures that the resulting string is a valid XML attribute or

element value token.

The rn

is equivalent to a string representation as indicated in Table 36

 Table 36. Column Values String Result

Data type of cn

rn

CHAR, VARCHAR The value is a string. If the format-string does

not end in the characters ″_XML″, then each

character in cn

is replaced with the

corresponding replacement representation

from Table 37, as indicated. The length

attribute is: dc * the length attribute of cn.

SMALLINT, INTEGER, BIGINT, DECIMAL,

NUMERIC, REAL, DOUBLE

The value is LTRIM(RTRIM(CHAR(cn))). The

length attribute is the result length of

CHAR(cn). The decimal character is always

the period (’.’) character.

DATE The value is CHAR(cn,ISO). The length

attribute is the result length of

CHAR(cn,ISO).

TIME The value is CHAR(cn,JIS). The length

attribute is the result length of CHAR(cn,JIS)

TIMESTAMP The value is CHAR(cn). The length attribute

is the result length of CHAR(cn).

Character replacement:

Depending on the value specified for the format-string, certain characters in column

names and column values will be replaced to ensure that the column names form

valid XML attribute values and the column values form valid XML element values.

 Table 37. Character Replacements for XML Attribute Values and Element Values

Character Replacement

< <

> >

″ "

& &

’ '

Examples:

Note: REC2XML does not insert blank spaces or new line characters in the output.

All example output has been formatted to enhance readability.

v Using the DEPARTMENT table in the sample database, format the department

table row, except the DEPTNAME and LOCATION columns, for department

’D01’ into an XML string. Since the data does not contain any of the characters

which require replacement, the expansion factor will be 1.0 (no expansion). Also

note that the MGRNO value is null for this row.

REC2XML

348 SQL Reference, Volume 1

SELECT REC2XML (1.0, ’COLATTVAL’, ’’, DEPTNO, MGRNO, ADMRDEPT)

 FROM DEPARTMENT

 WHERE DEPTNO = ’D01’

This example returns the following VARCHAR(117) string:

 <row>

 <column name="DEPTNO">D01</column>

 <column name="MGRNO" null="true"/>

 <column name="ADMRDEPT">A00</column>

 </row>

v A 5-day university schedule introduces a class named ’&43<FIE’ to a table called

CL_SCHED, with a new format for the CLASS_CODE column. Using the

REC2XML function, this example formats an XML string with this new class

data, except for the class end time.

The length attribute for the REC2XML call (see below) with an expansion factor

of 1.0 would be 128 (11 for the ’<row>’ and ’</row>’ overhead, 21 for the

column names, 75 for the ’<column name=’, ’>’, ’</column>’ and double quotes,

7 for the CLASS_CODE data, 6 for the DAY data, and 8 for the STARTING data).

Since the ’&’ and ’<’ characters will be replaced, an expansion factor of 1.0 will

not be sufficient. The length attribute of the function will need to support an

increase from 7 to 14 bytes for the new format CLASS_CODE data.

However, since it is known that the DAY value will never be more than 1 digit

long, an unused extra 5 units of length are added to the total. Therefore, the

expansion only needs to handle an increase of 2. Since CLASS_CODE is the only

character string column in the argument list, this is the only column data to

which the expansion factor applies. To get an increase of 2 for the length, an

expansion factor of 9/7 (approximately 1.2857) would be needed. An expansion

factor of 1.3 will be used.

 SELECT REC2XML (1.3, ’COLATTVAL’, ’record’, CLASS_CODE, DAY, STARTING)

 FROM CL_SCHED

 WHERE CLASS_CODE = ’&43<FIE’

This example returns the following VARCHAR(167) string:

 <record>

 <column name="CLASS_CODE">&43<FIE</column>

 <column name="DAY">5</column>

 <column name="STARTING">06:45:00</column>

 </record>

v Assume that new rows have been added to the EMP_RESUME table in the

sample database. The new rows store the resumes as strings of valid XML. The

COLATTVAL_XML format-string is used so character replacement will not be

carried out. None of the resumes are more than 3500 bytes in length. The

following query is used to select the XML version of the resumes from the

EMP_RESUME table and format it into an XML document fragment.

 SELECT REC2XML (1.0, ’COLATTVAL_XML’, ’row’, EMPNO, RESUME_XML)

 FROM (SELECT EMPNO, CAST(RESUME AS VARCHAR(3500)) AS RESUME_XML

 FROM EMP_RESUME

 WHERE RESUME_FORMAT = ’XML’)

 AS EMP_RESUME_XML

This example returns a row for each employee who has a resume in XML

format. Each returned row will be a string with the following format:

 <row>

 <column name="EMPNO">{employee number}</column>

 <column name="RESUME_XML">{resume in XML}</column>

 </row>

REC2XML

Chapter 3. Functions 349

Where ″{employee number}″ is the actual EMPNO value for the column and

″{resume in XML}″ is the actual XML fragment string value that is the resume.

REPEAT

�� REPEAT (expression , expression) ��

The schema is SYSFUN.

Returns a character string composed of the first argument repeated the number of

times specified by the second argument. In a Unicode database, if a supplied

argument is a graphic string, it is first converted to a character string before the

function is executed.

The first argument is a character string or binary string type. For a VARCHAR the

maximum length is 4000 bytes and for a CLOB or a binary string the maximum

length is 1 048 576 bytes. The second argument can be SMALLINT or INTEGER.

The result of the function is:

v VARCHAR(4000) if the first argument is VARCHAR (not exceeding 4000 bytes)

or CHAR

v CLOB(1M) if the first argument is CLOB or LONG VARCHAR

v BLOB(1M) if the first argument is BLOB.

The result can be null; if any argument is null, the result is the null value.

Example:

v List the phrase ’REPEAT THIS’ five times.

 VALUES CHAR(REPEAT(’REPEAT THIS’, 5), 60)

This example return the following:

1

--

REPEAT THISREPEAT THISREPEAT THISREPEAT THISREPEAT THIS

As mentioned, the output of the REPEAT function is VARCHAR(4000). For this

example, the CHAR function has been used to limit the output of REPEAT to 60

bytes.

REPLACE

�� REPLACE (source-string , search-string , replace-string) ��

The schema is SYSIBM. The SYSFUN version of the REPLACE function continues

to be available but it is not sensitive to the database collation.

Replaces all occurrences of search-string in source-string with replace-string. If

search-string is not found in source-string, search-string is returned unchanged. The

search is done using the collation of the database unless source-string, search-string

or replace-string is defined as FOR BIT DATA, in which case the search is done

using a binary comparison.

REC2XML

350 SQL Reference, Volume 1

source-string

An expression that specifies the source string. The expression must return a

value that is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type.

search-string

An expression that specifies the string to be removed from the source string.

The expression must return a value that is a CHAR, VARCHAR, GRAPHIC, or

VARGRAPHIC data type.

replace-string

An expression that specifies the replacement string. The expression must return

a value that is a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data type. If

the expression is an empty string, nothing replaces the string that is removed

from the source string.

The actual length of each string must be 32 672 bytes or less for character strings,

or 16 336 or less for graphic strings. All three arguments must have compatible

data types.

If source-string, search-string or replace-string is defined as FOR BIT DATA, the result

is VARCHAR FOR BIT DATA. If source-string is a character string, the result is

VARCHAR. If source-string is a graphic string, the result is VARGRAPHIC. If one

argument is character FOR BIT DATA, the other arguments must not be graphic

(SQLSTATE 42846).

The length attribute of the result depends on the arguments:

v If the length attribute of replace-string is less than or equal to the length attribute

of search-string, the length attribute of the result is the length attribute of

source-string.

v If the length attribute of replace-string is greater than the length attribute of

search-string, the length attribute of the result is determined as follows,

depending on the data type of the result:

– For VARCHAR:

- If L1 < = 4000, the length attribute of the result is MIN(4000, (L3*(L1/L2))

+ MOD(L1,L2))

- Otherwise, the length attribute of the result is MIN(32672, (L3*(L1/L2)) +

MOD(L1,L2))

– For VARGRAPHIC:

- If L1 < = 2000, the length attribute of the result is MIN(2000, (L3*(L1/L2))

+ MOD(L1,L2))

- Otherwise, the length attribute of the result is MIN(16336, (L3*(L1/L2)) +

MOD(L1,L2))

where:

– L1 is the length attribute of source-string

– L2 is the length attribute of the search-string if the search string is a string

constant. Otherwise, L2 is 1.

– L3 is the length attribute of replace-string

If the result is a character string, the length attribute of the result must not exceed

32 672. If the result is a graphic string, the length attribute of the result must not

exceed 16 336.

REPLACE

Chapter 3. Functions 351

The actual length of the result is the actual length of source-string plus the number

of occurrences of search-string that exist in source-string multiplied by the actual

length of replace-string minus the actual length of search-string.

If the actual length of the replace-string exceeds the maximum for the return data

type, an error is returned. If any argument can be null, the result can be null; if

any argument is null, the result is the null value.

Examples:

v Replace all occurrences of the letter ’N’ in the word ’DINING’ with ’VID’.

 VALUES CHAR (REPLACE (’DINING’, ’N’, ’VID’), 10)

The result is the string ’DIVIDIVIDG’.

v In a Unicode database with case-insensitive collation UCA500R1_LEN_S1,

replace the word ’QUICK’ with the word ’LARGE’.

VALUES REPLACE (’The quick brown fox’, ’QUICK’, ’LARGE’)

The result is the string ’The LARGE brown fox’.

RID_BIT and RID

�� RID_BIT

RID
 (table-designator) ��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The RID_BIT and RID functions return the row identifier (RID) of a row in

different formats. The RID is used to uniquely identify a row. Each function might

return different values when it is invoked multiple times against a row. For

example, after the reorg utility is run against a table, the RID_BIT and RID

functions might return different values for a row than would have been returned

prior to running the utility. The RID_BIT and RID functions are not deterministic.

The RID_BIT function result, unlike the RID function, contains table information to

protect from inadvertently using it with a different table. The RID function is not

supported in a partitioned database environment.

table-designator

Uniquely identifies a base table, view, or nested table expression (SQLSTATE

42867). If table-designator specifies a view or nested table expression, the

RID_BIT and RID functions return the RID of the base table of the view or

nested table expression. The specified view or nested table expression must

contain only one base table in its outer subselect (SQLSTATE 42867). The

table-designator must be deletable (SQLSTATE 42703). For information about

deletable views, see the “Notes” section of “CREATE VIEW”.

The result of the RID_BIT function is VARCHAR (16) FOR BIT DATA. The result

can be null. The result of the RID function is BIGINT. The result can be null.

Notes:

v To implement optimistic locking in an application, use the values returned by

the ROW CHANGE TOKEN expression as arguments to the RID_BIT scalar

function.

Examples:

REPLACE

352 SQL Reference, Volume 1

v Return the RID and last name of employees in department 20 from the

EMPLOYEE table.

 SELECT RID_BIT (EMPLOYEE), ROW CHANGE TOKEN FOR EMPLOYEE, LASTNAME

 FROM EMPLOYEE

 WHERE DEPTNO = ’20’

v Given table EMP1, which is defined as follows:

 CREATE TABLE EMP1 (

 EMPNO CHAR(6),

 NAME CHAR(30),

 SALARY DECIMAL(9,2),

 PICTURE BLOB(250K),

 RESUME CLOB(32K)

)

Set host variable HV_EMP_RID to the value of the RID_BIT built-in scalar

function, and HV_EMP_RCT to the value of the ROW CHANGE TOKEN

expression for the row corresponding to employee number 3500.

 SELECT RID_BIT(EMP1), ROW CHANGE TOKEN FOR EMP1

 INTO :HV_EMP_RID, :HV_EMP_RCT FROM EMP1

 WHERE EMPNO = ’3500’

Using that RID value to identify the employee, and user-defined function

UPDATE_RESUME, increase the employee’s salary by $1000 and update the

employee’s resume.

 UPDATE EMP1 SET

 SALARY = SALARY + 1000,

 RESUME = UPDATE_RESUME(:HV_RESUME)

 WHERE RID_BIT(EMP1) = :HV_EMP_RID

 AND ROW CHANGE TOKEN FOR EMP1 = :HV_EMP_RCT

RIGHT

�� RIGHT (string-expression , length)

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM. The SYSFUN version of the RIGHT function continues to

be available.

The RIGHT function returns the rightmost string of string-expression of length

length, expressed in the specified string unit. If string-expression is a character string,

the result is a character string. If string-expression is a graphic string, the result is a

graphic string

string-expression

An expression that specifies the string from which the result is derived. The

expression must return a value that is a built-in character or graphic string

data type (SQLSTATE 42815). A substring of string-expression is zero or more

contiguous code points of string-expression.

length

An expression that specifies the length of the result. The result must be a

built-in integer data type (SQLSTATE 42815). The value must be between 0 and

the length of string-expression, expressed in units that are either implicitly or

explicitly specified (SQLSTATE 22011). If OCTETS is specified and the result is

RID_BIT and RID

Chapter 3. Functions 353

graphic data, the value must be an even number between 0 and twice the

length attribute of string-expression (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of length.

 CODEUNITS16 specifies that length is expressed in 16-bit UTF-16 code units.

CODEUNITS32 specifies that length is expressed in 32-bit UTF-32 code units.

OCTETS specifies that length is expressed in bytes.

If the string unit is specified as CODEUNITS16 or CODEUNITS32, and

string-expression is a binary string or bit data, an error is returned (SQLSTATE

428GC). If the string unit is specified as OCTETS and string-expression is a

graphic string, length must be an even number; otherwise, an error is returned

(SQLSTATE 428GC). If a string unit is not explicitly specified, the data type of

the result determines the unit that is used. If the result is graphic data, length is

expressed in two-byte units; otherwise, it is expressed in bytes. For more

information about CODEUNITS16, CODEUNITS32, and OCTETS, see “String

units in built-in functions” in “Character strings”.

The string-expression is padded on the right with the necessary number of padding

characters so that the specified substring of string-expression always exists. The

character used for padding is the same character that is used to pad the string in

contexts where padding would occur. For more information on padding, see

“String assignments” in “Assignments and comparisons”.

The result of the function is a varying-length string with a length attribute that is

the same as the length attribute of string-expression and a data type that depends

on the data type of string-expression:

v VARCHAR if string-expression is CHAR or VARCHAR

v CLOB if string-expression is CLOB

v VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC

v DBCLOB if string-expression is DBCLOB

The actual length of the result (in string units) is length.

If any argument can be null, the result can be null; if any argument is null, the

result is the null value.

Examples:

v Assume that variable ALPHA has a value of ’ABCDEF’. The following

statement:

 SELECT RIGHT(ALPHA,3)

 FROM SYSIBM.SYSDUMMY1

returns ’DEF’, which are the three rightmost characters in ALPHA.

v Assume that variable NAME, which is defined as VARCHAR(50), has a value of

’KATIE AUSTIN’, and that the integer variable LASTNAME_LEN has a value of

6. The following statement:

 SELECT RIGHT(NAME,LASTNAME_LEN)

 FROM SYSIBM.SYSDUMMY1

returns the value ’AUSTIN’.

v The following statement returns a zero-length string.

 SELECT RIGHT(’ABCABC’,0)

 FROM SYSIBM.SYSDUMMY1

RIGHT

354 SQL Reference, Volume 1

v The FIRSTNME column in the EMPLOYEE table is defined as VARCHAR(12).

Find the first name of an employee whose last name is ’BROWN’ and return the

first name in a 10-byte string.

 SELECT RIGHT(FIRSTNME, 10)

 FROM EMPLOYEE

 WHERE LASTNAME = ’BROWN’

returns a VARCHAR(12) string that has the value ’DAVID’ followed by five

blank characters.

v In a Unicode database, FIRSTNAME is a VARCHAR(12) column. One of its

values is the 6-character string ’Jürgen’. When FIRSTNAME has this value:

 Function... Returns...

 RIGHT(FIRSTNAME,5,CODEUNITS32) ’ürgen’ -- x’C3BC7267656E’

 RIGHT(FIRSTNAME,5,CODEUNITS16) ’ürgen’ -- x’C3BC7267656E’

 RIGHT(FIRSTNAME,5,OCTETS) ’rgen’ -- x’207267656E’, a truncated string

v The following example works with the Unicode string ’&N~AB’, where ’&’ is

the musical symbol G clef character, and ’~’ is the combining tilde character.

This string is shown below in different Unicode encoding forms:

 ’&’ ’N’ ’~’ ’A’ ’B’

UTF-8 X’F09D849E’ X’4E’ X’CC83’ X’41’ X’42’

UTF-16BE X’D834DD1E’ X’004E’ X’0303’ X’0041’ X’0042’

Assume that the variable UTF8_VAR, with a length attribute of 20 bytes,

contains the UTF-8 representation of the string.

 SELECT RIGHT(UTF8_VAR, 2, CODEUNITS16),

 RIGHT(UTF8_VAR, 2, CODEUNITS32),

 RIGHT(UTF8_VAR, 2, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’AB’, ’AB’, and ’AB’, respectively.

 SELECT RIGHT(UTF8_VAR, 5, CODEUNITS16),

 RIGHT(UTF8_VAR, 5, CODEUNITS32),

 RIGHT(UTF8_VAR, 5, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’?N~AB’, ’&N~AB’, and ’N~AB’, respectively, where ’?’ is

X’EDB49E’.

 SELECT RIGHT(UTF8_VAR, 10, CODEUNITS16),

 RIGHT(UTF8_VAR, 10, CODEUNITS32),

 RIGHT(UTF8_VAR, 10, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~ABbbbb’, ’&N~ABbbbbb’, and ’&N~ABb’, respectively,

where ’b’ represents the blank character.

Assume that the variable UTF16_VAR, with a length attribute of 20 code units,

contains the UTF-16BE representation of the string.

 SELECT RIGHT(UTF16_VAR, 2, CODEUNITS16),

 RIGHT(UTF16_VAR, 2, CODEUNITS32),

 RIGHT(UTF16_VAR, 2, OCTETS))

 FROM SYSIBM.SYSDUMMY1

returns the values ’AB’, ’AB’, and ’B’, respectively.

RIGHT

Chapter 3. Functions 355

SELECT RIGHT(UTF16_VAR, 5, CODEUNITS16),

 RIGHT(UTF16_VAR, 5, CODEUNITS32),

 RIGHT(UTF16_VAR, 6, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’?N~AB’, ’&N~AB’, and ’~AB’, respectively, where ’?’ is the

standalone low surrogate X’DD1E’.

 SELECT RIGHT(UTF16_VAR, 10, CODEUNITS16),

 RIGHT(UTF16_VAR, 10, CODEUNITS32),

 RIGHT(UTF16_VAR, 10, OCTETS)

 FROM SYSIBM.SYSDUMMY1

returns the values ’&N~ABbbbb’, ’&N~ABbbbbb’, and ’?N~AB’, respectively,

where ’b’ represents the blank character and ’?’ is X’DD1E’.

ROUND

�� ROUND (expression1 , expression2) ��

The schema is SYSIBM. (The SYSFUN version of the ROUND function continues to

be available.)

The ROUND function returns expression1 rounded to expression2 places to the right

of the decimal point if expression2 is positive, or to the left of the decimal point if

expression2 is zero or negative.

If expression1 is positive, a digit value of 5 or greater is an indication to round to

the next higher positive number. For example, ROUND(3.5,0) = 4. If expression1 is

negative, a digit value of 5 or greater is an indication to round to the next lower

negative number. For example, ROUND(-3.5,0) = -4.

expression1

An expression that returns a value of any built-in numeric data type.

expression2

An expression that returns a small or large integer. When the value of

expression2 is not negative, it specifies rounding to that number of places to the

right of the decimal separator. When the value of expression2 is negative, it

specifies rounding to the absolute value of expression2 places to the left of the

decimal separator.

 If expression2 is not negative, expression1 is rounded to the absolute value of

expression2 number of places to the right of the decimal point. If the value of

expression2 is greater than the scale of expression1 then the value is unchanged

except that the result value has a precision that is larger by 1. For example,

ROUND(748.58,5) = 748.58 where the precision is now 6 and the scale remains

2.

If expression2 is negative, expression1 is rounded to the absolute value of

expression2+1 number of places to the left of the decimal point.

If the absolute value of a negative expression2 is larger than the number of

digits to the left of the decimal point, the result is 0. For example,

ROUND(748.58,-4) = 0.

The data type and length attribute of the result are the same as the data type and

length attribute of the first argument, except that the precision is increased by one

if the expression1 is DECIMAL and the precision is less than 31.

RIGHT

356 SQL Reference, Volume 1

For example, an argument with a data type of DECIMAL(5,2) results in

DECIMAL(6,2). An argument with a data type of DECIMAL(31,2) results in

DECIMAL(31,2). The scale is the same as the scale of the first argument.

If either argument can be null or if the argument is not a decimal floating-point

number and the database is configured with DFT_SQLMATHWARN set to YES,

the result can be null. If either argument is null, the result is the null value.

This function is not affected by the setting of the CURRENT DECFLOAT

ROUNDING MODE special register, even for decimal floating-point arguments.

The rounding behavior of ROUND corresponds to a value of ROUND_HALF_UP.

If you want behavior for a decimal floating-point value that conforms to the

rounding mode specified by the CURRENT DECFLOAT ROUNDING MODE

special register, use the QUANTIZE function instead.

Examples:

Calculate the value of 873.726, rounded to 2, 1, 0, -1, -2, -3, and -4 decimal places,

respectively.

 VALUES (

 ROUND(873.726, 2),

 ROUND(873.726, 1),

 ROUND(873.726, 0),

 ROUND(873.726,-1),

 ROUND(873.726,-2),

 ROUND(873.726,-3),

 ROUND(873.726,-4))

This example returns:

1 2 3 4 5 6 7

--------- --------- --------- --------- --------- --------- ---------

 873.730 873.700 874.000 870.000 900.000 1000.000 0.000

Calculate using both positive and negative numbers.

 VALUES (

 ROUND(3.5, 0),

 ROUND(3.1, 0),

 ROUND(-3.1, 0),

 ROUND(-3.5,0))

This example returns:

1 2 3 4

---- ---- ---- ----

 4.0 3.0 -3.0 -4.0

Calculate the decimal floating-point number 3.12350 rounded to three decimal

places.

 VALUES (

 ROUND(DECFLOAT(’3.12350’), 3))

This example returns:

1

3.12400

ROUND

Chapter 3. Functions 357

RTRIM

�� RTRIM (string-expression) ��

The schema is SYSIBM. (The SYSFUN version of this function continues to be

available with support for LONG VARCHAR and CLOB arguments.)

The RTRIM function removes blanks from the end of string-expression.

The argument can be a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC data

type.

v If the argument is a graphic string in a DBCS or EUC database, then the trailing

double byte blanks are removed.

v If the argument is a graphic string in a Unicode database, then the trailing

UCS-2 blanks are removed.

v Otherwise, the trailing single byte blanks are removed.

The result data type of the function is:

v VARCHAR if the data type of string-expression is VARCHAR or CHAR

v VARGRAPHIC if the data type of string-expression is VARGRAPHIC or

GRAPHIC

The length parameter of the returned type is the same as the length parameter of

the argument data type.

The actual length of the result for character strings is the length of string-expression

minus the number of bytes removed for blank characters. The actual length of the

result for graphic strings is the length (in number of double byte characters) of

string-expression minus the number of double byte blank characters removed. If all

of the characters are removed, the result is an empty, varying-length string (length

is zero).

If the argument can be null, the result can be null; if the argument is null, the

result is the null value.

Example: Assume that host variable HELLO is defined as CHAR(9) and has a

value of ’Hello’.

 VALUES RTRIM(:HELLO)

The result is ’Hello’.

SECLABEL

�� SECLABEL (security-policy-name , security-label-string) ��

The schema is SYSIBM.

The SECLABEL function returns an unnamed security label with a data type of

DB2SECURITYLABEL. Use the SECLABEL function to insert a security label with

given component values without having to create a named security label.

RTRIM

358 SQL Reference, Volume 1

security-policy-name

A string that specifies a security policy that exists at the current server

(SQLSTATE 42704). The string must be a character or graphic string constant or

host variable.

security-label-string

An expression that returns a valid representation of a security label for the

security policy named by security-policy-name (SQLSTATE 4274I). The

expression must return a value that is a built-in CHAR, VARCHAR,

GRAPHIC, or VARGRAPHIC data type.

Examples:

v The following statement inserts a row in table REGIONS which is protected by

the security policy named CONTRIBUTIONS. The security label for the row to

be inserted is given by the SECLABEL function. The security policy

CONTRIBUTIONS has two components. The security label given has the

element LIFE MEMBER for first component, the elements BLUE and YELLOW

for the second component.

 INSERT INTO REGIONS

 VALUES (SECLABEL(’CONTRIBUTIONS’, ’LIFE MEMBER:(BLUE,YELLOW)’),

 1, ’Northeast’)

v The following statement inserts a row in table CASE_IDS which is protected by

the security policy named TS_SECPOLICY, which has three components. The

security label is provided by the SECLABEL function. The security label inserted

has the element HIGH PROFILE for the first component, the empty value for the

second component and the element G19 for the third component.

 INSERT INTO CASE_IDS

 VALUES (SECLABEL(’TS_SECPOLICY’, ’HIGH PROFILE:():G19’) , 3, ’KLB’)

SECLABEL_BY_NAME

�� SECLABEL_BY_NAME (security-policy-name , security-label-name) ��

The schema is SYSIBM.

The SECLABEL_BY_NAME function returns the specified security label. The

security label returned has a data type of DB2SECURITYLABEL. Use this function

to insert a named security label.

security-policy-name

A string that specifies a security policy that exists at the current server

(SQLSTATE 42704). The string must be a character or graphic string constant or

host variable.

security-label-name

An expression that returns the name of a security label that exists at the

current server for the security policy named by security-policy-name (SQLSTATE

4274I). The expression must return a value that is a built-in CHAR, VARCHAR,

GRAPHIC, or VARGRAPHIC data type.

Examples:

v User Tina is trying to insert a row in table REGIONS which is protected by the

security policy named CONTRIBUTIONS. Tina wants the row to be protected by

the security label named EMPLOYEESECLABEL. This statement fails because

CONTRIBUTIONS.EMPLOYEESECLABEL is an unknown identifier:

SECLABEL

Chapter 3. Functions 359

INSERT INTO REGIONS

 VALUES (CONTRIBUTIONS.EMPLOYEESECLABEL, 1, ’Southwest’) -- incorrect

This statement fails because the first value is a string, it does not have a data

type of DB2SECURITYLABEL:

 INSERT INTO REGIONS

 VALUES (’CONTRIBUTIONS.EMPLOYEESECLABEL’, 1, ’Southwest’) -- incorrect

This statement succeeds because the SECLABEL_BY_NAME function returns a

security label that has a data type of DB2SECURITYLABEL:

 INSERT INTO REGIONS

 VALUES (SECLABEL_BY_NAME(’CONTRIBUTIONS’, ’EMPLOYEESECLABEL’),

 1, ’Southwest’) -- correct

SECLABEL_TO_CHAR

�� SECLABEL_TO_CHAR (security-policy-name , security-label) ��

The schema is SYSIBM.

The SECLABEL_TO_CHAR function accepts a security label and returns a string

that contains all elements in the security label. The string is in the security label

string format.

security-policy-name

A string that specifies a security policy that exists at the current server

(SQLSTATE 42704). The string must be a character or graphic string constant or

host variable.

security-label

An expression that returns a security label value that is valid for the security

policy named by security-policy-name (SQLSTATE 4274I). The expression must

return a value that is a built-in SYSPROC.DB2SECURITYLABEL distinct type.

Notes

v If the authorization ID of the statement executes this function on a security label

being read from a column with a data type of DB2SECURITYLABEL then that

authorization ID’s LBAC credentials might affect the output of the function. In

such a case an element is not included in the output if the authorization ID does

not have read access to that element. An authorization ID has read access to an

element if its LBAC credentials would allow it to read data that was protected

by a security label containing only that element, and no others.

For the rule set DB2LBACRULES only components of type TREE can contain

elements that you do not have read access to. For other types of component, if

any one of the elements block read access then you will not be able to read the

row at all. So only components of type tree will have elements excluded in this

way.

Example:

v The EMP table has two columns, RECORDNUM and LABEL; RECORDNUM

has data type INTEGER, and LABEL has type DB2SECURITYLABEL. Table EMP

is protected by security policy DATA_ACCESSPOLICY, which uses the

DB2LBACRULES rule set and has only one component (GROUPS, of type

SECLABEL_BY_NAME

360 SQL Reference, Volume 1

TREE). GROUPS has five elements: PROJECT, TEST, DEVELOPMENT,

CURRENT, AND FIELD. The following diagram shows the relationship of these

elements to one another:

 PROJECT

 ________|________

 | |

 TEST DEVELOPMENT

 ______|______

 | |

 CURRENT FIELD

The EMP table contains the following data:

RECORDNUM LABEL

--------- ----------------

 1 PROJECT

 2 (TEST, FIELD)

 3 (CURRENT, FIELD)

Djavan holds a security label for reading that contains only the DEVELOPMENT

element. This means that Djavan has read access to the DEVELOPMENT,

CURRENT, and FIELD elements:

 SELECT RECORDNUM, SECLABEL_TO_CHAR(’DATA_ACCESSPOLICY’, LABEL) FROM EMP

returns:

RECORDNUM LABEL

--------- ----------------

 2 FIELD

 3 (CURRENT, FIELD)

The row with a RECORDNUM value of 1 is not included in the output, because

Djavan’s LBAC credentials do not allow him to read that row. In the row with a

RECORDNUM value of 2, element TEST is not included in the output, because

Djavan does not have read access to that element; Djavan would not have been

able to access the row at all if TEST were the only element in the security label.

Because Djavan has read access to elements CURRENT and FIELD, both

elements appear in the output.

Now Djavan is granted an exemption to the DB2LBACREADTREE rule. This

means that no element of a TREE type component will block read access. The

same query returns:

RECORDNUM LABEL

--------- ----------------

 1 PROJECT

 2 (TEST, FIELD)

 3 (CURRENT, FIELD)

This time the output includes all rows and all elements, because the exemption

gives Djavan read access to all of the elements.

SECOND

�� SECOND (expression) ��

The schema is SYSIBM.

The SECOND function returns the seconds part of a value.

The argument must be a time, timestamp, time duration, timestamp duration, or a

valid character string representation of a time or timestamp that is neither a CLOB

SECLABEL_TO_CHAR

Chapter 3. Functions 361

nor a LONG VARCHAR. In a Unicode database, if a supplied argument is a

graphic string, it is first converted to a character string before the function is

executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a time, timestamp or valid string representation of a time or

timestamp:

– The result is the seconds part of the value, which is an integer between 0 and

59.
v If the argument is a time duration or timestamp duration:

– The result is the seconds part of the value, which is an integer between -99

and 99. A nonzero result has the same sign as the argument.

Examples:

v Assume that the host variable TIME_DUR (decimal(6,0)) has the value 153045.

 SECOND(:TIME_DUR)

Returns the value 45.

v Assume that the column RECEIVED (timestamp) has an internal value

equivalent to 1988-12-25-17.12.30.000000.

 SECOND(RECEIVED)

Returns the value 30.

SIGN

�� SIGN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the SIGN function continues to be

available.)

Returns an indicator of the sign of the argument. If the argument is less than zero,

-1 is returned. If the argument is the decimal floating-point value of -0, the decimal

floating-point value of -0 is returned. If argument equals zero, 0 is returned. If

argument is greater than zero, 1 is returned.

The argument can be of any built-in numeric data type. DECIMAL and REAL

values are converted to double-precision floating-point numbers for processing by

the function.

The result of the function is:

v SMALLINT if the argument is SMALLINT

v INTEGER if the argument is INTEGER

v BIGINT if the argument is BIGINT

v DECFLOAT(n) if the argument is DECFLOAT(n)

v DOUBLE otherwise.

The result can be null; if the argument is null, the result is the null value.

Example:

SECOND

362 SQL Reference, Volume 1

v Assume that host variable PROFIT is a large integer with a value of 50000.

 VALUES SIGN(:PROFIT)

Returns the value 1.

SIN

�� SIN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the SIN function continues to be

available.)

Returns the sine of the argument, where the argument is an angle expressed in

radians.

The argument can be of any built-in numeric data type (except for DECFLOAT). It

is converted to double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

SINH

�� SINH (expression) ��

The schema is SYSIBM.

Returns the hyperbolic sine of the argument, where the argument is an angle

expressed in radians.

The argument can be of any built-in numeric data type (except for DECFLOAT). It

is converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

SMALLINT

�� SMALLINT (numeric-expression

character-expression
) ��

The schema is SYSIBM.

SIGN

Chapter 3. Functions 363

The SMALLINT function returns a small integer representation of a number or

character string in the form of a small integer constant. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

numeric-expression

An expression that returns a value of any built-in numeric data type.

 If the argument is a numeric-expression, the result is the same number that

would occur if the argument were assigned to a small integer column or

variable. If the whole part of the argument is not within the range of small

integers, an error occurs. The decimal part of the argument is truncated if

present.

character-expression

An expression that returns a character string value of length not greater than

the maximum length of a character constant. Leading and trailing blanks are

eliminated and the resulting string must conform to the rules for forming an

SQL integer constant (SQLSTATE 22018). However, the value of the constant

must be in the range of small integers (SQLSTATE 22003). The character string

cannot be a long string.

 If the argument is a character-expression, the result is the same number that

would occur if the corresponding integer constant were assigned to a small

integer column or variable.

The result of the function is a small integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

SOUNDEX

�� SOUNDEX (expression) ��

The schema is SYSFUN.

Returns a 4-character code representing the sound of the words in the argument.

The result can be used to compare with the sound of other strings.

The argument can be a character string that is either a CHAR or VARCHAR not

exceeding 4000 bytes. In a Unicode database, if a supplied argument is a graphic

string, it is first converted to a character string before the function is executed. The

function interprets data that is passed to it as if it were ASCII characters, even if it

is encoded in UTF-8.

The result of the function is CHAR(4). The result can be null; if the argument is

null, the result is the null value.

The SOUNDEX function is useful for finding strings for which the sound is known

but the precise spelling is not. It makes assumptions about the way that letters and

combinations of letters sound that can help to search out words with similar

sounds. The comparison can be done directly or by passing the strings as

arguments to the DIFFERENCE function.

Example:

Using the EMPLOYEE table, find the EMPNO and LASTNAME of the employee

with a surname that sounds like ’Loucesy’.

SMALLINT

364 SQL Reference, Volume 1

SELECT EMPNO, LASTNAME FROM EMPLOYEE

 WHERE SOUNDEX(LASTNAME) = SOUNDEX(’Loucesy’)

This example returns the following:

EMPNO LASTNAME

------ ---------------

000110 LUCCHESSI

SPACE

�� SPACE (expression) ��

The schema is SYSFUN.

Returns a character string consisting of blanks with length specified by the

argument.

The argument can be SMALLINT or INTEGER.

The result of the function is VARCHAR(4000). The result can be null; if the

argument is null, the result is the null value.

SQRT

�� SQRT (expression) ��

The schema is SYSIBM. (The SYSFUN version of the SQRT function continues to be

available.)

The SQRT function returns the square root of a number.

The argument must be an expression that returns a value of any built-in numeric

data type. If the argument is decimal floating-point, the operation is performed in

decimal floating-point; otherwise, the argument is converted to double-precision

floating-point for processing by the function.

If the argument is DECFLOAT(n), the result is DECFLOAT(n); otherwise, the result

is a double-precision floating-point number.

If the argument is a special decimal floating-point value, the rules for general

arithmetic operations for decimal floating-point apply. See “General arithmetic

operation rules for decimal floating-point” in “General arithmetic operation rules

for decimal floating-point” on page 156.

The result can be null; if the argument is null, the result is the null value.

Example:

v Assume that SQUARE is a DECIMAL(2,1) host variable with a value of 9.0.

 VALUES SQRT(:SQUARE)

Returns the approximate value 3.00.

SOUNDEX

Chapter 3. Functions 365

STRIP

�� STRIP (string-expression)

,

BOTH

B

,

strip-character

LEADING

L

TRAILING

T

 ��

The schema is SYSIBM. The function name cannot be specified as a qualified name

when keywords are used in the function signature.

The STRIP function removes blanks or occurrences of another specified character

from the end or the beginning of a string expression.

The STRIP function is identical to the TRIM scalar function.

string-expression

An expression that returns a value that is a CHAR, VARCHAR, GRAPHIC, or

VARGRAPHIC data type.

BOTH, LEADING, or TRAILING

Specifies whether characters are removed from the beginning, the end, or from

both ends of the string expression. If this argument is not specified, the

characters are removed from both the end and the beginning of the string.

strip-character

A single-character constant that specifies the character that is to be removed.

The strip-character can be any character whose UTF-32 encoding is a single

character. The binary representation of the character is matched.

 If strip-character is not specified and:

v If the string-expression is a DBCS graphic string, the default strip-character is a

DBCS blank, whose code point is dependent on the database code page

v If the string-expression is a UCS-2 graphic string, the default strip-character is

a UCS-2 blank (X’0020’)

v Otherwise, the default strip-character is an SBCS blank (X’20’)

The result is a varying-length string with the same maximum length as the length

attribute of the string-expression. The actual length of the result is the length of the

string-expression minus the number of bytes that are removed. If all of the

characters are removed, the result is an empty varying-length string. The code

page of the result is the same as the code page of the string-expression.

Example:

v Assume that the host variable BALANCE of type CHAR(9) has a value of

’000345.50’.

 SELECT STRIP(:BALANCE, LEADING, ’0’),

 FROM SYSIBM.SYSDUMMY1

returns the value ’345.50’.

SUBSTR

STRIP

366 SQL Reference, Volume 1

�� SUBSTR (string , start

,

length
) ��

The SUBSTR function returns a substring of a string.

If string is a character string, the result of the function is a character string

represented in the code page of its first argument. If it is a binary string, the result

of the function is a binary string. If it is a graphic string, the result of the function

is a graphic string represented in the code page of its first argument. If the first

argument is a host variable, the code page of the result is the database code page.

If any argument of the SUBSTR function can be null, the result can be null; if any

argument is null, the result is the null value.

string

An expression that specifies the string from which the result is derived.

 If string is either a character string or a binary string, a substring of string is

zero or more contiguous bytes of string. If string is a graphic string, a substring

of string is zero or more contiguous double-byte characters of string.

start

An expression that specifies the position of the first byte of the result for a

character string or a binary string or the position of the first character of the

result for a graphic string. start must be an integer between 1 and the length or

maximum length of string, depending on whether string is fixed-length or

varying-length (SQLSTATE 22011, if out of range). It must be specified as

number of bytes in the context of the database code page and not the

application code page.

length

An expression that specifies the length of the result. If specified, length must be

a binary integer in the range 0 to n, where n equals (the length attribute of

string) - start + 1 (SQLSTATE 22011, if out of range).

 If length is explicitly specified, string is effectively padded on the right with the

necessary number of blank characters (single-byte for character strings;

double-byte for graphic strings) or hexadecimal zero characters (for BLOB

strings) so that the specified substring of string always exists. The default for

length is the number of bytes from the byte specified by the start to the last

byte of string in the case of character string or binary string or the number of

double-byte characters from the character specified by the start to the last

character of string in the case of a graphic string. However, if string is a

varying-length string with a length less than start, the default is zero and the

result is the empty string. It must be specified as number of bytes in the

context of the database code page and not the application code page. (For

example, the column NAME with a data type of VARCHAR(18) and a value of

’MCKNIGHT’ will yield an empty string with SUBSTR(NAME,10)).

Table 38 shows that the result type and length of the SUBSTR function depend on

the type and attributes of its inputs.

 Table 38. Data Type and Length of SUBSTR Result

String Argument Data

Type Length Argument Result Data Type

CHAR(A) constant (l<255) CHAR(l)

CHAR(A) not specified but start argument is a

constant

CHAR(A-start+1)

SUBSTR

Chapter 3. Functions 367

Table 38. Data Type and Length of SUBSTR Result (continued)

String Argument Data

Type Length Argument Result Data Type

CHAR(A) not a constant VARCHAR(A)

VARCHAR(A) constant (l<255) CHAR(l)

VARCHAR(A) constant (254<l<32673) VARCHAR(l)

VARCHAR(A) not a constant or not specified VARCHAR(A)

LONG VARCHAR constant (l<255) CHAR(l)

LONG VARCHAR constant (254<l<4001) VARCHAR(l)

LONG VARCHAR constant (l>4000) LONG VARCHAR

LONG VARCHAR not a constant or not specified LONG VARCHAR

CLOB(A) constant (l) CLOB(l)

CLOB(A) not a constant or not specified CLOB(A)

GRAPHIC(A) constant (l<128) GRAPHIC(l)

GRAPHIC(A) not specified but start argument is a

constant

GRAPHIC(A-start+1)

GRAPHIC(A) not a constant VARGRAPHIC(A)

VARGRAPHIC(A) constant (l<128) GRAPHIC(l)

VARGRAPHIC(A) constant (127<l<16337) VARGRAPHIC(l)

VARGRAPHIC(A) not a constant VARGRAPHIC(A)

LONG VARGRAPHIC constant (l<128) GRAPHIC(l)

LONG VARGRAPHIC constant (127<l<2001) VARGRAPHIC(l)

LONG VARGRAPHIC constant (l>2000) LONG VARGRAPHIC

LONG VARGRAPHIC not a constant or not specified LONG VARGRAPHIC

DBCLOB(A) constant (l) DBCLOB(l)

DBCLOB(A) not a constant or not specified DBCLOB(A)

BLOB(A) constant (l) BLOB(l)

BLOB(A) not a constant or not specified BLOB(A)

If string is a fixed-length string, omission of length is an implicit specification of

LENGTH(string) - start + 1. If string is a varying-length string, omission of length is

an implicit specification of zero or LENGTH(string) - start + 1, whichever is greater.

Examples:

v Assume the host variable NAME (VARCHAR(50)) has a value of ’BLUE JAY’

and the host variable SURNAME_POS (int) has a value of 6.

 SUBSTR(:NAME, :SURNAME_POS)

Returns the value ’JAY’

 SUBSTR(:NAME, :SURNAME_POS,1)

Returns the value ’J’.

v Select all rows from the PROJECT table for which the project name

(PROJNAME) starts with the word ’OPERATION’.

 SELECT * FROM PROJECT

 WHERE SUBSTR(PROJNAME,1,10) = ’OPERATION ’

SUBSTR

368 SQL Reference, Volume 1

The space at the end of the constant is necessary to preclude initial words such

as ’OPERATIONS’.

Note:

1. In dynamic SQL, string, start, and length may be represented by a parameter

marker (?). If a parameter marker is used for string, the data type of the

operand will be VARCHAR, and the operand will be nullable.

2. Though not explicitly stated in the result definitions above, it follows from

these semantics that if string is a mixed single- and multi-byte character string,

the result may contain fragments of multi-byte characters, depending upon the

values of start and length. That is, the result could possibly begin with the

second byte of a double-byte character, and/or end with the first byte of a

double-byte character. The SUBSTR function does not detect such fragments,

nor provides any special processing should they occur.

SUBSTRING

�� SUBSTRING (�

� expression FROM start USING CODEUNITS16

FOR

length

CODEUNITS32

OCTETS

expression

,

start

,

CODEUNITS16

,

length

CODEUNITS32

OCTETS

) ��

The schema is SYSIBM.

The SUBSTRING function returns a substring of a string.

expression

An expression that returns a value of any built-in string data type. If expression

is a character string, the result is a character string. If expression is a graphic

string, the result is a graphic string. If expression is a binary string, the result is

a binary string.

 A substring of expression is zero or more contiguous string units of expression.

start

An expression that specifies the position within expression that is to be the first

string unit of the result; start, which is expressed in the specified string unit,

must return an integer. The value of start can be positive, negative, or zero; a

value of 1 indicates that the first string unit of the result is the first string unit

of expression. If OCTETS is specified and expression is graphic data, start must

be odd; otherwise, an error is returned (SQLSTATE 428GC).

length

An expression that specifies the maximum actual length of the resulting

substring.

 If expression is a fixed-length string, omission of length is an implicit

specification of CHARACTER_LENGTH(expression USING string-unit) - start +

1, which is the number of string units (CODEUNITS16, CODEUNITS32, or

OCTETS) from start to the last position of expression. If expression is a

varying-length string, omission of length is an implicit specification of zero or

CHARACTER_LENGTH(expression USING string-unit) - start + 1, whichever is

greater. If the desired length is zero, the result is the empty string.

SUBSTR

Chapter 3. Functions 369

If specified, length must be an expression that returns a value that is a built-in

integer data type. The value must be greater than or equal to zero. If a value

greater than n is specified, where n is the (length attribute of expression) - start

+ 1, then n is used as the length of the resulting substring. The value is

expressed in the units that are explicitly specified. If OCTETS is specified, and

expression is graphic data, length must be an even number (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of start and length. CODEUNITS16 specifies that start

and length are to be expressed in 16-bit UTF-16 code units. CODEUNITS32

specifies that start and length are to be expressed in 32-bit UTF-32 code units.

OCTETS specifies that start and length are to be expressed in bytes.

 If a string unit is specified as CODEUNITS16 or CODEUNITS32, and expression

is a binary string or bit data, an error is returned (SQLSTATE 428GC). If a

string unit is specified as OCTETS and expression is a binary string, an error is

returned (SQLSTATE 42815).

For more information about CODEUNITS16, CODEUNITS32, and OCTETS, see

“String units in built-in functions” in “Character strings”.

When the SUBSTRING function is invoked using OCTETS, and the

source-string is encoded in a code page that requires more than one byte per

code point (mixed or MBCS), the SUBSTRING operation might split a

multi-byte code point and the resulting substring might begin or end with a

partial code point. If this occurs, the function replaces the bytes of leading or

trailing partial code points with blanks in a way that does not change the byte

length of the result. (See a related example below.)

The length attribute of the result is equal to the length attribute of expression. If any

argument of the function can be null, the result can be null; if any argument is

null, the result is the null value. The result is not padded with any character. If

expression has actual length 0, the result also has actual length 0.

Notes:

v The length attribute of the result is equal to the length attribute of the input

string expression. This behavior is different from the behavior of the SUBSTR

function, where the length attribute is derived from the start and the length

arguments of the function.

Examples:

v FIRSTNAME is a VARCHAR(12) column in table T1. One of its values is the

6-character string ’Jürgen’. When FIRSTNAME has this value:

Function ... Returns ...

------------------------------------ ------------------------------------

SUBSTRING(FIRSTNAME,1,2,CODEUNITS32) ’Jü’ -- x’4AC3BC’

SUBSTRING(FIRSTNAME,1,2,CODEUNITS16) ’Jü’ -- x’4AC3BC’

SUBSTRING(FIRSTNAME,1,2,OCTETS) ’J ’ -- x’4A20’ (a truncated string)

SUBSTRING(FIRSTNAME,8,CODEUNITS16) a zero-length string

SUBSTRING(FIRSTNAME,8,4,OCTETS) a zero-length string

v C1 is a VARCHAR(12) column in table T1. One of its values is the string

’ABCDEFG’. When C1 has this value:

Function ... Returns ...

------------------------- --------------------

SUBSTRING(C1,-2,2,OCTETS) a zero-length string

SUBSTRING(C1,-2,4,OCTETS) ’A’

SUBSTRING(C1,-2,OCTETS) ’ABCDEFG’

SUBSTRING(C1,0,1,OCTETS) a zero-length string

SUBSTRING

370 SQL Reference, Volume 1

v The following example illustrates how SUBSTRING replaces the bytes of leading

or trailing partial multi-byte code points with blanks when the string length unit

is OCTETS. Assume that UTF8_VAR contains the UTF-8 representation of the

Unicode string ’&N~AB’, where ’&’ is the musical symbol G clef and ’~’ is the

combining tilde character.

 SUBSTRING(UTF8_VAR, 2, 5, OCTETS)

Three blank bytes precede the ’N’, and one blank byte follows the ’N’.

TABLE_NAME

�� TABLE_NAME (objectname)

,

objectschema
 ��

The schema is SYSIBM.

The TABLE_NAME function returns an unqualified name of the object found after

any alias chains have been resolved. The specified objectname (and objectschema) are

used as the starting point of the resolution. If the starting point does not refer to

an alias, the unqualified name of the starting point is returned. The resulting name

may be of a table, view, or undefined object. In a Unicode database, if a supplied

argument is a graphic string, it is first converted to a character string before the

function is executed.

objectname

A character expression representing the unqualified name (usually of an

existing alias) to be resolved. objectname must have a data type of CHAR or

VARCHAR and a length greater than 0 and less than 129 bytes.

objectschema

A character expression representing the schema used to qualify the supplied

objectname value before resolution. objectschema must have a data type of CHAR

or VARCHAR and a length greater than 0 and less than 129 bytes.

 If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can be

null, the result can be null; if objectname is null, the result is the null value. If

objectschema is the null value, the default schema name is used. The result is the

character string representing an unqualified name. The result name could represent

one of the following:

table The value for objectname was either a table name (the input value is

returned) or an alias name that resolved to the table whose name is

returned.

view The value for objectname was either a view name (the input value is

returned) or an alias name that resolved to the view whose name is

returned.

undefined object

 The value for objectname was either an undefined object (the input value is

returned) or an alias name that resolved to the undefined object whose

name is returned.

Therefore, if a non-null value is given to this function, a value is always returned,

even if no object with the result name exists.

SUBSTRING

Chapter 3. Functions 371

Note: To improve performance in partitioned database configurations by avoiding

the unnecessary communication that occurs between the coordinator partition and

catalog partition when using the TABLE_SCHEMA and TABLE_NAME scalar

functions, the BASE_TABLE table function can be used instead.

TABLE_SCHEMA

�� TABLE_SCHEMA (objectname

,

objectschema
) ��

The schema is SYSIBM.

The TABLE_SCHEMA function returns the schema name of the object found after

any alias chains have been resolved. The specified objectname (and objectschema) are

used as the starting point of the resolution. If the starting point does not refer to

an alias, the schema name of the starting point is returned. The resulting schema

name may be of a table, view, or undefined object. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

objectname

A character expression representing the unqualified name (usually of an

existing alias) to be resolved. objectname must have a data type of CHAR or

VARCHAR and a length greater than 0 and less than 129 bytes.

objectschema

A character expression representing the schema used to qualify the supplied

objectname value before resolution. objectschema must have a data type of CHAR

or VARCHAR and a length greater than 0 and less than 129 bytes.

 If objectschema is not supplied, the default schema is used for the qualifier.

The data type of the result of the function is VARCHAR(128). If objectname can be

null, the result can be null; if objectname is null, the result is the null value. If

objectschema is the null value, the default schema name is used. The result is the

character string representing a schema name. The result schema could represent

the schema name for one of the following:

table The value for objectname was either a table name (the input or default

value of objectschema is returned) or an alias name that resolved to a table

for which the schema name is returned.

view The value for objectname was either a view name (the input or default

value of objectschema is returned) or an alias name that resolved to a view

for which the schema name is returned.

undefined object

The value for objectname was either an undefined object (the input or

default value of objectschema is returned) or an alias name that resolved to

an undefined object for which the schema name is returned.

Therefore, if a non-null objectname value is given to this function, a value is always

returned, even if the object name with the result schema name does not exist. For

example, TABLE_SCHEMA(’DEPT’, ’PEOPLE’) returns ’PEOPLE ’ if the catalog entry is

not found.

Note: To improve performance in partitioned database configurations by avoiding

the unnecessary communication that occurs between the coordinator partition and

TABLE_NAME

372 SQL Reference, Volume 1

catalog partition when using the TABLE_SCHEMA and TABLE_NAME scalar

functions, the BASE_TABLE table function can be used instead.

Examples:

v PBIRD tries to select the statistics for a given table from SYSCAT.TABLES using

an alias PBIRD.A1 defined on the table HEDGES.T1.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES

 WHERE TABNAME = TABLE_NAME (’A1’)

 AND TABSCHEMA = TABLE_SCHEMA (’A1’)

The requested statistics for HEDGES.T1 are retrieved from the catalog.

v Select the statistics for an object called HEDGES.X1 from SYSCAT.TABLES using

HEDGES.X1. Use TABLE_NAME and TABLE_SCHEMA since it is not known

whether HEDGES.X1 is an alias or a table.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES

 WHERE TABNAME = TABLE_NAME (’X1’,’HEDGES’)

 AND TABSCHEMA = TABLE_SCHEMA (’X1’,’HEDGES’)

Assuming that HEDGES.X1 is a table, the requested statistics for HEDGES.X1

are retrieved from the catalog.

v Select the statistics for a given table from SYSCAT.TABLES using an alias

PBIRD.A2 defined on HEDGES.T2 where HEDGES.T2 does not exist.

 SELECT NPAGES, CARD FROM SYSCAT.TABLES

 WHERE TABNAME = TABLE_NAME (’A2’,’PBIRD’)

 AND TABSCHEMA = TABLE_SCHEMA (’A2’,PBIRD’)

The statement returns 0 records as no matching entry is found in

SYSCAT.TABLES where TABNAME = ’T2’ and TABSCHEMA = ’HEDGES’.

v Select the qualified name of each entry in SYSCAT.TABLES along with the final

referenced name for any alias entry.

 SELECT TABSCHEMA AS SCHEMA, TABNAME AS NAME,

 TABLE_SCHEMA (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_SCHEMA,

 TABLE_NAME (BASE_TABNAME, BASE_TABSCHEMA) AS REAL_NAME

 FROM SYSCAT.TABLES

The statement returns the qualified name for each object in the catalog and the

final referenced name (after alias has been resolved) for any alias entries. For all

non-alias entries, BASE_TABNAME and BASE_TABSCHEMA are null so the

REAL_SCHEMA and REAL_NAME columns will contain nulls.

TAN

�� TAN (expression) ��

The schema is SYSIBM. (The SYSFUN version of the TAN function continues to be

available.)

Returns the tangent of the argument, where the argument is an angle expressed in

radians.

The argument can be any built-in numeric data type (except for DECFLOAT). It is

converted to a double-precision floating-point number for processing by the

function.

TABLE_SCHEMA

Chapter 3. Functions 373

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

TANH

�� TANH (expression) ��

The schema is SYSIBM.

Returns the hyperbolic tangent of the argument, where the argument is an angle

expressed in radians.

The argument can be of any built-in numeric data type (except for DECFLOAT). It

is converted to a double-precision floating-point number for processing by the

function.

The result of the function is a double-precision floating-point number. The result

can be null if the argument can be null or the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

TIME

�� TIME (expression) ��

The schema is SYSIBM.

The TIME function returns a time from a value.

The argument must be a time, timestamp, or a valid string representation of a time

or timestamp that is not a CLOB, LONG VARCHAR, DBCLOB, or LONG

VARGRAPHIC.

Only Unicode databases support an argument that is a graphic string

representation of a time or a timestamp. In a Unicode database, if a supplied

argument is a graphic string, it is first converted to a character string before the

function is executed.

The result of the function is a time. If the argument can be null, the result can be

null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument:

v If the argument is a time:

– The result is that time.
v If the argument is a timestamp:

– The result is the time part of the timestamp.
v If the argument is a string:

– The result is the time represented by the string.

Example:

TAN

374 SQL Reference, Volume 1

v Select all notes from the IN_TRAY sample table that were received at least one

hour later in the day (any day) than the current time.

 SELECT * FROM IN_TRAY

 WHERE TIME(RECEIVED) >= CURRENT TIME + 1 HOUR

TIMESTAMP

�� TIMESTAMP (expression)

,expression
 ��

The schema is SYSIBM.

The TIMESTAMP function returns a timestamp from a value or a pair of values.

Only Unicode databases support an argument that is a graphic string

representation of a date, a time, or a timestamp. In a Unicode database, if a

supplied argument is a graphic string, it is first converted to a character string

before the function is executed.

The rules for the arguments depend on whether the second argument is specified.

v If only one argument is specified:

– It must be a timestamp, a valid string representation of a timestamp, or a

string of length 14 that is not a CLOB, LONG VARCHAR, DBCLOB, or

LONG VARGRAPHIC.

A string of length 14 must be a string of digits that represents a valid date

and time in the form yyyyxxddhhmmss, where yyyy is the year, xx is the

month, dd is the day, hh is the hour, mm is the minute, and ss is the seconds.
v If both arguments are specified:

– The first argument must be a date or a valid string representation of a date

and the second argument must be a time or a valid string representation of a

time.

The result of the function is a timestamp. If either argument can be null, the result

can be null; if either argument is null, the result is the null value.

The other rules depend on whether the second argument is specified:

v If both arguments are specified:

– The result is a timestamp with the date specified by the first argument and

the time specified by the second argument. The microsecond part of the

timestamp is zero.
v If only one argument is specified and it is a timestamp:

– The result is that timestamp.
v If only one argument is specified and it is a string:

– The result is the timestamp represented by that string. If the argument is a

string of length 14, the timestamp has a microsecond part of zero.

Example:

v Assume the column START_DATE (date) has a value equivalent to 1988-12-25,

and the column START_TIME (time) has a value equivalent to 17.12.30.

 TIMESTAMP(START_DATE, START_TIME)

Returns the value ’1988-12-25-17.12.30.000000’.

TIME

Chapter 3. Functions 375

TIMESTAMP_FORMAT

�� TIMESTAMP_FORMAT (string-expression , format-string) ��

The schema is SYSIBM.

The TIMESTAMP_FORMAT function returns a timestamp that is based on the

interpretation of the input string using the specified format.

string-expression

An expression that returns a value of the CHAR or VARCHAR data type, with

a length attribute that is not greater than 254 (SQLSTATE 42815). The

string-expression must contain the components of a timestamp that correspond

to the format specified by format-string.

format-string

An expression that returns a value of a built-in character string data type, with

a length attribute that is not greater than 254 bytes (SQLSTATE 22007). The

format-string contains a template of how string-expression is interpreted and then

converted to a timestamp value. The content of format-string can be specified in

mixed case.

 A valid format-string must contain at least one format element, must not

contain multiple specifications for any component of a timestamp, and can

contain any combination of the format elements, unless otherwise noted in

Table 39 (SQLSTATE 22007). For example, format-string cannot contain both YY

and YYYY, because they are both used to interpret the year component of

string-expression. Refer to the table to determine which format elements cannot

be specified together. Two format elements can optionally be separated by one

or more of the following separator characters:

v dash (-)

v period (.)

v slash (/)

v comma (,)

v apostrophe (’)

v semi-colon (;)

v colon (:)

v blank ()

Separator characters can also be specified at the start or end of format-string.

The separator characters in format-string do not have to exactly match the

specifications in expression (the separators are ignored).

 Table 39. Format elements for the TIMESTAMP_FORMAT function

Format element

Related components of a

timestamp Description

DD day Day of month (01-31).

DDD month, day Day of year (001-366).

TIMESTAMP_FORMAT

376 SQL Reference, Volume 1

Table 39. Format elements for the TIMESTAMP_FORMAT function (continued)

Format element

Related components of a

timestamp Description

FF[n] microseconds Fractional seconds (0-999999).

The number n is used to

specify the number of digits

expected in the

string-expression. Valid values

for n are 1-6. The default is

6.

HH hour HH behaves the same as

HH12.

HH12 hour Hour of the day (01-12) in

12-hour format. AM is the

default meridian indicator.

HH24 hour Hour of the day (00-24) in

24-hour format.

J year, month, and day Julian day (number of days

since January 1, 4713 BC).

MI minute Minute (00-59).

MM month Month (01-12).

NNNNNN microseconds Microseconds

(000000-999999). Same as

FF6.

RR year Last two digits of the

adjusted year (00-99).

RRRR year 4-digit adjusted year

(0000-9999).

SS seconds Seconds (00-59).

SSSSS hours, minutes, and seconds Seconds since previous

midnight (00000-86400).

Y year Last digit of the year (0-9).

First three digits of the

current year are used to

determine the full 4-digit

year.

YY year Last two digits of the year

(00-99). First two digits of

the current year are used to

determine the full 4-digit

year.

YYY year Last three digits of the year

(000-999). First digit of the

current year is used to

determine the full 4-digit

year.

YYYY year 4-digit year (0000-9999).

The RR and RRRR format elements can be used to alter how a specification for

a year is to be interpreted by adjusting the value to produce a 2-digit value or

a 4-digit value depending on the leftmost two digits of the current year

according to the following table.

TIMESTAMP_FORMAT

Chapter 3. Functions 377

Last two digits of the

current year

Two-digit year in

string-expression

First two digits of the year

component of timestamp

0-50 0-49 First two digits of the current

year

51-99 0-49 First two digits of the current

year + 1

0-50 50-99 First two digits of the current

year - 1

51-99 50-99 First two digits of the current

year

For example, if the current year is 2007, ’86’ with format ’RR’ means 1986, but

if the current year is 2052, it means 2086.

The following defaults are used when a format-string does not include a format

element for one of the following components of a timestamp:

 Timestamp component Default

year current year

month current month

day 01 (first day of the month)

hour 00

minute 00

second 00

microsecond 000000

Leading zeros can be specified for any component of the timestamp value (that

is, month, day, hour, minutes, seconds) that does not have the maximum

number of significant digits for the corresponding format element in the

format-string.

A substring of the string-expression representing a component of a timestamp

(such as year, month, day, hour, minutes, seconds) can include less than the

maximum number of digits for that component of the timestamp indicated by

the corresponding format element. Any missing digits default to zero. For

example, with a format-string of ’YYYY-MM-DD HH24:MI:SS’, an input value of

’999-3-9 5:7:2’ would produce the same result as ’0999-03-09 05:07:02’.

The result of the function is a timestamp. If any argument can be null, the result

can be null; if any argument is null, the result is the null value.

Notes:

v Determinism: The TIMESTAMP_FORMAT function is generally defined as not

deterministic. The function is deterministic only if all of the following are true:

– The format-string is a constant

– The format-string includes a format element that fully defines the year without

having to use the current year (includes format element YYYY or J)

– The format-string defines the month without having to use the current month

(includes format element MM or J)
v Syntax alternatives: TO_DATE and TO_TIMESTAMP are synonyms for

TIMESTAMP_FORMAT.

Examples:

TIMESTAMP_FORMAT

378 SQL Reference, Volume 1

v Insert a row into the IN_TRAY table with a receiving timestamp that is equal to

one second before the beginning of the year 2000 (December 31, 1999 at

23:59:59).

 INSERT INTO IN_TRAY (RECEIVED)

 VALUES (TIMESTAMP_FORMAT(’1999-12-31 23:59:59’,

 ’YYYY-MM-DD HH24:MI:SS’))

v An application receives strings of date information into a variable called

INDATEVAR. This value is not strictly formatted and might include two or four

digits for years, and one or two digits for months and days. Date components

might be separated with dash (-) or slash (/) characters and are expected to be

in day, month, and year order. Time information consists of hours (in 24-hour

format) and minutes, and is usually separated by a colon. Sample values include

’15/12/98 13:48’ and ’9-3-2004 8:02’. Insert such values into the IN_TRAY table.

 INSERT INTO IN_TRAY (RECEIVED)

 VALUES (TIMESTAMP_FORMAT(:INDATEVAR,

 ’DD/MM/RRRR HH24:MI’))

The use of RRRR in the format allows for 2- and 4-digit year values and assigns

missing first two digits based on the current year. If YYYY were used, input

values with a 2-digit year would have leading zeros. The slash separator also

allows the dash character. Assuming a current year of 2007, resulting timestamps

from the sample values are:

 ’15/12/98 13:48’ --> 1998-12-15-13.48.00.000000

 ’9-3-2004 8:02’ --> 2004-03-09-08.02.00.000000

TIMESTAMP_ISO

�� TIMESTAMP_ISO (expression) ��

The schema is SYSFUN.

Returns a timestamp value based on a date, time, or timestamp argument. If the

argument is a date, it inserts zero for all the time elements. If the argument is a

time, it inserts the value of the CURRENT DATE special register for the date

elements, and zero for the fractional time element.

The argument must be a date, time, or timestamp, or a valid character string

representation of a date, time or timestamp that is neither a CLOB nor a LONG

VARCHAR. In a Unicode database, if a supplied argument is a graphic string, it is

first converted to a character string before the function is executed.

The result of the function is TIMESTAMP. The result can be null; if the argument is

null, the result is the null value.

TIMESTAMPDIFF

�� TIMESTAMPDIFF (expression , expression) ��

The schema is SYSFUN.

Returns an estimated number of intervals of the type defined by the first

argument, based on the difference between two timestamps.

TIMESTAMP_FORMAT

Chapter 3. Functions 379

The first argument can be either INTEGER or SMALLINT. Valid values of interval

(the first argument) are:

1 Fractions of a second

2 Seconds

4 Minutes

8 Hours

16 Days

32 Weeks

64 Months

128 Quarters

256 Years

The second argument is the result of subtracting two timestamps and converting

the result to CHAR(22). In a Unicode database, if a supplied argument is a graphic

string, it is first converted to a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

The following assumptions may be used in estimating a difference:

v There are 365 days in a year.

v There are 30 days in a month.

v There are 24 hours in a day.

v There are 60 minutes in an hour.

v There are 60 seconds in a minute.

These assumptions are used when converting the information in the second

argument, which is a timestamp duration, to the interval type specified in the first

argument. The returned estimate may vary by a number of days. For example, if

the number of days (interval 16) is requested for the difference between

’1997-03-01-00.00.00’ and ’1997-02-01-00.00.00’, the result is 30. This is because the

difference between the timestamps is 1 month, and the assumption of 30 days in a

month applies.

Example:

The following example returns 4277, the number of minutes between two

timestamps:

 TIMESTAMPDIFF(4,CHAR(TIMESTAMP(’2001-09-29-11.25.42.483219’) -

 TIMESTAMP(’2001-09-26-12.07.58.065497’)))

TO_CHAR

�� TO_CHAR (timestamp-expression ,format-string) ��

The schema is SYSIBM.

The TO_CHAR function returns a character representation of a timestamp that has

been formatted using a character template.

TIMESTAMPDIFF

380 SQL Reference, Volume 1

TO_CHAR is a synonym for VARCHAR_FORMAT.

TO_DATE

�� TO_DATE (string-expression ,format-string) ��

The schema is SYSIBM.

The TO_DATE function returns a timestamp from a character string that has been

interpreted using a character template.

TO_DATE is a synonym for TIMESTAMP_FORMAT.

TOTALORDER

�� TOTALORDER (decfloat-expression1 , decfloat-expression2) ��

The schema is SYSIBM.

The TOTALORDER function returns a SMALLINT value of -1, 0, or 1 that indicates

the comparison order of two arguments.

decfloat-expression1

An expression that returns a value of any built-in numeric data type. If the

argument is not DECFLOAT(34), it is logically converted to DECFLOAT(34) for

processing.

decfloat-expression2

An expression that returns a value of any built-in numeric data type. If the

argument is not a decimal floating-point value, it is converted to

DECFLOAT(34) for processing.

Numeric comparison is exact, and the result is determined for finite operands as if

range and precision were unlimited. An overflow or underflow condition cannot

occur.

If one value is DECFLOAT(16) and the other is DECFLOAT(34), the

DECFLOAT(16) value is converted to DECFLOAT(34) before the comparison is

made.

The semantics of the TOTALORDER function are based on the total order predicate

rules of IEEE 754R. TOTALORDER returns the following values:

v -1 if decfloat-expression1 is lower in order compared to decfloat-expression2

v 0 if both decfloat-expression1 and decfloat-expression2 have the same order

v 1 if decfloat-expression1 is higher in order compared to decfloat-expression2

The ordering of the special values and finite numbers is as follows:

-NAN<-SNAN<-INFINITY<-0.10<-0.100<-0<0<0.100<0.10<INFINITY<SNAN<NAN

The result of the function is a SMALLINT value. If either argument can be null, the

result can be null; if either argument is null, the result is the null value.

Examples:

TO_DATE

Chapter 3. Functions 381

v The following examples show the use of the TOTALORDER function to compare

decimal floating point values:

TOTALORDER(-INFINITY, -INFINITY) = 0

TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.0)) = 0

TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-1.00)) = -1

TOTALORDER(DECFLOAT(-1.0), DECFLOAT(-0.5)) = -1

TOTALORDER(DECFLOAT(-1.0), DECFLOAT(0.5)) = -1

TOTALORDER(DECFLOAT(-1.0), INFINITY) = -1

TOTALORDER(DECFLOAT(-1.0), SNAN) = -1

TOTALORDER(DECFLOAT(-1.0), NAN) = -1

TOTALORDER(NAN, DECFLOAT(-1.0)) = 1

TOTALORDER(-NAN, -NAN) = 0

TOTALORDER(-SNAN, -SNAN) = 0

TOTALORDER(NAN, NAN) = 0

TOTALORDER(SNAN, SNAN) = 0

TOTALORDER(-1.0, -1.0) = 0

TOTALORDER(-1.0, -1.00) = -1

TOTALORDER(-1.0, -0.5) = -1

TOTALORDER(-1.0, 0.5) = -1

TOTALORDER(-1.0, INFINITY) = -1

TOTALORDER(-1.0, SNAN) = -1

TOTALORDER(-1.0, NAN) = -1

TRANSLATE scalar function

character string expression:

�� TRANSLATE (char-string-exp �

�
,

’ ’

,

to-string-exp

,

from-string-exp

,

pad-char

) ��

graphic string expression:

�� TRANSLATE (graphic-string-exp , to-string-exp , from-string-exp �

�
 , ’ ’

,

pad-char

)

��

The schema is SYSIBM.

The TRANSLATE function returns a value in which one or more characters in a

string expression might have been converted to other characters.

The function converts all the characters in char-string-exp or graphic-string-exp that

also occur in from-string-exp to the corresponding characters in to-string-exp or, if no

corresponding characters exist, to the pad character specified by pad-char-exp.

char-string-exp or graphic-string-exp

Specifies a string that is to be converted.

to-string-exp

Specifies a string of characters to which certain characters in char-string-exp will

be converted.

TOTALORDER

382 SQL Reference, Volume 1

If a value for to-string-exp is not specified, and the data type is not graphic, all

characters in char-string-exp will be in monocase; that is, the characters a-z will

be converted to the characters A-Z, and other characters will be converted to

their uppercase equivalents, if they exist. For example, in code page 850, é

maps to É, but ÿ is not mapped, because code page 850 does not include Ÿ. If

the code point length of the result character is not the same as the code point

length of the source character, the source character is not converted.

from-string-exp

Specifies a string of characters which, if found in char-string-exp, will be

converted to the corresponding character in to-string-exp. If from-string-exp

contains duplicate characters, the first one found will be used, and the

duplicates will be ignored. If to-string-exp is longer than from-string-exp, the

surplus characters will be ignored. If to-string-exp is specified, from-string-exp

must also be specified.

pad-char-exp

Specifies a single character that will be used to pad to-string-exp if to-string-exp

is shorter than from-string-exp. The pad-char-exp argument must have a length

attribute of one. If a value is not specified, a single-byte blank character is

assumed.

The arguments can be either character strings of data type CHAR or VARCHAR,

or graphic strings of data type GRAPHIC or VARGRAPHIC. They cannot be of

data type LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB.

With graphic-string-exp, only pad-char-exp is optional (if a value is not specified, the

double-byte blank character is assumed), and each argument, including the pad

character, must be of a graphic data type.

The data type and code page of the result is the same as the data type and code

page of the first argument. If the first argument is a host variable, the code page of

the result is the database code page. Each argument other than the first argument

is converted to the result code page unless it or the first argument is defined as

FOR BIT DATA, in which case no conversion is done.

In a Unicode database where character and graphic are considered to be equivalent

data types, there are the following exceptions:

v The code page of the result is 1208 if any argument but the first argument is

FOR BIT DATA.

v The code page of the result is the code page that appears most often in the set of

arguments, when no argument is FOR BIT DATA.

v The code page of the result is 1200 when two different code pages appear

equally often in the set of arguments, when no argument is FOR BIT DATA.

The length attribute of the result is the same as that of the first argument. If any

argument can be null, the result can be null. If any argument is null, the result is

the null value.

If the arguments are of data type CHAR or VARCHAR, the corresponding

characters in to-string-exp and from-string-exp must have the same number of bytes.

For example, it is not valid to convert a single-byte character to a multi-byte

character, or to convert a multi-byte character to a single-byte character. The

pad-char-exp argument cannot be the first byte of a valid multi-byte character

(SQLSTATE 42815).

TRANSLATE scalar function

Chapter 3. Functions 383

The characters are matched using a binary comparison. The database collation is

not used.

If only char-string-exp is specified, single-byte characters will be monocased, and

multi-byte characters will remain unchanged.

Examples:

v Assume that the host variable SITE (VARCHAR(30)) has a value of ’Hanauma

Bay’.

 TRANSLATE(:SITE)

Returns the value ’HANAUMA BAY’.

 TRANSLATE(:SITE, ’j’, ’B’)

Returns the value ’Hanauma jay’.

 TRANSLATE(:SITE, ’ei’, ’aa’)

Returns the value ’Heneume Bey’.

 TRANSLATE(:SITE, ’bA’, ’Bay’, ’%’)

Returns the value ’HAnAumA bA%’.

 TRANSLATE(:SITE, ’r’, ’Bu’)

Returns the value ’Hana ma ray’.

TRIM

�� TRIM (string-expression)

BOTH

FROM

B

strip-character

LEADING

L

TRAILING

T

 ��

The schema is SYSIBM. The function name cannot be specified as a qualified name

when keywords are used in the function signature.

The TRIM function removes blanks or occurrences of another specified character

from the end or the beginning of a string expression.

BOTH, LEADING, or TRAILING

Specifies whether characters are removed from the beginning, the end, or from

both ends of the string expression. If this argument is not specified, the

characters are removed from both the end and the beginning of the string.

strip-character

A single-character constant that specifies the character that is to be removed.

The strip-character can be any character whose UTF-32 encoding is a single

character. The binary representation of the character is matched.

 If strip-character is not specified and:

v If the string-expression is a DBCS graphic string, the default strip-character is a

DBCS blank, whose code point is dependent on the database code page

TRANSLATE scalar function

384 SQL Reference, Volume 1

v If the string-expression is a UCS-2 graphic string, the default strip-character is

a UCS-2 blank (X’0020’)

v Otherwise, the default strip-character is an SBCS blank (X’20’)

FROM string-expression

An expression that returns a value that is a CHAR, VARCHAR, GRAPHIC, or

VARGRAPHIC data type.

The result is a varying-length string with the same maximum length as the length

attribute of the string-expression. The actual length of the result is the length of the

string-expression minus the number of bytes that are removed. If all of the

characters are removed, the result is an empty varying-length string. The code

page of the result is the same as the code page of the string-expression.

Examples:

v Assume that the host variable HELLO of type CHAR(9) has a value of ’ Hello’.

 SELECT TRIM(:HELLO),

 TRIM(TRAILING FROM :HELLO)

 FROM SYSIBM.SYSDUMMY1

returns the values ’Hello’ and ’ Hello’, respectively.

v Assume that the host variable BALANCE of type CHAR(9) has a value of

’000345.50’.

 SELECT TRIM(L ’0’ FROM :BALANCE),

 FROM SYSIBM.SYSDUMMY1

returns the value ’345.50’.

TRUNCATE

�� TRUNCATE (expression1 , expression2) ��

The schema is SYSIBM. (The SYSFUN version of the TRUNCATE function

continues to be available.)

Returns expression1 truncated to expression2 places to the right of the decimal point

if expression2 is positive, or to the left of the decimal point if expression2 is zero or

negative.

expression1

An expression that returns a value of any built-in numeric data type.

expression2

An expression that returns a small or a large integer. The absolute value of the

integer specifies the number of places to the right of the decimal point for the

result if expression2 is not negative, or to left of the decimal point if expression2

is negative.

 If the absolute value of expression2 is larger than the number of digits to the

left of the decimal point, the result is 0. For example:

 TRUNCATE(748.58,-4) = 0

The data type and length attribute of the result are the same as the data type and

length attribute of the first argument.

TRIM

Chapter 3. Functions 385

The result can be null if the argument can be null or if the argument is not a

decimal floating-point number and the database is configured with

DFT_SQLMATHWARN set to YES; the result is the null value if the argument is

null.

TRUNC can be specified in place of TRUNCATE.

Examples:

v Using the EMPLOYEE table, calculate the average monthly salary for the highest

paid employee. Truncate the result two places to the right of the decimal point.

 SELECT TRUNCATE(MAX(SALARY)/12,2)

 FROM EMPLOYEE;

Because the highest paid employee earns $52750.00 per year, the example returns

4395.83.

v Display the number 873.726 truncated 2, 1, 0, -1, and -2 decimal places,

respectively.

 VALUES (

 TRUNCATE(873.726,2),

 TRUNCATE(873.726,1),

 TRUNCATE(873.726,0),

 TRUNCATE(873.726,-1),

 TRUNCATE(873.726,-2),

 TRUNCATE(873.726,-3));

This example returns 873.720, 873.700, 873.000, 870.000, 800.000, and 0.000.

v Display the decimal-floating point number 873.726 truncated 0 decimal places.

 VALUES(TRUNCATE(DECFLOAT(873.726),0))

Returns the value 873.

TYPE_ID

�� TYPE_ID (expression) ��

The schema is SYSIBM.

The TYPE_ID function returns the internal type identifier of the dynamic data type

of the expression.

The argument must be a user-defined structured type. (This function cannot be

used as a source function when creating a user-defined function. Because it accepts

any structured data type as an argument, it is not necessary to create additional

signatures to support different user-defined types.)

The data type of the result of the function is INTEGER. If expression can be null,

the result can be null; if expression is null, the result is the null value.

The value returned by the TYPE_ID function is not portable across databases. The

value may be different, even though the type schema and type name of the

dynamic data type are the same. When coding for portability, use the

TYPE_SCHEMA and TYPE_NAME functions to determine the type schema and

type name.

TRUNCATE

386 SQL Reference, Volume 1

Examples:

v A table hierarchy exists having root table EMPLOYEE of type EMP and subtable

MANAGER of type MGR. Another table ACTIVITIES includes a column called

WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE. For each

reference in ACTIVITIES, display the internal type identifier of the row that

corresponds to the reference.

 SELECT TASK, WHO_RESPONSIBLE->NAME,

 TYPE_ID(DEREF(WHO_RESPONSIBLE))

 FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

TYPE_NAME

�� TYPE_NAME (expression) ��

The schema is SYSIBM.

The TYPE_NAME function returns the unqualified name of the dynamic data type

of the expression.

The argument must be a user-defined structured type. (This function cannot be

used as a source function when creating a user-defined function. Because it accepts

any structured data type as an argument, it is not necessary to create additional

signatures to support different user-defined types.)

The data type of the result of the function is VARCHAR(18). If expression can be

null, the result can be null; if expression is null, the result is the null value. Use the

TYPE_SCHEMA function to determine the schema name of the type name returned

by TYPE_NAME.

Examples:

v A table hierarchy exists having root table EMPLOYEE of type EMP and subtable

MANAGER of type MGR. Another table ACTIVITIES includes a column called

WHO_RESPONSIBLE that is defined as REF(EMP) SCOPE EMPLOYEE. For each

reference in ACTIVITIES, display the type of the row that corresponds to the

reference.

 SELECT TASK, WHO_RESPONSIBLE->NAME,

 TYPE_NAME(DEREF(WHO_RESPONSIBLE)),

 TYPE_SCHEMA(DEREF(WHO_RESPONSIBLE))

 FROM ACTIVITIES

The DEREF function is used to return the object corresponding to the row.

TYPE_SCHEMA

�� TYPE_SCHEMA (expression) ��

The schema is SYSIBM.

The TYPE_SCHEMA function returns the schema name of the dynamic data type

of the expression.

The argument must be a user-defined structured type. This function cannot be

used as a source function when creating a user-defined function. Because it accepts

TYPE_ID

Chapter 3. Functions 387

any structured data type as an argument, it is not necessary to create additional

signatures to support different user-defined types.

The data type of the result of the function is VARCHAR(128). If expression can be

null, the result can be null; if expression is null, the result is the null value. Use the

TYPE_NAME function to determine the type name associated with the schema

name returned by TYPE_SCHEMA.

UCASE

�� UCASE (expression) ��

The schema is SYSIBM.

The UCASE function is identical to the TRANSLATE function except that only the

first argument (char-string-exp) is specified.

UCASE is a synonym for UPPER.

UCASE (Locale sensitive)

�� UCASE (string-expression , locale-name)

,

code-units

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

The schema is SYSIBM.

The UCASE function returns a string in which all characters have been converted

to uppercase characters using the rules associated with the specified locale.

UCASE is a synonym for UPPER.

UPPER

�� UPPER (expression) ��

The schema is SYSIBM. (The SYSFUN version of this function continues to be

available for upward compatibility.)

The UPPER function is identical to the TRANSLATE function except that only the

first argument (char-string-exp) is specified.

In a Unicode database, if a supplied argument is a graphic string, it is first

converted to a character string before the function is executed.

UPPER (Locale sensitive)

�� UPPER (string-expression , locale-name)

,

code-units

,

CODEUNITS16

CODEUNITS32

OCTETS

 ��

TYPE_SCHEMA

388 SQL Reference, Volume 1

The schema is SYSIBM.

The UPPER function returns a string in which all characters have been converted

to uppercase characters using the rules associated with the specified locale.

string-expression

An expression that returns a CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC

string. If string-expression is CHAR or VARCHAR, the expression must not be

FOR BIT DATA (SQLSTATE 42815).

locale-name

A character constant that specifies the locale that defines the rules for

conversion to uppercase characters. The value of locale-name is not case

sensitive and must be a valid locale (SQLSTATE 42815). For information on

valid locales and their naming, see “Locale names for SQL and XQuery”.

code-units

An integer constant that specifies the number of code units in the result. If

specified, code-units must be an integer between 1 and 32 672 if the result is

character data, or between 1 and 16 336 if the result is graphic data

(SQLSTATE 42815). If code-units is not explicitly specified, it is implicitly the

length attribute of string-expression. If OCTETS is specified and the result is

graphic data, the value of code-units must be even (SQLSTATE 428GC).

CODEUNITS16, CODEUNITS32, or OCTETS

Specifies the string unit of code-units.

 CODEUNITS16 specifies that code-units is expressed in 16-bit UTF-16 code

units. CODEUNITS32 specifies that code-units is expressed in 32-bit UTF-32

code units. OCTETS specifies that code-units is expressed in bytes.

If a string unit is not explicitly specified, the data type of the result determines

the unit that is used. If the result is graphic data, code-units is expressed in

two-byte units; otherwise, it is expressed in bytes. For more information about

CODEUNITS16, CODEUNITS32, and OCTETS, see “String units in built-in

functions” in “Character strings”.

The result of the function is VARCHAR if string-expression is CHAR or VARCHAR,

and VARGRAPHIC if string-expression is GRAPHIC or VARGRAPHIC.

The length attribute of the result is determined by the implicit or explicit value of

code-units, the implicit or explicit string unit, and the result data type, as shown in

the following table:

 Table 40. Length attribute of the result of UPPER as a function of string unit and result type

String unit Character result type Graphic result type

CODEUNITS16 MIN(code-units * 3, 32768) code-units

CODEUNITS32 MIN(code-units * 4, 32768) MIN(code-units * 2, 16336)

OCTETS code-units MIN(code-units / 2, 16336)

The actual length of the result might be greater than the length of string-expression.

If the actual length of the result is greater than the length attribute of the result, an

error is returned (SQLSTATE 42815). If the number of code units in the result

exceeds the value of code-units, an error is returned (SQLSTATE 42815).

If string-expression is not in UTF-16, this function performs code page conversion of

string-expression to UTF-16, and of the result from UTF-16 to the code page of

UPPER (Locale sensitive)

Chapter 3. Functions 389

string-expression. If either code page conversion results in at least one substitution

character, the result includes the substitution character, a warning is returned

(SQLSTATE 01517), and the warning flag SQLWARN8 in the SQLCA is set to ’W’.

If any argument can be null, the result can be null; if any argument is null, the

result is the null value.

Examples:

v Ensure that the characters in the value of column JOB in the EMPLOYEE table

are returned in uppercase characters.

 SELECT UPPER(JOB, ’en_US’)

 FROM EMPLOYEE

 WHERE EMPNO = ’000020’

The result is the value ’MANAGER’.

v Find the uppercase characters for all the ’I’ characters in a Turkish string.

 VALUES UPPER(’I	ıi’, ’tr_TR’, CODEUNITS16)

The result is the string ’I	I	’.

v Find the uppercase form of the German ’ß’ (sharp S).

 VALUES UPPER(’ß’, ’de’, 2, CODEUNITS16)

The result is the string ’SS’. Note that code-units must be specified in this

example, because there are more code units in the result than in string-expression.

VALUE

��

VALUE

(

expression

�

,expression

)

��

The schema is SYSIBM.

The VALUE function returns the first argument that is not null.

VALUE is a synonym for COALESCE.

VARCHAR

Character to Varchar:

�� VARCHAR (character-expression

,

integer
) ��

Graphic to Varchar:

�� VARCHAR (graphic-expression

,

integer
) ��

Datetime to Varchar:

UPPER (Locale sensitive)

390 SQL Reference, Volume 1

�� VARCHAR (datetime-expression) ��

The schema is SYSIBM.

The VARCHAR function returns a varying-length character string representation

of:

v A character string, if the first argument is any type of character string

v A graphic string (Unicode databases only), if the first argument is any type of

graphic string

v A datetime value, if the argument is a date, time, or timestamp

In a Unicode database, when the output string is truncated part-way through a

multiple-byte character:

v If the input was a character string, the partial character is replaced with one or

more blanks

v If the input was a graphic string, the partial character is replaced by the empty

string

Do not rely on either of these behaviors, because they might change in a future

release.

The result of the function is a varying-length character string. If the first argument

can be null, the result can be null. If the first argument is null, the result is the null

value.

Character to Varchar

character-expression

An expression whose value must be of a character string data type

with a maximum length of 32 672 bytes.

integer

The length attribute of the resulting varying-length character string.

The value must be between 0 and 32 672. If this argument is not

specified, the length attribute of the result is the same as the length

attribute of the argument.

Graphic to Varchar

graphic-expression

An expression whose value must be of a graphic string data type other

than LONG VARGRAPHIC or DBCLOB, and whose maximum length

is 16 336 double-byte characters.

integer

The length attribute of the resulting varying-length character string.

The value must be between 0 and 32 672. If this argument is not

specified, the length attribute of the result is the same as the length

attribute of the argument.

Datetime to Varchar

datetime-expression

An expression whose value must be of the DATE, TIME, or

TIMESTAMP data type.

Example:

VARCHAR

Chapter 3. Functions 391

v Set the host variable JOB_DESC, defined as VARCHAR(8), to the VARCHAR

equivalent of the job description (which is the value of the JOB column), defined

as CHAR(8), for employee Dolores Quintana.

 SELECT VARCHAR(JOB)

 INTO :JOB_DESC

 FROM EMPLOYEE

 WHERE LASTNAME = ’QUINTANA’

VARCHAR_BIT_FORMAT

�� VARCHAR_BIT_FORMAT (character-expression , format-string) ��

The schema is SYSIBM.

The VARCHAR_BIT_FORMAT function returns a bit string representation of a

character string that has been formatted using a character template. In a Unicode

database, if a supplied argument is a graphic string, it is first converted to a

character string before the function is executed.

character-expression

An expression that returns a value that is a built-in character string that is not

a CLOB (SQLSTATE 42815). The required length is determined by the specified

format string and how the value is interpreted.

format-string

A character constant that contains a template for how the value for

character-expression is to be interpreted.

 Valid format strings include: ’xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’ and

’XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX’ (SQLSTATE 42815) where each ’x’ or

’X’ corresponds to one hexadecimal digit in the result.

The result of the function is a varying-length character string FOR BIT DATA with

the length attribute and actual length based on the format string. For the two valid

format strings listed above, the length attribute is 36 and the actual length is 16

bytes. If the first argument can be null, the result can be null; if the first argument

is null, the result is the null value.

Examples

v Represent a Universal Unique Identifier in its binary form:

VARCHAR_BIT_FORMAT(’d83d6360-1818-11db-9804-b622a1ef5492’,

 ’xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’)

Result returned:

 x’D83D6360181811DB9804B622A1EF5492’

v Represent a Universal Unique Identifier in its binary form:

VARCHAR_BIT_FORMAT(’D83D6360-1818-11DB-9804-B622A1EF5492’,

 ’XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX’)

Result returned:

 x’D83D6360181811DB9804B622A1EF5492’

VARCHAR

392 SQL Reference, Volume 1

VARCHAR_FORMAT

�� VARCHAR_FORMAT (timestamp-expression , format-string) ��

The schema is SYSIBM.

The VARCHAR_FORMAT function returns a string representation of a timestamp

that has been formatted according to a specified character template.

timestamp-expression

An expression that returns a value of a built-in timestamp or a built-in

character string data type whose length attribute is not greater than 254. The

returned value contains a valid string representation of a timestamp

(SQLSTATE 42815 or SQLSTATE 22007). For the valid formats of string

representations of timestamps, see “String representations of datetime values”

on page 79. If timestamp-expression is a character string, leading and trailing

blanks are removed prior to converting the value to a timestamp.

format-string

An expression that returns a value of a built-in character string data type, with

a length attribute that is not greater than 254 bytes (SQLSTATE 22007). The

format-string contains a template of how timestamp-expression is to be formatted.

 A valid format-string must contain a combination of the format elements listed

below (SQLSTATE 22007). Two format elements can optionally be separated by

one or more of the following separator characters:

v dash (-)

v period (.)

v slash (/)

v comma (,)

v apostrophe (’)

v semi-colon (;)

v colon (:)

v blank ()

Separator characters can also be specified at the start or end of format-string.

 Table 41. Format elements for the VARCHAR_FORMAT function

Format element Description

CC Century (01-99). If the last two digits of the

four-digit year are zero, the result is the first

two digits of the year. Otherwise, the result

is the first two digits of the year plus one.

DD Day of month (01-31).

DDD Day of year (001-366).

FF[n] Fractional seconds (0-999999). The number n

is used to specify the number of digits to

include in the returned value. Valid values

for n are 1-6. The default is 6.

HH HH behaves the same as HH12.

HH12 Hour of the day (01-12) in 12-hour format.

AM is the default meridian indicator.

VARCHAR_FORMAT

Chapter 3. Functions 393

Table 41. Format elements for the VARCHAR_FORMAT function (continued)

Format element Description

HH24 Hour of the day (00-24) in 24-hour format.

IW ISO week of the year (01-53). The week

starts on Monday and includes seven days.

Week 1 is the first week of the year to

contain a Thursday, which is equivalent to

the first week of the year to contain January

4.

I ISO year (0-9). The last digit of the year

based on the ISO week that is returned.

IY ISO year (00-99). The last two digits of the

year based on the ISO week that is returned.

IYY ISO year (000-999). The last three digits of

the year based on the ISO week that is

returned.

IYYY ISO year (0000-9999). The 4-digit year based

on the ISO week that is returned.

J Julian day (number of days since January 1,

4713 BC).

MI Minute (00-59).

MM Month (01-12).

NNNNNN Microseconds (000000-999999). Same as FF6.

Q Quarter (1-4), where the months January

through March return 1.

RR RR behaves the same as YY.

RRRR RRRR behaves the same as YYYY.

SS Seconds (00-59).

SSSSS Seconds since previous midnight

(00000-86400).

W Week of the month (1-5), where week 1

starts on the first day of the month and ends

on the seventh day.

WW Week of the year (01-53), where week 1

starts on January 1 and ends on January 7.

Y Last digit of the year (0-9).

YY Last two digits of the year (00-99).

YYY Last three digits of the year (000-999).

YYYY 4-digit year (0000-9999).

The result is a representation of timestamp-expression in the format specified by

format-string. The format-string is interpreted as a series of format elements that can

optionally be separated by one or more separator characters. A string of characters

in format-string is interpreted as the longest matching format element in Table 41 on

page 393. If two format elements containing the same characters are not delimited

by a separator character, the specification is interpreted, starting from the left, as

the longest matching format element in the table, and continues until matches are

found for the remainder of the format string. For example, ’YYYYYYDD’ is

interpreted as the format elements ’YYYY’, ’YY’, and ’DD’.

VARCHAR_FORMAT

394 SQL Reference, Volume 1

The result is a varying-length character string. The length attribute is the greater of

100 and the length attribute of the format-string. The format-string also determines

the length attribute and the actual length of the result. The resulting string must

not exceed the length attribute of the result (SQLSTATE 22007) . If either argument

can be null, the result can be null; if either argument is null, the result is the null

value.

Notes:

v Syntax alternatives: TO_CHAR is a synonym for VARCHAR_FORMAT.

Example:

v Display the table names and creation timestamps for all of the system tables

whose name starts with ’SYSU’.

 SELECT VARCHAR(TABNAME, 20) AS TABLE_NAME,

 VARCHAR_FORMAT(CREATE_TIME, ’YYYY-MM-DD HH24:MI:SS’)

 AS CREATION_TIME

 FROM SYSCAT.TABLES

 WHERE TABNAME LIKE ’SYSU%’

This example returns the following:

 TABLE_NAME CREATION_TIME

 -------------------- -------------------

 SYSUSERAUTH 2000-05-19 08:18:56

 SYSUSEROPTIONS 2000-05-19 08:18:56

v Assume that the variable TMSTAMP has the following value:

2007-03-09-14.07.38.123456. The following examples show several invocations of

the function and the resulting string values. The result type in each case is

VARCHAR(100).

Function invocation Result

------------------- ------

VARCHAR_FORMAT(TMSTAMP,’YYYYMMDDHHMISSFF3’) 20070309020738123

VARCHAR_FORMAT(TMSTAMP,’YYYYMMDDHH24MISS’) 20070309140738

VARCHAR_FORMAT(TMSTAMP,’YYYYMMDDHHMI’) 200703090207

VARCHAR_FORMAT(TMSTAMP,’DD/MM/YY’) 09/03/07

VARCHAR_FORMAT(TMSTAMP,’MM-DD-YYYY’) 03-09-2007

VARCHAR_FORMAT(TMSTAMP,’J’) 2454169

VARCHAR_FORMAT(TMSTAMP,’Q’) 1

VARCHAR_FORMAT(TMSTAMP,’W’) 2

VARCHAR_FORMAT(TMSTAMP,’IW’) 10

VARCHAR_FORMAT(TMSTAMP,’WW’) 10

VARCHAR_FORMAT_BIT

�� VARCHAR_FORMAT_BIT (bit-data-expression , format-string) ��

The schema is SYSIBM.

The VARCHAR_FORMAT_BIT function returns a character representation of a bit

string that has been formatted using a character template.

bit-data-expression

An expression that returns a value that is a built-in character-string FOR BIT

DATA data type (SQLSTATE 42815). The required length is determined by the

specified format string and how the value is interpreted.

VARCHAR_FORMAT

Chapter 3. Functions 395

format-string

A character constant that contains a template for how the result is to be

formatted.

 Valid format strings include: ’xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’ and

’XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX’ (SQLSTATE 42815) where each ’x’ or

’X’ corresponds to one hexadecimal digit from bit-data-expression.

The result of the function is a varying-length character string with the length

attribute and actual length based on the format string. For the two valid format

strings listed above, the length attribute is 36 and the actual length is 36 bytes. If

the first argument can be null, the result can be null; if the first argument is null,

the result is the null value.

Examples

v Represent a Universal Unique Identifier in its formatted form:

 VARCHAR_FORMAT_BIT(cast(x’d83d6360181811db9804b622a1ef5492’

 as varchar(16) for bit data),

 ’xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx’)

Result returned:

’d83d6360-1818-11db-9804-b622a1ef5492’

v Represent a Universal Unique Identifier in its formatted form:

 VARCHAR_FORMAT_BIT(cast(x’d83d6360181811db9804b622a1ef5492’

 as char(16) for bit data),

 ’XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX’)

Result returned:

’D83D6360-1818-11DB-9804-B622A1EF5492’

VARGRAPHIC

Graphic to Vargraphic:

�� VARGRAPHIC (graphic-expression

,

integer
) ��

Character to Vargraphic:

�� VARGRAPHIC (character-expression) ��

Datetime to Vargraphic:

�� VARGRAPHIC (datetime-expression) ��

The schema is SYSIBM.

The VARGRAPHIC function returns a varying-length graphic string representation

of:

v A graphic string, if the first argument is any type of graphic string

v A character string, converting single-byte characters to double-byte characters, if

the first argument is any type of character string

VARCHAR_FORMAT_BIT

396 SQL Reference, Volume 1

v A datetime value (Unicode databases only), if the argument is a date, time, or

timestamp

In a Unicode database, if a supplied argument is a character string, it is first

converted to a graphic string before the function is executed. When the output

string is truncated, such that the last character is a high surrogate, that surrogate is

converted to the blank character (X’0020’). Do not rely on this behavior, because it

might change in a future release.

The result of the function is a varying-length graphic string (VARGRAPHIC data

type). If the first argument can be null, the result can be null; if the first argument

is null, the result is the null value.

Graphic to Vargraphic

graphic-expression

An expression that returns a value that is a graphic string.

integer

An integer value specifying the length attribute of the resulting

VARGRAPHIC data type. The value must be between 0 and 16 336. If

a value is not specified, the length attribute of the result is the same as

the length attribute of the first argument.

If the length of the graphic expression is greater than the length attribute

of the result, the result is truncated. A warning is returned (SQLSTATE

01004), unless the truncated characters were all blanks, and the graphic

expression was not a long string (LONG VARGRAPHIC or DBCLOB).

Character to Vargraphic

character-expression

An expression whose value must be of a character string data type

other than LONG VARCHAR or CLOB, and whose maximum length is

16 336 bytes.

The length attribute of the result is equal to the length attribute of the

argument.

 Each single-byte character in character-expression is converted to its

equivalent double-byte representation or to the double-byte substitution

character in the result. Each double-byte character in character-expression is

mapped without additional conversion. If the first byte of a double-byte

character appears as the last byte of character-expression, it is converted to

the double-byte substitution character. The sequential order of the

characters in character-expression is preserved.

For a Unicode database, this function converts the character string from the

code page of the operand to UCS-2. Every character of the operand,

including double-byte characters, is converted. If a value for the second

argument is provided, it specifies the required length of the resulting string

(in UCS-2 characters).

The conversion to double-byte code points by the VARGRAPHIC function

is based on the code page of the operand.

Double-byte characters of the operand are not converted. All other

characters are converted to their corresponding double-byte equivalents. If

there is no corresponding double-byte equivalent, the double-byte

substitution character for the code page is used.

VARGRAPHIC

Chapter 3. Functions 397

No warning or error code is generated if one or more double-byte

substitution characters are returned in the result.

Datetime to Vargraphic

datetime-expression

An expression whose value must be of the DATE, TIME, or

TIMESTAMP data type.

WEEK

�� WEEK (expression) ��

Returns the week of the year of the argument as an integer value in range 1-54.

The week starts with Sunday.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

WEEK_ISO

�� WEEK_ISO (expression) ��

The schema is SYSFUN.

Returns the week of the year of the argument as an integer value in the range 1-53.

The week starts with Monday and always includes 7 days. Week 1 is the first week

of the year to contain a Thursday, which is equivalent to the first week containing

January 4. It is therefore possible to have up to 3 days at the beginning of a year

appear in the last week of the previous year. Conversely, up to 3 days at the end of

a year may appear in the first week of the next year.

The argument must be a date, timestamp, or a valid character string representation

of a date or timestamp that is neither a CLOB nor a LONG VARCHAR. In a

Unicode database, if a supplied argument is a graphic string, it is first converted to

a character string before the function is executed.

The result of the function is INTEGER. The result can be null; if the argument is

null, the result is the null value.

Example:

The following list shows examples of the result of WEEK_ISO and

DAYOFWEEK_ISO.

DATE WEEK_ISO DAYOFWEEK_ISO

---------- ----------- -------------

1997-12-28 52 7

1997-12-31 1 3

1998-01-01 1 4

1999-01-01 53 5

VARGRAPHIC

398 SQL Reference, Volume 1

1999-01-04 1 1

1999-12-31 52 5

2000-01-01 52 6

2000-01-03 1 1

XMLATTRIBUTES

�� XMLATTRIBUTES �

�

�

 ,

(

attribute-value-expression

)

AS

attribute-name

��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLATTRIBUTES function constructs XML attributes from the arguments.

This function can only be used as an argument of the XMLELEMENT function.

The result is an XML sequence containing an XQuery attribute node for each

non-null input value.

attribute-value-expression

An expression whose result is the attribute value. The data type of

attribute-value-expression cannot be a structured type (SQLSTATE 42884). The

expression can be any SQL expression. If the expression is not a simple column

reference, an attribute name must be specified.

attribute-name

Specifies an attribute name. The name is an SQL identifier that must be in the

form of an XML qualified name, or QName (SQLSTATE 42634). See the W3C

XML namespace specifications for more details on valid names. The attribute

name cannot be xmlns or prefixed with xmlns:. A namespace is declared using

the function XMLNAMESPACES. Duplicate attribute names, whether implicit

or explicit, are not allowed (SQLSTATE 42713).

 If attribute-name is not specified, attribute-value-expression must be a column

name (SQLSTATE 42703). The attribute name is created from the column name

using the fully escaped mapping from a column name to an XML attribute

name.

The data type of the result is XML. If the result of attribute-value-expression can be

null, the result can be null; if the result of every attribute-value-expression is null, the

result is the null value.

Note:

1. Support in multiple database partition databases: The BLOB data type and

character string data defined as FOR BIT DATA are not supported (SQLSTATE

42884).

Examples:

Note: XMLATTRIBUTES does not insert blank spaces or new line characters in the

output. All example output has been formatted to enhance readability.

v Produce an element with attributes.

WEEK_ISO

Chapter 3. Functions 399

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

SELECT E.EMPNO, XMLELEMENT(

 NAME "Emp",

 XMLATTRIBUTES(

 E.EMPNO, E.FIRSTNME ||’ ’|| E.LASTNAME AS "name"

)

)

 AS "Result"

 FROM EMPLOYEE E WHERE E.EDLEVEL = 12

This query produces the following result:

EMPNO Result

000290 <Emp EMPNO="000290" name="JOHN PARKER"></Emp>

000310 <Emp EMPNO="000310" name="MAUDE SETRIGHT"></Emp>

200310 <Emp EMPNO="200310" name="MICHELLE SPRINGER"></Emp>

v Produce an element with a namespace declaration that is not used in any

QName. The prefix is used in an attribute value.

 VALUES XMLELEMENT(

 NAME "size",

 XMLNAMESPACES(

 ’http://www.w3.org/2001/XMLSchema-instance’ AS "xsi",

 ’http://www.w3.org/2001/XMLSchema’ AS "xsd"

),

 XMLATTRIBUTES(

 ’xsd:string’ AS "xsi:type"

), ’1’

)

This query produces the following result:

<size xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xsi:type="xsd:string">1</size>

XMLCOMMENT

�� XMLCOMMENT (string-expression) ��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLCOMMENT function returns an XML value with a single XQuery

comment node with the input argument as the content.

string-expression

An expression whose value has a character string type: CHAR, VARCHAR or

CLOB. The result of the string-expression is parsed to check for conformance to

the requirements for an XML comment, as specified in the XML 1.0 rule. The

result of the string-expression must conform to the following regular expression:

 ((Char - ’-’) | (’-’ (Char - ’-’)))*

where Char is defined as any Unicode character excluding surrogate blocks

X’FFFE’ and X’FFFF’. Basically, the XML comment cannot contain two adjacent

hyphens, and cannot end with a hyphen (SQLSTATE 2200S).

The data type of the result is XML. If the result of string-expression can be null, the

result can be null; if the input value is null, the result is the null value.

Note:

XMLATTRIBUTES

400 SQL Reference, Volume 1

1. Support in multiple database partition databases: XMLCOMMENT is not

supported (SQLSTATE 42997).

XMLCONCAT

��

�

XMLCONCAT

(

XML-expression

,

XML-expression

)

��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLCONCAT function returns a sequence containing the concatenation of a

variable number of XML input arguments.

XML-expression

Specifies an expression of data type XML.

The data type of the result is XML. The result is an XML sequence containing the

concatenation of the non-null input XML values. Null values in the input are

ignored. If the result of any XML-expression can be null, the result can be null; if

the result of every input value is null, the result is the null value.

Note:

1. Support in multiple database partition databases: The result, at the outer level

of XML function nesting, must be an argument of the XMLSERIALIZE function

(SQLSTATE 42997).

Example:

Note: XMLCONCAT does not insert blank spaces or new line characters in the

output. All example output has been formatted to enhance readability.

v Construct a department element for departments A00 and B01, containing a list

of employees sorted by first name. Include an introductory comment

immediately preceding the department element.

 SELECT XMLCONCAT(

 XMLCOMMENT(

 ’Confirm these employees are on track for their product schedule’

),

 XMLELEMENT(

 NAME "Department",

 XMLATTRIBUTES(

 E.WORKDEPT AS "name"

),

 XMLAGG(

 XMLELEMENT(

 NAME "emp", E.FIRSTNME

)

 ORDER BY E.FIRSTNME

)

)

)

 FROM EMPLOYEE E

 WHERE E.WORKDEPT IN (’A00’, ’B01’)

 GROUP BY E.WORKDEPT

This query produces the following result:

XMLCOMMENT

Chapter 3. Functions 401

<!--Confirm these employees are on track for their product schedule-->

<Department name="A00">

<emp>CHRISTINE</emp>

<emp>DIAN</emp>

<emp>GREG</emp>

<emp>SEAN</emp>

<emp>VINCENZO</emp>

</Department>

<!--Confirm these employees are on track for their product schedule-->

<Department name="B01">

<emp>MICHAEL</emp>

</Department>

XMLDOCUMENT

�� XMLDOCUMENT (XML-expression) ��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLDOCUMENT function returns an XML value with a single XQuery

document node with zero or more children nodes.

XML-expression

An expression that returns an XML value. A sequence item in the XML value

must not be an attribute node (SQLSTATE 10507).

The data type of the result is XML. If the result of XML-expression can be null, the

result can be null; if the input value is null, the result is the null value.

The children of the resulting document node are constructed as described in the

following steps. The input expression is a sequence of nodes or atomic values,

which is referred to in these steps as the content sequence.

1. If the content sequence contains a document node, the document node is

replaced in the content sequence by the children of the document node.

2. Each adjacent sequence of one or more atomic values in the content sequence

are replaced with a text node containing the result of casting each atomic value

to a string with a single blank character inserted between adjacent values.

3. For each node in the content sequence, a new deep copy of the node is

constructed. A deep copy of a node is a copy of the whole subtree rooted at

that node, including the node itself and its descendants. Each copied node has

a new node identity. Copied element and attribute nodes preserve their type

annotation.

4. The nodes in the content sequence become the children of the new document

node.

The XMLDOCUMENT function effectively executes the XQuery computed

document constructor. The result of

XMLQUERY(’document {$E}’ PASSING BY REF XML-expression AS "E")

is equivalent to

XMLDOCUMENT(XML-expression)

with the exception of the case where XML-expression is null and XMLQUERY

returns the empty sequence compared to XMLDOCUMENT which returns the null

value.

XMLCONCAT

402 SQL Reference, Volume 1

Note:

1. Support in multiple database partition databases: XMLDOCUMENT is not

supported (SQLSTATE 42997).

Example:

v Insert a constructed document into an XML column.

 INSERT INTO T1 VALUES(

 123, (

 SELECT XMLDOCUMENT(

 XMLELEMENT(

 NAME "Emp", E.FIRSTNME || ’ ’ || E.LASTNAME, XMLCOMMENT(

 ’This is just a simple example’

)

)

)

 FROM EMPLOYEE E

 WHERE E.EMPNO = ’000120’

)

)

XMLELEMENT

�� XMLELEMENT (NAME element-name

,

xmlnamespaces-declaration
 �

�
,

xmlattributes-function

�

,

element-content-expression

 �

�

�

(1)

EMPTY ON NULL

(2)

(3)

OPTION

NULL ON NULL

USING

XMLBINARY

BASE64

USING

XMLBINARY

HEX

) ��

Notes:

1 The OPTION clause can only be specified if at least one xmlattributes-function

or element-content-expression is specified.

2 NULL ON NULL or EMPTY ON NULL can only be specified if at least one

element-content-expression is specified.

3 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLELEMENT function returns an XML value that is an XQuery element

node.

NAME element-name

Specifies the name of an XML element. The name is an SQL identifier that

must be in the form of an XML qualified name, or QName (SQLSTATE 42634).

See the W3C XML namespace specifications for more details on valid names. If

the name is qualified, the namespace prefix must be declared within the scope

(SQLSTATE 42635).

XMLDOCUMENT

Chapter 3. Functions 403

http://www.w3.org/TR/REC-xml-names/

xmlnamespaces-declaration

Specifies the XML namespace declarations that are the result of the

XMLNAMESPACES declaration. The namespaces that are declared are in the

scope of the XMLELEMENT function. The namespaces apply to any nested

XML functions within the XMLELEMENT function, regardless of whether or

not they appear inside another subselect.

 If xmlnamespaces-declaration is not specified, namespace declarations are not

associated with the constructed element.

xmlattributes-function

Specifies the XML attributes for the element. The attributes are the result of the

XMLATTRIBUTES function.

element-content-expression

The content of the generated XML element node is specified by an expression

or a list of expressions. The data type of element-content-expression cannot be a

structured type (SQLSTATE 42884). The expression can be any SQL expression.

 If element-content-expression is not specified, an empty string is used as the

content for the element and OPTION NULL ON NULL or EMPTY ON NULL

must not be specified.

OPTION

Specifies additional options for constructing the XML element. If no OPTION

clause is specified, the default is EMPTY ON NULL XMLBINARY USING

BASE64. This clause has no impact on nested XMLELEMENT invocations

specified in element-content-expression.

EMPTY ON NULL or NULL ON NULL

Specifies whether a null value or an empty element is to be returned if the

values of each element-content-expression is a null value. This option only

affects null handling of element contents, not attribute values. The default

is EMPTY ON NULL.

EMPTY ON NULL

If the value of each element-content-expression is null, an empty element

is returned.

NULL ON NULL

If the value of each element-content-expression is null, a null value is

returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX

Specifies the assumed encoding of binary input data, character string data

with the FOR BIT DATA attribute, or a distinct type that is based on one of

these types. The encoding applies to element content or attribute values.

The default is XMLBINARY USING BASE64.

XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for

XML schema type xs:base64Binary encoding. The base64 encoding uses

a 65-character subset of US-ASCII (10 digits, 26 lowercase characters,

26 uppercase characters, ’+’, and ’/’) to represent every six bits of the

binary or bit data with one printable character in the subset. These

characters are selected so that they are universally representable. Using

this method, the size of the encoded data is 33 percent larger than the

original binary or bit data.

XMLBINARY USING HEX

Specifies that the assumed encoding is hexadecimal characters, as

XMLELEMENT

404 SQL Reference, Volume 1

defined for XML schema type xs:hexBinary encoding. The hexadecimal

encoding represents each byte (8 bits) with two hexadecimal characters.

Using this method, the encoded data is twice the size of the original

binary or bit data.

This function takes an element name, an optional collection of namespace

declarations, an optional collection of attributes, and zero or more arguments that

make up the content of the XML element. The result is an XML sequence

containing an XML element node or the null value.

The data type of the result is XML. If any of the element-content-expression

arguments can be null, the result can be null; if all the element-content-expression

argument values are null and the NULL ON NULL option is in effect, the result is

the null value.

Note:

1. Support in multiple database partition databases: The function is only

supported as it was in Version 8. The result, at the outer level of XML value

function nesting, must be an argument of the XMLSERIALIZE function. The

null handling options and binary encoding options cannot be specified

(SQLSTATE 42997). BLOB and character string data defined as FOR BIT DATA

cannot be specified (SQLSTATE 42884).

When constructing elements that will be copied as content of another element

that defines default namespaces, default namespaces should be explicitly

undeclared in the copied element to avoid possible errors that could result from

inheriting the default namespace from the new parent element. Predefined

namespace prefixes (’xs’, ’xsi’, ’xml’, and ’sqlxml’) must also be declared

explicitly when they are used.

2. Constructing an element node: The resulting element node is constructed as

follows:

a. The xmlnamespaces-declaration adds a set of in-scope namespaces for the

constructed element. Each in-scope namespace associates a namespace

prefix (or the default namespace) with a namespace URI. The in-scope

namespaces define the set of namespace prefixes that are available for

interpreting QNames within the scope of the element.

b. If the xmlattributes-function is specified, it is evaluated and the result is a

sequence of attribute nodes.

c. Each element-content-expression is evaluated and the result is converted into a

sequence of nodes as follows:

v If the result type is not XML, it is converted to an XML text node whose

content is the result of element-content-expression mapped to XML

according to the rules of mapping SQL data values to XML data values

(see the table that describes supported casts from non-XML values to

XML values in “Casting between data types”).

v If the result type is XML, then in general the result is a sequence of items.

Some of the items in that sequence might be document nodes. Each

document node in the sequence is replaced by the sequence of its

top-level children. Then for each node in the resulting sequence, a new

deep copy of the node is constructed, including its children and

attributes. Each copied node has a new node identity. Copied element

and attribute nodes preserve their type annotation. For each adjacent

sequence of one or more atomic values returned in the sequence, a new

text node is constructed, containing the result of casting each atomic

value to a string, with a single blank character inserted between adjacent

XMLELEMENT

Chapter 3. Functions 405

values. Adjacent text nodes in the content sequence are merged into a

single text node by concatenating their contents, with no intervening

blanks. After concatenation, any text node whose content is a zero-length

string is deleted from the content sequence.
d. The result sequence of XML attributes and the resulting sequences of all

element-content-expression specifications are concatenated into one sequence

which is called the content sequence. Any sequence of adjacent text nodes

in the content sequence is merged into a single text node. If all the

element-content-expression arguments are empty strings, or an

element-content-expression argument is not specified, an empty element is

returned.

e. The content sequence must not contain an attribute node following a node

that is not an attribute node (SQLSTATE 10507). Attribute nodes occurring

in the content sequence become attributes of the new element node. Two or

more of these attribute nodes must not have the same name (SQLSTATE

10503). A namespace declaration is created corresponding to any namespace

used in the names of the attribute nodes if the namespace URI is not in the

in-scope namespaces of the constructed element.

f. Element, text, comment, and processing instruction nodes in the content

sequence become the children of the constructed element node.

g. The constructed element node is given a type annotation of xs:anyType, and

each of its attributes is given a type annotation of xdt:untypedAtomic. The

node name of the constructed element node is element-name specified after

the NAME keyword.
3. Rules for using namespaces within XMLELEMENT: Consider the following

rules about scoping of namespaces:

v The namespaces declared in the XMLNAMESPACES declaration are the

in-scope namespaces of the element node constructed by the XMLELEMENT

function. If the element node is serialized, then each of its in-scope

namespaces will be serialized as a namespace attribute unless it is an

in-scope namespace of the parent of the element node and the parent

element is serialized too.

v If an XMLQUERY or XMLEXISTS is in an element-content-expression, then the

namespaces becomes the statically known namespaces of the XQuery

expression of the XMLQUERY or XMLEXISTS. Statically known namespaces

are used to resolve the QNames in the XQuery expression. If the XQuery

prolog declares a namespace with the same prefix, within the scope of the

XQuery expression, the namespace declared in the prolog will override the

namespaces declared in the XMLNAMESPACES declaration.

v If an attribute of the constructed element comes from an

element-content-expression, its namespace might not already be declared as an

in-scope namespace of the constructed element, in this case, a new

namespace is created for it. If this would result in a conflict, which means

that the prefix of the attribute name is already bound to a different URI by a

in-scope namespace, DB2 generates a prefix that does not cause such a

conflict and the prefix used in the attribute name is changed to the new

prefix, and a namespace is created for this new prefix. The generated new

prefix follows the following pattern: ″db2ns-xx″, where ″x″ is a character

chosen from the set [A-Z,a-z,0-9]. For example:

 VALUES XMLELEMENT(

 NAME "c", XMLQUERY(

 ’declare namespace ipo="www.ipo.com"; $m/ipo:a/@ipo:b’

 PASSING XMLPARSE(

XMLELEMENT

406 SQL Reference, Volume 1

DOCUMENT ’<tst:a xmlns:tst="www.ipo.com" tst:b="2"/>’

) AS "m"

)

)

returns:

<c xmlns:tst="www.ipo.com" tst:b="2"/>

A second example:

 VALUES XMLELEMENT(

 NAME "tst:c", XMLNAMESPACES(

 ’www.tst.com’ AS "tst"

),

 XMLQUERY(

 ’declare namespace ipo="www.ipo.com"; $m/ipo:a/@ipo:b’

 PASSING XMLPARSE(

 DOCUMENT ’<tst:a xmlns:tst="www.ipo.com" tst:b="2"/>’

) AS "m"

)

)

returns:

<tst:c xmlns:tst="www.tst.com" xmlns:db2ns-a1="www.ipo.com"

 db2ns-a1:b="2"/>

Examples:

Note: XMLELEMENT does not insert blank spaces or new line characters in the

output. All example output has been formatted to enhance readability.

v Construct an element with the NULL ON NULL option.

 SELECT E.FIRSTNME, E.LASTNAME, XMLELEMENT(

 NAME "Emp", XMLELEMENT(

 NAME "firstname", E.FIRSTNME

),

 XMLELEMENT(

 NAME "lastname", E.LASTNAME

)

 OPTION NULL ON NULL

)

 AS "Result"

 FROM EMPLOYEE E

 WHERE E.EDLEVEL = 12

This query produces the following result:

FIRSTNME LASTNAME Emp

JOHN PARKER <Emp><firstname>JOHN</firstname>

 <lastname>PARKER</lastname></Emp>

MAUDE SETRIGHT <Emp><firstname>MAUDE</firstname>

 <lastname>SETRIGHT</lastname></Emp>

MICHELLE SPRINGER <Emp><firstname>MICHELLE</firstname>

 <lastname>SPRINGER</lastname></Emp>

v Produce an element with a list of elements nested as child elements.

 SELECT XMLELEMENT(

 NAME "Department", XMLATTRIBUTES(

 E.WORKDEPT AS "name"

),

 XMLAGG(

 XMLELEMENT(

 NAME "emp", E.FIRSTNME

)

 ORDER BY E.FIRSTNME

XMLELEMENT

Chapter 3. Functions 407

)

)

 AS "dept_list"

 FROM EMPLOYEE E

 WHERE E.WORKDEPT IN (’A00’, ’B01’)

 GROUP BY WORKDEPT

This query produces the following result:

dept_list

<Department name="A00">

<emp>CHRISTINE</emp>

<emp>SEAN</emp>

<emp>VINCENZO</emp>

</Department>

<Department name="B01">

<emp>MICHAEL</emp>

</Department>

XMLFOREST

�� XMLFOREST (

xmlnamespaces-declaration

,
 �

�

�

 ,

element-content-expression

AS

element-name

�

�

�

NULL ON NULL

(1)

OPTION

EMPTY ON NULL

USING

XMLBINARY

BASE64

USING

XMLBINARY

HEX

) ��

Notes:

1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLFOREST function returns an XML value that is a sequence of XQuery

element nodes.

xmlnamespaces-declaration

Specifies the XML namespace declarations that are the result of the

XMLNAMESPACES declaration. The namespaces that are declared are in the

scope of the XMLFOREST function. The namespaces apply to any nested XML

functions within the XMLFOREST function, regardless of whether or not they

appear inside another subselect.

 If xmlnamespaces-declaration is not specified, namespace declarations are not

associated with the constructed elements.

XMLELEMENT

408 SQL Reference, Volume 1

element-content-expression

The content of the generated XML element node is specified by an expression.

The data type of element-content-expression cannot be a structured type

(SQLSTATE 42884). The expression can be any SQL expression. If the

expression is not a simple column reference, an element name must be

specified.

AS element-name

Specifies the XML element name as an SQL identifier. The element name must

be of the form of an XML qualified name, or QName (SQLSTATE 42634). See

the W3C XML namespace specifications for more details on valid names. If the

name is qualified, the namespace prefix must be declared within the scope

(SQLSTATE 42635). If element-name is not specified, element-content-expression

must be a column name (SQLSTATE 42703, SQLCODE -206). The element

name is created from the column name using the fully escaped mapping from

a column name to an QName.

OPTION

Specifies additional options for constructing the XML element. If no OPTION

clause is specified, the default is NULL ON NULL XMLBINARY USING

BASE64. This clause has no impact on nested XMLELEMENT invocations

specified in element-content-expression.

EMPTY ON NULL or NULL ON NULL

Specifies whether a null value or an empty element is to be returned if the

values of each element-content-expression is a null value. This option only

affects null handling of element contents, not attribute values. The default

is NULL ON NULL.

EMPTY ON NULL

If the value of each element-content-expression is null, an empty element

is returned.

NULL ON NULL

If the value of each element-content-expression is null, a null value is

returned.

XMLBINARY USING BASE64 or XMLBINARY USING HEX

Specifies the assumed encoding of binary input data, character string data

with the FOR BIT DATA attribute, or a distinct type that is based on one of

these types. The encoding applies to element content or attribute values.

The default is XMLBINARY USING BASE64.

XMLBINARY USING BASE64

Specifies that the assumed encoding is base64 characters, as defined for

XML schema type xs:base64Binary encoding. The base64 encoding uses

a 65-character subset of US-ASCII (10 digits, 26 lowercase characters,

26 uppercase characters, ’+’, and ’/’) to represent every six bits of the

binary or bit data with one printable character in the subset. These

characters are selected so that they are universally representable. Using

this method, the size of the encoded data is 33 percent larger than the

original binary or bit data.

XMLBINARY USING HEX

Specifies that the assumed encoding is hexadecimal characters, as

defined for XML schema type xs:hexBinary encoding. The hexadecimal

encoding represents each byte (8 bits) with two hexadecimal characters.

Using this method, the encoded data is twice the size of the original

binary or bit data.

XMLFOREST

Chapter 3. Functions 409

http://www.w3.org/TR/REC-xml-names/

This function takes an optional set of namespace declarations and one or more

arguments that make up the name and element content for one or more element

nodes. The result is an XML sequence containing a sequence of XQuery element

nodes or the null value.

The data type of the result is XML. If any of the element-content-expression

arguments can be null, the result can be null; if all the element-content-expression

argument values are null and the NULL ON NULL option is in effect, the result is

the null value.

The XMLFOREST function can be expressed by using XMLCONCAT and

XMLELEMENT. For example, the following two expressions are semantically

equivalent.

XMLFOREST(xmlnamespaces-declaration, arg1 AS name1, arg2 AS name2 ...)

XMLCONCAT(

 XMLELEMENT(

 NAME name1, xmlnamespaces-declaration, arg1

),

 XMLELEMENT(

 NAME name2, xmlnamespaces-declaration, arg2

)

 ...

)

Note:

1. Support in multiple database partition databases: The function is only

supported as it was in Version 8. The result, at the outer level of XML value

function nesting, must be an argument of the XMLSERIALIZE function. The

null handling options and binary encoding options cannot be specified

(SQLSTATE 42997). BLOB and character string data defined as FOR BIT DATA

cannot be specified (SQLSTATE 42884).

When constructing elements that will be copied as content of another element

that defines default namespaces, default namespaces should be explicitly

undeclared in the copied element to avoid possible errors that could result from

inheriting the default namespace from the new parent element. Predefined

namespace prefixes (’xs’, ’xsi’, ’xml’, and ’sqlxml’) must also be declared

explicitly when they are used.

Example:

Note: XMLFOREST does not insert blank spaces or new line characters in the

output. All example output has been formatted to enhance readability.

v Construct a forest of elements with a default namespace.

 SELECT EMPNO,

 XMLFOREST(

 XMLNAMESPACES(

 DEFAULT ’http://hr.org’, ’http://fed.gov’ AS "d"

),

 LASTNAME, JOB AS "d:job"

)

 AS "Result"

 FROM EMPLOYEE

 WHERE EDLEVEL = 12

This query produces the following result:

EMPNO Result

000290 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">PARKER

 </LASTNAME>

XMLFOREST

410 SQL Reference, Volume 1

<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>

000310 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">SETRIGHT

 </LASTNAME>

<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>

200310 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">SPRINGER

 </LASTNAME>

<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR</d:job>

XMLNAMESPACES

xmlnamespaces-declaration:

XMLNAMESPACES

�

 ,

(

namespace-uri

AS

namespace-prefix

)

(1)

DEFAULT

namespace-uri

NO DEFAULT

Notes:

1 DEFAULT or NO DEFAULT can only be specified once in arguments of

XMLNAMESPACES.

The schema is SYSIBM. The declaration name cannot be specified as a qualified

name.

The XMLNAMESPACES declaration constructs namespace declarations from the

arguments. This declaration can only be used as an argument for specific functions

such as XMLELEMENT, XMLFOREST and XMLTABLE. The result is one or more

XML namespace declarations containing in-scope namespaces for each non-null

input value.

namespace-uri

Specifies the namespace universal resource identifier (URI) as an SQL character

string constant. This character string constant must not be empty if it is used

with a namespace-prefix (SQLSTATE 42815).

namespace-prefix

Specifies a namespace prefix. The prefix is an SQL identifier that must be in

the form of an XML NCName (SQLSTATE 42634). See the W3C XML

namespace specifications for more details on valid names. The prefix cannot be

xml or xmlns and the prefix must be unique within the list of namespace

declarations (SQLSTATE 42635).

DEFAULT namespace-uri

Specifies the default namespace to use within the scope of this namespace

declaration. The namespace-uri applies for unqualified names in the scope

unless overridden in a nested scope by another DEFAULT declaration or a NO

DEFAULT declaration.

NO DEFAULT

Specifies that no default namespace is to be used within the scope of this

namespace declaration. There is no default namespace in the scope unless

overridden in a nested scope by a DEFAULT declaration.

The data type of the result is XML. The result is an XML namespace declaration

for each specified namespace. The result cannot be null.

XMLFOREST

Chapter 3. Functions 411

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

Examples:

Note: XMLNAMESPACES does not insert blank spaces or new line characters in

the output. All example output has been formatted to enhance readability.

v Produce an XML element named adm:employee and an XML attribute

adm:department, both associated with a namespace whose prefix is adm.

 SELECT EMPNO, XMLELEMENT(

 NAME "adm:employee", XMLNAMESPACES(

 ’http://www.adm.com’ AS "adm"

),

 XMLATTRIBUTES(

 WORKDEPT AS "adm:department"

),

 LASTNAME

)

 FROM EMPLOYEE

 WHERE JOB = ’ANALYST’

This query produces the following result:

000130 <adm:employee xmlns:adm="http://www.adm.com" adm:department="C01">

 QUINTANA</adm:employee>

000140 <adm:employee xmlns:adm="http://www.adm.com" adm:department="C01">

 NICHOLLS</adm:employee>

200140 <adm:employee xmlns:adm="http://www.adm.com" adm:department="C01">

 NATZ</adm:employee>

v Produce an XML element named ’employee’, which is associated with a default

namespace, and a sub-element named ’job’, which does not use a default

namespace, but whose sub-element named ’department’ does use a default

namespace.

 SELECT EMP.EMPNO, XMLELEMENT(

 NAME "employee", XMLNAMESPACES(

 DEFAULT ’http://hr.org’

),

 EMP.LASTNAME, XMLELEMENT(

 NAME "job", XMLNAMESPACES(

 NO DEFAULT

),

 EMP.JOB, XMLELEMENT(

 NAME "department", XMLNAMESPACES(

 DEFAULT ’http://adm.org’

),

 EMP.WORKDEPT

)

)

)

 FROM EMPLOYEE EMP

 WHERE EMP.EDLEVEL = 12

This query produces the following result:

000290 <employee xmlns="http://hr.org">PARKER<job xmlns="">OPERATOR

 <department xmlns="http://adm.org">E11</department></job></employee>

000310 <employee xmlns="http://hr.org">SETRIGHT<job xmlns="">OPERATOR

 <department xmlns="http://adm.org">E11</department></job></employee>

200310 <employee xmlns="http://hr.org">SPRINGER<job xmlns="">OPERATOR

 <department xmlns="http://adm.org">E11</department></job></employee>

XMLNAMESPACES

412 SQL Reference, Volume 1

XMLPARSE

��
 STRIP WHITESPACE

XMLPARSE

(

DOCUMENT

string-expression

)

PRESERVE WHITESPACE

��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLPARSE function parses the argument as an XML document and returns

an XML value.

DOCUMENT

Specifies that the character string expression to be parsed must evaluate to a

well-formed XML document that conforms to XML 1.0, as modified by the

XML Namespaces recommendation (SQLSTATE 2200M).

string-expression

Specifies an expression that returns a character string or BLOB value. If a

parameter marker is used, it must explicitly be cast to one of the supported

data types.

STRIP WHITESPACE or PRESERVE WHITESPACE

Specifies whether or not whitespace in the input argument is to be preserved.

If neither is specified, STRIP WHITESPACE is the default.

STRIP WHITESPACE

Specifies that text nodes containing only whitespace characters up to 1000

bytes in length will be stripped, unless the nearest containing element has

the attribute xml:space=’preserve’. If any text node begins with more that

1000 bytes of whitespace, an error is returned (SQLSTATE 54059).

 The whitespace characters in the CDATA section are also affected by this

option. DTDs may have DOCTYPE declarations for elements, but the

content models of elements are not used to determine if whitespace is

stripped or not.

PRESERVE WHITESPACE

Specifies that all whitespace is to be preserved, even when the nearest

containing element has the attribute xml:space=’default’.

The data type of the result is XML. If the result of string-expression can be null, the

result can be null; if the result of string-expression is null, the result is the null

value.

Note:

1. Support in multiple database partition databases: XMLPARSE is not

supported (SQLSTATE 42997).

2. Encoding of the input string: The input string may contain an XML

declaration that identifies the encoding of the characters in the XML document.

If the string is passed to the XMLPARSE function as a character string, it will

be converted to the code page at the database server. This code page may be

different from the originating code page and the encoding identified in the

XML declaration.

Therefore, applications should avoid direct use of XMLPARSE with character

string input and should send strings containing XML documents directly using

host variables to maintain the match between the external code page and the

XMLPARSE

Chapter 3. Functions 413

encoding in the XML declaration. If XMLPARSE must be used in this situation,

a BLOB type should be specified as the argument to avoid code page

conversion.

3. Handling of DTDs: External document type definitions (DTDs) and entities

must be registered in a database. Both internal and external DTDs are checked

for valid syntax. During the parsing process, the following actions are also

performed:

v Default values that are defined by the internal and external DTDs are

applied.

v Entity references and parameter entities are replaced by their expanded

forms.

v If an internal DTD and an external DTD define the same element, an error is

returned (SQLSTATE 2200M).

v If an internal DTD and an external DTD define the same entity or attribute,

the internal definition is chosen.

After parsing, internal DTDs and entities, as well as references to external

DTDs and entities, are not preserved in the stored representation of the value.

4. Character conversion in non-UTF-8 databases: Code page conversion occurs

when an XML document is parsed into a non-Unicode database server, if the

document is passed in from a host variable or parameter marker of a character

data type, or from a character string literal. Parsing an XML document using a

host variable or parameter marker of type XML, BLOB or FOR BIT DATA

(CHAR FOR BIT DATA or VARCHAR FOR BIT DATA) prevents code page

conversion. When a character data type is used, care must be taken to ensure

that all characters in the XML document have a matching code point in the

target database code page, otherwise substitution characters may be introduced.

The configuration parameter enable_xmlchar can be used to help ensure the

integrity of XML data stored in a non-Unicode database. Setting this parameter

to ″NO″ blocks the insertion of XML documents from character data types. The

BLOB and FOR BIT DATA data types are still allowed, as documents passed

into a database using these data types avoid code page conversion.

Example

Using the PRESERVE WHITESPACE option preserves the white space characters in

the XML document inserted into the table, including the white space characters in

the description element.

INSERT INTO PRODUCT VALUES (’100-103-99’,’Tool bag’,14.95,NULL,NULL,NULL,

XMLPARSE(DOCUMENT

 ’<produce xmlns="http://posample.org" pid="100-103-99">

 <description>

 <name>Tool bag</name>

 <details>

 Super Deluxe tool bag:

 - 26 inches long, 12 inches wide

 - Curved padded handle

 - Locking latch

 - Reinforced exterior pockets

 </details>

 <price>14.95</price>

 <weight>3 kg</weight>

 </description>

 </product>’ PRESERVE WHITESPACE));

Running the following select statement

XMLPARSE

414 SQL Reference, Volume 1

SELECT XMLQUERY (’$d/*:product/*:description/*:details’ passing DESCRIPTION as "d")

FROM PRODUCT WHERE PID = ’100-103-99’ ;

returns the details element with the white space characters:

<details xmlns="http://posample.org">

 Super Deluxe tool bag:

 - 26 inches long, 12 inches wide

 - Curved padded handle

 - Locking latch

 - Reinforced exterior pockets

</details>

XMLPI

�� XMLPI (NAME pi-name)

,

string-expression
 ��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLPI function returns an XML value with a single XQuery processing

instruction node.

NAME pi-name

Specifies the name of a processing instruction. The name is an SQL identifier

that must be in the form of an XML NCName (SQLSTATE 42634). See the W3C

XML namespace specifications for more details on valid names. The name

cannot be the word ’xml’ in any case combination (SQLSTATE 42634).

string-expression

An expression that returns a value that is a character string. The resulting

string is converted to UTF-8 and must conform to the content of an XML

processing instruction as specified in XML 1.0 rules (SQLSTATE 2200T):

v The string must not contain the substring ’?>’ since this substring terminates

a processing instruction

v Each character of the string can be any Unicode character excluding the

surrogate blocks, X’FFFE’ and X’FFFF’.

The resulting string becomes the content of the constructed processing

instruction node.

The data type of the result is XML. If the result of string-expression can be null, the

result can be null; if the result of string-expression is null, the result is the null

value. If string-expression is an empty string or is not specified, an empty

processing instruction node is returned.

Note:

1. Support in multiple database partition databases: XMLPI is not supported

(SQLSTATE 42997).

Examples:

v Generate an XML processing instruction node.

 SELECT XMLPI(

 NAME "Instruction", ’Push the red button’

)

 FROM SYSIBM.SYSDUMMY1

This query produces the following result:

XMLPARSE

Chapter 3. Functions 415

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

<?Instruction Push the red button?>

v Generate an empty XML processing instruction node.

 SELECT XMLPI(

 NAME "Warning"

)

 FROM SYSIBM.SYSDUMMY1

This query produces the following result:

<?Warning ?>

XMLQUERY

�� XMLQUERY (xquery-expression-constant �

�

�

,

BY REF

PASSING

xquery-argument

 �

�

 BY REF

RETURNING

SEQUENCE

EMPTY ON EMPTY

)

��

xquery-argument:

 (1)

xquery-variable-expression

AS

identifier

BY REF

Notes:

1 The data type of the expression cannot be DECFLOAT.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLQUERY function returns an XML value from the evaluation of an XQuery

expression possibly using specified input arguments as XQuery variables.

xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an XQuery

expression using supported XQuery language syntax. The constant string is

converted to UTF-8 before being parsed as an XQuery statement. The XQuery

expression executes using an optional set of input XML values, and returns an

output sequence that is also returned as the value of the XMLQUERY

expression. The value for xquery-expression-constant must not be an empty

string or a string of blank characters (SQLSTATE 10505).

PASSING

Specifies input values and the manner in which these values are passed to the

XQuery expression specified by xquery-expression-constant. By default, every

unique column name that is in the scope where the function is invoked is

implicitly passed to the XQuery expression using the name of the column as

the variable name. If an identifier in a specified xquery-argument matches an

XMLPI

416 SQL Reference, Volume 1

in-scope column name, then the explicit xquery-argument is passed to the

XQuery expression overriding that implicit column.

BY REF

Specifies that the default passing mechanism is by reference for any

xquery-variable-expression of data type XML and for the returned value.

When XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node identity

comparisons and document ordering comparisons involving some nodes

contained between the two input arguments might refer to nodes within

the same XML node tree.

 This clause has no impact on how non-XML values are passed. The

non-XML values create a new copy of the value during the cast to XML.

xquery-argument

Specifies an argument that is to be passed to the XQuery expression

specified by xquery-expression-constant. An argument specifies a value and

the manner in which that value is to be passed. The argument includes an

SQL expression that is evaluated.

v If the resulting value is of type XML, it becomes an input-xml-value. A

null XML value is converted to an XML empty sequence.

v If the resulting value is not of type XML, it must be castable to the XML

data type. A null value is converted to an XML empty sequence. The

converted value becomes an input-xml-value.

When the xquery-expression-constant is evaluated, an XQuery variable is

presented with a value equal to input-xml-value and a name specified by

the AS clause.

xquery-variable-expression

Specifies an SQL expression whose value is available to the XQuery

expression specified by xquery-expression-constant during execution. The

expression cannot contain a sequence reference (SQLSTATE 428F9) or

an OLAP function (SQLSTATE 42903). The data type of the expression

cannot be DECFLOAT.

AS identifier

Specifies that the value generated by xquery-variable-expression will be

passed to xquery-expression-constant as an XQuery variable. The variable

name will be identifier. The leading dollar sign ($) that precedes

variable names in the XQuery language is not included in identifier.

The identifier must be a valid XQuery variable name and is restricted

to an XML NCName (SQLSTATE 42634). The identifier must not be

greater than 128 bytes in length. Two arguments within the same

PASSING clause cannot use the same identifier (SQLSTATE 42711).

BY REF

Indicates that an XML input value is to be passed by reference. When

XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node

identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree. If BY REF is not specified

following an xquery-variable-expression, XML arguments are passed by

XMLQUERY

Chapter 3. Functions 417

way of the default passing mechanism that is provided through the

syntax that follows the PASSING keyword. This option cannot be

specified for non-XML values. When a non-XML value is passed, the

value is converted to XML; this process creates a copy.

RETURNING SEQUENCE

Indicates that the XMLQUERY expression returns a sequence.

BY REF

Indicates that the result of the XQuery expression is returned by reference. If

this value contains nodes, any expression using the return value of the XQuery

expression will receive node references directly, preserving all node properties,

including the original node identities and document order. Referenced nodes

will remain connected within their node trees. If the BY REF clause is not

specified and the PASSING is specified, the default passing mechanism is used.

If BY REF is not specified and PASSING is not specified, the default returning

mechanism is BY REF.

EMPTY ON EMPTY

Specifies that an empty sequence result from processing the XQuery expression

is returned as an empty sequence.

The data type of the result is XML; it cannot be null.

If the evaluation of the XQuery expression results in an error, then the

XMLQUERY function returns the XQuery error (SQLSTATE class ’10’).

Note:

1. XMLQUERY usage restrictions: The XMLQUERY function cannot be:

v Part of the ON clause that is associated with a JOIN operator or a MERGE

statement (SQLSTATE 42972)

v Part of the GENERATE KEY USING or RANGE THROUGH clause in the

CREATE INDEX EXTENSION statement (SQLSTATE 428E3)

v Part of the FILTER USING clause in the CREATE FUNCTION (External

Scalar) statement, or the FILTER USING clause in the CREATE INDEX

EXTENSION statement (SQLSTATE 428E4)

v Part of a check constraint or a column generation expression (SQLSTATE

42621)

v Part of a group-by-clause (SQLSTATE 42822)

v Part of an argument for a column-function (SQLSTATE 42607)
2. XMLQUERY as a subquery: An XMLQUERY expression that acts as a

subquery can be restricted by statements that restrict subqueries.

3. Support in multiple database partition databases: XMLQUERY is not

supported (SQLSTATE 42997).

XMLROW

The XMLROW function returns an XML value with a single XQuery document

node containing one top-level element node.

��

�

 ,

XMLROW

(

expression

AS

qname-identifier

�

XMLQUERY

418 SQL Reference, Volume 1

�

�

(1)

ROW

″row″

OPTION

ROW

row-name

AS ATTRIBUTES

) ��

Notes:

1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

expression

The content of each generated XML element node is specified by an expression.

The data type of the expression cannot be a structured type (SQLSTATE 42884).

The expression can be any SQL expression. If the expression is not a simple

column reference, an element name must be specified.

AS qname-identifier

Specifies the XML element name or attribute name as an SQL identifier. The

qname-identifier must be of the form of an XML qualified name, or QName

(SQLSTATE 42634). See the W3C XML namespace specifications for more

details on valid names. If the name is qualified, the namespace prefix must be

declared within the scope (SQLSTATE 42635). If qname-identifier is not specified,

expression must be a column name (SQLSTATE 42703, SQLCODE -206). The

element name or attribute name is created from the column name using the

fully escaped mapping from a column name to an QName.

OPTION

Specifies additional options for constructing the XML value. If no OPTION

clause is specified, the default behavior applies.

AS ATTRIBUTES

Specifies that each expression is mapped to an attribute value with column

name or qname-identifier serving as the attribute name.

ROW row-name

Specifies the name of the element to which each row is mapped. If this option

is not specified, the default element name is ″row″.

Notes

By default, each row in the result set is mapped to an XML value as follows:

v Each row is transformed into an XML element named ″row″ and each column is

transformed into a nested element with the column name as the element name.

v The null handling behavior is NULL ON NULL. A NULL value in a column

maps to the absence of the subelement. If all column values are NULL, a NULL

value is returned by the function.

v The binary encoding scheme for BLOB and FOR BIT DATA data types is

base64Binary encoding.

v A document node will be added implicitly to the row element to make the XML

result a well-formed single-rooted XML document.

XMLROW

Chapter 3. Functions 419

Examples

Assume the following table T1 with columns C1 and C2 that contain numeric data

stored in a relational format:

C1 C2

----------- -----------

 1 2

 - 2

 1 -

 - -

 4 record(s) selected.

v The following example shows an XMLRow query and output fragment with

default behavior, using a sequence of row elements to represent the table:

SELECT XMLROW(C1, C2) FROM T1

<row><C1>1</C1><C2>2</C2></row>

<row><C2>2</C2></row>

<row><C1>1</C1></row>

 4 record(s) selected.

v The following example shows an XMLRow query and output fragment with

attribute centric mapping. Instead of appearing as nested elements as in the

previous example, relational data is mapped to element attributes:

SELECT XMLROW(C1, C2 OPTION AS ATTRIBUTES) FROM T1

<row C1="1" C2="2"/>

<row C2="2"/>

<row C1="1"/>

 4 record(s) selected.

v The following example shows an XMLRow query and output fragment with the

default <row> element replaced by <entry>. Columns C1 and C2 are returned as

<column1> and <column2> elements, and the total of C1 and C2 is returned

inside a <total> element:

SELECT XMLROW(

 C1 AS "column1", C2 AS "column2",

 C1+C2 AS "total" OPTION ROW "entry")

FROM T1

<entry><column1>1</column1><column2>2</column2><total>3</total></entry>

<entry><column2>2</column2></entry>

<entry><column1>1</column1></entry>

 4 record(s) selected.

XMLSERIALIZE

��
 CONTENT

XMLSERIALIZE

(

XML-expression

AS

data-type

�

�

�

VERSION

’1.0’

(1)

EXCLUDING XMLDECLARATION

INCLUDING XMLDECLARATION

)

��

XMLROW

420 SQL Reference, Volume 1

data-type:

 (1)

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

CHARACTER

VARYING

CHAR

(1M)

CLOB

CHARACTER

LARGE OBJECT

(

integer

)

CHAR

K

M

G

(1M)

BLOB

BINARY

LARGE OBJECT

(

integer

)

K

M

G

Notes:

1 The same clause must not be specified more than once.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLSERIALIZE function returns a serialized XML value of the specified data

type generated from the XML-expression argument.

CONTENT

Specifies that any XML value can be specified and the result of the serialization

is based on this input value.

XML-expression

Specifies an expression that returns a value of data type XML. The XML

sequence value must not contain an item that is an attribute node (SQLSTATE

2200W). This is the input to the serialization process.

AS data-type

Specifies the result type. The implicit or explicit length attribute of the

specified result data type must be sufficient to contain the serialized output

(SQLSTATE 22001).

VERSION ’1.0’

Specifies the XML version of the serialized value. The only version supported

is ’1.0’ which must be specified as a string constant (SQLSTATE 42815).

EXCLUDING XMLDECLARATION or INCLUDING XMLDECLARATION

Specifies whether an XML declaration is included in the result. The default is

EXCLUDING XMLDECLARATION.

EXCLUDING XMLDECLARATION

Specifies that an XML declaration is not included in the result.

INCLUDING XMLDECLARATION

Specifies that an XML declaration is included in the result. The XML

declaration is the string ’<?xml version=″1.0″ encoding=″UTF-8″?>’.

The result has the data type specified by the user. An XML sequence is effectively

converted to have a single document node by applying XMLDOCUMENT to

XMLSERIALIZE

Chapter 3. Functions 421

XML-expression prior to serializing the resulting XML nodes. If the result of

XML-expression can be null, the result can be null; if the result of XML-expression is

null, the result is the null value.

Note:

1. Support in multiple database partition databases: The function is only

supported as it was in Version 8. The CONTENT keyword must be specified, a

BLOB data type cannot be specified, and an XMLDECLARATION option

cannot be specified (SQLSTATE 42997).

2. Encoding in the serialized result: The serialized result is encoded with UTF-8.

If XMLSERIALIZE is used with a character data type, and the INCLUDING

XMLDECLARATION clause is specified, the resulting character string

containing serialized XML might have an XML encoding declaration that does

not match the code page of the character string. Following serialization, which

uses UTF-8 encoding, the character string that is returned from the server to

the client is converted to the code page of the client, and that code page might

be different from UTF-8.

Therefore, applications should avoid direct use of XMLSERIALIZE

INCLUDING XMLDECLARATION that return character string types and

should retrieve XML values directly into host variables to maintain the match

between the external code page and the encoding in the XML declaration. If

XMLSERIALIZE must be used in this situation, a BLOB type should be

specified to avoid code page conversion.

3. Syntax alternative: XMLCLOB(XML-expression) can be specified in place of

XMLSERIALIZE(XML-expression AS CLOB(2G)). It is supported only for

compatibility with previous DB2 releases.

XMLTEXT

�� XMLTEXT (string-expression) ��

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLTEXT function returns an XML value with a single XQuery text node

having the input argument as the content.

string-expression

An expression whose value has a character string type: CHAR, VARCHAR or

CLOB.

The data type of the result is XML. If the result of string-expression can be null, the

result can be null; if the input value is null, the result is the null value. If the result

of string-expression is an empty string, the result value is an empty text node.

Note:

1. Support in non-Unicode databases and multiple database partition databases:

XMLTEXT is not supported (SQLSTATE 42997).

Examples:

v Create a simple XMLTEXT query.

XMLSERIALIZE

422 SQL Reference, Volume 1

VALUES(

 XMLTEXT(

 ’The stock symbol for Johnson&Johnson is JNJ.’

)

)

This query produces the following serialized result:

1

The stock symbol for Johnson&Johnson is JNJ.

Note that the ’&’ sign is mapped to ’&’ when a text node is serialized.

v Use XMLTEXT with XMLAGG to construct mixed content. Suppose that the

content of table T is as follows:

seqno plaintext emphtext

------ --- -------------

1 This query shows how to construct mixed content

2 using XMLAGG and XMLTEXT. Without XMLTEXT

3 XMLAGG will not have text nodes to group with other nodes, mixed content

 therefore, cannot generate

 SELECT XMLELEMENT(

 NAME "para", XMLAGG(

 XMLCONCAT(

 XMLTEXT(

 PLAINTEXT

),

 XMLELEMENT(

 NAME "emphasis", EMPHTEXT

)

)

 ORDER BY SEQNO

), ’.’

) AS "result"

 FROM T

This query produces the following result:

result

<para>This query shows how to construct <emphasis>mixed content</emphasis>

using XMLAGG and XMLTEXT. Without <emphasis>XMLTEXT</emphasis> , XMLAGG

will not have text nodes to group with other nodes, therefore, cannot generate

<emphasis>mixed content</emphasis>.</para>

XMLVALIDATE

��
 DOCUMENT

XMLVALIDATE

(

XML-expression

)

XML-validate-according-to-clause

��

XML-validate-according-to-clause:

 ACCORDING TO XMLSCHEMA ID XML-schema-name

URI

XML-uri1

NO NAMESPACE

LOCATION

XML-uri2

 �

�
XML-valid-element-clause

XMLTEXT

Chapter 3. Functions 423

XML-valid-element-clause:

NAMESPACE

XML-uri3

NO NAMESPACE

 ELEMENT XML-element-name

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLVALIDATE function returns a copy of the input XML value augmented

with information obtained from XML schema validation, including default values

and type annotations.

DOCUMENT

Specifies that the XML value resulting from XML-expression must be a

well-formed XML document that conforms to XML Version 1.0 (SQLSTATE

2200M).

XML-expression

An expression that returns a value of data type XML. If XML-expression is an

XML host variable or an implicitly or explicitly typed parameter marker, the

function performs a validating parse that strips ignorable whitespace and the

CURRENT IMPLICIT XMLPARSE OPTION setting is not considered.

XML-validate-according-to-clause

Specifies the information that is to be used when validating the input XML

value.

ACCORDING TO XMLSCHEMA

Indicates that the XML schema information for validation is explicitly

specified. If this clause is not included, the XML schema information must

be provided in the content of the XML-expression value.

ID XML-schema-name

Specifies an SQL identifier for the XML schema that is to be used for

validation. The name, including the implicit or explicit SQL schema

qualifier, must uniquely identify an existing XML schema in the XML

schema repository at the current server. If no XML schema by this

name exists in the implicitly or explicitly specified SQL schema, an

error is returned (SQLSTATE 42704).

URI XML-uri1

Specifies the target namespace URI of the XML schema that is to be

used for validation. The value of XML-uri1 specifies a URI as a

character string constant that is not empty. The URI must be the target

namespace of a registered XML schema (SQLSTATE 4274A) and, if no

LOCATION clause is specified, it must uniquely identify the registered

XML schema (SQLSTATE 4274B).

NO NAMESPACE

Specifies that the XML schema for validation has no target namespace.

The target namespace URI is equivalent to an empty character string

that cannot be specified as an explicit target namespace URI.

LOCATION XML-uri2

Specifies the XML schema location URI of the XML schema that is to

be used for validation. The value of XML-uri2 specifies a URI as a

character string constant that is not empty. The XML schema location

URI, combined with the target namespace URI, must identify a

XMLVALIDATE

424 SQL Reference, Volume 1

registered XML schema (SQLSTATE 4274A), and there must be only

one such XML schema registered (SQLSTATE 4274B).

XML-valid-element-clause

Specifies that the XML value in XML-expression must have the specified

element name as the root element of the XML document.

NAMESPACE XML-uri3 or NO NAMESPACE

Specifies the target namespace for the element that is to be validated. If

neither clause is specified, the specified element is assumed to be in the

same namespace as the target namespace of the registered XML schema

that is to be used for validation.

NAMESPACE XML-uri3

Specifies the namespace URI for the element that is to be validated.

The value of XML-uri3 specifies a URI as a character string constant

that is not empty. This can be used when the registered XML schema

that is to be used for validation has more than one namespace.

NO NAMESPACE

Specifies that the element for validation has no target namespace. The

target namespace URI is equivalent to an empty character string which

cannot be specified as an explicit target namespace URI.

ELEMENT xml-element-name

Specifies the name of a global element in the XML schema that is to be

used for validation. The specified element, with implicit or explicit

namespace, must match the root element of the value of

XML-expression (SQLSTATE 22535 or 22536).

The data type of the result is XML. If the value of XML-expression can be null, the

result can be null; if the value of XML-expression is null, the result is the null value.

The XML validation process is performed on a serialized XML value. Because

XMLVALIDATE is invoked with an argument of type XML, this value is

automatically serialized prior to validation processing with the follow two

exceptions.

v If the argument to XMLVALIDATE is an XML host variable or an implicitly or

explicitly typed parameter marker, then a validating parse operation is

performed on the input value (no implicit non-validating parse is performed and

CURRENT IMPLICIT XMLPARSE OPTION setting is not considered).

v If the argument to XMLVALIDATE is an XMLPARSE invocation using the option

PRESERVE WHITESPACE, then the XML parsing and XML validation of the

document may be combined into a single validating parse operation.

If an XML value has previously been validated, the annotated type information

from the previous validation is removed by the serialization process. However, any

default values and entity expansions from the previous validation remain

unchanged. If validation is successful, all ignorable whitespace characters are

stripped from the result.

To validate a document whose root element does not have a namespace, an

xsi:noNamespaceSchemaLocation attribute must be present on the root element.

Note:

1. Support in multiple database partition databases: XMLVALIDATE is not

supported (SQLSTATE 42997).

XMLVALIDATE

Chapter 3. Functions 425

2. Determining the XML schema: The XML schema can be specified explicitly as

part of XMLVALIDATE invocation, or determined from the XML schema

information in the input XML value. If the XML schema information is not

specified during invocation, the target namespace and the schema location in

the input XML value are used to identify the registered schema for validation.

If an explicit XML schema is not specified, the input XML value must contain

an XML schema information hint (SQLSTATE 2200M). Explicit or implicit XML

schema information must identify a registered XML schema (SQLSTATE 42704,

4274A, or 22532), and there must be only one such registered XML schema

(SQLSTATE 4274B or 22533).

3. XML schema authorization: The XML schema used for validation must be

registered in the XML schema repository prior to use. The privileges held by

the authorization ID of the statement must include at least one of the following:

v USAGE privilege on the XML schema that is to be used during validation

v SYSADM or DBADM authority

Examples:

v Validate using the XML schema identified by the XML schema hint in the XML

instance document.

 INSERT INTO T1(XMLCOL)

 VALUES (XMLVALIDATE(?))

Assume that the input parameter marker is bound to an XML value that

contains the XML schema information.

 <po:order

 xmlns:po=’http://my.world.com’

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://my.world.com/world.xsd" >

 ...

 </po:order>

Further, assume that the XML schema that is associated with the target

namespace ″http://my.world.com″ and by schemaLocation hint

″http://my.world.com/world.xsd″ is found in the XML schema repository.

Based on these assumptions, the input XML value will be validated and the type

annotated according to that XML schema.

v Validate using the XML schema identified by the SQL name

PODOCS.WORLDPO.

 INSERT INTO T1(XMLCOL)

 VALUES (

 XMLVALIDATE(

 ? ACCORDING TO XMLSCHEMA ID PODOCS.WORLDPO

)

)

Assuming that the XML schema that is associated with SQL name

FOO.WORLDPO is found in the XML repository, the input XML value will be

validated and the type annotated according to that XML schema.

v Validate a specified element of the XML value.

 INSERT INTO T1(XMLCOL)

 VALUES (

 XMLVALIDATE(

 ? ACCORDING TO XMLSCHEMA ID FOO.WORLDPO

 NAMESPACE ’http://my.world.com/Mary’

 ELEMENT "po"

)

)

XMLVALIDATE

426 SQL Reference, Volume 1

Assuming that the XML schema that is associated with SQL name

FOO.WORLDPO is found in the XML repository, the XML schema will be

validated against the element ″po″, whose namespace is ’http://my.world.com/
Mary’.

v XML schema is identified by target namespace and schema location.

 INSERT INTO T1(XMLCOL)

 VALUES (

 XMLVALIDATE(

 ? ACCORDING TO XMLSCHEMA URI ’http://my.world.com’

 LOCATION ’http://my.world.com/world.xsd’

)

)

Assuming that an XML schema associated with the target namespace

″http://my.world.com″ and by schemaLocation hint ″http://my.world.com/
world.xsd″ is found in the XML schema repository, the input XML value will be

validated and the type annotated according to that schema.

XMLXSROBJECTID

�� XMLXSROBJECTID (xml-value-expression) ��

The schema is SYSIBM.

The XMLXSROBJECTID function returns the XSR object identifier of the XML

schema used to validate the XML document specified in the argument. The XSR

object identifier is returned as a BIGINT value and provides the key to a single

row in SYSCAT.XSROBJECTS.

xml-value-expression

Specifies an expression that results in a value with a data type of XML. The

resulting XML value must be an XML sequence with a single item that is an

XML document or the null value (SQLSTATE 42815). If the argument is null,

the function returns null. If xml-value-expression does not specify a validated

XML document, the function returns 0.

Note:

1. Support in multiple database partition databases: XMLXSROBJECTID is not

supported (SQLSTATE 42997).

2. The XML schema corresponding to an XSR object ID returned by the function

might no longer exist, because an XML schema can be dropped without

affecting XML values that were validated using the XML schema. Therefore,

queries that use the XSR object ID to fetch further XML schema information

from the catalog views might return an empty result set.

3. Applications can use the XSR object identifier to retrieve additional information

about the XML schema. For example, the XSR object identifier can be used to

return the individual XML schema documents that make up a registered XML

schema from SYSCAT.SYSXSROBJECTCOMPONENTS, and the hierarchy of

XML schema documents in the XML schema from

SYSCAT.XSROBJECTHIERARCHIES.

Examples:

v Retrieve the XML schema identifier for the XML document XMLDOC stored in

the table MYTABLE.

 SELECT XMLXSROBJECTID(XMLDOC) FROM MYTABLE

XMLVALIDATE

Chapter 3. Functions 427

v Retrieve the XML schema documents associated with the XML document that

has a specific ID (in this case where DOCKEY = 1) in the table MYTABLE,

including the hierarchy of the XML schema documents that make up the XML

schema.

 SELECT H.HTYPE, C.TARGETNAMESPACE, C.COMPONENT

 FROM SYSCAT.XSROBJECTCOMPONENTS C, SYSCAT.XSROBJECTHIERARCHIES H

 WHERE C.OBJECTID =

 (SELECT XMLXSROBJECTID(XMLDOC) FROM MYTABLE

 WHERE DOCKEY = 1)

 AND C.OBJECTID = H.XSROBJECTID

XSLTRANSFORM

Use XSLTRANSFORM to convert XML data into other formats, including the

conversion of XML documents that conform to one XML schema into documents

that conform to another schema.

�� XSLTRANSFORM �

�
 AS CLOB(2G)

(

xml-document

USING

xsl-stylesheet

)

WITH

xsl-parameters

AS

data-type

��

data-type:

 (-1)

CHARACTER

CHAR

(

integer

)

VARCHAR

(

integer

)

CHARACTER

VARYING

CHAR

(

1M

)

CLOB

CHARACTER

LARGE OBJECT

(

integer

)

CHAR

K

M

G

(

1M

)

BLOB

BINARY LARGE OBJECT

(

integer

)

K

M

G

The schema is SYSIBM. This function cannot be specified as a qualified name.

The XSLTRANSFORM function transforms an XML document into a different data

format. The data can be transformed into any form possible for the XSLT processor,

including but not limited to XML, HTML, or plain text.

All paths used by XSLTRANSFORM are internal to the database system. This

command cannot currently be used directly with files or stylesheets residing in an

external file system.

xml-document

An expression that returns a well-formed XML document with a data type of

XML, CHAR, VARCHAR, CLOB, or BLOB. This is the document that is

transformed using the XSL style sheet specified in xsl-stylesheet.

XMLXSROBJECTID

428 SQL Reference, Volume 1

Note:

The XML document must at minimum be single-rooted and well-formed.

xsl-stylesheet

An expression that returns a well-formed XML document with a data type of

XML, CHAR, VARCHAR, CLOB, or BLOB. The document is an XSL style sheet

that conforms to the W3C XSLT Version 1.0 Recommendation. Style sheets

incorporating XQUERY statements or the xsl:include declaration are not

supported. This stylesheet is applied to transform the value specified in

xml-document.

xsl-parameters

An expression that returns a well-formed XML document or null with a data

type of XML, CHAR, VARCHAR, CLOB, or BLOB. This is a document that

provides parameter values to the XSL stylesheet specified in xsl-stylesheet. The

value of the parameter can be specified as an attribute, or as a text node.

 The syntax of the parameter document is as follows:

<params xmlns="http://www.ibm.com/XSLTransformParameters">

<param name="..." value="..."/>

<param name="...">enter value here</param>

 ...

</params>

Note:

The stylesheet document must have xsl:param element(s) in it with name

attribute values that match the ones specified in the parameter document.

AS data-type

Specifies the result data type. The implicit or explicit length attribute of the

specified result data type must be sufficient to contain the transformed output

(SQLSTATE 22001). The default result data type is CLOB(2G).

Note:

If either the xml-document argument or the xsl-stylesheet argument is null, the

result will be null.

Code page conversion might occur when storing any of the above documents

in a CHAR, VARCHAR, or CLOB column, which might result in a character

loss.

Example

This example illustrates how to use XSLT as a formatting engine. To get set up,

first insert the two example documents below into the database.

INSERT INTO XML_TAB VALUES

(1,

 ’<?xml version="1.0"?>

<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation = "/home/steffen/xsd/xslt.xsd">

<student studentID="1" firstName="Steffen" lastName="Siegmund"

 age=â€23â€ university=â€Rostockâ€/>

</students>’,

 ’<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:param name="headline"/>

XSLTRANSFORM

Chapter 3. Functions 429

<xsl:param name="showUniversity"/>

<xsl:template match="students">

 <html>

 <head/>

 <body>

 <h1><xsl:value-of select="$headline"/></h1>

 <table border="1">

 <th>

 <tr>

 <td width="80">StudentID</td>

 <td width="200">First Name</td>

 <td width="200">Last Name</td>

 <td width="50">Age</td>

 <xsl:choose>

 <xsl:when test="$showUniversity =’true’">

 <td width="200">University</td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </th>

 <xsl:apply-templates/>

 </table>

 </body>

 </html>

 </xsl:template>

 <xsl:template match="student">

 <tr>

 <td><xsl:value-of select="@studentID"/></td>

 <td><xsl:value-of select="@firstName"/></td>

 <td><xsl:value-of select="@lastName"/></td>

 <td><xsl:value-of select="@age"/></td>

 <xsl:choose>

 <xsl:when test="$showUniversity = ’true’ ">

 <td><xsl:value-of select="@university"/></td>

 </xsl:when>

 </xsl:choose>

 </tr>

 </xsl:template>

</xsl:stylesheet>’

);

Next, call the XSLTRANSFORM function to convert the XML data into HTML and

display it.

SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC AS CLOB(1M)) FROM XML_TAB;

The result is this document:

<html>

<head>

<META http-equiv="Content-Type" content="text/html; charset=UTF-8">

</head>

<body>

<h1></h1>

<table border="1">

<th>

<tr>

<td width="80">StudentID</td>

<td width="200">First Name</td>

<td width="200">Last Name</td>

<td width="50">Age</td>

</tr>

</th>

 <tr>

<td>1</td>

<td>Steffen</td><td>Siegmund</td>

<td>23</td>

XSLTRANSFORM

430 SQL Reference, Volume 1

</tr>

 </table>

</body>

</html>

In this example, the output is HTML and the parameters influence only what

HTML is produced and what data is brought over to it. As such it illustrates the

use of XSLT as a formatting engine for end-user output.

Usage note:

This function is NOT intended for high-performance applications and CANNOT

replace similar functionality in the application server.

YEAR

�� YEAR (expression) ��

The schema is SYSIBM.

The YEAR function returns the year part of a value.

The argument must be a date, timestamp, date duration, timestamp duration, or a

valid character string representation of a date or timestamp that is neither a CLOB

nor a LONG VARCHAR. In a Unicode database, if a supplied argument is a

graphic string, it is first converted to a character string before the function is

executed.

The result of the function is a large integer. If the argument can be null, the result

can be null; if the argument is null, the result is the null value.

The other rules depend on the data type of the argument specified:

v If the argument is a date, timestamp, or valid string representation of a date or

timestamp:

– The result is the year part of the value, which is an integer between 1 and

9999.
v If the argument is a date duration or timestamp duration:

– The result is the year part of the value, which is an integer between -9999 and

9999. A nonzero result has the same sign as the argument.

Examples:

v Select all the projects in the PROJECT table that are scheduled to start

(PRSTDATE) and end (PRENDATE) in the same calendar year.

 SELECT * FROM PROJECT

 WHERE YEAR(PRSTDATE) = YEAR(PRENDATE)

v Select all the projects in the PROJECT table that are scheduled to take less than

one year to complete.

 SELECT * FROM PROJECT

 WHERE YEAR(PRENDATE - PRSTDATE) < 1

XSLTRANSFORM

Chapter 3. Functions 431

Table functions

A table function can be used only in the FROM clause of a statement. Table

functions return columns of a table, resembling a table created through a simple

CREATE TABLE statement. Table functions can be qualified with a schema name.

XMLTABLE

�� XMLTABLE (

xmlnamespaces-declaration

,
 �

� row-xquery-expression-constant �

�

�

,

BY REF

PASSING

row-xquery-argument

 �

�

�

,

(1)

COLUMNS

xml-table-regular-column-definition

)

xml-table-ordinality-column-definition

 ��

row-xquery-argument:

 (2)

xquery-variable-expression

AS

identifier

BY REF

xml-table-regular-column-definition:

 column-name data-type

BY REF

default-clause
 �

�
PATH

column-xquery-expression-constant

xml-table-ordinality-column-definition:

 column-name FOR ORDINALITY

Notes:

1 The xml-table-ordinality-column-definition clause must not be specified more

than once (SQLSTATE 42614, SQLCODE -637).

2 The data type of the expression cannot be DECFLOAT.

The schema is SYSIBM. The function name cannot be specified as a qualified name.

The XMLTABLE function returns a result table from the evaluation of XQuery

expressions, possibly using specified input arguments as XQuery variables. Each

sequence item in the result sequence of the row XQuery expression represents a

row of the result table.

Table functions

432 SQL Reference, Volume 1

xmlnamespaces-declaration

Specifies one or more XML namespace declarations that become part of the

static context of the row-xquery-expression-constant and the column-xquery-
expression-constant. The set of statically known namespaces for XQuery

expressions which are arguments of XMLTABLE is the combination of the

pre-established set of statically known namespaces and the namespace

declarations specified in this clause. The XQuery prolog within an XQuery

expression may override these namespaces.

 If xmlnamespaces-declaration is not specified, only the pre-established set of

statically known namespaces apply to the the XQuery expressions.

row-xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an XQuery

expression using supported XQuery language syntax. The constant string is

converted directly to UTF-8 without conversion to the database or section code

page. The XQuery expression executes using an optional set of input XML

values, and returns an output XQuery sequence where a row is generated for

each item in the sequence. The value for row-xquery-expression-constant must not

be an empty string or a string of all blanks (SQLSTATE 10505).

PASSING

Specifies input values and the manner in which these values are passed to the

XQuery expression specified by row-xquery-expression-constant. By default, every

unique column name that is in the scope where the function is invoked is

implicitly passed to the XQuery expression using the name of the column as

the variable name. If an identifier in a specified row-xquery-argument matches

an in-scope column name, then the explicit row-xquery-argument is passed to

the XQuery expression overriding that implicit column.

BY REF

Specifies that any XML input arguments are, by default, passed by

reference. When XML values are passed by reference, the XQuery

evaluation uses the input node trees, if any, directly from the specified

input expressions, preserving all properties, including the original node

identities and document order. If two arguments pass the same XML value,

node identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree.

 This clause has no impact on how non-XML values are passed. The

non-XML values create a new copy of the value during the cast to XML.

row-xquery-argument

Specifies an argument that is to be passed to the XQuery expression

specified by row-xquery-expression-constant. An argument specifies a value

and the manner in which that value is to be passed. The argument

includes an SQL expression that is evaluated before passing the result to

the XQuery expression.

v If the resulting value is of type XML, it becomes an input-xml-value. A

null XML value is converted to an XML empty sequence.

v If the resulting value is not of type XML, it must be castable to the XML

data type. A null value is converted to an XML empty sequence. The

converted value becomes an input-xml-value.

When the row-xquery-expression-constant is evaluated, an XQuery variable is

presented with a value equal to input-xml-value and a name specified by

the AS clause.

XMLTABLE

Chapter 3. Functions 433

xquery-variable-expression

Specifies an SQL expression whose value is available to the XQuery

expression specified by row-xquery-expression-constant during execution.

The expression cannot contain a NEXT VALUE expression, PREVIOUS

VALUE expression (SQLSTATE 428F9), or an OLAP function

(SQLSTATE 42903). The data type of the expression cannot be

DECFLOAT.

AS identifier

Specifies that the value generated by xquery-variable-expression will be

passed to row-xquery-expression-constant as an XQuery variable. The

variable name will be identifier. The leading dollar sign ($) that

precedes variable names in the XQuery language is not included in

identifier. The identifier must be a valid XQuery variable name and is

restricted to an XML NCName. The identifier must not be greater than

128 bytes in length. Two arguments within the same PASSING clause

cannot use the same identifier (SQLSTATE 42711).

BY REF

Indicates that an XML input value is to be passed by reference. When

XML values are passed by reference, the XQuery evaluation uses the

input node trees, if any, directly from the specified input expressions,

preserving all properties, including the original node identities and

document order. If two arguments pass the same XML value, node

identity comparisons and document ordering comparisons involving

some nodes contained between the two input arguments might refer to

nodes within the same XML node tree. If BY REF is not specified

following an xquery-expression-variable, XML arguments are passed by

way of the default passing mechanism that is provided through the

syntax that follows the PASSING keyword. This option cannot be

specified for non-XML values (SQLSTATE 42636). When a non-XML

value is passed, the value is converted to XML; this process creates a

copy.

COLUMNS

Specifies the output columns of the result table. If this clause is not specified, a

single unnamed column of data type XML is returned by reference, with the

value based on the sequence item from evaluating the XQuery expression in

the row-xquery-expression-constant (equivalent to specifying PATH ’.’). To

reference the result column, a column-name must be specified in the

correlation-clause following the function.

xml-table-regular-column-definition

Specifies the output columns of the result table including the column

name, data type, XML passing mechanism and an XQuery expression to

extract the value from the sequence item for the row

column-name

Specifies the name of the column in the result table. The name cannot

be qualified and the same name cannot be used for more than one

column of the table (SQLSTATE 42711).

data-type

Specifies the data type of the column. See CREATE TABLE for the

syntax and a description of types available. A data-type may be used in

XMLTable if there is a supported XMLCAST from the XML data type

to the specified data-type.

XMLTABLE

434 SQL Reference, Volume 1

BY REF

Specifies that XML values are returned by reference for columns of

data type XML. By default, XML values are returned BY REF. When

XML values are returned by reference, the XML value includes the

input node trees, if any, directly from the result values, and preserves

all properties, including the original node identities and document

order. This option cannot be specified for non-XML columns

(SQLSTATE 42636). When a non-XML column is processed, the value is

converted from XML; this process creates a copy.

default-clause

Specifies a default value for the column. See CREATE TABLE for the

syntax and a description of the default-clause. For XMLTABLE result

columns, the default is applied when the processing the XQuery

expression contained in column-xquery-expression-constant returns an

empty sequence.

PATH column-xquery-expression-constant

Specifies an SQL character string constant that is interpreted as an

XQuery expression using supported XQuery language syntax. The

constant string is converted directly to UTF-8 without conversion to

the database or section code page. The column-xquery-expression-constant

specifies an XQuery expression that determines the column value with

respect to an item that is the result of evaluating the XQuery

expression in row-xquery-expression-constant. Given an item from the

result of processing the row-xquery-expression-constant as the externally

provided context item, the column-xquery-expression-constant is

evaluated, returning an output sequence. The column value is

determined based on this output sequence as follows.

v If the output sequence contains zero items, the default-clause provides

the value of the column.

v If an empty sequence is returned and no default-clause was specified,

a null value is assigned to the column.

v If a non-empty sequence is returned, the value is XMLCAST to the

data-type specified for the column. An error could be returned from

processing this XMLCAST.

The value for column-xquery-expression-constant must not be an empty

string or a string of all blanks (SQLSTATE 10505). If this clause is not

specified, the default XQuery expression is simply the column-name.

xml-table-ordinality-column-definition

Specifies the ordinality column of the result table.

column-name

Specifies the name of the column in the result table. The name cannot

be qualified and the same name cannot be used for more than one

column of the table (SQLSTATE 42711).

FOR ORDINALITY

Specifies that column-name is the ordinality column of the result table.

The data type of this column is BIGINT. The value of this column in

the result table is the sequential number of the item for the row in the

resulting sequence from evaluating the XQuery expression in

row-xquery-expression-constant.

If the evaluation of any of the XQuery expressions results in an error, then the

XMLTABLE function returns the XQuery error (SQLSTATE class ’10’).

XMLTABLE

Chapter 3. Functions 435

Note:

1. Support in multiple database partition databases: XMLTABLE is not

supported (SQLSTATE 42997).

Examples:

v List as a table result the purchase order items for orders with a status of ’NEW’.

 SELECT U."PO ID", U."Part #", U."Product Name",

 U."Quantity", U."Price", U."Order Date"

 FROM PURCHASEORDER P,

 XMLTABLE(XMLNAMESPACES(’http://podemo.org’ AS "pod"),

 ’$po/PurchaseOrder/itemlist/item’ PASSING P.PORDER AS "po"

 COLUMNS "PO ID" INTEGER PATH ’../../@POid’,

 "Part #" CHAR(6) PATH ’product/@pid’,

 "Product Name" CHAR(50) PATH ’product/pod:name’,

 "Quantity" INTEGER PATH ’quantity’,

 "Price" DECIMAL(9,2) PATH ’product/pod:price’,

 "Order Date" TIMESTAMP PATH ’../../dateTime’

) AS U

 WHERE P.STATUS = ’NEW’

User-defined functions

�� function-name (

�

,

expression

) ��

User-defined functions (UDFs) are extensions or additions to the existing built-in

functions of the SQL language. A user-defined function can be a scalar function,

which returns a single value each time it is called; a column function, which is

passed a set of like values and returns a single value for the set; a row function,

which returns one row; or a table function, which returns a table.

A number of user-defined functions are provided in the SYSFUN and SYSPROC

schemas.

A UDF can be a column function only if it is sourced on an existing column

function. A UDF is referenced by means of a qualified or unqualified function

name, followed by parentheses enclosing the function arguments (if any). A

user-defined column or scalar function registered with the database can be

referenced in the same contexts in which any built-in function can appear. A

user-defined row function can be referenced only implicitly when registered as a

transform function for a user-defined type. A user-defined table function registered

with the database can be referenced only in the FROM clause of a SELECT

statement.

Function arguments must correspond in number and position to the parameters

specified for the user-defined function when it was registered with the database. In

addition, the arguments must be of data types that are promotable to the data

types of the corresponding defined parameters.

The result of the function is specified in the RETURNS clause. The RETURNS

clause, defined when the UDF was registered, determines whether or not a

function is a table function. If the RETURNS NULL ON NULL INPUT clause is

specified (or defaulted to) when the function is registered, the result is null if any

XMLTABLE

436 SQL Reference, Volume 1

argument is null. In the case of table functions, this is interpreted to mean a return

table with no rows (that is, an empty table).

Following are some examples of user-defined functions:

v A scalar UDF called ADDRESS extracts the home address from resumes stored

in script format. The ADDRESS function expects a CLOB argument and returns

a VARCHAR(4000) value:

 SELECT EMPNO, ADDRESS(RESUME) FROM EMP_RESUME

 WHERE RESUME_FORMAT = ’SCRIPT’

v Table T2 has a numeric column A. Invoking the scalar UDF called ADDRESS

from the previous example:

 SELECT ADDRESS(A) FROM T2

raises an error (SQLSTATE 42884), because no function with a matching name

and with a parameter that is promotable from the argument exists.

v A table UDF called WHO returns information about the sessions on the server

machine that were active at the time that the statement is executed. The WHO

function is invoked from within a FROM clause that includes the keyword

TABLE and a mandatory correlation variable. The column names of the WHO()

table were defined in the CREATE FUNCTION statement.

 SELECT ID, START_DATE, ORIG_MACHINE

 FROM TABLE(WHO()) AS QQ

 WHERE START_DATE LIKE ’MAY%’

User-defined functions

Chapter 3. Functions 437

User-defined functions

438 SQL Reference, Volume 1

Chapter 4. Procedures

Procedures overview

A procedure is an application program that can be started through the SQL CALL

statement. The procedure is specified by a procedure name, which may be

followed by arguments that are enclosed within parentheses.

The argument or arguments of a procedure are individual scalar values, which can

be of different types and can have different meanings. The arguments can be used

to pass values into the procedure, receive return values from the procedure, or

both.

User-defined procedures are procedures that are registered to a database in

SYSCAT.ROUTINES, using the CREATE PROCEDURE statement. One such set of

functions is provided with the database manager, in a schema called SYSFUN, and

another in a schema called SYSPROC.

Procedures can be qualified with the schema name.

XSR_ADDSCHEMADOC procedure

�� XSR_ADDSCHEMADOC (rschema , name , schemalocation , content , �

� docproperty) ��

The schema is SYSPROC.

Each XML schema in the XML schema repository (XSR) can consist of one or more

XML schema documents. Where an XML schema consists of multiple documents,

the XSR_ADDSCHEMADOC stored procedure is used to add every XML schema

other than the primary XML schema document.

Authorization

The authorization ID of the caller of the procedure must be the owner of the XSR

object as recorded in the catalog view SYSCAT.XSROBJECTS.

rschema

An input argument of type VARCHAR (128) that specifies the SQL schema for

the XML schema. The SQL schema is one part of the SQL identifier used to

identify this XML schema in the XSR, which is to be moved to the complete

state. (The other part of the SQL identifier is supplied by the name argument.)

This argument can have a NULL value, which indicates that the default SQL

schema, as defined in the CURRENT SCHEMA special register, is used. Rules

for valid characters and delimiters that apply to any SQL identifier also apply

to this argument. XSR objects will not experience name collisions with database

objects that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input argument of type VARCHAR (128) that specifies the name of the

© Copyright IBM Corp. 1993, 2009 439

XML schema. The complete SQL identifier for the XML schema is rschema.name.

The XML schema name must already exist as a result of calling the

XSR_REGISTER stored procedure, and XML schema registration cannot yet be

completed. This argument cannot have a NULL value. Rules for valid

characters and delimiters that apply to any SQL identifier also apply to this

argument.

schemalocation

An input argument of type VARCHAR (1000), which can have a NULL value,

that indicates the schema location of the primary XML schema document to

which the XML schema document is being added. This argument is the

external name of the XML schema, that is, the primary document can be

identified in the XML instance documents with the xsi:schemaLocation

attribute.

content

An input parameter of type BLOB (30M) that contains the content of the XML

schema document being added. This argument cannot have a NULL value; an

XML schema document must be supplied.

docproperty

An input parameter of type BLOB (5M) that indicates the properties for the

XML schema document being added. This parameter can have a NULL value;

otherwise, the value is an XML document.

Example:

 CALL SYSPROC.XSR_ADDSCHEMADOC(

 ’user1’,

 ’POschema’,

 ’http://myPOschema/address.xsd’,

 :content_host_var,

 0)

XSR_COMPLETE procedure

�� XSR_COMPLETE (rschema , name , schemaproperties , �

� isusedfordecomposition) ��

The schema is SYSPROC.

The XSR_COMPLETE procedure is the final stored procedure to be called as part

of the XML schema registration process, which registers XML schemas with the

XML schema repository (XSR). An XML schema is not available for validation until

the schema registration completes through a call to this stored procedure.

Authorization:

The authorization ID of the caller of the procedure must be the owner of the XSR

object as recorded in the catalog view SYSCAT.XSROBJECTS.

rschema

An input argument of type VARCHAR (128) that specifies the SQL schema for

the XML schema. The SQL schema is one part of the SQL identifier used to

identify this XML schema in the XSR, which is to be moved to the complete

state. (The other part of the SQL identifier is supplied by the name argument.)

This argument can have a NULL value, which indicates that the default SQL

XSR_ADDSCHEMADOC procedure

440 SQL Reference, Volume 1

schema, as defined in the CURRENT SCHEMA special register, is used. Rules

for valid characters and delimiters that apply to any SQL identifier also apply

to this argument. XSR objects will not experience name collisions with database

objects that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input argument of type VARCHAR (128) that specifies the name of the

XML schema. The complete SQL identifier for the XML schema, for which a

completion check is to be performed, is rschema.name. The XML schema name

must already exist as a result of calling the XSR_REGISTER stored procedure,

and XML schema registration cannot yet be completed. This argument cannot

have a NULL value. Rules for valid characters and delimiters that apply to any

SQL identifier also apply to this argument.

schemaproperties

An input argument of type BLOB (5M) that specifies properties, if any,

associated with the XML schema. The value for this argument is either NULL,

if there are no associated properties, or an XML document representing the

properties for the XML schema.

isusedfordecomposition

An input parameter of type integer that indicates if an XML schema is to be

used for decomposition. If an XML schema is to be used for decomposition,

this value should be set to 1; otherwise, it should be set to zero.

Example:

 CALL SYSPROC.XSR_COMPLETE(

 ’user1’,

 ’POschema’,

 :schemaproperty_host_var,

 0)

XSR_DTD procedure

�� XSR_DTD (rschema , name , systemid , publicid , content) ��

The schema is SYSPROC.

The XSR_DTD procedure registers a document type declaration (DTD) with the

XML schema repository (XSR).

Authorization

The authorization ID of the caller of the procedure must have at least one of the

following:

v SYSADM or DBADM authority.

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist.

v CREATEIN privilege if the SQL schema exists.

rschema

An input and output argument of type VARCHAR (128) that specifies the SQL

schema for the DTD. The SQL schema is one part of the SQL identifier used to

identify this DTD in the XSR. (The other part of the SQL identifier is supplied

by the name argument.) This argument can have a NULL value, which

indicates that the default SQL schema, as defined in the CURRENT SCHEMA

XSR_COMPLETE procedure

Chapter 4. Procedures 441

special register, is used. Rules for valid characters and delimiters that apply to

any SQL identifier also apply to this argument. Relational schemas that begin

with the string ’SYS’ must not be used for this value. XSR objects will not

experience name collisions with database objects that exist outside of the XSR,

because XSR objects occur in a different namespace than objects outside of the

XML schema repository.

name

An input and output argument of type VARCHAR (128) that specifies the

name of the DTD. The complete SQL identifier for the DTD is rschema.name

and should be unique among all objects in the XSR. This argument accepts a

NULL value. When a NULL value is provided for this argument, a unique

value is generated and stored within the XSR. Rules for valid characters and

delimiters that apply to any SQL identifier also apply to this argument.

systemid

An input parameter of type VARCHAR (1000) that specifies the system

identifier of the DTD. The system ID of the DTD should match the uniform

resource identifier of the DTD in the DOCTYPE declaration of the XML

instance document or in an ENTITY declaration (as prefixed by the SYSTEM

keyword, if used). This argument cannot have a NULL value. The system ID

can be specified together with a public ID.

publicid

An input parameter of type VARCHAR (1000) that specifies the public

identifier of the DTD. The public ID of a DTD should match the uniform

resource identifier of the DTD in the DOCTYPE declaration of the XML

instance document or in an ENTITY declaration (as prefixed by the PUBLIC

keyword, if used). This argument accepts a NULL value and should be used

only if also specified in the DOCTYPE declaration of the XML instance

document or in an ENTITY declaration.

content

An input parameter of type BLOB (30M) that contains the content of the DTD

document. This argument cannot have a NULL value.

Example: Register the DTD identified by the system ID http://www.test.com/
person.dtd and public ID http://www.test.com/person:

CALL SYSPROC.XSR_DTD (’MYDEPT’ ,

 ’PERSONDTD’ ,

 ’http://www.test.com/person.dtd’ ,

 ’http://www.test.com/person’,

 :content_host_variable

)

XSR_EXTENTITY procedure

�� XSR_EXTENTITY (rschema , name , systemid , publicid , �

� content) ��

The schema is SYSPROC.

The XSR_EXTENTITY procedure registers an external entity with the XML schema

repository (XSR).

XSR_DTD procedure

442 SQL Reference, Volume 1

Authorization

The authorization ID of the caller of the procedure must have at least one of the

following:

v SYSADM or DBADM authority.

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist.

v CREATEIN privilege if the SQL schema exists.

rschema

An input and output argument of type VARCHAR (128) that specifies the SQL

schema for the external entity. The SQL schema is one part of the SQL

identifier used to identify this external entity in the XSR. (The other part of the

SQL identifier is supplied by the name argument.) This argument can have a

NULL value, which indicates that the default SQL schema, as defined in the

CURRENT SCHEMA special register, is used. Rules for valid characters and

delimiters that apply to any SQL identifier also apply to this argument.

Relational schemas that begin with the string ’SYS’ must not be used for this

value. XSR objects will not experience name collisions with database objects

that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input and output argument of type VARCHAR (128) that specifies the

name of the external entity. The complete SQL identifier for the external entity

is rschema.name and should be unique among all objects in the XSR. This

argument accepts a NULL value. When a NULL value is provided for this

argument, a unique value is generated and stored within the XSR. Rules for

valid characters and delimiters that apply to any SQL identifier also apply to

this argument.

systemid

An input parameter of type VARCHAR (1000) that specifies the system

identifier of the external entity. The system ID of the external entity should

match the uniform resource identifier of the external entity in the ENTITY

declaration (as prefixed by the SYSTEM keyword, if used). This argument

cannot have a NULL value. The system ID can be specified together with a

public ID.

publicid

An input parameter of type VARCHAR (1000) that specifies the public

identifier of the external entity. The public ID of a external entity should match

the uniform resource identifier of the external entity in the ENTITY declaration

(as prefixed by the PUBLIC keyword, if used). This argument accepts a NULL

value and should be used only if also specified in the DOCTYPE declaration of

the XML instance document or in an ENTITY declaration.

content

An input parameter of type BLOB (30M) that contains the content of the

external entity document. This argument cannot have a NULL value.

Example: Register the external entities identified by the system identifiers

http://www.test.com/food/chocolate.txt and http://www.test.com/food/cookie.txt:

CALL SYSPROC.XSR_EXTENTITY (’FOOD’ ,

 ’CHOCLATE’ ,

 ’http://www.test.com/food/chocolate.txt’ ,

 NULL ,

 :content_of_chocolate.txt_as_a_host_variable

)

XSR_EXTENTITY procedure

Chapter 4. Procedures 443

CALL SYSPROC.XSR_EXTENTITY (’FOOD’ ,

 ’COOKIE’ ,

 ’http://www.test.com/food/cookie.txt’ ,

 NULL ,

 :content_of_cookie.txt_as_a_host_variable

)

XSR_REGISTER procedure

�� XSR_REGISTER (rschema , name , schemalocation , content , �

� docproperty) ��

The schema is SYSPROC.

The XSR_REGISTER procedure is the first stored procedure to be called as part of

the XML schema registration process, which registers XML schemas with the XML

schema repository (XSR).

Authorization

The authorization ID of the caller of the procedure must have at least one of the

following:

v SYSADM or DBADM authority.

v IMPLICIT_SCHEMA database authority if the SQL schema does not exist.

v CREATEIN privilege if the SQL schema exists.

rschema

An input and output argument of type VARCHAR (128) that specifies the SQL

schema for the XML schema. The SQL schema is one part of the SQL identifier

used to identify this XML schema in the XSR. (The other part of the SQL

identifier is supplied by the name argument.) This argument can have a NULL

value, which indicates that the default SQL schema, as defined in the

CURRENT SCHEMA special register, is used. Rules for valid characters and

delimiters that apply to any SQL identifier also apply to this argument.

Relational schemas that begin with the string ’SYS’ must not be used for this

value. XSR objects will not experience name collisions with database objects

that exist outside of the XSR, because XSR objects occur in a different

namespace than objects outside of the XML schema repository.

name

An input and output argument of type VARCHAR (128) that specifies the

name of the XML schema. The complete SQL identifier for the XML schema is

rschema.name and should be unique among all objects in the XSR. This

argument accepts a NULL value. When a NULL value is provided for this

argument, a unique value is generated and stored within the XSR. Rules for

valid characters and delimiters that apply to any SQL identifier also apply to

this argument.

schemalocation

An input argument of type VARCHAR (1000), which can have a NULL value,

that indicates the schema location of the primary XML schema document. This

argument is the external name of the XML schema, that is, the primary

document can be identified in the XML instance documents with the

xsi:schemaLocation attribute.

XSR_EXTENTITY procedure

444 SQL Reference, Volume 1

content

An input parameter of type BLOB (30M) that contains the content of the

primary XML schema document. This argument cannot have a NULL value; an

XML schema document must be supplied.

docproperty

An input parameter of type BLOB (5M) that indicates the properties for the

primary XML schema document. This parameter can have a NULL value;

otherwise, the value is an XML document.

Example: The following example shows how to call the XSR_REGISTER procedure

from the command line:

 CALL SYSPROC.XSR_REGISTER(

 ’user1’,

 ’POschema’,

 ’http://myPOschema/PO.xsd’,

 :content_host_var,

 :docproperty_host_var)

Example: The following example shows how to call the XSR_REGISTER procedure

from a Java application program:

 stmt = con.prepareCall("CALL SYSPROC.XSR_REGISTER (?, ?, ?, ?, ?)");

 String xsrObjectName = "myschema1";

 String xmlSchemaLocation = "po.xsd";

 stmt.setNull(1, java.sql.Types.VARCHAR);

 stmt.setString(2, xsrObjectName);

 stmt.setString(3, xmlSchemaLocation);

 stmt.setBinaryStream(4, buffer, (int)length);

 stmt.setNull(5, java.sql.Types.BLOB);

 stmt.registerOutParameter(1, java.sql.Types.VARCHAR);

 stmt.registerOutParameter(2, java.sql.Types.VARCHAR);

 stmt.execute();

XSR_UPDATE procedure

�� XSR_UPDATE (rschema1 , name1 , rschema2 , name2 , �

� dropnewschema) ��

The schema is SYSPROC.

The XSR_UPDATE stored procedure is used to evolve an existing XML schema in

the XML schema repository (XSR). This enables you to modify or extend an

existing XML schema so that it can be used to validate both already existing and

newly inserted XML documents.

The original XML schema and the new XML schema specified as arguments to

XSR_UPDATE must both be registered and completed in the XSR before the

procedure is called. These XML schemas must also be compatible. For details about

the compatibility requirements see Compatibility requirements for evolving an XML

schema.

Authorization

The privileges held by the authorization ID of the caller of the procedure must

include at least one of the following:

XSR_REGISTER procedure

Chapter 4. Procedures 445

v OWNER of the XML schema specified by the SQL schema rschema1 and the

object name name1

v SYSADM or DBADM authority.

v ALTERIN privilege on the SQL schema specified by the rschema1 argument and,

if the dropnewschema argument is not equal to zero, DROPIN privilege on the

SQL schema specified by the rschema2 argument.

rschema1

An input argument of type VARCHAR (128) that specifies the SQL schema for

the original XML schema to be updated. The SQL schema is one part of the

SQL identifier used to identify this XML schema in the XSR. (The other part of

the SQL identifier is supplied by the name1 argument.) This argument cannot

have a NULL value. Rules for valid characters and delimiters that apply to any

SQL identifier also apply to this argument.

name1

An input argument of type VARCHAR (128) that specifies the name of the

original XML schema to be updated. The complete SQL identifier for the XML

schema is rschema1.name1 . This XML schema must already be registered and

completed in the XSR. This argument cannot have a NULL value. Rules for

valid characters and delimiters that apply to any SQL identifier also apply to

this argument.

rschema2

An input argument of type VARCHAR (128) that specifies the SQL schema for

the new XML schema that will be used to update the original XML schema.

The SQL schema is one part of the SQL identifier used to identify this XML

schema in the XSR. (The other part of the SQL identifier is supplied by the

name2 argument.) This argument cannot have a NULL value. Rules for valid

characters and delimiters that apply to any SQL identifier also apply to this

argument.

name2

An input argument of type VARCHAR (128) that specifies the name of the new

XML schema that will be used to update the original XML schema. The

complete SQL identifier for the XML schema is rschema2.name2. This XML

schema must already be registered and completed in the XSR. This argument

cannot have a NULL value. Rules for valid characters and delimiters that

apply to any SQL identifier also apply to this argument.

dropnewschema

An input parameter of type integer that indicates whether the new XML

schema should be dropped after it is used to update the original XML schema.

Setting this parameter to any non-zero value will cause the new XML schema

to be dropped. This argument cannot have a null value.

Example:

 CALL SYSPROC.XSR_UPDATE(

 ’STORE’,

 ’PROD’,

 ’STORE’,

 ’NEWPROD’,

 1)

The contents of the XML schema STORE.PROD is updated with the contents of

STORE.NEWPROD, and the XML schema STORE.NEWPROD is dropped.

XSR_UPDATE procedure

446 SQL Reference, Volume 1

Chapter 5. SQL queries

A query specifies a result table. A query is a component of certain SQL statements.

The three forms of a query are:

v subselect

v fullselect

v select-statement.

Authorization

For each table, view, or nickname referenced in the query, the authorization ID of

the statement must have at least one of the following:

v SYSADM or DBADM authority

v CONTROL privilege

v SELECT privilege.

Group privileges, with the exception of PUBLIC, are not checked for queries that

are contained in static SQL statements.

For nicknames, authorization requirements of the data source for the object

referenced by the nickname are applied when the query is processed. The

authorization ID of the statement may be mapped to a different authorization ID at

the data source.

Subselect

�� select-clause from-clause

where-clause

group-by-clause
 �

�
having-clause

order-by-clause

fetch-first-clause
 ��

The subselect is a component of the fullselect.

A subselect specifies a result table derived from the tables, views or nicknames

identified in the FROM clause. The derivation can be described as a sequence of

operations in which the result of each operation is input for the next. (This is only

a way of describing the subselect. The method used to perform the derivation can

be quite different from this description. If portions of the subselect do not actually

need to be executed for the correct result to be obtained, they might or might not

be executed.)

The clauses of the subselect are processed in the following sequence:

1. FROM clause

2. WHERE clause

3. GROUP BY clause

4. HAVING clause

5. SELECT clause

6. ORDER BY clause

© Copyright IBM Corp. 1993, 2009 447

7. FETCH FIRST clause

A subselect that contains an ORDER BY or FETCH FIRST clause cannot be

specified:

v In the outermost fullselect of a view.

v In a materialized query table.

v Unless the subselect is enclosed in parenthesis.

For example, the following is not valid (SQLSTATE 428FJ):

SELECT * FROM T1

 ORDER BY C1

UNION

SELECT * FROM T2

 ORDER BY C1

The following example is valid:

(SELECT * FROM T1

 ORDER BY C1)

UNION

(SELECT * FROM T2

 ORDER BY C1)

Note: An ORDER BY clause in a subselect does not affect the order of the rows

returned by a query. An ORDER BY clause only affects the order of the rows

returned if it is specified in the outermost fullselect.

select-clause

��

SELECT
 ALL

DISTINCT

�

*

,

expression

AS

new-column-name

exposed-name.*

��

The SELECT clause specifies the columns of the final result table, R. The column

values are produced by the application of the select list to R. The select list is the

names or expressions specified in the SELECT clause, and R is the result of the

previous operation of the subselect. For example, if the only clauses specified are

SELECT, FROM, and WHERE, R is the result of that WHERE clause.

ALL

Retains all rows of the final result table, and does not eliminate redundant

duplicates. This is the default.

DISTINCT

Eliminates all but one of each set of duplicate rows of the final result table. If

DISTINCT is used, no string column of the result table can be a LONG

VARCHAR, LONG VARGRAPHIC, LOB type, distinct type on any of these

types, or structured type. DISTINCT may be used more than once in a

subselect. This includes SELECT DISTINCT, the use of DISTINCT in a column

function of the select list or HAVING clause, and subqueries of the subselect.

 Two rows are duplicates of one another only if each value in the first is equal

to the corresponding value in the second. For determining duplicates, two null

values are considered equal, and two different decimal floating-point

Subselect

448 SQL Reference, Volume 1

representations of the same number are considered equal. For example, -0 is

equal to +0 and 2.0 is equal to 2.00. Each of the decimal floating-point special

values are also considered equal: -NAN equals -NAN, -SNAN equals -SNAN,

-INFINITY equals -INFINITY, INFINITY equals INFINITY, SNAN equals

SNAN, and NAN equals NAN.

When the data type of a column is decimal floating-point, and multiple

representations of the same number exist in the column, the particular value

that is returned for a SELECT DISTINCT can be any one of the representations

in the column. For more information, see “Numeric comparisons” on page 100.

For compatibility with other SQL implementations, UNIQUE can be specified

as a synonym for DISTINCT.

Select list notation

* Represents a list of names that identify the columns of table R, excluding any

columns defined as IMPLICITLY HIDDEN. The first name in the list identifies

the first column of R, the second name identifies the second column of R, and

so on.

 The list of names is established when the program containing the SELECT

clause is bound. Hence * (the asterisk) does not identify any columns that have

been added to a table after the statement containing the table reference has

been bound.

expression

Specifies the values of a result column. Can be any expression that is a valid

SQL language element, but commonly includes column names. Each column

name used in the select list must unambiguously identify a column of R.

new-column-name or AS new-column-name

Names or renames the result column. The name must not be qualified and

does not have to be unique. Subsequent usage of column-name is limited

as follows:

v A new-column-name specified in the AS clause can be used in the

order-by-clause, provided the name is unique.

v A new-column-name specified in the AS clause of the select list cannot

be used in any other clause within the subselect (where-clause,

group-by-clause or having-clause).

v A new-column-name specified in the AS clause cannot be used in the

update-clause.

v A new-column-name specified in the AS clause is known outside the

fullselect of nested table expressions, common table expressions and

CREATE VIEW.

name.*

Represents the list of names that identify the columns of the result table

identified by exposed-name, excluding any columns defined as IMPLICITLY

HIDDEN. The exposed-name may be a table name, view name, nickname, or

correlation name, and must designate a table, view or nickname named in the

FROM clause. The first name in the list identifies the first column of the table,

view or nickname, the second name in the list identifies the second column of

the table, view or nickname, and so on.

 The list of names is established when the statement containing the SELECT

clause is bound. Therefore, * does not identify any columns that have been

added to a table after the statement has been bound.

Subselect

Chapter 5. Queries 449

The number of columns in the result of SELECT is the same as the number of

expressions in the operational form of the select list (that is, the list established

when the statement is prepared), and cannot exceed 500 for a 4K page size or

1012 for an 8K, 16K, or 32K page size.

Limitations on string columns

For limitations on the select list, see “Restrictions Using Varying-Length Character

Strings”.

Applying the select list

Some of the results of applying the select list to R depend on whether or not

GROUP BY or HAVING is used. The results are described in two separate lists.

If GROUP BY or HAVING is used

v An expression X (not a column function) used in the select list must have a

GROUP BY clause with:

– a grouping-expression in which each expression or column-name

unambiguously identifies a column of R (see “group-by-clause” on page 464)

or

– each column of R referenced in X as a separate grouping-expression.
v The select list is applied to each group of R, and the result contains as many

rows as there are groups in R. When the select list is applied to a group of R,

that group is the source of the arguments of the column functions in the select

list.

If neither GROUP BY nor HAVING is used

v Either the select list must not include any column functions, or each column-name

in the select list must be specified within a column function or must be a

correlated column reference.

v If the select does not include column functions, then the select list is applied to

each row of R and the result contains as many rows as there are rows in R.

v If the select list is a list of column functions, then R is the source of the

arguments of the functions and the result of applying the select list is one row.

In either case the nth column of the result contains the values specified by

applying the nth expression in the operational form of the select list.

Null attributes of result columns

Result columns do not allow null values if they are derived from:

v A column that does not allow null values

v A constant

v The COUNT or COUNT_BIG function

v A host variable that does not have an indicator variable

v A scalar function or expression that does not include an operand that allows

nulls

Result columns allow null values if they are derived from:

v Any aggregate function except COUNT or COUNT_BIG

v A column that allows null values

Subselect

450 SQL Reference, Volume 1

v A scalar function or expression that includes an operand that allows nulls

v A NULLIF function with arguments containing equal values

v A host variable that has an indicator variable, an SQL parameter, an SQL

variable, or a global variable

v A result of a set operation if at least one of the corresponding items in the select

list is nullable

v An arithmetic expression or view column that is derived from an arithmetic

expression and the database is configured with DFT_SQLMATHWARN set to

Yes

v A scalar subselect

v A dereference operation

v A GROUPING SETS grouping-expression

Names of result columns

v If the AS clause is specified, the name of the result column is the name specified

on the AS clause.

v If the AS clause is not specified and a column list is specified in the correlation

clause, the name of the result column is the corresponding name in the

correlation column list.

v If neither an AS clause nor a column list in the correlation clause is specified

and the result column is derived only from a single column (without any

functions or operators), then the result column name is the unqualified name of

that column.

v If neither an AS clause nor a column list in the correlation clause is specified

and the result column is derived only from a single SQL variable or SQL

parameter (without any functions or operators), then the result column name is

the unqualified name of that SQL variable or SQL parameter.

v If neither an AS clause nor a column list in the correlation clause is specified

and the result column is derived using a dereference operation, then the result

column name is the unqualified name of the target column of the dereference

operation.

v All other result column names are unnamed. The system assigns temporary

numbers (as character strings) to these columns.

Data types of result columns

Each column of the result of SELECT acquires a data type from the expression

from which it is derived.

 When the expression is ... The data type of the result column is ...

the name of any numeric column the same as the data type of the column,

with the same precision and scale for

DECIMAL columns, or the same precision for

DECFLOAT columns.

an integer constant INTEGER.

a decimal constant DECIMAL, with the precision and scale of

the constant.

a floating-point constant DOUBLE.

a decimal floating-point constant DECFLOAT(34)

Subselect

Chapter 5. Queries 451

When the expression is ... The data type of the result column is ...

the name of any numeric variable the same as the data type of the variable,

with the same precision and scale for

DECIMAL variables, or the same precision

for DECFLOAT variables.

a hexadecimal constant representing n bytes VARCHAR(n); the code page is the database

code page.

the name of any string column the same as the data type of the column,

with the same length attribute.

the name of any string variable the same as the data type of the variable,

with the same length attribute; if the data

type of the variable is not identical to an SQL

data type (for example, a NUL-terminated

string in C), the result column is a

varying-length string.

a character string constant of length n VARCHAR(n).

a graphic string constant of length n VARGRAPHIC(n).

the name of a datetime column the same as the data type of the column.

the name of a user-defined type column the same as the data type of the column.

the name of a reference type column the same as the data type of the column.

from-clause

��

�

 ,

FROM

table-reference

��

The FROM clause specifies an intermediate result table.

If only one table-reference is specified, the intermediate result table is simply the

result of that table-reference. If more than one table-reference is specified, the

intermediate result table consists of all possible combinations of the rows of the

specified table-reference (the Cartesian product). Each row of the result is a row

from the first table-reference concatenated with a row from the second table-reference,

concatenated in turn with a row from the third, and so on. The number of rows in

the result is the product of the number of rows in all the individual table

references. For a description of table-reference, see “table-reference.”

table-reference

Subselect

452 SQL Reference, Volume 1

��

�

 table-name

correlation-clause

tablesample-clause

nickname

view-name

correlation-clause

ONLY

(

table-name

)

OUTER

view-name

TABLE

(

function-name

(

)

)

,

correlation-clause

expression

(1)

xmltable-expression

correlation-clause

nested-table-expression

correlation-clause

data-change-table-reference

correlation-clause

collection-derived-table

joined-table

 ��

correlation-clause:

�

 AS

correlation-name

,

(

column-name

)

tablesample-clause:

 TABLESAMPLE BERNOULLI

SYSTEM
 (numeric-expression1) �

�
REPEATABLE

(

numeric-expression2

)

nested-table-expression:

 (fullselect)

(2)

LATERAL

continue-handler

WITHIN

continue-handler:

�

 ,

RETURN DATA UNTIL

specific-condition-value

specific-condition-value:

�

 VALUE

FEDERATED

SQLSTATE

string-constant

,

SQLCODE

integer-constant

Subselect

Chapter 5. Queries 453

data-change-table-reference:

 FINAL TABLE (insert-statement)

NEW

FINAL

TABLE

(

searched-update-statement

)

NEW

OLD

OLD TABLE

(

searched-delete-statement

)

collection-derived-table:

�

 ,

UNNEST

(

array-variable-name

)

CAST

(

parameter-marker

)

AS

data-type

�

� correlation-clause

WITH ORDINALITY

Notes:

1 An XMLTABLE expression can be part of a table-reference. In this case,

subexpressions within the XMLTABLE expression are in-scope of prior range

variables in the FROM clause. For more information, see the description of

“XMLTABLE”.

2 TABLE can be specified in place of LATERAL.

Each table-name, view-name or nickname specified as a table-reference must identify

an existing table, view or nickname at the application server or the table-name of a

common table expression defined preceding the fullselect containing the

table-reference. If the table-name references a typed table, the name denotes the

UNION ALL of the table with all its subtables, with only the columns of the

table-name. Similarly, if the view-name references a typed view, the name denotes the

UNION ALL of the view with all its subviews, with only the columns of the

view-name.

The use of ONLY(table-name) or ONLY(view-name) means that the rows of the

proper subtables or subviews are not included. If the table-name used with ONLY

does not have subtables, then ONLY(table-name) is equivalent to specifying

table-name. If the view-name used with ONLY does not have subviews, then

ONLY(view-name) is equivalent to specifying view-name.

The use of OUTER(table-name) or OUTER(view-name) represents a virtual table. If

the table-name or view-name used with OUTER does not have subtables or

subviews, then specifying OUTER is equivalent to not specifying OUTER.

OUTER(table-name) is derived from table-name as follows:

v The columns include the columns of table-name followed by the additional

columns introduced by each of its subtables (if any). The additional columns are

added on the right, traversing the subtable hierarchy in depth-first order.

Subtables that have a common parent are traversed in creation order of their

types.

v The rows include all the rows of table-name and all the rows of its subtables.

Null values are returned for columns that are not in the subtable for the row.

Subselect

454 SQL Reference, Volume 1

The previous points also apply to OUTER(view-name), substituting view-name for

table-name and subview for subtable.

The use of ONLY or OUTER requires the SELECT privilege on every subtable of

table-name or subview of view-name.

Each function-name together with the types of its arguments, specified as a table

reference must resolve to an existing table function at the application server.

A fullselect in parentheses is called a nested table expression.

A joined-table specifies an intermediate result set that is the result of one or more

join operations. For more information, see “joined-table” on page 461.

The exposed names of all table references should be unique. An exposed name is:

v A correlation-name

v A table-name that is not followed by a correlation-name

v A view-name that is not followed by a correlation-name

v A nickname that is not followed by a correlation-name

v An alias-name that is not followed by a correlation-name

If a correlation-clause does not follow a function-name reference, xmltable-expression,

nested table expression, or data-change-table-reference, there is no exposed name for

that table reference.

Each correlation-name is defined as a designator of the immediately preceding

table-name, view-name, nickname, function-name reference, xmltable-expression, nested

table expression, or data-change-table-reference. Any qualified reference to a column

must use the exposed name. If the same table name, view or nickname name is

specified twice, at least one specification should be followed by a correlation-name.

The correlation-name is used to qualify references to the columns of the table, view

or nickname. When a correlation-name is specified, column-names can also be

specified to give names to the columns of the table reference. If the

correlation-clause does not include column-names, the exposed column names are

determined as follows:.

v Column names of the referenced table, view, or nickname when the table-reference

is a table-name, view-name, nickname, or alias-name

v Column names specified in the RETURNS clause of the CREATE FUNCTION

statement when the table-reference is a function-name reference

v Column names specified in the COLUMNS clause of the xmltable-expression when

the table-reference is an xmltable-expression

v Column names exposed by the fullselect when the table-reference is a

nested-table-expression

v Column names from the target table of the data change statement, along with

any defined INCLUDE columns when the table-reference is a

data-change-table-reference

In general, collection-derived tables, table functions, and nested table expressions

can be specified on any from-clause. Columns from the table functions, nested

table expressions, or collection-derived tables can be referenced in the select list

and in the rest of the subselect using the correlation name. The scope of this

correlation name is the same as correlation names for other tables, views, or

nicknames in the FROM clause. A nested table expression can be used:

Subselect

Chapter 5. Queries 455

v In place of a view to avoid creating the view (when general use of the view is

not required)

v When the desired result table is based on host variables

A collection-derived table can be used to unnest the elements of arrays into rows.

If more than one array is specified, the first array provides the first column in the

result table, the second array provides the second column, and so on. If WITH

ORDINALITY is specified, an extra column of type INTEGER, which contains the

position of the elements in the arrays, is appended. If the cardinalities of the arrays

are not identical, the cardinality of the resulting table is the same as the array with

the largest cardinality. The column values in the table are set to the null value for

all rows whose subindex value is greater than the cardinality of the corresponding

array. In other words, if each array is viewed as a table with two columns (one for

the subindices and one for the data), then UNNEST performs an OUTER JOIN

among the arrays, using equality on the subindices as a join predicate.

UNNEST can be specified only within an SQL procedure (SQLSTATE 42887).

An expression in the select list of a nested table expression that is referenced

within, or is the target of, a data change statement within a fullselect is only valid

when it does not include:

v A function that reads or modifies SQL data

v A function that is non-deterministic

v A function that has external action

v An OLAP function

If a view is referenced directly in, or as the target of a nested table expression in a

data change statement within a FROM clause, the view must either be symmetric

(have WITH CHECK OPTION specified) or satisfy the restriction for a WITH

CHECK OPTION view.

If the target of a data change statement within a FROM clause is a nested table

expression, the modified rows are not requalified, WHERE clause predicates are

not re-evaluated, and ORDER BY or FETCH FIRST operations are not redone.

The optional tablesample-clause can be used to obtain a random subset (a sample)

of the rows from the specified table-name, rather than the entire contents of that

table-name, for this query. This sampling is in addition to any predicates that are

specified in the where-clause. Unless the optional REPEATABLE clause is specified,

each execution of the query will usually yield a different sample, except in

degenerate cases where the table is so small relative to the sample size that any

sample must return the same rows. The size of the sample is controlled by the

numeric-expression1 in parentheses, representing an approximate percentage (P) of

the table to be returned. The method by which the sample is obtained is specified

after the TABLESAMPLE keyword, and can be either BERNOULLI or SYSTEM. For

both methods, the exact number of rows in the sample may be different for each

execution of the query, but on average should be approximately P percent of the

table, before any predicates further reduce the number of rows.

The table-name must be a stored table. It can be a materialized query table (MQT)

name, but not a subselect or table expression for which an MQT has been defined,

because there is no guarantee that the database manager will route to the MQT for

that subselect.

Subselect

456 SQL Reference, Volume 1

Semantically, sampling of a table occurs before any other query processing, such as

applying predicates or performing joins. Repeated accesses of a sampled table

within a single execution of a query (such as in a nested-loop join or a correlated

subquery) will return the same sample. More than one table may be sampled in a

query.

BERNOULLI sampling considers each row individually. It includes each row in the

sample with probability P/100 (where P is the value of numeric-expression1), and

excludes each row with probability 1 - P/100, independently of the other rows. So

if the numeric-expression1 evaluated to the value 10, representing a ten percent

sample, each row would be included with probability 0.1, and excluded with

probability 0.9.

SYSTEM sampling permits the database manager to determine the most efficient

manner in which to perform the sampling. In most cases, SYSTEM sampling

applied to a table-name means that each page of table-name is included in the

sample with probability P/100, and excluded with probability 1 - P/100. All rows

on each page that is included qualify for the sample. SYSTEM sampling of a

table-name generally executes much faster than BERNOULLI sampling, because

fewer data pages need to be retrieved; however, it can often yield less accurate

estimates for aggregate functions (SUM(SALES), for example), especially if the

rows of table-name are clustered on any columns referenced in that query. The

optimizer may in certain circumstances decide that it is more efficient to perform

SYSTEM sampling as if it were BERNOULLI sampling, for example when a

predicate on table-name can be applied by an index and is much more selective

than the sampling rate P.

The numeric-expression1 specifies the size of the sample to be obtained from

table-name, expressed as a percentage. It must be a constant numeric expression

that cannot contain columns, parameter markers, or host variables. The expression

must evaluate to a positive number that is less than or equal to 100, but can be

between 1 and 0. For example, a value of 0.01 represents one one-hundredth of a

percent, meaning that 1 row in 10 000 would be sampled, on average. A

numeric-expression1 that evaluates to 100 is handled as if the tablesample-clause

were not specified. If numeric-expression1 evaluates to the null value, or to a value

that is greater than 100 or less than 0, an error is returned (SQLSTATE 2202H).

It is sometimes desirable for sampling to be repeatable from one execution of the

query to the next; for example, during regression testing or query ″debugging″.

This can be accomplished by specifying the REPEATABLE clause. The

REPEATABLE clause requires the specification of a numeric-expression2 in

parentheses, which serves the same role as the seed in a random number

generator. Adding the REPEATABLE clause to the tablesample-clause of any

table-name ensures that repeated executions of that query (using the same value for

numeric-expression2) return the same sample, assuming, of course, that the data

itself has not been updated, reorganized, or repartitioned. To guarantee that the

same sample of table-name is used across multiple queries, use of a global

temporary table is recommended. Alternatively, the multiple queries could be

combined into one query, with multiple references to a sample that is defined

using the WITH clause.

Following are some examples:

Example 1: Request a 10% Bernoulli sample of the Sales table for auditing purposes.

 SELECT * FROM Sales

 TABLESAMPLE BERNOULLI(10)

Subselect

Chapter 5. Queries 457

Example 2: Compute the total sales revenue in the Northeast region for each

product category, using a random 1% SYSTEM sample of the Sales table. The

semantics of SUM are for the sample itself, so to extrapolate the sales to the entire

Sales table, the query must divide that SUM by the sampling rate (0.01).

SELECT SUM(Sales.Revenue) / (0.01)

 FROM Sales TABLESAMPLE SYSTEM(1)

 WHERE Sales.RegionName = ’Northeast’

 GROUP BY Sales.ProductCategory

Example 3: Using the REPEATABLE clause, modify the previous query to ensure

that the same (yet random) result is obtained each time the query is executed. (The

value of the constant enclosed by parentheses is arbitrary.)

SELECT SUM(Sales.Revenue) / (0.01)

 FROM Sales TABLESAMPLE SYSTEM(1) REPEATABLE(3578231)

 WHERE Sales.RegionName = ’Northeast’

 GROUP BY Sales.ProductCategory

Table function references

In general, a table function, together with its argument values, can be referenced in

the FROM clause of a SELECT in exactly the same way as a table or view. There

are, however, some special considerations which apply.

v Table Function Column Names

Unless alternate column names are provided following the correlation-name, the

column names for the table function are those specified in the RETURNS clause

of the CREATE FUNCTION statement. This is analogous to the names of the

columns of a table, which are defined in the CREATE TABLE statement.

v Table Function Resolution

The arguments specified in a table function reference, together with the function

name, are used by an algorithm called function resolution to determine the exact

function to be used. This is no different from what happens with other functions

(such as scalar functions) that are used in a statement.

v Table Function Arguments

As with scalar function arguments, table function arguments can in general be

any valid SQL expression. The following examples are valid syntax:

 Example 1: SELECT c1

 FROM TABLE(tf1(’Zachary’)) AS z

 WHERE c2 = ’FLORIDA’;

 Example 2: SELECT c1

 FROM TABLE(tf2 (:hostvar1, CURRENT DATE)) AS z;

 Example 3: SELECT c1

 FROM t

 WHERE c2 IN

 (SELECT c3 FROM

 TABLE(tf5(t.c4)) AS z -- correlated reference

) -- to previous FROM clause

v Table Functions That Modify SQL Data

Table functions that are specified with the MODIFIES SQL DATA option can

only be used as the last table reference in a select-statement, common-table-
expression, or RETURN statement that is a subselect, a SELECT INTO, or a

row-fullselect in a SET statement. Only one table function is allowed in one

FROM clause, and the table function arguments must be correlated to all other

table references in the subselect (SQLSTATE 429BL). The following examples

have valid syntax for a table function with the MODIFIES SQL DATA property:

Subselect

458 SQL Reference, Volume 1

Example 1: SELECT c1

 FROM TABLE(tfmod(’Jones’)) AS z

 Example 2: SELECT c1

 FROM t1, t2, TABLE(tfmod(t1.c1, t2.c1)) AS z

 Example 3: SET var =

 (SELECT c1

 FROM TABLE(tfmod(’Jones’)) AS z

 Example 4: RETURN SELECT c1

 FROM TABLE(tfmod(’Jones’)) AS z

 Example 5: WITH v1(c1) AS

 (SELECT c1

 FROM TABLE(tfmod(:hostvar1)) AS z)

 SELECT c1

 FROM v1, t1 WHERE v1.c1 = t1.c1

Error tolerant nested-table-expression

Certain errors that occur within a nested-table-expression can be tolerated, and

instead of returning an error, the query can continue and return a result.

Specifying the RETURN DATA UNTIL clause will cause any rows that are returned

from the fullselect before the indicated condition is encountered to make up the

result set from the fullselect. This means that a partial result set (which could also

be an empty result set) from the fullselect is acceptable as the result for the

nested-table-expression.

The FEDERATED keyword restricts the condition to handle only errors that occur

at a remote data source.

The condition can be specified as an SQLSTATE value, with a string-constant length

of 5. You can optionally specify an SQLCODE value for each specified SQLSTATE

value. For portable applications, specify SQLSTATE values as much as possible,

because SQLCODE values are generally not portable across platforms and are not

part of the SQL standard.

Only certain conditions can be tolerated. Errors that do not allow the rest of the

query to be executed cannot be tolerated, and an error is returned for the whole

query. The specific-condition-value might specify conditions that cannot actually be

tolerated by the database manager, even if a specific SQLSTATE or SQLCODE

value is specified, and for these cases, an error is returned.

The following SQLSTATE values and SQLCODE values have the potential, when

specified, to be tolerated by the database manager:

v SQLSTATE 08001; SQLCODEs -1336, -30080, -30081, -30082

v SQLSTATE 08004

v SQLSTATE 42501

v SQLSTATE 42704; SQLCODE -204

v SQLSTATE 42720

v SQLSTATE 28000

A query or view containing an error tolerant nested-table-expression is read-only.

Subselect

Chapter 5. Queries 459

The fullselect of an error tolerant nested-table-expression is not optimized using

materialized query tables.

Correlated references in table-references

Correlated references can be used in nested table expressions or as arguments to

table functions. The basic rule that applies for both these cases is that the

correlated reference must be from a table-reference at a higher level in the hierarchy

of subqueries. This hierarchy includes the table-references that have already been

resolved in the left-to-right processing of the FROM clause. For nested table

expressions, the LATERAL keyword must appear before the fullselect. So the

following examples are valid syntax:

 Example 1: SELECT t.c1, z.c5

 FROM t, TABLE(tf3(t.c2)) AS z -- t precedes tf3

 WHERE t.c3 = z.c4; -- in FROM, so t.c2

 -- is known

 Example 2: SELECT t.c1, z.c5

 FROM t, TABLE(tf4(2 * t.c2)) AS z -- t precedes tf4

 WHERE t.c3 = z.c4; -- in FROM, so t.c2

 -- is known

 Example 3: SELECT d.deptno, d.deptname,

 empinfo.avgsal, empinfo.empcount

 FROM department d,

 LATERAL (SELECT AVG(e.salary) AS avgsal,

 COUNT(*) AS empcount

 FROM employee e -- department precedes

 WHERE e.workdept=d.deptno -- and TABLE is

) AS empinfo; -- specified, so

 -- d.deptno is known

But the following examples are not valid:

 Example 4: SELECT t.c1, z.c5

 FROM TABLE(tf6(t.c2)) AS z, t -- cannot resolve t in t.c2!

 WHERE t.c3 = z.c4; -- compare to Example 1 above.

 Example 5: SELECT a.c1, b.c5

 FROM TABLE(tf7a(b.c2)) AS a, TABLE(tf7b(a.c6)) AS b

 WHERE a.c3 = b.c4; -- cannot resolve b in b.c2!

 Example 6: SELECT d.deptno, d.deptname,

 empinfo.avgsal, empinfo.empcount

 FROM department d,

 (SELECT AVG(e.salary) AS avgsal,

 COUNT(*) AS empcount

 FROM employee e -- department precedes

 WHERE e.workdept=d.deptno -- but TABLE is not

) AS empinfo; -- specified, so

 -- d.deptno is unknown

Data change table references

A data-change-table-reference clause specifies an intermediate result table. This table

is based on the rows that are directly changed by the searched UPDATE, searched

DELETE, or INSERT statement that is included in the clause. A

data-change-table-reference can be specified as the only table-reference in the FROM

clause of the outer fullselect that is used in a select-statement, a SELECT INTO

statement, or a common table expression. A data-change-table-reference can be

specified as the only table reference in the only fullselect in a SET Variable

statement (SQLSTATE 428FL). The target table or view of the data change

Subselect

460 SQL Reference, Volume 1

statement is considered to be a table or view that is referenced in the query;

therefore, the authorization ID of the query must have SELECT privilege on that

target table or view. A data-change-table-reference clause cannot be specified in a

view definition, materialized query table definition, or FOR statement (SQLSTATE

428FL).

The target of the UPDATE, DELETE, or INSERT statement cannot be a temporary

view defined in a common table expression (SQLSTATE 42807).

FINAL TABLE

Specifies that the rows of the intermediate result table represent the set of rows

that are changed by the SQL data change statement as they appear at the

completion of the data change statement. If there are AFTER triggers or

referential constraints that result in further operations on the table that is the

target of the SQL data change statement, an error is returned (SQLSTATE

57058, SQLSTATE 560C6). If the target of the SQL data change statement is a

view that is defined with an INSTEAD OF trigger for the type of data change,

an error is returned (SQLSTATE 428G3).

NEW TABLE

Specifies that the rows of the intermediate result table represent the set of rows

that are changed by the SQL data change statement prior to the application of

referential constraints and AFTER triggers. Data in the target table at the

completion of the statement might not match the data in the intermediate

result table because of additional processing for referential constraints and

AFTER triggers.

OLD TABLE

Specifies that the rows of the intermediate result table represent the set of rows

that are changed by the SQL data change statement as they existed prior to the

application of the data change statement.

(searched-update-statement)

Specifies a searched UPDATE statement. A WHERE clause or a SET clause in

the UPDATE statement cannot contain correlated references to columns outside

of the UPDATE statement.

(searched-delete-statement)

Specifies a searched DELETE statement. A WHERE clause in the DELETE

statement cannot contain correlated references to columns outside of the

DELETE statement.

(insert-statement)

Specifies an INSERT statement. A fullselect in the INSERT statement cannot

contain correlated references to columns outside of the fullselect of the INSERT

statement.

The content of the intermediate result table for a data-change-table-reference is

determined when the cursor opens. The intermediate result table contains all

manipulated rows, including all the columns in the specified target table or view.

All the columns of the target table or view for an SQL data change statement are

accessible using the column names from the target table or view. If an INCLUDE

clause was specified within a data change statement, the intermediate result table

will contain these additional columns.

joined-table

Subselect

Chapter 5. Queries 461

��
 INNER

table-reference

JOIN

table-reference

ON

join-condition

outer

table-reference

CROSS JOIN

table-reference

(

joined-table

)

��

outer:

 OUTER

LEFT

RIGHT

FULL

A joined table specifies an intermediate result table that is the result of either an

inner join or an outer join. The table is derived by applying one of the join

operators: CROSS, INNER, LEFT OUTER, RIGHT OUTER, or FULL OUTER to its

operands.

Cross joins represent the cross product of the tables, where each row of the left

table is combined with every row of the right table. Inner joins can be thought of

as the cross product of the tables, keeping only the rows where the join condition

is true. The result table maight be missing rows from either or both of the joined

tables. Outer joins include the inner join and preserve these missing rows. There

are three types of outer joins:

v Left outer join includes rows from the left table that were missing from the

inner join.

v Right outer join includes rows from the right table that were missing from the

inner join.

v Full outer join includes rows from both the left and right tables that were

missing from the inner join.

If a join-operator is not specified, INNER is implicit. The order in which multiple

joins are performed can affect the result. Joins can be nested within other joins. The

order of processing for joins is generally from left to right, but based on the

position of the required join-condition. Parentheses are recommended to make the

order of nested joins more readable. For example:

 TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1

 RIGHT JOIN TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1

 ON TB1.C1=TB3.C1

is the same as:

 (TB1 LEFT JOIN TB2 ON TB1.C1=TB2.C1)

 RIGHT JOIN (TB3 LEFT JOIN TB4 ON TB3.C1=TB4.C1)

 ON TB1.C1=TB3.C1

A joined table can be used in any context in which any form of the SELECT

statement is used. A view or a cursor is read-only if its SELECT statement includes

a joined table.

A join-condition is a search-condition, except that:

v It cannot contain any subqueries, scalar or otherwise

v It cannot include any dereference operations or the DEREF function, where the

reference value is other than the object identifier column

v It cannot include an SQL function

Subselect

462 SQL Reference, Volume 1

v Any column referenced in an expression of the join-condition must be a column

of one of the operand tables of the associated join (in the scope of the same

joined-table clause)

v Any function referenced in an expression of the join-condition of a full outer join

must be deterministic and have no external action

v It cannot include an XMLQUERY or XMLEXISTS expression

An error occurs if the join condition does not comply with these rules (SQLSTATE

42972).

Column references are resolved using the rules for resolution of column name

qualifiers. The same rules that apply to predicates apply to join conditions.

Join operations

A join-condition specifies pairings of T1 and T2, where T1 and T2 are the left and

right operand tables of the JOIN operator of the join-condition. For all possible

combinations of rows of T1 and T2, a row of T1 is paired with a row of T2 if the

join-condition is true. When a row of T1 is joined with a row of T2, a row in the

result consists of the values of that row of T1 concatenated with the values of that

row of T2. The execution might involve the generation of a null row. The null row

of a table consists of a null value for each column of the table, regardless of

whether the columns allow null values.

The following summarizes the result of the join operations:

v The result of T1 CROSS JOIN T2 consists of all possible pairings of their rows.

v The result of T1 INNER JOIN T2 consists of their paired rows where the

join-condition is true.

v The result of T1 LEFT OUTER JOIN T2 consists of their paired rows where the

join-condition is true and, for each unpaired row of T1, the concatenation of that

row with the null row of T2. All columns derived from T2 allow null values.

v The result of T1 RIGHT OUTER JOIN T2 consists of their paired rows where the

join-condition is true and, for each unpaired row of T2, the concatenation of that

row with the null row of T1. All columns derived from T1 allow null values.

v The result of T1 FULL OUTER JOIN T2 consists of their paired rows and, for

each unpaired row of T2, the concatenation of that row with the null row of T1

and, for each unpaired row of T1, the concatenation of that row with the null

row of T2. All columns derived from T1 and T2 allow null values.

where-clause

�� WHERE search-condition ��

The WHERE clause specifies an intermediate result table that consists of those

rows of R for which the search-condition is true. R is the result of the FROM clause

of the subselect.

The search-condition must conform to the following rules:

v Each column-name must unambiguously identify a column of R or be a correlated

reference. A column-name is a correlated reference if it identifies a column of a

table-reference in an outer subselect.

Subselect

Chapter 5. Queries 463

v A column function must not be specified unless the WHERE clause is specified

in a subquery of a HAVING clause and the argument of the function is a

correlated reference to a group.

Any subquery in the search-condition is effectively executed for each row of R, and

the results are used in the application of the search-condition to the given row of R.

A subquery is actually executed for each row of R only if it includes a correlated

reference. In fact, a subquery with no correlated references may be executed just

once, whereas a subquery with a correlated reference may have to be executed

once for each row.

group-by-clause

��

�

 ,

GROUP BY

grouping-expression

grouping-sets

super-groups

��

The GROUP BY clause specifies an intermediate result table that consists of a

grouping of the rows of R. R is the result of the previous clause of the subselect.

In its simplest form, a GROUP BY clause contains a grouping expression. A grouping

expression is an expression used in defining the grouping of R. Each expression or

column name included in grouping-expression must unambiguously identify a

column of R (SQLSTATE 42702 or 42703). A grouping expression cannot include a

scalar fullselect or an XMLQUERY or XMLEXISTS expression (SQLSTATE 42822),

or any expression or function that is variant or has an external action (SQLSTATE

42845).

Note: The following expressions, which do not contain an explicit column

reference, can be used in a grouping-expression to identify a column of R:

v ROW CHANGE TIMESTAMP FOR table-designator

v ROW CHANGE TOKEN FOR table-designator

v RID_BIT or RID scalar function

More complex forms of the GROUP BY clause include grouping-sets and

super-groups. For a description of these forms, see “grouping-sets” on page 465 and

“super-groups” on page 466, respectively.

The result of GROUP BY is a set of groups of rows. Each row in this result

represents the set of rows for which the grouping-expression is equal. For grouping,

all null values from a grouping-expression are considered equal.

If a grouping-expression contains decimal floating-point columns, and multiple

representations of the same number exist in these columns, the number that is

returned can be any of the representations of the number.

A grouping-expression can be used in a search condition in a HAVING clause, in an

expression in a SELECT clause or in a sort-key-expression of an ORDER BY clause

(see “order-by-clause” on page 471 for details). In each case, the reference specifies

only one value for each group. For example, if the grouping-expression is col1+col2,

then an allowed expression in the select list would be col1+col2+3. Associativity

rules for expressions would disallow the similar expression, 3+col1+col2, unless

Subselect

464 SQL Reference, Volume 1

parentheses are used to ensure that the corresponding expression is evaluated in

the same order. Thus, 3+(col1+col2) would also be allowed in the select list. If the

concatenation operator is used, the grouping-expression must be used exactly as the

expression was specified in the select list.

If the grouping-expression contains varying-length strings with trailing blanks, the

values in the group can differ in the number of trailing blanks and may not all

have the same length. In that case, a reference to the grouping-expression still

specifies only one value for each group, but the value for a group is chosen

arbitrarily from the available set of values. Thus, the actual length of the result

value is unpredictable.

As noted, there are some cases where the GROUP BY clause cannot refer directly

to a column that is specified in the SELECT clause as an expression

(scalar-fullselect, variant or external action functions). To group using such an

expression, use a nested table expression or a common table expression to first

provide a result table with the expression as a column of the result. For an

example using nested table expressions, see Example A9.

grouping-sets

��

�

�

 ,

GROUPING SETS

(

grouping-expression

)

super-groups

,

(

grouping-expression

)

super-groups

��

A grouping-sets specification allows multiple grouping clauses to be specified in a

single statement. This can be thought of as the union of two or more groups of

rows into a single result set. It is logically equivalent to the union of multiple

subselects with the group by clause in each subselect corresponding to one

grouping set. A grouping set can be a single element or can be a list of elements

delimited by parentheses, where an element is either a grouping-expression or a

super-group. Using grouping-sets allows the groups to be computed with a single

pass over the base table.

The grouping-sets specification allows either a simple grouping-expression to be used,

or the more complex forms of super-groups. For a description of super-groups, see

“super-groups” on page 466.

Note that grouping sets are the fundamental building blocks for GROUP BY

operations. A simple GROUP BY with a single column can be considered a

grouping set with one element. For example:

 GROUP BY a

is the same as

 GROUP BY GROUPING SETS((a))

and

 GROUP BY a,b,c

is the same as

Subselect

Chapter 5. Queries 465

GROUP BY GROUPING SETS((a,b,c))

Non-aggregation columns from the select list of the subselect that are excluded

from a grouping set will return a null for such columns for each row generated for

that grouping set. This reflects the fact that aggregation was done without

considering the values for those columns.

Example C2 through Example C7 illustrate the use of grouping sets.

super-groups

��
 (1)

ROLLUP

(

grouping-expression-list

)

(2)

CUBE

(

grouping-expression-list

)

grand-total

��

grouping-expression-list:

�

�

 ,

grouping-expression

,

(

grouping-expression

)

grand-total:

 ()

Notes:

1 Alternate specification when used alone in group-by-clause is:

grouping-expression-list WITH ROLLUP.

2 Alternate specification when used alone in group-by-clause is:

grouping-expression-list WITH CUBE.

ROLLUP (grouping-expression-list)

A ROLLUP grouping is an extension to the GROUP BY clause that produces a

result set containing sub-total rows in addition to the “regular” grouped rows.

Sub-total rows are “super-aggregate” rows that contain further aggregates

whose values are derived by applying the same column functions that were

used to obtain the grouped rows. These rows are called sub-total rows, because

that is their most common use; however, any column function can be used for

the aggregation. For instance, MAX and AVG are used in Example C8.

 A ROLLUP grouping is a series of grouping-sets. The general specification of a

ROLLUP with n elements

 GROUP BY ROLLUP(C1,C2,...,Cn-1,Cn)

is equivalent to

Subselect

466 SQL Reference, Volume 1

GROUP BY GROUPING SETS((C1,C2,...,Cn-1,Cn)

 (C1,C2,...,Cn-1)

 ...

 (C1,C2)

 (C1)

 ())

Note that the n elements of the ROLLUP translate to n+1 grouping sets. Note

also that the order in which the grouping-expressions is specified is significant

for ROLLUP. For example:

 GROUP BY ROLLUP(a,b)

is equivalent to

 GROUP BY GROUPING SETS((a,b)

 (a)

 ())

while

 GROUP BY ROLLUP(b,a)

is the same as

 GROUP BY GROUPING SETS((b,a)

 (b)

 ())

The ORDER BY clause is the only way to guarantee the order of the rows in

the result set. Example C3 illustrates the use of ROLLUP.

CUBE (grouping-expression-list)

A CUBE grouping is an extension to the GROUP BY clause that produces a

result set that contains all the rows of a ROLLUP aggregation and, in addition,

contains ″cross-tabulation″ rows. Cross-tabulation rows are additional

″super-aggregate″ rows that are not part of an aggregation with sub-totals.

 Like a ROLLUP, a CUBE grouping can also be thought of as a series of

grouping-sets. In the case of a CUBE, all permutations of the cubed

grouping-expression-list are computed along with the grand total. Therefore, the

n elements of a CUBE translate to 2**n (2 to the power n) grouping-sets. For

example, a specification of:

 GROUP BY CUBE(a,b,c)

is equivalent to:

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a,c)

 (b,c)

 (a)

 (b)

 (c)

 ())

Note that the three elements of the CUBE translate into eight grouping sets.

The order of specification of elements does not matter for CUBE. ’CUBE

(DayOfYear, Sales_Person)’ and ’CUBE (Sales_Person, DayOfYear)’ yield the

same result sets. The use of the word ’same’ applies to content of the result set,

not to its order. The ORDER BY clause is the only way to guarantee the order

of the rows in the result set. Example C4 illustrates the use of CUBE.

grouping-expression-list

A grouping-expression-list is used within a CUBE or ROLLUP clause to define

Subselect

Chapter 5. Queries 467

the number of elements in the CUBE or ROLLUP operation. This is controlled

by using parentheses to delimit elements with multiple grouping-expressions.

 The rules for a grouping-expression are described in “group-by-clause” on page

464. For example, suppose that a query is to return the total expenses for the

ROLLUP of City within a Province but not within a County. However, the

clause:

 GROUP BY ROLLUP(Province, County, City)

results in unwanted subtotal rows for the County. In the clause:

 GROUP BY ROLLUP(Province, (County, City))

the composite (County, City) forms one element in the ROLLUP and, therefore,

a query that uses this clause will yield the desired result. In other words, the

two-element ROLLUP:

 GROUP BY ROLLUP(Province, (County, City))

generates:

 GROUP BY GROUPING SETS((Province, County, City)

 (Province)

 ())

and the three-element ROLLUP generates:

 GROUP BY GROUPING SETS((Province, County, City)

 (Province, County)

 (Province)

 ())

Example C2 also utilizes composite column values.

grand-total

Both CUBE and ROLLUP return a row which is the overall (grand total)

aggregation. This may be separately specified with empty parentheses within

the GROUPING SET clause. It may also be specified directly in the GROUP BY

clause, although there is no effect on the result of the query. Example C4 uses

the grand-total syntax.

Combining grouping sets

This can be used to combine any of the types of GROUP BY clauses. When simple

grouping-expression fields are combined with other groups, they are ″appended″ to

the beginning of the resulting grouping sets. When ROLLUP or CUBE expressions

are combined, they operate like ″multipliers″ on the remaining expression, forming

additional grouping set entries according to the definition of either ROLLUP or

CUBE.

For instance, combining grouping-expression elements acts as follows:

 GROUP BY a, ROLLUP(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a))

Or similarly,

 GROUP BY a, b, ROLLUP(c,d)

Subselect

468 SQL Reference, Volume 1

is equivalent to

 GROUP BY GROUPING SETS((a,b,c,d)

 (a,b,c)

 (a,b))

Combining of ROLLUP elements acts as follows:

 GROUP BY ROLLUP(a), ROLLUP(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a)

 (b,c)

 (b)

 ())

Similarly,

 GROUP BY ROLLUP(a), CUBE(b,c)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c)

 (a,b)

 (a,c)

 (a)

 (b,c)

 (b)

 (c)

 ())

Combining of CUBE and ROLLUP elements acts as follows:

 GROUP BY CUBE(a,b), ROLLUP(c,d)

is equivalent to

 GROUP BY GROUPING SETS((a,b,c,d)

 (a,b,c)

 (a,b)

 (a,c,d)

 (a,c)

 (a)

 (b,c,d)

 (b,c)

 (b)

 (c,d)

 (c)

 ())

Like a simple grouping-expression, combining grouping sets also eliminates

duplicates within each grouping set. For instance,

 GROUP BY a, ROLLUP(a,b)

is equivalent to

 GROUP BY GROUPING SETS((a,b)

 (a))

A more complete example of combining grouping sets is to construct a result set

that eliminates certain rows that would be returned for a full CUBE aggregation.

For example, consider the following GROUP BY clause:

Subselect

Chapter 5. Queries 469

GROUP BY Region,

 ROLLUP(Sales_Person, WEEK(Sales_Date)),

 CUBE(YEAR(Sales_Date), MONTH (Sales_Date))

The column listed immediately to the right of GROUP BY is simply grouped, those

within the parenthesis following ROLLUP are rolled up, and those within the

parenthesis following CUBE are cubed. Thus, the above clause results in a cube of

MONTH within YEAR which is then rolled up within WEEK within Sales_Person

within the Region aggregation. It does not result in any grand total row or any

cross-tabulation rows on Region, Sales_Person or WEEK(Sales_Date) so produces

fewer rows than the clause:

 GROUP BY ROLLUP (Region, Sales_Person, WEEK(Sales_Date),

 YEAR(Sales_Date), MONTH(Sales_Date))

having-clause

�� HAVING search-condition ��

The HAVING clause specifies an intermediate result table that consists of those

groups of R for which the search-condition is true. R is the result of the previous

clause of the subselect. If this clause is not GROUP BY, R is considered to be a

single group with no grouping columns.

Each column-name in the search condition must do one of the following:

v Unambiguously identify a grouping column of R.

v Be specified within a column function.

v Be a correlated reference. A column-name is a correlated reference if it identifies a

column of a table-reference in an outer subselect.

A group of R to which the search condition is applied supplies the argument for

each column function in the search condition, except for any function whose

argument is a correlated reference.

If the search condition contains a subquery, the subquery can be thought of as

being executed each time the search condition is applied to a group of R, and the

results used in applying the search condition. In actuality, the subquery is executed

for each group only if it contains a correlated reference. For an illustration of the

difference, see Example A6 and Example A7.

A correlated reference to a group of R must either identify a grouping column or

be contained within a column function.

When HAVING is used without GROUP BY, the select list can only include column

names when they are arguments to an aggregate function, correlated column

references, global variables, host variables, literals, special registers, SQL variables,

or SQL parameters.

Note: The following expressions can only be specified in a HAVING clause if they

are contained within an aggregate function (SQLSTATE 42803):

v ROW CHANGE TIMESTAMP FOR table-designator

v ROW CHANGE TOKEN FOR table-designator

v RID_BIT or RID scalar function

Subselect

470 SQL Reference, Volume 1

order-by-clause

��

ORDER BY

�

 ,

ASC

sort-key

DESC

ORDER OF

table-designator

INPUT SEQUENCE

��

sort-key:

 simple-column-name

simple-integer

sort-key-expression

The ORDER BY clause specifies an ordering of the rows of the result table. If a

single sort specification (one sort-key with associated direction) is identified, the

rows are ordered by the values of that sort specification. If more than one sort

specification is identified, the rows are ordered by the values of the first identified

sort specification, then by the values of the second identified sort specification, and

so on. Each sort-key cannot have a data type of LONG VARCHAR, CLOB, LONG

VARGRAPHIC, DBCLOB, BLOB, distinct type on any of these types, or structured

type (SQLSTATE 42907).

A named column in the select list may be identified by a sort-key that is a

simple-integer or a simple-column-name. An unnamed column in the select list must

be identified by an simple-integer or, in some cases, by a sort-key-expression that

matches the expression in the select list (see details of sort-key-expression). A column

is unnamed if the AS clause is not specified and it is derived from a constant, an

expression with operators, or a function.

Ordering is performed in accordance with comparison rules. If an ORDER BY

clause contains decimal floating-point columns, and multiple representations of the

same number exist in these columns, the ordering of the multiple representations

of the same number is unspecified. The null value is higher than all other values. If

the ORDER BY clause does not completely order the rows, rows with duplicate

values of all identified columns are displayed in an arbitrary order.

simple-column-name

Usually identifies a column of the result table. In this case, simple-column-name

must be the column name of a named column in the select list.

 The simple-column-name can also identify a column name of a table, view, or

nested table identified in the FROM clause if the query is a subselect. This

includes columns defined as implicitly hidden. An error occurs if the subselect:

v Specifies DISTINCT in the select-clause (SQLSTATE 42822)

v Produces a grouped result and the simple-column-name is not a

grouping-expression (SQLSTATE 42803).

Determining which column is used for ordering the result is described under

“Column names in sort keys” below.

simple-integer

Must be greater than 0 and not greater than the number of columns in the

result table (SQLSTATE 42805). The integer n identifies the nth column of the

result table.

Subselect

Chapter 5. Queries 471

sort-key-expression

An expression that is not simply a column name or an unsigned integer

constant. The query to which ordering is applied must be a subselect to use this

form of sort-key. The sort-key-expression cannot include a correlated scalar

fullselect (SQLSTATE 42703), an XMLQUERY or XMLEXISTS expression

(SQLSTATE 42822), or a function with an external action (SQLSTATE 42845).

 Any column-name within a sort-key-expression must conform to the rules

described under “Column names in sort keys” below.

There are a number of special cases that further restrict the expressions that

can be specified.

v DISTINCT is specified in the SELECT clause of the subselect (SQLSTATE

42822).

The sort-key-expression must match exactly with an expression in the select

list of the subselect (scalar-fullselects are never matched).

v The subselect is grouped (SQLSTATE 42803).

The sort-key-expression can:

– be an expression in the select list of the subselect,

– include a grouping-expression from the GROUP BY clause of the subselect

– include a column function, constant or host variable.

ASC

Uses the values of the column in ascending order. This is the default.

DESC

Uses the values of the column in descending order.

ORDER OF table-designator

Specifies that the same ordering used in table-designator should be applied to

the result table of the subselect. There must be a table reference matching

table-designator in the FROM clause of the subselect that specifies this clause

(SQLSTATE 42703). The subselect (or fullselect) corresponding to the specified

table-designator must include an ORDER BY clause that is dependant on the

data (SQLSTATE 428FI). The ordering that is applied is the same as if the

columns of the ORDER BY clause in the nested subselect (or fullselect) were

included in the outer subselect (or fullselect), and these columns were specified

in place of the ORDER OF clause.

 Note that this form is not allowed in a fullselect (other than the degenerative

form of a fullselect). For example, the following is not valid:

(SELECT C1 FROM T1

 ORDER BY C1)

UNION

SELECT C1 FROM T2

 ORDER BY ORDER OF T1

The following example is valid:

SELECT C1 FROM

 (SELECT C1 FROM T1

 UNION

 SELECT C1 FROM T2

 ORDER BY C1) AS UTABLE

ORDER BY ORDER OF UTABLE

INPUT SEQUENCE

Specifies that, for an INSERT statement, the result table will reflect the input

order of ordered data rows. INPUT SEQUENCE ordering can only be specified

if an INSERT statement is used in a FROM clause (SQLSTATE 428G4). See

Subselect

472 SQL Reference, Volume 1

“table-reference” on page 452. If INPUT SEQUENCE is specified and the input

data is not ordered, the INPUT SEQUENCE clause is ignored.

Notes

v Column names in sort keys:

– The column name is qualified.

The query must be a subselect (SQLSTATE 42877). The column name must

unambiguously identify a column of some table, view or nested table in the

FROM clause of the subselect (SQLSTATE 42702). The value of the column is

used to compute the value of the sort specification.

– The column name is unqualified.

- The query is a subselect.

If the column name is identical to the name of more than one column of

the result table, the column name must unambiguously identify a column

of some table, view or nested table in the FROM clause of the ordering

subselect (SQLSTATE 42702). If the column name is identical to one

column, that column is used to compute the value of the sort specification.

If the column name is not identical to a column of the result table, then it

must unambiguously identify a column of some table, view or nested table

in the FROM clause of the fullselect in the select-statement (SQLSTATE

42702).

- The query is not a subselect (it includes set operations such as union,

except or intersect).

The column name must not be identical to the name of more than one

column of the result table (SQLSTATE 42702). The column name must be

identical to exactly one column of the result table (SQLSTATE 42707), and

this column is used to compute the value of the sort specification.
v Limits: The use of a sort-key-expression or a simple-column-name where the column

is not in the select list may result in the addition of the column or expression to

the temporary table used for sorting. This may result in reaching the limit of the

number of columns in a table or the limit on the size of a row in a table.

Exceeding these limits will result in an error if a temporary table is required to

perform the sorting operation.

fetch-first-clause

��
 1

FETCH FIRST

integer

ROW

ROWS

ONLY

��

The fetch-first-clause sets a maximum number of rows that can be retrieved. It lets

the database manager know that the application does not want to retrieve more

than integer rows, regardless of how many rows there might be in the result table

when this clause is not specified. An attempt to fetch beyond integer rows is

handled the same way as normal end of data (SQLSTATE 02000). The value of

integer must be a positive integer (not zero).

Use of the fetch-first-clause influences query optimization of the subselect or

fullselect, based on the fact that at most integer rows will be retrieved. If both the

fetch-first-clause is specified in the outermost fullselect and the optimize-for-clause

is specified for the select statement, the database manager will use the integer from

the optimize-for-clause to influence query optimization of the outermost fullselect.

Subselect

Chapter 5. Queries 473

Limiting the result table to the first integer rows can improve performance. The

database manager will cease processing the query once it has determined the first

integer rows. If both the fetch-first-clause and the optimize-for-clause are specified, the

lower of the integer values from these clauses is used to influence the

communications buffer size.

If the fullselect contains an SQL data change statement in the FROM clause, all the

rows are modified regardless of the limit on the number of rows to fetch.

Examples of subselects

Example A1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example A2: Join the EMP_ACT and EMPLOYEE tables, select all the columns

from the EMP_ACT table and add the employee’s surname (LASTNAME) from the

EMPLOYEE table to each row of the result.

 SELECT EMP_ACT.*, LASTNAME

 FROM EMP_ACT, EMPLOYEE

 WHERE EMP_ACT.EMPNO = EMPLOYEE.EMPNO

Example A3: Join the EMPLOYEE and DEPARTMENT tables, select the employee

number (EMPNO), employee surname (LASTNAME), department number

(WORKDEPT in the EMPLOYEE table and DEPTNO in the DEPARTMENT table)

and department name (DEPTNAME) of all employees who were born

(BIRTHDATE) earlier than 1930.

 SELECT EMPNO, LASTNAME, WORKDEPT, DEPTNAME

 FROM EMPLOYEE, DEPARTMENT

 WHERE WORKDEPT = DEPTNO

 AND YEAR(BIRTHDATE) < 1930

Example A4: Select the job (JOB) and the minimum and maximum salaries

(SALARY) for each group of rows with the same job code in the EMPLOYEE table,

but only for groups with more than one row and with a maximum salary greater

than or equal to 27000.

 SELECT JOB, MIN(SALARY), MAX(SALARY)

 FROM EMPLOYEE

 GROUP BY JOB

 HAVING COUNT(*) > 1

 AND MAX(SALARY) >= 27000

Example A5: Select all the rows of EMP_ACT table for employees (EMPNO) in

department (WORKDEPT) ‘E11’. (Employee department numbers are shown in the

EMPLOYEE table.)

 SELECT *

 FROM EMP_ACT

 WHERE EMPNO IN

 (SELECT EMPNO

 FROM EMPLOYEE

 WHERE WORKDEPT = ’E11’)

Example A6: From the EMPLOYEE table, select the department number

(WORKDEPT) and maximum departmental salary (SALARY) for all departments

whose maximum salary is less than the average salary for all employees.

Subselect

474 SQL Reference, Volume 1

SELECT WORKDEPT, MAX(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

 HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE)

The subquery in the HAVING clause would only be executed once in this example.

Example A7: Using the EMPLOYEE table, select the department number

(WORKDEPT) and maximum departmental salary (SALARY) for all departments

whose maximum salary is less than the average salary in all other departments.

 SELECT WORKDEPT, MAX(SALARY)

 FROM EMPLOYEE EMP_COR

 GROUP BY WORKDEPT

 HAVING MAX(SALARY) < (SELECT AVG(SALARY)

 FROM EMPLOYEE

 WHERE NOT WORKDEPT = EMP_COR.WORKDEPT)

In contrast to Example A6, the subquery in the HAVING clause would need to be

executed for each group.

Example A8: Determine the employee number and salary of sales representatives

along with the average salary and head count of their departments.

This query must first create a nested table expression (DINFO) in order to get the

AVGSALARY and EMPCOUNT columns, as well as the DEPTNO column that is

used in the WHERE clause.

 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY, DINFO.AVGSALARY, DINFO.EMPCOUNT

 FROM EMPLOYEE THIS_EMP,

 (SELECT OTHERS.WORKDEPT AS DEPTNO,

 AVG(OTHERS.SALARY) AS AVGSALARY,

 COUNT(*) AS EMPCOUNT

 FROM EMPLOYEE OTHERS

 GROUP BY OTHERS.WORKDEPT

) AS DINFO

 WHERE THIS_EMP.JOB = ’SALESREP’

 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Using a nested table expression for this case saves the overhead of creating the

DINFO view as a regular view. During statement preparation, accessing the catalog

for the view is avoided and, because of the context of the rest of the query, only

the rows for the department of the sales representatives need to be considered by

the view.

Example A9: Display the average education level and salary for 5 random groups of

employees.

This query requires the use of a nested table expression to set a random value for

each employee so that it can subsequently be used in the GROUP BY clause.

 SELECT RANDID , AVG(EDLEVEL), AVG(SALARY)

 FROM (SELECT EDLEVEL, SALARY, INTEGER(RAND()*5) AS RANDID

 FROM EMPLOYEE

) AS EMPRAND

 GROUP BY RANDID

Example A10: Query the EMP_ACT table and return those project numbers that

have an employee whose salary is in the top 10 of all employees.

Subselect

Chapter 5. Queries 475

SELECT EMP_ACT.EMPNO,PROJNO

 FROM EMP_ACT

 WHERE EMP_ACT.EMPNO IN

 (SELECT EMPLOYEE.EMPNO

 FROM EMPLOYEE

 ORDER BY SALARY DESC

 FETCH FIRST 10 ROWS ONLY)

Example A11: Assuming that PHONES and IDS are two SQL variables with array

values of the same cardinality, turn these arrays into a table with three columns

(one for each array and one for the position), and one row per array element.

 SELECT T.PHONE, T.ID, T.INDEX FROM UNNEST(PHONES, IDS)

 WITH ORDINALITY AS T(PHONE, ID, INDEX)

 ORDER BY T.INDEX

Examples of joins

Example B1: This example illustrates the results of the various joins using tables J1

and J2. These tables contain rows as shown.

 SELECT * FROM J1

 W X

 --- ------

 A 11

 B 12

 C 13

 SELECT * FROM J2

 Y Z

 --- ------

 A 21

 C 22

 D 23

The following query does an inner join of J1 and J2 matching the first column of

both tables.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

 A 11 A 21

 C 13 C 22

In this inner join example the row with column W=’C’ from J1 and the row with

column Y=’D’ from J2 are not included in the result because they do not have a

match in the other table. Note that the following alternative form of an inner join

query produces the same result.

 SELECT * FROM J1, J2 WHERE W=Y

The following left outer join will get back the missing row from J1 with nulls for

the columns of J2. Every row from J1 is included.

 SELECT * FROM J1 LEFT OUTER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

 A 11 A 21

 B 12 - -

 C 13 C 22

Subselect

476 SQL Reference, Volume 1

The following right outer join will get back the missing row from J2 with nulls for

the columns of J1. Every row from J2 is included.

 SELECT * FROM J1 RIGHT OUTER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

 A 11 A 21

 C 13 C 22

 - - D 23

The following full outer join will get back the missing rows from both J1 and J2

with nulls where appropriate. Every row from both J1 and J2 is included.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 W X Y Z

 --- ------ --- ------

 A 11 A 21

 C 13 C 22

 - - D 23

 B 12 - -

Example B2: Using the tables J1 and J2 from the previous example, examine what

happens when and additional predicate is added to the search condition.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=13

 W X Y Z

 --- ------ --- ------

 C 13 C 22

The additional condition caused the inner join to select only 1 row compared to the

inner join in Example B1.

Notice what the impact of this is on the full outer join.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=13

 W X Y Z

 --- ------ --- ------

 - - A 21

 C 13 C 22

 - - D 23

 A 11 - -

 B 12 - -

The result now has 5 rows (compared to 4 without the additional predicate) since

there was only 1 row in the inner join and all rows of both tables must be

returned.

The following query illustrates that placing the same additional predicate in

WHERE clause has completely different results.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 WHERE X=13

 W X Y Z

 --- ------ --- ------

 C 13 C 22

The WHERE clause is applied after the intermediate result of the full outer join.

This intermediate result would be the same as the result of the full outer join

query in Example B1. The WHERE clause is applied to this intermediate result and

eliminates all but the row that has X=13. Choosing the location of a predicate when

Subselect

Chapter 5. Queries 477

performing outer joins can have significant impact on the results. Consider what

happens if the predicate was X=12 instead of X=13. The following inner join

returns no rows.

 SELECT * FROM J1 INNER JOIN J2 ON W=Y AND X=12

Hence, the full outer join would return 6 rows, 3 from J1 with nulls for the

columns of J2 and 3 from J2 with nulls for the columns of J1.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y AND X=12

 W X Y Z

 --- ------ --- ------

 - - A 21

 - - C 22

 - - D 23

 A 11 - -

 B 12 - -

 C 13 - -

If the additional predicate is in the WHERE clause instead, 1 row is returned.

 SELECT * FROM J1 FULL OUTER JOIN J2 ON W=Y

 WHERE X=12

 W X Y Z

 --- ------ --- ------

 B 12 - -

Example B3: List every department with the employee number and last name of

the manager, including departments without a manager.

 SELECT DEPTNO, DEPTNAME, EMPNO, LASTNAME

 FROM DEPARTMENT LEFT OUTER JOIN EMPLOYEE

 ON MGRNO = EMPNO

Example B4: List every employee number and last name with the employee

number and last name of their manager, including employees without a manager.

 SELECT E.EMPNO, E.LASTNAME, M.EMPNO, M.LASTNAME

 FROM EMPLOYEE E LEFT OUTER JOIN

 DEPARTMENT INNER JOIN EMPLOYEE M

 ON MGRNO = M.EMPNO

 ON E.WORKDEPT = DEPTNO

The inner join determines the last name for any manager identified in the

DEPARTMENT table and the left outer join guarantees that each employee is listed

even if a corresponding department is not found in DEPARTMENT.

Examples of grouping sets, cube, and rollup

The queries in Example C1 through Example C4 use a subset of the rows in the

SALES tables based on the predicate ’WEEK(SALES_DATE) = 13’.

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SALES AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

which results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 LUCCHESSI 3

 13 6 LUCCHESSI 1

Subselect

478 SQL Reference, Volume 1

13 6 LEE 2

 13 6 LEE 2

 13 6 LEE 3

 13 6 LEE 5

 13 6 GOUNOT 3

 13 6 GOUNOT 1

 13 6 GOUNOT 7

 13 7 LUCCHESSI 1

 13 7 LUCCHESSI 2

 13 7 LUCCHESSI 1

 13 7 LEE 7

 13 7 LEE 3

 13 7 LEE 7

 13 7 LEE 4

 13 7 GOUNOT 2

 13 7 GOUNOT 18

 13 7 GOUNOT 1

Example C1: Here is a query with a basic GROUP BY clause over 3 columns:

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

Example C2: Produce the result based on two different grouping sets of rows from

the SALES table.

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY GROUPING SETS ((WEEK(SALES_DATE), SALES_PERSON),

 (DAYOFWEEK(SALES_DATE), SALES_PERSON))

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 - GOUNOT 32

 13 - LEE 33

 13 - LUCCHESSI 8

 - 6 GOUNOT 11

 - 6 LEE 12

 - 6 LUCCHESSI 4

 - 7 GOUNOT 21

 - 7 LEE 21

 - 7 LUCCHESSI 4

The rows with WEEK 13 are from the first grouping set and the other rows are

from the second grouping set.

Subselect

Chapter 5. Queries 479

Example C3: If you use the 3 distinct columns involved in the grouping sets of

Example C2 and perform a ROLLUP, you can see grouping sets for

(WEEK,DAY_WEEK,SALES_PERSON), (WEEK, DAY_WEEK), (WEEK) and grand

total.

SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 6 - 27

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

 13 7 - 46

 13 - - 73

 - - - 73

Example C4: If you run the same query as Example C3 only replace ROLLUP with

CUBE, you can see additional grouping sets for (WEEK,SALES_PERSON),

(DAY_WEEK,SALES_PERSON), (DAY_WEEK), (SALES_PERSON) in the result.

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SALES_PERSON, SUM(SALES) AS UNITS_SOLD

 FROM SALES

 WHERE WEEK(SALES_DATE) = 13

 GROUP BY CUBE (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE), SALES_PERSON)

 ORDER BY WEEK, DAY_WEEK, SALES_PERSON

This results in:

 WEEK DAY_WEEK SALES_PERSON UNITS_SOLD

 ----------- ----------- --------------- -----------

 13 6 GOUNOT 11

 13 6 LEE 12

 13 6 LUCCHESSI 4

 13 6 - 27

 13 7 GOUNOT 21

 13 7 LEE 21

 13 7 LUCCHESSI 4

 13 7 - 46

 13 - GOUNOT 32

 13 - LEE 33

 13 - LUCCHESSI 8

 13 - - 73

 - 6 GOUNOT 11

 - 6 LEE 12

 - 6 LUCCHESSI 4

 - 6 - 27

 - 7 GOUNOT 21

 - 7 LEE 21

 - 7 LUCCHESSI 4

 - 7 - 46

 - - GOUNOT 32

Subselect

480 SQL Reference, Volume 1

- - LEE 33

 - - LUCCHESSI 8

 - - - 73

Example C5: Obtain a result set which includes a grand-total of selected rows from

the SALES table together with a group of rows aggregated by SALES_PERSON

and MONTH.

 SELECT SALES_PERSON,

 MONTH(SALES_DATE) AS MONTH,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

 GROUP BY GROUPING SETS ((SALES_PERSON, MONTH(SALES_DATE)),

 ()

)

 ORDER BY SALES_PERSON, MONTH

This results in:

 SALES_PERSON MONTH UNITS_SOLD

 --------------- ----------- -----------

 GOUNOT 3 35

 GOUNOT 4 14

 GOUNOT 12 1

 LEE 3 60

 LEE 4 25

 LEE 12 6

 LUCCHESSI 3 9

 LUCCHESSI 4 4

 LUCCHESSI 12 1

 - - 155

Example C6: This example shows two simple ROLLUP queries followed by a

query which treats the two ROLLUPs as grouping sets in a single result set and

specifies row ordering for each column involved in the grouping sets.

Example C6-1:

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

 GROUP BY ROLLUP (WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE))

 ORDER BY WEEK, DAY_WEEK

results in:

 WEEK DAY_WEEK UNITS_SOLD

 ----------- ----------- -----------

 13 6 27

 13 7 46

 13 - 73

 14 1 31

 14 2 43

 14 - 74

 53 1 8

 53 - 8

 - - 155

Example C6-2:

 SELECT MONTH(SALES_DATE) AS MONTH,

 REGION,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

 GROUP BY ROLLUP (MONTH(SALES_DATE), REGION);

 ORDER BY MONTH, REGION

Subselect

Chapter 5. Queries 481

results in:

 MONTH REGION UNITS_SOLD

 ----------- --------------- -----------

 3 Manitoba 22

 3 Ontario-North 8

 3 Ontario-South 34

 3 Quebec 40

 3 - 104

 4 Manitoba 17

 4 Ontario-North 1

 4 Ontario-South 14

 4 Quebec 11

 4 - 43

 12 Manitoba 2

 12 Ontario-South 4

 12 Quebec 2

 12 - 8

 - - 155

Example C6-3:

 SELECT WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION,

 SUM(SALES) AS UNITS_SOLD

 FROM SALES

 GROUP BY GROUPING SETS (ROLLUP(WEEK(SALES_DATE), DAYOFWEEK(SALES_DATE)),

 ROLLUP(MONTH(SALES_DATE), REGION))

ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:

 WEEK DAY_WEEK MONTH REGION UNITS_SOLD

 ----------- ----------- ----------- --------------- -----------

 13 6 - - 27

 13 7 - - 46

 13 - - - 73

 14 1 - - 31

 14 2 - - 43

 14 - - - 74

 53 1 - - 8

 53 - - - 8

 - - 3 Manitoba 22

 - - 3 Ontario-North 8

 - - 3 Ontario-South 34

 - - 3 Quebec 40

 - - 3 - 104

 - - 4 Manitoba 17

 - - 4 Ontario-North 1

 - - 4 Ontario-South 14

 - - 4 Quebec 11

 - - 4 - 43

 - - 12 Manitoba 2

 - - 12 Ontario-South 4

 - - 12 Quebec 2

 - - 12 - 8

 - - - - 155

 - - - - 155

Using the two ROLLUPs as grouping sets causes the result to include duplicate

rows. There are even two grand total rows.

Observe how the use of ORDER BY has affected the results:

v In the first grouped set, week 53 has been repositioned to the end.

Subselect

482 SQL Reference, Volume 1

v In the second grouped set, month 12 has now been positioned to the end and

the regions now appear in alphabetic order.

v Null values are sorted high.

Example C7: In queries that perform multiple ROLLUPs in a single pass (such as

Example C6-3) you may want to be able to indicate which grouping set produced

each row. The following steps demonstrate how to provide a column (called

GROUP) which indicates the origin of each row in the result set. By origin, we

mean which one of the two grouping sets produced the row in the result set.

Step 1: Introduce a way of ″generating″ new data values, using a query which

selects from a VALUES clause (which is an alternate form of a fullselect). This

query shows how a table can be derived called ″X″ having 2 columns ″R1″ and

″R2″ and 1 row of data.

 SELECT R1,R2

 FROM (VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2);

results in:

 R1 R2

 ------- -------

 GROUP 1 GROUP 2

Step 2: Form the cross product of this table ″X″ with the SALES table. This add

columns ″R1″ and ″R2″ to every row.

 SELECT R1, R2, WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION,

 SALES AS UNITS_SOLD

 FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

This add columns ″R1″ and ″R2″ to every row.

Step 3: Now we can combine these columns with the grouping sets to include these

columns in the rollup analysis.

 SELECT R1, R2,

 WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION, SUM(SALES) AS UNITS_SOLD

 FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

 DAYOFWEEK(SALES_DATE))),

 (R2,ROLLUP(MONTH(SALES_DATE), REGION)))

 ORDER BY WEEK, DAY_WEEK, MONTH, REGION

results in:

 R1 R2 WEEK DAY_WEEK MONTH REGION UNITS_SOLD

 ------- ------- -------- --------- --------- --------------- -----------

 GROUP 1 - 13 6 - - 27

 GROUP 1 - 13 7 - - 46

 GROUP 1 - 13 - - - 73

 GROUP 1 - 14 1 - - 31

 GROUP 1 - 14 2 - - 43

 GROUP 1 - 14 - - - 74

 GROUP 1 - 53 1 - - 8

 GROUP 1 - 53 - - - 8

 - GROUP 2 - - 3 Manitoba 22

 - GROUP 2 - - 3 Ontario-North 8

 - GROUP 2 - - 3 Ontario-South 34

Subselect

Chapter 5. Queries 483

- GROUP 2 - - 3 Quebec 40

 - GROUP 2 - - 3 - 104

 - GROUP 2 - - 4 Manitoba 17

 - GROUP 2 - - 4 Ontario-North 1

 - GROUP 2 - - 4 Ontario-South 14

 - GROUP 2 - - 4 Quebec 11

 - GROUP 2 - - 4 - 43

 - GROUP 2 - - 12 Manitoba 2

 - GROUP 2 - - 12 Ontario-South 4

 - GROUP 2 - - 12 Quebec 2

 - GROUP 2 - - 12 - 8

 - GROUP 2 - - - - 155

 GROUP 1 - - - - - 155

Step 4: Notice that because R1 and R2 are used in different grouping sets,

whenever R1 is non-null in the result, R2 is null and whenever R2 is non-null in

the result, R1 is null. That means you can consolidate these columns into a single

column using the COALESCE function. You can also use this column in the

ORDER BY clause to keep the results of the two grouping sets together.

 SELECT COALESCE(R1,R2) AS GROUP,

 WEEK(SALES_DATE) AS WEEK,

 DAYOFWEEK(SALES_DATE) AS DAY_WEEK,

 MONTH(SALES_DATE) AS MONTH,

 REGION, SUM(SALES) AS UNITS_SOLD

 FROM SALES,(VALUES(’GROUP 1’,’GROUP 2’)) AS X(R1,R2)

 GROUP BY GROUPING SETS ((R1, ROLLUP(WEEK(SALES_DATE),

 DAYOFWEEK(SALES_DATE))),

 (R2,ROLLUP(MONTH(SALES_DATE), REGION)))

 ORDER BY GROUP, WEEK, DAY_WEEK, MONTH, REGION;

results in:

 GROUP WEEK DAY_WEEK MONTH REGION UNITS_SOLD

 ------- ----------- ----------- ----------- --------------- -----------

 GROUP 1 13 6 - - 27

 GROUP 1 13 7 - - 46

 GROUP 1 13 - - - 73

 GROUP 1 14 1 - - 31

 GROUP 1 14 2 - - 43

 GROUP 1 14 - - - 74

 GROUP 1 53 1 - - 8

 GROUP 1 53 - - - 8

 GROUP 1 - - - - 155

 GROUP 2 - - 3 Manitoba 22

 GROUP 2 - - 3 Ontario-North 8

 GROUP 2 - - 3 Ontario-South 34

 GROUP 2 - - 3 Quebec 40

 GROUP 2 - - 3 - 104

 GROUP 2 - - 4 Manitoba 17

 GROUP 2 - - 4 Ontario-North 1

 GROUP 2 - - 4 Ontario-South 14

 GROUP 2 - - 4 Quebec 11

 GROUP 2 - - 4 - 43

 GROUP 2 - - 12 Manitoba 2

 GROUP 2 - - 12 Ontario-South 4

 GROUP 2 - - 12 Quebec 2

 GROUP 2 - - 12 - 8

 GROUP 2 - - - - 155

Example C8: The following example illustrates the use of various column functions

when performing a CUBE. The example also makes use of cast functions and

rounding to produce a decimal result with reasonable precision and scale.

 SELECT MONTH(SALES_DATE) AS MONTH,

 REGION,

 SUM(SALES) AS UNITS_SOLD,

Subselect

484 SQL Reference, Volume 1

MAX(SALES) AS BEST_SALE,

 CAST(ROUND(AVG(DECIMAL(SALES)),2) AS DECIMAL(5,2)) AS AVG_UNITS_SOLD

 FROM SALES

 GROUP BY CUBE(MONTH(SALES_DATE),REGION)

 ORDER BY MONTH, REGION

This results in:

MONTH REGION UNITS_SOLD BEST_SALE AVG_UNITS_SOLD

----------- --------------- ----------- ----------- --------------

 3 Manitoba 22 7 3.14

 3 Ontario-North 8 3 2.67

 3 Ontario-South 34 14 4.25

 3 Quebec 40 18 5.00

 3 - 104 18 4.00

 4 Manitoba 17 9 5.67

 4 Ontario-North 1 1 1.00

 4 Ontario-South 14 8 4.67

 4 Quebec 11 8 5.50

 4 - 43 9 4.78

 12 Manitoba 2 2 2.00

 12 Ontario-South 4 3 2.00

 12 Quebec 2 1 1.00

 12 - 8 3 1.60

 - Manitoba 41 9 3.73

 - Ontario-North 9 3 2.25

 - Ontario-South 52 14 4.00

 - Quebec 53 18 4.42

 - - 155 18 3.87

Fullselect

��

subselect

(fullselect)

values-clause

�

UNION

subselect

UNION ALL

(fullselect)

EXCEPT

values-clause

EXCEPT ALL

INTERSECT

INTERSECT ALL

�

�
order-by-clause

fetch-first-clause
 ��

values-clause:

VALUES

�

 ,

values-row

Subselect

Chapter 5. Queries 485

values-row:

�

 expression

NULL

,

(

expression

)

NULL

The fullselect is a component of the select-statement, the INSERT statement, and the

CREATE VIEW statement. It is also a component of certain predicates which, in

turn, are components of a statement. A fullselect that is a component of a predicate

is called a subquery, and a fullselect that is enclosed in parentheses is sometimes

called a subquery.

The set operators UNION, EXCEPT, and INTERSECT correspond to the relational

operators union, difference, and intersection.

A fullselect specifies a result table. If a set operator is not used, the result of the

fullselect is the result of the specified subselect or values-clause.

values-clause

Derives a result table by specifying the actual values, using expressions, for

each column of a row in the result table. Multiple rows may be specified.

 NULL can only be used with multiple specifications of values-row, and at least

one row in the same column must not be NULL (SQLSTATE 42826).

A values-row is specified by:

v A single expression for a single column result table or,

v n expressions (or NULL) separated by commas and enclosed in parentheses,

where n is the number of columns in the result table.

A multiple row VALUES clause must have the same number of expressions in

each values-row (SQLSTATE 42826).

The following are examples of values-clauses and their meaning.

 VALUES (1),(2),(3) - 3 rows of 1 column

 VALUES 1, 2, 3 - 3 rows of 1 column

 VALUES (1, 2, 3) - 1 row of 3 columns

 VALUES (1,21),(2,22),(3,23) - 3 rows of 2 columns

A values-clause that is composed of n specifications of values-row, RE1

to REn,

where n is greater than 1, is equivalent to:

 RE1

UNION ALL RE2

... UNION ALL REn

This means that the corresponding expressions of each values-row must be

comparable (SQLSTATE 42825).

UNION or UNION ALL

Derives a result table by combining two other result tables (R1 and R2). If

UNION ALL is specified, the result consists of all rows in R1 and R2. If

UNION is specified without the ALL option, the result is the set of all rows in

either R1 or R2, with the duplicate rows eliminated. In either case, however,

each row of the UNION table is either a row from R1 or a row from R2.

EXCEPT or EXCEPT ALL

Derives a result table by combining two other result tables (R1 and R2). If

EXCEPT ALL is specified, the result consists of all rows that do not have a

Fullselect

486 SQL Reference, Volume 1

corresponding row in R2, where duplicate rows are significant. If EXCEPT is

specified without the ALL option, the result consists of all rows that are only in

R1, with duplicate rows in the result of this operation eliminated.

 For compatibility with other SQL implementations, MINUS can be specified as

a synonym for EXCEPT.

INTERSECT or INTERSECT ALL

Derives a result table by combining two other result tables (R1 and R2). If

INTERSECT ALL is specified, the result consists of all rows that are in both R1

and R2. If INTERSECT is specified without the ALL option, the result consists

of all rows that are in both R1 and R2, with the duplicate rows eliminated.

order-by-clause

A fullselect that contains an ORDER BY or FETCH FIRST clause cannot be

specified in:

v A materialized query table

v The outermost fullselect of a view (SQLSTATE 428FJ).

Note: An ORDER BY clause in a fullselect does not affect the order of the rows

returned by a query. An ORDER BY clause only affects the order of the rows

returned if it is specified in the outermost fullselect.

The number of columns in the result tables R1 and R2 must be the same

(SQLSTATE 42826). If the ALL keyword is not specified, R1 and R2 must not

include any columns having a data type of LONG VARCHAR, CLOB, LONG

VARGRAPHIC, DBCLOB, BLOB, distinct type on any of these types, or structured

type (SQLSTATE 42907).

The columns of the result are named as follows:

v If the nth column of R1 and the nth column of R2 have the same result column

name, then the nth column of R has the result column name.

v If the nth column of R1 and the nth column of R2 have different result column

names, a name is generated. This name cannot be used as the column name in

an ORDER BY or UPDATE clause.

The generated name can be determined by performing a DESCRIBE of the SQL

statement and consulting the SQLNAME field.

Duplicate rows: Two rows are duplicates if each value in the first is equal to the

corresponding value of the second. For determining duplicates, two null values are

considered equal, and two decimal floating-point representations of the same

number are considered equal. For example, 2.00 and 2.0 have the same value (2.00

and 2.0 compare as equal) but have different exponents, which allows you to

represent both 2.00 and 2.0. So, for example, if the result table of a UNION

operation contains a decimal floating-point column and multiple representations of

the same number exist, the one that is returned (for example, 2.00 or 2.0) is

unpredictable. For more information, see “Numeric comparisons” on page 100.

When multiple operations are combined in an expression, operations within

parentheses are performed first. If there are no parentheses, the operations are

performed from left to right with the exception that all INTERSECT operations are

performed before UNION or EXCEPT operations.

In the following example, the values of tables R1 and R2 are shown on the left.

The other headings listed show the values as a result of various set operations on

Fullselect

Chapter 5. Queries 487

R1 and R2.

R1 R2

UNION

ALL UNION

EXCEPT

ALL EXCEPT

INTER-

SECT

ALL

INTER-

SECT

1 1 1 1 1 2 1 1

1 1 1 2 2 5 1 3

1 3 1 3 2 3 4

2 3 1 4 2 4

2 3 1 5 4

2 3 2 5

3 4 2

4 2

4 3

5 3

3

3

3

4

4

4

5

Examples of a fullselect

Example 1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2: List the employee numbers (EMPNO) of all employees in the

EMPLOYEE table whose department number (WORKDEPT) either begins with ’E’

or who are assigned to projects in the EMP_ACT table whose project number

(PROJNO) equals ’MA2100’, ’MA2110’, or ’MA2112’.

 SELECT EMPNO

 FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION

 SELECT EMPNO

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 3: Make the same query as in example 2, and, in addition, “tag” the rows

from the EMPLOYEE table with ’emp’ and the rows from the EMP_ACT table with

’emp_act’. Unlike the result from example 2, this query may return the same

EMPNO more than once, identifying which table it came from by the associated

“tag”.

 SELECT EMPNO, ’emp’

 FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION

 SELECT EMPNO, ’emp_act’ FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Fullselect

488 SQL Reference, Volume 1

Example 4: Make the same query as in example 2, only use UNION ALL so that

no duplicate rows are eliminated.

 SELECT EMPNO

 FROM EMPLOYEE

 WHERE WORKDEPT LIKE ’E%’

 UNION ALL

 SELECT EMPNO

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

Example 5: Make the same query as in Example 3, only include an additional two

employees currently not in any table and tag these rows as ″new″.

 SELECT EMPNO, ’emp’

 FROM EMPLOYEE

 WHEREWORKDEPTLIKE ’E%’

 UNION

 SELECT EMPNO, ’emp_act’

 FROM EMP_ACT

 WHERE PROJNO IN(’MA2100’, ’MA2110’, ’MA2112’)

 UNION

 VALUES (’NEWAAA’, ’new’), (’NEWBBB’, ’new’)

Example 6: This example of EXCEPT produces all rows that are in T1 but not in

T2.

 (SELECT * FROM T1)

 EXCEPT ALL

 (SELECT * FROM T2)

If no NULL values are involved, this example returns the same results as

 SELECT ALL *

 FROM T1

 WHERE NOT EXISTS (SELECT * FROM T2

 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

Example 7: This example of INTERSECT produces all rows that are in both tables

T1 and T2, removing duplicates.

 (SELECT * FROM T1)

 INTERSECT

 (SELECT * FROM T2)

If no NULL values are involved, this example returns the same result as

 SELECT DISTINCT * FROM T1

 WHERE EXISTS (SELECT * FROM T2

 WHERE T1.C1 = T2.C1 AND T1.C2 = T2.C2 AND...)

where C1, C2, and so on represent the columns of T1 and T2.

Select-statement

��

�

,

WITH

common-table-expression

 fullselect *

read-only-clause

update-clause

 �

� *

optimize-for-clause
 *

isolation-clause
 ��

Fullselect

Chapter 5. Queries 489

The select-statement is the form of a query that can be directly specified in a

DECLARE CURSOR statement, or prepared and then referenced in a DECLARE

CURSOR statement. It can also be issued through the use of dynamic SQL

statements using the command line processor (or similar tools), causing a result

table to be displayed on the user’s screen. In either case, the table specified by a

select-statement is the result of the fullselect.

common-table-expression

�� table-name

�

,

(1)

(

column-name

)

 AS (fullselect) ��

Notes:

1 If a common table expression is recursive, or if the fullselect results in

duplicate column names, column names must be specified.

A common table expression permits defining a result table with a table-name that can

be specified as a table name in any FROM clause of the fullselect that follows.

Multiple common table expressions can be specified following the single WITH

keyword. Each common table expression specified can also be referenced by name

in the FROM clause of subsequent common table expressions.

If a list of columns is specified, it must consist of as many names as there are

columns in the result table of the fullselect. Each column-name must be unique and

unqualified. If these column names are not specified, the names are derived from

the select list of the fullselect used to define the common table expression.

The table-name of a common table expression must be different from any other

common table expression table-name in the same statement (SQLSTATE 42726). If

the common table expression is specified in an INSERT statement the table-name

cannot be the same as the table or view name that is the object of the insert

(SQLSTATE 42726). A common table expression table-name can be specified as a

table name in any FROM clause throughout the fullselect. A table-name of a

common table expression overrides any existing table, view or alias (in the catalog)

with the same qualified name.

If more than one common table expression is defined in the same statement, cyclic

references between the common table expressions are not permitted (SQLSTATE

42835). A cyclic reference occurs when two common table expressions dt1 and dt2

are created such that dt1 refers to dt2 and dt2 refers to dt1.

If the fullselect of a common table expression contains a data-change-table-reference

in the FROM clause, the common table expression is said to modify data. A

common table expression that modifies data is always evaluated when the

statement is processed, regardless of whether the common table expression is used

anywhere else in the statement. If there is at least one common table expression

that reads or modifies data, all common table expressions are processed in the

order in which they occur, and each common table expression that reads or

modifies data is completely executed, including all constraints and triggers, before

any subsequent common table expressions are executed.

The common table expression is also optional prior to the fullselect in the CREATE

VIEW and INSERT statements.

Select-statement

490 SQL Reference, Volume 1

A common table expression can be used:

v In place of a view to avoid creating the view (when general use of the view is

not required and positioned updates or deletes are not used)

v To enable grouping by a column that is derived from a scalar subselect or

function that is not deterministic or has external action

v When the desired result table is based on host variables

v When the same result table needs to be shared in a fullselect

v When the result needs to be derived using recursion

v When multiple SQL data change statements need to be processed within the

query

If the fullselect of a common table expression contains a reference to itself in a

FROM clause, the common table expression is a recursive common table expression.

Queries using recursion are useful in supporting applications such as bill of

materials (BOM), reservation systems, and network planning.

The following must be true of a recursive common table expression:

v Each fullselect that is part of the recursion cycle must start with SELECT or

SELECT ALL. Use of SELECT DISTINCT is not allowed (SQLSTATE 42925).

Furthermore, the unions must use UNION ALL (SQLSTATE 42925).

v The column names must be specified following the table-name of the common

table expression (SQLSTATE 42908).

v The first fullselect of the first union (the initialization fullselect) must not include

a reference to any column of the common table expression in any FROM clause

(SQLSTATE 42836).

v If a column name of the common table expression is referred to in the iterative

fullselect, the data type, length, and code page for the column are determined

based on the initialization fullselect. The corresponding column in the iterative

fullselect must have the same data type and length as the data type and length

determined based on the initialization fullselect and the code page must match

(SQLSTATE 42825). However, for character string types, the length of the two

data types may differ. In this case, the column in the iterative fullselect must

have a length that would always be assignable to the length determined from

the initialization fullselect.

v Each fullselect that is part of the recursion cycle must not include any column

functions, group-by-clauses, or having-clauses (SQLSTATE 42836).

The FROM clauses of these fullselects can include at most one reference to a

common table expression that is part of a recursion cycle (SQLSTATE 42836).

v The iterative fullselect and the overall recursive fullselect must not include an

order-by-clause (SQLSTATE 42836).

v Subqueries (scalar or quantified) must not be part of any recursion cycles

(SQLSTATE 42836).

When developing recursive common table expressions, remember that an infinite

recursion cycle (loop) can be created. Check that recursion cycles will terminate.

This is especially important if the data involved is cyclic. A recursive common

table expression is expected to include a predicate that will prevent an infinite

loop. The recursive common table expression is expected to include:

v In the iterative fullselect, an integer column incremented by a constant.

v A predicate in the where clause of the iterative fullselect in the form

″counter_col < constant″ or ″counter _col < :hostvar″.

Select-statement

Chapter 5. Queries 491

A warning is issued if this syntax is not found in the recursive common table

expression (SQLSTATE 01605).

Recursion example: bill of materials

Bill of materials (BOM) applications are a common requirement in many business

environments. To illustrate the capability of a recursive common table expression

for BOM applications, consider a table of parts with associated subparts and the

quantity of subparts required by the part. For this example, create the table as

follows:

 CREATE TABLE PARTLIST

 (PART VARCHAR(8),

 SUBPART VARCHAR(8),

 QUANTITY INTEGER);

To give query results for this example, assume that the PARTLIST table is

populated with the following values:

 PART SUBPART QUANTITY

 -------- -------- -----------

 00 01 5

 00 05 3

 01 02 2

 01 03 3

 01 04 4

 01 06 3

 02 05 7

 02 06 6

 03 07 6

 04 08 10

 04 09 11

 05 10 10

 05 11 10

 06 12 10

 06 13 10

 07 14 8

 07 12 8

Example 1: Single level explosion

The first example is called single level explosion. It answers the question, “What

parts are needed to build the part identified by ’01’?”. The list will include the

direct subparts, subparts of the subparts and so on. However, if a part is used

multiple times, its subparts are only listed once.

WITH RPL (PART, SUBPART, QUANTITY) AS

 (SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

 FROM PARTLIST ROOT

 WHERE ROOT.PART = ’01’

 UNION ALL

 SELECT CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

 FROM RPL PARENT, PARTLIST CHILD

 WHERE PARENT.SUBPART = CHILD.PART

)

SELECT DISTINCT PART, SUBPART, QUANTITY

 FROM RPL

 ORDER BY PART, SUBPART, QUANTITY;

The above query includes a common table expression, identified by the name RPL,

that expresses the recursive part of this query. It illustrates the basic elements of a

recursive common table expression.

Select-statement

492 SQL Reference, Volume 1

The first operand (fullselect) of the UNION, referred to as the initialization fullselect,

gets the direct children of part ’01’. The FROM clause of this fullselect refers to the

source table and will never refer to itself (RPL in this case). The result of this first

fullselect goes into the common table expression RPL (Recursive PARTLIST). As in

this example, the UNION must always be a UNION ALL.

The second operand (fullselect) of the UNION uses RPL to compute subparts of

subparts by having the FROM clause refer to the common table expression RPL

and the source table with a join of a part from the source table (child) to a subpart

of the current result contained in RPL (parent). The result goes back to RPL again.

The second operand of UNION is then used repeatedly until no more children

exist.

The SELECT DISTINCT in the main fullselect of this query ensures the same

part/subpart is not listed more than once.

The result of the query is as follows:

 PART SUBPART QUANTITY

 -------- -------- -----------

 01 02 2

 01 03 3

 01 04 4

 01 06 3

 02 05 7

 02 06 6

 03 07 6

 04 08 10

 04 09 11

 05 10 10

 05 11 10

 06 12 10

 06 13 10

 07 12 8

 07 14 8

Observe in the result that from part ’01’ we go to ’02’ which goes to ’06’ and so on.

Further, notice that part ’06’ is reached twice, once through ’01’ directly and

another time through ’02’. In the output, however, its subcomponents are listed

only once (this is the result of using a SELECT DISTINCT) as required.

It is important to remember that with recursive common table expressions it is

possible to introduce an infinite loop. In this example, an infinite loop would be

created if the search condition of the second operand that joins the parent and

child tables was coded as:

 PARENT.SUBPART = CHILD.SUBPART

This example of causing an infinite loop is obviously a case of not coding what is

intended. However, care should also be exercised in determining what to code so

that there is a definite end of the recursion cycle.

The result produced by this example query could be produced in an application

program without using a recursive common table expression. However, this

approach would require starting of a new query for every level of recursion.

Furthermore, the application needs to put all the results back in the database to

order the result. This approach complicates the application logic and does not

perform well. The application logic becomes even harder and more inefficient for

other bill of material queries, such as summarized and indented explosion queries.

Select-statement

Chapter 5. Queries 493

Example 2: Summarized explosion

The second example is a summarized explosion. The question posed here is, what

is the total quantity of each part required to build part ’01’. The main difference

from the single level explosion is the need to aggregate the quantities. The first

example indicates the quantity of subparts required for the part whenever it is

required. It does not indicate how many of the subparts are needed to build part

’01’.

WITH RPL (PART, SUBPART, QUANTITY) AS

 (

 SELECT ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

 FROM PARTLIST ROOT

 WHERE ROOT.PART = ’01’

 UNION ALL

 SELECT PARENT.PART, CHILD.SUBPART, PARENT.QUANTITY*CHILD.QUANTITY

 FROM RPL PARENT, PARTLIST CHILD

 WHERE PARENT.SUBPART = CHILD.PART

)

SELECT PART, SUBPART, SUM(QUANTITY) AS "Total QTY Used"

 FROM RPL

 GROUP BY PART, SUBPART

 ORDER BY PART, SUBPART;

In the above query, the select list of the second operand of the UNION in the

recursive common table expression, identified by the name RPL, shows the

aggregation of the quantity. To find out how much of a subpart is used, the

quantity of the parent is multiplied by the quantity per parent of a child. If a part

is used multiple times in different places, it requires another final aggregation. This

is done by the grouping over the common table expression RPL and using the

SUM column function in the select list of the main fullselect.

The result of the query is as follows:

 PART SUBPART Total Qty Used

 -------- -------- --------------

 01 02 2

 01 03 3

 01 04 4

 01 05 14

 01 06 15

 01 07 18

 01 08 40

 01 09 44

 01 10 140

 01 11 140

 01 12 294

 01 13 150

 01 14 144

Looking at the output, consider the line for subpart ’06’. The total quantity used

value of 15 is derived from a quantity of 3 directly for part ’01’ and a quantity of 6

for part ’02’ which is needed 2 times by part ’01’.

Example 3: Controlling depth

The question may come to mind, what happens when there are more levels of

parts in the table than you are interested in for your query? That is, how is a query

written to answer the question, “What are the first two levels of parts needed to

build the part identified by ’01’?” For the sake of clarity in the example, the level is

included in the result.

Select-statement

494 SQL Reference, Volume 1

WITH RPL (LEVEL, PART, SUBPART, QUANTITY) AS

 (

 SELECT 1, ROOT.PART, ROOT.SUBPART, ROOT.QUANTITY

 FROM PARTLIST ROOT

 WHERE ROOT.PART = ’01’

 UNION ALL

 SELECT PARENT.LEVEL+1, CHILD.PART, CHILD.SUBPART, CHILD.QUANTITY

 FROM RPL PARENT, PARTLIST CHILD

 WHERE PARENT.SUBPART = CHILD.PART

 AND PARENT.LEVEL < 2

)

 SELECT PART, LEVEL, SUBPART, QUANTITY

 FROM RPL;

This query is similar to example 1. The column LEVEL was introduced to count the

levels from the original part. In the initialization fullselect, the value for the LEVEL

column is initialized to 1. In the subsequent fullselect, the level from the parent is

incremented by 1. Then to control the number of levels in the result, the second

fullselect includes the condition that the parent level must be less than 2. This

ensures that the second fullselect only processes children to the second level.

The result of the query is:

 PART LEVEL SUBPART QUANTITY

 -------- ----------- -------- -----------

 01 1 02 2

 01 1 03 3

 01 1 04 4

 01 1 06 3

 02 2 05 7

 02 2 06 6

 03 2 07 6

 04 2 08 10

 04 2 09 11

 06 2 12 10

 06 2 13 10

update-clause

�� FOR UPDATE

�

,

OF

column-name

 ��

The FOR UPDATE clause identifies the columns that can be updated in a

subsequent Positioned UPDATE statement. Each column-name must be unqualified

and must identify a column of the table or view identified in the first FROM clause

of the fullselect. If the FOR UPDATE clause is specified without column names, all

updatable columns of the table or view identified in the first FROM clause of the

fullselect are included.

The FOR UPDATE clause cannot be used if one of the following is true:

v The cursor associated with the select-statement is not deletable .

v One of the selected columns is a non-updatable column of a catalog table and

the FOR UPDATE clause has not been used to exclude that column.

read-only-clause

Select-statement

Chapter 5. Queries 495

�� FOR READ

FETCH
 ONLY ��

The FOR READ ONLY clause indicates that the result table is read-only and

therefore the cursor cannot be referred to in Positioned UPDATE and DELETE

statements. FOR FETCH ONLY has the same meaning.

Some result tables are read-only by nature. (For example, a table based on a

read-only view.) FOR READ ONLY can still be specified for such tables, but the

specification has no effect.

For result tables in which updates and deletes are allowed, specifying FOR READ

ONLY (or FOR FETCH ONLY) can possibly improve the performance of FETCH

operations by allowing the database manager to do blocking. For example, in

programs that contain dynamic SQL statements without the FOR READ ONLY or

ORDER BY clause, the database manager might open cursors as if the FOR

UPDATE clause were specified. It is recommended, therefore, that the FOR READ

ONLY clause be used to improve performance, except in cases where queries will

be used in positioned UPDATE or DELETE statements.

A read-only result table must not be referred to in a Positioned UPDATE or

DELETE statement, whether it is read-only by nature or specified as FOR READ

ONLY (FOR FETCH ONLY).

optimize-for-clause

�� OPTIMIZE FOR integer ROWS

ROW
 ��

The OPTIMIZE FOR clause requests special processing of the select statement. If the

clause is omitted, it is assumed that all rows of the result table will be retrieved; if

it is specified, it is assumed that the number of rows retrieved will probably not

exceed n, where n is the value of integer. The value of n must be a positive integer.

Use of the OPTIMIZE FOR clause influences query optimization, based on the

assumption that n rows will be retrieved. In addition, for cursors that are blocked,

this clause will influence the number of rows that will be returned in each block

(that is, no more than n rows will be returned in each block). If both the

fetch-first-clause and the optimize-for-clause are specified, the lower of the integer

values from these clauses will be used to influence the communications buffer size.

The values are considered independently for optimization purposes.

This clause does not limit the number of rows that can be fetched, or affect the

result in any other way than performance. Using OPTIMIZE FOR n ROWS can

improve performance if no more than n rows are retrieved, but may degrade

performance if more than n rows are retrieved.

If the value of n multiplied by the size of the row exceeds the size of the

communication buffer, the OPTIMIZE FOR clause will have no impact on the data

buffers. The size of the communication buffer is defined by the rqrioblk or the

aslheapsz configuration parameter.

Select-statement

496 SQL Reference, Volume 1

isolation-clause

��

WITH

RR

lock-request-clause

RS

lock-request-clause

CS

UR

 ��

The optional isolation-clause specifies the isolation level at which the statement is

executed, and whether a specific type of lock is to be acquired.

v RR - Repeatable Read

v RS - Read Stability

v CS - Cursor Stability

v UR - Uncommitted Read

The default isolation level of the statement is the isolation level of the package in

which the statement is bound. When a nickname is used in a select-statement to

access data in DB2 family and Microsoft SQL Server data sources, the

isolation-clause can be included in the statement to specify the statement isolation

level. If the isolation-clause is included in statements that access other data sources,

the specified isolation level is ignored. The current isolation level on the federated

server is mapped to a corresponding isolation level at the data source on each

connection to the data source. After a connection is made to a data source, the

isolation level cannot be changed for the duration of the connection.

lock-request-clause

�� USE AND KEEP SHARE LOCKS

UPDATE

EXCLUSIVE

 ��

The optional lock-request-clause specifies the type of lock that the database manager

is to acquire and hold:

SHARE

Concurrent processes can acquire SHARE or UPDATE locks on the data.

UPDATE

Concurrent processes can acquire SHARE locks on the data, but no

concurrent process can acquire an UPDATE or EXCLUSIVE lock.

EXCLUSIVE

Concurrent processes cannot acquire a lock on the data.

The lock-request-clause applies to all base table and index scans required by the

query, including those within subqueries, SQL functions and SQL methods. It has

no affect on locks placed by procedures, external functions, or external methods.

Any SQL function or SQL method invoked (directly or indirectly) by the statement

must be created with INHERIT ISOLATION LEVEL WITH LOCK REQUEST

(SQLSTATE 42601). The lock-request-clause cannot be used with a modifying query

that might invoke triggers or that requires referential integrity checks (SQLSTATE

42601).

Select-statement

Chapter 5. Queries 497

Examples of a select-statement

Example 1: Select all columns and rows from the EMPLOYEE table.

 SELECT * FROM EMPLOYEE

Example 2: Select the project name (PROJNAME), start date (PRSTDATE), and end

date (PRENDATE) from the PROJECT table. Order the result table by the end date

with the most recent dates appearing first.

 SELECT PROJNAME, PRSTDATE, PRENDATE

 FROM PROJECT

 ORDER BY PRENDATE DESC

Example 3: Select the department number (WORKDEPT) and average

departmental salary (SALARY) for all departments in the EMPLOYEE table.

Arrange the result table in ascending order by average departmental salary.

 SELECT WORKDEPT, AVG(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

 ORDER BY 2

Example 4: Declare a cursor named UP_CUR to be used in a C program to update

the start date (PRSTDATE) and the end date (PRENDATE) columns in the

PROJECT table. The program must receive both of these values together with the

project number (PROJNO) value for each row.

 EXEC SQL DECLARE UP_CUR CURSOR FOR

 SELECT PROJNO, PRSTDATE, PRENDATE

 FROM PROJECT

 FOR UPDATE OF PRSTDATE, PRENDATE;

Example 5: This example names the expression SAL+BONUS+COMM as

TOTAL_PAY

 SELECT SALARY+BONUS+COMM AS TOTAL_PAY

 FROM EMPLOYEE

 ORDER BY TOTAL_PAY

Example 6: Determine the employee number and salary of sales representatives

along with the average salary and head count of their departments. Also, list the

average salary of the department with the highest average salary.

Using a common table expression for this case saves the overhead of creating the

DINFO view as a regular view. During statement preparation, accessing the catalog

for the view is avoided and, because of the context of the rest of the fullselect, only

the rows for the department of the sales representatives need to be considered by

the view.

 WITH

 DINFO (DEPTNO, AVGSALARY, EMPCOUNT) AS

 (SELECT OTHERS.WORKDEPT, AVG(OTHERS.SALARY), COUNT(*)

 FROM EMPLOYEE OTHERS

 GROUP BY OTHERS.WORKDEPT

),

 DINFOMAX AS

 (SELECT MAX(AVGSALARY) AS AVGMAX FROM DINFO)

 SELECT THIS_EMP.EMPNO, THIS_EMP.SALARY,

 DINFO.AVGSALARY, DINFO.EMPCOUNT, DINFOMAX.AVGMAX

 FROM EMPLOYEE THIS_EMP, DINFO, DINFOMAX

 WHERE THIS_EMP.JOB = ’SALESREP’

 AND THIS_EMP.WORKDEPT = DINFO.DEPTNO

Select-statement

498 SQL Reference, Volume 1

Example 7: Given two tables, EMPLOYEE and PROJECT, replace employee SALLY

with a new employee GEORGE, assign all projects lead by SALLY to GEORGE,

and return the names of the updated projects.

 WITH

 NEWEMP AS (SELECT EMPNO FROM NEW TABLE

 (INSERT INTO EMPLOYEE(EMPNO, FIRSTNME)

 VALUES(NEXT VALUE FOR EMPNO_SEQ, ’GEORGE’))),

 OLDEMP AS (SELECT EMPNO FROM EMPLOYEE WHERE FIRSTNME = ’SALLY’),

 UPPROJ AS (SELECT PROJNAME FROM NEW TABLE

 (UPDATE PROJECT

 SET RESPEMP = (SELECT EMPNO FROM NEWEMP)

 WHERE RESPEMP = (SELECT EMPNO FROM OLDEMP))),

 DELEMP AS (SELECT EMPNO FROM OLD TABLE

 (DELETE FROM EMPLOYEE

 WHERE EMPNO = (SELECT EMPNO FROM OLDEMP)))

 SELECT PROJNAME FROM UPPROJ;

Example 8: Retrieve data from the DEPT table. That data will later be updated with

a searched update, and should be locked when the query executes.

 SELECT DEPTNO, DEPTNAME, MGRNO

 FROM DEPT

 WHERE ADMRDEPT =’A00’

 FOR READ ONLY WITH RS USE AND KEEP EXCLUSIVE LOCKS

Select-statement

Chapter 5. Queries 499

500 SQL Reference, Volume 1

Appendix A. SQL and XML limits

The following tables describe certain SQL and XML limits. Adhering to the most

restrictive case can help you to design application programs that are easily

portable.

Table 42 lists limits in bytes. These limits are enforced after conversion from the

application code page to the database code page when creating identifiers. The

limits are also enforced after conversion from the database code page to the

application code page when retrieving identifiers from the database. If, during

either of these processes, the identifier length limit is exceeded, truncation occurs

or an error is returned.

Character limits vary depending on the code page of the database and the code

page of the application. For example, because the width of a UTF-8 character can

range from 1 to 4 bytes, the character limit for an identifier in a Unicode table

whose limit is 128 bytes will range from 32 to 128 characters, depending on which

characters are used. If an attempt is made to create an identifier whose name is

longer than the limit for this table after conversion to the database code page, an

error is returned.

Applications that store identifier names must be able to handle the potentially

increased size of identifiers after code page conversion has occurred. When

identifiers are retrieved from the catalog, they are converted to the application

code page. Conversion from the database code page to the application code page

can result in an identifier becoming longer than the byte limit for the table. If a

host variable declared by the application cannot store the entire identifier after

code page conversion, it is truncated. If that is unacceptable, the host variable can

be increased in size to be able to accept the entire identifier name.

The same rules apply to DB2 utilities retrieving data and converting it to a

user-specified code page. If a DB2 utility, such as export, is retrieving the data and

forcing conversion to a user-specified code page (using the export CODEPAGE

modifier or the DB2CODEPAGE registry variable), and the identifier expands

beyond the limit that is documented in this table because of code page conversion,

an error might be returned or the identifier might be truncated.

 Table 42. Identifier Length Limits

Description Maximum in Bytes

Alias name 128

Attribute name 128

Audit policy name 128

Authorization name (can only be single-byte characters) 128

Buffer pool name 18

Column name2 128

Constraint name 128

Correlation name 128

Cursor name 128

Data partition name 128

© Copyright IBM Corp. 1993, 2009 501

Table 42. Identifier Length Limits (continued)

Description Maximum in Bytes

Data source column name 255

Data source index name 128

Data source name 128

Data source table name (remote-table-name) 128

Database partition group name 128

Database partition name 128

Event monitor name 128

External program name 128

Function mapping name 128

Group name 128

Host identifier1 255

Identifier for a data source user (remote-authorization-name) 128

Identifier in an SQL procedure (condition name, for loop

identifier, label, result set locator, statement name, variable

name)

128

Index name 128

Index extension name 18

Index specification name 128

Label name 128

Namespace uniform resource identifier (URI) 1000

Nickname 128

Package name 128

Package version ID 64

Parameter name 128

Password to access a data source 32

Procedure name 128

Role name 128

Savepoint name 128

Schema name2 128

Security label component name 128

Security label name 128

Security policy name 128

Sequence name 128

Server (database alias) name 8

Specific name 128

SQL condition name 128

SQL variable name 128

Statement name 128

Table name 128

Table space name 18

SQL and XML limits

502 SQL Reference, Volume 1

Table 42. Identifier Length Limits (continued)

Description Maximum in Bytes

Transform group name 18

Trigger name 128

Trusted context name 128

Type mapping name 18

User-defined function name 128

User-defined method name 128

User-defined type name2 128

View name 128

Wrapper name 128

XML element name, attribute name, or prefix name 1000

XML schema location uniform resource identifier (URI) 1000

Note:

1. Individual host language compilers might have a more restrictive limit on variable

names.

2. The SQLDA structure is limited to storing 30-byte column names, 18-byte user-defined

type names, and 8-byte schema names for user-defined types. Because the SQLDA is

used in the DESCRIBE statement, embedded SQL applications that use the DESCRIBE

statement to retrieve column or user-defined type name information must conform to

these limits.

 Table 43. Numeric Limits

Description Limit

Smallest SMALLINT value -32 768

Largest SMALLINT value +32 767

Smallest INTEGER value -2 147 483 648

Largest INTEGER value +2 147 483 647

Smallest BIGINT value -9 223 372 036 854 775 808

Largest BIGINT value +9 223 372 036 854 775 807

Largest decimal precision 31

Maximum exponent (Emax) for

REAL values

38

Smallest REAL value -3.402E+38

Largest REAL value +3.402E+38

Minimum exponent (Emin) for

REAL values

-37

Smallest positive REAL value +1.175E-37

Largest negative REAL value -1.175E-37

Maximum exponent (Emax) for

DOUBLE values

308

Smallest DOUBLE value -1.79769E+308

Largest DOUBLE value +1.79769E+308

Minimum exponent (Emin) for

DOUBLE values

-307

SQL and XML limits

Appendix A. SQL and XML limits 503

Table 43. Numeric Limits (continued)

Description Limit

Smallest positive DOUBLE

value

+2.225E-307

Largest negative DOUBLE

value

-2.225E-307

Maximum exponent (Emax) for

DECFLOAT(16) values

384

Smallest DECFLOAT(16)

value1

-9.999999999999999E+384

Largest DECFLOAT(16) value 9.999999999999999E+384

Minimum exponent (Emin) for

DECFLOAT(16) values

-383

Smallest positive

DECFLOAT(16) value

1.000000000000000E-383

Largest negative

DECFLOAT(16) value

-1.000000000000000E-383

Maximum exponent (Emax) for

DECFLOAT(34) values

6144

Smallest DECFLOAT(34)

value1

-9.999999999999999999999999999999999E+6144

Largest DECFLOAT(34) value 9.999999999999999999999999999999999E+6144

Minimum exponent (Emin) for

DECFLOAT(34) values

-6143

Smallest positive

DECFLOAT(34) value

1.000000000000000000000000000000000E-6143

Largest negative

DECFLOAT(34) value

-1.000000000000000000000000000000000E-6143

Note:

1. These are the limits of normal decimal floating-point numbers. Valid decimal

floating-point values include the special values NAN, -NAN, SNAN, -SNAN, INFINITY

and -INFINITY. In addition, valid values include subnormal numbers.

Subnormal numbers are non-zero numbers whose adjusted exponents are less than Emin.

For a subnormal number, the minimum value of the exponent is Emin

- (precision-1),

called Etiny, where precision is the working precision (16 or 34). That is, subnormal

numbers extend the range of numbers close to zero by 15 or 33 orders of magnitude for

DECFLOAT(16) or DECFLOAT(34), respectively. Subnormal numbers are different from

normal numbers because the maximum number of digits for a subnormal number is

less than the working precision (16 or 34). Decimal floating-point cannot represent the

subnormal numbers with the same accuracy as it can represent normal numbers. The

smallest positive subnormal number for DECFLOAT(34) is 1x10-6176, which contains only

one digit, whereas the smallest positive normal number for DECFLOAT(34) is

1.000000000000000000000000000000000x10-6143, which contains 34 digits. The smallest

positive subnormal number for DECFLOAT(16) is 1x10-398.

 Table 44. String Limits

Description Limit

Maximum length of CHAR (in bytes) 254

Maximum length of VARCHAR (in bytes) 32 672

Maximum length of LONG VARCHAR (in bytes)1 32 700

SQL and XML limits

504 SQL Reference, Volume 1

Table 44. String Limits (continued)

Description Limit

Maximum length of CLOB (in bytes) 2 147 483 647

Maximum length of serialized XML (in bytes) 2 147 483 647

Maximum length of GRAPHIC (in double-byte characters) 127

Maximum length of VARGRAPHIC (in double-byte

characters)

16 336

Maximum length of LONG VARGRAPHIC (in double-byte

characters)1

16 350

Maximum length of DBCLOB (in double-byte characters) 1 073 741 823

Maximum length of BLOB (in bytes) 2 147 483 647

Maximum length of character constant 32 672

Maximum length of graphic constant 16 336

Maximum length of concatenated character string 2 147 483 647

Maximum length of concatenated graphic string 1 073 741 823

Maximum length of concatenated binary string 2 147 483 647

Maximum number of hexadecimal constant digits 32 672

Largest instance of a structured type column object at run

time (in gigabytes)

1

Maximum size of a catalog comment (in bytes) 254

Note:

1. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated, not

recommended, and might be removed in a future release.

 Table 45. XML Limits

Description Limit

Maximum depth of an XML document (in levels) 125

Maximum size of an XML schema document (in bytes) 31 457 280

 Table 46. Datetime Limits

Description Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

 Table 47. Database Manager Limits

Description Limit

Applications

Maximum number of host variable declarations in a

precompiled program3

storage

Maximum length of a host variable value (in bytes) 2 147 483 647

SQL and XML limits

Appendix A. SQL and XML limits 505

Table 47. Database Manager Limits (continued)

Description Limit

Maximum number of declared cursors in a program storage

Maximum number of rows changed in a unit of work storage

Maximum number of cursors opened at one time storage

Maximum number of connections per process within a DB2

client

512

Maximum number of simultaneously opened LOB locators

in a transaction

4 194 304

Maximum size of an SQLDA (in bytes) storage

Maximum number of prepared statements storage

Buffer Pools

Maximum NPAGES in a buffer pool for 32-bit releases 1 048 576

Maximum NPAGES in a buffer pool for 64-bit releases 2 147 483 647

Maximum total size of all buffer pool slots (4K) 2 147 483 646

Concurrency

Maximum number of concurrent users of a server4 64 000

Maximum number of concurrent users per instance 64 000

Maximum number of concurrent applications per database 60 000

Maximum number of databases per instance concurrently

in use

256

Constraints

Maximum number of constraints on a table storage

Maximum number of columns in a UNIQUE constraint

(supported through a UNIQUE index)

64

Maximum combined length of columns in a UNIQUE

constraint (supported through a UNIQUE index, in bytes)9

8192

Maximum number of referencing columns in a foreign key 64

Maximum combined length of referencing columns in a

foreign key (in bytes)9

8192

Maximum length of a check constraint specification (in

bytes)

65 535

Databases

Maximum database partition number 999

Indexes

Maximum number of indexes on a table 32 767 or storage

Maximum number of columns in an index key 64

Maximum length of an index key including all overhead7 9 indexpagesize/4

Maximum length of a variable index key part (in bytes)8 1022 or storage

Maximum size of an index per database partition in an

SMS table space (in gigabytes)7

16 384

Maximum size of an index per database partition in a

regular DMS table space (in gigabytes)7

512

Maximum size of an index per database partition in a large

DMS table space (in gigabytes)7

16 384

SQL and XML limits

506 SQL Reference, Volume 1

Table 47. Database Manager Limits (continued)

Description Limit

Maximum size of an index over XML data per database

partition (in terabytes)

2

Maximum length of a variable index key part for an index

over XML data (in bytes)7

pagesize/4 - 207

Log records

Maximum Log Sequence Number 281 474 976 710 655

Monitoring

Maximum number of simultaneously active event monitors 32

Routines

Maximum number of parameters in a procedure 32 767

Maximum number of parameters in a user-defined function 90

Maximum number of nested levels for routines 64

Maximum number of schemas in the SQL path 64

Maximum length of the SQL path (in bytes) 2048

Security

Maximum number of elements in a security label

component of type set or tree

64

Maximum number of elements in a security label

component of type array

65 535

Maximum number of security label components in a

security policy

16

SQL

Maximum total length of an SQL statement (in bytes) 2 097 152

Maximum number of tables referenced in an SQL statement

or a view

storage

Maximum number of host variable references in an SQL

statement

32 767

Maximum number of constants in a statement storage

Maximum number of elements in a select list7 1012

Maximum number of predicates in a WHERE or HAVING

clause

storage

Maximum number of columns in a GROUP BY clause7 1012

Maximum total length of columns in a GROUP BY clause

(in bytes)7

32 677

Maximum number of columns in an ORDER BY clause7 1012

Maximum total length of columns in an ORDER BY clause

(in bytes)7

32 677

Maximum level of subquery nesting storage

Maximum number of subqueries in a single statement storage

Maximum number of values in an insert operation7 1012

Maximum number of SET clauses in a single update

operation7

1012

Tables and Views

SQL and XML limits

Appendix A. SQL and XML limits 507

Table 47. Database Manager Limits (continued)

Description Limit

Maximum number of columns in a table

7 1012

Maximum number of columns in a view1 5000

Maximum number of columns in a data source table or

view that is referenced by a nickname

5000

Maximum number of columns in a distribution key5 500

Maximum length of a row including all overhead2 7 32 677

Maximum number of rows in a non-partitioned table, per

database partition

128 x 1010

Maximum number of rows in a data partition, per database

partition

128 x 1010

Maximum size of a table per database partition in a regular

table space (in gigabytes)3 7

512

Maximum size of a table per database partition in a large

DMS table space (in gigabytes)7

16 384

Maximum number of data partitions for a single table 32 767

Maximum number of table partitioning columns 16

Table Spaces

Maximum size of a LOB object (in terabytes) 4

Maximum size of a LF object (in terabytes) 2

Maximum number of table spaces in a database 32 768

Maximum number of tables in an SMS table space 65 534

Maximum size of a regular DMS table space (in gigabytes)

3

7

512

Maximum size of a large DMS table space (in terabytes)

3 7 16

Maximum size of a temporary DMS table space (in

terabytes)

37

16

Maximum number of table objects in a DMS table space6 51 000

Maximum number of storage paths in an automatic storage

database

128

Maximum length of a storage path that is associated with

an automatic storage database (in bytes)

175

Triggers

Maximum run-time depth of cascading triggers 16

User-defined Types

Maximum number of attributes in a structured type 4082

SQL and XML limits

508 SQL Reference, Volume 1

Table 47. Database Manager Limits (continued)

Description Limit

Note:

1. This maximum can be achieved using a join in the CREATE VIEW statement. Selecting

from such a view is subject to the limit of most elements in a select list.

2. The actual data for BLOB, CLOB, LONG VARCHAR, DBCLOB, and LONG

VARGRAPHIC columns is not included in this count. However, information about the

location of that data does take up some space in the row.

3. The numbers shown are architectural limits and approximations. The practical limits

may be less.

4. The actual value is controlled by the max_connections and max_coordagents database

manager configuration parameters.

5. This is an architectural limit. The limit on the most columns in an index key should be

used as the practical limit.

6. Table objects include data, indexes, LONG VARCHAR or VARGRAPHIC columns, and

LOB columns. Table objects that are in the same table space as the table data do not

count extra toward the limit. However, each table object that is in a different table

space than the table data does contribute one toward the limit for each table object type

per table in the table space in which the table object resides.

7. For page size-specific values, see Table 48.

8. This is limited only by the longest index key, including all overhead (in bytes). As the

number of index key parts increases, the maximum length of each key part decreases.

9. The maximum can be less, depending on index options.

 Table 48. Database Manager Page Size-specific Limits

Description

4K page size

limit

8K page size

limit

16K page size

limit

32K page size

limit

Maximum number of

columns in a table

500 1012 1012 1012

Maximum length of a row

including all overhead

4005 8101 16 293 32 677

Maximum size of a table

per database partition in a

regular table space (in

gigabytes)

64 128 256 512

Maximum size of a table

per database partition in a

large DMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum length of an

index key including all

overhead (in bytes)

1024 2048 4096 8192

Maximum size of an index

per database partition in an

SMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum size of an index

per database partition in a

regular DMS table space (in

gigabytes)

64 128 256 512

SQL and XML limits

Appendix A. SQL and XML limits 509

Table 48. Database Manager Page Size-specific Limits (continued)

Description

4K page size

limit

8K page size

limit

16K page size

limit

32K page size

limit

Maximum size of an index

per database partition in a

large DMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum size of an index

over XML data per database

partition (in terabytes)

2 2 2 2

Maximum size of a regular

DMS table space (in

gigabytes)

64 128 256 512

Maximum size of a large

DMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum size of a

temporary DMS table space

(in terabytes)

2 4 8 16

Maximum number of

elements in a select list

500 1012 1012 1012

Maximum number of

columns in a GROUP BY

clause

500 1012 1012 1012

Maximum total length of

columns in a GROUP BY

clause (in bytes)

4005 8101 16 293 32 677

Maximum number of

columns in an ORDER BY

clause

500 1012 1012 1012

Maximum total length of

columns in an ORDER BY

clause (in bytes)

4005 8101 16 293 32 677

Maximum number of values

in an insert operation

500 1012 1012 1012

Maximum number of SET

clauses in a single update

operation

500 1012 1012 1012

SQL and XML limits

510 SQL Reference, Volume 1

Appendix B. SQLCA (SQL communications area)

An SQLCA is a collection of variables that is updated at the end of the execution

of every SQL statement. A program that contains executable SQL statements and is

precompiled with option LANGLEVEL SAA1 (the default) or MIA must provide

exactly one SQLCA, though more than one SQLCA is possible by having one

SQLCA per thread in a multi-threaded application.

When a program is precompiled with option LANGLEVEL SQL92E, an SQLCODE

or SQLSTATE variable may be declared in the SQL declare section or an SQLCODE

variable can be declared somewhere in the program.

An SQLCA should not be provided when using LANGLEVEL SQL92E. The SQL

INCLUDE statement can be used to provide the declaration of the SQLCA in all

languages but REXX. The SQLCA is automatically provided in REXX.

To display the SQLCA after each command executed through the command line

processor, issue the command db2 -a. The SQLCA is then provided as part of the

output for subsequent commands. The SQLCA is also dumped in the db2diag.log

file.

SQLCA field descriptions

 Table 49. Fields of the SQLCA. The field names shown are those present in an SQLCA that

is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlcaid CHAR(8) An ″eye catcher″ for storage dumps containing ’SQLCA’.

The sixth byte is ’L’ if line number information is returned

from parsing an SQL procedure body.

sqlcabc INTEGER Contains the length of the SQLCA, 136.

sqlcode INTEGER Contains the SQL return code.

Code Means

0 Successful execution (although one or more

SQLWARN indicators may be set).

positive

Successful execution, but with a warning

condition.

negative

Error condition.

sqlerrml SMALLINT Length indicator for sqlerrmc, in the range 0 through 70. 0

means that the value of sqlerrmc is not relevant.

© Copyright IBM Corp. 1993, 2009 511

Table 49. Fields of the SQLCA (continued). The field names shown are those present in an

SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlerrmc VARCHAR

(70)

Contains one or more tokens, separated by X’FF’, which are

substituted for variables in the descriptions of error

conditions.

This field is also used when a successful connection is

completed.

When a NOT ATOMIC compound SQL statement is issued,

it may contain information on up to seven errors.

The last token might be followed by X’FF’. The sqlerrml

value will include any trailing X’FF’.

sqlerrp CHAR(8) Begins with a three-letter identifier indicating the product,

followed by five characters indicating the version, release,

and modification level of the product. For example,

SQL09010 means DB2 V9.1 (version 9, release 1,

modification level 0).

If SQLCODE indicates an error condition, this field

identifies the module that returned the error.

This field is also used when a successful connection is

completed.

sqlerrd ARRAY Six INTEGER variables that provide diagnostic information.

These values are generally empty if there are no errors,

except for sqlerrd(6) from a partitioned database.

sqlerrd(1) INTEGER If connection is invoked and successful, contains the

maximum expected difference in length of mixed character

data (CHAR data types) when converted to the database

code page from the application code page. A value of 0 or 1

indicates no expansion; a value greater than 1 indicates a

possible expansion in length; a negative value indicates a

possible contraction.

On successful return from an SQL procedure, contains the

return status value from the SQL procedure.

sqlerrd(2) INTEGER

If connection is invoked and successful, contains the

maximum expected difference in length of mixed character

data (CHAR data types) when converted to the application

code page from the database code page. A value of 0 or 1

indicates no expansion; a value greater than 1 indicates a

possible expansion in length; a negative value indicates a

possible contraction. If the SQLCA results from a NOT

ATOMIC compound SQL statement that encountered one

or more errors, the value is set to the number of statements

that failed.

SQLCA (SQL communications area)

512 SQL Reference, Volume 1

Table 49. Fields of the SQLCA (continued). The field names shown are those present in an

SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlerrd(3) INTEGER If PREPARE is invoked and successful, contains an estimate

of the number of rows that will be returned. After INSERT,

UPDATE, DELETE, or MERGE, contains the actual number

of rows that qualified for the operation. If compound SQL

is invoked, contains an accumulation of all sub-statement

rows. If CONNECT is invoked, contains 1 if the database

can be updated, or 2 if the database is read only.

If the OPEN statement is invoked, and the cursor contains

SQL data change statements, this field contains the sum of

the number of rows that qualified for the embedded insert,

update, delete, or merge operations.

If CREATE PROCEDURE for an SQL procedure is invoked,

and an error is encountered when parsing the SQL

procedure body, contains the line number where the error

was encountered. The sixth byte of sqlcaid must be ’L’ for

this to be a valid line number.

sqlerrd(4) INTEGER

If PREPARE is invoked and successful, contains a relative

cost estimate of the resources required to process the

statement. If compound SQL is invoked, contains a count of

the number of successful sub-statements. If CONNECT is

invoked, contains 0 for a one-phase commit from a

down-level client; 1 for a one-phase commit; 2 for a

one-phase, read-only commit; and 3 for a two-phase

commit.

sqlerrd(5) INTEGER

Contains the total number of rows deleted, inserted, or

updated as a result of both:

v The enforcement of constraints after a successful delete

operation

v The processing of triggered SQL statements from

activated triggers

If compound SQL is invoked, contains an accumulation of

the number of such rows for all sub-statements. In some

cases, when an error is encountered, this field contains a

negative value that is an internal error pointer. If

CONNECT is invoked, contains an authentication type

value of 0 for server authentication; 1 for client

authentication; 2 for authentication using DB2 Connect; 4

for SERVER_ENCRYPT authentication; 5 for authentication

using DB2 Connect with encryption; 7 for KERBEROS

authentication; 9 for GSSPLUGIN authentication; 11 for

DATA_ENCRYPT authentication; and 255 for unspecified

authentication.

sqlerrd(6) INTEGER For a partitioned database, contains the partition number of

the database partition that encountered the error or

warning. If no errors or warnings were encountered, this

field contains the partition number of the coordinator

partition. The number in this field is the same as that

specified for the database partition in the db2nodes.cfg file.

SQLCA (SQL communications area)

Appendix B. SQLCA (SQL communications area) 513

Table 49. Fields of the SQLCA (continued). The field names shown are those present in an

SQLCA that is obtained via an INCLUDE statement.

Name Data Type Field Values

sqlwarn Array A set of warning indicators, each containing a blank or W.

If compound SQL is invoked, contains an accumulation of

the warning indicators set for all sub-statements.

sqlwarn0 CHAR(1) Blank if all other indicators are blank; contains ’W’ if at

least one other indicator is not blank.

sqlwarn1 CHAR(1) Contains ’W’ if the value of a string column was truncated

when assigned to a host variable. Contains ’N’ if the null

terminator was truncated. Contains ’A’ if the CONNECT or

ATTACH is successful, and the authorization name for the

connection is longer than 8 bytes. Contains ’P’ if the

PREPARE statement relative cost estimate stored in

sqlerrd(4) exceeded the value that could be stored in an

INTEGER or was less than 1, and either the CURRENT

EXPLAIN MODE or the CURRENT EXPLAIN SNAPSHOT

special register is set to a value other than NO.

sqlwarn2 CHAR(1) Contains ’W’ if null values were eliminated from the

argument of a column function.

a

If CONNECT is invoked and successful, contains ’D’ if the

database is in quiesce state, or ’I’ if the instance is in

quiesce state.

sqlwarn3 CHAR(1) Contains ’W’ if the number of columns is not equal to the

number of host variables. Contains ’Z’ if the number of

result set locators specified on the ASSOCIATE LOCATORS

statement is less than the number of result sets returned by

a procedure.

sqlwarn4 CHAR(1) Contains ’W’ if a prepared UPDATE or DELETE statement

does not include a WHERE clause.

sqlwarn5 CHAR(1) Contains ’E’ if an error was tolerated during SQL statement

execution.

sqlwarn6 CHAR(1) Contains ’W’ if the result of a date calculation was adjusted

to avoid an impossible date.

sqlwarn7 CHAR(1) Reserved for future use.

If CONNECT is invoked and successful, contains ’E’ if the

dyn_query_mgmt database configuration parameter is

enabled.

sqlwarn8 CHAR(1) Contains ’W’ if a character that could not be converted was

replaced with a substitution character. Contains ’Y’ if there

was an unsuccessful attempt to establish a trusted

connection.

sqlwarn9 CHAR(1) Contains ’W’ if arithmetic expressions with errors were

ignored during column function processing.

sqlwarn10 CHAR(1) Contains ’W’ if there was a conversion error when

converting a character data value in one of the fields in the

SQLCA.

sqlstate CHAR(5) A return code that indicates the outcome of the most

recently executed SQL statement.

a Some functions may not set SQLWARN2 to W, even though null values were eliminated,

because the result was not dependent on the elimination of null values.

SQLCA (SQL communications area)

514 SQL Reference, Volume 1

Error reporting

The order of error reporting is as follows:

1. Severe error conditions are always reported. When a severe error is reported,

there are no additions to the SQLCA.

2. If no severe error occurs, a deadlock error takes precedence over other errors.

3. For all other errors, the SQLCA for the first negative SQL code is returned.

4. If no negative SQL codes are detected, the SQLCA for the first warning (that is,

positive SQL code) is returned.

In a partitioned database system, the exception to this rule occurs if a data

manipulation operation is invoked against a table that is empty on one

database partition, but has data on other database partitions. SQLCODE +100 is

only returned to the application if agents from all database partitions return

SQL0100W, either because the table is empty on all database partitions, or there

are no more rows that satisfy the WHERE clause in an UPDATE statement.

SQLCA usage in partitioned database systems

In partitioned database systems, one SQL statement may be executed by a number

of agents on different database partitions, and each agent may return a different

SQLCA for different errors or warnings. The coordinator agent also has its own

SQLCA.

To provide a consistent view for applications, all SQLCA values are merged into

one structure, and SQLCA fields indicate global counts, such that:

v For all errors and warnings, the sqlwarn field contains the warning flags received

from all agents.

v Values in the sqlerrd fields indicating row counts are accumulations from all

agents.

Note that SQLSTATE 09000 may not be returned every time an error occurs during

the processing of a triggered SQL statement.

SQLCA (SQL communications area)

Appendix B. SQLCA (SQL communications area) 515

516 SQL Reference, Volume 1

Appendix C. SQLDA (SQL descriptor area)

An SQLDA is a collection of variables that is required for execution of the SQL

DESCRIBE statement. The SQLDA variables are options that can be used by the

PREPARE, OPEN, FETCH, and EXECUTE statements. An SQLDA communicates

with dynamic SQL; it can be used in a DESCRIBE statement, modified with the

addresses of host variables, and then reused in a FETCH or EXECUTE statement.

SQLDAs are supported for all languages, but predefined declarations are provided

only for C, REXX, FORTRAN, and COBOL.

The meaning of the information in an SQLDA depends on its use. In PREPARE

and DESCRIBE, an SQLDA provides information to an application program about

a prepared statement. In OPEN, EXECUTE, and FETCH, an SQLDA describes host

variables.

In DESCRIBE and PREPARE, if any one of the columns being described is either a

LOB type (LOB locators and file reference variables do not require doubled

SQLDAs), reference type, or a user-defined type, the number of SQLVAR entries

for the entire SQLDA will be doubled. For example:

v When describing a table with 3 VARCHAR columns and 1 INTEGER column,

there will be 4 SQLVAR entries

v When describing a table with 2 VARCHAR columns, 1 CLOB column, and 1

integer column, there will be 8 SQLVAR entries

In EXECUTE, FETCH, and OPEN, if any one of the variables being described is a

LOB type (LOB locators and file reference variables do not require doubled

SQLDAs) or a structured type, the number of SQLVAR entries for the entire

SQLDA must be doubled. (Distinct types and reference types are not relevant in

these cases, because the additional information in the double entries is not required

by the database.)

SQLDA field descriptions

An SQLDA consists of four variables followed by an arbitrary number of

occurrences of a sequence of variables collectively named SQLVAR. In OPEN,

FETCH, and EXECUTE, each occurrence of SQLVAR describes a host variable. In

DESCRIBE and PREPARE, each occurrence of SQLVAR describes a column of a

result table or a parameter marker. There are two types of SQLVAR entries:

v Base SQLVARs: These entries are always present. They contain the base

information about the column, parameter marker, or host variable such as data

type code, length attribute, column name, host variable address, and indicator

variable address.

v Secondary SQLVARs: These entries are only present if the number of SQLVAR

entries is doubled as per the rules outlined above. For user-defined types

(distinct or structured), they contain the user-defined type name. For reference

types, they contain the target type of the reference. For LOBs, they contain the

length attribute of the host variable and a pointer to the buffer that contains the

actual length. (The distinct type and LOB information does not overlap, so

distinct types can be based on LOBs without forcing the number of SQLVAR

entries on a DESCRIBE to be tripled.) If locators or file reference variables are

used to represent LOBs, these entries are not necessary.

© Copyright IBM Corp. 1993, 2009 517

In SQLDAs that contain both types of entries, the base SQLVARs are in a block

before the block of secondary SQLVARs. In each, the number of entries is equal to

the value in SQLD (even though many of the secondary SQLVAR entries may be

unused).

The circumstances under which the SQLVAR entries are set by DESCRIBE is

detailed in “Effect of DESCRIBE on the SQLDA” on page 522.

Fields in the SQLDA header

 Table 50. Fields in the SQLDA Header

C Name

SQL Data

Type

Usage in DESCRIBE and PREPARE (set

by the database manager except for

SQLN)

Usage in FETCH, OPEN, and EXECUTE

(set by the application prior to executing

the statement)

sqldaid CHAR(8) The seventh byte of this field is a flag

byte named SQLDOUBLED. The database

manager sets SQLDOUBLED to the

character ’2’ if two SQLVAR entries have

been created for each column; otherwise it

is set to a blank (X’20’ in ASCII, X’40’ in

EBCDIC). See “Effect of DESCRIBE on the

SQLDA” on page 522 for details on when

SQLDOUBLED is set.

The seventh byte of this field is used

when the number of SQLVARs is doubled.

It is named SQLDOUBLED. If any of the

host variables being described is a

structured type, BLOB, CLOB, or

DBCLOB, the seventh byte must be set to

the character ’2’; otherwise it can be set to

any character but the use of a blank is

recommended.

sqldabc INTEGER For 32 bit, the length of the SQLDA, equal

to SQLN*44+16. For 64 bit, the length of

the SQLDA, equal to SQLN*56+16

For 32 bit, the length of the SQLDA, >= to

SQLN*44+16. For 64 bit, the length of the

SQLDA, >= to SQLN*56+16.

sqln SMALLINT Unchanged by the database manager.

Must be set to a value greater than or

equal to zero before the DESCRIBE

statement is executed. Indicates the total

number of occurrences of SQLVAR.

Total number of occurrences of SQLVAR

provided in the SQLDA. SQLN must be

set to a value greater than or equal to

zero.

sqld SMALLINT Set by the database manager to the

number of columns in the result table or

to the number of parameter markers.

The number of host variables described

by occurrences of SQLVAR.

SQLDA (SQL descriptor area)

518 SQL Reference, Volume 1

Fields in an occurrence of a base SQLVAR

 Table 51. Fields in a Base SQLVAR

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and EXECUTE

sqltype SMALLINT Indicates the data type of the column or

parameter marker, and whether it can

contain nulls. (Parameter markers are

always considered nullable.) Table 53 on

page 523 lists the allowable values and

their meanings.

Note that for a distinct or reference type,

the data type of the base type is placed

into this field. For a structured type, the

data type of the result of the FROM SQL

transform function of the transform group

(based on the CURRENT DEFAULT

TRANSFORM GROUP special register) for

the type is placed into this field. There is

no indication in the base SQLVAR that it

is part of the description of a user-defined

type or reference type.

Same for host variable. Host variables for

datetime values must be character string

variables. For FETCH, a datetime type

code means a fixed-length character

string. If sqltype is an even number value,

the sqlind field is ignored.

sqllen SMALLINT The length attribute of the column or

parameter marker. For datetime columns

and parameter markers, the length of the

string representation of the values. See

Table 53 on page 523.

Note that the value is set to 0 for large

object strings (even for those whose

length attribute is small enough to fit into

a two byte integer).

The length attribute of the host variable.

See Table 53 on page 523.

Note that the value is ignored by the

database manager for CLOB, DBCLOB,

and BLOB columns. The len.sqllonglen

field in the Secondary SQLVAR is used

instead.

sqldata pointer For string SQLVARS, sqldata contains the

code page. For character-string SQLVARs

where the column is defined with the

FOR BIT DATA attribute, sqldata contains

0. For other character-string SQLVARS,

sqldata contains either the SBCS code

page for SBCS data, or the SBCS code

page associated with the composite MBCS

code page for MBCS data. For Japanese

EUC, Traditional Chinese EUC, and

Unicode UTF-8 character-string SQLVARS,

sqldata contains 954, 964, and 1208

respectively.

For all other column types, sqldata is

undefined.

Contains the address of the host variable

(where the fetched data will be stored).

sqlind pointer For character-string SQLVARS, sqlind

contains 0, except for MBCS data, when

sqlind contains the DBCS code page

associated with the composite MBCS code

page.

For all other types, sqlind is undefined.

Contains the address of an associated

indicator variable, if there is one;

otherwise, not used. If sqltype is an even

number value, the sqlind field is ignored.

SQLDA (SQL descriptor area)

Appendix C. SQLDA (SQL descriptor area) 519

Table 51. Fields in a Base SQLVAR (continued)

Name Data Type Usage in DESCRIBE and PREPARE Usage in FETCH, OPEN, and EXECUTE

sqlname VARCHAR

(30)

Contains the unqualified name of the

column or parameter marker.

For columns and parameter markers that

have a system-generated name, the

thirtieth byte is set to X’FF’. For column

names specified by the AS clause, this

byte is X’00’.

When connecting to a host database,

sqlname can be set to indicate a FOR BIT

DATA string as follows:

v The sixth byte of the SQLDAID in the

SQLDA header is set to ’+’

v The length of sqlname is 8

v The first two bytes of sqlname are

X’0000’

v The third and fourth bytes of sqlname

are X’0000’

v The remaining four bytes of sqlname

are reserved and should be set to

X’00000000’

When working with XML data, sqlname

can be set to indicate an XML subtype as

follows:

v The length of sqlname is 8

v The first two bytes of sqlname are

X’0000’

v The third and fourth bytes of sqlname

are X’0000’

v The fifth byte of sqlname is X’01’

v The remaining three bytes of sqlname

are reserved and should be set to

X’000000’

Fields in an occurrence of a secondary SQLVAR

 Table 52. Fields in a Secondary SQLVAR

Name Data Type

Usage in DESCRIBE and

PREPARE

Usage in FETCH, OPEN, and

EXECUTE

len.sqllonglen INTEGER The length attribute of a

BLOB, CLOB, or DBCLOB

column or parameter

marker.

The length attribute of a BLOB,

CLOB, or DBCLOB host variable. The

database manager ignores the

SQLLEN field in the Base SQLVAR

for the data types. The length

attribute stores the number of bytes

for a BLOB or CLOB, and the

number of double-byte characters for

a DBCLOB.

reserve2 CHAR(3) for 32

bit, and CHAR(11)

for 64 bit.

Not used. Not used.

SQLDA (SQL descriptor area)

520 SQL Reference, Volume 1

Table 52. Fields in a Secondary SQLVAR (continued)

Name Data Type

Usage in DESCRIBE and

PREPARE

Usage in FETCH, OPEN, and

EXECUTE

sqlflag4 CHAR(1) The value is X’01’ if the

SQLVAR represents a

reference type with a target

type named in

sqldatatype_name. The

value is X’12’ if the

SQLVAR represents a

structured type, with the

user-defined type name in

sqldatatype_name.

Otherwise, the value is

X’00’.

Set to X’01’ if the SQLVAR represents

a reference type with a target type

named in sqldatatype_name. Set to

X’12’ if the SQLVAR represents a

structured type, with the

user-defined type name in

sqldatatype_name. Otherwise, the

value is X’00’.

sqldatalen pointer Not used. Used for BLOB, CLOB, and DBCLOB

host variables only.

If this field is NULL, then the actual

length (in double-byte characters)

should be stored in the 4 bytes

immediately before the start of the

data and SQLDATA should point to

the first byte of the field length.

If this field is not NULL, it contains a

pointer to a 4 byte long buffer that

contains the actual length in bytes

(even for DBCLOB) of the data in the

buffer pointed to from the SQLDATA

field in the matching base SQLVAR.

Note that, whether or not this field is

used, the len.sqllonglen field must be

set.

sqldatatype_name VARCHAR(27) For a user-defined type, the

database manager sets this

to the fully qualified

user-defined type name.1

For a reference type, the

database manager sets this

to the fully qualified type

name of the target type of

the reference.

For structured types, set to the fully

qualified user-defined type name in

the format indicated in the table

note.1

reserved CHAR(3) Not used. Not used.

1 The first 8 bytes contain the schema name of the type (extended to the right with spaces, if necessary). Byte 9

contains a dot (.). Bytes 10 to 27 contain the low order portion of the type name, which is not extended to the right

with spaces.

Note that, although the prime purpose of this field is for the name of user-defined types, the field is also set for IBM

predefined data types. In this case, the schema name is SYSIBM, and the low order portion of the name is the name

stored in the TYPENAME column of the DATATYPES catalog view. For example:

type name length sqldatatype_name

--------- ------ ----------------

A.B 10 A .B

INTEGER 16 SYSIBM .INTEGER

"Frank’s".SMINT 13 Frank’s .SMINT

MY."type " 15 MY .type

SQLDA (SQL descriptor area)

Appendix C. SQLDA (SQL descriptor area) 521

Effect of DESCRIBE on the SQLDA

For a DESCRIBE OUTPUT or PREPARE OUTPUT INTO statement, the database

manager always sets SQLD to the number of columns in the result set, or the

number of output parameter markers. For a DESCRIBE INPUT or PREPARE

INPUT INTO statement, the database manager always sets SQLD to the number of

input parameter markers in the statement. Note that a parameter marker that

corresponds to an INOUT parameter in a CALL statement is described in both the

input and output descriptors.

The SQLVARs in the SQLDA are set in the following cases:

v SQLN >= SQLD and no entry is either a LOB, user-defined type or reference

type

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank.

v SQLN >= 2*SQLD and at least one entry is a LOB, user-defined type or reference

type

Two times SQLD SQLVAR entries are set, and SQLDOUBLED is set to ’2’.

v SQLD <= SQLN < 2*SQLD and at least one entry is a distinct type or reference

type, but there are no LOB entries or structured type entries

The first SQLD SQLVAR entries are set and SQLDOUBLED is set to blank. If the

SQLWARN bind option is YES, a warning SQLCODE +237 (SQLSTATE 01594) is

issued.

The SQLVARs in the SQLDA are NOT set (requiring allocation of additional space

and another DESCRIBE) in the following cases:

v SQLN < SQLD and no entry is either a LOB, user-defined type or reference type

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN

bind option is YES, a warning SQLCODE +236 (SQLSTATE 01005) is issued.

Allocate SQLD SQLVARs for a successful DESCRIBE.

v SQLN < SQLD and at least one entry is a distinct type or reference type, but

there are no LOB entries or structured type entries

No SQLVAR entries are set and SQLDOUBLED is set to blank. If the SQLWARN

bind option is YES, a warning SQLCODE +239 (SQLSTATE 01005) is issued.

Allocate 2*SQLD SQLVARs for a successful DESCRIBE including the names of

the distinct types and target types of reference types.

v SQLN < 2*SQLD and at least one entry is a LOB or a structured type

No SQLVAR entries are set and SQLDOUBLED is set to blank. A warning

SQLCODE +238 (SQLSTATE 01005) is issued (regardless of the setting of the

SQLWARN bind option).

Allocate 2*SQLD SQLVARs for a successful DESCRIBE.

References in the above lists to LOB entries include distinct type entries whose

source type is a LOB type.

The SQLWARN option of the BIND or PREP command is used to control whether

the DESCRIBE (or PREPARE INTO) will return the warning SQLCODEs +236,

+237, +239. It is recommended that your application code always consider that

these SQLCODEs could be returned. The warning SQLCODE +238 is always

returned when there are LOB or structured type entries in the select list and there

are insufficient SQLVARs in the SQLDA. This is the only way the application can

know that the number of SQLVARs must be doubled because of a LOB or

structured type entry in the result set.

SQLDA (SQL descriptor area)

522 SQL Reference, Volume 1

If a structured type entry is being described, but no FROM SQL transform is

defined (either because no TRANSFORM GROUP was specified using the

CURRENT DEFAULT TRANSFORM GROUP special register (SQLSTATE 42741) or

because the name group does not have a FROM SQL transform function defined

(SQLSTATE 42744)), the DESCRIBE will return an error. This error is the same

error returned for a DESCRIBE of a table with a structured type entry.

If the database manager returns identifiers that are longer than those that can be

stored in the SQLDA, the identifier is truncated and a warning is returned

(SQLSTATE 01665); however, when the name of a structured type is truncated, an

error is returned (SQLSTATE 42622). For details on identifier length limitations, see

“SQL and XQuery limits” .

SQLTYPE and SQLLEN

Table 53 shows the values that may appear in the SQLTYPE and SQLLEN fields of

the SQLDA. In DESCRIBE and PREPARE INTO, an even value of SQLTYPE means

that the column does not allow nulls, and an odd value means the column does

allow nulls. In FETCH, OPEN, and EXECUTE, an even value of SQLTYPE means

that no indicator variable is provided, and an odd value means that SQLIND

contains the address of an indicator variable.

 Table 53. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE

For DESCRIBE and PREPARE INTO For FETCH, OPEN, and EXECUTE

SQLTYPE Column Data Type SQLLEN

Host Variable Data

Type SQLLEN

384/385 date 10 fixed-length character

string representation

of a date

length attribute of the

host variable

388/389 time 8 fixed-length character

string representation

of a time

length attribute of the

host variable

392/393 timestamp 26 fixed-length character

string representation

of a timestamp

length attribute of the

host variable

400/401 N/A N/A NULL-terminated

graphic string

length attribute of the

host variable

404/405 BLOB 0

* BLOB Not used.

*

408/409 CLOB 0

* CLOB Not used.

*

412/413 DBCLOB 0

* DBCLOB Not used.

*

448/449 varying-length

character string

length attribute of the

column

varying-length

character string

length attribute of the

host variable

452/453 fixed-length character

string

length attribute of the

column

fixed-length character

string

length attribute of the

host variable

456/457 long varying-length

character string

length attribute of the

column

long varying-length

character string

length attribute of the

host variable

460/461 not applicable not applicable NULL-terminated

character string

length attribute of the

host variable

464/465 varying-length

graphic string

length attribute of the

column

varying-length

graphic string

length attribute of the

host variable

468/469 fixed-length graphic

string

length attribute of the

column

fixed-length graphic

string

length attribute of the

host variable

SQLDA (SQL descriptor area)

Appendix C. SQLDA (SQL descriptor area) 523

Table 53. SQLTYPE and SQLLEN values for DESCRIBE, FETCH, OPEN, and EXECUTE (continued)

For DESCRIBE and PREPARE INTO For FETCH, OPEN, and EXECUTE

SQLTYPE Column Data Type SQLLEN

Host Variable Data

Type SQLLEN

472/473 long varying-length

graphic string

length attribute of the

column

long graphic string length attribute of the

host variable

480/481 floating-point 8 for double

precision, 4 for single

precision

floating-point 8 for double

precision, 4 for single

precision

484/485 packed decimal precision in byte 1;

scale in byte 2

packed decimal precision in byte 1;

scale in byte 2

492/493 big integer 8 big integer 8

496/497 large integer 4 large integer 4

500/501 small integer 2 small integer 2

916/917 not applicable not applicable BLOB file reference

variable

267

920/921 not applicable not applicable CLOB file reference

variable

267

924/925 not applicable not applicable DBCLOB file

reference variable.

267

960/961 not applicable not applicable BLOB locator 4

964/965 not applicable not applicable CLOB locator 4

968/969 not applicable not applicable DBCLOB locator 4

988/989 XML 0 not applicable; use an

XML AS <string or

binary LOB type>

host variable instead

not used

996 decimal floating-point 8 for DECFLOAT(16),

16 for DECFLOAT(34)

decimal floating-point 8 for DECFLOAT(16),

16 for DECFLOAT(34)

Note:

v The len.sqllonglen field in the secondary SQLVAR contains the length attribute of the column.

v The SQLTYPE has changed from the previous version for portability in DB2. The values from the previous version

(see previous version SQL Reference) continue to be supported.

Unrecognized and unsupported SQLTYPEs

The values that appear in the SQLTYPE field of the SQLDA are dependent on the

level of data type support available at the sender as well as at the receiver of the

data. This is particularly important as new data types are added to the product.

New data types may or may not be supported by the sender or receiver of the data

and may or may not even be recognized by the sender or receiver of the data.

Depending on the situation, the new data type may be returned, or a compatible

data type agreed upon by both the sender and receiver of the data may be

returned or an error may result.

When the sender and receiver agree to use a compatible data type, the following

indicates the mapping that will take place. This mapping will take place when at

least one of the sender or the receiver does not support the data type provided.

The unsupported data type can be provided by either the application or the

SQLDA (SQL descriptor area)

524 SQL Reference, Volume 1

database manager.

 Data Type Compatible Data Type

BIGINT DECIMAL(19, 0)

ROWID1 VARCHAR(40) FOR BIT DATA

1 ROWID is supported by DB2 Universal Database for z/OS Version 8.

Note that no indication is given in the SQLDA that the data type is substituted.

Packed decimal numbers

Packed decimal numbers are stored in a variation of Binary Coded Decimal (BCD)

notation. In BCD, each nybble (four bits) represents one decimal digit. For

example, 0001 0111 1001 represents 179. Therefore, read a packed decimal value

nybble by nybble. Store the value in bytes and then read those bytes in

hexadecimal representation to return to decimal. For example, 0001 0111 1001

becomes 00000001 01111001 in binary representation. By reading this number as

hexadecimal, it becomes 0179.

The decimal point is determined by the scale. In the case of a DEC(12,5) column,

for example, the rightmost 5 digits are to the right of the decimal point.

Sign is indicated by a nybble to the right of the nybbles representing the digits. A

positive or negative sign is indicated as follows:

 Table 54. Values for Sign Indicator of a Packed Decimal Number

Sign

Representation

Binary Decimal Hexadecimal

Positive (+) 1100 12 C

Negative (-) 1101 13 D

In summary:

v To store any value, allocate p/2+1 bytes, where p is precision.

v Assign the nybbles from left to right to represent the value. If a number has an

even precision, a leading zero nybble is added. This assignment includes leading

(insignificant) and trailing (significant) zero digits.

v The sign nybble will be the second nybble of the last byte.

For example:

 Column Value Nybbles in Hexadecimal Grouped by Bytes

DEC(8,3) 6574.23 00 65 74 23 0C

DEC(6,2) -334.02 00 33 40 2D

DEC(7,5) 5.2323 05 23 23 0C

DEC(5,2) -23.5 02 35 0D

SQLDA (SQL descriptor area)

Appendix C. SQLDA (SQL descriptor area) 525

SQLLEN field for decimal

The SQLLEN field contains the precision (first byte) and scale (second byte) of the

decimal column. If writing a portable application, the precision and scale bytes

should be set individually, versus setting them together as a short integer. This will

avoid integer byte reversal problems.

For example, in C:

 ((char *)&(sqlda->sqlvar[i].sqllen))[0] = precision;

 ((char *)&(sqlda->sqlvar[i].sqllen))[1] = scale;

SQLDA (SQL descriptor area)

526 SQL Reference, Volume 1

Appendix D. System catalog views

The database manager creates and maintains two sets of system catalog views that

are defined on top of the base system catalog tables.

v SYSCAT views are read-only catalog views that are found in the SYSCAT

schema. SELECT privilege on these views is granted to PUBLIC by default.

v SYSSTAT views are updatable catalog views that are found in the SYSSTAT

schema. The updatable views contain statistical information that is used by the

optimizer. The values in some columns in these views can be changed to test

performance. (Before changing any statistics, it is recommended that the

RUNSTATS command be invoked so that all the statistics reflect the current

state.)

Applications should be written to the SYSCAT and SYSSTAT views rather than the

base catalog tables.

All the system catalog views are created at database creation time. The catalog

views cannot be explicitly created or dropped. In a Unicode database, the catalog

views are created with IDENTITY collation. In non-Unicode databases, the catalog

views are created with the database collation. The views are updated during

normal operation in response to SQL data definition statements, environment

routines, and certain utilities. Data in the system catalog views is available through

normal SQL query facilities. The system catalog views (with the exception of some

updatable catalog views) cannot be modified using normal SQL data manipulation

statements.

An object (table, column, function, or index) will appear in a user’s updatable

catalog view only if that user created the object, holds CONTROL privilege on the

object, or holds explicit DBADM authority. This also applies to a user with

SYSADM authority who has implicit DBADM authority. In order for a SYSADM

user to view records in all SYSSTAT views for objects it does not own, the user

must be explicitly granted CONTROL privilege on the object, or explicitly granted

DBADM authority.

The order of columns in the views may change from release to release. To prevent

this from affecting programming logic, specify the columns in a select list explicitly,

and avoid using SELECT *. Columns have consistent names based on the types of

objects that they describe.

Described Object

Column Names

Table TABSCHEMA, TABNAME

Index INDSCHEMA, INDNAME

View VIEWSCHEMA, VIEWNAME

Constraint

CONSTSCHEMA, CONSTNAME

Trigger

TRIGSCHEMA, TRIGNAME

Package

PKGSCHEMA, PKGNAME

© Copyright IBM Corp. 1993, 2009 527

Type TYPESCHEMA, TYPENAME, TYPEID

Function

ROUTINESCHEMA, ROUTINENAME, ROUTINEID

Method

ROUTINESCHEMA, ROUTINENAME, ROUTINEID

Procedure

ROUTINESCHEMA, ROUTINENAME, ROUTINEID

Column

COLNAME

Schema

SCHEMANAME

Table Space

TBSPACE

Database partition group

NGNAME

Buffer pool

BPNAME

Event Monitor

EVMONNAME

Creation Timestamp

CREATE_TIME

Road map to the catalog views

 Table 55. Road map to the read-only catalog views

Description Catalog View

attributes of structured data types “SYSCAT.ATTRIBUTES” on page 532

audit policies “SYSCAT.AUDITPOLICIES” on page 533

“SYSCAT.AUDITUSE” on page 535

authorities on database “SYSCAT.DBAUTH” on page 552

buffer pool configuration on database partition group “SYSCAT.BUFFERPOOLS” on page 536

buffer pool size on database partition “SYSCAT.BUFFERPOOLDBPARTITIONS” on page 535

cast functions “SYSCAT.CASTFUNCTIONS” on page 536

check constraints “SYSCAT.CHECKS” on page 537

column privileges “SYSCAT.COLAUTH” on page 538

columns “SYSCAT.COLUMNS” on page 543

columns referenced by check constraints “SYSCAT.COLCHECKS” on page 539

columns used in dimensions “SYSCAT.COLUSE” on page 547

columns used in keys “SYSCAT.KEYCOLUSE” on page 573

constraint dependencies “SYSCAT.CONSTDEP” on page 548

database partition group database partitions “SYSCAT.DBPARTITIONGROUPDEF” on page 554

database partition group definitions “SYSCAT.DBPARTITIONGROUPS” on page 554

data partitions “SYSCAT.DATAPARTITIONEXPRESSION” on page 549

“SYSCAT.DATAPARTITIONS” on page 549

System catalog views

528 SQL Reference, Volume 1

Table 55. Road map to the read-only catalog views (continued)

Description Catalog View

data types “SYSCAT.DATATYPES” on page 550

detailed column group statistics “SYSCAT.COLGROUPCOLS” on page 540

“SYSCAT.COLGROUPDIST” on page 540

“SYSCAT.COLGROUPDISTCOUNTS” on page 541

“SYSCAT.COLGROUPS” on page 541

detailed column options “SYSCAT.COLOPTIONS” on page 542

detailed column statistics “SYSCAT.COLDIST” on page 539

distribution maps “SYSCAT.PARTITIONMAPS” on page 584

event monitor definitions “SYSCAT.EVENTMONITORS” on page 555

events currently monitored “SYSCAT.EVENTS” on page 556

“SYSCAT.EVENTTABLES” on page 557

function dependencies1 “SYSCAT.ROUTINEDEP” on page 587

function mapping “SYSCAT.FUNCMAPPINGS” on page 559

function mapping options “SYSCAT.FUNCMAPOPTIONS” on page 559

function parameter mapping options “SYSCAT.FUNCMAPPARMOPTIONS” on page 559

function parameters1 “SYSCAT.ROUTINEPARMS” on page 589

functions1 “SYSCAT.ROUTINES” on page 591

global variables “SYSCAT.VARIABLEAUTH” on page 629

“SYSCAT.VARIABLEDEP” on page 629

“SYSCAT.VARIABLES” on page 630

hierarchies (types, tables, views) “SYSCAT.HIERARCHIES” on page 560

“SYSCAT.FULLHIERARCHIES” on page 558

identity columns “SYSCAT.COLIDENTATTRIBUTES” on page 542

index columns “SYSCAT.INDEXCOLUSE” on page 562

index dependencies “SYSCAT.INDEXDEP” on page 563

index exploitation “SYSCAT.INDEXEXPLOITRULES” on page 569

index extension dependencies “SYSCAT.INDEXEXTENSIONDEP” on page 570

index extension parameters “SYSCAT.INDEXEXTENSIONPARMS” on page 571

index extension search methods “SYSCAT.INDEXEXTENSIONMETHODS” on page 571

index extensions “SYSCAT.INDEXEXTENSIONS” on page 572

index options “SYSCAT.INDEXOPTIONS” on page 572

index privileges “SYSCAT.INDEXAUTH” on page 562

indexes “SYSCAT.INDEXES” on page 564

method dependencies1 “SYSCAT.ROUTINEDEP” on page 587

method parameters1 “SYSCAT.ROUTINES” on page 591

methods1 “SYSCAT.ROUTINES” on page 591

nicknames “SYSCAT.NICKNAMES” on page 574

object mapping “SYSCAT.NAMEMAPPINGS” on page 574

package dependencies “SYSCAT.PACKAGEDEP” on page 578

package privileges “SYSCAT.PACKAGEAUTH” on page 577

Road map to the catalog views

Appendix D. Catalog views 529

Table 55. Road map to the read-only catalog views (continued)

Description Catalog View

packages “SYSCAT.PACKAGES” on page 579

partitioned tables “SYSCAT.TABDETACHEDDEP” on page 613

pass-through privileges “SYSCAT.PASSTHRUAUTH” on page 584

predicate specifications “SYSCAT.PREDICATESPECS” on page 584

procedure options “SYSCAT.ROUTINEOPTIONS” on page 588

procedure parameter options “SYSCAT.ROUTINEPARMOPTIONS” on page 589

procedure parameters1 “SYSCAT.ROUTINEPARMS” on page 589

procedures1 “SYSCAT.ROUTINES” on page 591

protected tables “SYSCAT.SECURITYLABELACCESS” on page 601

“SYSCAT. SECURITYLABELCOMPONENTELEMENTS”

on page 601

“SYSCAT.SECURITYLABELCOMPONENTS” on page 602

“SYSCAT.SECURITYLABELS” on page 602

“SYSCAT.SECURITYPOLICIES” on page 602

“SYSCAT. SECURITYPOLICYCOMPONENTRULES” on

page 603

“SYSCAT.SECURITYPOLICYEXEMPTIONS” on page 604

“SYSCAT.SURROGATEAUTHIDS” on page 609

provides DB2 for z/OS compatibility “SYSIBM.SYSDUMMY1” on page 642

referential constraints “SYSCAT.REFERENCES” on page 585

remote table options “SYSCAT.TABOPTIONS” on page 621

roles “SYSCAT.ROLEAUTH” on page 586

“SYSCAT.ROLES” on page 586

routine dependencies “SYSCAT.ROUTINEDEP” on page 587

routine parameters1 “SYSCAT.ROUTINEPARMS” on page 589

routine privileges “SYSCAT.ROUTINEAUTH” on page 586

routines1 “SYSCAT.ROUTINES” on page 591

“SYSCAT.ROUTINESFEDERATED” on page 598

schema privileges “SYSCAT.SCHEMAAUTH” on page 600

schemas “SYSCAT.SCHEMATA” on page 600

sequence privileges “SYSCAT.SEQUENCEAUTH” on page 605

sequences “SYSCAT.SEQUENCES” on page 605

server options “SYSCAT.SERVEROPTIONS” on page 607

server-specific user options “SYSCAT.USEROPTIONS” on page 628

statements in packages “SYSCAT.STATEMENTS” on page 608

stored procedures “SYSCAT.ROUTINES” on page 591

system servers “SYSCAT.SERVERS” on page 607

table constraints “SYSCAT.TABCONST” on page 611

table dependencies “SYSCAT.TABDEP” on page 612

table privileges “SYSCAT.TABAUTH” on page 610

Road map to the catalog views

530 SQL Reference, Volume 1

Table 55. Road map to the read-only catalog views (continued)

Description Catalog View

table space use privileges “SYSCAT.TBSPACEAUTH” on page 621

table spaces “SYSCAT.TABLESPACES” on page 619

tables “SYSCAT.TABLES” on page 614

transforms “SYSCAT.TRANSFORMS” on page 623

trigger dependencies “SYSCAT.TRIGDEP” on page 624

triggers “SYSCAT.TRIGGERS” on page 624

trusted contexts “SYSCAT.CONTEXTATTRIBUTES” on page 548

“SYSCAT.CONTEXTS” on page 548

type mapping “SYSCAT.TYPEMAPPINGS” on page 626

user-defined functions “SYSCAT.ROUTINES” on page 591

view dependencies “SYSCAT.TABDEP” on page 612

views “SYSCAT.TABLES” on page 614

“SYSCAT.VIEWS” on page 631

workload management “SYSCAT.HISTOGRAMTEMPLATEBINS” on page 561

“SYSCAT.HISTOGRAMTEMPLATES” on page 561

“SYSCAT.HISTOGRAMTEMPLATEUSE” on page 561

“SYSCAT.SERVICECLASSES” on page 607

“SYSCAT.THRESHOLDS” on page 621

“SYSCAT.WORKACTIONS” on page 632

“SYSCAT.WORKACTIONSETS” on page 634

“SYSCAT.WORKCLASSES” on page 634

“SYSCAT.WORKCLASSSETS” on page 635

“SYSCAT.WORKLOADAUTH” on page 636

“SYSCAT.WORKLOADCONNATTR” on page 636

“SYSCAT.WORKLOADS” on page 637

wrapper options “SYSCAT.WRAPOPTIONS” on page 638

wrappers “SYSCAT.WRAPPERS” on page 638

XML values index “SYSCAT.INDEXXMLPATTERNS” on page 573

XSR objects “SYSCAT.XDBMAPGRAPHS” on page 638

“SYSCAT.XDBMAPSHREDTREES” on page 638

“SYSCAT.XSROBJECTAUTH” on page 639

“SYSCAT.XSROBJECTCOMPONENTS” on page 639

“SYSCAT.XSROBJECTDEP” on page 640

“SYSCAT.XSROBJECTHIERARCHIES” on page 641

“SYSCAT.XSROBJECTS” on page 641

Road map to the catalog views

Appendix D. Catalog views 531

Table 55. Road map to the read-only catalog views (continued)

Description Catalog View

1 The following catalog views for functions, methods, and procedures defined in DB2 Version 7.1 and earlier are still

available:

 Functions: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS

 Methods: SYSCAT.FUNCTIONS, SYSCAT.FUNCDEP, SYSCAT.FUNCPARMS

 Procedures: SYSCAT.PROCEDURES, SYSCAT.PROCPARMS

However, these views have not been updated since DB2 Version 7.1. Use the SYSCAT.ROUTINES,

SYSCAT.ROUTINEDEP, or SYSCAT.ROUTINEPARMS catalog view instead.

 Table 56. Road map to the updatable catalog views

Description Catalog View

columns “SYSSTAT.COLUMNS” on page 644

detailed column group statistics “SYSSTAT.COLGROUPDIST” on page 643

“SYSSTAT.COLGROUPDISTCOUNTS” on page 643

“SYSSTAT.COLGROUPS” on page 644

detailed column statistics “SYSSTAT.COLDIST” on page 642

indexes “SYSSTAT.INDEXES” on page 645

routines1 “SYSSTAT.ROUTINES” on page 648

tables “SYSSTAT.TABLES” on page 649

1 The SYSSTAT.FUNCTIONS catalog view still exists for updating the statistics for functions and methods. This view,

however, does not reflect any changes since DB2 Version 7.1.

SYSCAT.ATTRIBUTES

Each row represents an attribute that is defined for a user-defined structured data

type. Includes inherited attributes of subtypes.

 Table 57. SYSCAT.ATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the structured data type

that includes the attribute.

TYPENAME VARCHAR (128) Unqualified name of the structured data type

that includes the attribute.

ATTR_NAME VARCHAR (128) Attribute name.

ATTR_TYPESCHEMA VARCHAR (128) Schema name of the data type of an

attribute.

ATTR_TYPENAME VARCHAR (128) Unqualified name of the data type of an

attribute.

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target row type. Applies

to reference types only; null value otherwise.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the target row type.

Applies to reference types only; null value

otherwise.

Road map to the catalog views

532 SQL Reference, Volume 1

Table 57. SYSCAT.ATTRIBUTES Catalog View (continued)

Column Name Data Type Nullable Description

SOURCE_TYPESCHEMA VARCHAR (128) For inherited attributes, the schema name of

the data type with which the attribute was

first defined. For non-inherited attributes,

this column is the same as TYPESCHEMA.

SOURCE_TYPENAME VARCHAR (128) For inherited attributes, the unqualified

name of the data type with which the

attribute was first defined. For non-inherited

attributes, this column is the same as

TYPENAME.

ORDINAL SMALLINT Position of the attribute in the definition of

the structured data type, starting with 0.

LENGTH INTEGER For string types, contains the maximum

length. For decimal type, contains the

precision (number of digits); 0 otherwise.

SCALE SMALLINT For the decimal type, contains the scale

(number of digits to the right of the decimal

point); 0 otherwise.

CODEPAGE SMALLINT For string types, denotes the code page; 0

indicates FOR BIT DATA; 0 for non-string

types.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the

collation for the attribute; null value

otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the

collation for the attribute; null value

otherwise.

LOGGED CHAR (1) Applies to LOB types only; blank otherwise.

v N = Changes are not logged

v Y = Changes are logged

COMPACT CHAR (1) Applies to LOB types only; blank otherwise.

v N = Stored in non-compact format

v Y = Stored in compact format

DL_FEATURES CHAR(10) This column is no longer used and will be

removed in a future release.

JAVA_FIELDNAME VARCHAR (256) Y Reserved for future use.

SYSCAT.AUDITPOLICIES

Each row represents an audit policy.

 Table 58. SYSCAT.AUDITPOLICIES Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

CREATE_TIME TIMESTAMP Time at which the audit policy was created.

ALTER_TIME TIMESTAMP Time at which the audit policy was last

altered.

SYSCAT.ATTRIBUTES

Appendix D. Catalog views 533

Table 58. SYSCAT.AUDITPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

AUDITSTATUS CHAR (1) Status for the AUDIT category.

v B = Both

v F = Failure

v N = None

v S = Success

CONTEXTSTATUS CHAR (1) Status for the CONTEXT category.

v B = Both

v F = Failure

v N = None

v S = Success

VALIDATESTATUS CHAR (1) Status for the VALIDATE category.

v B = Both

v F = Failure

v N = None

v S = Success

CHECKINGSTATUS CHAR (1) Status for the CHECKING category.

v B = Both

v F = Failure

v N = None

v S = Success

SECMAINTSTATUS CHAR (1) Status for the SECMAINT category.

v B = Both

v F = Failure

v N = None

v S = Success

OBJMAINTSTATUS CHAR (1) Status for the OBJMAINT category.

v B = Both

v F = Failure

v N = None

v S = Success

SYSADMINSTATUS CHAR (1) Status for the SYSADMIN category.

v B = Both

v F = Failure

v N = None

v S = Success

EXECUTESTATUS CHAR (1) Status for the EXECUTE category.

v B = Both

v F = Failure

v N = None

v S = Success

EXECUTEWITHDATA CHAR (1) Host variables and parameter markers

logged with EXECUTE category.

v N = No

v Y = Yes

SYSCAT.AUDITPOLICIES

534 SQL Reference, Volume 1

Table 58. SYSCAT.AUDITPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

ERRORTYPE CHAR (1) The audit error type.

v A = Audit

v N = Normal

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.AUDITUSE

Each row represents an audit policy that is associated with a non-database object,

such as USER, GROUP, or authority (SYSADM, SYSCTRL, SYSMAINT).

 Table 59. SYSCAT.AUDITUSE Catalog View

Column Name Data Type Nullable Description

AUDITPOLICYNAME VARCHAR (128) Name of the audit policy.

AUDITPOLICYID INTEGER Identifier for the audit policy.

OBJECTTYPE CHAR(1) The type of object with which this audit

policy is associated.

v S = MQT

v T = Table

v g = Authority

v i = Authorization ID

v x = Trusted context

v Blank = Database

SUBOBJECTTYPE CHAR(1) If OBJECTTYPE is ’i’, this is the type that the

authorization ID represents.

v G = Group

v R = Role

v U = User

v Blank = Not applicable

OBJECTSCHEMA VARCHAR (128) Schema name of the object for which the

audit policy is in use. OBJECTSCHEMA is

null if OBJECTTYPE identifies an object to

which a schema does not apply.

OBJECTNAME VARCHAR (128) Unqualified name of the object for which

this audit policy is in use.

SYSCAT.BUFFERPOOLDBPARTITIONS

Each row represents a combination of a buffer pool and a database partition, in

which the size of the buffer pool on that partition is different from its default size

for other partitions in the same database partition group (as represented in

SYSCAT.BUFFERPOOLS).

 Table 60. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View

Column Name Data Type Nullable Description

BUFFERPOOLID INTEGER Internal buffer pool identifier.

DBPARTITIONNUM SMALLINT Database partition number.

SYSCAT.AUDITPOLICIES

Appendix D. Catalog views 535

Table 60. SYSCAT.BUFFERPOOLDBPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

NPAGES INTEGER Number of pages in this buffer pool on this

database partition.

SYSCAT.BUFFERPOOLS

Each row represents the configuration of a buffer pool on one database partition

group of a database, or on all database partitions of a database.

 Table 61. SYSCAT.BUFFERPOOLS Catalog View

Column Name Data Type Nullable Description

BPNAME VARCHAR (128) Name of the buffer pool.

BUFFERPOOLID INTEGER Identifier for the buffer pool.

DBPGNAME VARCHAR (128) Y Name of the database partition group (null if

the buffer pool exists on all database

partitions in the database).

NPAGES INTEGER Default number of pages in this buffer pool

on database partitions in this database

partition group.

PAGESIZE INTEGER Page size for this buffer pool on database

partitions in this database partition group.

ESTORE CHAR (1) Always ’N’. Extended storage no longer

applies.

NUMBLOCKPAGES INTEGER Number of pages of the buffer pool that are

to be in a block-based area. A block-based area

of the buffer pool is only used by prefetchers

doing a sequential prefetch.

BLOCKSIZE INTEGER Number of pages in a block.

NGNAME1 VARCHAR (128) Y Name of the database partition group (null if

the buffer pool exists on all database

partitions in the database).

Note:

1. The NGNAME column is included for backwards compatibility. See DBPGNAME.

SYSCAT.CASTFUNCTIONS

Each row represents a cast function, not including built-in cast functions.

 Table 62. SYSCAT.CASTFUNCTIONS Catalog View

Column Name Data Type Nullable Description

FROM_TYPESCHEMA VARCHAR (128) Schema name of the data type of the

parameter.

FROM_TYPENAME VARCHAR (128) Name of the data type of the parameter.

TO_TYPESCHEMA VARCHAR (128) Schema name of the data type of the result

after casting.

TO_TYPENAME VARCHAR (128) Name of the data type of the result after

casting.

SYSCAT.BUFFERPOOLDBPARTITIONS

536 SQL Reference, Volume 1

Table 62. SYSCAT.CASTFUNCTIONS Catalog View (continued)

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR (128) Schema name of the function.

FUNCNAME VARCHAR (128) Unqualified name of the function.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be

system-generated).

ASSIGN_FUNCTION CHAR (1) v N = Not an assignment function

v Y = Implicit assignment function

SYSCAT.CHECKS

Each row represents a check constraint or a derived column in a materialized

query table. For table hierarchies, each check constraint is recorded only at the

level of the hierarchy where the constraint was created.

 Table 63. SYSCAT.CHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the check constraint.

OWNER VARCHAR (128) Authorization ID under which the check

constraint was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table to which this

constraint applies.

TABNAME VARCHAR (128) Name of the table to which this constraint

applies.

CREATE_TIME TIMESTAMP Time at which the constraint was defined.

Used in resolving functions that are part of

this constraint. Functions that were created

after the constraint was defined are not

chosen.

QUALIFIER VARCHAR (128) Value of the default schema at the time of

object definition. Used to complete any

unqualified references.

TYPE CHAR (1) Type of check constraint:

v C = Check constraint

v F = Functional dependency

v O = Constraint is an object property

v S = System-generated check constraint for

a GENERATED ALWAYS column

FUNC_PATH CLOB (2K) SQL path in effect when the constraint was

defined; used to resolve functions and types

that are part of the constraint.

TEXT CLOB (2M) Text of the check condition or definition of

the derived column.1

PERCENTVALID SMALLINT Number of rows for which the informational

constraint is valid, expressed as a percentage

of the total.

SYSCAT.CASTFUNCTIONS

Appendix D. Catalog views 537

Table 63. SYSCAT.CHECKS Catalog View (continued)

Column Name Data Type Nullable Description

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the

constraint.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the

constraint.

COLLATIONSCHEMA_

ORDERBY

VARCHAR (128) Schema name of the collation for ORDER BY

clauses in the constraint.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for

ORDER BY clauses in the constraint.

DEFINER2 VARCHAR (128) Authorization ID under which the check

constraint was created.

Note:

1. In the catalog view, the text of the check condition is always shown in the database code page and can contain

substitution characters. The check constraint will always be applied in the code page of the target table, and will

not contain any substitution characters when applied. (The check constraint will be applied based on the original

text in the code page of the target table, which might not include the substitution characters.)

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.COLAUTH

Each row represents a user or a group that has been granted one or more

privileges on a column.

 Table 64. SYSCAT.COLAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view on which

the privilege is held.

TABNAME VARCHAR (128) Unqualified name of the table or view on

which the privilege is held.

COLNAME VARCHAR (128) Name of the column to which this privilege

applies.

COLNO SMALLINT Column number of this column within the

table (starting with 0).

PRIVTYPE CHAR (1) v R = Reference privilege

v U = Update privilege

GRANTABLE CHAR (1) v G = Privilege is grantable

v N = Privilege is not grantable

Note:

1. Privileges can be granted by column, but can be revoked only on a table-wide basis.

SYSCAT.CHECKS

538 SQL Reference, Volume 1

SYSCAT.COLCHECKS

Each row represents a column that is referenced by a check constraint or by the

definition of a materialized query table. For table hierarchies, each check constraint

is recorded only at the level of the hierarchy where the constraint was created.

 Table 65. SYSCAT.COLCHECKS Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the check constraint.

TABSCHEMA VARCHAR (128) Schema name of the table containing the

referenced column.

TABNAME VARCHAR (128) Unqualified name of the table containing the

referenced column.

COLNAME VARCHAR (128) Name of the column.

USAGE CHAR (1) v D = Column is the child in a functional

dependency

v P = Column is the parent in a functional

dependency

v R = Column is referenced in the check

constraint

v S = Column is a source in the

system-generated column check constraint

that supports a materialized query table

v T = Column is a target in the

system-generated column check constraint

that supports a materialized query table

SYSCAT.COLDIST

Each row represents the nth most frequent value of some column, or the nth

quantile (cumulative distribution) value of the column. Applies to columns of real

tables only (not views). No statistics are recorded for inherited columns of typed

tables.

 Table 66. SYSCAT.COLDIST Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table to which the

statistics apply.

TABNAME VARCHAR (128) Unqualified name of the table to which the

statistics apply.

COLNAME VARCHAR (128) Name of the column to which the statistics

apply.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies the

nth most frequent value. If TYPE = ’Q’, n in

this column identifies the nth quantile value.

SYSCAT.COLAUTH

Appendix D. Catalog views 539

Table 66. SYSCAT.COLDIST Catalog View (continued)

Column Name Data Type Nullable Description

COLVALUE1 VARCHAR (254) Y Data value as a character literal or a null

value.

VALCOUNT BIGINT If TYPE = ’F’, VALCOUNT is the number of

occurrences of COLVALUE in the column. If

TYPE = ’Q’, VALCOUNT is the number of

rows whose value is less than or equal to

COLVALUE.

DISTCOUNT2 BIGINT Y If TYPE = ’Q’, this column records the

number of distinct values that are less than

or equal to COLVALUE (null if unavailable).

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain

substitution characters. However, the statistics are gathered internally in the code page of the column’s table, and

will therefore use actual column values when applied during query optimization.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

SYSCAT.COLGROUPCOLS

Each row represents a column that makes up a column group.

 Table 67. SYSCAT.COLGROUPCOLS Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

COLNAME VARCHAR (128) Name of the column in the column group.

TABSCHEMA VARCHAR (128) Schema name of the table for the column in

the column group.

TABNAME VARCHAR (128) Unqualified name of the table for the column

in the column group.

ORDINAL SMALLINT Ordinal number of the column in the column

group.

SYSCAT.COLGROUPDIST

Each row represents the value of the column in a column group that makes up the

nth most frequent value of the column group or the nth quantile value of the

column group.

 Table 68. SYSCAT.COLGROUPDIST Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

ORDINAL SMALLINT Ordinal number of the column in the column

group.

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies the

nth most frequent value. If TYPE = ’Q’, n in

this column identifies the nth quantile value.

SYSCAT.COLDIST

540 SQL Reference, Volume 1

Table 68. SYSCAT.COLGROUPDIST Catalog View (continued)

Column Name Data Type Nullable Description

COLVALUE1 VARCHAR (254) Data value as a character literal or a null

value.

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain

substitution characters. However, the statistics are gathered internally in the code page of the column’s table, and

will therefore use actual column values when applied during query optimization.

SYSCAT.COLGROUPDISTCOUNTS

Each row represents the distribution statistics that apply to the nth most frequent

value of a column group or the nth quantile of a column group.

 Table 69. SYSCAT.COLGROUPDISTCOUNTS Catalog View

Column Name Data Type Nullable Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SEQNO SMALLINT Sequence number n representing the nth

TYPE value.

VALCOUNT BIGINT If TYPE = ’F’, VALCOUNT is the number of

occurrences of COLVALUE for the column

group with this SEQNO. If TYPE = ’Q’,

VALCOUNT is the number of rows whose

value is less than or equal to COLVALUE for

the column group with this SEQNO.

DISTCOUNT BIGINT If TYPE = ’Q’, this column records the

number of distinct values that are less than

or equal to COLVALUE for the column

group with this SQENO (null if unavailable).

SYSCAT.COLGROUPS

Each row represents a column group and statistics that apply to the entire column

group.

 Table 70. SYSCAT.COLGROUPS Catalog View

Column Name Data Type Nullable Description

COLGROUPSCHEMA VARCHAR (128) Schema name of the column group.

COLGROUPNAME VARCHAR (128) Unqualified name of the column group.

COLGROUPID INTEGER Identifier for the column group.

COLGROUPCARD BIGINT Cardinality of the column group.

NUMFREQ_VALUES SMALLINT Number of frequent values collected for the

column group.

NUMQUANTILES SMALLINT Number of quantiles collected for the

column group.

SYSCAT.COLGROUPDIST

Appendix D. Catalog views 541

SYSCAT.COLIDENTATTRIBUTES

Each row represents an identity column that is defined for a table.

 Table 71. SYSCAT.COLIDENTATTRIBUTES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table or view that

contains the column.

TABNAME VARCHAR (128) Unqualified name of the table or view that

contains the column.

COLNAME VARCHAR (128) Name of the column.

START DECIMAL (31,0) Start value of the sequence.

INCREMENT DECIMAL (31,0) Increment value.

MINVALUE DECIMAL (31,0) Minimum value of the sequence.

MAXVALUE DECIMAL (31,0) Maximum value of the sequence.

CYCLE CHAR (1) Indicates whether or not the sequence can

continue to generate values after reaching its

maximum or minimum value.

v N = Sequence cannot cycle

v Y = Sequence can cycle

CACHE INTEGER Number of sequence values to pre-allocate in

memory for faster access. 0 indicates that

values of the sequence are not to be

preallocated. In a partitioned database, this

value applies to each database partition.

ORDER CHAR (1) Indicates whether or not the sequence

numbers must be generated in order of

request.

v N = Sequence numbers are not required to

be generated in order of request

v Y = Sequence numbers must be generated

in order of request

NEXTCACHEFIRSTVALUE DECIMAL (31,0) Y The first value available to be assigned in

the next cache block. If no caching, the next

value available to be assigned.

SEQID INTEGER Identifier for the sequence.

SYSCAT.COLOPTIONS

Each row contains column specific option values.

 Table 72. SYSCAT.COLOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of a nickname.

TABNAME VARCHAR (128) Nickname for the column for which options

are set.

COLNAME VARCHAR (128) Local column name.

OPTION VARCHAR (128) Name of the column option.

SETTING CLOB (32K) Value.

SYSCAT.COLIDENTATTRIBUTES

542 SQL Reference, Volume 1

SYSCAT.COLUMNS

Each row represents a column defined for a table, view, or nickname.

 Table 73. SYSCAT.COLUMNS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table, view, or nickname

that contains the column.

TABNAME VARCHAR (128) Unqualified name of the table, view, or

nickname that contains the column.

COLNAME VARCHAR (128) Name of the column.

COLNO SMALLINT Number of this column in the table (starting

with 0).

TYPESCHEMA VARCHAR (128) Schema name of the data type for the

column.

TYPENAME VARCHAR (128) Unqualified name of the data type for the

column.

LENGTH INTEGER Maximum length of the data; 0 for distinct

types. The LENGTH column indicates

precision for DECIMAL fields, and indicates

the number of bytes of storage required for

decimal floating-point columns; that is, 8 and

16 for DECFLOAT(16) and DECFLOAT(34),

respectively.

SCALE SMALLINT Scale if the column type is DECIMAL; 0

otherwise.

DEFAULT1 VARCHAR (254) Y Default value for the column of a table

expressed as a constant, special register, or

cast-function appropriate for the data type of

the column. Can also be the keyword NULL.

Values might be converted from what was

specified as a default value. For example,

date and time constants are shown in ISO

format, cast-function names are qualified

with schema names, and identifiers are

delimited. Null value if a DEFAULT clause

was not specified or the column is a view

column.

NULLS2 CHAR (1) Nullability attribute for the column.

v N = Column is not nullable

v Y = Column is nullable

The value can be ’N’ for a view column that

is derived from an expression or function.

Nevertheless, such a column allows null

values when the statement using the view is

processed with warnings for arithmetic

errors.

CODEPAGE SMALLINT Code page used for data in this column; 0 if

the column is defined as FOR BIT DATA or

is not a string type.

SYSCAT.COLOPTIONS

Appendix D. Catalog views 543

Table 73. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the

collation for the column; null value

otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the

collation for the column; null value

otherwise.

LOGGED CHAR (1) Applies only to columns whose type is LOB

or distinct based on LOB; blank otherwise.

v N = Column is not logged

v Y = Column is logged

COMPACT CHAR (1) Applies only to columns whose type is LOB

or distinct based on LOB; blank otherwise.

v N = Column is not compacted

v Y = Column is compacted in storage

COLCARD BIGINT Number of distinct values in the column; -1

if statistics are not collected; -2 for inherited

columns and columns of hierarchy tables.

HIGH2KEY3 VARCHAR (254) Y Second-highest data value. Representation of

numeric data changed to character literals.

Empty if statistics are not collected. Empty

for inherited columns and columns of

hierarchy tables.

LOW2KEY3 VARCHAR (254) Y Second-lowest data value. Representation of

numeric data changed to character literals.

Empty if statistics are not collected. Empty

for inherited columns and columns of

hierarchy tables.

AVGCOLLEN INTEGER Average space (in bytes) required for the

column; -1 if a long field or LOB, or statistics

have not been collected; -2 for inherited

columns and columns of hierarchy tables.

KEYSEQ SMALLINT Y The column’s numerical position within the

table’s primary key. Null for columns of

subtables and hierarchy tables.

PARTKEYSEQ SMALLINT Y The column’s numerical position within the

table’s distribution key; 0 or the null value if

the column is not in the distribution key.

Null for columns of subtables and hierarchy

tables.

NQUANTILES SMALLINT Number of quantile values recorded in

SYSCAT.COLDIST for this column; -1 if

statistics are not gathered; -2 for inherited

columns and columns of hierarchy tables.

NMOSTFREQ SMALLINT Number of most-frequent values recorded in

SYSCAT.COLDIST for this column; -1 if

statistics are not gathered; -2 for inherited

columns and columns of hierarchy tables.

NUMNULLS BIGINT Number of null values in the column; -1 if

statistics are not collected.

SYSCAT.COLUMNS

544 SQL Reference, Volume 1

Table 73. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target row type, if the

type of this column is REFERENCE; null

value otherwise.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the target row type, if

the type of this column is REFERENCE; null

value otherwise.

SCOPE_TABSCHEMA VARCHAR (128) Y Schema name of the scope (target table), if

the type of this column is REFERENCE; null

value otherwise.

SCOPE_TABNAME VARCHAR (128) Y Unqualified name of the scope (target table),

if the type of this column is REFERENCE;

null value otherwise.

SOURCE_TABSCHEMA VARCHAR (128) Y For columns of typed tables or views, the

schema name of the table or view in which

the column was first introduced. For

non-inherited columns, this is the same as

TABSCHEMA. Null for columns of

non-typed tables and views.

SOURCE_TABNAME VARCHAR (128) Y For columns of typed tables or views, the

unqualified name of the table or view in

which the column was first introduced. For

non-inherited columns, this is the same as

TABNAME. Null for columns of non-typed

tables and views.

DL_FEATURES CHAR (10) Y This column is no longer used and will be

removed in a future release.

SPECIAL_PROPS CHAR (8) Y Applies to REFERENCE type columns only;

blanks otherwise. Each byte position is

defined as follows:

v 1 = Object identifier (OID) column (’Y’ for

yes; ’N’ for no)

v 2 = User-generated or system-generated

(’U’ for user; ’S’ for system)

Bytes 3 through 8 are reserved for future

use.

HIDDEN CHAR (1) Type of hidden column.

v I = Column is defined as IMPLICITLY

HIDDEN

v S = System-managed hidden column

v Blank = Column is not hidden

INLINE_LENGTH INTEGER Maximum size in bytes of the internal

representation of an instance of an XML

document or a structured type that can be

stored in the base table; 0 when not

applicable.

IDENTITY CHAR (1) v N = Not an identity column

v T = Row change timestamp column

v Y = Identity column

SYSCAT.COLUMNS

Appendix D. Catalog views 545

Table 73. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

ROWCHANGETIMESTAMP CHAR (1) v N = Not a row change timestamp column

v Y = Row change timestamp column

GENERATED CHAR (1) Type of generated column.

v A = Column value is always generated

v D = Column value is generated by default

v Blank = Column is not generated

TEXT CLOB (2M) Y For columns defined as generated as

expression, this field contains the text of the

generated column expression, starting with

the keyword AS.

COMPRESS CHAR (1) v O = Compress off

v S = Compress system default values

AVGDISTINCTPERPAGE DOUBLE Y For future use.

PAGEVARIANCERATIO DOUBLE Y For future use.

SUB_COUNT SMALLINT Average number of sub-elements in the

column. Applicable to character string

columns only.

SUB_DELIM_LENGTH SMALLINT Average length of the delimiters that

separate each sub-element in the column.

Applicable to character string columns only.

AVGCOLLENCHAR INTEGER Average number of characters (based on the

collation in effect for the column) required

for the column; -1 if a long field or LOB, or

statistics have not been collected; -2 for

inherited columns and columns of hierarchy

tables.

IMPLICITVALUE4 VARCHAR (254) Y For a column that was added to a table after

the table was created, stores the default

value at the time the column was added. For

a column that was defined when the table

was created, stores the null value.

SECLABELNAME VARCHAR(128) Y Name of the security label that is associated

with the column if it is a protected column;

null value otherwise.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.COLUMNS

546 SQL Reference, Volume 1

Table 73. SYSCAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable Description

Note:

1. For Version 2.1.0, cast-function names were not delimited and may still appear this way in the DEFAULT column.

Also, some view columns included default values which will still appear in the DEFAULT column.

2. Starting with Version 2, value D (indicating not null with a default) is no longer used. Instead, use of WITH

DEFAULT is indicated by a non-null value in the DEFAULT column.

3. In the catalog view, the values of HIGH2KEY and LOW2KEY are always shown in the database code page and

can contain substitution characters. However, the statistics are gathered internally in the code page of the

column’s table, and will therefore use actual column values when applied during query optimization.

4. Attaching a data partition is allowed unless IMPLICITVALUE for a specific column is a non-null value for both

the source column and the target column, and the values do not match. In this case, you must drop the source

table and then recreate it. A column can have a non-null value in the IMPLICITVALUE field if one of the

following conditions is met:

v The column is created as the result of an ALTER TABLE...ADD COLUMN statement

v The IMPLICITVALUE field is propagated from a source table during attach

v The IMPLICITVALUE field is inherited from a source table during detach

v The IMPLICITVALUE field is set during migration from Version 8 to Version 9, where it is determined to be an

added column, or might be an added column. If the database is not certain whether the column is added or

not, it is treated as added. An added column is a column that was created as the result of an ALTER

TABLE...ADD COLUMN statement.

To avoid these inconsistencies during non-migration scenarios, it is recommended that you always create the

tables that you are going to attach with all the columns already defined. That is, never use the ALTER TABLE

statement to add columns to a table before attaching it.

SYSCAT.COLUSE

Each row represents a column that is referenced in the DIMENSIONS clause of a

CREATE TABLE statement.

 Table 74. SYSCAT.COLUSE Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the table containing the

column.

TABNAME VARCHAR (128) Unqualified name of the table containing the

column.

COLNAME VARCHAR (128) Name of the column.

DIMENSION SMALLINT Dimension number, based on the order of

dimensions specified in the DIMENSIONS

clause (initial position is 0). For a composite

dimension, this value will be the same for

each component of the dimension.

COLSEQ SMALLINT Numeric position of the column in the

dimension to which it belongs (initial

position is 0). The value is 0 for the single

column in a noncomposite dimension.

TYPE CHAR (1) Type of dimension.

v C = Clustering or multidimensional

clustering

v P = Partitioning

SYSCAT.COLUMNS

Appendix D. Catalog views 547

SYSCAT.CONSTDEP

Each row represents a dependency of a constraint on some other object. The

constraint depends on the object of type BTYPE of name BNAME, so a change to

the object affects the constraint.

 Table 75. SYSCAT.CONSTDEP Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Unqualified name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table to which the

constraint applies.

TABNAME VARCHAR (128) Unqualified name of the table to which the

constraint applies.

BTYPE CHAR (1) Type of object on which the constraint

depends. Possible values are:

v F = Routine instance

v I = Index

v R = Structured type

BSCHEMA VARCHAR (128) Schema name of the object on which the

constraint depends.

BNAME VARCHAR (128) Unqualified name of the object on which the

constraint depends.

SYSCAT.CONTEXTATTRIBUTES

Each row represents a trusted context attribute.

 Table 76. SYSCAT.CONTEXTATTRIBUTES Catalog View

Column Name Data Type Nullable Description

CONTEXTNAME VARCHAR (128) Name of the trusted context.

ATTR_NAME VARCHAR (128) Name of the attribute. One of:

v ADDRESS

v ENCRYPTION

ATTR_VALUE VARCHAR (128) Value of the attribute.

ATTR_OPTIONS VARCHAR (128) Y If ATTR_NAME is ’ADDRESS’, specifies the

level of encryption required for this specific

address. A null value indicates that the

global ENCRYPTION attribute applies.

SYSCAT.CONTEXTS

Each row represents a trusted context.

 Table 77. SYSCAT.CONTEXTS Catalog View

Column Name Data Type Nullable Description

CONTEXTNAME VARCHAR (128) Name of the trusted context.

CONTEXTID INTEGER Identifier for the trusted context.

SYSCAT.CONSTDEP

548 SQL Reference, Volume 1

Table 77. SYSCAT.CONTEXTS Catalog View (continued)

Column Name Data Type Nullable Description

SYSTEMAUTHID VARCHAR (128) The system authorization ID associated with

the trusted context.

DEFAULTCONTEXTROLE VARCHAR (128) Y The default role for the context.

CREATE_TIME TIMESTAMP Time at which the trusted context was

created.

ALTER_TIME TIMESTAMP Time at which the trusted context was last

altered.

ENABLED CHAR (1) Trusted context state.

v N = Disabled

v Y = Enabled

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.DATAPARTITIONEXPRESSION

Each row represents an expression for that part of the table partitioning key.

 Table 78. SYSCAT.DATAPARTITIONEXPRESSION Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the partitioned table.

TABNAME VARCHAR (128) Unqualified name of the partitioned table.

DATAPARTITIONKEYSEQ INTEGER Expression key part sequence ID, starting

from 1.

DATAPARTITIONEXPRESSION CLOB (32K) Expression for this entry in the sequence, in

SQL syntax.

NULLSFIRST CHAR (1) v N = Null values in this expression

compare high

v Y = Null values in this expression

compare low

SYSCAT.DATAPARTITIONS

Each row represents a data partition.

 Table 79. SYSCAT.DATAPARTITIONS Catalog View

Column Name Data Type Nullable Description

DATAPARTITIONNAME VARCHAR (128) Name of the data partition.

TABSCHEMA VARCHAR (128) Schema name of the table to which this data

partition belongs.

TABNAME VARCHAR (128) Unqualified name of the table to which this

data partition belongs.

DATAPARTITIONID INTEGER Identifier for the data partition.

SYSCAT.CONTEXTS

Appendix D. Catalog views 549

Table 79. SYSCAT.DATAPARTITIONS Catalog View (continued)

Column Name Data Type Nullable Description

TBSPACEID INTEGER Y Identifier for the table space in which this

data partition is stored. Null when STATUS

is ’I’.

PARTITIONOBJECTID INTEGER Y Identifier for the data partition within the

table space.

LONG_TBSPACEID INTEGER Y Identifier for the table space in which long

data is stored. Null when STATUS is ’I’.

ACCESS_MODE CHAR (1) Access restriction state of the data partition.

These states only apply to objects that are in

set integrity pending state or to objects that

were processed by a SET INTEGRITY

statement. Possible values are:

v D = No data movement

v F = Full access

v N = No access

v R = Read-only access

STATUS VARCHAR (32) v A = Data partition is newly attached

v D = Data partition is detached

v I = Detached data partition whose entry in

the catalog is maintained only during

asynchronous index cleanup; rows with a

STATUS value of ’I’ are removed when all

index records referring to the detached

partition have been deleted

v Empty string = Data partition is visible

(normal status)

Bytes 2 through 32 are reserved for future

use.

SEQNO INTEGER Data partition sequence number (starting

from 0).

LOWINCLUSIVE CHAR (1) v N = Low key value is not inclusive

v Y = Low key value is inclusive

LOWVALUE VARCHAR (512) Low key value (a string representation of an

SQL value) for this data partition.

HIGHINCLUSIVE CHAR (1) v N = High key value is not inclusive

v Y = High key value is inclusive

HIGHVALUE VARCHAR (512) High key value (a string representation of an

SQL value) for this data partition.

SYSCAT.DATATYPES

Each row represents a built-in or user-defined data type.

 Table 80. SYSCAT.DATATYPES Catalog View

Column Name Data Type Nullable Description

TYPESCHEMA VARCHAR (128) Schema name of the data type. The schema

name for built-in types is ’SYSIBM’.

SYSCAT.DATAPARTITIONS

550 SQL Reference, Volume 1

Table 80. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

TYPENAME VARCHAR (128) Unqualified name of the data type.

OWNER VARCHAR (128) Authorization ID under which the type was

created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SOURCESCHEMA VARCHAR (128) Y Schema name of the source type for distinct

types. For user-defined structured types, this

is the type schema of the reference

representation type. Null for other types.

SOURCENAME VARCHAR (128) Y Unqualified name of the source type for

distinct types. For user-defined structured

types, this is the type name of the reference

representation type. Null for other types.

METATYPE CHAR (1) v A = Array type

v R = User-defined structured type

v S = System predefined type

v T = User-defined distinct type

TYPEID SMALLINT Identifier for the data type.

SOURCETYPEID SMALLINT Y Identifier for the source type (null for

built-in types). For user-defined structured

types, this is the identifier of the reference

representation type.

LENGTH INTEGER Maximum length of the type. 0 for built-in

parameterized types (for example, DECIMAL

and VARCHAR). For user-defined

structured types, this is the length of the

reference representation type.

SCALE SMALLINT Scale for distinct types or reference

representation types based on the built-in

DECIMAL type; 0 for all other types

(including DECIMAL itself). For user-defined

structured types, this indicates the length of

the reference representation type.

CODEPAGE SMALLINT Database code page for string types, distinct

types based on string types, or reference

representation types; 0 otherwise.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the

collation for the data type; null value

otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the

collation for the data type; null value

otherwise.

ARRAY_LENGTH INTEGER Y Maximum cardinality of the array. Null if the

type is not an array type.

CREATE_TIME TIMESTAMP Creation time of the data type.

ATTRCOUNT SMALLINT Number of attributes in the data type.

INSTANTIABLE CHAR (1) v N = Type cannot be instantiated

v Y = Type can be instantiated

SYSCAT.DATATYPES

Appendix D. Catalog views 551

Table 80. SYSCAT.DATATYPES Catalog View (continued)

Column Name Data Type Nullable Description

WITH_FUNC_ACCESS CHAR (1) v N = Methods for this type cannot be

invoked using function notation

v Y = All the methods for this type can be

invoked using function notation

FINAL CHAR (1) v N = The user-defined type can have

subtypes

v Y = The user-defined type cannot have

subtypes

INLINE_LENGTH INTEGER Maximum length of a structured type that

can be kept with a base table row; 0

otherwise.

NATURAL_INLINE_LENGTH INTEGER Y System-generated natural inline length of a

structured type instance. Null if this type is

not a structured type.

JARSCHEMA VARCHAR (128) Y Schema name of the JAR_ID that identifies

the Jar file containing the Java class that

implements the SQL type. Null if the

EXTERNAL NAME clause is not specified.

JAR_ID VARCHAR (128) Y Identifier for the Jar file that contains the

Java class that implements the SQL type.

Null if the EXTERNAL NAME clause is not

specified.

CLASS VARCHAR (384) Y Java class that implements the SQL type.

Null if the EXTERNAL NAME clause is not

specified.

SQLJ_REPRESENTATION CHAR (1) Y SQLJ ″representation_spec″ of the Java class

that implements the SQL type. Null if the

EXTERNAL NAME ... LANGUAGE JAVA

REPRESENTATION SPEC clause is not

specified.

v D = SQL data

v S = Serializable

ALTER_TIME TIMESTAMP Time at which the data type was last altered.

DEFINER1 VARCHAR (128) Authorization ID under which the type was

created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.DBAUTH

Each row represents a user or a group that has been granted one or more

database-level authorities.

 Table 81. SYSCAT.DBAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the authority.

SYSCAT.DATATYPES

552 SQL Reference, Volume 1

Table 81. SYSCAT.DBAUTH Catalog View (continued)

Column Name Data Type Nullable Description

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the authority.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

BINDADDAUTH CHAR (1) Authority to create packages.

v N = Not held

v Y = Held

CONNECTAUTH CHAR (1) Authority to connect to the database.

v N = Not held

v Y = Held

CREATETABAUTH CHAR (1) Authority to create tables.

v N = Not held

v Y = Held

DBADMAUTH CHAR (1) DBADM authority.

v N = Not held

v Y = Held

EXTERNALROUTINEAUTH CHAR (1) Authority to create external routines.

v N = Not held

v Y = Held

IMPLSCHEMAAUTH CHAR (1) Authority to implicitly create schemas by

creating objects in non-existent schemas.

v N = Not held

v Y = Held

LOADAUTH CHAR (1) Authority to use the DB2 load utility.

v N = Not held

v Y = Held

NOFENCEAUTH CHAR (1) Authority to create non-fenced user-defined

functions.

v N = Not held

v Y = Held

QUIESCECONNECTAUTH CHAR (1) Authority to access the database when it is

quiesced.

v N = Not held

v Y = Held

LIBRARYADMAUTH CHAR (1) Reserved for future use.

SECURITYADMAUTH CHAR (1) Security Administrator authority.

v N = Not held

v Y = Held

SYSCAT.DBAUTH

Appendix D. Catalog views 553

SYSCAT.DBPARTITIONGROUPDEF

Each row represents a database partition that is contained in a database partition

group.

 Table 82. SYSCAT.DBPARTITIONGROUPDEF Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group that

contains the database partition.

DBPARTITIONNUM SMALLINT Partition number of a database partition that

is contained in the database partition group.

A valid partition number is between 0 and

999, inclusive.

IN_USE CHAR (1) Status of the database partition.

v A = The newly added database partition is

not in the distribution map, but the

containers for the table spaces in the

database partition group have been

created; the database partition is added to

the distribution map when a redistribute

database partition group operation has

completed successfully

v D = The database partition will be

dropped when a redistribute database

partition group operation has completed

successfully

v T = The newly added database partition is

not in the distribution map, and it was

added using the WITHOUT

TABLESPACES clause; containers must be

added to the table spaces in the database

partition group

v Y = The database partition is in the

distribution map

SYSCAT.DBPARTITIONGROUPS

Each row represents a database partition group.

 Table 83. SYSCAT.DBPARTITIONGROUPS Catalog View

Column Name Data Type Nullable Description

DBPGNAME VARCHAR (128) Name of the database partition group.

OWNER VARCHAR (128) Authorization ID under which the database

partition group was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

PMAP_ID SMALLINT Identifier for the distribution map in the

SYSCAT.PARTITIONMAPS catalog view.

REDISTRIBUTE_PMAP_ID SMALLINT Identifier for the distribution map currently

being used for redistribution; -1 if

redistribution is currently not in progress.

SYSCAT.DBPARTITIONGROUPDEF

554 SQL Reference, Volume 1

Table 83. SYSCAT.DBPARTITIONGROUPS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Creation time of the database partition

group.

DEFINER1 VARCHAR (128) Authorization ID under which the database

partition group was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.EVENTMONITORS

Each row represents an event monitor.

 Table 84. SYSCAT.EVENTMONITORS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor.

OWNER VARCHAR (128) Authorization ID under which the event

monitor was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TARGET_TYPE CHAR (1) Type of target to which event data is written.

v F = File

v P = Pipe

v T = Table

TARGET VARCHAR (762) Name of the target to which file or pipe

event monitor data is written. For files, it can

be either an absolute path name or a relative

path name (relative to the database path for

the database; this can be seen using the LIST

ACTIVE DATABASES command). For pipes,

it can be an absolute path name.

MAXFILES INTEGER Y Maximum number of event files that this

event monitor permits in an event path. Null

if there is no maximum, or if TARGET_TYPE

is not ’F’ (file).

MAXFILESIZE INTEGER Y Maximum size (in 4K pages) that each event

file can attain before the event monitor

creates a new file. Null if there is no

maximum, or if TARGET_TYPE is not ’F’

(file).

BUFFERSIZE INTEGER Y Size of the buffer (in 4K pages) that is used

by event monitors with file targets; null

value otherwise.

IO_MODE CHAR (1) Y Mode of file input/output (I/O).

v B = Blocked

v N = Not blocked

v Null = TARGET_TYPE is not ’F’ (file) or

’T’ (table)

SYSCAT.DBPARTITIONGROUPS

Appendix D. Catalog views 555

Table 84. SYSCAT.EVENTMONITORS Catalog View (continued)

Column Name Data Type Nullable Description

WRITE_MODE CHAR (1) Y Indicates how this event monitor handles

existing event data when the monitor is

activated.

v A = Append

v R = Replace

v Null = TARGET_TYPE is not ’F’ (file)

AUTOSTART CHAR (1) Indicates whether this event monitor is to be

activated automatically when the database

starts.

v N = No

v Y = Yes

DBPARTITIONNUM SMALLINT Number of the database partition on which

the event monitor runs and logs events.

MONSCOPE CHAR (1) Monitoring scope.

v G = Global

v L = Local

v T = Each database partition on which the

table space exists

v Blank = WRITE TO TABLE event monitor

EVMON_ACTIVATES INTEGER Number of times the event monitor has been

activated.

NODENUM1 SMALLINT Number of the database partition on which

the event monitor runs and logs events.

DEFINER2 VARCHAR (128) Authorization ID under which the event

monitor was created.

REMARKS VARCHAR (254) Y Reserved for future use.

Note:

1. The NODENUM column is included for backwards compatibility. See DBPARTITIONNUM.

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.EVENTS

Each row represents an event that is being monitored. An event monitor, in

general, monitors multiple events.

 Table 85. SYSCAT.EVENTS Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor that is

monitoring this event.

SYSCAT.EVENTMONITORS

556 SQL Reference, Volume 1

Table 85. SYSCAT.EVENTS Catalog View (continued)

Column Name Data Type Nullable Description

TYPE VARCHAR (128) Type of event being monitored. Possible

values are:

v ACTIVITIES

v CONNECTIONS

v DATABASE

v DEADLOCKS

v DETAILDEADLOCKS

v STATEMENTS

v TABLES

v TABLESPACES

v THRESHOLD_VIOLATIONS

v TRANSACTIONS

v STATISTICS

FILTER CLOB (64K) Y Full text of the WHERE clause that applies

to this event.

SYSCAT.EVENTTABLES

Each row represents the target table of an event monitor that writes to SQL tables.

 Table 86. SYSCAT.EVENTTABLES Catalog View

Column Name Data Type Nullable Description

EVMONNAME VARCHAR (128) Name of the event monitor.

SYSCAT.EVENTS

Appendix D. Catalog views 557

Table 86. SYSCAT.EVENTTABLES Catalog View (continued)

Column Name Data Type Nullable Description

LOGICAL_GROUP VARCHAR (128) Name of the logical data group. Possible

values are:

v ACTIVITYHISTORY

v BUFFERPOOL

v CONN

v CONNHEADER

v CONTROL

v DATAVAL

v DB

v DEADLOCK

v DLCONN

v DLLOCK

v SCSTATS

v STMT

v STMTHIST

v STMTVALS

v SUBSECTION

v TABLE

v TABLESPACE

v THRESHOLDVIOLATIONS

v WCSTATS

v WLSTATS

v XACT

TABSCHEMA VARCHAR (128) Schema name of the target table.

TABNAME VARCHAR (128) Unqualified name of the target table.

PCTDEACTIVATE SMALLINT A percent value that specifies how full a

DMS table space must be before an event

monitor automatically deactivates. Set to 100

for SMS table spaces.

SYSCAT.FULLHIERARCHIES

Each row represents the relationship between a subtable and a supertable, a

subtype and a supertype, or a subview and a superview. All hierarchical

relationships, including immediate ones, are included in this view.

 Table 87. SYSCAT.FULLHIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR (1) Relationship type.

v R = Between structured types

v U = Between typed tables

v W = Between typed views

SUB_SCHEMA VARCHAR (128) Schema name of the subtype, subtable, or

subview.

SUB_NAME VARCHAR (128) Unqualified name of the subtype, subtable,

or subview.

SYSCAT.EVENTTABLES

558 SQL Reference, Volume 1

Table 87. SYSCAT.FULLHIERARCHIES Catalog View (continued)

Column Name Data Type Nullable Description

SUPER_SCHEMA VARCHAR (128) Y Schema name of the supertype, supertable,

or superview.

SUPER_NAME VARCHAR (128) Y Unqualified name of the supertype,

supertable, or superview.

ROOT_SCHEMA VARCHAR (128) Schema name of the table, view, or type that

is at the root of the hierarchy.

ROOT_NAME VARCHAR (128) Unqualified name of the table, view, or type

that is at the root of the hierarchy.

SYSCAT.FUNCMAPOPTIONS

Each row represents a function mapping option value.

 Table 88. SYSCAT.FUNCMAPOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping.

OPTION VARCHAR (128) Name of the function mapping option.

SETTING VARCHAR (2048) Value of the function mapping option.

SYSCAT.FUNCMAPPARMOPTIONS

Each row represents a function mapping parameter option value.

 Table 89. SYSCAT.FUNCMAPPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping.

ORDINAL SMALLINT Position of the parameter.

LOCATION CHAR (1) Location of the parameter.

v L = Local parameter

v R = Remote parameter

OPTION VARCHAR (128) Name of the function mapping parameter

option.

SETTING VARCHAR (2048) Value of the function mapping parameter

option.

SYSCAT.FUNCMAPPINGS

Each row represents a function mapping.

 Table 90. SYSCAT.FUNCMAPPINGS Catalog View

Column Name Data Type Nullable Description

FUNCTION_MAPPING VARCHAR (128) Name of the function mapping (might be

system-generated).

FUNCSCHEMA VARCHAR (128) Y Schema name of the function. If null, the

function is assumed to be a built-in function.

SYSCAT.FULLHIERARCHIES

Appendix D. Catalog views 559

Table 90. SYSCAT.FUNCMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

FUNCNAME VARCHAR (1024) Y Unqualified name of the user-defined or

built-in function.

FUNCID INTEGER Y Identifier for the function.

SPECIFICNAME VARCHAR (128) Y Name of the routine instance (might be

system-generated).

OWNER VARCHAR (128) Authorization ID under which the mapping

was created. ’SYSIBM’ indicates that this is a

built-in function.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

WRAPNAME VARCHAR (128) Y Wrapper to which this mapping applies.

SERVERNAME VARCHAR (128) Y Name of the data source.

SERVERTYPE VARCHAR (30) Y Type of data source to which this mapping

applies.

SERVERVERSION VARCHAR (18) Y Version of the server type to which this

mapping applies.

CREATE_TIME TIMESTAMP Time at which the mapping was created.

DEFINER1 VARCHAR (128) Authorization ID under which the mapping

was created. ’SYSIBM’ indicates that this is a

built-in function.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.HIERARCHIES

Each row represents the relationship between a subtable and its immediate

supertable, a subtype and its immediate supertype, or a subview and its immediate

superview. Only immediate hierarchical relationships are included in this view.

 Table 91. SYSCAT.HIERARCHIES Catalog View

Column Name Data Type Nullable Description

METATYPE CHAR (1) Relationship type.

v R = Between structured types

v U = Between typed tables

v W = Between typed views

SUB_SCHEMA VARCHAR (128) Schema name of the subtype, subtable, or

subview.

SUB_NAME VARCHAR (128) Unqualified name of the subtype, subtable,

or subview.

SUPER_SCHEMA VARCHAR (128) Schema name of the supertype, supertable,

or superview.

SUPER_NAME VARCHAR (128) Unqualified name of the supertype,

supertable, or superview.

SYSCAT.FUNCMAPPINGS

560 SQL Reference, Volume 1

Table 91. SYSCAT.HIERARCHIES Catalog View (continued)

Column Name Data Type Nullable Description

ROOT_SCHEMA VARCHAR (128) Schema name of the table, view, or type that

is at the root of the hierarchy.

ROOT_NAME VARCHAR (128) Unqualified name of the table, view, or type

that is at the root of the hierarchy.

SYSCAT.HISTOGRAMTEMPLATEBINS

Each row represents a histogram template bin.

 Table 92. SYSCAT.HISTOGRAMTEMPLATEBINS Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

BINID INTEGER Identifier for the histogram template bin.

BINUPPERVALUE BIGINT The upper value for a single bin in the

histogram template.

SYSCAT.HISTOGRAMTEMPLATES

Each row represents a histogram template.

 Table 93. SYSCAT.HISTOGRAMTEMPLATES Catalog View

Column Name Data Type Nullable Description

TEMPLATEID INTEGER Identifier for the histogram template.

TEMPLATENAME VARCHAR (128) Name of the histogram template.

CREATE_TIME TIMESTAMP Time at which the histogram template was

created.

ALTER_TIME TIMESTAMP Time at which the histogram template was

last altered.

NUMBINS INTEGER Number of bins in the histogram template,

including the last bin that has an unbounded

top value.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.HISTOGRAMTEMPLATEUSE

Each row represents a relationship between a workload management object that

can use histogram templates and a histogram template.

 Table 94. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View

Column Name Data Type Nullable Description

TEMPLATENAME VARCHAR (128) Y Name of the histogram template.

TEMPLATEID INTEGER Identifier for the histogram template.

SYSCAT.HIERARCHIES

Appendix D. Catalog views 561

Table 94. SYSCAT.HISTOGRAMTEMPLATEUSE Catalog View (continued)

Column Name Data Type Nullable Description

HISTOGRAMTYPE CHAR (1) The type of information collected by

histograms based on this template.

v C = Activity estimated cost histogram

v E = Activity execution time histogram

v I = Activity interarrival time histogram

v L = Activity life time histogram

v Q = Activity queue time histogram

v R = Request execution time histogram

OBJECTTYPE CHAR (1) The type of WLM object.

v b = Service class

v k = Work action

OBJECTID INTEGER Identifier of the WLM object.

SERVICECLASSNAME VARCHAR (128) Y Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y Name of the parent service class.

WORKACTIONNAME VARCHAR (128) Y Name of the work action.

WORKACTIONSETNAME VARCHAR (128) Y Name of the work action set.

SYSCAT.INDEXAUTH

Each row represents a user or group that has been granted CONTROL privilege on

an index.

 Table 95. SYSCAT.INDEXAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

CONTROLAUTH CHAR (1) CONTROL privilege.

v N = Not held

v Y = Held

SYSCAT.INDEXCOLUSE

Each row represents a column that participates in an index.

SYSCAT.HISTOGRAMTEMPLATEUSE

562 SQL Reference, Volume 1

Table 96. SYSCAT.INDEXCOLUSE Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

COLNAME VARCHAR (128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the index

(initial position is 1).

COLORDER CHAR (1) Order of the values in this index column.

Possible values are:

v A = Ascending

v D = Descending

v I = INCLUDE column (ordering ignored)

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the

collation for the column; null value

otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the

collation for the column; null value

otherwise.

SYSCAT.INDEXDEP

Each row represents a dependency of an index on some other object. The index

depends on an object of type BTYPE and name BNAME, so a change to the object

affects the index.

 Table 97. SYSCAT.INDEXDEP Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

SYSCAT.INDEXCOLUSE

Appendix D. Catalog views 563

Table 97. SYSCAT.INDEXDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v B = Trigger

v F = Routine instance

v H = Hierachy table

v K = Package

v L = Detached table

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v Q = Sequence

v R = Structured type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which there is

a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which

there is a dependency. For routines (BTYPE =

’F’), this is the specific name.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,

encodes the privileges on the table or view

that are required by the dependent index;

null value otherwise.

SYSCAT.INDEXES

Each row represents an index. Indexes on typed tables are represented by two

rows: one for the ″logical index″ on the typed table, and one for the ″H-index″ on

the hierarchy table.

 Table 98. SYSCAT.INDEXES Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

OWNER VARCHAR (128) Authorization ID under which the index was

created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or nickname on

which the index is defined.

SYSCAT.INDEXDEP

564 SQL Reference, Volume 1

Table 98. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

TABNAME VARCHAR (128) Unqualified name of the table or nickname

on which the index is defined.

COLNAMES VARCHAR (640) This column is no longer used and will be

removed in the next release. Use

SYSCAT.INDEXCOLUSE for this

information.

UNIQUERULE CHAR (1) Unique rule.

v D = Permits duplicates

v U = Unique

v P = Implements primary key

MADE_UNIQUE CHAR (1) v N = Index remains as it was created

v Y = This index was originally non-unique

but was converted to a unique index to

support a unique or primary key

constraint. If the constraint is dropped, the

index reverts to being non-unique.

COLCOUNT SMALLINT Number of columns in the key, plus the

number of include columns, if any.

UNIQUE_COLCOUNT SMALLINT Number of columns required for a unique

key. It is always <= COLCOUNT, and <

COLCOUNT only if there are include

columns; -1 if the index has no unique key

(that is, it permits duplicates).

INDEXTYPE5 CHAR (4) Type of index.

v BLOK = Block index

v CLUS = Clustering index (controls the

physical placement of newly inserted

rows)

v DIM = Dimension block index

v REG = Regular index

v XPTH = XML path index

v XRGN = XML region index

v XVIL = Index over XML column (logical)

v XVIP = Index over XML column (physical)

ENTRYTYPE CHAR (1) v H = This row represents an index on a

hierarchy table

v L = This row represents a logical index on

a typed table

v Blank = This row represents an index on

an untyped table

PCTFREE SMALLINT Percentage of each index page to be reserved

during the initial building of the index. This

space is available for data insertions after the

index has been built.

IID SMALLINT Identifier for the index.

NLEAF BIGINT Number of leaf pages; -1 if statistics are not

collected.

SYSCAT.INDEXES

Appendix D. Catalog views 565

Table 98. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

NLEVELS SMALLINT Number of index levels; -1 if statistics are

not collected.

FIRSTKEYCARD BIGINT Number of distinct first-key values; -1 if

statistics are not collected.

FIRST2KEYCARD BIGINT Number of distinct keys using the first two

columns of the index; -1 if statistics are not

collected, or if not applicable.

FIRST3KEYCARD BIGINT Number of distinct keys using the first three

columns of the index; -1 if statistics are not

collected, or if not applicable.

FIRST4KEYCARD BIGINT Number of distinct keys using the first four

columns of the index; -1 if statistics are not

collected, or if not applicable.

FULLKEYCARD BIGINT Number of distinct full-key values; -1 if

statistics are not collected.

CLUSTERRATIO3 SMALLINT Degree of data clustering with the index; -1

if statistics are not collected or if detailed

index statistics are collected (in which case,

CLUSTERFACTOR will be used instead).

CLUSTERFACTOR3 DOUBLE Finer measurement of the degree of

clustering; -1 if statistics are not collected or

if the index is defined on a nickname.

SEQUENTIAL_PAGES BIGINT Number of leaf pages located on disk in

index key order with few or no large gaps

between them; -1 if statistics are not

collected.

DENSITY INTEGER Ratio of SEQUENTIAL_PAGES to number of

pages in the range of pages occupied by the

index, expressed as a percent (integer

between 0 and 100); -1 if statistics are not

collected.

USER_DEFINED SMALLINT 1 if this index was defined by a user and has

not been dropped; 0 otherwise.

SYSTEM_REQUIRED SMALLINT v 1 if one or the other of the following

conditions is met:

– This index is required for a primary or

unique key constraint, or this index is a

dimension block index or composite

block index for a multidimensional

clustering (MDC) table.

– This is the index on the object identifier

(OID) column of a typed table.

v 2 if both of the following conditions are

met:

– This index is required for a primary or

unique key constraint, or this index is a

dimension block index or composite

block index for an MDC table.

– This is the index on the OID column of

a typed table.

v 0 otherwise.

SYSCAT.INDEXES

566 SQL Reference, Volume 1

Table 98. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Time when the index was created.

STATS_TIME TIMESTAMP Y Last time that any change was made to the

recorded statistics for this index. Null if no

statistics are available.

PAGE_FETCH_PAIRS3 VARCHAR (520) A list of pairs of integers, represented in

character form. Each pair represents the

number of pages in a hypothetical buffer,

and the number of page fetches required to

scan the table with this index using that

hypothetical buffer. Zero-length string if no

data is available.

MINPCTUSED SMALLINT A non-zero integer value indicates that the

index is enabled for online defragmentation,

and represents the minimum percentage of

used space on a page before a page merge

can be attempted. A zero value indicates that

no page merge is attempted.

REVERSE_SCANS CHAR (1) v N = Index does not support reverse scans

v Y = Index supports reverse scans

INTERNAL_FORMAT SMALLINT Possible values are:

v 1 = Index does not have backward

pointers

v 2 or greater = Index has backward

pointers

v 6 = Index is a composite block index

IESCHEMA VARCHAR (128) Y Schema name of the index extension. Null

for ordinary indexes.

IENAME VARCHAR (128) Y Unqualified name of the index extension.

Null for ordinary indexes.

IEARGUMENTS CLOB (64K) Y External information of the parameter

specified when the index is created. Null for

ordinary indexes.

INDEX_OBJECTID INTEGER Identifier for the index object.

NUMRIDS BIGINT Total number of row identifiers (RIDs) or

block identifiers (BIDs) in the index; -1 if not

known.

NUMRIDS_DELETED BIGINT Total number of row identifiers (or block

identifiers) in the index that are marked

deleted, excluding those identifiers on leaf

pages on which all the identifiers are marked

deleted.

NUM_EMPTY_LEAFS BIGINT Total number of index leaf pages that have

all of their row identifiers (or block

identifiers) marked deleted.

AVERAGE_RANDOM_FETCH_

PAGES1,2

DOUBLE Average number of random table pages

between sequential page accesses when

fetching using the index; -1 if not known.

AVERAGE_RANDOM_PAGES2 DOUBLE Average number of random table pages

between sequential page accesses; -1 if not

known.

SYSCAT.INDEXES

Appendix D. Catalog views 567

Table 98. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

AVERAGE_SEQUENCE_GAP2 DOUBLE Gap between index page sequences. Detected

through a scan of index leaf pages, each gap

represents the average number of index

pages that must be randomly fetched

between sequences of index pages; -1 if not

known.

AVERAGE_SEQUENCE_FETCH_

GAP1,2

DOUBLE Gap between table page sequences when

fetching using the index. Detected through a

scan of index leaf pages, each gap represents

the average number of table pages that must

be randomly fetched between sequences of

table pages; -1 if not known.

AVERAGE_SEQUENCE_PAGES2 DOUBLE Average number of index pages that are

accessible in sequence (that is, the number of

index pages that the prefetchers would

detect as being in sequence); -1 if not known.

AVERAGE_SEQUENCE_FETCH_

PAGES1,2

DOUBLE Average number of table pages that are

accessible in sequence (that is, the number of

table pages that the prefetchers would detect

as being in sequence) when fetching using

the index; -1 if not known.

TBSPACEID INTEGER Identifier for the index table space.

LEVEL2PCTFREE SMALLINT Percentage of each index level 2 page to be

reserved during initial building of the index.

This space is available for future inserts after

the index has been built.

PAGESPLIT CHAR (1) Index page split behavior.

v H = High

v L = Low

v S = Symmetric

AVGPARTITION_

CLUSTERRATIO3

SMALLINT Degree of data clustering within a single

data partition. -1 if the table is not

partitioned, if statistics are not collected, or if

detailed statistics are collected (in which case

AVGPARTITION_ CLUSTERFACTOR will be

used instead).

AVGPARTITION_

CLUSTERFACTOR3

DOUBLE Finer measurement of the degree of

clustering within a single data partition. -1 if

the table is not partitioned, if statistics are

not collected, or if the index is defined on a

nickname.

AVGPARTITION_PAGE_FETCH_

PAIRS3

VARCHAR (520) A list of paired integers in character form.

Each pair represents a potential buffer pool

size and the corresponding page fetches

required to access a single data partition

from the table. Zero-length string if no data

is available, or if the table is not partitioned.

DATAPARTITION_

CLUSTERFACTOR

DOUBLE A statistic measuring the ″clustering″ of the

index keys with regard to data partitions. It

is a number between 0 and 1, with 1

representing perfect clustering and 0

representing no clustering.

SYSCAT.INDEXES

568 SQL Reference, Volume 1

Table 98. SYSCAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable Description

INDCARD BIGINT Cardinality of the index. This might be

different from the cardinality of the table for

indexes that do not have a one-to-one

relationship between the table rows and the

index entries.

OS_PTR_SIZE INTEGER Platform word size with which the index

was created.

v 32 = 32-bit

v 64 = 64-bit

COLLECTSTATISTICS CHAR (1) Specifies how statistics were collected at

index creation time.

v D = Collect detailed index statistics

v S = Collect sampled detailed index

statistics

v Y = Collect basic index statistics

v Blank = Do not collect index statistics

DEFINER4 VARCHAR (128) Authorization ID under which the index was

created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. When using DMS table spaces, this statistic cannot be computed.

2. Prefetch statistics are not gathered during a LOAD...STATISTICS YES, or a CREATE INDEX...COLLECT

STATISTICS operation, or when the database configuration parameter seqdetect is turned off.

3. AVGPARTITION_CLUSTERRATIO, AVGPARTITION_CLUSTERFACTOR, and

AVGPARTITION_PAGE_FETCH_PAIRS measure the degree of clustering within a single data partition (local

clustering). CLUSTERRATIO, CLUSTERFACTOR, and PAGE_FETCH_PAIRS measure the degree of clustering in

the entire table (global clustering). Global clustering and local clustering values can diverge significantly if the

table partitioning key is not a prefix of the index key, or when the table partitioning key and the index key are

logically independent of each other.

4. The DEFINER column is included for backwards compatibility. See OWNER.

5. The XPTH, XRGN, and XVIP indexes are not recognized by any application programming interface that returns

index metadata.

SYSCAT.INDEXEXPLOITRULES

Each row represents an index exploitation rule.

 Table 99. SYSCAT.INDEXEXPLOITRULES Catalog View

Column Name Data Type Nullable Description

FUNCID INTEGER Identifier for the function.

SPECID SMALLINT Number of the predicate specification.

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

RULEID SMALLINT Identifier for the exploitation rule.

SEARCHMETHODID SMALLINT Identifier for the search method in the

specific index extension.

SEARCHKEY VARCHAR (640) Key used to exploit the index.

SYSCAT.INDEXES

Appendix D. Catalog views 569

Table 99. SYSCAT.INDEXEXPLOITRULES Catalog View (continued)

Column Name Data Type Nullable Description

SEARCHARGUMENT VARCHAR (2700) Search arguments used to exploit the index.

EXACT CHAR (1) v N = Index lookup is not exact in terms of

predicate evaluation

v Y = Index lookup is exact in terms of

predicate evaluation

SYSCAT.INDEXEXTENSIONDEP

Each row represents a dependency of an index extension on some other object. The

index extension depends on the object of type BTYPE of name BNAME, so a

change to the object affects the index extension.

 Table 100. SYSCAT.INDEXEXTENSIONDEP Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v B = Trigger

v F = Routine instance

v H = Hierachy table

v K = Package

v L = Detached table

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v Q = Sequence

v R = Structured type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which there is

a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which

there is a dependency. For routines (BTYPE =

’F’), this is the specific name.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,

encodes the privileges on the table or view

that are required by the dependent index

extension; null value otherwise.

SYSCAT.INDEXEXPLOITRULES

570 SQL Reference, Volume 1

SYSCAT.INDEXEXTENSIONMETHODS

Each row represents a search method. An index extension can contain more than

one search method.

 Table 101. SYSCAT.INDEXEXTENSIONMETHODS Catalog View

Column Name Data Type Nullable Description

METHODNAME VARCHAR (128) Name of the search method.

METHODID SMALLINT Number of the method in the index

extension.

IESCHEMA VARCHAR (128) Schema name of the index extension on

which this method is defined.

IENAME VARCHAR (128) Unqualified name of the index extension on

which this method is defined.

RANGEFUNCSCHEMA VARCHAR (128) Schema name of the range-through function.

RANGEFUNCNAME VARCHAR (128) Unqualified name of the range-through

function.

RANGESPECIFICNAME VARCHAR (128) Function-specific name of the range-through

function.

FILTERFUNCSCHEMA VARCHAR (128) Y Schema name of the filter function.

FILTERFUNCNAME VARCHAR (128) Y Unqualified name of the filter function.

FILTERSPECIFICNAME VARCHAR (128) Y Function-specific name of the filter function.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.INDEXEXTENSIONPARMS

Each row represents an index extension instance parameter or source key column.

 Table 102. SYSCAT.INDEXEXTENSIONPARMS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

ORDINAL SMALLINT Sequence number of the parameter or key

column.

PARMNAME VARCHAR (128) Name of the parameter or key column.

TYPESCHEMA VARCHAR (128) Schema name of the data type of the

parameter or key column.

TYPENAME VARCHAR (128) Unqualified name of the data type of the

parameter or key column.

LENGTH INTEGER Data type length of the parameter or key

column.

SCALE SMALLINT Data type scale of the parameter or key

column; 0 if not applicable.

PARMTYPE CHAR (1) v K = Source key column

v P = Index extension instance parameter

CODEPAGE SMALLINT Code page of the index extension instance

parameter; 0 if not a string type.

SYSCAT.INDEXEXTENSIONMETHODS

Appendix D. Catalog views 571

Table 102. SYSCAT.INDEXEXTENSIONPARMS Catalog View (continued)

Column Name Data Type Nullable Description

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the

collation for the parameter; null value

otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the

collation for the parameter; null value

otherwise.

SYSCAT.INDEXEXTENSIONS

Each row represents an index extension.

 Table 103. SYSCAT.INDEXEXTENSIONS Catalog View

Column Name Data Type Nullable Description

IESCHEMA VARCHAR (128) Schema name of the index extension.

IENAME VARCHAR (128) Unqualified name of the index extension.

OWNER VARCHAR (128) Authorization ID under which the index

extension was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the index extension was

defined.

KEYGENFUNCSCHEMA VARCHAR (128) Schema name of the key generation function.

KEYGENFUNCNAME VARCHAR (128) Unqualified name of the key generation

function.

KEYGENSPECIFICNAME VARCHAR (128) Name of the key generation function

instance (might be system-generated).

TEXT CLOB (2M) Full text of the CREATE INDEX

EXTENSION statement.

DEFINER1 VARCHAR (128) Authorization ID under which the index

extension was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.INDEXOPTIONS

Each row represents an index-specific option value.

 Table 104. SYSCAT.INDEXOPTIONS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

OPTION VARCHAR (128) Name of the index option.

SETTING VARCHAR (2048) Value of the index option.

SYSCAT.INDEXEXTENSIONPARMS

572 SQL Reference, Volume 1

SYSCAT.INDEXXMLPATTERNS

Each row represents a pattern clause in an index over an XML column.

 Table 105. SYSCAT.INDEXXMLPATTERNS Catalog View

Column Name Data Type Nullable Description

INDSCHEMA VARCHAR (128) Schema name of the logical index.

INDNAME VARCHAR (128) Unqualified name of the logical index.

PINDNAME VARCHAR (128) Unqualified name of the physical index.

PINDID SMALLINT Identifier for the physical index.

TYPEMODEL CHAR (1) v Q = SQL DATA TYPE (Ignore invalid

values)

v R = SQL DATA TYPE (Reject invalid

values)

DATATYPE VARCHAR (128) Name of the data type.

HASHED CHAR (1) Indicates whether or not the value is hashed.

v N = Not hashed

v Y = Hashed

LENGTH SMALLINT VARCHAR (n) length; 0 otherwise.

PATTERNID SMALLINT Identifier for the pattern.

PATTERN CLOB (2M) Y Definition of the pattern.

Note:

1. When indexes over XML columns are created, logical indexes that utilize XML pattern information are created,

resulting in the creation of physical B-tree indexes with DB2-generated key columns to support the logical

indexes. A physical index is created to support the data type that is specified in the xmltype-clause of the

CREATE INDEX statement.

SYSCAT.KEYCOLUSE

Each row represents a column that participates in a key defined by a unique,

primary key, or foreign key constraint.

 Table 106. SYSCAT.KEYCOLUSE Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table containing the

column.

TABNAME VARCHAR (128) Unqualified name of the table containing the

column.

COLNAME VARCHAR (128) Name of the column.

COLSEQ SMALLINT Numeric position of the column in the key

(initial position is 1).

SYSCAT.INDEXXMLPATTERNS

Appendix D. Catalog views 573

SYSCAT.NAMEMAPPINGS

Each row represents the mapping between a ″logical″ object (typed table or view

and its columns and indexes, including inherited columns) and the corresponding

″implementation″ object (hierarchy table or hierarchy view and its columns and

indexes) that implements the logical object.

 Table 107. SYSCAT.NAMEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE CHAR (1) v C = Column

v I = Index

v U = Typed table

LOGICAL_SCHEMA VARCHAR (128) Schema name of the logical object.

LOGICAL_NAME VARCHAR (128) Unqualified name of the logical object.

LOGICAL_COLNAME VARCHAR (128) Y Name of the logical column if TYPE = ’C’;

null value otherwise.

IMPL_SCHEMA VARCHAR (128) Schema name of the implementation object

that implements the logical object.

IMPL_NAME VARCHAR (128) Unqualified name of the implementation

object that implements the logical object.

IMPL_COLNAME VARCHAR (128) Y Name of the implementation column if TYPE

= ’C’; null value otherwise.

SYSCAT.NICKNAMES

Each row represents a nickname.

 Table 108. SYSCAT.NICKNAMES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the nickname.

TABNAME VARCHAR (128) Unqualified name of the nickname.

OWNER VARCHAR (128) User who created the nickname.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

STATUS CHAR (1) Status of the object.

v C = Set integrity pending

v N = Normal

v X = Inoperative

CREATE_TIME TIMESTAMP Time at which the object was created.

STATS_TIME TIMESTAMP Y Time at which any change was last made to

recorded statistics for this object. Null if

statistics are not collected.

COLCOUNT SMALLINT Number of columns, including inherited

columns (if any).

TABLEID SMALLINT Internal logical object identifier.

TBSPACEID SMALLINT Internal logical identifier for the primary

table space for this object.

SYSCAT.NAMEMAPPINGS

574 SQL Reference, Volume 1

Table 108. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

CARD BIGINT Total number of rows; -1 if statistics are not

collected.

NPAGES BIGINT Total number of pages on which the rows of

the nickname exist; -1 if statistics are not

gathered.

FPAGES BIGINT Total number of pages; -1 if statistics are not

gathered.

OVERFLOW BIGINT Total number of overflow records; -1 if

statistics are not gathered.

PARENTS SMALLINT Y Number of parent tables for this object; that

is, the number of referential constraints in

which this object is a dependent.

CHILDREN SMALLINT Y Number of dependent tables for this object;

that is, the number of referential constraints

in which this object is a parent.

SELFREFS SMALLINT Y Number of self-referencing referential

constraints for this object; that is, the number

of referential constraints in which this object

is both a parent and a dependent.

KEYCOLUMNS SMALLINT Y Number of columns in the primary key.

KEYINDEXID SMALLINT Y Index identifier for the primary key index; 0

or the null value if there is no primary key.

KEYUNIQUE SMALLINT Number of unique key constraints (other

than the primary key constraint) defined on

this object.

CHECKCOUNT SMALLINT Number of check constraints defined on this

object.

DATACAPTURE CHAR (1) v L = Nickname participates in data

replication, including replication of LONG

VARCHAR and LONG VARGRAPHIC

columns

v N = Nickname does not participate in data

replication

v Y = Nickname participates in data

replication

SYSCAT.NICKNAMES

Appendix D. Catalog views 575

Table 108. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

CONST_CHECKED CHAR (32) v Byte 1 represents foreign key constraint.

v Byte 2 represents check constraint.

v Byte 5 represents materialized query table.

v Byte 6 represents generated column.

v Byte 7 represents staging table.

v Byte 8 represents data partitioning

constraint.

v Other bytes are reserved for future use.

Possible values are:

v F = In byte 5, the materialized query table

cannot be refreshed incrementally. In byte

7, the content of the staging table is

incomplete and cannot be used for

incremental refresh of the associated

materialized query table.

v N = Not checked

v U = Checked by user

v W = Was in ’U’ state when the table was

placed in set integrity pending state

v Y = Checked by system

PARTITION_MODE CHAR (1) Reserved for future use.

STATISTICS_PROFILE CLOB (10M) Y RUNSTATS command used to register a

statistical profile for the object.

ACCESS_MODE CHAR (1) Access restriction state of the object. These

states only apply to objects that are in set

integrity pending state or to objects that

were processed by a SET INTEGRITY

statement. Possible values are:

v D = No data movement

v F = Full access

v N = No access

v R = Read-only access

CODEPAGE SMALLINT Code page of the object. This is the default

code page used for all character columns,

triggers, check constraints, and

expression-generated columns.

REMOTE_TABLE VARCHAR (128) Y Unqualified name of the specific data source

object (such as a table or a view) for which

the nickname was created.

REMOTE_SCHEMA VARCHAR (128) Y Schema name of the specific data source

object (such as a table or a view) for which

the nickname was created.

SERVERNAME VARCHAR (128) Y Name of the data source that contains the

table or view for which the nickname was

created.

SYSCAT.NICKNAMES

576 SQL Reference, Volume 1

Table 108. SYSCAT.NICKNAMES Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_TYPE CHAR (1) Y Type of object at the data source.

v A = Alias

v N = Nickname

v S = Materialized query table

v T = Table (untyped)

v V = View (untyped)

CACHINGALLOWED VARCHAR (1) v N = Caching is not allowed

v Y = Caching is allowed

DEFINER1 VARCHAR (128) Authorization ID under which the table,

view, alias, or nickname was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.PACKAGEAUTH

Each row represents a user or group that has been granted one or more privileges

on a package.

 Table 109. SYSCAT.PACKAGEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

CONTROLAUTH CHAR (1) CONTROL privilege.

v N = Not held

v Y = Held

BINDAUTH CHAR (1) Privilege to bind the package.

v G = Held and grantable

v N = Not held

v Y = Held

EXECUTEAUTH CHAR (1) Privilege to execute the package.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.NICKNAMES

Appendix D. Catalog views 577

SYSCAT.PACKAGEDEP

Each row represents a dependency of a package on some other object. The package

depends on the object of type BTYPE of name BNAME, so a change to the object

affects the package.

 Table 110. SYSCAT.PACKAGEDEP Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

BINDER VARCHAR (128) Binder of the package.

BINDERTYPE CHAR (1) v U = Binder is an individual user

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v B = Trigger

v D = Server definition

v F = Routine instance

v I = Index

v M = Function mapping

v N = Nickname

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v P = Page size

v Q = Sequence object

v R = User-defined data type

v S = Materialized query table

v T = Table (untyped)

v U = Typed table

v V = View (untyped)

v W = Typed view

v Z = XSR object

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of an object on which the

package depends.

BNAME VARCHAR (128) Unqualified name of an object on which the

package depends.

TABAUTH SMALLINT Y If BTYPE is ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,

encodes the privileges that are required by

this package (SELECT, INSERT, UPDATE, or

DELETE).

UNIQUE_ID CHAR (8) FOR BIT

DATA

Identifier for a specific package when

multiple packages having the same name

exist.

PKGVERSION VARCHAR (64) Y Version identifier for the package.

Note:

1. If a function instance with dependencies is dropped, the package is put into an ″inoperative″ state, and it must be

explicitly rebound. If any other object with dependencies is dropped, the package is put into an ″invalid″ state,

and the system will attempt to rebind the package automatically when it is first referenced.

SYSCAT.PACKAGEDEP

578 SQL Reference, Volume 1

SYSCAT.PACKAGES

Each row represents a package that has been created by binding an application

program.

 Table 111. SYSCAT.PACKAGES Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

BOUNDBY VARCHAR (128) Authorization ID of the binder of the

package.

BOUNDBYTYPE CHAR (1) v U = The binder is an individual user

OWNER VARCHAR (128) Authorization ID under which the package

was bound.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

DEFAULT_SCHEMA VARCHAR (128) Default schema name used for unqualified

names in static SQL statements.

VALID1 CHAR (1) v N = Needs rebinding

v V = Validate at run time

v X = Package is inoperative because some

function instance on which it depends has

been dropped; explicit rebind is needed

v Y = Valid

UNIQUE_ID CHAR (8) FOR BIT

DATA

Identifier for a specific package when

multiple packages having the same name

exist.

TOTAL_SECT SMALLINT Number of sections in the package.

FORMAT CHAR (1) Date and time format associated with the

package.

v 0 = Format associated with the territory

code of the client

v 1 = USA

v 2 = EUR

v 3 = ISO

v 4 = JIS

v 5 = LOCAL

ISOLATION CHAR (2) Y Isolation level.

v CS = Cursor Stability

v RR = Repeatable Read

v RS = Read Stability

v UR = Uncommitted Read

BLOCKING CHAR (1) Y Cursor blocking option.

v B = Block all cursors

v N = No blocking

v U = Block unambiguous cursors

SYSCAT.PACKAGEDEP

Appendix D. Catalog views 579

Table 111. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

INSERT_BUF CHAR (1) Setting of the INSERT bind option (applies

to partitioned database systems).

v N = Inserts are not buffered

v Y = Inserts are buffered at the coordinator

database partition to minimize traffic

among database partitions

LANG_LEVEL CHAR (1) Y Setting of the LANGLEVEL bind option.

v 0 = SAA1

v 1 = MIA

v 2 = SQL92E

FUNC_PATH CLOB (2K) SQL path used by the last bind operation for

this package. This is used as the default path

for rebind operations. ’SYSIBM’ for

pre-Version 2 packages.

QUERYOPT INTEGER Optimization class under which this package

was bound. Used for rebind operations.

EXPLAIN_LEVEL CHAR (1) Indicates whether Explain was requested

using the EXPLAIN or EXPLSNAP bind

option.

v P = Package selection level

v Blank = No Explain requested

EXPLAIN_MODE CHAR (1) Value of the EXPLAIN bind option.

v A = ALL

v N = No

v R = REOPT

v Y = Yes

EXPLAIN_SNAPSHOT CHAR (1) Value of the EXPLSNAP bind option.

v A = ALL

v N = No

v R = REOPT

v Y = Yes

SQLWARN CHAR (1) Indicates whether or not positive SQLCODEs

resulting from dynamic SQL statements are

returned to the application.

v N = No, they are suppressed

v Y = Yes

SQLMATHWARN CHAR (1) Value of the dft_sqlmathwarn database

configuration parameter at bind time.

Indicates whether arithmetic and retrieval

conversion errors return warnings and null

values (indicator -2), allowing query

processing to continue whenever possible.

v N = No, errors are returned

v Y = Yes, warnings are returned

SYSCAT.PACKAGES

580 SQL Reference, Volume 1

Table 111. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

EXPLICIT_BIND_TIME TIMESTAMP Time at which this package was last

explicitly bound or rebound. When the

package is implicitly rebound, no function

instance that was created later than this time

will be selected.

LAST_BIND_TIME TIMESTAMP Time at which the package was last explicitly

or implicitly bound or rebound. Used to

check the validity of Explain data.

CODEPAGE SMALLINT Application code page at bind time; -1 if not

known.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the

package.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the

package.

COLLATIONSCHEMA_

ORDERBY

VARCHAR (128) Schema name of the collation for ORDER BY

clauses in the package.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for

ORDER BY clauses in the package.

DEGREE CHAR (5) Degree of intra-partition parallelism that was

specified when the package was bound.

v 1 = No parallelism

v 2-32767 = User-specified limit

v ANY = Degree determined by the system

(no limit specified)

MULTINODE_PLANS CHAR (1) v N = Package was not bound in a

partitioned database environment

v Y = Package was bound in a partitioned

database environment

INTRA_PARALLEL CHAR (1) Use of intra-partition parallelism by static

SQL statements within the package.

v F = One or more static SQL statements in

this package can use intra-partition

parallelism; this parallelism has been

disabled for use on a system that is not

configured for intra-partition parallelism

v N = No static SQL statement uses

intra-partition parallelism

v Y = One or more static SQL statements in

the package use intra-partition parallelism

VALIDATE CHAR (1) Indicates whether validity checking can be

deferred until run time.

v B = All checking must be performed at

bind time

v R = Validation of tables, views, and

privileges that do not exist at bind time is

performed at run time

SYSCAT.PACKAGES

Appendix D. Catalog views 581

Table 111. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

DYNAMICRULES CHAR (1) v B = BIND; dynamic SQL statements are

executed with DYNAMICRULES BIND

behavior

v D = DEFINERBIND; when the package is

run within a routine context, dynamic SQL

statements in the package are executed

with DEFINE behavior; when the package

is not run within a routine context,

dynamic SQL statements in the package

are executed with BIND behavior

v E = DEFINERRUN; when the package is

run within a routine context, dynamic SQL

statements in the package are executed

with DEFINE behavior; when the package

is not run within a routine context,

dynamic SQL statements in the package

are executed with RUN behavior

v H = INVOKEBIND; when the package is

run within a routine context, dynamic SQL

statements in the package are executed

with INVOKE behavior; when the package

is not run within a routine context,

dynamic SQL statements in the package

are executed with BIND behavior

v I = INVOKERUN; when the package is

run within a routine context, dynamic SQL

statements in the package are executed

with INVOKE behavior; when the package

is not run within a routine context,

dynamic SQL statements in the package

are executed with RUN behavior

v R = RUN; dynamic SQL statements are

executed with RUN behavior; this is the

default

SQLERROR CHAR (1) SQLERROR option on the most recent

subcommand that bound or rebound the

package.

v C = CONTINUE; creates a package, even

if errors occur while binding SQL

statements

v N = NOPACKAGE; does not create a

package or a bind file if an error occurs

REFRESHAGE DECIMAL (20,6) Timestamp duration indicating the

maximum length of time between execution

of a REFRESH TABLE statement for a

materialized query table (MQT) and when

that MQT is used in place of a base table.

FEDERATED CHAR (1) v N = FEDERATED bind or prep option is

turned off

v U = FEDERATED bind or prep option was

not specified

v Y = FEDERATED bind or prep option is

turned on

SYSCAT.PACKAGES

582 SQL Reference, Volume 1

Table 111. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

TRANSFORMGROUP VARCHAR (1024) Y Value of the TRANSFORM GROUP bind

option; null if a transform group is not

specified.

REOPTVAR CHAR (1) Indicates whether the access path is

determined again at execution time using

input variable values.

v A = Access path is reoptimized for every

OPEN or EXECUTE request

v N = Access path is determined at bind

time

v O = Access path is reoptimized only at the

first OPEN or EXECUTE request; it is

subsequently cached

OS_PTR_SIZE INTEGER Word size for the platform on which the

package was created.

v 32 = Package is a 32-bit package

v 64 = Package is a 64-bit package

PKGVERSION VARCHAR (64) Version identifier for the package.

PKG_CREATE_TIME TIMESTAMP Time at which the package was first bound.

STATICREADONLY CHAR (1) Indicates whether or not static cursors will

be treated as READ ONLY. Possible values

are:

v N = Static cursors take on the attributes

that would normally be generated for the

given statement text and the setting of the

LANGLEVEL precompile option

v Y = Any static cursor that does not contain

the FOR UPDATE or the FOR READ

ONLY clause is considered READ ONLY

FEDERATED_ASYNCHRONY INTEGER Indicates the limit on asynchrony (the

number of ATQs in the plan) as a bind

option when the package was bound.

v 0 = No asynchrony

v n = User-specified limit (32 767

maximum)

v -1 = Degree of asynchrony determined by

the system

v -2 = Degree of asynchrony not specified

For a non-federated system, the value is 0.

OPTPROFILESCHEMA VARCHAR (128) Y Value of the optimization profile schema

specified as part of the OPTPROFILE bind

option.

OPTPROFILENAME VARCHAR (128) Y Value of the optimization profile name

specified as part of the OPTPROFILE bind

option.

DEFINER2 VARCHAR (128) Authorization ID under which the package

was bound.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.PACKAGES

Appendix D. Catalog views 583

Table 111. SYSCAT.PACKAGES Catalog View (continued)

Column Name Data Type Nullable Description

Note:

1. If a function instance with dependencies is dropped, the package is put into an ″inoperative″ state, and it must be

explicitly rebound. If any other object with dependencies is dropped, the package is put into an ″invalid″ state,

and the system will attempt to rebind the package automatically when it is first referenced.

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.PARTITIONMAPS

Each row represents a distribution map that is used to distribute the rows of a

table among the database partitions in a database partition group, based on

hashing the table’s distribution key.

 Table 112. SYSCAT.PARTITIONMAPS Catalog View

Column Name Data Type Nullable Description

PMAP_ID SMALLINT Identifier for the distribution map.

PARTITIONMAP BLOB (8192) Distribution map, a vector of 4096 two-byte

integers for a multiple partition database

partition group. For a single partition

database partition group, there is one entry

denoting the partition number of the single

partition.

SYSCAT.PASSTHRUAUTH

Each row represents a user or group that has been granted pass-through

authorization to query a data source.

 Table 113. SYSCAT.PASSTHRUAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SERVERNAME VARCHAR (128) Name of the data source to which

authorization is being granted.

SYSCAT.PREDICATESPECS

Each row represents a predicate specification.

SYSCAT.PACKAGES

584 SQL Reference, Volume 1

Table 114. SYSCAT.PREDICATESPECS Catalog View

Column Name Data Type Nullable Description

FUNCSCHEMA VARCHAR (128) Schema name of the function.

FUNCNAME VARCHAR (128) Unqualified name of the function.

SPECIFICNAME VARCHAR (128) Name of the function instance.

FUNCID INTEGER Identifier for the function.

SPECID SMALLINT Number of this predicate specification.

CONTEXTOP CHAR (8) Comparison operator, one of the built-in

relational operators (=, <, >, >=, and so on).

CONTEXTEXP CLOB (2M) Constant, or an SQL expression.

FILTERTEXT CLOB (32K) Y Text of the data filter expression.

SYSCAT.REFERENCES

Each row represents a referential integrity (foreign key) constraint.

 Table 115. SYSCAT.REFERENCES Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the dependent table.

TABNAME VARCHAR (128) Unqualified name of the dependent table.

OWNER VARCHAR (128) Authorization ID under which the constraint

was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

REFKEYNAME VARCHAR (128) Name of the parent key.

REFTABSCHEMA VARCHAR (128) Schema name of the parent table.

REFTABNAME VARCHAR (128) Unqualified name of the parent table.

COLCOUNT SMALLINT Number of columns in the foreign key.

DELETERULE CHAR (1) Delete rule.

v A = NO ACTION

v C = CASCADE

v N = SET NULL

v R = RESTRICT

UPDATERULE CHAR (1) Update rule.

v A = NO ACTION

v R = RESTRICT

CREATE_TIME TIMESTAMP Time at which the constraint was defined.

FK_COLNAMES VARCHAR (640) This column is no longer used and will be

removed in a future release. Use

SYSCAT.KEYCOLUSE for this information.

PK_COLNAMES VARCHAR (640) This column is no longer used and will be

removed in a future release. Use

SYSCAT.KEYCOLUSE for this information.

SYSCAT.PREDICATESPECS

Appendix D. Catalog views 585

Table 115. SYSCAT.REFERENCES Catalog View (continued)

Column Name Data Type Nullable Description

DEFINER1 VARCHAR (128) Authorization ID under which the constraint

was created.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.ROLEAUTH

Each row represents a role granted to a user, group, role, or PUBLIC.

 Table 116. SYSCAT.ROLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Authorization ID that granted the role.

GRANTORTYPE CHAR (1) v U = Grantor is an individual user

GRANTEE VARCHAR (128) Authorization ID to which the role was

granted.

GRANTEETYPE CHAR (1) v G = The grantee is a group

v R = The grantee is a role

v U = The grantee is an individual user

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

ADMIN CHAR (1) Privilege to grant or revoke the role to or

from others, or to comment on the role.

v N = Not held

v Y = Held

SYSCAT.ROLES

Each row represents a role.

 Table 117. SYSCAT.ROLES Catalog View

Column Name Data Type Nullable Description

ROLENAME VARCHAR (128) Name of the role.

ROLEID INTEGER Identifier for the role.

CREATE_TIME TIMESTAMP Time when the role was created.

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.ROUTINEAUTH

Each row represents a user or group that has been granted EXECUTE privilege on

a particular routine (function, method, or procedure), or on all routines in a

particular schema in the database.

SYSCAT.REFERENCES

586 SQL Reference, Volume 1

Table 118. SYSCAT.ROUTINEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege. ’SYSIBM’ if the

privilege was granted by the system.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SCHEMA VARCHAR (128) Schema name of the routine.

SPECIFICNAME VARCHAR (128) Y Specific name of the routine. If

SPECIFICNAME is null and ROUTINETYPE

is not ’M’, the privilege applies to all

routines of the type specified in

ROUTINETYPE in the schema specified in

SCHEMA. If SPECIFICNAME is null and

ROUTINETYPE is ’M’, the privilege applies

to all methods for the subject type specified

by TYPENAME in the schema specified by

TYPESCHEMA. If SPECIFICNAME is null,

ROUTINETYPE is ’M’, and both

TYPENAME and TYPESCHEMA are null,

the privilege applies to all methods for all

types in the schema.

TYPESCHEMA VARCHAR (128) Y Schema name of the type for the method.

Null if ROUTINETYPE is not ’M’.

TYPENAME VARCHAR (128) Y Unqualified name of the type for the

method. Null if ROUTINETYPE is not ’M’. If

TYPENAME is null and ROUTINETYPE is

’M’, the privilege applies to all methods for

any subject type if they are in the schema

specified by SCHEMA.

ROUTINETYPE CHAR (1) Type of the routine.

v F = Function

v M = Method

v P = Procedure

EXECUTEAUTH CHAR (1) Privilege to execute the routine.

v G = Held and grantable

v N = Not held

v Y = Held

GRANT_TIME TIMESTAMP Time at which the privilege was granted.

SYSCAT.ROUTINEDEP

Each row represents a dependency of a routine on some other object. The routine

depends on the object of type BTYPE of name BNAME, so a change to the object

affects the routine.

SYSCAT.ROUTINEAUTH

Appendix D. Catalog views 587

Table 119. SYSCAT.ROUTINEDEP Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine that has

dependencies on another object.

SPECIFICNAME VARCHAR (128) Specific name of the routine that has

dependencies on another object.

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v B = Trigger

v F = Routine instance

v H = Hierachy table

v K = Package

v L = Detached table

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v Q = Sequence

v R = Structured type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which there is

a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which

there is a dependency. For routines (BTYPE =

’F’), this is the specific name.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,

encodes the privileges on the table or view

that are required by the dependent routine;

null value otherwise.

ROUTINENAME VARCHAR (128) This column is no longer used and will be

removed in a future release. See

SPECIFICNAME.

SYSCAT.ROUTINEOPTIONS

Each row represents a routine-specific option value.

 Table 120. SYSCAT.ROUTINEOPTIONS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be

system-generated).

SYSCAT.ROUTINEDEP

588 SQL Reference, Volume 1

Table 120. SYSCAT.ROUTINEOPTIONS Catalog View (continued)

Column Name Data Type Nullable Description

OPTION VARCHAR (128) Name of the federated routine option.

SETTING VARCHAR (2048) Value of the federated routine option.

SYSCAT.ROUTINEPARMOPTIONS

Each row represents a routine parameter-specific option value.

 Table 121. SYSCAT.ROUTINEPARMOPTIONS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be

system-generated).

ORDINAL SMALLINT Position of the parameter within the routine

signature.

OPTION VARCHAR (128) Name of the federated routine option.

SETTING VARCHAR (2048) Value of the federated routine option.

SYSCAT.ROUTINEPARMS

Each row represents a parameter or the result of a routine defined in

SYSCAT.ROUTINES.

 Table 122. SYSCAT.ROUTINEPARMS Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Y Schema name of the routine.

ROUTINENAME VARCHAR (128) Y Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Y Name of the routine instance (might be

system-generated).

PARMNAME VARCHAR (128) Y Name of the parameter or result column, or

null if no name exists.

ROWTYPE CHAR (1) v B = Both input and output parameter

v C = Result after casting

v O = Output parameter

v P = Input parameter

v R = Result before casting

ORDINAL SMALLINT If ROWTYPE = ’B’, ’O’, or ’P’, numerical

position of the parameter within the routine

signature, starting with 1; if ROWTYPE = ’R’

and the routine returns a table, numerical

position of a named column in the result

table, starting with 1; 0 otherwise.

TYPESCHEMA VARCHAR (128) Y Schema name of the data type. The schema

name for built-in types is ’SYSIBM’.

TYPENAME VARCHAR (128) Y Unqualified name of the data type.

SYSCAT.ROUTINEOPTIONS

Appendix D. Catalog views 589

Table 122. SYSCAT.ROUTINEPARMS Catalog View (continued)

Column Name Data Type Nullable Description

LOCATOR CHAR (1) v N = Paramater or result is not passed in

the form of a locator

v Y = Paramater or result is passed in the

form of a locator

LENGTH1 INTEGER Length of the parameter or result; 0 if the

parameter or result is a user-defined data

type.

SCALE1 SMALLINT Scale of the parameter or result; 0 if the

parameter or result is a user-defined data

type.

CODEPAGE SMALLINT Code page of this parameter or result; 0

denotes either not applicable, or a parameter

or result for character data declared with the

FOR BIT DATA attribute.

COLLATIONSCHEMA VARCHAR (128) Y For string types, the schema name of the

collation for the parameter; null value

otherwise.

COLLATIONNAME VARCHAR (128) Y For string types, the unqualified name of the

collation for the parameter; null value

otherwise.

CAST_FUNCSCHEMA VARCHAR (128) Y Schema name of the function used to cast an

argument or a result. Applies to sourced and

external functions; null value otherwise.

CAST_FUNCSPECIFIC VARCHAR (128) Y Unqualified name of the function used to

cast an argument or a result. Applies to

sourced and external functions; null value

otherwise.

TARGET_TYPESCHEMA VARCHAR (128) Y Schema name of the target type, if the type

of the parameter or result is REFERENCE.

Null value if the type of the parameter or

result is not REFERENCE.

TARGET_TYPENAME VARCHAR (128) Y Unqualified name of the target type, if the

type of the parameter or result is

REFERENCE. Null value if the type of the

parameter or result is not REFERENCE.

SCOPE_TABSCHEMA VARCHAR (128) Y Schema name of the scope (target table), if

the parameter type is REFERENCE; null

value otherwise.

SCOPE_TABNAME VARCHAR (128) Y Unqualified name of the scope (target table),

if the parameter type is REFERENCE; null

value otherwise.

TRANSFORMGRPNAME VARCHAR (128) Y Name of the transform group for a

structured type parameter or result.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. LENGTH and SCALE are set to 0 for sourced functions (functions defined with a reference to another function),

because they inherit the length and scale of parameters from their source.

SYSCAT.ROUTINEPARMS

590 SQL Reference, Volume 1

SYSCAT.ROUTINES

Each row represents a user-defined routine (scalar function, table function, sourced

function, method, or procedure). Does not include built-in functions.

 Table 123. SYSCAT.ROUTINES Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

v F = Function

v M = Method

v P = Procedure

OWNER VARCHAR (128) Authorization ID under which the routine

was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be

system-generated).

ROUTINEID INTEGER Identifier for the routine.

RETURN_TYPESCHEMA VARCHAR (128) Y Schema name of the return type for a scalar

function or method.

RETURN_TYPENAME VARCHAR (128) Y Unqualified name of the return type for a

scalar function or method.

ORIGIN CHAR (1) v B = Built-in

v E = User-defined, external

v M = Template function

v F = Federated procedure

v Q = SQL-bodied1

v S = System-generated

v T = System-generated transform function

(not directly invokable)

v U = User-defined, based on a source

FUNCTIONTYPE CHAR (1) v C = Column or aggregate

v R = Row

v S = Scalar

v T = Table

v Blank = Procedure

PARM_COUNT SMALLINT Number of routine parameters.

LANGUAGE CHAR (8) Implementation language for the routine

body (or for the source function body, if this

function is sourced on another function).

Possible values are ’C’, ’COBOL’, ’JAVA’,

’OLE’, ’OLEDB’, or ’SQL’. Blanks if ORIGIN

is not ’E’ or ’Q’.

SYSCAT.ROUTINES

Appendix D. Catalog views 591

Table 123. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

SOURCESCHEMA VARCHAR (128) Y If ORIGIN = ’U’ and the source function is a

user-defined function, contains the schema

name of the specific name of the source

function. If ORIGIN = ’U’ and the source

function is a built-in function, contains the

value ’SYSIBM’. Null if ORIGIN is not ’U’.

SOURCESPECIFIC VARCHAR (128) Y If ORIGIN = ’U’ and the source function is a

user-defined function, contains the

unqualified specific name of the source

function. If ORIGIN = ’U’ and the source

function is a built-in function, contains the

value ’N/A for built-in’. Null if ORIGIN is

not ’U’.

DETERMINISTIC CHAR (1) v N = Results are not deterministic (same

parameters might give different results in

different routine calls)

v Y = Results are deterministic

v Blank = ORIGIN is not ’E’, ’F’, or ’Q’

EXTERNAL_ACTION CHAR (1) v E = Function has external side-effects

(therefore, the number of invocations is

important)

v N = No side-effects

v Blank = ORIGIN is not ’E’, ’F’, or ’Q’

NULLCALL CHAR (1) v N = RETURNS NULL ON NULL INPUT

(function result is implicitly the null value

if one or more operands are null)

v Y = CALLED ON NULL INPUT

v Blank = ORIGIN is not ’E’ or ’Q’

CAST_FUNCTION CHAR (1) v N = Not a cast function

v Y = Cast function

v Blank = ROUTINETYPE is not ’F’

ASSIGN_FUNCTION CHAR (1) v N = Not an assignment function

v Y = Implicit assignment function

v Blank = ROUTINETYPE is not ’F’

SCRATCHPAD CHAR (1) v N = Routine has no scratchpad

v Y = Routine has a scratchpad

v Blank = ORIGIN is not ’E’ or

ROUTINETYPE is ’P’

SCRATCHPAD_LENGTH SMALLINT Size (in bytes) of the scratchpad for the

routine.

v -1 = LANGUAGE is ’OLEDB’ and

SCRATCHPAD is ’Y’

v 0 = SCRATCHPAD is not ’Y’

SYSCAT.ROUTINES

592 SQL Reference, Volume 1

Table 123. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

FINALCALL CHAR (1) v N = No final call is made

v Y = Final call is made to this routine at the

runtime end-of-statement

v Blank = ORIGIN is not ’E’ or

ROUTINETYPE is ’P’

PARALLEL CHAR (1) v N = Routine cannot be executed in parallel

v Y = Routine can be executed in parallel

v Blank = ORIGIN is not ’E’

PARAMETER_STYLE CHAR (8) Parameter style that was declared when the

routine was created. Possible values are:

v DB2DARI

v DB2GENRL

v DB2SQL

v GENERAL

v GNRLNULL

v JAVA

v SQL

v Blanks if ORIGIN is not ’E’

FENCED CHAR (1) v N = Not fenced

v Y = Fenced

v Blank = ORIGIN is not ’E’

SQL_DATA_ACCESS CHAR (1) Indicates what type of SQL statements, if

any, the database manager should assume is

contained in the routine.

v C = Contains SQL (simple expressions

with no subqueries only)

v M = Contains SQL statements that modify

data

v N = Does not contain SQL statements

v R = Contains read-only SQL statements

v Blank = ORIGIN is not ’E’, ’F’, or ’Q’

DBINFO CHAR (1) Indicates whether a DBINFO parameter is

passed to an external routine.

v N = DBINFO is not passed

v Y = DBINFO is passed

v Blank = ORIGIN is not ’E’

PROGRAMTYPE CHAR (1) Indicates how the external routine is

invoked.

v M = Main

v S = Subroutine

v Blank = ORIGIN is ’F’

SYSCAT.ROUTINES

Appendix D. Catalog views 593

Table 123. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

COMMIT_ON_RETURN CHAR (1) Indicates whether the transaction is

committed on successful return from this

procedure.

v N = The unit of work is not committed

v Y = The unit of work is committed

v Blank = ROUTINETYPE is not ’P’

RESULT_SETS SMALLINT Estimated maximum number of result sets.

SPEC_REG CHAR (1) Indicates whether special registers are

inherited from the caller or reinitialized to

their default values when the routine is

called.

v D = Default special registers

v I = Inherited special registers

v Blank = PARAMETER_STYLE is

’DB2DARI’ or ORIGIN is not ’E’ or ’Q’

FEDERATED CHAR (1) Indicates whether or not federated objects

can be accessed from the routine.

v N = Federated objects cannot be accessed

v Y = Federated objects can be accessed

v Blank = ORIGIN is not ’E’, ’F’, or ’Q’

THREADSAFE CHAR (1) Indicates whether or not the routine can run

in the same process as other routines.

v N = Routine is not threadsafe

v Y = Routine is threadsafe

v Blank = ORIGIN is not ’E’

VALID CHAR (1) Applies to LANGUAGE = ’SQL’ only; blank

otherwise.

v N = Routine needs rebinding

v Y = Routine is valid

v X = Routine is inoperative and must be

recreated

METHODIMPLEMENTED CHAR (1) v N = Method body is not implemented

v Y = Method body is implemented

v Blank = ROUTINETYPE is not ’M’

METHODEFFECT CHAR (2) v CN = Constructor method

v MU = Mutator method

v OB = Observer method

v Blanks = Not a system method

TYPE_PRESERVING CHAR (1) v N = Return type is the declared return

type of the method

v Y = Return type is governed by a

″type-preserving″ parameter; all

system-generated mutator methods are

type-preserving

v Blank = ROUTINETYPE is not ’M’

SYSCAT.ROUTINES

594 SQL Reference, Volume 1

Table 123. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

WITH_FUNC_ACCESS CHAR (1) v N = This method cannot be invoked by

using functional notation

v Y = This method can be invoked by using

functional notation; that is, the ″WITH

FUNCTION ACCESS″ attribute is

specified

v Blank = ROUTINETYPE is not ’M’

OVERRIDDEN_METHODID INTEGER Y Identifier for the overridden method when

the OVERRIDING option is specified for a

user-defined method. Null if ROUTINETYPE

is not ’M’.

SUBJECT_TYPESCHEMA VARCHAR (128) Y Schema name of the subject type for the

user-defined method. Null if ROUTINETYPE

is not ’M’.

SUBJECT_TYPENAME VARCHAR (128) Y Unqualified name of the subject type for the

user-defined method. Null if ROUTINETYPE

is not ’M’.

CLASS VARCHAR (384) Y For LANGUAGE JAVA, CLR, or OLE, this is

the class that implements this routine; null

value otherwise.

JAR_ID VARCHAR (128) Y For LANGUAGE JAVA, this is the JAR_ID of

the installed jar file that implements this

routine if a jar file was specified at routine

creation time; null value otherwise. For

LANGUAGE CLR, this is the assembly file

that implements this routine.

JARSCHEMA VARCHAR (128) Y For LANGUAGE JAVA when a JAR_ID is

present, this is the schema name of the jar

file that implements this routine; null value

otherwise.

JAR_SIGNATURE VARCHAR (2048) Y For LANGUAGE JAVA, this is the method

signature of this routine’s specified Java

method. For LANGUAGE CLR, this is a

reference field for this CLR routine. Null

value otherwise.

CREATE_TIME TIMESTAMP Time at which the routine was created.

ALTER_TIME TIMESTAMP Time at which the routine was last altered.

FUNC_PATH CLOB (2K) Y SQL path at the time the routine was

defined. Null if LANGUAGE is not ’SQL’.

QUALIFIER VARCHAR (128) Value of the default schema at the time of

object definition. Used to complete any

unqualified references.

IOS_PER_INVOC DOUBLE Estimated number of inputs/outputs (I/Os)

per invocation; 0 is the default; -1 if not

known.

INSTS_PER_INVOC DOUBLE Estimated number of instructions per

invocation; 450 is the default; -1 if not

known.

SYSCAT.ROUTINES

Appendix D. Catalog views 595

Table 123. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

IOS_PER_ARGBYTE DOUBLE Estimated number of I/Os per input

argument byte; 0 is the default; -1 if not

known.

INSTS_PER_ARGBYTE DOUBLE Estimated number of instructions per input

argument byte; 0 is the default; -1 if not

known.

PERCENT_ARGBYTES SMALLINT Estimated average percent of input argument

bytes that the routine will actually read; 100

is the default; -1 if not known.

INITIAL_IOS DOUBLE Estimated number of I/Os performed the

first time that the routine is invoked; 0 is the

default; -1 if not known.

INITIAL_INSTS DOUBLE Estimated number of instructions executed

the first time the routine is invoked; 0 is the

default; -1 if not known.

CARDINALITY BIGINT Predicted cardinality of a table function; -1 if

not known, or if the routine is not a table

function.

SELECTIVITY2 DOUBLE For user-defined predicates; -1 if there are no

user-defined predicates.

RESULT_COLS SMALLINT For a table function (ROUTINETYPE = ’F’

and FUNCTIONTYPE = ’T’), contains the

number of columns in the result table; for a

procedure (ROUTINETYPE = ’P’), contains 0;

contains 1 otherwise.

IMPLEMENTATION VARCHAR (762) Y If ORIGIN = ’E’, identifies the

path/module/function that implements this

function. If ORIGIN = ’U’ and the source

function is built-in, this column contains the

name and signature of the source function.

Null value otherwise.

LIB_ID INTEGER Y Reserved for future use.

TEXT_BODY_OFFSET INTEGER If LANGUAGE = ’SQL’, the offset to the

start of the SQL procedure body in the full

text of the CREATE statement; -1 if

LANGUAGE is not ’SQL’.

TEXT CLOB (2M) Y If LANGUAGE = ’SQL’, the full text of the

CREATE FUNCTION, CREATE METHOD,

or CREATE PROCEDURE statement; null

value otherwise.

NEWSAVEPOINTLEVEL CHAR (1) Indicates whether the routine initiates a new

savepoint level when it is invoked.

v N = A new savepoint level is not initiated

when the routine is invoked; the routine

uses the existing savepoint level

v Y = A new savepoint level is initiated

when the routine is invoked

v Blank = Not applicable

SYSCAT.ROUTINES

596 SQL Reference, Volume 1

Table 123. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

DEBUG_MODE3 VARCHAR (8) Indicates whether or not the routine can be

debugged using the DB2 debugger.

v DISALLOW = Routine is not debuggable

v ALLOW = Routine is debuggable, and can

participate in a client debug session with

the DB2 debugger

v DISABLE = Routine is not debuggable,

and this setting cannot be altered without

dropping and recreating the routine

v Blank = Routine type is not currently

supported by the DB2 debugger

TRACE_LEVEL VARCHAR (1) Y Reserved for future use.

DIAGNOSTIC_LEVEL VARCHAR (1) Y Reserved for future use.

CHECKOUT_USERID VARCHAR (128) Y ID of the user who performed a checkout of

the object; null if the object is not checked

out.

PRECOMPILE_OPTIONS VARCHAR (1024) Y Precompile options specified for the routine.

COMPILE_OPTIONS VARCHAR (1024) Y Compile options specified for the routine.

EXECUTION_CONTROL CHAR (1) Execution control mode of a common

language runtime (CLR) routine. Possible

values are:

v N = Network

v R = Fileread

v S = Safe

v U = Unsafe

v W = Filewrite

v Blank = LANGUAGE is not ’CLR’

CODEPAGE SMALLINT Routine code page, which specifies the

default code page used for all character

parameter types, result types, and local

variables within the routine body.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the routine.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the

routine.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY

clauses in the routine.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for

ORDER BY clauses in the routine.

ENCODING_SCHEME CHAR (1) Encoding scheme of the routine, as specified

in the PARAMETER CCSID clause. Possible

values are:

v A = ASCII

v U = UNICODE

v Blank = PARAMETER CCSID clause was

not specified

LAST_REGEN_TIME TIMESTAMP Time at which the SQL routine packed

descriptor was last regenerated.

SYSCAT.ROUTINES

Appendix D. Catalog views 597

Table 123. SYSCAT.ROUTINES Catalog View (continued)

Column Name Data Type Nullable Description

INHERITLOCKREQUEST CHAR (1) v N = This function or method cannot be

invoked in the context of an SQL

statement that includes a

lock-request-clause as part of a specified

isolation-clause

v Y = This function or method inherits the

isolation level of the invoking statement; it

also inherits the specified

lock-request-clause

v Blank = LANGUAGE is not ’SQL’ or

ROUTINETYPE is ’P’

DEFINER4 VARCHAR (128) Authorization ID under which the routine

was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. For SQL procedures created before Version 8.2 and migrated to Version 9, ’E’ (instead of ’Q’).

2. During migration, the SELECTIVITY column will be set to -1 in the packed descriptor and system catalogs for all

user-defined routines. For a user-defined predicate, the selectivity in the system catalog will be -1. In this case, the

selectivity value used by the optimizer is 0.01.

3. For Java routines, the DEBUG_MODE setting does not indicate whether the Java routine was actually compiled in

debug mode, or whether a debug Jar was installed at the server.

4. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.ROUTINESFEDERATED

Each row represents a federated procedure.

 Table 124. SYSCAT.ROUTINESFEDERATED Catalog View

Column Name Data Type Nullable Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

v P = Procedure

OWNER VARCHAR (128) Authorization ID under which the routine

was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be

system-generated).

ROUTINEID INTEGER Identifier for the routine.

PARM_COUNT SMALLINT Number of routine parameters.

DETERMINISTIC CHAR (1) v N = Results are not deterministic (same

parameters might give different results in

different routine calls)

v Y = Results are deterministic

SYSCAT.ROUTINES

598 SQL Reference, Volume 1

Table 124. SYSCAT.ROUTINESFEDERATED Catalog View (continued)

Column Name Data Type Nullable Description

EXTERNAL_ACTION CHAR (1) v E = Routine has external side-effects

(therefore, the number of invocations is

important)

v N = No side-effects

SQL_DATA_ACCESS CHAR (1) Indicates what type of SQL statements, if

any, the database manager should assume is

contained in the routine.

v C = Contains SQL (simple expressions

with no subqueries only)

v M = Contains SQL statements that modify

data

v N = Does not contain SQL statements

v R = Contains read-only SQL statements

COMMIT_ON_RETURN CHAR (1) Indicates whether the transaction is

committed on successful return from this

procedure.

v N = The unit of work is not committed

v Y = The unit of work is committed

v Blank = ROUTINETYPE is not ’P’

RESULT_SETS SMALLINT Estimated maximum number of result sets.

CREATE_TIME TIMESTAMP Time at which the routine was created.

ALTER_TIME TIMESTAMP Time at which the routine was last altered.

QUALIFIER VARCHAR (128) Value of the default schema at the time of

object definition. Used to complete any

unqualified references.

RESULT_COLS SMALLINT For a procedure (ROUTINETYPE = ’P’),

contains 0; contains 1 otherwise.

CODEPAGE SMALLINT Routine code page, which specifies the

default code page used for all character

parameter types, result types, and local

variables within the routine body.

LAST_REGEN_TIME TIMESTAMP Time at which the SQL routine packed

descriptor was last regenerated.

REMOTE_PROCEDURE VARCHAR (128) Y Unqualified name of the source procedure

for which the federated routine was created.

REMOTE_SCHEMA VARCHAR (128) Y Schema name of the source procedure for

which the federated routine was created.

SERVERNAME VARCHAR (128) Y Name of the data source that contains the

source procedure for which the federated

routine was created.

REMOTE_PACKAGE VARCHAR (128) Y Name of the package to which the source

procedure belongs (applies only to wrappers

for Oracle data sources).

REMOTE_PROCEDURE_

ALTER_TIME

VARCHAR (128) Y Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.ROUTINESFEDERATED

Appendix D. Catalog views 599

SYSCAT.SCHEMAAUTH

Each row represents a user or group that has been granted one or more privileges

on a schema.

 Table 125. SYSCAT.SCHEMAAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SCHEMANAME VARCHAR (128) Name of the schema to which this privilege

applies.

ALTERINAUTH CHAR (1) Privilege to alter or comment on objects in

the named schema.

v G = Held and grantable

v N = Not held

v Y = Held

CREATEINAUTH CHAR (1) Privilege to create objects in the named

schema.

v G = Held and grantable

v N = Not held

v Y = Held

DROPINAUTH CHAR (1) Privilege to drop objects from the named

schema.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.SCHEMATA

Each row represents a schema.

 Table 126. SYSCAT.SCHEMATA Catalog View

Column Name Data Type Nullable Description

SCHEMANAME VARCHAR (128) Name of the schema.

OWNER VARCHAR (128) Authorization ID of the schema, who has the

authority to drop the schema and all objects

within it. The value for implicitly created

schemas is ’SYSIBM’.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

DEFINER VARCHAR (128) Authorization ID under which the schema

was created.

SYSCAT.SCHEMAAUTH

600 SQL Reference, Volume 1

Table 126. SYSCAT.SCHEMATA Catalog View (continued)

Column Name Data Type Nullable Description

DEFINERTYPE CHAR (1) v S = The definer is the system

v U = The definer is an individual user

CREATE_TIME TIMESTAMP Time at which the schema was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.SECURITYLABELACCESS

Each row represents a security label that was granted to the database authorization

ID.

 Table 127. SYSCAT.SECURITYLABELACCESS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the security label.

GRANTEE VARCHAR (128) Holder of the security label.

GRANTEETYPE CHAR (1) v U = Grantee is an individual user

v R = Grantee is a user role

v G = Grantee is a group user

SECLABELID INTEGER Identifier for the security label. For the name

of the security label, select the

SECLABELNAME column for the

corresponding SECLABELID value in the

SYSCAT.SECURITYLABELS catalog view.

SECPOLICYID INTEGER Identifier for the security policy that is

associated with the security label. For the

name of the security policy, select the

SECPOLICYNAME column for the

corresponding SECPOLICYID value in the

SYSCAT.SECURITYPOLICIES catalog view.

ACCESSTYPE CHAR (1) v B = Both read and write access

v R = Read access

v W = Write access

GRANT_TIME TIMESTAMP Time at which the security label was

granted.

SYSCAT. SECURITYLABELCOMPONENTELEMENTS

Each row represents an element value for a security label component.

 Table 128. SYSCAT.SECURITYLABELCOMPONENTELEMENTS Catalog View

Column Name Data Type Nullable Description

COMPID INTEGER Identifier for the security label component.

ELEMENTVALUE VARCHAR (32) Element value for the security label

component.

ELEMENTVALUEENCODING CHAR (8) FOR BIT

DATA

Encoded form of the element value.

SYSCAT.SCHEMATA

Appendix D. Catalog views 601

Table 128. SYSCAT.SECURITYLABELCOMPONENTELEMENTS Catalog View (continued)

Column Name Data Type Nullable Description

PARENTELEMENTVALUE VARCHAR (32) Y Name of the parent of an element for tree

components; null for set and array

components, and for the ROOT node of a

tree component.

SYSCAT.SECURITYLABELCOMPONENTS

Each row represents a security label component.

 Table 129. SYSCAT.SECURITYLABELCOMPONENTS Catalog View

Column Name Data Type Nullable Description

COMPNAME VARCHAR (128) Name of the security label component.

COMPID INTEGER Identifier for the security label component.

COMPTYPE CHAR (1) Security label component type.

v A = Array

v S = Set

v T = Tree

NUMELEMENTS INTEGER Number of elements in the security label

component.

CREATE_TIME TIMESTAMP Time at which the security label component

was created.

REMARKS VARCHAR (254) User-provided comments, or null.

SYSCAT.SECURITYLABELS

Each row represents a security label.

 Table 130. SYSCAT.SECURITYLABELS Catalog View

Column Name Data Type Nullable Description

SECLABELNAME VARCHAR (128) Name of the security label.

SECLABELID INTEGER Identifier for the security label.

SECPOLICYID INTEGER Identifier for the security policy to which the

security label belongs.

SECLABEL SYSPROC. DB2SECURITYLABEL Internal representation of the security label.

CREATE_TIME TIMESTAMP Time at which the security label was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.SECURITYPOLICIES

Each row represents a security policy.

 Table 131. SYSCAT.SECURITYPOLICIES Catalog View

Column Name Data Type Nullable Description

SECPOLICYNAME VARCHAR (128) Name of the security policy.

SYSCAT. SECURITYLABELCOMPONENTELEMENTS

602 SQL Reference, Volume 1

Table 131. SYSCAT.SECURITYPOLICIES Catalog View (continued)

Column Name Data Type Nullable Description

SECPOLICYID INTEGER Identifier for the security policy.

NUMSECLABELCOMP INTEGER Number of security label components in the

security policy.

RWSECLABELREL CHAR (1) Relationship between the security labels for

read and write access granted to the same

authorization ID.

v S = The security label for write access

granted to a user is a subset of the

security label for read access granted to

that same user

NOTAUTHWRITESECLABEL CHAR (1) Action to take when a user is not authorized

to write the security label that is specified in

the INSERT or UPDATE statement.

v O = Override

v R = Restrict

CREATE_TIME TIMESTAMP Time at which the security policy was

created.

USERAUTHS CHAR (1) Indicates if authorizations of security labels

and exemptions granted to an authorization

ID that represents a user will be used or

ignored.

v I = Ignored

v U = Used

GROUPAUTHS CHAR (1) Indicates if authorizations of security labels

and exemptions granted to an authorization

ID that represents a group will be used or

ignored.

v I = Ignored

v U = Used

ROLEAUTHS CHAR (1) Indicates if authorizations of security labels

and exemptions granted to an authorization

ID that represents a role will be used or

ignored.

v I = Ignored

v U = Used

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT. SECURITYPOLICYCOMPONENTRULES

Each row represents the read and write access rules for a security label component

of the security policy.

 Table 132. SYSCAT.SECURITYPOLICYCOMPONENTRULES Catalog View

Column Name Data Type Nullable Description

SECPOLICYID INTEGER Identifier for the security policy.

COMPID INTEGER Identifier for the security label component of

the security policy.

SYSCAT.SECURITYPOLICIES

Appendix D. Catalog views 603

Table 132. SYSCAT.SECURITYPOLICYCOMPONENTRULES Catalog View (continued)

Column Name Data Type Nullable Description

ORDINAL INTEGER Position of the security label component as it

appears in the security policy, starting with

1.

READACCESSRULENAME VARCHAR (128) Name of the read access rule that is

associated with the security label component.

READACCESSRULETEXT VARCHAR (512) Text of the read access rule that is associated

with the security label component.

WRITEACCESSRULENAME VARCHAR (128) Name of the write access rule that is

associated with the security label component.

WRITEACCESSRULETEXT VARCHAR (512) Text of the write access rule that is

associated with the security label component.

SYSCAT.SECURITYPOLICYEXEMPTIONS

Each row represents a security policy exemption that was granted to a database

authorization ID.

 Table 133. SYSCAT.SECURITYPOLICYEXEMPTIONS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the exemption.

GRANTEE VARCHAR (128) Holder of the exemption.

GRANTEETYPE CHAR (1) v U = Grantee is an individual user

v R = Grantee is a user role

v G = Grantee is a group user

SECPOLICYID INTEGER Identifier for the security policy for which

the exemption was granted. For the name of

the security policy, select the

SECPOLICYNAME column for the

corresponding SECPOLICYID value in the

SYSCAT.SECURITYPOLICIES catalog view.

ACCESSRULENAME VARCHAR (128) Name of the access rule for which the

exemption was granted.

ACCESSTYPE CHAR (1) Type of access to which the rule applies.

v R = Read access

v W = Write access

ORDINAL INTEGER Position of the security label component in

the security policy to which the rule applies.

ACTIONALLOWED CHAR (1) If the rule is DB2LBACWRITEARRAY, then:

v D = Write down

v U = Write up

Blank otherwise.

GRANT_TIME TIMESTAMP Time at which the exemption was granted.

SYSCAT. SECURITYPOLICYCOMPONENTRULES

604 SQL Reference, Volume 1

SYSCAT.SEQUENCEAUTH

Each row represents a user or group that has been granted one or more privileges

on a sequence.

 Table 134. SYSCAT.SEQUENCEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of a privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of a privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

SEQSCHEMA VARCHAR (128) Schema name of the sequence.

SEQNAME VARCHAR (128) Unqualified name of the sequence.

ALTERAUTH CHAR (1) Privilege to alter the sequence.

v G = Held and grantable

v N = Not held

v Y = Held

USAGEAUTH CHAR (1) Privilege to reference the sequence.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.SEQUENCES

Each row represents a sequence.

 Table 135. SYSCAT.SEQUENCES Catalog View

Column Name Data Type Nullable Description

SEQSCHEMA VARCHAR (128) Schema name of the sequence.

SEQNAME VARCHAR (128) Unqualified name of the sequence.

DEFINER1 VARCHAR (128) Authorization ID under which the sequence

was created.

DEFINERTYPE CHAR (1) v S = The definer is the system

v U = The definer is a individual user

OWNER VARCHAR (128) Authorization ID under which the sequence

was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SEQID INTEGER Identifier for the sequence.

SEQTYPE CHAR (1) Type of sequence.

v I = Identity sequence

v S = Regular sequence

SYSCAT.SEQUENCEAUTH

Appendix D. Catalog views 605

Table 135. SYSCAT.SEQUENCES Catalog View (continued)

Column Name Data Type Nullable Description

INCREMENT DECIMAL (31,0) Increment value.

START DECIMAL (31,0) Start value of the sequence.

MAXVALUE DECIMAL (31,0) Maximum value of the sequence.

MINVALUE DECIMAL (31,0) Minimum value of the sequence.

NEXTCACHEFIRSTVALUE DECIMAL (31,0) Y The first value available to be assigned in

the next cache block. If no caching, the next

value available to be assigned.

CYCLE CHAR (1) Indicates whether or not the sequence can

continue to generate values after reaching its

maximum or minimum value.

v N = Sequence cannot cycle

v Y = Sequence can cycle

CACHE INTEGER Number of sequence values to pre-allocate in

memory for faster access. 0 indicates that

values of the sequence are not to be

preallocated. In a partitioned database, this

value applies to each database partition.

ORDER CHAR (1) Indicates whether or not the sequence

numbers must be generated in order of

request.

v N = Sequence numbers are not required to

be generated in order of request

v Y = Sequence numbers must be generated

in order of request

DATATYPEID INTEGER For built-in types, the internal identifier of

the built-in type. For distinct types, the

internal identifier of the distinct type.

SOURCETYPEID INTEGER For a built-in type, this has a value of 0. For

a distinct type, this is the internal identifier

of the built-in type that is the source type for

the distinct type.

CREATE_TIME TIMESTAMP Time at which the sequence was created.

ALTER_TIME TIMESTAMP Time at which the sequence was last altered.

PRECISION SMALLINT Precision of the data type of the sequence.

Possible values are:

v 5 = SMALLINT

v 10 = INTEGER

v 19 = BIGINT

For DECIMAL, it is the precision of the

specified DECIMAL data type.

ORIGIN CHAR (1) Origin of the sequence.

v S = System-generated sequence

v U = User-generated sequence

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.SEQUENCES

606 SQL Reference, Volume 1

SYSCAT.SERVEROPTIONS

Each row represents a server-specific option value.

 Table 136. SYSCAT.SERVEROPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Y Name of the wrapper.

SERVERNAME VARCHAR (128) Y Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

CREATE_TIME TIMESTAMP Time at which the entry was created.

OPTION VARCHAR (128) Name of the server option.

SETTING VARCHAR (2048) Value of the server option.

SERVEROPTIONKEY VARCHAR (18) Uniquely identifies a row.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.SERVERS

Each row represents a data source.

 Table 137. SYSCAT.SERVERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

SERVERNAME VARCHAR (128) Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.SERVICECLASSES

Each row represents a service class.

 Table 138. SYSCAT.SERVICECLASSES Catalog View

Column Name Data Type Nullable Description

SERVICECLASSNAME VARCHAR (128) Name of the service class.

PARENTSERVICECLASSNAME VARCHAR (128) Y Service class name of the parent service

superclass.

SERVICECLASSID SMALLINT Identifier for the service class.

PARENTID SMALLINT Identifier for the parent service class for this

service class. 0 if this service class is a super

service class.

CREATE_TIME TIMESTAMP Time when the service class was created.

ALTER_TIME TIMESTAMP Time when the service class was last altered.

SYSCAT.SERVEROPTIONS

Appendix D. Catalog views 607

Table 138. SYSCAT.SERVICECLASSES Catalog View (continued)

Column Name Data Type Nullable Description

ENABLED CHAR (1) State of the service class.

v N = Disabled

v Y = Enabled

AGENTPRIORITY SMALLINT Thread priority of the agents in the service

class relative to the normal priority of DB2

threads.

v -20 to 20 (Linux and UNIX)

v -6 to 6 (Windows)

v -32768 = not set

PREFETCHPRIORITY CHAR (1) Prefetch priority of the agents in the service

class.

v H = High

v L = Low

v M = Medium

v Blank = not set

INBOUNDCORRELATOR VARCHAR (128) Y For future use.

OUTBOUNDCORRELATOR VARCHAR (128) Y String used to associate the service class with

an operating system workload manager

service class.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should

be captured for the service class by the

applicable event monitor.

v B = Collect base aggregate activity data

v E = Collect extended aggregate activity

data

v N = None

COLLECTAGGREQDATA CHAR (1) Specifies what aggregate activity data should

be captured for the service class by the

applicable event monitor.

v B = Collect base aggregate request data

v N = None

COLLECTACTDATA CHAR (1) Specifies what activity data should be

collected by the applicable event monitor.

v D = Activity data with details

v N = None

v V = Activity data with details and values

v W = Activity data without details

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator

of the activity

v D = All database partitions

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.STATEMENTS

Each row represents an SQL statement in a package.

SYSCAT.SERVICECLASSES

608 SQL Reference, Volume 1

Table 139. SYSCAT.STATEMENTS Catalog View

Column Name Data Type Nullable Description

PKGSCHEMA VARCHAR (128) Schema name of the package.

PKGNAME VARCHAR (128) Unqualified name of the package.

STMTNO INTEGER Line number of the SQL statement in the

source module of the application program.

SECTNO SMALLINT Number of the package section containing

the SQL statement.

SEQNO INTEGER Always 1.

TEXT CLOB (2M) Text of the SQL statement.

UNIQUE_ID CHAR (8) FOR BIT

DATA

Identifier for a specific package when

multiple packages having the same name

exist.

VERSION VARCHAR (64) Y Version identifier for the package.

SYSCAT.SURROGATEAUTHIDS

Each row represents a user or a group that has been granted SETSESSIONUSER

privilege on a user or PUBLIC.

 Table 140. SYSCAT.SURROGATEAUTHIDS Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Authorization ID that granted TRUSTEDID

the ability to act as a surrogate. When the

TRUSTEDID represents a trusted context

object, this field represents the authorization

ID that created or altered the trusted context

object.

TRUSTEDID VARCHAR (128) Identifier for the entity that is trusted to act

as a surrogate.

TRUSTEDIDTYPE CHAR (1) v C = Trusted context

v G = Group

v U = User

SURROGATEAUTHID VARCHAR (128) Surrogate authorization ID that can be

assumed by TRUSTEDID. ’PUBLIC’ indicates

that TRUSTEDID can assume any

authorization ID.

SURROGATEAUTHIDTYPE CHAR (1) v G = Group

v U = User

AUTHENTICATE CHAR (1) v N = No authentication is required

v Y = Authentication token is required with

the authorization ID to authenticate the

user before the authorization ID can be

assumed

v Blank = TRUSTEDIDTYPE is not ’C’

SYSCAT.STATEMENTS

Appendix D. Catalog views 609

Table 140. SYSCAT.SURROGATEAUTHIDS Catalog View (continued)

Column Name Data Type Nullable Description

CONTEXTROLE VARCHAR (128) Y A specific role to be assigned to the assumed

authorization ID, which supercedes the

default role, if any, that is defined for the

trusted context. Null value when

TRUSTEDIDTYPE is not ’C’.

GRANT_TIME TIMESTAMP Time at which the grant was made.

SYSCAT.TABAUTH

Each row represents a user or group that has been granted one or more privileges

on a table or view.

 Table 141. SYSCAT.TABAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view.

TABNAME VARCHAR (128) Unqualified name of the table or view.

CONTROLAUTH CHAR (1) CONTROL privilege.

v N = Not held

v Y = Held but not grantable

ALTERAUTH CHAR (1) Privilege to alter the table; allow a parent

table to this table to drop its primary key or

unique constraint; allow a table to become a

materialized query table that references this

table or view in the materialized query; or

allow a table that references this table or

view in its materialized query to no longer

be a materialized query table.

v G = Held and grantable

v N = Not held

v Y = Held

DELETEAUTH CHAR (1) Privilege to delete rows from a table or

updatable view.

v G = Held and grantable

v N = Not held

v Y = Held

INDEXAUTH CHAR (1) Privilege to create an index on a table.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.SURROGATEAUTHIDS

610 SQL Reference, Volume 1

Table 141. SYSCAT.TABAUTH Catalog View (continued)

Column Name Data Type Nullable Description

INSERTAUTH CHAR (1) Privilege to insert rows into a table or

updatable view, or to run the import utility

against a table or view.

v G = Held and grantable

v N = Not held

v Y = Held

REFAUTH CHAR (1) Privilege to create and drop a foreign key

referencing a table as the parent.

v G = Held and grantable

v N = Not held

v Y = Held

SELECTAUTH CHAR (1) Privilege to retrieve rows from a table or

view, create views on a table, or to run the

export utility against a table or view.

v G = Held and grantable

v N = Not held

v Y = Held

UPDATEAUTH CHAR (1) Privilege to run the UPDATE statement

against a table or updatable view.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.TABCONST

Each row represents a table constraint of type CHECK, UNIQUE, PRIMARY KEY,

or FOREIGN KEY. For table hierarchies, each constraint is recorded only at the

level of the hierarchy where the constraint was created.

 Table 142. SYSCAT.TABCONST Catalog View

Column Name Data Type Nullable Description

CONSTNAME VARCHAR (128) Name of the constraint.

TABSCHEMA VARCHAR (128) Schema name of the table to which this

constraint applies.

TABNAME VARCHAR (128) Unqualified name of the table to which this

constraint applies.

OWNER VARCHAR (128) Authorization ID under which the constraint

was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TYPE CHAR (1) Indicates the constraint type.

v F = Foreign key

v I = Functional dependency

v K = Check

v P = Primary key

v U = Unique

SYSCAT.TABAUTH

Appendix D. Catalog views 611

Table 142. SYSCAT.TABCONST Catalog View (continued)

Column Name Data Type Nullable Description

ENFORCED CHAR (1) v N = Do not enforce constraint

v Y = Enforce constraint

CHECKEXISTINGDATA CHAR (1) v D = Defer checking any existing data

v I = Immediately check existing data

v N = Never check existing data

ENABLEQUERYOPT CHAR (1) v N = Query optimization is disabled

v Y = Query optimization is enabled

DEFINER1 VARCHAR (128) Authorization ID under which the constraint

was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABDEP

Each row represents a dependency of a view or a materialized query table on some

other object. The view or materialized query table depends on the object of type

BTYPE of name BNAME, so a change to the object affects the view or materialized

query table. Also encodes how privileges on views depend on privileges on

underlying tables and views.

 Table 143. SYSCAT.TABDEP Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the view or materialized

query table.

TABNAME VARCHAR (128) Unqualified name of the view or

materialized query table.

DTYPE CHAR (1) Type of the depending object.

v S = Materialized query table

v T = Table (staging only)

v V = View (untyped)

v W = Typed view

OWNER VARCHAR (128) Authorization ID of the creator of the view

or materialized query table.

OWNERTYPE CHAR (1) v U = The owner is an individual user

SYSCAT.TABCONST

612 SQL Reference, Volume 1

Table 143. SYSCAT.TABDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v F = Routine instance

v I = Index, if recording dependency on a

base table

v N = Nickname

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v R = Structured type

v S = Materialized query table

v T = Table (untyped)

v U = Typed table

v V = View (untyped)

v W = Typed view

v Z = XSR object

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which the

view or materialized query table depends.

BNAME VARCHAR (128) Unqualified name of the object on which the

view or materialized query table depends.

TABAUTH SMALLINT Y If BTYPE is ’N’, ’O’, ’S’, ’T’, ’U’, ’V’, or ’W’,

encodes the privileges on the underlying

table or view on which this view or

materialized query table depends; null value

otherwise.

DEFINER1 VARCHAR (128) Authorization ID of the creator of the view

or materialized query table.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABDETACHEDDEP

Each row represents a detached dependency between a detached dependent table

and a detached table.

 Table 144. SYSCAT.TABDETACHEDDEP Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the detached table.

TABNAME VARCHAR (128) Unqualified name of the detached table.

DEPTABSCHEMA VARCHAR (128) Schema name of the detached dependent

table.

DEPTABNAME VARCHAR (128) Unqualified name of the detached dependent

table.

SYSCAT.TABDEP

Appendix D. Catalog views 613

SYSCAT.TABLES

Each row represents a table, view, alias, or nickname. Each table or view hierarchy

has one additional row representing the hierarchy table or hierarchy view that

implements the hierarchy. Catalog tables and views are included.

 Table 145. SYSCAT.TABLES Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of the object.

TABNAME VARCHAR (128) Unqualified name of the object.

OWNER VARCHAR (128) Authorization ID under which the table,

view, alias, or nickname was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TYPE CHAR (1) Type of object.

v A = Alias

v G = Global temporary table

v H = Hierarchy table

v L = Detached table

v N = Nickname

v S = Materialized query table

v T = Table (untyped)

v U = Typed table

v V = View (untyped)

v W = Typed view

STATUS CHAR (1) Status of the object.

v C = Set integrity pending

v N = Normal

v X = Inoperative

BASE_TABSCHEMA VARCHAR (128) Y If TYPE = ’A’, contains the schema name of

the table, view, alias, or nickname that is

referenced by this alias; null value otherwise.

BASE_TABNAME VARCHAR (128) Y If TYPE = ’A’, contains the unqualified name

of the table, view, alias, or nickname that is

referenced by this alias; null value otherwise.

ROWTYPESCHEMA VARCHAR (128) Y Schema name of the row type for this table,

if applicable; null value otherwise.

ROWTYPENAME VARCHAR (128) Y Unqualified name of the row type for this

table, if applicable; null value otherwise.

CREATE_TIME TIMESTAMP Time at which the object was created.

ALTER_TIME TIMESTAMP Time at which the object was last altered.

INVALIDATE_TIME TIMESTAMP Time at which the object was last

invalidated.

STATS_TIME TIMESTAMP Y Time at which any change was last made to

recorded statistics for this object. Null if

statistics are not collected.

COLCOUNT SMALLINT Number of columns, including inherited

columns (if any).

SYSCAT.TABLES

614 SQL Reference, Volume 1

Table 145. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

TABLEID SMALLINT Internal logical object identifier.

TBSPACEID SMALLINT Internal logical identifier for the primary

table space for this object.

CARD BIGINT Total number of rows; -1 if statistics are not

collected.

NPAGES BIGINT Total number of pages on which the rows of

the table exist; -1 for a view or alias, or if

statistics are not collected; -2 for a subtable

or hierarchy table.

FPAGES BIGINT Total number of pages; -1 for a view or alias,

or if statistics are not collected; -2 for a

subtable or hierarchy table.

OVERFLOW BIGINT Total number of overflow records in the

table; -1 for a view or alias, or if statistics are

not collected; -2 for a subtable or hierarchy

table.

TBSPACE VARCHAR (128) Y Name of the primary table space for the

table. If no other table space is specified, all

parts of the table are stored in this table

space. Null for aliases, views, and

partitioned tables.

INDEX_TBSPACE VARCHAR (128) Y Name of the table space that holds all

indexes created on this table. Null for aliases,

views, and partitioned tables, or if the

INDEX IN clause was omitted or specified

with the same value as the IN clause of the

CREATE TABLE statement.

LONG_TBSPACE VARCHAR (128) Y Name of the table space that holds all long

data (LONG or LOB column types) for this

table. Null for aliases, views, and partitioned

tables, or if the LONG IN clause was

omitted or specified with the same value as

the IN clause of the CREATE TABLE

statement.

PARENTS SMALLINT Y Number of parent tables for this object; that

is, the number of referential constraints in

which this object is a dependent.

CHILDREN SMALLINT Y Number of dependent tables for this object;

that is, the number of referential constraints

in which this object is a parent.

SELFREFS SMALLINT Y Number of self-referencing referential

constraints for this object; that is, the number

of referential constraints in which this object

is both a parent and a dependent.

KEYCOLUMNS SMALLINT Y Number of columns in the primary key.

KEYINDEXID SMALLINT Y Index identifier for the primary key index; 0

or the null value if there is no primary key.

KEYUNIQUE SMALLINT Number of unique key constraints (other

than the primary key constraint) defined on

this object.

SYSCAT.TABLES

Appendix D. Catalog views 615

Table 145. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

CHECKCOUNT SMALLINT Number of check constraints defined on this

object.

DATACAPTURE CHAR (1) v L = Table participates in data replication,

including replication of LONG VARCHAR

and LONG VARGRAPHIC columns

v N = Table does not participate in data

replication

v Y = Table participates in data replication,

excluding replication of LONG VARCHAR

and LONG VARGRAPHIC columns

CONST_CHECKED CHAR (32) v Byte 1 represents foreign key constraint.

v Byte 2 represents check constraint.

v Byte 5 represents materialized query table.

v Byte 6 represents generated column.

v Byte 7 represents staging table.

v Byte 8 represents data partitioning

constraint.

v Other bytes are reserved for future use.

Possible values are:

v F = In byte 5, the materialized query table

cannot be refreshed incrementally. In byte

7, the content of the staging table is

incomplete and cannot be used for

incremental refresh of the associated

materialized query table.

v N = Not checked

v U = Checked by user

v W = Was in ’U’ state when the table was

placed in set integrity pending state

v Y = Checked by system

PMAP_ID SMALLINT Y Identifier for the distribution map that is

currently in use by this table (null for aliases

or views).

PARTITION_MODE CHAR (1) Indicates how data is distributed among

database partitions in a partitioned database

system.

v H = Hashing

v R = Replicated across database partitions

v Blank = No database partitioning

LOG_ATTRIBUTE CHAR (1) v Always 0. This column is no longer used.

PCTFREE SMALLINT Percentage of each page to be reserved for

future inserts.

APPEND_MODE CHAR (1) Controls how rows are inserted into pages.

v N = New rows are inserted into existing

spaces, if available

v Y = New rows are appended to the end of

the data

SYSCAT.TABLES

616 SQL Reference, Volume 1

Table 145. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

REFRESH CHAR (1) Refresh mode.

v D = Deferred

v I = Immediate

v O = Once

v Blank = Not a materialized query table

REFRESH_TIME TIMESTAMP Y For REFRESH = ’D’ or ’O’, time at which the

data was last refreshed (REFRESH TABLE

statement); null value otherwise.

LOCKSIZE CHAR (1) Indicates the preferred lock granularity for

tables that are accessed by data manipulation

language (DML) statements. Applies to

tables only. Possible values are:

v I = Block insert

v R = Row

v T = Table

v Blank = Not applicable

VOLATILE CHAR (1) v C = Cardinality of the table is volatile

v Blank = Not applicable

ROW_FORMAT CHAR (1) Not used.

PROPERTY VARCHAR (32) Properties for a table. A single blank

indicates that the table has no properties.

The following is position within string,

value, and meaning:

v 1, Y = User maintained materialized query

table

v 2, Y = Staging table

v 3, Y = Propagate immediate

v 11, Y = Nickname that will not be cached

STATISTICS_PROFILE CLOB (10M) Y RUNSTATS command used to register a

statistical profile for the object.

COMPRESSION CHAR (1) v B = Both value and row compression are

activated

v N = No compression is activated; a row

format that does not support compression

is used

v R = Row compression is activated; a row

format that supports compression might

be used

v V = Value compression is activated; a row

format that supports compression is used

v Blank = Not applicable

SYSCAT.TABLES

Appendix D. Catalog views 617

Table 145. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

ACCESS_MODE CHAR (1) Access restriction state of the object. These

states only apply to objects that are in set

integrity pending state or to objects that

were processed by a SET INTEGRITY

statement. Possible values are:

v D = No data movement

v F = Full access

v N = No access

v R = Read-only access

CLUSTERED CHAR (1) Y v Y = Table is multidimensionally clustered

(even if only by one dimension)

v Null value = Table is not

multidimensionally clustered

ACTIVE_BLOCKS BIGINT Total number of active blocks in the table, or

-1. Applies to multidimensional clustering

(MDC) tables only.

DROPRULE CHAR (1) v N = No rule

v R = Restrict rule applies on drop

MAXFREESPACESEARCH SMALLINT Reserved for future use.

AVGCOMPRESSEDROWSIZE SMALLINT Average length (in bytes) of compressed

rows in this table; -1 if statistics are not

collected.

AVGROWCOMPRESSIONRATIO REAL For compressed rows in the table, this is the

average compression ratio by row; that is,

the average uncompressed row length

divided by the average compressed row

length; -1 if statistics are not collected.

AVGROWSIZE SMALLINT Average length (in bytes) of both compressed

and uncompressed rows in this table; -1 if

statistics are not collected.

PCTROWSCOMPRESSED REAL Compressed rows as a percentage of the

total number of rows in the table; -1 if

statistics are not collected.

LOGINDEXBUILD VARCHAR (3) Y Level of logging that is to be performed

during create, recreate, or reorganize index

operations on the table.

v OFF = Index build operations on the table

will be logged minimally

v ON = Index build operations on the table

will be logged completely

v Null value = Value of the logindexbuild

database configuration parameter will be

used to determine whether or not index

build operations are to be completely

logged

CODEPAGE SMALLINT Code page of the object. This is the default

code page used for all character columns,

triggers, check constraints, and

expression-generated columns.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the table.

SYSCAT.TABLES

618 SQL Reference, Volume 1

Table 145. SYSCAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Description

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the

table.

COLLATIONSCHEMA_ORDERBY VARCHAR (128) Schema name of the collation for ORDER BY

clauses in the table.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for

ORDER BY clauses in the table.

ENCODING_SCHEME CHAR (1) v A = CCSID ASCII was specified

v U = CCSID UNICODE was specified

v Blank = CCSID clause was not specified

PCTPAGESSAVED SMALLINT Approximate percentage of pages saved in

the table as a result of row compression. This

value includes overhead bytes for each user

data row in the table, but does not include

the space that is consumed by dictionary

overhead; -1 if statistics are not collected.

LAST_REGEN_TIME TIMESTAMP Y Time at which any views or check

constraints on the table were last

regenerated.

SECPOLICYID INTEGER Identifier for the security policy protecting

the table; 0 for non-protected tables.

PROTECTIONGRANULARITY CHAR (1) v B = Both column- and row-level

granularity

v C = Column-level granularity

v R = Row-level granularity

v Blank = Non-protected table

AUDITPOLICYID INTEGER Y Identifier for the audit policy.

AUDITPOLICYNAME VARCHAR (128) Y Name of the audit policy.

DEFINER1 VARCHAR (128) Authorization ID under which the table,

view, alias, or nickname was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABLESPACES

Each row represents a table space.

 Table 146. SYSCAT.TABLESPACES Catalog View

Column Name Data Type Nullable Description

TBSPACE VARCHAR (128) Name of the table space.

OWNER VARCHAR (128) Authorization ID under which the table

space was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the table space was created.

SYSCAT.TABLES

Appendix D. Catalog views 619

Table 146. SYSCAT.TABLESPACES Catalog View (continued)

Column Name Data Type Nullable Description

TBSPACEID INTEGER Identifier for the table space.

TBSPACETYPE CHAR (1) Type of table space.

v D = Database-managed space

v S = System-managed space

DATATYPE CHAR (1) Type of data that can be stored in this table

space.

v A = All types of permanent data; regular

table space

v L = All types of permanent data; large

table space

v T = System temporary tables only

v U = Declared temporary tables only

EXTENTSIZE INTEGER Size of each extent, in pages of size

PAGESIZE. This many pages are written to

one container in the table space before

switching to the next container.

PREFETCHSIZE INTEGER Number of pages of size PAGESIZE to be

read when prefetching is performed; -1 when

AUTOMATIC.

OVERHEAD DOUBLE Controller overhead and disk seek and

latency time, in milliseconds (average for the

containers in this table space).

TRANSFERRATE DOUBLE Time to read one page of size PAGESIZE

into the buffer (average for the containers in

this table space).

PAGESIZE INTEGER Size (in bytes) of pages in this table space.

DBPGNAME VARCHAR (128) Name of the database partition group that is

associated with this table space.

BUFFERPOOLID INTEGER Identifier for the buffer pool that is used by

this table space (1 indicates the default buffer

pool).

DROP_RECOVERY CHAR (1) Indicates whether or not tables in this table

space can be recovered after a drop table

operation.

v N = Tables are not recoverable

v Y = Tables are recoverable

NGNAME1 VARCHAR (128) Name of the database partition group that is

associated with this table space.

DEFINER2 VARCHAR (128) Authorization ID under which the table

space was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The NGNAME column is included for backwards compatibility. See DBPGNAME.

2. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TABLESPACES

620 SQL Reference, Volume 1

SYSCAT.TABOPTIONS

Each row represents an option that is associated with a remote table.

 Table 147. SYSCAT.TABOPTIONS Catalog View

Column Name Data Type Nullable Description

TABSCHEMA VARCHAR (128) Schema name of a table, view, alias, or

nickname.

TABNAME VARCHAR (128) Unqualified name of a table, view, alias, or

nickname.

OPTION VARCHAR (128) Name of the table option.

SETTING CLOB (32K) Value of the table option.

SYSCAT.TBSPACEAUTH

Each row represents a user or group that has been granted the USE privilege on a

particular table space in the database.

 Table 148. SYSCAT.TBSPACEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

TBSPACE VARCHAR (128) Name of the table space.

USEAUTH CHAR (1) Privilege to create tables within the table

space.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.THRESHOLDS

Each row represents a threshold.

 Table 149. SYSCAT.THRESHOLDS Catalog View

Column Name Data Type Nullable Description

THRESHOLDNAME VARCHAR (128) Name of the threshold.

THRESHOLDID INTEGER Identifier for the threshold.

ORIGIN CHAR (1) Origin of the threshold.

v U = Threshold was created by a user

v W = Threshold was created through a

work action set

SYSCAT.TABOPTIONS

Appendix D. Catalog views 621

Table 149. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

THRESHOLDCLASS CHAR (1) Classification of the threshold.

v A = Aggregate threshold

v C = Activity threshold

THRESHOLDPREDICATE VARCHAR (15) Type of the threshold. Possible values are:

v CONCDBC

v CONCWCN

v CONCWOC

v CONNIDLETIME

v DBCONN

v ESTSQLCOST

v ROWSRET

v SCCONN

v TEMPSPACE

v TOTALTIME

THRESHOLDPREDICATEID SMALLINT Identifier for the threshold predicate.

DOMAIN CHAR (2) Domain of the threshold.

v DB = Database

v SB = Service subclass

v SP = Service superclass

v WA = Work action set

v WD = Workload definition

DOMAINID INTEGER Identifier for the object with which the

threshold is associated. This can be a service

class, work action or workload unique ID. If

this is a database threshold, this value is 0.

ENFORCEMENT CHAR (1) Scope of enforcement for the threshold.

v D = Database

v P = Database partition

v W = Workload occurrence

QUEUEING CHAR (1) v N = The threshold is not queueing

v Y = The threshold is queueing

MAXVALUE BIGINT Upper bound specified by the threshold.

QUEUESIZE INTEGER If QUEUEING is ’Y’, the size of the queue. -1

otherwise.

COLLECTACTDATA CHAR (1) Specifies what activity data should be

collected by the applicable event monitor.

v D = Activity data with details

v N = None

v V = Activity data with details and values

v W = Activity data without details

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator

of the activity

v D = All database partitions

SYSCAT.THRESHOLDS

622 SQL Reference, Volume 1

Table 149. SYSCAT.THRESHOLDS Catalog View (continued)

Column Name Data Type Nullable Description

EXECUTION CHAR (1) Indicates whether or not execution continues

after the threshold has been exceeded.

v C = Execution continues

v S = Execution stops

ENABLED CHAR (1) v N = This threshold is disabled.

v Y = This threshold is enabled.

CREATE_TIME TIMESTAMP Time at which the threshold was created.

ALTER_TIME TIMESTAMP Time at which the threshold was last altered.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.TRANSFORMS

Each row represents the functions that handle transformations between a

user-defined type and a base SQL type, or the reverse.

 Table 150. SYSCAT.TRANSFORMS Catalog View

Column Name Data Type Nullable Description

TYPEID SMALLINT Identifier for the data type.

TYPESCHEMA VARCHAR (128) Schema name of the data type. The schema

name for built-in types is ’SYSIBM’.

TYPENAME VARCHAR (128) Unqualified name of the data type.

GROUPNAME VARCHAR (128) Name of the transform group.

FUNCID INTEGER Identifier for the routine.

FUNCSCHEMA VARCHAR (128) Schema name of the routine.

FUNCNAME VARCHAR (128) Unqualified name of the routine.

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be

system-generated).

TRANSFORMTYPE VARCHAR(8) v ’FROM SQL’ = Transform function

transforms a structured type from SQL

v ’TO SQL’ = Transform function transforms

a structured type to SQL

FORMAT CHAR (1) Format produced by the FROM SQL

transform.

v S = Structured data type

v U = User-defined

MAXLENGTH INTEGER Y Maximum length (in bytes) of output from

the FROM SQL transform; null value for TO

SQL transforms.

ORIGIN CHAR (1) Source of this group of transforms.

v O = Original transform group (built-in or

system-defined)

v R = Redefined transform group (only

built-in groups can be redefined)

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.THRESHOLDS

Appendix D. Catalog views 623

SYSCAT.TRIGDEP

Each row represents a dependency of a trigger on some other object. The trigger

depends on the object of type BTYPE of name BNAME, so a change to the object

affects the trigger.

 Table 151. SYSCAT.TRIGDEP Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR (128) Schema name of the trigger.

TRIGNAME VARCHAR (128) Unqualified name of the trigger.

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v B = Trigger

v F = Routine instance

v H = Hierachy table

v K = Package

v L = Detached table

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v Q = Sequence

v R = Structured type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which there is

a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which

there is a dependency. For routines (BTYPE =

’F’), this is the specific name.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,

encodes the privileges on the table or view

that are required by a dependent trigger;

null value otherwise.

SYSCAT.TRIGGERS

Each row represents a trigger. For table hierarchies, each trigger is recorded only at

the level of the hierarchy where the trigger was created.

 Table 152. SYSCAT.TRIGGERS Catalog View

Column Name Data Type Nullable Description

TRIGSCHEMA VARCHAR (128) Schema name of the trigger.

TRIGNAME VARCHAR (128) Unqualified name of the trigger.

SYSCAT.TRIGDEP

624 SQL Reference, Volume 1

Table 152. SYSCAT.TRIGGERS Catalog View (continued)

Column Name Data Type Nullable Description

OWNER VARCHAR (128) Authorization ID under which the trigger

was created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

TABSCHEMA VARCHAR (128) Schema name of the table or view to which

this trigger applies.

TABNAME VARCHAR (128) Unqualified name of the table or view to

which this trigger applies.

TRIGTIME CHAR (1) Time at which triggered actions are applied

to the base table, relative to the event that

fired the trigger.

v A = Trigger is applied after the event

v B = Trigger is applied before the event

v I = Trigger is applied instead of the event

TRIGEVENT CHAR (1) Event that fires the trigger.

v D = Delete operation

v I = Insert operation

v U = Update operation

GRANULARITY CHAR (1) Trigger is executed once per:

v R = Row

v S = Statement

VALID CHAR (1) v N = Trigger is invalid

v Y = Trigger is valid

v X = Trigger is inoperative and must be

recreated

CREATE_TIME TIMESTAMP Time at which the trigger was defined. Used

in resolving functions and types.

QUALIFIER VARCHAR (128) Value of the default schema at the time of

object definition. Used to complete any

unqualified references.

FUNC_PATH CLOB (2K) SQL path at the time the trigger was defined.

Used in resolving functions and types.

TEXT CLOB (2M) Full text of the CREATE TRIGGER

statement, exactly as typed.

LAST_REGEN_TIME TIMESTAMP Time at which the packed descriptor for the

trigger was last regenerated.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the trigger.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the

trigger.

COLLATIONSCHEMA_

ORDERBY

VARCHAR (128) Schema name of the collation for ORDER BY

clauses in the trigger.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for

ORDER BY clauses in the trigger.

DEFINER1 VARCHAR (128) Authorization ID under which the trigger

was created.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.TRIGGERS

Appendix D. Catalog views 625

Table 152. SYSCAT.TRIGGERS Catalog View (continued)

Column Name Data Type Nullable Description

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.TYPEMAPPINGS

Each row represents a data type mapping between a locally-defined data type and

a data source data type. There are two mapping types (mapping directions):

v Forward type mappings map a data source data type to a locally-defined data

type.

v Reverse type mappings map a locally-defined data type to a data source data

type.

 Table 153. SYSCAT.TYPEMAPPINGS Catalog View

Column Name Data Type Nullable Description

TYPE_MAPPING VARCHAR (18) Name of the type mapping (might be

system-generated).

MAPPINGDIRECTION CHAR (1) Indicates whether this type mapping is a

forward or a reverse type mapping.

v F = Forward type mapping

v R = Reverse type mapping

TYPESCHEMA VARCHAR (128) Y Schema name of the local type in a data type

mapping; null for built-in types.

TYPENAME VARCHAR (128) Unqualified name of the local type in a data

type mapping.

TYPEID SMALLINT Identifier for the data type.

SOURCETYPEID SMALLINT Identifier for the source type.

OWNER VARCHAR (128) Authorization ID under which this type

mapping was created. ’SYSIBM’ indicates a

built-in type mapping.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

LENGTH INTEGER Y Maximum length or precision of the local

data type in this mapping. If null, the system

determines the maximum length or

precision. For character types, represents the

maximum number of bytes.

SCALE SMALLINT Y Maximum number of digits in the fractional

part of a local decimal value in this

mapping. If null, the system determines the

maximum number.

LOWER_LEN INTEGER Y Minimum length or precision of the local

data type in this mapping. If null, the system

determines the minimum length or precision.

For character types, represents the minimum

number of bytes.

SYSCAT.TRIGGERS

626 SQL Reference, Volume 1

Table 153. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

UPPER_LEN INTEGER Y Maximum length or precision of the local

data type in this mapping. If null, the system

determines the maximum length or

precision. For character types, represents the

maximum number of bytes.

LOWER_SCALE SMALLINT Y Minimum number of digits in the fractional

part of a local decimal value in this

mapping. If null, the system determines the

minimum number.

UPPER_SCALE SMALLINT Y Maximum number of digits in the fractional

part of a local decimal value in this

mapping. If null, the system determines the

maximum number.

S_OPR_P CHAR (2) Y Relationship between the scale and precision

of a local decimal value in this mapping.

Basic comparison operators (=, <, >, <=, >=,

<>) can be used. A null value indicates that

no specific relationship is required.

BIT_DATA CHAR (1) Y Indicates whether or not this character type

is for bit data. Possible values are:

v N = This type is not for bit data

v Y = This type is for bit data

v Null value = This is not a character data

type, or the system determines the bit data

attribute

WRAPNAME VARCHAR (128) Y Data access protocol (wrapper) to which this

mapping applies.

SERVERNAME VARCHAR (128) Y Uppercase name of the server.

SERVERTYPE VARCHAR (30) Y Type of server.

SERVERVERSION VARCHAR (18) Y Server version.

REMOTE_TYPESCHEMA VARCHAR (128) Y Schema name of the data source data type.

REMOTE_TYPENAME VARCHAR (128) Unqualified name of the data source data

type.

REMOTE_META_TYPE CHAR (1) Y Indicates whether this remote type is a

system built-in type or a distinct type.

v S = System built-in type

v T = Distinct type

REMOTE_LOWER_LEN INTEGER Y Minimum length or precision of the remote

data type in this mapping, or the null value.

For character types, represents the minimum

number of characters (not bytes). For binary

types, represents the minimum number of

bytes. A value of -1 indicates that the default

length or precision is used, or that the

remote type does not have a length or

precision.

SYSCAT.TYPEMAPPINGS

Appendix D. Catalog views 627

Table 153. SYSCAT.TYPEMAPPINGS Catalog View (continued)

Column Name Data Type Nullable Description

REMOTE_UPPER_LEN INTEGER Y Maximum length or precision of the remote

data type in this mapping, or the null value.

For character types, represents the maximum

number of characters (not bytes). For binary

types, represents the maximum number of

bytes. A value of -1 indicates that the default

length or precision is used, or that the

remote type does not have a length or

precision.

REMOTE_LOWER_SCALE SMALLINT Y Minimum number of digits in the fractional

part of a remote decimal value in this

mapping, or the null value.

REMOTE_UPPER_SCALE SMALLINT Y Maximum number of digits in the fractional

part of a remote decimal value in this

mapping, or the null value.

REMOTE_S_OPR_P CHAR (2) Y Relationship between the scale and precision

of a remote decimal value in this mapping.

Basic comparison operators (=, <, >, <=, >=,

<>) can be used. A null value indicates that

no specific relationship is required.

REMOTE_BIT_DATA CHAR (1) Y Indicates whether or not this remote

character type is for bit data. Possible values

are:

v N = This type is not for bit data

v Y = This type is for bit data

v Null value = This is not a character data

type, or the system determines the bit data

attribute

USER_DEFINED CHAR (1) Indicates whether or not the mapping is

user-defined. The value is always ’Y’; that is,

the mapping is always user-defined.

CREATE_TIME TIMESTAMP Time at which this mapping was created.

DEFINER1 VARCHAR (128) Authorization ID under which this type

mapping was created. ’SYSIBM’ indicates a

built-in type mapping.

REMARKS VARCHAR (254) Y User-provided comments, or null.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.USEROPTIONS

Each row represents a server-specific user option value.

 Table 154. SYSCAT.USEROPTIONS Catalog View

Column Name Data Type Nullable Description

AUTHID VARCHAR (128) Local authorization ID, in uppercase

characters.

AUTHIDTYPE CHAR (1) v U = Grantee is an individual user

SYSCAT.TYPEMAPPINGS

628 SQL Reference, Volume 1

Table 154. SYSCAT.USEROPTIONS Catalog View (continued)

Column Name Data Type Nullable Description

SERVERNAME VARCHAR (128) Name of the server on which the user is

defined.

OPTION VARCHAR (128) Name of the user option.

SETTING VARCHAR (2048) Value of the user option.

SYSCAT.VARIABLEAUTH

Each row represents a user, group or role that has been granted one or more

privileges by a specific grantor on a global variable in the database.

 Table 155. SYSCAT.VARIABLEAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

VARSCHEMA VARCHAR (128) Schema name of the global variable.

VARNAME VARCHAR (128) Unqualified name of the global variable.

VARID INTEGER Identifier for the global variable.

READAUTH CHAR (1) Privilege to read the global variable.

v G = Held and grantable

v N = Not held

v Y = Held

WRITEAUTH CHAR (1) Privilege to write the global variable.

v G = Held and grantable

v N = Not held

v Y = Held

SYSCAT.VARIABLEDEP

Each row represents a dependency of a global variable on some other object. The

global variable depends on the object of type BTYPE of name BNAME, so a change

to the object affects the global variable.

 Table 156. SYSCAT.VARIABLEDEP Catalog View

Column Name Data Type Nullable Description

VARSCHEMA VARCHAR (128) Schema name of the global variable that has

dependencies on another object.

VARNAME VARCHAR (128) Unqualified name of the global variable that

has dependencies on another object.

SYSCAT.USEROPTIONS

Appendix D. Catalog views 629

Table 156. SYSCAT.VARIABLEDEP Catalog View (continued)

Column Name Data Type Nullable Description

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v F = Routine instance

v H = Hierarchy table

v N = Nickname

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which there is

a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which

there is a dependency. For routines (BTYPE =

’F’), this is the specific name.

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,

encodes the privileges on the table or view

that are required by the dependent global

variable; null value otherwise.

SYSCAT.VARIABLES

Each row represents a global variable.

 Table 157. SYSCAT.VARIABLES Catalog View

Column Name Data Type Nullable Description

VARSCHEMA VARCHAR (128) Schema name of the global variable.

VARNAME VARCHAR (128) Unqualified name of the global variable.

VARID INTEGER Identifier for the global variable.

OWNER VARCHAR (128) Authorization ID of the owner of the global

variable.

OWNERTYPE CHAR (1) v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the global variable was

created.

LAST_REGEN_TIME TIMESTAMP Time at which the default expression was

last regenerated.

TYPESCHEMA VARCHAR (128) Schema name of the data type. The schema

name for built-in types is ’SYSIBM’.

TYPENAME VARCHAR (128) Unqualified name of the data type.

LENGTH INTEGER Maximum length of the global variable.

SCALE SMALLINT Scale of the global variable.

SYSCAT.VARIABLEDEP

630 SQL Reference, Volume 1

Table 157. SYSCAT.VARIABLES Catalog View (continued)

Column Name Data Type Nullable Description

CODEPAGE SMALLINT Code page of the global variable.

COLLATIONSCHEMA VARCHAR (128) Schema name of the collation for the

variable.

COLLATIONNAME VARCHAR (128) Unqualified name of the collation for the

variable.

COLLATIONSCHEMA_

ORDERBY

VARCHAR (128) Schema name of the collation for ORDER BY

clauses in the variable.

COLLATIONNAME_ORDERBY VARCHAR (128) Unqualified name of the collation for

ORDER BY clauses in the variable.

SCOPE CHAR (1) Scope of the global variable.

v S = Session

DEFAULT CLOB (64K) Y Expression used to calculate the initial value

of the global variable when first referenced.

QUALIFIER VARCHAR (128) Y Value of the default schema at the time the

variable was defined.

FUNC_PATH CLOB (2K) Y SQL path at the time the variable was

defined.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.VIEWS

Each row represents a view.

 Table 158. SYSCAT.VIEWS Catalog View

Column Name Data Type Nullable Description

VIEWSCHEMA VARCHAR (128) Schema name of the view.

VIEWNAME VARCHAR (128) Unqualified name of the view.

OWNER VARCHAR (128) Authorization ID under which the view was

created.

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

SEQNO SMALLINT Always 1.

VIEWCHECK CHAR (1) Type of view checking.

v C = Cascaded check option

v L = Local check option

v N = No check option

READONLY CHAR (1) v N = View can be updated by users with

appropriate authorization

v Y = View is read-only because of its

definition

VALID CHAR (1) v X = View or materialized query table

definition is inoperative and must be

recreated

v Y = View or materialized query table

definition is valid

SYSCAT.VARIABLES

Appendix D. Catalog views 631

Table 158. SYSCAT.VIEWS Catalog View (continued)

Column Name Data Type Nullable Description

QUALIFIER VARCHAR (128) Value of the default schema at the time of

object definition. Used to complete any

unqualified references.

FUNC_PATH CLOB (2K) SQL path in effect when the view was

defined. When the view is referenced in data

manipulation language (DML) statements,

this path must be used to resolve function

calls in the view. ’SYSIBM’ for pre-Version 2

views.

TEXT CLOB (2M) Full text of the CREATE VIEW statement,

exactly as typed.

DEFINER1 VARCHAR (128) Authorization ID under which the view was

created.

Note:

1. The DEFINER column is included for backwards compatibility. See OWNER.

SYSCAT.WORKACTIONS

Each row represents a work action that is defined for a work action set.

 Table 159. SYSCAT.WORKACTIONS Catalog View

Column Name Data Type Nullable Description

ACTIONNAME VARCHAR (128) Name of the work action.

ACTIONID INTEGER Identifier for the work action.

ACTIONSETNAME VARCHAR (128) Y Name of the work action set.

ACTIONSETID INTEGER Identifier of the work action set to which this

work action belongs. This column refers to

the ACTIONSETID column in the

SYSCAT.WORKACTIONSETS view.

WORKCLASSNAME VARCHAR (128) Y Name of the work class.

WORKCLASSID INTEGER Identifier of the work class. This column

refers to the WORKCLASSID column in the

SYSCAT.WORKCLASSES view.

CREATE_TIME TIMESTAMP Time at which the work action was created.

ALTER_TIME TIMESTAMP Time at which the work action was last

altered.

ENABLED CHAR (1) v N = This work action is disabled.

v Y = This work action is enabled.

SYSCAT.VIEWS

632 SQL Reference, Volume 1

Table 159. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

ACTIONTYPE CHAR (1) The action type that will be performed on

each DB2 activity that matches the work

class attributes specified in the work class

under the matching scope. For this column

description, OBJECTTYPE refers to column

OBJECTTYPE in

SYSCAT.WORKACTIONSETS.

v B - Collect basic aggregate activity data.

This action type can only be specified if

the OBJECTTYPE is ’b’ (service class).

v C - Allow the execution of any DB2

activity that falls under the work class

with which this work action is associated

to run and increment the counter for the

work class.

v D - Collect activity data with details at the

database partition of the coordinator of the

activity.

v E - Collect extended aggregate activity

data. This action type can only be

specified if the OBJECTTYPE is ’b’ (service

class).

v M - Map to a service subclass. This action

type can only be specified if the

OBJECTTYPE is ’b’ (service class).

v P - Prevent the execution of any DB2

activity that falls under the work class

with which this work action is associated.

v T - The action will be in the form of a

threshold. This action type can only be

specified if the OBJECTTYPE is blank

(database).

v U - Map all activities that have a nesting

level of zero and all activities nested

under this activity to a service subclass.

This action type can only be specified if

the OBJECTTYPE is ’b’ (service class).

ACTIONTYPE (cont’d) v V - Collect activity data with details and

values at the database partition of the

coordinator of the activity.

v W - Collect activity data without details at

the database partition of the coordinator of

the activity.

v X - Collect activity data with details at the

database partition of the coordinator of the

activity and collect activity data at all

database partitions.

v Y - Collect activity data with details and

values at the database partition of the

coordinator of the activity and collect

activity data at all database partitions.

v Z - Collect activity data without details at

all database partitions.

SYSCAT.WORKACTIONS

Appendix D. Catalog views 633

Table 159. SYSCAT.WORKACTIONS Catalog View (continued)

Column Name Data Type Nullable Description

REFOBJECTID INTEGER Y If ACTIONTYPE is ’M’ (map) or ’N’ (map

nested), this value is set to the ID of the

service subclass to which the DB2 activity is

mapped. If ACTIONTYPE is ’T’ (threshold),

this value is set to the ID of the threshold to

be used. For all other actions, this value is

NULL.

REFOBJECTTYPE VARCHAR (30) If the ACTIONTYPE is ’M’ or ’N’, this value

is set to ’SERVICE CLASS’; if the

ACTIONTYPE is ’T’, this value is

’THRESHOLD’; null value otherwise.

SYSCAT.WORKACTIONSETS

Each row represents a work action set.

 Table 160. SYSCAT.WORKACTIONSETS Catalog View

Column Name Data Type Nullable Description

ACTIONSETNAME VARCHAR (128) Name of the work action set.

ACTIONSETID INTEGER Identifier for the work action set.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSSETID INTEGER The identifier of the work class set that is to

be mapped to the object specified by the

OBJECTID. This column refers to

WORKCLASSSETID in the

SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work action set was

created.

ALTER_TIME TIMESTAMP Time at which the work action set was last

altered.

ENABLED CHAR (1) v N = This work action set is disabled.

v Y = This work action set is enabled.

OBJECTTYPE CHAR (1) v b = Service superclass

v Blank = Database

OBJECTNAME VARCHAR (128) Y Name of the service class.

OBJECTID INTEGER The identifier of the object to which the

work class set (specified by the

WORKCLASSSETID) is mapped. If the

OBJECTTYPE is blank, the OBJECTID is -1.

If the OBJECTTYPE is ’b’, the OBJECTID is

the ID of the service superclass.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.WORKCLASSES

Each row represents a work class defined for a work class set.

SYSCAT.WORKACTIONS

634 SQL Reference, Volume 1

Table 161. SYSCAT.WORKCLASSES Catalog View

Column Name Data Type Nullable Description

WORKCLASSNAME VARCHAR (128) Name of the work class.

WORKCLASSSETNAME VARCHAR (128) Y Name of the work class set.

WORKCLASSID INTEGER Identifier for the work class.

WORKCLASSSETID INTEGER Identifier for the work class set to which this

work class belongs. This column refers to the

WORKCLASSSETID column in the

SYSCAT.WORKCLASSSETS view.

CREATE_TIME TIMESTAMP Time at which the work class was created.

ALTER_TIME TIMESTAMP Time at which the work class was last

altered.

WORKTYPE SMALLINT The type of DB2 activity.

v 1 = ALL

v 2 = READ

v 3 = WRITE

v 4 = CALL

v 5 = DML

v 6 = DDL

v 7 = LOAD

RANGEUNITS CHAR (1) The units to use for the bottom and top

range.

v C = Cardinality

v T = Timerons

v Blank = Not applicable

FROMVALUE DOUBLE Y The low value of the range in the units

specified by the RANGEUNITS. Null value

when RANGEUNITS is blank.

TOVALUE DOUBLE Y The high value of the range in the units

specified by the RANGEUNITS. Null value

when RANGEUNITS is blank. -1 value is

used to indicate no upper bound.

ROUTINESCHEMA VARCHAR (128) Y Schema name of the procedures that are

called from the CALL statement. Null value

when WORKTYPE is not 4 (CALL) or 1

(ALL).

EVALUATIONORDER SMALLINT Uniquely identifies the evaluation order used

for choosing a work class within a work

class set.

SYSCAT.WORKCLASSSETS

Each row represents a work class set.

 Table 162. SYSCAT.WORKCLASSSETS Catalog View

Column Name Data Type Nullable Description

WORKCLASSSETNAME VARCHAR (128) Name of the work class set.

WORKCLASSSETID INTEGER Identifier for the work class set.

SYSCAT.WORKCLASSES

Appendix D. Catalog views 635

Table 162. SYSCAT.WORKCLASSSETS Catalog View (continued)

Column Name Data Type Nullable Description

CREATE_TIME TIMESTAMP Time at which the work class set was

created.

ALTER_TIME TIMESTAMP Time at which the work class set was last

altered.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.WORKLOADAUTH

Each row represents a user, group, or role that has been granted USAGE privilege

on a workload.

 Table 163. SYSCAT.WORKLOADAUTH Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v U = Grantee is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

USAGEAUTH CHAR (1) Indicates whether grantee holds USAGE

privilege on the workload.

v N = Not held

v Y = Held

SYSCAT.WORKLOADCONNATTR

Each row represents a connection attribute in the definition of a workload.

 Table 164. SYSCAT.WORKLOADCONNATTR Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

CONNATTRTYPE VARCHAR (30) Type of the connection attribute.

v 1 = APPLNAME

v 2 = SYSTEM_USER

v 3 = SESSION_USER

v 4 = SESSION_USER GROUP

v 5 = SESSION_USER ROLE

v 6 = CURRENT CLIENT_USERID

v 7 = CURRENT CLIENT_APPLNAME

v 8 = CURRENT CLIENT_WRKSTNNAME

v 9 = CURRENT CLIENT_ACCTNG

SYSCAT.WORKCLASSSETS

636 SQL Reference, Volume 1

Table 164. SYSCAT.WORKLOADCONNATTR Catalog View (continued)

Column Name Data Type Nullable Description

CONNATTRVALUE VARCHAR (1000) Value of the connection attribute.

SYSCAT.WORKLOADS

Each row represents a workload.

 Table 165. SYSCAT.WORKLOADS Catalog View

Column Name Data Type Nullable Description

WORKLOADID INTEGER Identifier for the workload.

WORKLOADNAME VARCHAR (128) Name of the workload.

EVALUATIONORDER SMALLINT Evaluation order used for choosing a

workload.

CREATE_TIME TIMESTAMP Time at which the workload was created.

ALTER_TIME TIMESTAMP Time at which the workload was last altered.

ENABLED CHAR (1) v N = This workload is disabled.

v Y = This workload is enabled.

ALLOWACCESS CHAR (1) v N = A UOW associated with this

workload will be rejected.

v Y = A unit of work (UOW) associated with

this workload can access the database.

SERVICECLASSNAME VARCHAR (128) Name of the service subclass to which a unit

of work (associated with this workload) is

assigned.

PARENTSERVICECLASSNAME VARCHAR (128) Y Name of the service superclass to which a

unit of work (associated with this workload)

is assigned.

COLLECTAGGACTDATA CHAR (1) Specifies what aggregate activity data should

be captured for the workload by the

applicable event monitor.

v N = None

COLLECTACTDATA CHAR (1) Specifies what activity data should be

collected by the applicable event monitor.

v D = Activity data with details

v N = None

v V = Activity data with details and

valuesApplies when the COLLECT

column is set to ’C’

v W = Activity data without details

COLLECTACTPARTITION CHAR (1) Specifies where activity data is collected.

v C = Database partition of the coordinator

of the activity

v D = All database partitions

EXTERNALNAME VARCHAR (128) Y Reserved for future use.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.WORKLOADCONNATTR

Appendix D. Catalog views 637

SYSCAT.WRAPOPTIONS

Each row represents a wrapper-specific option.

 Table 166. SYSCAT.WRAPOPTIONS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

OPTION VARCHAR (128) Name of the wrapper option.

SETTING VARCHAR (2048) Value of the wrapper option.

SYSCAT.WRAPPERS

Each row represents a registered wrapper.

 Table 167. SYSCAT.WRAPPERS Catalog View

Column Name Data Type Nullable Description

WRAPNAME VARCHAR (128) Name of the wrapper.

WRAPTYPE CHAR (1) Type of wrapper.

v N = Non-relational

v R = Relational

WRAPVERSION INTEGER Version of the wrapper.

LIBRARY VARCHAR (255) Name of the file that contains the code used

to communicate with the data sources that

are associated with this wrapper.

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSCAT.XDBMAPGRAPHS

Each row represents a schema graph for an XDB map (XSR object).

 Table 168. SYSCAT.XDBMAPGRAPHS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR

object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

SCHEMAGRAPHID INTEGER Schema graph identifier, which is unique

within an XDB map identifier.

NAMESPACE VARCHAR (1001) Y String identifier for the namespace URI of

the root element.

ROOTELEMENT VARCHAR (1001) Y String identifier for the element name of the

root element.

SYSCAT.XDBMAPSHREDTREES

Each row represents one shred tree for a given schema graph identifier.

SYSCAT.WRAPOPTIONS

638 SQL Reference, Volume 1

Table 169. SYSCAT.XDBMAPSHREDTREES Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR

object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

SCHEMAGRAPHID INTEGER Schema graph identifier, which is unique

within an XDB map identifier.

SHREDTREEID INTEGER Shred tree identifier, which is unique within

an XDB map identifier.

MAPPINGDESCRIPTION CLOB (1M) Y Diagnostic mapping information.

SYSCAT.XSROBJECTAUTH

Each row represents a user or group that has been granted the USAGE privilege

on a particular XSR object.

 Table 170. SYSCAT.XSROBJECTAUTH Catalog View

Column Name Data Type Nullable Description

GRANTOR VARCHAR (128) Grantor of the privilege.

GRANTORTYPE CHAR (1) v S = Grantor is the system

v U = Grantor is an individual user

GRANTEE VARCHAR (128) Holder of the privilege.

GRANTEETYPE CHAR (1) v G = Grantee is a group

v R = Grantee is a role

v U = Grantee is an individual user

OBJECTID BIGINT Identifier for the XSR object.

USAGEAUTH CHAR (1) Privilege to use the XSR object and its

components.

v N = Not held

v Y = Held

SYSCAT.XSROBJECTCOMPONENTS

Each row represents an XSR object component.

 Table 171. SYSCAT.XSROBJECTCOMPONENTS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR

object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

COMPONENTID BIGINT Unique generated identifier for an XSR

object component.

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the target namespace.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the schema location.

SYSCAT.XDBMAPSHREDTREES

Appendix D. Catalog views 639

Table 171. SYSCAT.XSROBJECTCOMPONENTS Catalog View (continued)

Column Name Data Type Nullable Description

COMPONENT BLOB (30M) External representation of the component.

CREATE_TIME TIMESTAMP Time at which the XSR object component

was registered.

STATUS CHAR (1) Registration status.

v C = Complete

v I = Incomplete

SYSCAT.XSROBJECTDEP

Each row represents a dependency of an XSR object on some other object. The XSR

object depends on the object of type BTYPE of name BNAME, so a change to the

object affects the XSR object.

 Table 172. SYSCAT.XSROBJECTDEP Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR

object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

BTYPE CHAR (1) Type of object on which there is a

dependency. Possible values are:

v A = Alias

v B = Trigger

v F = Routine instance

v H = Hierachy table

v K = Package

v L = Detached table

v O = Privilege dependency on all subtables

or subviews in a table or view hierarchy

v Q = Sequence

v R = Structured type

v S = Materialized query table

v T = Table (not typed)

v U = Typed table

v V = View (not typed)

v W = Typed view

v X = Index extension

v Z = XSR object

v v = Global variable

BSCHEMA VARCHAR (128) Schema name of the object on which there is

a dependency.

BNAME VARCHAR (128) Unqualified name of the object on which

there is a dependency. For routines (BTYPE =

’F’), this is the specific name.

SYSCAT.XSROBJECTCOMPONENTS

640 SQL Reference, Volume 1

Table 172. SYSCAT.XSROBJECTDEP Catalog View (continued)

Column Name Data Type Nullable Description

TABAUTH SMALLINT Y If BTYPE = ’O’, ’S’, ’T’, ’U’, ’V’, ’W’, or ’v’,

encodes the privileges on the table or view

that are required by a dependent trigger;

null value otherwise.

SYSCAT.XSROBJECTHIERARCHIES

Each row represents the hierarchical relationship between an XSR object and its

components.

 Table 173. SYSCAT.XSROBJECTHIERARCHIES Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Identifier for an XSR object.

COMPONENTID BIGINT Identifier for an XSR component.

HTYPE CHAR (1) Hierarchy type.

v D = Document

v N = Top-level namespace

v P = Primary document

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the component’s target

namespace.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the component’s schema

location.

SYSCAT.XSROBJECTS

Each row represents an XML schema repository object.

 Table 174. SYSCAT.XSROBJECTS Catalog View

Column Name Data Type Nullable Description

OBJECTID BIGINT Unique generated identifier for an XSR

object.

OBJECTSCHEMA VARCHAR (128) Schema name of the XSR object.

OBJECTNAME VARCHAR (128) Unqualified name of the XSR object.

TARGETNAMESPACE VARCHAR (1001) Y String identifier for the target namespace, or

public identifier.

SCHEMALOCATION VARCHAR (1001) Y String identifier for the schema location, or

system identifier.

OBJECTINFO XML Y Metadata document.

OBJECTTYPE CHAR (1) XSR object type.

v D = DTD

v E = External entity

v S = XML schema

OWNER VARCHAR (128) Authorization ID under which the XSR

object was registered.

SYSCAT.XSROBJECTDEP

Appendix D. Catalog views 641

Table 174. SYSCAT.XSROBJECTS Catalog View (continued)

Column Name Data Type Nullable Description

OWNERTYPE CHAR (1) v S = The owner is the system

v U = The owner is an individual user

CREATE_TIME TIMESTAMP Time at which the object was registered.

ALTER_TIME TIMESTAMP Time at which the object was last updated

(replaced).

STATUS CHAR (1) Registration status.

v C = Complete

v I = Incomplete

v R = Replace

v T = Temporary

DECOMPOSITION CHAR (1) Indicates whether or not decomposition

(shredding) is enabled on this XSR object.

v N = Not enabled

v X = Inoperative

v Y = Enabled

REMARKS VARCHAR (254) Y User-provided comments, or null.

SYSIBM.SYSDUMMY1

Contains one row. This view is available for applications that require compatibility

with DB2 Universal Database for z/OS.

 Table 175. SYSIBM.SYSDUMMY1 Catalog View

Column Name Data Type Nullable Description

IBMREQD CHAR(1) ’Y’

SYSSTAT.COLDIST

Each row represents the nth most frequent value of some column, or the nth

quantile (cumulative distribution) value of the column. Applies to columns of real

tables only (not views). No statistics are recorded for inherited columns of typed

tables.

 Table 176. SYSSTAT.COLDIST Catalog View

Column Name Data Type Nullable

Updat-
able Description

TABSCHEMA VARCHAR (128) Schema name of the table to which the

statistics apply.

TABNAME VARCHAR (128) Unqualified name of the table to which

the statistics apply.

COLNAME VARCHAR (128) Name of the column to which the

statistics apply.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SYSCAT.XSROBJECTS

642 SQL Reference, Volume 1

Table 176. SYSSTAT.COLDIST Catalog View (continued)

Column Name Data Type Nullable

Updat-
able Description

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies

the nth most frequent value. If TYPE =

’Q’, n in this column identifies the nth

quantile value.

COLVALUE1 VARCHAR (254) Y Y Data value as a character literal or a

null value.

VALCOUNT BIGINT Y If TYPE = ’F’, VALCOUNT is the

number of occurrences of COLVALUE in

the column. If TYPE = ’Q’, VALCOUNT

is the number of rows whose value is

less than or equal to COLVALUE.

DISTCOUNT2 BIGINT Y Y If TYPE = ’Q’, this column records the

number of distinct values that are less

than or equal to COLVALUE (null if

unavailable).

Note:

1. In the catalog view, the value of COLVALUE is always shown in the database code page and can contain

substitution characters. However, the statistics are gathered internally in the code page of the column’s table, and

will therefore use actual column values when applied during query optimization.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

SYSSTAT.COLGROUPDIST

Each row represents the value of the column in a column group that makes up the

nth most frequent value of the column group or the nth quantile value of the

column group.

 Table 177. SYSSTAT.COLGROUPDIST Catalog View

Column Name Data Type Nullable

Updat-
able Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

ORDINAL SMALLINT Ordinal number of the column in the

column group.

SEQNO SMALLINT If TYPE = ’F’, n in this column identifies

the nth most frequent value. If TYPE =

’Q’, n in this column identifies the nth

quantile value.

COLVALUE VARCHAR (254) Y Data value as a character literal or a

null value.

SYSSTAT.COLGROUPDISTCOUNTS

Each row represents the distribution statistics that apply to the nth most frequent

value of a column group or the nth quantile of a column group.

SYSSTAT.COLDIST

Appendix D. Catalog views 643

Table 178. SYSSTAT.COLGROUPDISTCOUNTS Catalog View

Column Name Data Type Nullable

Updat-
able Description

COLGROUPID INTEGER Identifier for the column group.

TYPE CHAR (1) v F = Frequency value

v Q = Quantile value

SEQNO SMALLINT Sequence number n representing the nth

TYPE value.

VALCOUNT BIGINT Y If TYPE = ’F’, VALCOUNT is the

number of occurrences of COLVALUE

for the column group with this SEQNO.

If TYPE = ’Q’, VALCOUNT is the

number of rows whose value is less

than or equal to COLVALUE for the

column group with this SEQNO.

DISTCOUNT BIGINT Y If TYPE = ’Q’, this column records the

number of distinct values that are less

than or equal to COLVALUE for the

column group with this SQENO (null if

unavailable).

SYSSTAT.COLGROUPS

Each row represents a column group and statistics that apply to the entire column

group.

 Table 179. SYSSTAT.COLGROUPS Catalog View

Column Name Data Type Nullable

Updat-
able Description

COLGROUPSCHEMA VARCHAR (128) Schema name of the column group.

COLGROUPNAME VARCHAR (128) Unqualified name of the column group.

COLGROUPID INTEGER Identifier for the column group.

COLGROUPCARD BIGINT Y Cardinality of the column group.

NUMFREQ_VALUES SMALLINT Number of frequent values collected for

the column group.

NUMQUANTILES SMALLINT Number of quantiles collected for the

column group.

SYSSTAT.COLUMNS

Each row represents a column defined for a table, view, or nickname.

 Table 180. SYSSTAT.COLUMNS Catalog View

Column Name Data Type Nullable

Updat-
able Description

TABSCHEMA VARCHAR (128) Schema name of the table, view, or

nickname that contains the column.

TABNAME VARCHAR (128) Unqualified name of the table, view, or

nickname that contains the column.

SYSSTAT.COLGROUPDISTCOUNTS

644 SQL Reference, Volume 1

Table 180. SYSSTAT.COLUMNS Catalog View (continued)

Column Name Data Type Nullable

Updat-
able Description

COLNAME VARCHAR (128) Name of the column.

COLCARD BIGINT Y Number of distinct values in the

column; -1 if statistics are not collected;

-2 for inherited columns and columns of

hierarchy tables.

HIGH2KEY1 VARCHAR (254) Y Y Second-highest data value.

Representation of numeric data changed

to character literals. Empty if statistics

are not collected. Empty for inherited

columns and columns of hierarchy

tables.

LOW2KEY1 VARCHAR (254) Y Y Second-lowest data value.

Representation of numeric data changed

to character literals. Empty if statistics

are not collected. Empty for inherited

columns and columns of hierarchy

tables.

AVGCOLLEN INTEGER Y Average space (in bytes) required for the

column; -1 if a long field or LOB, or

statistics have not been collected; -2 for

inherited columns and columns of

hierarchy tables.

NUMNULLS BIGINT Y Number of null values in the column; -1

if statistics are not collected.

SUB_COUNT SMALLINT Y Average number of sub-elements in the

column. Applicable to character string

columns only.

SUB_DELIM_LENGTH SMALLINT Y Average length of the delimiters that

separate each sub-element in the

column. Applicable to character string

columns only.

AVGCOLLENCHAR INTEGER Y Average number of characters (based on

the collation in effect for the column)

required for the column; -1 if a long

field or LOB, or statistics have not been

collected; -2 for inherited columns and

columns of hierarchy tables.

Note:

1. In the catalog view, the values of HIGH2KEY and LOW2KEY are always shown in the database code page and

can contain substitution characters. However, the statistics are gathered internally in the code page of the

column’s table, and will therefore use actual column values when applied during query optimization.

SYSSTAT.INDEXES

Each row represents an index. Indexes on typed tables are represented by two

rows: one for the ″logical index″ on the typed table, and one for the ″H-index″ on

the hierarchy table.

SYSSTAT.COLUMNS

Appendix D. Catalog views 645

Table 181. SYSSTAT.INDEXES Catalog View

Column Name Data Type Nullable

Updat-
able Description

INDSCHEMA VARCHAR (128) Schema name of the index.

INDNAME VARCHAR (128) Unqualified name of the index.

TABSCHEMA VARCHAR (128) Schema name of the table or nickname

on which the index is defined.

TABNAME VARCHAR (128) Unqualified name of the table or

nickname on which the index is defined.

COLNAMES VARCHAR (640) This column is no longer used and will

be removed in the next release.

NLEAF BIGINT Y Number of leaf pages; -1 if statistics are

not collected.

NLEVELS SMALLINT Y Number of index levels; -1 if statistics

are not collected.

FIRSTKEYCARD BIGINT Y Number of distinct first-key values; -1 if

statistics are not collected.

FIRST2KEYCARD BIGINT Y Number of distinct keys using the first

two columns of the index; -1 if statistics

are not collected, or if not applicable.

FIRST3KEYCARD BIGINT Y Number of distinct keys using the first

three columns of the index; -1 if

statistics are not collected, or if not

applicable.

FIRST4KEYCARD BIGINT Y Number of distinct keys using the first

four columns of the index; -1 if statistics

are not collected, or if not applicable.

FULLKEYCARD BIGINT Y Number of distinct full-key values; -1 if

statistics are not collected.

CLUSTERRATIO4 SMALLINT Y Degree of data clustering with the

index; -1 if statistics are not collected or

if detailed index statistics are collected

(in which case, CLUSTERFACTOR will

be used instead).

CLUSTERFACTOR4 DOUBLE Y Finer measurement of the degree of

clustering; -1 if statistics are not

collected or if the index is defined on a

nickname.

SEQUENTIAL_PAGES BIGINT Y Number of leaf pages located on disk in

index key order with few or no large

gaps between them; -1 if statistics are

not collected.

DENSITY INTEGER Y Ratio of SEQUENTIAL_PAGES to

number of pages in the range of pages

occupied by the index, expressed as a

percent (integer between 0 and 100); -1

if statistics are not collected.

SYSSTAT.INDEXES

646 SQL Reference, Volume 1

Table 181. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable

Updat-
able Description

PAGE_FETCH_PAIRS4 VARCHAR (520) Y A list of pairs of integers, represented in

character form. Each pair represents the

number of pages in a hypothetical

buffer, and the number of page fetches

required to scan the table with this

index using that hypothetical buffer.

Zero-length string if no data is available.

NUMRIDS4 BIGINT Y Total number of row identifiers (RIDs)

or block identifiers (BIDs) in the index;

-1 if not known.

NUMRIDS_DELETED4 BIGINT Y Total number of row identifiers (or

block identifiers) in the index that are

marked deleted, excluding those

identifiers on leaf pages on which all

the identifiers are marked deleted.

NUM_EMPTY_LEAFS BIGINT Y Total number of index leaf pages that

have all of their row identifiers (or block

identifiers) marked deleted.

AVERAGE_RANDOM_

FETCH_PAGES1,2,4

DOUBLE Y Average number of random table pages

between sequential page accesses when

fetching using the index; -1 if not

known.

AVERAGE_RANDOM_

PAGES2

DOUBLE Y Average number of random table pages

between sequential page accesses; -1 if

not known.

AVERAGE_SEQUENCE_

GAP2

DOUBLE Y Gap between index page sequences.

Detected through a scan of index leaf

pages, each gap represents the average

number of index pages that must be

randomly fetched between sequences of

index pages; -1 if not known.

AVERAGE_SEQUENCE_

FETCH_GAP1,2,4

DOUBLE Y Gap between table page sequences

when fetching using the index. Detected

through a scan of index leaf pages, each

gap represents the average number of

table pages that must be randomly

fetched between sequences of table

pages; -1 if not known.

AVERAGE_SEQUENCE_

PAGES2

DOUBLE Y Average number of index pages that are

accessible in sequence (that is, the

number of index pages that the

prefetchers would detect as being in

sequence); -1 if not known.

AVERAGE_SEQUENCE_

FETCH_PAGES1,2,4

DOUBLE Y Average number of table pages that are

accessible in sequence (that is, the

number of table pages that the

prefetchers would detect as being in

sequence) when fetching using the

index; -1 if not known.

SYSSTAT.INDEXES

Appendix D. Catalog views 647

Table 181. SYSSTAT.INDEXES Catalog View (continued)

Column Name Data Type Nullable

Updat-
able Description

AVGPARTITION_

CLUSTERRATIO3,4

SMALLINT Y Degree of data clustering within a single

data partition. -1 if the table is not

partitioned, if statistics are not collected,

or if detailed statistics are collected (in

which case AVGPARTITION_

CLUSTERFACTOR will be used

instead).

AVGPARTITION_

CLUSTERFACTOR3,4

DOUBLE Y Finer measurement of the degree of

clustering within a single data partition.

-1 if the table is not partitioned, if

statistics are not collected, or if the

index is defined on a nickname.

AVGPARTITION_PAGE_

FETCH_PAIRS3,4

VARCHAR (520) Y A list of paired integers in character

form. Each pair represents a potential

buffer pool size and the corresponding

page fetches required to access a single

data partition from the table.

Zero-length string if no data is available,

or if the table is not partitioned.

DATAPARTITION_

CLUSTERFACTOR

DOUBLE Y A statistic measuring the ″clustering″ of

the index keys with regard to data

partitions. It is a number between 0 and

1, with 1 representing perfect clustering

and 0 representing no clustering.

INDCARD BIGINT Y Cardinality of the index. This might be

different from the cardinality of the

table for indexes that do not have a

one-to-one relationship between the

table rows and the index entries.

Note:

1. When using DMS table spaces, this statistic cannot be computed.

2. Prefetch statistics are not gathered during a LOAD...STATISTICS YES, or a CREATE INDEX...COLLECT

STATISTICS operation, or when the database configuration parameter seqdetect is turned off.

3. AVGPARTITION_CLUSTERRATIO, AVGPARTITION_CLUSTERFACTOR, and

AVGPARTITION_PAGE_FETCH_PAIRS measure the degree of clustering within a single data partition (local

clustering). CLUSTERRATIO, CLUSTERFACTOR, and PAGE_FETCH_PAIRS measure the degree of clustering in

the entire table (global clustering). Global clustering and local clustering values can diverge significantly if the

table partitioning key is not a prefix of the index key, or when the table partitioning key and the index key are

logically independent of each other.

4. This statistic cannot be updated if the index type is ’XPTH’ (an XML path index).

5. Because logical indexes on an XML column do not have statistics, the SYSSTAT.INDEXES catalog view excludes

rows whose index type is ’XVIL’.

SYSSTAT.ROUTINES

Each row represents a user-defined routine (scalar function, table function, sourced

function, method, or procedure). Does not include built-in functions.

SYSSTAT.INDEXES

648 SQL Reference, Volume 1

Table 182. SYSSTAT.ROUTINES Catalog View

Column Name Data Type Nullable

Updat-
able Description

ROUTINESCHEMA VARCHAR (128) Schema name of the routine.

ROUTINENAME VARCHAR (128) Unqualified name of the routine.

ROUTINETYPE CHAR (1) Type of routine.

v F = Function

v M = Method

v P = Procedure

SPECIFICNAME VARCHAR (128) Name of the routine instance (might be

system-generated).

IOS_PER_INVOC DOUBLE Y Estimated number of inputs/outputs

(I/Os) per invocation; 0 is the default; -1

if not known.

INSTS_PER_INVOC DOUBLE Y Estimated number of instructions per

invocation; 450 is the default; -1 if not

known.

IOS_PER_ARGBYTE DOUBLE Y Estimated number of I/Os per input

argument byte; 0 is the default; -1 if not

known.

INSTS_PER_ARGBYTE DOUBLE Y Estimated number of instructions per

input argument byte; 0 is the default; -1

if not known.

PERCENT_ARGBYTES SMALLINT Y Estimated average percent of input

argument bytes that the routine will

actually read; 100 is the default; -1 if not

known.

INITIAL_IOS DOUBLE Y Estimated number of I/Os performed

the first time that the routine is invoked;

0 is the default; -1 if not known.

INITIAL_INSTS DOUBLE Y Estimated number of instructions

executed the first time the routine is

invoked; 0 is the default; -1 if not

known.

CARDINALITY BIGINT Y Predicted cardinality of a table function;

-1 if not known, or if the routine is not a

table function.

SELECTIVITY DOUBLE Y For user-defined predicates; -1 if there

are no user-defined predicates.

SYSSTAT.TABLES

Each row represents a table, view, alias, or nickname. Each table or view hierarchy

has one additional row representing the hierarchy table or hierarchy view that

implements the hierarchy. Catalog tables and views are included.

 Table 183. SYSSTAT.TABLES Catalog View

Column Name Data Type Nullable Updat-able Description

TABSCHEMA VARCHAR (128) Schema name of the object.

TABNAME VARCHAR (128) Unqualified name of the object.

SYSSTAT.ROUTINES

Appendix D. Catalog views 649

Table 183. SYSSTAT.TABLES Catalog View (continued)

Column Name Data Type Nullable Updat-able Description

CARD BIGINT Y Total number of rows; -1 if statistics are not

collected.

NPAGES BIGINT Y Total number of pages on which the rows of

the table exist; -1 for a view or alias, or if

statistics are not collected; -2 for a subtable or

hierarchy table.

FPAGES BIGINT Y Total number of pages; -1 for a view or alias,

or if statistics are not collected; -2 for a

subtable or hierarchy table.

OVERFLOW BIGINT Y Total number of overflow records in the

table; -1 for a view or alias, or if statistics are

not collected; -2 for a subtable or hierarchy

table.

CLUSTERED CHAR (1) Y

v Y = Table is multidimensionally clustered

(even if only by one dimension)

v Null value = Table is not

multidimensionally clustered

ACTIVE_BLOCKS BIGINT Y Total number of active blocks in the table, or

-1. Applies to multidimensional clustering

(MDC) tables only.

AVGCOMPRESSEDROWSIZE SMALLINT Y Average length (in bytes) of compressed rows

in this table; -1 if statistics are not collected.

AVGROWCOMPRESSIONRATIO REAL Y For compressed rows in the table, this is the

average compression ratio by row; that is, the

average uncompressed row length divided by

the average compressed row length; -1 if

statistics are not collected.

AVGROWSIZE SMALLINT Average length (in bytes) of both compressed

and uncompressed rows in this table; -1 if

statistics are not collected.

PCTROWSCOMPRESSED REAL Y Compressed rows as a percentage of the total

number of rows in the table; -1 if statistics

are not collected.

PCTPAGESSAVED SMALLINT Y Approximate percentage of pages saved in

the table as a result of row compression. This

value includes overhead bytes for each user

data row in the table, but does not include

the space that is consumed by dictionary

overhead; -1 if statistics are not collected.

SYSSTAT.TABLES

650 SQL Reference, Volume 1

Appendix E. Federated systems

Valid server types in SQL statements

Server types indicate the kind of data source that the server definition represents.

Server types vary by vendor, purpose, and operating system. Supported values

depend on the data source.

For most data sources, you must specify a valid server type in the CREATE

SERVER statement.

 Table 184. Data sources and server types

Data source Server type

BioRS A server type is not required in the CREATE

SERVER statement.

Blast BLASTN, BLASTP, BLASTX, TBLASTN,

TBLASTX

Entrez NUCLEOTIDE, OMIM, PUBMED

Excel A server type is not required in the CREATE

SERVER statement.

HMMER PFAM, SEARCH

IBM DB2 Universal Database for Linux,

UNIX, and Windows

DB2/UDB

IBM DB2 Universal Database for System i

and AS/400®

DB2/ISERIES

IBM DB2 Universal Database for z/OS DB2/ZOS

IBM DB2 for VM DB2/VM

Informix INFORMIX

Microsoft SQL Server MSSQLSERVER (Required for data sources

supported by the DataDirect Connect ODBC

4.2 (or later) driver or the Microsoft SQL

Server ODBC 3.0 (or later) driver.)

ODBC ODBC (Required for ODBC data sources

that are supported by the ODBC 3.x driver.)

OLE DB A server type is not required in the CREATE

SERVER statement.

Oracle ORACLE (Required for Oracle data sources

supported by Oracle NET8 client software.)

Sybase (CTLIB) SYBASE

Table-structured files A server type is not required in the CREATE

SERVER statement.

Teradata TERADATA

Web services A server type is not required in the CREATE

SERVER statement.

WebSphere Business Integration WBI

© Copyright IBM Corp. 1993, 2009 651

Table 184. Data sources and server types (continued)

Data source Server type

XML A server type is not required in the CREATE

SERVER statement.

Function mapping options for federated systems

The federated server provides default mappings between DB2 functions and data

source functions. For most data sources, the default function mappings are in the

wrappers. To use a data source function that the federated server does not

recognize or to change the default mapping, you create a function mapping.

When you create a function mapping, you specify the name of the data source

function and must enable the mapped function. Then when you use the mapped

function, the query optimizer compares the cost of running the function at the data

source with the cost of running the function at the federated server.

 Table 185. Options for function mappings

Name Description

DISABLE Enable or disable a default function

mapping. Valid values are Y and N. The

default is N.

REMOTE_NAME The name of the data source function. The

default is the local name.

Default forward data type mappings

The two kinds of mappings between data source data types and federated

database data types are forward type mappings and reverse type mappings. In a

forward type mapping, the mapping is from a remote type to a comparable local

type.

You can override a default type mapping, or create a new type mapping with the

CREATE TYPE MAPPING statement.

These mappings are valid with all the supported versions, unless otherwise noted.

For all default forward data types mapping from a data source to the federated

database, the federated schema is SYSIBM.

The following tables show the default forward mappings between federated

database data types and data source data types.

DB2 Database for Linux, UNIX, and Windows data sources

The following table lists the forward default data type mappings for DB2 Database

for Linux, UNIX, and Windows data sources.

 Table 186. DB2 Database for Linux, UNIX, and Windows forward default data type mappings (Not all columns shown)

REMOTE_

TYPE

NAME

REMOTE_

LOWER

_LEN

REMOTE_

UPPER_

LEN

REMOTE_

LOWER_

SCALE

REMOTE_

UPPER_

SCALE

REMOTE_

BIT_

DATA

REMOTE_

DATA_

OPERATORS

FEDERATED_

TYPE NAME

FEDERATED_

LENGTH

FEDERATED_

SCALE

FEDERATED_

BIT_

DATA

BIGINT - - - - - - BIGINT - 0 -

Valid server types in SQL statements

652 SQL Reference, Volume 1

Table 186. DB2 Database for Linux, UNIX, and Windows forward default data type mappings (Not all columns

shown) (continued)

REMOTE_

TYPE

NAME

REMOTE_

LOWER

_LEN

REMOTE_

UPPER_

LEN

REMOTE_

LOWER_

SCALE

REMOTE_

UPPER_

SCALE

REMOTE_

BIT_

DATA

REMOTE_

DATA_

OPERATORS

FEDERATED_

TYPE NAME

FEDERATED_

LENGTH

FEDERATED_

SCALE

FEDERATED_

BIT_

DATA

BLOB - - - - - - BLOB - - -

CHAR - - - - - - CHAR - 0 N

CHAR - - - - Y - CHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - - - - - - DOUBLE - - -

FLOAT - - - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

LONGVAR - - - - N - CLOB - - -

LONGVAR - - - - Y - BLOB - - -

LONGVARG - - - - - - DBCLOB - - -

REAL - - - - - - REAL - - -

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR - - - - - - VARCHAR - 0 N

VARCHAR - - - - Y - VARCHAR - 0 Y

VARGRAPH - - - - - - VARGRAPHIC - 0 N

VARGRAPHIC - - - - - - VARGRAPHIC - 0 N

DB2 for System i data sources

The following table lists the forward default data type mappings for DB2 for

System i data sources.

 Table 187. DB2 for System i forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

DB2 Database for Linux, UNIX, and Windows data sources

Appendix E. Federated systems 653

Table 187. DB2 for System i forward default data type mappings (Not all columns shown) (continued)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

GRAPHIC 128 16336 - - - - VARGRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

NUMERIC - - - - - - DECIMAL - - -

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARG 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

DB2 for VM and VSE data sources

The following table lists the forward default data type mappings for DB2 for VM

and VSE data sources.

 Table 188. DB2 Server for VM and VSE forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBAHW - - - - - - SMALLINT - 0 -

DBAINT - - - - - - INTEGER - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - - -

SMALLINT - - - - - - SMALLINT - - -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPH 1 16336 - - - - VARGRAPHIC - 0 N

DB2 for System i data sources

654 SQL Reference, Volume 1

DB2 for z/OS data sources

The following table lists the forward default data type mappings for DB2 for z/OS

data sources.

 Table 189. DB2 for z/OS forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated Bit

Data

BLOB - - - - - - BLOB - - -

CHAR 1 254 - - - - CHAR - 0 N

CHAR 255 32672 - - - - VARCHAR - 0 N

CHAR 1 254 - - Y - CHAR - 0 Y

CHAR 255 32672 - - Y - VARCHAR - 0 Y

CLOB - - - - - - CLOB - - -

DATE - - - - - - DATE - 0 -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

FLOAT 4 - - - - - REAL - - -

FLOAT 8 - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - 0 N

INTEGER - - - - - - INTEGER - 0 -

ROWID - - - - Y - VARCHAR 40 - Y

SMALLINT - - - - - - SMALLINT - 0 -

TIME - - - - - - TIME - 0 -

TIMESTAMP - - - - - - TIMESTAMP - 0 -

TIMESTMP - - - - - - TIMESTAMP - 0 -

VARCHAR 1 32672 - - - - VARCHAR - 0 N

VARCHAR 1 32672 - - Y - VARCHAR - 0 Y

VARG 1 16336 - - - - VARGRAPHIC - 0 N

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - 0 N

Informix data sources

The following table lists the forward default data type mappings for Informix data

sources.

 Table 190. Informix forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB - - - - - - BLOB 2147483647 - -

BOOLEAN - - - - - - CHARACTER 1 - -

BYTE - - - - - - BLOB 2147483647 - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CLOB - - - - - - CLOB 2147483647 - -

DATE - - - - - - DATE 4 - -

DATETIME 0 4 0 4 - - DATE 4 - -

DATETIME 6 10 6 10 - - TIME 3 - -

DATETIME 0 4 6 15 - - TIMESTAMP 10 - -

DB2 for z/OS data sources

Appendix E. Federated systems 655

Table 190. Informix forward default data type mappings (Not all columns shown) (continued)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

DATETIME 6 10 11 15 - - TIMESTAMP 10 - -

DECIMAL 1 31 0 31 - - DECIMAL - - -

DECIMAL 32 130 - - - - DOUBLE 8 - -

DECIMAL 1 32 255 255 - - DOUBLE - - -

FLOAT - - - - - - DOUBLE 8 - -

INTEGER - - - - - - INTEGER 4 - -

INTERVAL - - - - - - VARCHAR 25 - -

INT8 - - - - - - BIGINT 19 0 -

LVARCHAR 1 32672 - - - - VARCHAR - - -

MONEY 1 31 0 31 - - DECIMAL - - -

MONEY 32 32 - - - - DOUBLE 8 - -

NCHAR 1 254 - - - - CHARACTER - - -

NCHAR 255 32672 - - - - VARCHAR - - -

NVARCHAR 1 32672 - - - - VARCHAR - - -

REAL - - - - - - REAL 4 - -

SERIAL - - - - - - INTEGER 4 - -

SERIAL8 - - - - - - BIGINT - - -

SMALLFLOAT - - - - - - REAL 4 - -

SMALLINT - - - - - - SMALLINT 2 - -

TEXT - - - - - - CLOB 2147483647 - -

VARCHAR 1 32672 - - - - VARCHAR - - -

Notes:

v For the Informix DATETIME data type, the DB2 UNIX and Windows federated server uses the Informix high-level qualifier as the

REMOTE_LENGTH and the Informix low-level qualifier as the REMOTE_SCALE.

The Informix qualifiers are the ″TU_″ constants defined in the Informix Client SDK datatime.h file. The constants are:

0 = YEAR 8 = MINUTE 13 = FRACTION(3)

2 = MONTH 10 = SECOND 14 = FRACTION(4)

4 = DAY 11 = FRACTION(1) 15 = FRACTION(5)

6 = HOUR 12 = FRACTION(2)

Microsoft SQL Server data sources

The following table lists the forward default data type mappings for Microsoft SQL

Server data sources.

 Table 191. Microsoft SQL Server forward default data type mappings

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

bigint

2 - - - - - - BIGINT - - -

binary 1 254 - - - - CHARACTER - - Y

binary 255 8000 - - - - VARCHAR - - Y

bit - - - - - - SMALLINT 2 - -

char 1 254 - - - - CHAR - - N

char 255 8000 - - - - VARCHAR - - N

Informix data sources

656 SQL Reference, Volume 1

Table 191. Microsoft SQL Server forward default data type mappings (continued)

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

datetime - - - - - - TIMESTAMP 10 - -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

float - 8 - - - - DOUBLE 8 - -

float - 4 - - - - REAL 4 - -

image - - - - - - BLOB 2147483647 - Y

int - - - - - - INTEGER 4 - -

money - - - - - - DECIMAL 19 4 -

nchar 1 127 - - - - CHAR - - N

nchar 128 4000 - - - - VARCHAR - - N

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 38 0 38 - - DOUBLE 8 - -

ntext - - - - - - CLOB 2147483647 - Y

nvarchar 1 4000 - - - - VARCHAR - - N

real - - - - - - REAL 4 - -

smallint - - - - - - SMALLINT 2 - -

smalldatetime - - - - - - TIMESTAMP 10 - -

smallmoney - - - - - - DECIMAL 10 4 -

SQL_BIGINT - - - - - - BIGINT - - -

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 8000 - - - - VARCHAR - - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 8000 - - - - VARCHAR - - N

SQL_DATE - - - - - - DATE 4 - -

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_FLOAT - - - - - - DOUBLE 8 - -

SQL_GUID - - - - - - VARCHAR - - Y

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_

LONGVARCHAR

- - - - - - CLOB 2147483647 - N

SQL_

LONGVARBINARY

- - - - - - BLOB - - Y

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_NUMERIC 32 38 0 38 - - DOUBLE 8 - -

SQL_REAL - - - - - - REAL 8 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_TIME - - - - - - TIME 3 - -

SQL_TIMESTAMP - - - - - - TIMESTAMP 10 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_VARBINARY 1 8000 - - - - VARCHAR - - Y

SQL_VARCHAR 1 8000 - - - - VARCHAR - - N

Microsoft SQL Server data sources

Appendix E. Federated systems 657

Table 191. Microsoft SQL Server forward default data type mappings (continued)

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

SQL_WCHAR 1 254 - - - - CHARACTER - - N

SQL_WCHAR 255 8800 - - - - VARCHAR - - N

SQL_WLONGVARCHAR - 1073741823 - - - - CLOB 2147483647 - N

SQL_WVARCHAR 1 16336 - - - - VARCHAR - - N

text - - - - - - CLOB - - N

timestamp - - - - - - VARCHAR 8 Y

tinyint - - - - - - SMALLINT 2 - -

uniqueidentifier 1 4000 - - Y - VARCHAR 16 - Y

varbinary 1 8000 - - - - VARCHAR - - Y

varchar 1 8000 - - - - VARCHAR - - N

Note:

1. This type mapping is valid only with Microsoft SQL Server Version 2000.

ODBC data sources

The following table lists the forward default data type mappings for ODBC data

sources.

 Table 192. ODBC forward default data type mappings (Not all columns shown)

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

SQL_BIGINT - - - - - - BIGINT 8 - -

SQL_BINARY 1 254 - - - - CHARACTER - - Y

SQL_BINARY 255 32672 - - - - VARCHAR - - Y

SQL_BIT - - - - - - SMALLINT 2 - -

SQL_CHAR 1 254 - - - - CHAR - - N

SQL_CHAR 255 32672 - - - - VARCHAR - - N

SQL_DECIMAL 1 31 0 31 - - DECIMAL - - -

SQL_DECIMAL 32 38 0 38 - - DOUBLE 8 - -

SQL_DOUBLE - - - - - - DOUBLE 8 - -

SQL_FLOAT - 8 - - - - FLOAT 8 - -

SQL_FLOAT - 4 - - - - FLOAT 4 - -

SQL_INTEGER - - - - - - INTEGER 4 - -

SQL_

LONGVARCHAR

- - - - - - CLOB 2147483647 - N

SQL_

LONGVARBINARY

- - - - - - BLOB 2147483647 - Y

SQL_NUMERIC 1 31 0 31 - - DECIMAL - - -

SQL_NUMERIC 32 32 0 31 - - DOUBLE 8 - -

SQL_REAL - - - - - - REAL 4 - -

SQL_SMALLINT - - - - - - SMALLINT 2 - -

SQL_TYPE_DATE - - - - - - DATE 4 - -

SQL_TYPE_TIME - - - - - - TIME 3 - -

Microsoft SQL Server data sources

658 SQL Reference, Volume 1

Table 192. ODBC forward default data type mappings (Not all columns shown) (continued)

Remote Typename Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

SQL_TYPE_

TIMESTAMP

- - - - - - TIMESTAMP 10 - -

SQL_TINYINT - - - - - - SMALLINT 2 - -

SQL_VARBINARY 1 32672 - - - - VARCHAR - - Y

SQL_VARCHAR 1 32672 - - - - VARCHAR - - N

SQL_WCHAR 1 127 - - - - CHAR - - N

SQL_WCHAR 128 16336 - - - - VARCHAR - - N

SQL_WVARCHAR 1 16336 - - - - VARCHAR - - N

SQL_

WLONGVARCHAR

- 1073741823 - - - - CLOB 2147483647 - N

Oracle NET8 data sources

The following table lists the forward default data type mappings for Oracle NET8

data sources.

 Table 193. Oracle NET8 forward default data type mappings

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BLOB 0 0 0 0 - \0 BLOB 2147483647 0 Y

CHAR 1 254 0 0 - \0 CHAR 0 0 N

CHAR 255 2000 0 0 - \0 VARCHAR 0 0 N

CLOB 0 0 0 0 - \0 CLOB 2147483647 0 N

DATE 0 0 0 0 - \0 TIMESTAMP 0 0 N

FLOAT 1 126 0 0 - \0 DOUBLE 0 0 N

LONG 0 0 0 0 - \0 CLOB 2147483647 0 N

LONG RAW 0 0 0 0 - \0 BLOB 2147483647 0 Y

NUMBER 10 18 0 0 - \0 BIGINT 0 0 N

NUMBER 1 38 -84 127 - \0 DOUBLE 0 0 N

NUMBER 1 31 0 31 - >= DECIMAL 0 0 N

NUMBER 1 4 0 0 - \0 SMALLINT 0 0 N

NUMBER 5 9 0 0 - \0 INTEGER 0 0 N

NUMBER - 10 0 0 - \0 DECIMAL 0 0 N

RAW 1 2000 0 0 - \0 VARCHAR 0 0 Y

ROWID 0 0 0 NULL - \0 CHAR 18 0 N

TIMESTAMP

1 - - - - - - TIMESTAMP 10 - -

VARCHAR2 1 4000 0 0 - \0 VARCHAR 0 0 N

Note:

1. This type mapping is valid only for Oracle 9i (or later) client and server configurations.

Sybase data sources

The following table lists the forward default data type mappings for Sybase data

sources.

ODBC data sources

Appendix E. Federated systems 659

Table 194. Sybase CTLIB forward default data type mappings

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

binary 1 254 - - - - CHAR - - Y

binary 255 32672 - - - - VARCHAR - - Y

bit - - - - - - SMALLINT - - -

char 1 254 - - - - CHAR - - N

char 255 32672 - - - - VARCHAR - - N

char null (see

varchar)

datetime - - - - - - TIMESTAMP - - -

datetimn - - - - - - TIMESTAMP - - -

decimal 1 31 0 31 - - DECIMAL - - -

decimal 32 38 0 38 - - DOUBLE - - -

decimaln 1 31 0 31 - - DECIMAL - - -

decimaln 32 38 0 38 - - DOUBLE - - -

float - 4 - - - - REAL - - -

float - 8 - - - - DOUBLE - - -

floatn - 4 - - - - REAL - - -

floatn - 8 - - - - DOUBLE - - -

image - - - - - - BLOB - - -

int - - - - - - INTEGER - - -

intn - - - - - - INTEGER - - -

money - - - - - - DECIMAL 19 4 -

moneyn - - - - - - DECIMAL 19 4 -

nchar 1 254 - - - - CHAR - - N

nchar 255 32672 - - - - VARCHAR - - N

nchar null (see

nvarchar)

numeric 1 31 0 31 - - DECIMAL - - -

numeric 32 38 0 38 - - DOUBLE - - -

numericn 1 31 0 31 - - DECIMAL - - -

numericn 32 38 0 38 - - DOUBLE - - -

nvarchar 1 32672 - - - - VARCHAR - - N

real - - - - - - REAL - - -

smalldatetime - - - - - - TIMESTAMP - - -

smallint - - - - - - SMALLINT - - -

smallmoney - - - - - - DECIMAL 10 4 -

sysname - - - - - - VARCHAR 30 - N

text - - - - - - CLOB - - -

timestamp - - - - - - VARCHAR 8 - Y

tinyint - - - - - - SMALLINT - - -

unichar1 1 254 - - - - CHAR - - N

unichar1 255 32672 - - - - VARCHAR - - N

unichar null

(see

univarchar)

univarchar1 1 32672 - - - - VARCHAR - - N

Sybase data sources

660 SQL Reference, Volume 1

Table 194. Sybase CTLIB forward default data type mappings (continued)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

varbinary 1 32672 - - - - VARCHAR - - Y

varchar 1 32672 - - - - VARCHAR - - N

Note:

1. Valid for non-Unicode federated databases.

Teradata data sources

The following table lists the forward default data type mappings for Teradata data

sources.

 Table 195. Teradata forward default data type mappings (Not all columns shown)

Remote

Typename

Remote

Lower

Len

Remote

Upper

Len

Remote

Lower

Scale

Remote

Upper

Scale

Remote

Bit

Data

Remote

Data

Operators

Federated

Typename

Federated

Length

Federated

Scale

Federated

Bit Data

BYTE 1 254 - - - - CHAR - - Y

BYTE 255 32672 - - - - VARCHAR - - Y

BYTE 32673 64000 - - - - BLOB - - -

BYTEINT - - - - - - SMALLINT - - -

CHAR 1 254 - - - - CHARACTER - - -

CHAR 255 32672 - - - - VARCHAR - - -

CHAR 32673 64000 - - - - CLOB - - -

DATE - - - - - - DATE - - -

DECIMAL 1 18 0 18 - - DECIMAL - - -

DOUBLE

PRECISION

- - - - - - DOUBLE - - -

FLOAT - - - - - - DOUBLE - - -

GRAPHIC 1 127 - - - - GRAPHIC - - -

GRAPHIC 128 16336 - - - - VARGRAPHIC - - -

GRAPHIC 16337 32000 - - - - DBCLOB - - -

INTEGER - - - - - - INTEGER - - -

INTERVAL - - - - - - CHAR - - -

NUMERIC 1 18 0 18 - - DECIMAL - - -

REAL - - - - - - DOUBLE - - -

SMALLINT - - - - - - SMALLINT - - -

TIME 0 21 0 21 - - TIME - - -

TIMESTAMP - - - - - - TIMESTAMP - - -

VARBYTE 1 32762 - - - - VARCHAR - - Y

VARBYTE 32763 64000 - - - - BLOB - - -

VARCHAR 1 32672 - - - - VARCHAR - - -

VARCHAR 32673 64000 - - - - CLOB - - -

VARGRAPHIC 1 16336 - - - - VARGRAPHIC - - -

VARGRAPHIC 16337 32000 - - - - DBCLOB - - -

Default reverse data type mappings

For most data sources, the default type mappings are in the wrappers.

Sybase data sources

Appendix E. Federated systems 661

The two kinds of mappings between data source data types and federated

database data types are forward type mappings and reverse type mappings. In a

forward type mapping, the mapping is from a remote type to a comparable local

type. The other type of mapping is a reverse type mapping, which is used with

transparent DDL to create or modify remote tables.

The default type mappings for DB2 family data sources are in the DRDA wrapper.

The default type mappings for Informix are in the INFORMIX wrapper, and so

forth.

When you define a remote table or view to the federated database, the definition

includes a reverse type mapping. The mapping is from a local federated database

data type for each column, and the corresponding remote data type. For example,

there is a default reverse type mapping in which the local type REAL points to the

Informix type SMALLFLOAT.

Federated databases do not support mappings for LONG VARCHAR, LONG

VARGRAPHIC, and user-defined types.

When you use the CREATE TABLE statement to create a remote table, you specify

the local data types you want to include in the remote table. These default reverse

type mappings will assign corresponding remote types to these columns. For

example, suppose that you use the CREATE TABLE statement to define an

Informix table with a column C2. You specify BIGINT as the data type for C2 in

the statement. The default reverse type mapping of BIGINT depends on which

version of Informix you are creating the table on. The mapping for C2 in the

Informix table will be to DECIMAL in Informix Version 8 and to INT8 in Informix

Version 9.

You can override a default reverse type mapping, or create a new reverse type

mapping with the CREATE TYPE MAPPING statement.

The following tables show the default reverse mappings between federated

database local data types and remote data source data types.

These mappings are valid with all the supported versions, unless otherwise noted.

DB2 Database for Linux, UNIX, and Windows data sources

The following table lists the reverse default data type mappings for DB2 Database

for Linux, UNIX, and Windows data sources.

 Table 196. DB2 Database for Linux, UNIX, and Windows reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Federated

Bit Data

BIGINT - 8 - - - - BIGINT - - -

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - N

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - DOUBLE - - -

Default reverse data type mappings

662 SQL Reference, Volume 1

Table 196. DB2 Database for Linux, UNIX, and Windows reverse default data type mappings (Not all columns

shown) (continued)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Federated

Bit Data

FLOAT - 8 - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - - - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPH - - - - - - VARGRAPHIC - - N

VARGRAPHIC - - - - - - VARGRAPHIC - - -

DB2 for System i data sources

The following table lists the reverse default data type mappings for DB2 for

System i data sources.

 Table 197. DB2 for System i reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operations

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHARACTER - - N

CHARACTER - - - - Y - CHARACTER - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - NUMERIC - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - FLOAT - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPHIC - - - - - - VARG - - N

DB2 for VM and VSE data sources

The following table lists the reverse default data type mappings for DB2 for VM

and VSE data sources.

DB2 Database for Linux, UNIX, and Windows data sources

Appendix E. Federated systems 663

Table 198. DB2 for VM and VSE reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - -

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - -

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPH - - - - - - VARGRAPH - - N

DB2 for z/OS data sources

The following table lists the reverse default data type mappings for DB2 for z/OS

data sources.

 Table 199. DB2 for z/OS reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB - - - - - - BLOB - - -

CHARACTER - - - - - - CHAR - - N

CHARACTER - - - - Y - CHAR - - Y

CLOB - - - - - - CLOB - - -

DATE - 4 - - - - DATE - - -

DBCLOB - - - - - - DBCLOB - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - DOUBLE - - –

FLOAT - 8 - - - - DOUBLE - - -

GRAPHIC - - - - - - GRAPHIC - - N

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - REAL - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - TIME - - -

TIMESTAMP - 10 - - - - TIMESTAMP - - -

VARCHAR - - - - - - VARCHAR - - N

VARCHAR - - - - Y - VARCHAR - - Y

VARGRAPHIC - - - - - - VARGRAPHIC - - N

DB2 for VM and VSE data sources

664 SQL Reference, Volume 1

Informix data sources

The following table lists the reverse default data type mappings for Informix data

sources.

 Table 200. Informix reverse default data type mappings

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT

1 - - - - - - DECIMAL 19 - -

BIGINT

2 - - - - - - INT8 - - -

BLOB 1 2147483647 - - - - BYTE - - -

CHARACTER - - - - N - CHAR - - -

CHARACTER - - - - Y - BYTE - - -

CLOB 1 2147483647 - - - - TEXT - - -

DATE - 4 - - - - DATE - - -

DECIMAL - - - - - - DECIMAL - - -

DOUBLE - 8 - - - - FLOAT - - -

INTEGER - 4 - - - - INTEGER - - -

REAL - 4 - - - - SMALLFLOAT - - -

SMALLINT - 2 - - - - SMALLINT - - -

TIME - 3 - - - - DATETIME 6 10 -

TIMESTAMP - 10 - - - - DATETIME 0 15 -

VARCHAR 1 254 - - N - VARCHAR - - -

VARCHAR

1 255 32672 - - N - TEXT - - -

VARCHAR - - - - Y - BYTE - - -

VARCHAR

2 255 2048 - - N - LVARCHAR - - -

VARCHAR

2 2049 32672 - - N - TEXT - - -

Note:

1. This type mapping is valid only with Informix server Version 8 (or lower).

2. This type mapping is valid only with Informix server Version 9 (or higher).

For the Informix DATETIME data type, the federated server uses the Informix high-level qualifier as the REMOTE_LENGTH and

the Informix low-level qualifier as the REMOTE_SCALE.

The Informix qualifiers are the ″TU_″ constants defined in the Informix Client SDK datatime.h file. The constants are:

0 = YEAR 8 = MINUTE 13 = FRACTION(3)

2 = MONTH 10 = SECOND 14 = FRACTION(4)

4 = DAY 11 = FRACTION(1) 15 = FRACTION(5)

6 = HOUR 12 = FRACTION(2)

Microsoft SQL Server data sources

The following table lists the reverse default data type mappings for Microsoft SQL

Server data sources.

 Table 201. Microsoft SQL Server reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT

1 - - - - - - bigint - - -

BLOB - - - - - - image - - -

Informix data sources

Appendix E. Federated systems 665

Table 201. Microsoft SQL Server reverse default data type mappings (Not all columns shown) (continued)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

CHARACTER - - - - Y - binary - - -

CHARACTER - - - - N - char - - -

CLOB - - - - - - text - - -

DATE - 4 - - - - datetime - - -

DECIMAL - - - - - - decimal - - -

DOUBLE - 8 - - - - float - - -

INTEGER - - - - - - int - - -

SMALLINT - - - - - - smallint - - -

REAL - 4 - - - - real - - -

TIME - 3 - - - - datetime - - -

TIMESTAMP - 10 - - - - datetime - - -

VARCHAR 1 8000 - - N - varchar - - -

VARCHAR 8001 32672 - - N - text - - -

VARCHAR 1 8000 - - Y - varbinary - - -

VARCHAR 8001 32672 - - Y - image - - -

Note:

1. This type mapping is valid only with Microsoft SQL Server Version 2000.

Oracle NET8 data sources

The following table lists the reverse default data type mappings for Oracle NET8

data sources.

 Table 202. Oracle NET8 reverse default data type mappings

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT 0 8 0 0 N \0 NUMBER 19 0 N

BLOB 0 2147483647 0 0 Y \0 BLOB 0 0 Y

CHARACTER 1 254 0 0 N \0 CHAR 0 0 N

CHARACTER 1 254 0 0 Y \0 RAW 0 0 Y

CLOB 0 2147483647 0 0 N \0 CLOB 0 0 N

DATE 0 4 0 0 N \0 DATE 0 0 N

DECIMAL 0 0 0 0 N \0 NUMBER 0 0 N

DOUBLE 0 8 0 0 N \0 FLOAT 126 0 N

FLOAT 0 8 0 0 N \0 FLOAT 126 0 N

INTEGER 0 4 0 0 N \0 NUMBER 10 0 N

REAL 0 4 0 0 N \0 FLOAT 63 0 N

SMALLINT 0 2 0 0 N \0 NUMBER 5 0 N

TIME 0 3 0 0 N \0 DATE 0 0 N

TIMESTAMP

1 0 10 0 0 N \0 DATE 0 0 N

TIMESTAMP

2 0 10 0 0 N \0 TIMESTAMP 6 0 N

VARCHAR 1 4000 0 0 N \0 VARCHAR2 0 0 N

VARCHAR 1 2000 0 0 Y \0 RAW 0 0 Y

Microsoft SQL Server data sources

666 SQL Reference, Volume 1

Table 202. Oracle NET8 reverse default data type mappings (continued)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

Note:

1. This type mapping is valid only with Oracle Version 8.

2. This type mapping is valid only with Oracle Version 9 and Version 10.

Sybase data sources

The following table lists the reverse default data type mappings for Sybase data

sources.

 Table 203. Sybase CTLIB default reverse data type mappings

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BIGINT - - - - - - decimal 19 0 -

BLOB - - - - - - image - - -

CHARACTER - - - - N - char - - -

CHARACTER - - - - Y - binary - - -

CLOB - - - - - - text - - -

DATE - - - - - - datetime - - -

DECIMAL - - - - - - decimal - - -

DOUBLE - - - - - - float - - -

INTEGER - - - - - - integer - - -

REAL - - - - - - real - - -

SMALLINT - - - - - - smallint - - -

TIME - - - - - - datetime - - -

TIMESTAMP - - - - - - datetime - - -

VARCHAR1 1 255 - - N - varchar - - -

VARCHAR1 256 32672 - - N - text - - -

VARCHAR

2 1 16384 - - N - varchar - - -

VARCHAR

2 16385 32672 - - N - text - - -

VARCHAR1 1 255 - - Y - varbinary - - -

VARCHAR1 256 32672 - - Y - image - - -

VARCHAR

2 1 16384 - - Y - varbinary - - -

VARCHAR

2 16385 32672 - - Y - image - - -

Note:

1. This type mapping is valid only for CTLIB with Sybase server version 12.0 (or earlier).

2. This type mapping is valid only for CTLIB with Sybase server version 12.5 (or later).

Teradata data sources

The following table lists the reverse default data type mappings for Teradata data

sources.

Oracle NET8 data sources

Appendix E. Federated systems 667

Table 204. Teradata reverse default data type mappings (Not all columns shown)

Federated

Typename

Federated

Lower

Len

Federated

Upper

Len

Federated

Lower

Scale

Federated

Upper

Scale

Federated

Bit Data

Federated

Data

Operators

Remote

Typename

Remote

Length

Remote

Scale

Remote

Bit Data

BLOB

1 1 64000 - - - - VARBYTE - - -

CHARACTER - - - - - - CHARACTER - - -

CHARACTER - - - - Y - BYTE - - -

CLOB

2 1 64000 - - - VARCHAR - - -

DATE - - - - - - DATE - - -

DBCLOB

3 1 64000 - - - - VARGRAPHIC - - -

DECIMAL 1 18 0 18 - - DECIMAL - - -

DECIMAL 19 31 0 31 - - FLOAT 8 - -

DOUBLE - - - - - - FLOAT - - -

GRAPHIC - - - - - - GRAPHIC - - -

INTEGER - - - - - - INTEGER - - -

REAL - - - - - - FLOAT 8 - -

SMALLINT - - - - - - SMALLINT - - -

TIME - - - - - - TIME 15 - -

TIMESTAMP - - - - - - TIMESTAMP 26 - -

VARCHAR - - - - - - VARCHAR - - -

VARCHAR - - - - Y - VARBYTE - - -

VARGRAPHIC - - - - - - VARGRAPHIC - - -

Note:

1. The Teradata VARBYTE data type can contain only the specified length (1 to 64000) of a BLOB data type.

2. The Teradata VARCHAR data type can contain only the specified length (1 to 64000) of a CLOB data type.

3. The Teradata VARGRAPHIC data type can contain only the specified length (1 to 32000) of a DBCLOB data type.

Teradata data sources

668 SQL Reference, Volume 1

Appendix F. The SAMPLE database

Sample database can be used for various purposes like testing your applications,

trying different features of DB2 and so on. Most of the sample application

programs under DB2PATH/sqllib/samples use sample database for demonstrating

various features of DB2 that makes it easy to understand the technology.

Once the sample database is created, you will notice :

v Organizational schema for non-XML data and

v Purchase order schema for XML data are created.

The data and database objects under these schemas are created using real time

environment on a small scale.

Following is a description of each of the tables in the SAMPLE database. Initial

data values for each table are given; a dash (-) indicates a NULL value.

ACT table

 Name: ACTNO ACTKWD ACTDESC

Type: SMALLINT CHAR(6) VARCHAR(20)

Values: 10 MANAGE MANAGE/ADVISE

20 ECOST ESTIMATE COST

30 DEFINE DEFINE SPECS

40 LEADPR LEAD PROGRAM/DESIGN

50 SPECS WRITE SPECS

60 LOGIC DESCRIBE LOGIC

70 CODE CODE PROGRAMS

80 TEST TEST PROGRAMS

90 ADMQS ADM QUERY SYSTEM

100 TEACH TEACH CLASSES

110 COURSE DEVELOP COURSES

120 STAFF PERS AND STAFFING

130 OPERAT OPER COMPUTER SYS

140 MAINT MAINT SOFTWARE SYS

150 ADMSYS ADM OPERATING SYS

160 ADMDB ADM DATA BASES

170 ADMDC ADM DATA COMM

180 DOC DOCUMENT

ADEFUSER table

 Name: WORKDEPT NO_OF_EMPLOYEES

Type: CHAR(3) INTEGER

Values: A00 5

© Copyright IBM Corp. 1993, 2009 669

Name: WORKDEPT NO_OF_EMPLOYEES

B01 1

C01 4

D11 11

D21 7

E01 1

E11 7

E21 6

CL_SCHED table

 Name: CLASS_CODE DAY STARTING ENDING

Type: CHAR(7) SMALLINT TIME TIME

Desc: Class Code

(room:teacher)

Day # of 4 day

schedule

Class Start Time Class End Time

Values: 042:BF 4 12:10:00 14:00:00

553:MJA 1 10:30:00 11:00:00

543:CWM 3 09:10:00 10:30:00

778:RES 2 12:10:00 14:00:00

044:HD 3 17:12:30 18:00:00

DEPT table

 Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: CHAR(3) VARCHAR(36) CHAR(6) CHAR(3) CHAR(16)

Values: A00 SPIFFY COMPUTER SERVICE DIV. 000010 A00

B01 PLANNING 000020 A00

C01 INFORMATION CENTER 000030 A00

D01 DEVELOPMENT CENTER A00

D11 MANUFACTURING SYSTEMS 000060 D01

D21 ADMINISTRATION SYSTEMS 000070 D01

E01 SUPPORT SERVICES 000050 A00

E11 OPERATIONS 000090 E01

E21 SOFTWARE SUPPORT 000100 E01

F22 BRANCH OFFICE F2 E01

G22 BRANCH OFFICE G2 E01

H22 BRANCH OFFICE H2 E01

I22 BRANCH OFFICE I2 E01

J22 BRANCH OFFICE J2 E01

The SAMPLE database

670 SQL Reference, Volume 1

DEPARTMENT table

 Name: DEPTNO DEPTNAME MGRNO ADMRDEPT LOCATION

Type: CHAR(3) NOT

NULL

VARCHAR(29) NOT NULL CHAR(6) CHAR(3) NOT

NULL

CHAR(16)

Desc: Department

number

Name describing general

activities of department

Employee

number

(EMPNO) of

department

manager

Department

(DEPTNO) to

which this

department

reports

Name of the

remote location

Values: A00 SPIFFY COMPUTER SERVICE

DIV.

000010 A00

 B01 PLANNING 000020 A00

 C01 INFORMATION CENTER 000030 A00

 D01 DEVELOPMENT CENTER A00

 D11 MANUFACTURING SYSTEMS 000060 D01

 D21 ADMINISTRATION SYSTEMS 000070 D01

 E01 SUPPORT SERVICES 000050 A00

 E11 OPERATIONS 000090 E01

 E21 SOFTWARE SUPPORT 000100 E01

F22 BRANCH OFFICE F2 E01

G22 BRANCH OFFICE G2 E01

H22 BRANCH OFFICE H2 E01

I22 BRANCH OFFICE I2 E01

J22 BRANCH OFFICE J2 E01

EMPLOYEE and EMP tables

These two tables have identical content.

 Names: EMPNO FIRSTNME MIDINIT LASTNAME WORKDEPT PHONENO HIREDATE

Type: CHAR(6) NOT

NULL

VARCHAR(12)

NOT NULL

CHAR(1)

NOT NULL

VARCHAR(15)

NOT NULL

CHAR(3) CHAR(4) DATE

Desc: Employee

number

First name Middle

initial

Last name Department

(DEPTNO) in

which the

employee

works

Phone number Date of hire

+

 JOB EDLEVEL SEX BIRTHDATE SALARY BONUS COMM

CHAR(8) SMALLINT NOT NULL CHAR(1) DATE DECIMAL(9,2) DECIMAL(9,2) DECIMAL(9,2)

Job Number of years of

formal education

Sex (M

male, F

female)

Date of birth Yearly salary Yearly bonus Yearly

commission

The following table contains the values in the EMPLOYEE table.

The SAMPLE database

Appendix F. The sample database 671

EMPNO FIRSTNME

MID

INIT LASTNAME

WORK

DEPT

PHONE

NO HIREDATE JOB

ED

LEVEL SEX BIRTHDATE

SALARY BONUS COMM

CHAR(6)

NOT

NULL

VARCHAR(12)

NOT NULL

CHAR(1)

NOT

NULL

VARCHAR(15)

NOT NULL

CHAR(3) CHAR(4) DATE CHAR(8) SMALLINT

NOT

NULL

CHAR(1) DATE DECIMAL

(9,2)

DECIMAL

(9,2)

DECIMAL

(9,2)

000010 CHRISTINE I HAAS A00 3978 1965-01-01 PRES 18 F 1933-08-24 52750 1000 4220

000020 MICHAEL L THOMPSON B01 3476 1973-10-10 MANAGER 18 M 1948-02-02 41250 800 3300

000030 SALLY A KWAN C01 4738 1975-04-05 MANAGER 20 F 1941-05-11 38250 800 3060

000050 JOHN B GEYER E01 6789 1949-08-17 MANAGER 16 M 1925-09-15 40175 800 3214

000060 IRVING F STERN D11 6423 1973-09-14 MANAGER 16 M 1945-07-07 32250 500 2580

000070 EVA D PULASKI D21 7831 1980-09-30 MANAGER 16 F 1953-05-26 36170 700 2893

000090 EILEEN W HENDERSON E11 5498 1970-08-15 MANAGER 16 F 1941-05-15 29750 600 2380

000100 THEODORE Q SPENSER E21 0972 1980-06-19 MANAGER 14 M 1956-12-18 26150 500 2092

000110 VINCENZO G LUCCHESSI A00 3490 1958-05-16 SALESREP 19 M 1929-11-05 46500 900 3720

000120 SEAN O’CONNELL A00 2167 1963-12-05 CLERK 14 M 1942-10-18 29250 600 2340

000130 DOLORES M QUINTANA C01 4578 1971-07-28 ANALYST 16 F 1925-09-15 23800 500 1904

000140 HEATHER A NICHOLLS C01 1793 1976-12-15 ANALYST 18 F 1946-01-19 28420 600 2274

000150 BRUCE ADAMSON D11 4510 1972-02-12 DESIGNER 16 M 1947-05-17 25280 500 2022

000160 ELIZABETH R PIANKA D11 3782 1977-10-11 DESIGNER 17 F 1955-04-12 22250 400 1780

000170 MASATOSHI J YOSHIMURA D11 2890 1978-09-15 DESIGNER 16 M 1951-01-05 24680 500 1974

000180 MARILYN S SCOUTTEN D11 1682 1973-07-07 DESIGNER 17 F 1949-02-21 21340 500 1707

000190 JAMES H WALKER D11 2986 1974-07-26 DESIGNER 16 M 1952-06-25 20450 400 1636

000200 DAVID BROWN D11 4501 1966-03-03 DESIGNER 16 M 1941-05-29 27740 600 2217

000210 WILLIAM T JONES D11 0942 1979-04-11 DESIGNER 17 M 1953-02-23 18270 400 1462

000220 JENNIFER K LUTZ D11 0672 1968-08-29 DESIGNER 18 F 1948-03-19 29840 600 2387

000230 JAMES J JEFFERSON D21 2094 1966-11-21 CLERK 14 M 1935-05-30 22180 400 1774

000240 SALVATORE M MARINO D21 3780 1979-12-05 CLERK 17 M 1954-03-31 28760 600 2301

000250 DANIEL S SMITH D21 0961 1969-10-30 CLERK 15 M 1939-11-12 19180 400 1534

000260 SYBIL P JOHNSON D21 8953 1975-09-11 CLERK 16 F 1936-10-05 17250 300 1380

000270 MARIA L PEREZ D21 9001 1980-09-30 CLERK 15 F 1953-05-26 27380 500 2190

000280 ETHEL R SCHNEIDER E11 8997 1967-03-24 OPERATOR 17 F 1936-03-28 26250 500 2100

000290 JOHN R PARKER E11 4502 1980-05-30 OPERATOR 12 M 1946-07-09 15340 300 1227

000300 PHILIP X SMITH E11 2095 1972-06-19 OPERATOR 14 M 1936-10-27 17750 400 1420

000310 MAUDE F SETRIGHT E11 3332 1964-09-12 OPERATOR 12 F 1931-04-21 15900 300 1272

000320 RAMLAL V MEHTA E21 9990 1965-07-07 FIELDREP 16 M 1932-08-11 19950 400 1596

000330 WING LEE E21 2103 1976-02-23 FIELDREP 14 M 1941-07-18 25370 500 2030

000340 JASON R GOUNOT E21 5698 1947-05-05 FIELDREP 16 M 1926-05-17 23840 500 1907

EMP_ACT table

 Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: CHAR(6) NOT NULL CHAR(6) NOT NULL SMALLINT NOT NULL DEC(5,2) DATE DATE

Desc: Employee number Project number Activity number Proportion of employee’s

time spent on project

Date activity starts Date activity ends

Values: 000010 AD3100 10 .50 1982-01-01 1982-07-01

 000070 AD3110 10 1.00 1982-01-01 1983-02-01

 000230 AD3111 60 1.00 1982-01-01 1982-03-15

 000230 AD3111 60 .50 1982-03-15 1982-04-15

 000230 AD3111 70 .50 1982-03-15 1982-10-15

 000230 AD3111 80 .50 1982-04-15 1982-10-15

 000230 AD3111 180 1.00 1982-10-15 1983-01-01

 000240 AD3111 70 1.00 1982-02-15 1982-09-15

 000240 AD3111 80 1.00 1982-09-15 1983-01-01

 000250 AD3112 60 1.00 1982-01-01 1982-02-01

 000250 AD3112 60 .50 1982-02-01 1982-03-15

 000250 AD3112 60 .50 1982-12-01 1983-01-01

 000250 AD3112 60 1.00 1983-01-01 1983-02-01

 000250 AD3112 70 .50 1982-02-01 1982-03-15

 000250 AD3112 70 1.00 1982-03-15 1982-08-15

 000250 AD3112 70 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .25 1982-08-15 1982-10-15

 000250 AD3112 80 .50 1982-10-15 1982-12-01

 000250 AD3112 180 .50 1982-08-15 1983-01-01

 000260 AD3113 70 .50 1982-06-15 1982-07-01

 000260 AD3113 70 1.00 1982-07-01 1983-02-01

 000260 AD3113 80 1.00 1982-01-01 1982-03-01

 000260 AD3113 80 .50 1982-03-01 1982-04-15

 000260 AD3113 180 .50 1982-03-01 1982-04-15

 000260 AD3113 180 1.00 1982-04-15 1982-06-01

 000260 AD3113 180 .50 1982-06-01 1982-07-01

 000270 AD3113 60 .50 1982-03-01 1982-04-01

 000270 AD3113 60 1.00 1982-04-01 1982-09-01

The SAMPLE database

672 SQL Reference, Volume 1

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

 000270 AD3113 60 .25 1982-09-01 1982-10-15

 000270 AD3113 70 .75 1982-09-01 1982-10-15

 000270 AD3113 70 1.00 1982-10-15 1983-02-01

 000270 AD3113 80 1.00 1982-01-01 1982-03-01

 000270 AD3113 80 .50 1982-03-01 1982-04-01

 000030 IF1000 10 .50 1982-06-01 1983-01-01

 000130 IF1000 90 1.00 1982-01-01 1982-10-01

 000130 IF1000 100 .50 1982-10-01 1983-01-01

 000140 IF1000 90 .50 1982-10-01 1983-01-01

 000030 IF2000 10 .50 1982-01-01 1983-01-01

 000140 IF2000 100 1.00 1982-01-01 1982-03-01

 000140 IF2000 100 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-03-01 1982-07-01

 000140 IF2000 110 .50 1982-10-01 1983-01-01

 000010 MA2100 10 .50 1982-01-01 1982-11-01

 000110 MA2100 20 1.00 1982-01-01 1982-03-01

 000010 MA2110 10 1.00 1982-01-01 1983-02-01

 000200 MA2111 50 1.00 1982-01-01 1982-06-15

 000200 MA2111 60 1.00 1982-06-15 1983-02-01

 000220 MA2111 40 1.00 1982-01-01 1983-02-01

 000150 MA2112 60 1.00 1982-01-01 1982-07-15

 000150 MA2112 180 1.00 1982-07-15 1983-02-01

 000170 MA2112 60 1.00 1982-01-01 1983-06-01

 000170 MA2112 70 1.00 1982-06-01 1983-02-01

 000190 MA2112 70 1.00 1982-02-01 1982-10-01

 000190 MA2112 80 1.00 1982-10-01 1983-10-01

 000160 MA2113 60 1.00 1982-07-15 1983-02-01

 000170 MA2113 80 1.00 1982-01-01 1983-02-01

 000180 MA2113 70 1.00 1982-04-01 1982-06-15

 000210 MA2113 80 .50 1982-10-01 1983-02-01

 000210 MA2113 180 .50 1982-10-01 1983-02-01

 000050 OP1000 10 .25 1982-01-01 1983-02-01

 000090 OP1010 10 1.00 1982-01-01 1983-02-01

 000280 OP1010 130 1.00 1982-01-01 1983-02-01

 000290 OP1010 130 1.00 1982-01-01 1983-02-01

 000300 OP1010 130 1.00 1982-01-01 1983-02-01

 000310 OP1010 130 1.00 1982-01-01 1983-02-01

 000050 OP2010 10 .75 1982-01-01 1983-02-01

 000100 OP2010 10 1.00 1982-01-01 1983-02-01

 000320 OP2011 140 .75 1982-01-01 1983-02-01

 000320 OP2011 150 .25 1982-01-01 1983-02-01

 000330 OP2012 140 .25 1982-01-01 1983-02-01

 000330 OP2012 160 .75 1982-01-01 1983-02-01

 000340 OP2013 140 .50 1982-01-01 1983-02-01

 000340 OP2013 170 .50 1982-01-01 1983-02-01

 000020 PL2100 30 1.00 1982-01-01 1982-09-15

EMP_PHOTO table

 Name: EMPNO PHOTO_FORMAT PICTURE

Type: CHAR(6) NOT NULL VARCHAR(10) NOT NULL BLOB(100K)

Desc: Employee number Photo format Photo of employee

Values: 000130 bitmap db200130.bmp

000130 gif db200130.gif

000140 bitmap db200140.bmp

000140 gif db200140.gif

000150 bitmap db200150.bmp

000150 gif db200150.gif

000190 bitmap db200190.bmp

000190 gif db200190.gif

The SAMPLE database

Appendix F. The sample database 673

EMPPROJACT table

 Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

Type: CHAR(6) CHAR(6) SMALLINT DEC(5,2) DATE DATE

Values: 000070 AD3110 10 1.00 01/01/1982 02/01/1983

000230 AD3111 60 1.00 01/01/1982 03/15/1982

000230 AD3111 60 0.50 03/15/1982 04/15/1982

000230 AD3111 70 0.50 03/15/1982 10/15/1982

000230 AD3111 80 0.50 04/15/1982 10/15/1982

000230 AD3111 180 0.50 10/15/1982 01/01/1983

000240 AD3111 70 1.00 02/15/1982 09/15/1982

000240 AD3111 80 1.00 09/15/1982 01/01/1983

000250 AD3112 60 1.00 01/01/1982 02/01/1982

000250 AD3112 60 0.50 02/01/1982 03/15/1982

000250 AD3112 60 1.00 01/01/1983 02/01/1983

000250 AD3112 70 0.50 02/01/1982 03/15/1982

000250 AD3112 70 1.00 03/15/1982 08/15/1982

000250 AD3112 70 0.25 08/15/1982 10/15/1982

000250 AD3112 80 0.25 08/15/1982 10/15/1982

000250 AD3112 80 0.50 10/15/1982 12/01/1982

000250 AD3112 180 0.50 08/15/1982 01/01/1983

000260 AD3113 70 0.50 06/15/1982 07/01/1982

000260 AD3113 70 1.00 07/01/1982 02/01/1983

000260 AD3113 80 1.00 01/01/1982 03/01/1982

000260 AD3113 80 0.50 03/01/1982 04/15/1982

000260 AD3113 180 0.50 03/01/1982 04/15/1982

000260 AD3113 180 1.00 04/15/1982 06/01/1982

000260 AD3113 180 1.00 06/01/1982 07/01/1982

000270 AD3113 60 0.50 03/01/1982 04/01/1982

000270 AD3113 60 1.00 04/01/1982 09/01/1982

000270 AD3113 60 0.25 09/01/1982 10/15/1982

000270 AD3113 70 0.75 09/01/1982 10/15/1982

000270 AD3113 70 1.00 10/15/1982 02/01/1983

000270 AD3113 80 1.00 01/01/1982 03/01/1982

000270 AD3113 80 0.50 03/01/1982 04/01/1982

000030 IF1000 10 0.50 06/01/1982 01/01/1983

000130 IF1000 90 1.00 10/01/1982 01/01/1983

000130 IF1000 100 0.50 10/01/1982 01/01/1983

000140 IF1000 90 0.50 10/01/1982 01/01/1983

000030 IF2000 10 0.50 01/01/1982 01/01/1983

000140 IF2000 100 1.00 01/01/1982 03/01/1982

000140 IF2000 100 0.50 03/01/1982 07/01/1982

The SAMPLE database

674 SQL Reference, Volume 1

Name: EMPNO PROJNO ACTNO EMPTIME EMSTDATE EMENDATE

000140 IF2000 110 0.50 03/01/1982 07/01/1982

000140 IF2000 110 0.50 10/01/1982 01/01/1983

000010 MA2100 10 0.50 01/01/1982 11/01/1982

000110 MA2100 20 1.00 01/01/1982 03/01/1983

000010 MA2110 10 1.00 01/01/1982 02/01/1983

000200 MA2111 50 1.00 01/01/1982 06/15/1982

000200 MA2111 60 1.00 06/15/1982 02/01/1983

000220 MA2111 40 1.00 01/01/1982 02/01/1983

000150 MA2112 60 1.00 01/01/1982 07/15/1982

000150 MA2112 180 1.00 07/15/1982 02/01/1983

000170 MA2112 60 1.00 01/01/1982 06/01/1983

000170 MA2112 70 1.00 06/01/1982 02/01/1983

000190 MA2112 70 1.00 01/01/1982 10/01/1982

000190 MA2112 80 1.00 10/01/1982 10/01/1982

000160 MA2113 60 1.00 07/15/1982 02/01/1983

000170 MA2113 80 1.00 01/01/1982 02/01/1983

000180 MA2113 70 1.00 04/01/1982 06/15/1982

000210 MA2113 80 0.50 10/01/1982 02/01/1983

000210 MA2113 180 0.50 10/01/1982 02/01/1983

000050 OP1000 10 0.25 01/01/1982 02/01/1983

000090 OP1010 10 1.00 01/01/1982 02/01/1983

000280 OP1010 130 1.00 01/01/1982 02/01/1983

000290 OP1010 130 1.00 01/01/1982 02/01/1983

000300 OP1010 130 1.00 01/01/1982 02/01/1983

000310 OP1010 130 1.00 01/01/1982 02/01/1983

000050 OP1010 10 0.75 01/01/1982 02/01/1983

000100 OP1010 10 1.00 01/01/1982 02/01/1983

000320 OP2011 140 0.75 01/01/1982 02/01/1983

000320 OP2011 150 0.25 01/01/1982 02/01/1983

000330 OP2012 140 0.25 01/01/1982 02/01/1983

000330 OP2012 160 0.75 01/01/1982 02/01/1983

000340 OP2013 140 0.50 01/01/1982 02/01/1983

000340 OP2013 170 0.50 01/01/1982 02/01/1983

000020 PL2100 30 1.00 01/01/1982 09/15/1982

EMP_RESUME table

 Name: EMPNO RESUME_FORMAT RESUME

Type: CHAR(6) NOT NULL VARCHAR(10) NOT NULL CLOB(5K)

Desc: Employee number Resume Format Resume of employee

Values: 000130 ascii db200130.asc

The SAMPLE database

Appendix F. The sample database 675

Name: EMPNO RESUME_FORMAT RESUME

000130 html db200130.htm

000140 ascii db200140.asc

000140 html db200140.htm

000150 ascii db200150.asc

000150 html db200150.htm

000190 ascii db200190.asc

000190 html db200190.htm

IN_TRAY table

 Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

Type: TIMESTAMP CHAR(8) CHAR(64) VARCHAR(3000)

Desc: Date and Time

received

User id of person

sending note

Brief description The note

1988-12-25-
17.12.30.000000

BADAMSON FWD: Fantastic year!

4th Quarter Bonus.

To: JWALKER Cc:

QUINTANA,

NICHOLLS Jim,

Looks like our hard

work has paid off. I

have some good beer

in the fridge if you

want to come over to

celebrate a bit.

Delores and Heather,

are you interested as

well? Bruce

<Forwarding from

ISTERN> Subject:

FWD: Fantastic year!

4th Quarter Bonus.

To: Dept_D11

Congratulations on a

job well done. Enjoy

this year’s bonus. Irv

<Forwarding from

CHAAS> Subject:

Fantastic year! 4th

Quarter Bonus. To:

All_Managers Our 4th

quarter results are in.

We pulled together as

a team and exceeded

our plan! I am

pleased to announce a

bonus this year of

18%. Enjoy the

holidays. Christine

Haas

The SAMPLE database

676 SQL Reference, Volume 1

Name: RECEIVED SOURCE SUBJECT NOTE_TEXT

1988-12-23-
08.53.58.000000

ISTERN FWD: Fantastic year!

4th Quarter Bonus.

To: Dept_D11

Congratulations on a

job well done. Enjoy

this year’s bonus. Irv

<Forwarding from

CHAAS> Subject:

Fantastic year! 4th

Quarter Bonus. To:

All_Managers Our 4th

quarter results are in.

We pulled together as

a team and exceeded

our plan! I am

pleased to announce a

bonus this year of

18%. Enjoy the

holidays. Christine

Haas

1988-12-22-
14.07.21.136421

CHAAS Fantastic year! 4th

Quarter Bonus.

To: All_Managers Our

4th quarter results are

in. We pulled together

as a team and

exceeded our plan! I

am pleased to

announce a bonus

this year of 18%.

Enjoy the holidays.

Christine Haas

ORG table

 Name: DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

Type: SMALLINT NOT

NULL

VARCHAR(14) SMALLINT VARCHAR(10) VARCHAR(13)

Desc: Department

number

Department name Manager number Division of

corporation

City

Values: 10 Head Office 160 Corporate New York

15 New England 50 Eastern Boston

20 Mid Atlantic 10 Eastern Washington

38 South Atlantic 30 Eastern Atlanta

42 Great Lakes 100 Midwest Chicago

51 Plains 140 Midwest Dallas

66 Pacific 270 Western San Francisco

84 Mountain 290 Western Denver

PROJ table

 Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: CHAR(6) VARCHAR(36) CHAR(3) CHAR(6) DEC(5,2) DATE DATE CHAR(6)

Values: AD3100 ADMIN

SERVICES

D01 000010 6.50 01/01/1982 02/01/1983

The SAMPLE database

Appendix F. The sample database 677

Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

AD3110 GENERAL

ADMIN

SYSTEMS

D21 000070 6.00 01/01/1982 02/01/1983 AD3100

AD3111 PAYROLL

PROGRAMMING

D21 000230 2.00 01/01/1982 02/01/1983 AD3100

AD3112 PERSONNEL

PROGRAMMING

D21 000250 1.00 01/01/1982 02/01/1983 AD3100

AD3113 ACCOUNT

PROGRAMMING

D21 000270 2.00 01/01/1982 02/01/1983 AD3100

IF1000 QUERY

SERVICES

C01 000030 2.00 01/01/1982 02/01/1983

IF2000 USER

EDUCATION

C01 000030 1.00 01/01/1982 02/01/1983

MA2100 WELD LINE

AUTOMATION

D01 000010 12.00 01/01/1982 02/01/1983

MA2110 W L

PROGRAMMING

D11 000060 9.00 01/01/1982 02/01/1983 MA2100

MA2111 W L PROGRAM

DESIGN

D11 000220 2.00 01/01/1982 12/01/1982 MA2100

MA2112 W L ROBOT

DESIGN

D11 000150 3.00 01/01/1982 12/01/1982 MA2100

MA2113 W L PROD

CONT PROGS

D11 000160 3.00 02/15/1982 12/01/1982 MA2100

OP1000 OPERATION

SUPPORT

E01 000050 6.00 01/01/1982 02/01/1983

OP1010 OPERATION E11 000090 5.00 01/01/1982 02/01/1983 OP1000

OP2000 GEN SYSTEMS

SERVICES

E01 000050 5.00 01/01/1982 02/01/1983

OP2010 SYSTEMS

SUPPORT

E21 000100 4.00 01/01/1982 02/01/1983 OP2010

OP2011 SCP SYSTEMS

SUPPORT

E21 000320 1.00 01/01/1982 02/01/1983 OP2010

OP2012 APPLICATIONS

SUPPORT

E21 000330 1.00 01/01/1982 02/01/1983 OP2010

OP2013 DB/DC

SUPPORT

E21 000340 1.00 01/01/1982 02/01/1983 OP2010

PL2100 WELD LINE

PLANNING

B01 000020 1.00 01/01/1982 09/15/1982 MA2100

PROJACT table

 Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

Type: CHAR(6) SMALLINT DEC(5,2) DATE DATE

Values: AD3100 10 01/01/1982

AD3110 10 01/01/1982

AD3111 60 01/01/1982

AD3111 60 03/15/1982

AD3111 70 03/15/1982

AD3111 80 04/15/1982

AD3111 180 10/15/1982

AD3111 70 02/15/1982

AD3111 80 09/15/1982

AD3112 60 01/01/1982

AD3112 60 02/01/1982

The SAMPLE database

678 SQL Reference, Volume 1

Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

AD3112 60 01/01/1983

AD3112 70 02/01/1982

AD3112 70 03/15/1982

AD3112 70 08/15/1982

AD3112 80 08/15/1982

AD3112 80 10/15/1982

AD3112 180 08/15/1982

AD3113 70 06/15/1982

AD3113 70 07/01/1982

AD3113 80 01/01/1982

AD3113 80 03/01/1982

AD3113 180 03/01/1982

AD3113 180 04/15/1982

AD3113 180 06/01/1982

AD3113 60 03/01/1982

AD3113 60 04/01/1982

AD3113 60 09/01/1982

AD3113 70 09/01/1982

AD3113 70 10/15/1982

IF1000 10 06/01/1982

IF1000 90 10/01/1982

IF1000 100 10/01/1982

IF2000 10 01/01/1982

IF2000 100 01/01/1982

IF2000 100 03/01/1982

IF2000 110 03/01/1982

IF2000 110 10/01/1982

MA2100 10 01/01/1982

MA2100 20 01/01/1982

MA2110 10 01/01/1982

MA2111 50 01/01/1982

MA2111 60 06/15/1982

MA2111 40 01/01/1982

MA2112 60 01/01/1982

MA2112 180 07/15/1982

MA2112 70 06/01/1982

MA2112 70 01/01/1982

MA2112 80 10/01/1982

MA2113 60 07/15/1982

MA2113 80 01/01/1982

MA2113 70 04/01/1982

The SAMPLE database

Appendix F. The sample database 679

Name: PROJNO ACTNO ACSTAFF ACSTDATE ACENDATE

MA2113 80 10/01/1982

MA2113 180 10/01/1982

OP1000 10 01/01/1982

OP1010 10 01/01/1982

OP1010 130 01/01/1982

OP2010 10 01/01/1982

OP2011 140 01/01/1982

OP2011 150 01/01/1982

OP2012 140 01/01/1982

OP2012 160 01/01/1982

OP2013 140 01/01/1982

OP2013 170 01/01/1982

PL2100 30 01/01/1982

PROJECT table

 Name: PROJNO PROJNAME DEPTNO RESPEMP PRSTAFF PRSTDATE PRENDATE MAJPROJ

Type: CHAR(6) NOT

NULL

VARCHAR(24) NOT

NULL

CHAR(3) NOT

NULL

CHAR(6) NOT

NULL

DEC(5,2) DATE DATE CHAR(6)

Desc: Project number Project name Department

responsible

Employee

responsible

Estimated mean

staffing

Estimated start date Estimated end date Major project, for a

subproject

Values: AD3100 ADMIN SERVICES D01 000010 6.5 1982-01-01 1983-02-01 -

 AD3110 GENERAL ADMIN

SYSTEMS

D21 000070 6 1982-01-01 1983-02-01 AD3100

 AD3111 PAYROLL

PROGRAMMING

D21 000230 2 1982-01-01 1983-02-01 AD3110

 AD3112 PERSONNEL

PROGRAMMING

D21 000250 1 1982-01-01 1983-02-01 AD3110

 AD3113 ACCOUNT

PROGRAMMING

D21 000270 2 1982-01-01 1983-02-01 AD3110

 IF1000 QUERY SERVICES C01 000030 2 1982-01-01 1983-02-01 -

 IF2000 USER EDUCATION C01 000030 1 1982-01-01 1983-02-01 -

 MA2100 WELD LINE

AUTOMATION

D01 000010 12 1982-01-01 1983-02-01 -

 MA2110 W L

PROGRAMMING

D11 000060 9 1982-01-01 1983-02-01 MA2100

 MA2111 W L PROGRAM

DESIGN

D11 000220 2 1982-01-01 1982-12-01 MA2110

 MA2112 W L ROBOT

DESIGN

D11 000150 3 1982-01-01 1982-12-01 MA2110

 MA2113 W L PROD CONT

PROGS

D11 000160 3 1982-02-15 1982-12-01 MA2110

 OP1000 OPERATION

SUPPORT

E01 000050 6 1982-01-01 1983-02-01 -

 OP1010 OPERATION E11 000090 5 1982-01-01 1983-02-01 OP1000

 OP2000 GEN SYSTEMS

SERVICES

E01 000050 5 1982-01-01 1983-02-01 -

 OP2010 SYSTEMS SUPPORT E21 000100 4 1982-01-01 1983-02-01 OP2000

 OP2011 SCP SYSTEMS

SUPPORT

E21 000320 1 1982-01-01 1983-02-01 OP2010

 OP2012 APPLICATIONS

SUPPORT

E21 000330 1 1982-01-01 1983-02-01 OP2010

 OP2013 DB/DC SUPPORT E21 000340 1 1982-01-01 1983-02-01 OP2010

 PL2100 WELD LINE

PLANNING

B01 000020 1 1982-01-01 1982-09-15 MA2100

SALES table

 Name: SALES_DATE SALES_PERSON REGION SALES

Type: DATE VARCHAR(15) VARCHAR(15) INTEGER

Desc: Date of sales Employee’s last name Region of sales Number of sales

The SAMPLE database

680 SQL Reference, Volume 1

Name: SALES_DATE SALES_PERSON REGION SALES

Values: 12/31/2005 LUCCHESSI Ontario-South 1

 12/31/2005 LEE Ontario-South 3

 12/31/2005 LEE Quebec 1

 12/31/2005 LEE Manitoba 2

 12/31/2005 GOUNOT Quebec 1

 03/29/2006 LUCCHESSI Ontario-South 3

 03/29/2006 LUCCHESSI Quebec 1

 03/29/2006 LEE Ontario-South 2

 03/29/1996 LEE Ontario-North 2

 03/29/2006 LEE Quebec 3

 03/29/2006 LEE Manitoba 5

 03/29/2006 GOUNOT Ontario-South 3

 03/29/2006 GOUNOT Quebec 1

 03/29/2006 GOUNOT Manitoba 7

 03/30/2006 LUCCHESSI Ontario-South 1

 03/30/2006 LUCCHESSI Quebec 2

 03/30/2006 LUCCHESSI Manitoba 1

 03/30/2006 LEE Ontario-South 7

 03/30/2006 LEE Ontario-North 3

 03/30/2006 LEE Quebec 7

 03/30/2006 LEE Manitoba 4

 03/30/2006 GOUNOT Ontario-South 2

 03/30/2006 GOUNOT Quebec 18

 03/30/2006 GOUNOT Manitoba 1

 03/31/2006 LUCCHESSI Manitoba 1

 03/31/2006 LEE Ontario-South 14

 03/31/2006 LEE Ontario-North 3

 03/31/2006 LEE Quebec 7

 03/31/2006 LEE Manitoba 3

 03/31/2006 GOUNOT Ontario-South 2

 03/31/2006 GOUNOT Quebec 1

 04/01/2006 LUCCHESSI Ontario-South 3

 04/01/2006 LUCCHESSI Manitoba 1

 04/01/2006 LEE Ontario-South 8

 04/01/2006 LEE Ontario-North -

 04/01/2006 LEE Quebec 8

 04/01/2006 LEE Manitoba 9

 04/01/2006 GOUNOT Ontario-South 3

 04/01/2006 GOUNOT Ontario-North 1

 04/01/2006 GOUNOT Quebec 3

 04/01/2006 GOUNOT Manitoba 7

The SAMPLE database

Appendix F. The sample database 681

STAFF table

 Name: ID NAME DEPT JOB YEARS SALARY COMM

Type: SMALLINT NOT

NULL

VARCHAR(9) SMALLINT CHAR(5) SMALLINT DECIMAL(7,2) DECIMAL(7,2)

Desc: Employee number Employee name Department number Job type Years of service Current salary Commission

Values: 10 Sanders 20 Mgr 7 18357.50 -

20 Pernal 20 Sales 8 18171.25 612.45

30 Marenghi 38 Mgr 5 17506.75 -

40 O’Brien 38 Sales 6 18006.00 846.55

50 Hanes 15 Mgr 10 20659.80 -

60 Quigley 38 Sales - 16808.30 650.25

70 Rothman 15 Sales 7 16502.83 1152.00

80 James 20 Clerk - 13504.60 128.20

90 Koonitz 42 Sales 6 18001.75 1386.70

100 Plotz 42 Mgr 7 18352.80 -

110 Ngan 15 Clerk 5 12508.20 206.60

120 Naughton 38 Clerk - 12954.75 180.00

130 Yamaguchi 42 Clerk 6 10505.90 75.60

140 Fraye 51 Mgr 6 21150.00 -

150 Williams 51 Sales 6 19456.50 637.65

160 Molinare 10 Mgr 7 22959.20 -

170 Kermisch 15 Clerk 4 12258.50 110.10

180 Abrahams 38 Clerk 3 12009.75 236.50

190 Sneider 20 Clerk 8 14252.75 126.50

200 Scoutten 42 Clerk - 11508.60 84.20

210 Lu 10 Mgr 10 20010.00 -

220 Smith 51 Sales 7 17654.50 992.80

230 Lundquist 51 Clerk 3 13369.80 189.65

240 Daniels 10 Mgr 5 19260.25 -

250 Wheeler 51 Clerk 6 14460.00 513.30

260 Jones 10 Mgr 12 21234.00 -

270 Lea 66 Mgr 9 18555.50 -

280 Wilson 66 Sales 9 18674.50 811.50

290 Quill 84 Mgr 10 19818.00 -

300 Davis 84 Sales 5 15454.50 806.10

310 Graham 66 Sales 13 21000.00 200.30

320 Gonzales 66 Sales 4 16858.20 844.00

330 Burke 66 Clerk 1 10988.00 55.50

340 Edwards 84 Sales 7 17844.00 1285.00

350 Gafney 84 Clerk 5 13030.50 188.00

PRODUCT table

 Name: PID NAME PRICE PROMOPRICE PROMOSTART PROMOEND DESCRIPTION

Type: VARCHAR(10) NOT

NULL

VARCHAR(128) DECIMAL(30,2) DECIMAL(30,2) DATE DATE XML

Values: 100-100-01 Snow Shovel, Basic 22

inch

9.99 7.25 11/19/2004 12/19/2004 p1.xml

100-101-01 Snow Shovel, Deluxe 24

inch

19.99 15.99 12/18/2005 02/28/2006 p2.xml

100-103-01 Snow Shovel, Super

Deluxe 26 inch

49.99 39.99 12/22/2005 02/22/2006 p3.xml

100-201-01 Ice Scraper, Windshield

4 inch

3.99 -- -- -- p4.xml

Here is the XML schema definition file for the XML column in the above table:

product.xsd

PURCHASEORDER table

 Name: POID STATUS CUSTID ORDERDATE PORDER COMMENTS

Type: BIGINT NOT NULL VARCHAR(10) NOT NULL BIGINT DATE XML VARCHAR(1000)

Values: 5000 Unshipped 1002 02/18/2006 po1.xml THIS IS A NEW

PURCHASE ORDER

5001 Shipped 1003 02/03/2005 po2.xml THIS IS A NEW

PURCHASE ORDER

5002 Shipped 1001 02/29/2004 po3.xml THIS IS A NEW

PURCHASE ORDER

The SAMPLE database

682 SQL Reference, Volume 1

Name: POID STATUS CUSTID ORDERDATE PORDER COMMENTS

5003 Shipped 1002 02/28/2005 po4.xml THIS IS A NEW

PURCHASE ORDER

5004 Shipped 1005 11/18/2005 po5.xml THIS IS A NEW

PURCHASE ORDER

5006 Shipped 1002 03/01/2006 po6.xml THIS IS A NEW

PURCHASE ORDER

Here is the XML schema definition file for the XML column in the above table:

porder.xsd

CUSTOMER table

 Name: CID INFO

Type: BIGINT NOT NULL XML

Values: 1000 c1.xml

1001 c2.xml

1002 c3.xml

1003 c4.xml

1004 c5.xml

1005 c6.xml

Here is the XML schema definition file for the XML column in the above table:

customer.xsd

CATALOG table

 Name: NAME CATALOG

Type: VARCHAR(128) NOT NULL XML

Values: Spring catalog cat1.xmlcat1.xml

Summer catalog cat2.xmlcat2.xml

Fall catalog cat3.xmlcat3.xml

Winter catalog cat4.xmlcat4.xml

Here is the XML schema definition file for the XML column in the above table:

catalog.xsd

INVENTORY table

 Name: PID QUANTITY LOCATION

Type: VARCHAR(10) NOT NULL INTEGER VARCHAR(128)

Values: 100-100-01 5 --

100-101-01 25 Store

100-103-01 55 Store

100-201-01 99 Warehouse

The SAMPLE database

Appendix F. The sample database 683

PRODUCTSUPPLIER table

 Name: PID SID

Type: VARCHAR(10) NOT NULL VARCHAR(10) NOT NULL

Values: 100-100-01 123-456-78

100-101-01 123-456-78

100-103-01 555-789-00

100-201-01 989-897-23

SUPPLIERS table

 Name: SID ADDR

Type: VARCHAR(10) NOT NULL XML

Values: 123-456-78 s1.xmls1.xml

555-789-00 s2.xmls2.xml

989-897-23 s3.xmls3.xml

111-898-45 s4.xmls4.xml

Here is the XML schema definition file for the XML column in the above table:

supplier.xsd

Sample files with BLOB and CLOB data type

This section shows the data found in the EMP_PHOTO files (pictures of

employees) and EMP_RESUME files (resumes of employees).

Quintana photo

Quintana resume

The following text is found in the file db200130.asc.

Resume: Dolores M. Quintana

Personal Information

Address:

1150 Eglinton Ave Mellonville, Idaho 83725

Phone:

(208) 555-9933

Figure 15. Dolores M. Quintana

The SAMPLE database

684 SQL Reference, Volume 1

Birthdate:

September 15, 1925

Sex: Female

Marital Status:

Married

Height:

5’2″

Weight:

120 lbs.

Department Information

Employee Number:

000130

Dept Number:

C01

Manager:

Sally Kwan

Position:

Analyst

Phone:

(208) 555-4578

Hire Date:

1971-07-28

Education

1965 Math and English, B.A. Adelphi University

1960 Dental Technician Florida Institute of Technology

Work History

10/91 - present

Advisory Systems Analyst Producing documentation tools for engineering

department.

12/85 - 9/91

Technical Writer, Writer, text programmer, and planner.

1/79 - 11/85

COBOL Payroll Programmer Writing payroll programs for a diesel fuel

company.

Interests

v Cooking

v Reading

v Sewing

v Remodeling

Following is the contents of the file db200130.htm.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3//EN">

<HTML><HEAD>

<TITLE>Resume: Delores M. Quintana

The SAMPLE database

Appendix F. The sample database 685

<!-- Begin Header Records == -->

<!-- DB200130 SCRIPT A converted by B2H R4.1 (346) (CMS) by MJA at -->

<!-- RCHVMW2 on 16 Aug 2000 at 11:35:23 -->

<META HTTP-EQUIV="updated" CONTENT="Wed, 16 Aug 2000 11:33:57">

<META HTTP-EQUIV="review" CONTENT="Thu, 16 Aug 2001 11:33:57">

<META HTTP-EQUIV="expires" CONTENT="Fri, 16 Aug 2002 11:33:57"><BODY>

<!-- End Header Records == -->

<H1>Resume: Delores M. Quintana<HR>

<H2>Table of Contents

Resume: Delores M. Quintana

Personal Information

Department Information

Education

Work History

Interests

<HR><P>

<P>

<H3>Resume: Delores M. Quintana<P>

<H3>Personal Information<DL COMPACT>

<DT>Address:

<DD>1150 Eglinton Ave

Mellonville, Idaho 83725

<DT>Phone:

<DD>(208) 875-9933

<DT>Birthdate:

<DD>September 15, 1925

<DT>Sex:

<DD>Female

<DT>Marital Status:

<DD>Married

<DT>Height:

<DD>5’2"

<DT>Weight:

<DD>120 lbs.<P>

<H3>Department Information<DL COMPACT>

<DT>Employee Number:

<DD>000130

<DT>Dept Number:

<DD>C01

<DT>Manager:

<DD>Sally Kwan

<DT>Position:

<DD>Analyst

<DT>Phone:

<DD>(208) 385-4578

<DT>Hire Date:

<DD>1971-07-28<P>

<H3>Education<DL>

<P><DT>1965

<DD>Math and English, B.A.

Adelphi University

<P><DT>1960

<DD>Dental Technician

Florida Institute of Technology<P>

<H3>Work History<DL>

<P><DT>10/91 - present

<DD>Advisory Systems Analyst

Producing documentation tools for engineering department.

<P><DT>12/85 - 9/91

<DD>Technical Writer

Writer, text programmer, and planner.

<P><DT>1/79 - 11/85

The SAMPLE database

686 SQL Reference, Volume 1

<DD>COBOL Payroll Programmer

Writing payroll programs for a diesel fuel company.<P>

<H3>Interests<UL COMPACT>

Cooking

Reading

Sewing

Remodeling

Nicholls photo

Nicholls resume

The following text is found in the file db200140.asc.

Resume: Heather A. Nicholls

Personal Information

Address:

844 Don Mills Ave Mellonville, Idaho 83734

Phone:

(208) 555-2310

Birthdate:

January 19, 1946

Sex: Female

Marital Status:

Single

Height:

5’8″

Weight:

130 lbs.

Department Information

Employee Number:

000140

Dept Number:

C01

Manager:

Sally Kwan

Figure 16. Heather A. Nicholls

The SAMPLE database

Appendix F. The sample database 687

Position:

Analyst

Phone:

(208) 555-1793

Hire Date:

1976-12-15

Education

1972 Computer Engineering, Ph.D. University of Washington

1969 Music and Physics, M.A. Vassar College

Work History

2/83 - present

Architect, OCR Development Designing the architecture of OCR products.

12/76 - 1/83

Text Programmer Optical CHARacter recognition (OCR) programming in

PL/I.

9/72 - 11/76

Punch Card Quality Analyst Checking punch cards met quality

specifications.

Interests

v Model railroading

v Interior decorating

v Embroidery

v Knitting

Following is the content of the file db200140.htm.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3//EN">

<HTML><HEAD>

<TITLE>Resume: Heather A. Nicholls

<!-- Begin Header Records == -->

<!-- DB200140 SCRIPT A converted by B2H R4.1 (346) (CMS) by MJA at -->

<!-- RCHVMW2 on 16 Aug 2000 at 11:35:21 -->

<META HTTP-EQUIV="updated" CONTENT="Wed, 16 Aug 2000 11:34:17">

<META HTTP-EQUIV="review" CONTENT="Thu, 16 Aug 2001 11:34:17">

<META HTTP-EQUIV="expires" CONTENT="Fri, 16 Aug 2002 11:34:17"><BODY>

<!-- End Header Records == -->

<H1>Resume: Heather A. Nicholls<HR>

<H2>Table of Contents

Resume: Heather A. Nicholls

Personal Information

Department Information

Education

Work History

Interests

<HR><P>

<P>

<H3>Resume: Heather A. Nicholls<P>

<H3>Personal Information<DL COMPACT>

<DT>Address:

<DD>844 Don Mills Ave

Mellonville, Idaho 83734

<DT>Phone:

<DD>(208) 610-2310

The SAMPLE database

688 SQL Reference, Volume 1

<DT>Birthdate:

<DD>January 19, 1946

<DT>Sex:

<DD>Female

<DT>Marital Status:

<DD>Single

<DT>Height:

<DD>5’8"

<DT>Weight:

<DD>130 lbs.<P>

<H3>Department Information<DL COMPACT>

<DT>Employee Number:

<DD>000140

<DT>Dept Number:

<DD>C01

<DT>Manager:

<DD>Sally Kwan

<DT>Position:

<DD>Analyst

<DT>Phone:

<DD>(208) 385-1793

<DT>Hire Date:

<DD>1976-12-15<P>

<H3>Education<DL>

<P><DT>1972

<DD>Computer Engineering, Ph.D.

University of Washington

<P><DT>1969

<DD>Music and Physics, B.A.

Vassar College<P>

<H3>Work History<DL>

<P><DT>2/83 - present

<DD>Architect, OCR Development

Designing the architecture of OCR products.

<P><DT>12/76 - 1/83

<DD>Text Programmer

Optical CHARacter recognition (OCR) programming in PL/I.

<P><DT>9/72 - 11/76

<DD>Punch Card Quality Analyst

Checking punch cards met quality specifications.<P>

<H3>Interests<UL COMPACT>

Model railroading

Interior decorating

Embroidery

Knitting

The SAMPLE database

Appendix F. The sample database 689

Adamson photo

Adamson resume

The following text is found in the file db200150.asc.

Resume: Bruce Adamson

Personal Information

Address:

3600 Steeles Ave Mellonville, Idaho 83757

Phone:

(208) 555-4489

Birthdate:

May 17, 1947

Sex: Male

Marital Status:

Married

Height:

6’0″

Weight:

175 lbs.

Department Information

Employee Number:

000150

Dept Number:

D11

Manager:

Irving Stern

Position:

Designer

Phone:

(208) 555-4510

Hire Date:

1972-02-12

Figure 17. Bruce Adamson

The SAMPLE database

690 SQL Reference, Volume 1

Education

1971 Environmental Engineering, M.Sc. Johns Hopkins University

1968 American History, B.A. Northwestern University

Work History

8/79 - present

Neural Network Design Developing neural networks for machine

intelligence products.

2/72 - 7/79

Robot Vision Development Developing rule-based systems to emulate

sight.

9/71 - 1/72

Numerical Integration Specialist Helping bank systems communicate with

each other.

Interests

v Racing motorcycles

v Building loudspeakers

v Assembling personal computers

v Sketching

Following is the content of the file db200150.htm.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3//EN">

<HTML><HEAD>

<TITLE>Resume: Bruce Adamson

<!-- Begin Header Records == -->

<!-- DB200150 SCRIPT A converted by B2H R4.1 (346) (CMS) by MJA at -->

<!-- RCHVMW2 on 16 Aug 2000 at 11:35:21 -->

<META HTTP-EQUIV="updated" CONTENT="Wed, 16 Aug 2000 11:34:39">

<META HTTP-EQUIV="review" CONTENT="Thu, 16 Aug 2001 11:34:39">

<META HTTP-EQUIV="expires" CONTENT="Fri, 16 Aug 2002 11:34:39"><BODY>

<!-- End Header Records == -->

<H1>Resume: Bruce Adamson<HR>

<H2>Table of Contents

Resume: Bruce Adamson

Personal Information

Department Information

Education

Work History

Interests

<HR><P>

<P>

<H3>Resume: Bruce Adamson<P>

<H3>Personal Information<DL COMPACT>

<DT>Address:

<DD>3600 Steeles Ave

Mellonville, Idaho 83757

<DT>Phone:

<DD>(208) 725-4489

<DT>Birthdate:

<DD>May 17, 1947

<DT>Sex:

<DD>Male

<DT>Marital Status:

<DD>Married

<DT>Height:

<DD>6’0"

The SAMPLE database

Appendix F. The sample database 691

<DT>Weight:

<DD>175 lbs.<P>

<H3>Department Information<DL COMPACT>

<DT>Employee Number:

<DD>000150

<DT>Dept Number:

<DD>D11

<DT>Manager:

<DD>Irving Stern

<DT>Position:

<DD>Designer

<DT>Phone:

<DD>(208) 385-4510

<DT>Hire Date:

<DD>1972-02-12<P>

<H3>Education<DL>

<P><DT>1971

<DD>Environmental Engineering, M.Sc.

Johns Hopkins University

<P><DT>1968

<DD>American History, B.A.

Northwestern University<P>

<H3>Work History<DL>

<P><DT>8/79 - present

<DD>Neural Network Design

Developing neural networks for machine intelligence products.

<P><DT>2/72 - 7/79

<DD>Robot Vision Development

Developing rule-based systems to emulate sight.

<P><DT>9/71 - 1/72

<DD>Numerical Integration Specialist

Helping bank systems communicate with each other.<P>

<H3>Interests<UL COMPACT>

Racing motorcycles

Building loudspeakers

Assembling personal computers

Sketching

Walker photo

Walker resume

The following text is found in the file db200190.asc.

Resume: James H. Walker

Figure 18. James H. Walker

The SAMPLE database

692 SQL Reference, Volume 1

Personal Information

Address:

3500 Steeles Ave Mellonville, Idaho 83757

Phone:

(208) 555-7325

Birthdate:

June 25, 1952

Sex: Male

Marital Status:

Single

Height:

5’11″

Weight:

166 lbs.

Department Information

Employee Number:

000190

Dept Number:

D11

Manager:

Irving Stern

Position:

Designer

Phone:

(208) 555-2986

Hire Date:

1974-07-26

Education

1974 Computer Studies, B.Sc. University of Massachusetts

1972 Linguistic Anthropology, B.A. University of Toronto

Work History

6/87 - present

Microcode Design Optimizing algorithms for mathematical functions.

4/77 - 5/87

Printer Technical Support Installing and supporting laser printers.

9/74 - 3/77

Maintenance Programming Patching assembly language compiler for

mainframes.

Interests

v Wine tasting

v Skiing

v Swimming

The SAMPLE database

Appendix F. The sample database 693

v Dancing

Following is the content of the file db200190.htm.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 3//EN">

<HTML><HEAD>

<TITLE>Resume: James H. Walker

<!-- Begin Header Records == -->

<!-- DB200190 SCRIPT A converted by B2H R4.1 (346) (CMS) by MJA at -->

<!-- RCHVMW2 on 16 Aug 2000 at 11:35:20 -->

<META HTTP-EQUIV="updated" CONTENT="Wed, 16 Aug 2000 11:34:59">

<META HTTP-EQUIV="review" CONTENT="Thu, 16 Aug 2001 11:34:59">

<META HTTP-EQUIV="expires" CONTENT="Fri, 16 Aug 2002 11:34:59"><BODY>

<!-- End Header Records == -->

<H1>Resume: James H. Walker<HR>

<H2>Table of Contents

Resume: James H. Walker

Personal Information

Department Information

Education

Work History

Interests

<HR><P>

<P>

<H3>Resume: James H. Walker<P>

<H3>Personal Information<DL COMPACT>

<DT>Address:

<DD>3500 Steeles Ave

Mellonville, Idaho 83757

<DT>Phone:

<DD>(208) 725-7325

<DT>Birthdate:

<DD>June 25, 1952

<DT>Sex:

<DD>Male

<DT>Marital Status:

<DD>Single

<DT>Height:

<DD>5’11"

<DT>Weight:

<DD>166 lbs.<P>

<H3>Department Information<DL COMPACT>

<DT>Employee Number:

<DD>000190

<DT>Dept Number:

<DD>D11

<DT>Manager:

<DD>Irving Stern

<DT>Position:

<DD>Designer

<DT>Phone:

<DD>(208) 385-2986

<DT>Hire Date:

<DD>1974-07-26<P>

<H3>Education<DL>

<P><DT>1974

<DD>Computer Studies, B.Sc.

University of Massachusetts

<P><DT>1972

<DD>Linguistic Anthropology, B.A.

University of Toronto<P>

<H3>Work History<DL>

<P><DT>6/87 - present

<DD>Microcode Design

The SAMPLE database

694 SQL Reference, Volume 1

Optimizing algorithms for mathematical functions.

<P><DT>4/77 - 5/87

<DD>Printer Technical Support

Installing and supporting laser printers.

<P><DT>9/74 - 3/77

<DD>Maintenance Programming

Patching assembly language compiler for mainframes.<P>

<H3>Interests<UL COMPACT>

Wine tasting

Skiing

Swimming

Dancing

The SAMPLE database

Appendix F. The sample database 695

The SAMPLE database

696 SQL Reference, Volume 1

Appendix G. Reserved schema names and reserved words

There are restrictions on the use of certain names that are required by the database

manager. In some cases, names are reserved, and cannot be used by application

programs. In other cases, certain names are not recommended for use by

application programs, although their use is not prevented by the database

manager.

The reserved schema names are:

v SYSCAT

v SYSFUN

v SYSIBM

v SYSIBMADM

v SYSPROC

v SYSSTAT

It is strongly recommended that schema names never begin with the ’SYS’ prefix,

because ’SYS’, by convention, is used to indicate an area that is reserved by the

system. No aliases, global variables, triggers, user-defined functions, or

user-defined types can be placed into a schema whose name starts with ’SYS’

(SQLSTATE 42939).

The DB2QP schema and the SYSTOOLS schema are set aside for use by DB2 tools.

It is recommended that users not explicitly define objects in these schemas,

although their use is not prevented by the database manager.

It is also recommended that SESSION not be used as a schema name. Because

declared temporary tables must be qualified by SESSION, it is possible to have an

application declare a temporary table with a name that is identical to that of a

persistent table, complicating the application logic. To avoid this possibility, do not

use the schema SESSION except when dealing with declared temporary tables.

There are no specifically reserved words in DB2 Version 9. Keywords can be used

as ordinary identifiers, except in a context where they could also be interpreted as

SQL keywords. In such cases, the word must be specified as a delimited identifier.

For example, COUNT cannot be used as a column name in a SELECT statement,

unless it is delimited.

ISO/ANSI SQL2003 and other DB2 database products include reserved words that

are not enforced by DB2 Database for Linux, UNIX, and Windows; however, it is

recommended that these words not be used as ordinary identifiers, because it

reduces portability.

For portability across the DB2 database products, the following should be

considered reserved words:

ACTIVATE DOCUMENT LOCK ROUND_CEILING

ADD DOUBLE LOCKMAX ROUND_DOWN

AFTER DROP LOCKSIZE ROUND_FLOOR

ALIAS DSSIZE LONG ROUND_HALF_DOWN

ALL DYNAMIC LOOP ROUND_HALF_EVEN

ALLOCATE EACH MAINTAINED ROUND_HALF_UP

ALLOW EDITPROC MATERIALIZED ROUND_UP

ALTER ELSE MAXVALUE ROUTINE

© Copyright IBM Corp. 1993, 2009 697

AND ELSEIF MICROSECOND ROW

ANY ENABLE MICROSECONDS ROW_NUMBER

AS ENCODING MINUTE ROWNUMBER

ASENSITIVE ENCRYPTION MINUTES ROWS

ASSOCIATE END MINVALUE ROWSET

ASUTIME END-EXEC MODE RRN

AT ENDING MODIFIES RUN

ATTRIBUTES ERASE MONTH SAVEPOINT

AUDIT ESCAPE MONTHS SCHEMA

AUTHORIZATION EVERY NAN SCRATCHPAD

AUX EXCEPT NEW SCROLL

AUXILIARY EXCEPTION NEW_TABLE SEARCH

BEFORE EXCLUDING NEXTVAL SECOND

BEGIN EXCLUSIVE NO SECONDS

BETWEEN EXECUTE NOCACHE SECQTY

BINARY EXISTS NOCYCLE SECURITY

BUFFERPOOL EXIT NODENAME SELECT

BY EXPLAIN NODENUMBER SENSITIVE

CACHE EXTERNAL NOMAXVALUE SEQUENCE

CALL EXTRACT NOMINVALUE SESSION

CALLED FENCED NONE SESSION_USER

CAPTURE FETCH NOORDER SET

CARDINALITY FIELDPROC NORMALIZED SIGNAL

CASCADED FILE NOT SIMPLE

CASE FINAL NULL SNAN

CAST FOR NULLS SOME

CCSID FOREIGN NUMPARTS SOURCE

CHAR FREE OBID SPECIFIC

CHARACTER FROM OF SQL

CHECK FULL OLD SQLID

CLONE FUNCTION OLD_TABLE STACKED

CLOSE GENERAL ON STANDARD

CLUSTER GENERATED OPEN START

COLLECTION GET OPTIMIZATION STARTING

COLLID GLOBAL OPTIMIZE STATEMENT

COLUMN GO OPTION STATIC

COMMENT GOTO OR STATMENT

COMMIT GRANT ORDER STAY

CONCAT GRAPHIC OUT STOGROUP

CONDITION GROUP OUTER STORES

CONNECT HANDLER OVER STYLE

CONNECTION HASH OVERRIDING SUBSTRING

CONSTRAINT HASHED_VALUE PACKAGE SUMMARY

CONTAINS HAVING PADDED SYNONYM

CONTINUE HINT PAGESIZE SYSFUN

COUNT HOLD PARAMETER SYSIBM

COUNT_BIG HOUR PART SYSPROC

CREATE HOURS PARTITION SYSTEM

CROSS IDENTITY PARTITIONED SYSTEM_USER

CURRENT IF PARTITIONING TABLE

CURRENT_DATE IMMEDIATE PARTITIONS TABLESPACE

CURRENT_LC_CTYPE IN PASSWORD THEN

CURRENT_PATH INCLUDING PATH TIME

CURRENT_SCHEMA INCLUSIVE PIECESIZE TIMESTAMP

CURRENT_SERVER INCREMENT PLAN TO

CURRENT_TIME INDEX POSITION TRANSACTION

CURRENT_TIMESTAMP INDICATOR PRECISION TRIGGER

CURRENT_TIMEZONE INF PREPARE TRIM

CURRENT_USER INFINITY PREVVAL TRUNCATE

CURSOR INHERIT PRIMARY TYPE

CYCLE INNER PRIQTY UNDO

DATA INOUT PRIVILEGES UNION

DATABASE INSENSITIVE PROCEDURE UNIQUE

DATAPARTITIONNAME INSERT PROGRAM UNTIL

DATAPARTITIONNUM INTEGRITY PSID UPDATE

DATE INTERSECT PUBLIC USAGE

DAY INTO QUERY USER

Reserved schema names and reserved words

698 SQL Reference, Volume 1

DAYS IS QUERYNO USING

DB2GENERAL ISOBID RANGE VALIDPROC

DB2GENRL ISOLATION RANK VALUE

DB2SQL ITERATE READ VALUES

DBINFO JAR READS VARIABLE

DBPARTITIONNAME JAVA RECOVERY VARIANT

DBPARTITIONNUM JOIN REFERENCES VCAT

DEALLOCATE KEEP REFERENCING VERSION

DECLARE KEY REFRESH VIEW

DEFAULT LABEL RELEASE VOLATILE

DEFAULTS LANGUAGE RENAME VOLUMES

DEFINITION LATERAL REPEAT WHEN

DELETE LC_CTYPE RESET WHENEVER

DENSE_RANK LEAVE RESIGNAL WHERE

DENSERANK LEFT RESTART WHILE

DESCRIBE LIKE RESTRICT WITH

DESCRIPTOR LINKTYPE RESULT WITHOUT

DETERMINISTIC LOCAL RESULT_SET_LOCATOR WLM

DIAGNOSTICS LOCALDATE RETURN WRITE

DISABLE LOCALE RETURNS XMLELEMENT

DISALLOW LOCALTIME REVOKE XMLEXISTS

DISCONNECT LOCALTIMESTAMP RIGHT XMLNAMESPACES

DISTINCT LOCATOR ROLE YEAR

DO LOCATORS ROLLBACK YEARS

The following list contains the ISO/ANSI SQL2003 reserved words that are not in

the previous list:

ABS GROUPING REGR_INTERCEPT

ARE INT REGR_R2

ARRAY INTEGER REGR_SLOPE

ASYMMETRIC INTERSECTION REGR_SXX

ATOMIC INTERVAL REGR_SXY

AVG LARGE REGR_SYY

BIGINT LEADING ROLLUP

BLOB LN SCOPE

BOOLEAN LOWER SIMILAR

BOTH MATCH SMALLINT

CEIL MAX SPECIFICTYPE

CEILING MEMBER SQLEXCEPTION

CHAR_LENGTH MERGE SQLSTATE

CHARACTER_LENGTH METHOD SQLWARNING

CLOB MIN SQRT

COALESCE MOD STDDEV_POP

COLLATE MODULE STDDEV_SAMP

COLLECT MULTISET SUBMULTISET

CONVERT NATIONAL SUM

CORR NATURAL SYMMETRIC

CORRESPONDING NCHAR TABLESAMPLE

COVAR_POP NCLOB TIMEZONE_HOUR

COVAR_SAMP NORMALIZE TIMEZONE_MINUTE

CUBE NULLIF TRAILING

CUME_DIST NUMERIC TRANSLATE

CURRENT_DEFAULT_TRANSFORM_GROUP OCTET_LENGTH TRANSLATION

CURRENT_ROLE ONLY TREAT

CURRENT_TRANSFORM_GROUP_FOR_TYPE OVERLAPS TRUE

DEC OVERLAY UESCAPE

DECIMAL PERCENT_RANK UNKNOWN

DEREF PERCENTILE_CONT UNNEST

ELEMENT PERCENTILE_DISC UPPER

EXEC POWER VAR_POP

EXP REAL VAR_SAMP

FALSE RECURSIVE VARCHAR

FILTER REF VARYING

FLOAT REGR_AVGX WIDTH_BUCKET

FLOOR REGR_AVGY WINDOW

FUSION REGR_COUNT WITHIN

Reserved schema names and reserved words

Appendix G. Reserved schema names and reserved words 699

Reserved schema names and reserved words

700 SQL Reference, Volume 1

Appendix H. Examples of interaction between triggers and

referential constraints

Update operations may cause the interaction of triggers with referential constraints

and check constraints.

Figure 19 and the associated description are representative of the processing that is

performed for an statement that updates data in the database.

Figure 19 shows the general order of processing for an statement that updates a

table. It assumes a situation where the table includes BEFORE triggers, referential

constraints, check constraints and AFTER triggers that cascade. The following is a

description of the boxes and other items found in Figure 19.

v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The

statement S1

identifies a table (or an updatable view over some table) referred to

as the subject table throughout this description.

v Determine set of affected rows

This step is the starting point for a process that repeats for referential constraint

delete rules of CASCADE and SET NULL and for cascaded statements from

AFTER triggers.

The purpose of this step is to determine the set of affected rows for the statement.

The set of rows included is based on the statement:

– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)

– for INSERT, the rows identified by the VALUES clause or the fullselect

– for UPDATE, all rows that satisfy the search condition (or the current row for

a positioned UPDATE).

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 19. Processing an statement with associated triggers and constraints

© Copyright IBM Corp. 1993, 2009 701

If the set of affected rows is empty, there will be no BEFORE triggers, changes to

apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers

All BEFORE triggers are processed in ascending order of creation. Each BEFORE

trigger will process the triggered action once for each row in the set of affected

rows.

An error may occur during the processing of a triggered action in which case all

changes made as a result of the original statement S1

(so far) are rolled back.

If there are no BEFORE triggers or the set of affected is empty, this step is

skipped.

v Apply the set of affected rows to the subject table

The actual delete, insert, or update is applied using the set of affected rows to

the subject table in the database.

An error may occur when applying the set of affected rows (such as attempting

to insert a row with a duplicate key where a unique index exists) in which case

all changes made as a result of the original statement S1

(so far) are rolled back.

v Apply Constraints

The constraints associated with the subject table are applied if set of affected

rows is not empty. This includes unique constraints, unique indexes, referential

constraints, check constraints and checks related to the WITH CHECK OPTION

on views. Referential constraints with delete rules of cascade or set null may

cause additional triggers to be activated.

A violation of any constraint or WITH CHECK OPTION results in an error and

all changes made as a result of S1

(so far) are rolled back.

v Process AFTER triggers

All AFTER triggers activated by S1

are processed in ascending order of creation.

FOR EACH STATEMENT triggers will process the triggered action exactly once,

even if the set of affected rows is empty. FOR EACH ROW triggers will process

the triggered action once for each row in the set of affected rows.

An error may occur during the processing of a triggered action in which case all

changes made as a result of the original S1

(so far) are rolled back.

The triggered action of a trigger may include triggered statements that are

DELETE, INSERT or UPDATE statements. For the purposes of this description,

each such statement is considered a cascaded statement.

A cascaded statement is a DELETE, INSERT, or UPDATE statement that is

processed as part of the triggered action of an AFTER trigger. This statement

starts a cascaded level of trigger processing. This can be thought of as assigning

the triggered statement as a new S1

and performing all of the steps described

here recursively.

Once all triggered statements from all AFTER triggers activated by each S1

have

been processed to completion, the processing of the original S1

is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results

in a roll back of all the changes made directly or indirectly as a result of the

original statement S1. The database is therefore back in the same state as

immediately prior to the execution of the original statement S1

Examples of interaction between triggers and referential constraints

702 SQL Reference, Volume 1

Appendix I. Explain tables

The Explain tables capture access plans when the Explain facility is activated. The

Explain tables must be created before Explain can be invoked. You can create them

using the documented table definitions, or you can create them by invoking the

sample command line processor (CLP) script provided in the EXPLAIN.DDL file

located in the misc subdirectory of the sqllib directory. To invoke the script,

connect to the database where the Explain tables are required, then issue the

command:

 db2 -tf EXPLAIN.DDL

The Explain facility uses the following IDs as the schema when qualifying Explain

tables that it is populating:

v The session authorization ID for dynamic SQL

v The statement authorization ID for static SQL

The schema can be associated with a set of Explain tables, or aliases that point to a

set of Explain tables under a different schema. If no Explain tables are found under

the schema, the Explain facility checks for Explain tables under the SYSTOOLS

schema and attempts to use those tables.

The population of the Explain tables by the Explain facility will not activate

triggers or referential or check constraints. For example, if an insert trigger were

defined on the EXPLAIN_INSTANCE table, and an eligible statement were

explained, the trigger would not be activated.

To improve the performance of the Explain facility in a partitioned database

system, it is recommended that the Explain tables be created in a single partition

database partition group, preferably on the same database partition to which you

will be connected when compiling the query.

ADVISE_INDEX table

The ADVISE_INDEX table represents the recommended indexes.

 Table 205. ADVISE_INDEX Table. PK means that the column is part of a primary key; FK means that the column is

part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic

statement was explained or name of the source

file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No No Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is

relevant.

STMTNO INTEGER No No Statement number within package to which this

explain information is related.

© Copyright IBM Corp. 1993, 2009 703

Table 205. ADVISE_INDEX Table (continued). PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SECTNO INTEGER No No Section number within package to which this

explain information is related.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.

For dynamic SQL statements (excluding the

EXPLAIN SQL statement) issued through CLP or

CLI, the default value is a sequentially

incremented value. Otherwise, the default value is

the value of STMTNO for static SQL statements

and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.

For dynamic SQL statements issued through CLP

(excluding the EXPLAIN SQL statement), the

default value is ’CLP’. For dynamic SQL

statements issued through CLI (excluding the

EXPLAIN SQL statement), the default value is

’CLI’. Otherwise, the default value used is blanks.

NAME VARCHAR(128) No No Name of the index.

CREATOR VARCHAR(128) No No Qualifier of the index name.

TBNAME VARCHAR(128) No No Name of the table or nickname on which the

index is defined.

TBCREATOR VARCHAR(128) No No Qualifier of the table name.

COLNAMES CLOB(2M) No No List of column names.

UNIQUERULE CHAR(1) No No Unique rule:

v D = Duplicates allowed

v P = Primary index

v U = Unique entries only allowed

COLCOUNT SMALLINT No No Number of columns in the key plus the number of

include columns if any.

IID SMALLINT No No Internal index ID.

NLEAF BIGINT No No Number of leaf pages; -1 if statistics are not

gathered.

NLEVELS SMALLINT No No Number of index levels; -1 if statistics are not

gathered.

FIRSTKEYCARD BIGINT No No Number of distinct first key values; -1 if statistics

are not gathered.

FULLKEYCARD BIGINT No No Number of distinct full key values; -1 if statistics

are not gathered.

CLUSTERRATIO SMALLINT No No Degree of data clustering with the index; -1 if

statistics are not gathered or if detailed index

statistics are gathered (in which case,

CLUSTERFACTOR will be used instead).

AVGPARTITION_

CLUSTERRATIO

SMALLINT No No Degree of data clustering within a single data

partition. -1 if the table is not table partitioned, if

statistics are not gathered, or if detailed statistics

are gathered (in which case

AVGPARTITION_CLUSTERFACTOR will be used

instead).

ADVISE_INDEX table

704 SQL Reference, Volume 1

Table 205. ADVISE_INDEX Table (continued). PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

AVGPARTITION_

CLUSTERFACTOR

DOUBLE No No Finer measurement of the degree of clustering

within a single data partition. -1 if the table is not

table partitioned, if statistics are not gathered, or

if the index is defined on a nickname.

AVGPARTITION_PAGE_

FETCH_PAIRS

VARCHAR(520) No No A list of paired integers in character form. Each

pair represents a potential buffer pool size and the

corresponding page fetches required to access a

single data partition from the table. Zero-length

string if no data is available, or if the table is not

table partitioned.

DATAPARTITION_

CLUSTERFACTOR

DOUBLE No No A statistic measuring the ″clustering″ of the index

keys with regard to data partitions. This field

holds a number between zero and one, with one

representing perfect clustering and zero

representing no clustering.

CLUSTERFACTOR DOUBLE No No Finer measurement of degree of clustering, or -1 if

detailed index statistics have not been gathered or

if the index is defined on a nickname.

USERDEFINED SMALLINT No No Defined by the user.

SYSTEM_REQUIRED SMALLINT No No v 1 if one or the other of the following conditions

is met:

– This index is required for a primary or

unique key constraint, or this index is a

dimension block index or composite block

index for a multi-dimensional clustering

(MDC) table.

– This is an index on the (OID) column of a

typed table.

v 2 if both of the following conditions are met:

– This index is required for a primary or

unique key constraint, or this index is a

dimension block index or composite block

index for an MDC table.

– This is an index on the (OID) column of a

typed table.

v 0 otherwise.

CREATE_TIME TIMESTAMP No No Time when the index was created.

STATS_TIME TIMESTAMP Yes No Last time when any change was made to recorded

statistics for this index. Null if no statistics

available.

PAGE_FETCH_PAIRS VARCHAR(520) No No A list of pairs of integers, represented in character

form. Each pair represents the number of pages in

a hypothetical buffer, and the number of page

fetches required to scan the table with this index

using that hypothetical buffer. (Zero-length string

if no data available.)

REMARKS VARCHAR(254) Yes No User-supplied comment, or null.

DEFINER VARCHAR(128) No No User who created the index.

CONVERTED CHAR(1) No No Reserved for future use.

ADVISE_INDEX table

Appendix I. Explain tables 705

Table 205. ADVISE_INDEX Table (continued). PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SEQUENTIAL_PAGES BIGINT No No Number of leaf pages located on disk in index key

order with few or no large gaps between them. (-1

if no statistics are available.)

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of

pages in the range of pages occupied by the

index, expressed as a percent (integer between 0

and 100, -1 if no statistics are available.)

FIRST2KEYCARD BIGINT No No Number of distinct keys using the first two

columns of the index (-1 if no statistics or

inapplicable)

FIRST3KEYCARD BIGINT No No Number of distinct keys using the first three

columns of the index (-1 if no statistics or

inapplicable)

FIRST4KEYCARD BIGINT No No Number of distinct keys using the first four

columns of the index (-1 if no statistics or

inapplicable)

PCTFREE SMALLINT No No Percentage of each index leaf page to be reserved

during initial building of the index. This space is

available for future inserts after the index is built.

UNIQUE_COLCOUNT SMALLINT No No The number of columns required for a unique key.

Always <=COLCOUNT. < COLCOUNT only if

there a include columns. -1 if index has no unique

key (permits duplicates)

MINPCTUSED SMALLINT No No If not zero, then online index defragmentation is

enabled, and the value is the threshold of

minimum used space before merging pages.

REVERSE_SCANS CHAR(1) No No v Y = Index supports reverse scans

v N = Index does not support reverse scans

USE_INDEX CHAR(1) Yes No v Y = index recommended or evaluated

v N = index not to be recommended

v R = an existing clustering RID index was

recommended (by the Design Advisor) to be

unclustered; this is the case when a new

clustering RID index is recommended for the

table

CREATION_TEXT CLOB(2M) No No The SQL statement used to create the index.

PACKED_DESC BLOB(1M) Yes No Internal description of the table.

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a

row in the ADVISE_INSTANCE table, linking it to

the same Design Advisor run.

INDEXTYPE VARCHAR(4) No No Type of index.

v CLUS = Clustering

v REG = Regular

v DIM = Dimension block index

v BLOK = Block index

EXISTS CHAR(1) No No Set to ’Y’ if the index exists in the database

catalog.

ADVISE_INDEX table

706 SQL Reference, Volume 1

Table 205. ADVISE_INDEX Table (continued). PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

RIDTOBLOCK CHAR(1) No No Set to ’Y’ if the RID index was used to make a

block index in the Design Advisor.

ADVISE_INSTANCE table

The ADVISE_INSTANCE table contains information about db2advis execution,

including start time. Contains one row for each execution of db2advis. Other

ADVISE tables have a foreign key (RUN_ID) that links to the START_TIME

column of the ADVISE_INSTANCE table for rows created during the same Design

Advisor run.

 Table 206. ADVISE_INSTANCE Table. PK means that the column is part of a primary key; FK means that the column

is part of a foreign key.

Column Name Data Type Nullable? Key? Description

START_TIME TIMESTAMP No PK Time at which db2advis execution begins.

END_TIME TIMESTAMP No No Time at which db2advis execution ends.

MODE VARCHAR(4) No No The value that was specified with the -m option

on the Design Advisor; for example, ’MC’ to

specify MQT and MDC.

WKLD_COMPRESSION CHAR(4) No No The workload compression under which the

Design Advisor was run.

STATUS CHAR(9) No No The status of a Design Advisor run. Status can be

’STARTED’, ’COMPLETED’ (if successful), or an

error number that is prefixed by ’EI’ for internal

errors or ’EX’ for external errors, in which case the

error number represents the SQLCODE.

ADVISE_MQT table

The ADVISE_MQT table contains information about materialized query tables

(MQT) recommended by the Design Advisor.

 Table 207. ADVISE_MQT Table. PK means that the column is part of a primary key; FK means that the column is part

of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No No Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is

relevant.

ADVISE_INDEX table

Appendix I. Explain tables 707

Table 207. ADVISE_MQT Table (continued). PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

STMTNO INTEGER No No Statement number within package to which this

Explain information is related.

SECTNO INTEGER No No Statement number within package to which this

Explain information is related.

NAME VARCHAR(128) No No MQT name.

CREATOR VARCHAR(128) No No MQT creator name.

IID SMALLINT No No Internal identifier.

CREATE_TIME TIMESTAMP No No Time at which the MQT was created.

STATS_TIME TIMESTAMP Yes No Time at which statistics were taken.

NUMROWS DOUBLE No No The number of estimated rows in the MQT.

NUMCOLS SMALLINT No No Number of columns defined in the MQT.

ROWSIZE DOUBLE No No Average length (in bytes) of a row in the MQT.

BENEFIT FLOAT No No Reserved for future use.

USE_MQT CHAR(1) Yes No Set to ’Y’ when the MQT is recommended.

MQT_SOURCE CHAR(1) Yes No Indicates where the MQT candidate was

generated. Set to ’I’ if the MQT candidate is a

refresh-immediate MQT, or ’D’ if it can only be

created as a full refresh-deferred MQT.

QUERY_TEXT CLOB(2M) No No Contains the query that defines the MQT.

CREATION_TEXT CLOB(2M) No No Contains the CREATE TABLE DDL for the MQT.

SAMPLE_TEXT CLOB(2M) No No Contains the sampling query that is used to get

detailed statistics for the MQT. Only used when

detailed statistics are required for the Design

Advisor. The resulting sampled statistics will be

shown in this table. If null, then no sampling

query was created for this MQT.

COLSTATS CLOB(2M) No No Contains the column statistics for the MQT (if not

null). These statistics are in XML format and

include the column name, column cardinality and,

optionally, the HIGH2KEY and LOW2KEY values.

EXTRA_INFO BLOB(2M) No No Reserved for miscellaneous output.

TBSPACE VARCHAR(128) No No The table space that is recommended for the MQT.

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a

row in the ADVISE_INSTANCE table, linking it to

the same Design Advisor run.

REFRESH_TYPE CHAR(1) No No Set to ’I’ for immediate or ’D’ for deferred.

EXISTS CHAR(1) No No Set to ’Y’ if the MQT exists in the database

catalog.

ADVISE_PARTITION table

The ADVISE_PARTITION table contains information about database partitions

recommended by the Design Advisor, and can only be populated in a partitioned

database environment.

ADVISE_MQT table

708 SQL Reference, Volume 1

Table 208. ADVISE_PARTITION Table. PK means that the column is part of a primary key; FK means that the column

is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No No Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No No Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No No Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No No Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No No Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No No Level of Explain information for which this row is

relevant.

STMTNO INTEGER No No Statement number within package to which this

Explain information is related.

SECTNO INTEGER No No Statement number within package to which this

Explain information is related.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.

For dynamic SQL statements (excluding the

EXPLAIN SQL statement) issued through CLP or

CLI, the default value is a sequentially

incremented value. Otherwise, the default value is

the value of STMTNO for static SQL statements

and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.

For dynamic SQL statements issued through CLP

(excluding the EXPLAIN SQL statement), the

default value is ’CLP’. For dynamic SQL

statements issued through CLI (excluding the

EXPLAIN SQL statement), the default value is

’CLI’. Otherwise, the default value used is blanks.

TBNAME VARCHAR(128) Yes No Specifies the table name.

TBCREATOR VARCHAR(128) Yes No Specifies the table creator name.

PMID SMALLINT Yes No Specifies the distribution map ID.

TBSPACE VARCHAR(128) Yes No Specifies the table space in which the table

resides.

COLNAMES CLOB(2M) Yes No Specifies database partition column names,

separated by commas.

COLCOUNT SMALLINT Yes No Specifies the number of database partitioning

columns.

REPLICATE CHAR(1) Yes No Specifies whether or not the database partition is

replicated.

COST DOUBLE Yes No Specifies the cost of using the database partition.

USEIT CHAR(1) Yes No Specifies whether or not the database partition is

used in EVALUATE PARTITION mode. A

database partition is used if USEIT is set to ’Y’ or

’y’.

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a

row in the ADVISE_INSTANCE table, linking it to

the same Design Advisor run.

ADVISE_PARTITION table

Appendix I. Explain tables 709

ADVISE_TABLE table

The ADVISE_TABLE table stores the data definition language (DDL) for table

creation, using the final Design Advisor recommendations for materialized query

tables (MQTs), multidimensional clustered tables (MDCs), and database

partitioning.

 Table 209. ADVISE_TABLE Table. PK means that the column is part of a primary key; FK means that the column is

part of a foreign key.

Column Name Data Type Nullable? Key? Description

RUN_ID TIMESTAMP Yes FK A value corresponding to the START_TIME of a

row in the ADVISE_INSTANCE table, linking it to

the same Design Advisor run.

TABLE_NAME VARCHAR(128) No No Name of the table.

TABLE_SCHEMA VARCHAR(128) No No Name of the table creator.

TABLESPACE VARCHAR(128) No No The table space in which the table is to be created.

SELECTION_FLAG VARCHAR(4) No No Indicates the recommendation type. Valid values

are ’M’ for MQT, ’P’ for database partitioning, and

’C’ for MDC. This field can include any subset of

these values. For example, ’MC’ indicates that the

table is recommended as an MQT and an MDC

table.

TABLE_EXISTS CHAR(1) No No Set to ’Y’ if the table exists in the database catalog.

USE_TABLE CHAR(1) No No Set to ’Y’ if the table has recommendations from

the Design Advisor.

GEN_COLUMNS CLOB(2M) No No Contains a generated columns string if this row

includes an MDC recommendation that requires

generated columns in the create table DDL.

ORGANIZE_BY CLOB(2M) No No For MDC recommendations, contains the

ORGANIZE BY clause of the create table DDL.

CREATION_TEXT CLOB(2M) No No Contains the create table DDL.

ALTER_COMMAND CLOB(2M) No No Contains an ALTER TABLE statement for the

table.

ADVISE_WORKLOAD table

The ADVISE_WORKLOAD table represents the statement that makes up the

workload.

 Table 210. ADVISE_WORKLOAD Table. PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

WORKLOAD_NAME CHAR(128) No No Name of the collection of SQL statements

(workload) to which this statement belongs.

STATEMENT_NO INTEGER No No Statement number within the workload to which

this explain information is related.

STATEMENT_TEXT CLOB(1M) No No Content of the SQL statement.

STATEMENT_TAG VARCHAR(256) No No Identifier tag for each explained SQL statement.

FREQUENCY INTEGER No No The number of times this statement appears

within the workload.

ADVISE_TABLE table

710 SQL Reference, Volume 1

Table 210. ADVISE_WORKLOAD Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

IMPORTANCE DOUBLE No No Importance of the statement.

WEIGHT DOUBLE No No Priority of the statement.

COST_BEFORE DOUBLE Yes No The cost of the query (in timerons) if the

recommendations are not created.

COST_AFTER DOUBLE Yes No The cost of the query (in timerons) if the

recommendations are created. COST_AFTER

reflects all recommendations except those that

pertain to clustered indexes and multidimensional

clustering (MDC).

COMPILABLE CHAR(17) Yes No Indicates any query compile errors that occured

while trying to prepare the statement. If this

column is NULL or does not start with SQLCA,

the SQL query could be compiled by db2advis. If

a compile error is found by db2advis or the

Design Advisor, the COMPILABLE column value

consists of an 8 byte long SQLCA.sqlcaid field,

followed by a colon (:) and an 8 byte long

SQLCA.sqlstate field, which is the return code for

the SQL statement.

EXPLAIN_ARGUMENT table

The EXPLAIN_ARGUMENT table represents the unique characteristics for each

individual operator, if there are any.

 Table 211. EXPLAIN_ARGUMENT Table. PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the

dynamic statement was explained or name of

the source file when static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain

request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row

is relevant.

STMTNO INTEGER No FK Statement number within package to which this

Explain information is related.

SECTNO INTEGER No FK Section number within package to which this

Explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

ARGUMENT_TYPE CHAR(8) No No The type of argument for this operator.

ADVISE_WORKLOAD table

Appendix I. Explain tables 711

Table 211. EXPLAIN_ARGUMENT Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

ARGUMENT_VALUE VARCHAR(1024) Yes No The value of the argument for this operator.

NULL if the value is in

LONG_ARGUMENT_VALUE.

LONG_ARGUMENT_

VALUE

CLOB(2M) Yes No The value of the argument for this operator,

when the text will not fit in

ARGUMENT_VALUE. NULL if the value is in

ARGUMENT_VALUE.

 Table 212. ARGUMENT_TYPE and ARGUMENT_VALUE column values

ARGUMENT_TYPE

Value Possible ARGUMENT_VALUE Values Description

AGGMODE

 COMPLETE

PARTIAL

INTERMEDIATE

FINAL

Partial aggregation indicators.

BITFLTR

 INTEGER

FALSE

Size of bit filter used by hash join.

BLD_LEVEL DB2 Build Identifier Internal identification string for source code

version.

BLKLOCK

 EXCLUSIVE

INTENT EXCLUSIVE

INTENT SHARE

NONE

SHARE

UPDATE

Block level lock intent.

CSERQY

 TRUE

FALSE

Remote query is a common subexpression.

CSETEMP

 TRUE

FALSE

Temporary Table over Common

Subexpression Flag.

DIRECT

 TRUE

Direct fetch indicator.

DPESTFLG

 TRUE

FALSE

Indicates whether or not the DPNUMPRT

value is based on an estimate. Possible values

are ’TRUE’ (DPNUMPRT represents the

estimated number of accessed data partitions)

or ’FALSE’ (DPNUMPRT represents the

actual number of accessed data partitions).

DPLSTPRT

 NONE

CHARACTER

Represents accessed data partitions. It is a

comma-delimited list (for example: 1,3,5) or a

hyphenated list (for example: 1-5) of accessed

data partitions. A value of ’NONE’ means

that no data partition remains after specified

predicates have been applied.

DPNUMPRT

 INTEGER

Represents the actual or estimated number of

data partitions accessed.

EXPLAIN_ARGUMENT table

712 SQL Reference, Volume 1

Table 212. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE

Value Possible ARGUMENT_VALUE Values Description

DSTSEVER Server name Destination (ship from) server.

DUPLWARN

 TRUE

FALSE

Duplicates Warning flag.

EARLYOUT

 LEFT

RIGHT

GROUPBY

NONE

Early out indicator. LEFT indicates that each

row from the outer table only needs to be

joined with at most one row from the inner

table. RIGHT indicates that each row from

the inner table only needs to be joined with

at most one row from the outer table. NONE

indicates no early out processing. GROUPBY

indicates that early out processing is allowed

because of a group by operation.

ENVVAR Each row of this type will contain:

v Environment variable name

v Environment variable value

Environment variable affecting the optimizer

ERRTOL Each row of this type will contain an

SQLSTATE and SQLCODE pair.

A list of errors to be tolerated.

FETCHMAX

 IGNORE

INTEGER

Override value for MAXPAGES argument on

FETCH operator.

GREEDY TRUE Indicates optimizer used greedy algorithm to

plan access.

GLOBLOCK

 EXCLUSIVE

INTENT EXCLUSIVE

INTENT NONE

INTENT SHARE

NO LOCK OBTAINED

SHARE

SHARE INTENT EXCLUSIVE

SUPER EXCLUSIVE

UPDATE

Represents global lock intent information for

a partitioned table object.

GROUPBYC

 TRUE

FALSE

Whether Group By columns were provided.

GROUPBYN Integer Number of comparison columns.

GROUPBYR Each row of this type will contain:

v Ordinal value of column in group by

clause (followed by a colon and a space)

v Name of column

Group By requirement.

HASHCODE

 24

32

Size (in bits) of hash code used for hash join.

EXPLAIN_ARGUMENT table

Appendix I. Explain tables 713

Table 212. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE

Value Possible ARGUMENT_VALUE Values Description

INNERCOL Each row of this type will contain:

v Ordinal value of column in order (followed

by a colon and a space)

v Name of column

v Order value

(A) Ascending

(D) Descending

Inner order columns.

INPUTXID A context node identifier INPUTXID identifies the input context node

used by the XSCAN operator.

ISCANMAX

 IGNORE

INTEGER

Override value for MAXPAGES argument on

ISCAN operator.

JN INPUT

 INNER

OUTER

Indicates if operator is the operator feeding

the inner or outer of a join.

LISTENER

 TRUE

FALSE

Listener Table Queue indicator.

MAXPAGES

 ALL

NONE

INTEGER

Maximum pages expected for Prefetch.

MAXRIDS

 NONE

INTEGER

Maximum Row Identifiers to be included in

each list prefetch request.

NUMROWS

 INTEGER

Number of rows expected to be sorted.

ONEFETCH

 TRUE

FALSE

One Fetch indicator.

OUTERCOL Each row of this type will contain:

v Ordinal value of column in order (followed

by a colon and a space)

v Name of column

v Order value

(A) Ascending

(D) Descending

Outer order columns.

OUTERJN

 LEFT

RIGHT

FULL

LEFT (ANTI)

RIGHT (ANTI)

Outer join indicator.

PARTCOLS Name of Column Partitioning columns for operator.

EXPLAIN_ARGUMENT table

714 SQL Reference, Volume 1

Table 212. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE

Value Possible ARGUMENT_VALUE Values Description

PREFETCH

 LIST

NONE

SEQUENTIAL

Type of Prefetch Eligible.

REOPT

 ALWAYS

ONCE

The statement is optimized using bind-in

values for parameter markers, host variables,

and special registers.

RMTQTEXT Query text Remote Query Text

RNG_PROD Function name Range producing function for extended index

access.

ROWLOCK

 EXCLUSIVE

NONE

REUSE

SHARE

SHORT (INSTANT) SHARE

UPDATE

Row Lock Intent.

ROWWIDTH INTEGER Width of row to be sorted.

RSUFFIX Query text Remote SQL suffix.

SCANDIR

 FORWARD

REVERSE

Scan Direction.

SCANGRAN INTEGER Intra-partition parallelism, granularity of the

intra-partition parallel scan, expressed in

SCANUNITs.

SCANTYPE LOCAL PARALLEL intra-partition parallelism, Index or Table

scan.

SCANUNIT

 ROW

PAGE

Intra-partition parallelism, scan granularity

unit.

SHARED TRUE Intra-partition parallelism, shared TEMP

indicator.

SLOWMAT

 TRUE

FALSE

Slow Materialization flag.

SNGLPROD

 TRUE

FALSE

Intra-partition parallelism sort or temp

produced by a single agent.

SORTKEY Each row of this type will contain:

v Ordinal value of column in key (followed

by a colon and a space)

v Name of column

v Order value

(A) Ascending

(D) Descending

Sort key columns.

EXPLAIN_ARGUMENT table

Appendix I. Explain tables 715

Table 212. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE

Value Possible ARGUMENT_VALUE Values Description

SORTTYPE

 PARTITIONED

SHARED

ROUND ROBIN

REPLICATED

Intra-partition parallelism, sort type.

SRCSEVER Server name Source (ship to) server.

SPILLED

 INTEGER

Estimated number of pages in SORT spill.

SQLCA

 Warning information

Warnings and reason codes issued during

Explain operation.

STMTHEAP

 INTEGER

Size of statement heap at start of statement

compile.

STREAM

 TRUE

FALSE

Remote source is streaming.

TABLOCK

 EXCLUSIVE

INTENT EXCLUSIVE

INTENT NONE

INTENT SHARE

REUSE

SHARE

SHARE INTENT EXCLUSIVE

SUPER EXCLUSIVE

UPDATE

Table Lock Intent.

TEMPSIZE INTEGER Temporary table page size.

TQDEGREE INTEGER Intra-partition parallelism, number of

subagents accessing Table Queue.

TQMERGE

 TRUE

FALSE

Merging (sorted) Table Queue indicator.

TQREAD

 READ AHEAD

STEPPING

SUBQUERY STEPPING

Table Queue reading property.

TQSEND

 BROADCAST

DIRECTED

SCATTER

SUBQUERY DIRECTED

Table Queue send property.

TQ TYPE LOCAL Intra-partition parallelism, Table Queue.

TQ_ORIGIN ASYNCHRONY The reason that Table Queue was introduced

into the access plan.

EXPLAIN_ARGUMENT table

716 SQL Reference, Volume 1

Table 212. ARGUMENT_TYPE and ARGUMENT_VALUE column values (continued)

ARGUMENT_TYPE

Value Possible ARGUMENT_VALUE Values Description

TRUNCTQ INPUT

OUTPUT

INPUT AND OUTPUT

Truncated Table Queue indicator. INPUT

indicates that truncation occurs on input to

the Table Queue. OUPUT indicates that

truncation occurs on output from the Table

Queue. INPUT and OUTPUT indicates that

truncation occurs on both input to the Table

Queue and on output from the Table Queue.

TRUNCSRT TRUE Truncated sort (limits number of rows

produced).

UNIQUE

 TRUE

FALSE

Uniqueness indicator.

UNIQKEY Each row of this type will contain:

v Ordinal value of column in key (followed

by a colon and a space)

v Name of Column

Unique key columns.

VOLATILE TRUE Volatile table

XDFOUT DECIMAL XDFOUT indicates the expected number of

documents to be returned by the XISCAN

operator for each context node.

XLOGID An identifier consisting of an SQL schema

name and the name of an index over XML

data

XLOGID identifies the index over XML data

chosen by the optimizer for the XISCAN

operator.

XPATH An XPATH expression and result set in an

internal format

This argument indicates the evaluation of an

XPATH expression by the XSCAN operator.

XPHYID An identifier consisting of an SQL schema

name and the name of a physical index over

XML data

XPHYID identifies the physical index that is

associated with an index over XML data used

by the XISCAN operator.

EXPLAIN_DIAGNOSTIC table

The EXPLAIN_DIAGNOSTIC table contains an entry for each diagnostic message

produced for a particular instance of an explained statement in the

EXPLAIN_STATEMENT table.

The EXPLAIN_GET_MSGS table function queries the EXPLAIN_DIAGNOSTIC and

EXPLAIN_DIAGNOSTIC_DATA Explain tables and returns formatted messages.

 Table 213. EXPLAIN_DIAGNOSTIC Table. PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,

FK

Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No PK,

FK

Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK,

FK

Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

EXPLAIN_ARGUMENT table

Appendix I. Explain tables 717

Table 213. EXPLAIN_DIAGNOSTIC Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SOURCE_SCHEMA VARCHAR(128) No PK,

FK

Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No PK,

FK

Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No PK,

FK

Level of Explain information for which this row is

relevant. Valid values are:

O Original text (as entered by user)

P PLAN SELECTION

STMTNO INTEGER No PK,

FK

Statement number within package to which this

Explain information is related. Set to 1 for

dynamic Explain SQL statements. For static SQL

statements, this value is the same as the value

used for the SYSCAT.STATEMENTS system

catalog view.

SECTNO INTEGER No PK,

FK

Section number within package that contains this

SQL statement. For dynamic Explain SQL

statements, this is the section number used to

hold the section for this statement at run time.

For static SQL statements, this value is the same

as the value used for the SYSCAT.STATEMENTS

system catalog view.

DIAGNOSTIC_ID INTEGER No PK ID of the diagnostic for a particular instance of a

statement in the EXPLAIN_STATEMENT table.

CODE INTEGER No No A unique number assigned to each diagnostic

message. The number can be used by a message

API to retrieve the full text of the diagnostic

message.

EXPLAIN_DIAGNOSTIC_DATA table

The EXPLAIN_DIAGNOSTIC_DATA table contains message tokens for specific

diagnostic messages that are recorded in the EXPLAIN_DIAGNOSTIC table. The

message tokens provide additional information that is specific to the execution of

the SQL statement that generated the message.

The EXPLAIN_GET_MSGS table function queries the EXPLAIN_DIAGNOSTIC and

EXPLAIN_DIAGNOSTIC_DATA Explain tables, and returns formatted messages.

 Table 214. EXPLAIN_DIAGNOSTIC_DATA Table. PK means that the column is part of a primary key; FK means that

the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

EXPLAIN_DIAGNOSTIC table

718 SQL Reference, Volume 1

Table 214. EXPLAIN_DIAGNOSTIC_DATA Table (continued). PK means that the column is part of a primary key; FK

means that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is

relevant. Valid values are:

O Original text (as entered by user)

P PLAN SELECTION

STMTNO INTEGER No FK Statement number within package to which this

Explain information is related. Set to 1 for

dynamic Explain SQL statements. For static SQL

statements, this value is the same as the value

used for the SYSCAT.STATEMENTS system

catalog view.

SECTNO INTEGER No FK Section number within package that contains this

SQL statement. For dynamic Explain SQL

statements, this is the section number used to

hold the section for this statement at run time.

For static SQL statements, this value is the same

as the value used for the SYSCAT.STATEMENTS

system catalog view.

DIAGNOSTIC_ID INTEGER No PK ID of the diagnostic for a particular instance of a

statement in the EXPLAIN_STATEMENT table.

ORDINAL INTEGER No No Position of token in the full message text.

TOKEN VARCHAR(1000) Yes No Message token to be inserted into the full

message text; might be truncated.

TOKEN_LONG BLOB(3M) Yes No More detailed information, if available.

EXPLAIN_INSTANCE table

The EXPLAIN_INSTANCE table is the main control table for all Explain

information. Each row of data in the Explain tables is explicitly linked to one

unique row in this table. The EXPLAIN_INSTANCE table gives basic information

about the source of the SQL statements being explained as well as information

about the environment in which the explanation took place.

 Table 215. EXPLAIN_INSTANCE Table. PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No PK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No PK Version of the source of the Explain request.

EXPLAIN_DIAGNOSTIC_DATA table

Appendix I. Explain tables 719

Table 215. EXPLAIN_INSTANCE Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_OPTION CHAR(1) No No Indicates what Explain Information was requested

for this request.

Possible values are:

P PLAN SELECTION

SNAPSHOT_TAKEN CHAR(1) No No Indicates whether an Explain Snapshot was taken

for this request.

Possible values are:

Y Yes, an Explain Snapshot(s) was taken

and stored in the

EXPLAIN_STATEMENT table. Regular

Explain information was also captured.

N No Explain Snapshot was taken. Regular

Explain information was captured.

O Only an Explain Snapshot was taken.

Regular Explain information was not

captured.

DB2_VERSION CHAR(7) No No Release number for the DB2 product that

processed this explain request. Format is vv.rr.m,

where:

vv Version number

rr Release number

m Maintenance release number

SQL_TYPE CHAR(1) No No Indicates whether the Explain Instance was for

static or dynamic SQL.

Possible values are:

S Static SQL

D Dynamic SQL

QUERYOPT INTEGER No No Indicates the query optimization class used by the

SQL Compiler at the time of the Explain

invocation. The value indicates what level of

query optimization was performed by the SQL

Compiler for the SQL statements being explained.

BLOCK CHAR(1) No No Indicates what type of cursor blocking was used

when compiling the SQL statements. For more

information, see the BLOCK column in

SYSCAT.PACKAGES.

Possible values are:

N No Blocking

U Block Unambiguous Cursors

B Block All Cursors

EXPLAIN_INSTANCE table

720 SQL Reference, Volume 1

Table 215. EXPLAIN_INSTANCE Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

ISOLATION CHAR(2) No No Indicates what type of isolation was used when

compiling the SQL statements. For more

information, see the ISOLATION column in

SYSCAT.PACKAGES.

Possible values are:

RR Repeatable Read

RS Read Stability

CS Cursor Stability

UR Uncommitted Read

BUFFPAGE INTEGER No No Contains the value of the BUFFPAGE database

configuration setting at the time of the Explain

invocation.

AVG_APPLS INTEGER No No Contains the value of the avg_appls configuration

parameter at the time of the Explain invocation.

SORTHEAP INTEGER No No Contains the value of the sortheap database

configuration parameter at the time of the Explain

invocation.

LOCKLIST INTEGER No No Contains the value of the locklist database

configuration parameter at the time of the Explain

invocation.

MAXLOCKS SMALLINT No No Contains the value of the maxlocks database

configuration parameter at the time of the Explain

invocation.

LOCKS_AVAIL INTEGER No No Contains the number of locks assumed to be

available by the optimizer for each user. (Derived

from locklist and maxlocks.)

CPU_SPEED DOUBLE No No Contains the value of the cpuspeed database

manager configuration parameter at the time of

the Explain invocation.

REMARKS VARCHAR(254) Yes No User-provided comment.

DBHEAP INTEGER No No Contains the value of the dbheap database

configuration parameter at the time of Explain

invocation.

COMM_SPEED DOUBLE No No Contains the value of the comm_bandwidth

database configuration parameter at the time of

Explain invocation.

PARALLELISM CHAR(2) No No

Possible values are:

v N = No parallelism

v P = Intra-partition parallelism

v IP = Inter-partition parallelism

v BP = Intra-partition parallelism and

inter-partition parallelism

DATAJOINER CHAR(1) No No

Possible values are:

v N = Non-federated systems plan

v Y = Federated systems plan

EXPLAIN_INSTANCE table

Appendix I. Explain tables 721

EXPLAIN_OBJECT table

The EXPLAIN_OBJECT table identifies those data objects required by the access

plan generated to satisfy the SQL statement.

 Table 216. EXPLAIN_OBJECT Table. PK means that the column is part of a primary key; FK means that the column

is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is

relevant.

STMTNO INTEGER No FK Statement number within package to which this

explain information is related.

SECTNO INTEGER No FK Section number within package to which this

explain information is related.

OBJECT_SCHEMA VARCHAR(128) No No Schema to which this object belongs.

OBJECT_NAME VARCHAR(128) No No Name of the object.

OBJECT_TYPE CHAR(2) No No Descriptive label for the type of object.

CREATE_TIME TIMESTAMP Yes No Time of Object’s creation; null if a table function.

STATISTICS_TIME TIMESTAMP Yes No Last time of update to statistics for this object;

null if statistics do not exist for this object.

COLUMN_COUNT SMALLINT No No Number of columns in this object.

ROW_COUNT INTEGER No No Estimated number of rows in this object.

WIDTH INTEGER No No The average width of the object in bytes. Set to -1

for an index.

PAGES BIGINT No No Estimated number of pages that the object

occupies in the buffer pool. Set to -1 for a table

function.

DISTINCT CHAR(1) No No Indicates whether the rows in the object are

distinct (that is, whether there are duplicates).

Possible values are:

Y Yes

N No

TABLESPACE_NAME VARCHAR(128) Yes No Name of the table space in which this object is

stored; set to null if no table space is involved.

EXPLAIN_INSTANCE table

722 SQL Reference, Volume 1

Table 216. EXPLAIN_OBJECT Table (continued). PK means that the column is part of a primary key; FK means that

the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

OVERHEAD DOUBLE No No Total estimated overhead, in milliseconds, for a

single random I/O to the specified table space.

Includes controller overhead, disk seek, and

latency times. Set to -1 if no table space is

involved.

TRANSFER_RATE DOUBLE No No Estimated time to read a data page, in

milliseconds, from the specified table space. Set to

-1 if no table space is involved.

PREFETCHSIZE INTEGER No No Number of data pages to be read when prefetch is

performed. Set to -1 for a table function.

EXTENTSIZE INTEGER No No Size of extent, in data pages. This many pages are

written to one container in the table space before

switching to the next container. Set to -1 for a

table function.

CLUSTER DOUBLE No No Degree of data clustering with the index. If >= 1,

this is the CLUSTERRATIO. If >= 0 and < 1, this

is the CLUSTERFACTOR. Set to -1 for a table,

table function, or if this statistic is not available.

NLEAF BIGINT No No Number of leaf pages this index object’s values

occupy. Set to -1 for a table, table function, or if

this statistic is not available.

NLEVELS INTEGER No No Number of index levels in this index object’s tree.

Set to -1 for a table, table function, or if this

statistic is not available.

FULLKEYCARD BIGINT No No Number of distinct full key values contained in

this index object. Set to -1 for a table, table

function, or if this statistic is not available.

OVERFLOW BIGINT No No Total number of overflow records in the table. Set

to -1 for an index, table function, or if this statistic

is not available.

FIRSTKEYCARD BIGINT No No Number of distinct first key values. Set to -1 for a

table, table function, or if this statistic is not

available.

FIRST2KEYCARD BIGINT No No Number of distinct first key values using the first

{2,3,4} columns of the index. Set to -1 for a table,

table function, or if this statistic is not available.

FIRST3KEYCARD BIGINT No No

FIRST4KEYCARD BIGINT No No

SEQUENTIAL_PAGES BIGINT No No Number of leaf pages located on disk in index key

order with few or no large gaps between them.

Set to -1 for a table, table function, or if this

statistic is not available.

DENSITY INTEGER No No Ratio of SEQUENTIAL_PAGES to number of

pages in the range of pages occupied by the

index, expressed as a percentage (integer between

0 and 100). Set to -1 for a table, table function, or

if this statistic is not available.

STATS_SRC CHAR(1) No No Indicates the source for the statistics. Set to 1 if

from single node.

AVERAGE_SEQUENCE_

GAP

DOUBLE No No Gap between sequences.

EXPLAIN_OBJECT table

Appendix I. Explain tables 723

Table 216. EXPLAIN_OBJECT Table (continued). PK means that the column is part of a primary key; FK means that

the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

AVERAGE_SEQUENCE_

FETCH_GAP

DOUBLE No No Gap between sequences when fetching using the

index.

AVERAGE_SEQUENCE_

PAGES

DOUBLE No No Average number of index pages accessible in

sequence.

AVERAGE_SEQUENCE_

FETCH_PAGES

DOUBLE No No Average number of table pages accessible in

sequence when fetching using the index.

AVERAGE_RANDOM_

PAGES

DOUBLE No No Average number of random index pages between

sequential page accesses.

AVERAGE_RANDOM_

FETCH_PAGES

DOUBLE No No Average number of random table pages between

sequential page accesses when fetching using the

index.

NUMRIDS BIGINT No No Total number of row identifiers in the index.

NUMRIDS_DELETED BIGINT No No Total number of psuedo-deleted row identifiers in

the index.

NUM_EMPTY_LEAFS BIGINT No No Total number of empty leaf pages in the index.

ACTIVE_BLOCKS BIGINT No No Total number of active multidimensional

clustering (MDC) blocks in the table.

NUM_DATA_PART INTEGER No No Number of data partitions for a partitioned table.

Set to 1 if the table is not partitioned.

 Table 217. Possible OBJECT_TYPE Values

Value Description

IX Index

NK Nickname

RX RCT Index

DP_TABLE Data partitioned table

TA Table

TF Table Function

+A Compiler-referenced Alias

+C Compiler-referenced Constraint

+F Compiler-referenced Function

+G Compiler-referenced Trigger

+N Compiler-referenced Nickname

+T Compiler-referenced Table

+V Compiler-referenced View

EXPLAIN_OPERATOR table

The EXPLAIN_OPERATOR table contains all the operators needed to satisfy the

query statement by the query compiler.

EXPLAIN_OBJECT table

724 SQL Reference, Volume 1

Table 218. EXPLAIN_OPERATOR Table. PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is

relevant.

STMTNO INTEGER No FK Statement number within package to which this

explain information is related.

SECTNO INTEGER No FK Section number within package to which this

explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

OPERATOR_TYPE CHAR(6) No No Descriptive label for the type of operator.

TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of

executing the chosen access plan up to and

including this operator.

IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page

I/Os) of executing the chosen access plan up to

and including this operator.

CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of

executing the chosen access plan up to and

including this operator.

FIRST_ROW_COST DOUBLE No No Estimated cumulative cost (in timerons) of

fetching the first row for the access plan up to

and including this operator. This value includes

any initial overhead required.

RE_TOTAL_COST DOUBLE No No Estimated cumulative cost (in timerons) of

fetching the next row for the chosen access plan

up to and including this operator.

RE_IO_COST DOUBLE No No Estimated cumulative I/O cost (in data page

I/Os) of fetching the next row for the chosen

access plan up to and including this operator.

RE_CPU_COST DOUBLE No No Estimated cumulative CPU cost (in instructions) of

fetching the next row for the chosen access plan

up to and including this operator.

COMM_COST DOUBLE No No Estimated cumulative communication cost (in

TCP/IP frames) of executing the chosen access

plan up to and including this operator.

FIRST_COMM_COST DOUBLE No No Estimated cumulative communications cost (in

TCP/IP frames) of fetching the first row for the

chosen access plan up to and including this

operator. This value includes any initial overhead

required.

BUFFERS DOUBLE No No Estimated buffer requirements for this operator

and its inputs.

EXPLAIN_OPERATOR table

Appendix I. Explain tables 725

Table 218. EXPLAIN_OPERATOR Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

REMOTE_TOTAL_COST DOUBLE No No Estimated cumulative total cost (in timerons) of

performing operation(s) on remote database(s).

REMOTE_COMM_COST DOUBLE No No Estimated cumulative communication cost of

executing the chosen remote access plan up to and

including this operator.

 Table 219. OPERATOR_TYPE values

Value Description

DELETE Delete

EISCAN Extended Index Scan

FETCH Fetch

FILTER Filter rows

GENROW Generate Row

GRPBY Group By

HSJOIN Hash Join

INSERT Insert

IXAND Dynamic Bitmap Index ANDing

IXSCAN Relational index scan

MSJOIN Merge Scan Join

NLJOIN Nested loop Join

RETURN Result

RIDSCN Row Identifier (RID) Scan

RPD Remote PushDown

SHIP Ship query to remote system

SORT Sort

TBSCAN Table Scan

TEMP Temporary Table Construction

TQ Table Queue

UNION Union

UNIQUE Duplicate Elimination

UPDATE Update

XISCAN Index scan over XML data

XSCAN XML document navigation scan

XANDOR Index ANDing and ORing over XML data

EXPLAIN_PREDICATE table

The EXPLAIN_PREDICATE table identifies which predicates are applied by a

specific operator.

EXPLAIN_OPERATOR table

726 SQL Reference, Volume 1

Table 220. EXPLAIN_PREDICATE Table. PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is

relevant.

STMTNO INTEGER No FK Statement number within package to which this

explain information is related.

SECTNO INTEGER No FK Section number within package to which this

explain information is related.

OPERATOR_ID INTEGER No No Unique ID for this operator within this query.

PREDICATE_ID INTEGER No No Unique ID for this predicate for the specified

operator.

A value of ″-1″ is shown for operator predicates

constructed by the Explain tool which are not

optimizer objects and do not exist in the optimizer

plan.

HOW_APPLIED CHAR(10) No No How predicate is being used by the specified

operator.

WHEN_EVALUATED CHAR(3) No No Indicates when the subquery used in this

predicate is evaluated.

Possible values are:

blank This predicate does not contain a

subquery.

EAA The subquery used in this predicate is

evaluated at application (EAA). That is, it

is re-evaluated for every row processed

by the specified operator, as the predicate

is being applied.

EAO The subquery used in this predicate is

evaluated at open (EAO). That is, it is

re-evaluated only once for the specified

operator, and its results are re-used in the

application of the predicate for each row.

MUL There is more than one type of subquery

in this predicate.

RELOP_TYPE CHAR(2) No No The type of relational operator used in this

predicate.

EXPLAIN_PREDICATE table

Appendix I. Explain tables 727

Table 220. EXPLAIN_PREDICATE Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SUBQUERY CHAR(1) No No Whether or not a data stream from a subquery is

required for this predicate. There may be multiple

subquery streams required.

Possible values are:

N No subquery stream is required

Y One or more subquery streams is

required

FILTER_FACTOR DOUBLE No No The estimated fraction of rows that will be

qualified by this predicate.

A value of ″-1″ is shown when FILTER_FACTOR

is not applicable. FILTER_FACTOR is not

applicable for operator predicates constructed by

the Explain tool which are not optimizer objects

and do not exist in the optimizer plan.

PREDICATE_TEXT CLOB(2M) Yes No The text of the predicate as recreated from the

internal representation of the SQL or XQuery

statement. If the value of a host variable, special

register, or parameter marker is used during

compilation of the statement, this value will

appear at the end of the predicate text enclosed in

a comment.

The value will be stored in the

EXPLAIN_PREDICATE table only if the statement

is executed by a user who has DBADM authority,

or if the DB2 registry variable

DB2_VIEW_REOPT_VALUES is set to YES;

otherwise, an empty comment will appear at the

end of the predicate text.

Null if not available.

RANGE_NUM INTEGER Yes No Range of data partition elimination predicates,

which enables the grouping of predicates that are

used for data partition elimination by range. Null

value for all other predicate types.

 Table 221. Possible HOW_APPLIED Values

Value Description

BSARG Evaluated as a sargable predicate once for every block

DPSTART Start key predicate used in data partition elimination

DPSTOP Stop key predicate used in data partition elimination

JOIN Used to join tables

RESID Evaluated as a residual predicate

SARG Evaluated as a sargable predicate for index or data page

START Used as a start condition

STOP Used as a stop condition

EXPLAIN_PREDICATE table

728 SQL Reference, Volume 1

Table 222. Possible RELOP_TYPE Values

Value Description

blanks Not Applicable

EQ Equals

GE Greater Than or Equal

GT Greater Than

IN In list

LE Less Than or Equal

LK Like

LT Less Than

NE Not Equal

NL Is Null

NN Is Not Null

EXPLAIN_STATEMENT table

The EXPLAIN_STATEMENT table contains the text of the SQL statement as it

exists for the different levels of Explain information. The original SQL statement as

entered by the user is stored in this table along with the version used (by the

optimizer) to choose an access plan to satisfy the SQL statement. The latter version

may bear little resemblance to the original as it may have been rewritten and/or

enhanced with additional predicates as determined by the SQL Compiler.

 Table 223. EXPLAIN_STATEMENT Table. PK means that the column is part of a primary key; FK means that the

column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No PK,

FK

Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No PK,

FK

Time of initiation for Explain request.

SOURCE_NAME VARCHAR(128) No PK,

FK

Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No PK,

FK

Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No PK Level of Explain information for which this row is

relevant.

Valid values are:

O Original Text (as entered by user)

P PLAN SELECTION

STMTNO INTEGER No PK Statement number within package to which this

explain information is related. Set to 1 for

dynamic Explain SQL statements. For static SQL

statements, this value is the same as the value

used for the SYSCAT.STATEMENTS catalog view.

EXPLAIN_PREDICATE table

Appendix I. Explain tables 729

Table 223. EXPLAIN_STATEMENT Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SECTNO INTEGER No PK Section number within package that contains this

SQL statement. For dynamic Explain SQL

statements, this is the section number used to

hold the section for this statement at runtime. For

static SQL statements, this value is the same as

the value used for the SYSCAT.STATEMENTS

catalog view.

QUERYNO INTEGER No No Numeric identifier for explained SQL statement.

For dynamic SQL statements (excluding the

EXPLAIN SQL statement) issued through CLP or

CLI, the default value is a sequentially

incremented value. Otherwise, the default value is

the value of STMTNO for static SQL statements

and 1 for dynamic SQL statements.

QUERYTAG CHAR(20) No No Identifier tag for each explained SQL statement.

For dynamic SQL statements issued through CLP

(excluding the EXPLAIN SQL statement), the

default value is ’CLP’. For dynamic SQL

statements issued through CLI (excluding the

EXPLAIN SQL statement), the default value is

’CLI’. Otherwise, the default value used is blanks.

STATEMENT_TYPE CHAR(2) No No Descriptive label for type of query being

explained.

Possible values are:

CL Call

CP Compound SQL (Dynamic)

D Delete

DC Delete where current of cursor

I Insert

M Merge

S Select

SI Set Integrity or Refresh Table

U Update

UC Update where current of cursor

UPDATABLE CHAR(1) No No Indicates if this statement is considered

updatable. This is particularly relevant to SELECT

statements which may be determined to be

potentially updatable.

Possible values are:

’ ’ Not applicable (blank)

N No

Y Yes

EXPLAIN_STATEMENT table

730 SQL Reference, Volume 1

Table 223. EXPLAIN_STATEMENT Table (continued). PK means that the column is part of a primary key; FK means

that the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

DELETABLE CHAR(1) No No Indicates if this statement is considered deletable.

This is particularly relevant to SELECT statements

which may be determined to be potentially

deletable.

Possible values are:

’ ’ Not applicable (blank)

N No

Y Yes

TOTAL_COST DOUBLE No No Estimated total cost (in timerons) of executing the

chosen access plan for this statement; set to 0

(zero) if EXPLAIN_LEVEL is O (original text)

since no access plan has been chosen at this time.

STATEMENT_TEXT CLOB(2M) No No Text or portion of the text of the SQL statement

being explained. The text shown for the Plan

Selection level of Explain has been reconstructed

from the internal representation and is SQL-like

in nature; that is, the reconstructed statement is

not guaranteed to follow correct SQL syntax.

SNAPSHOT BLOB(10M) Yes No Snapshot of internal representation for this SQL

statement at the Explain_Level shown.

This column is intended for use with DB2 Visual

Explain. Column is set to null if

EXPLAIN_LEVEL is 0 (original statement) since

no access plan has been chosen at the time that

this specific version of the statement is captured.

QUERY_DEGREE INTEGER No No Indicates the degree of intra-partition parallelism

at the time of Explain invocation. For the original

statement, this contains the directed degree of

intra-partition parallelism. For the PLAN

SELECTION, this contains the degree of

intra-partition parallelism generated for the plan

to use.

EXPLAIN_STREAM table

The EXPLAIN_STREAM table represents the input and output data streams

between individual operators and data objects. The data objects themselves are

represented in the EXPLAIN_OBJECT table. The operators involved in a data

stream are to be found in the EXPLAIN_OPERATOR table.

 Table 224. EXPLAIN_STREAM Table. PK means that the column is part of a primary key; FK means that the column

is part of a foreign key.

Column Name Data Type Nullable? Key? Description

EXPLAIN_REQUESTER VARCHAR(128) No FK Authorization ID of initiator of this Explain

request.

EXPLAIN_TIME TIMESTAMP No FK Time of initiation for Explain request.

EXPLAIN_STATEMENT table

Appendix I. Explain tables 731

Table 224. EXPLAIN_STREAM Table (continued). PK means that the column is part of a primary key; FK means that

the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

SOURCE_NAME VARCHAR(128) No FK Name of the package running when the dynamic

statement was explained or name of the source

file when the static SQL was explained.

SOURCE_SCHEMA VARCHAR(128) No FK Schema, or qualifier, of source of Explain request.

SOURCE_VERSION VARCHAR(64) No FK Version of the source of the Explain request.

EXPLAIN_LEVEL CHAR(1) No FK Level of Explain information for which this row is

relevant.

STMTNO INTEGER No FK Statement number within package to which this

explain information is related.

SECTNO INTEGER No FK Section number within package to which this

explain information is related.

STREAM_ID INTEGER No No Unique ID for this data stream within the

specified operator.

SOURCE_TYPE CHAR(1) No No Indicates the source of this data stream:

O Operator

D Data Object

SOURCE_ID SMALLINT No No Unique ID for the operator within this query that

is the source of this data stream. Set to -1 if

SOURCE_TYPE is ’D’.

TARGET_TYPE CHAR(1) No No Indicates the target of this data stream:

O Operator

D Data Object

TARGET_ID SMALLINT No No Unique ID for the operator within this query that

is the target of this data stream. Set to -1 if

TARGET_TYPE is ’D’.

OBJECT_SCHEMA VARCHAR(128) Yes No Schema to which the affected data object belongs.

Set to null if both SOURCE_TYPE and

TARGET_TYPE are ’O’.

OBJECT_NAME VARCHAR(128) Yes No Name of the object that is the subject of data

stream. Set to null if both SOURCE_TYPE and

TARGET_TYPE are ’O’.

STREAM_COUNT DOUBLE No No Estimated cardinality of data stream.

COLUMN_COUNT SMALLINT No No Number of columns in data stream.

PREDICATE_ID INTEGER No No If this stream is part of a subquery for a predicate,

the predicate ID will be reflected here, otherwise

the column is set to -1.

COLUMN_NAMES CLOB(2M) Yes No This column contains the names and ordering

information of the columns involved in this

stream.

These names will be in the format of:

NAME1(A)+NAME2(D)+NAME3+NAME4

Where (A) indicates a column in ascending order,

(D) indicates a column in descending order, and

no ordering information indicates that either the

column is not ordered or ordering is not relevant.

EXPLAIN_STREAM table

732 SQL Reference, Volume 1

Table 224. EXPLAIN_STREAM Table (continued). PK means that the column is part of a primary key; FK means that

the column is part of a foreign key.

Column Name Data Type Nullable? Key? Description

PMID SMALLINT No No Distribution map ID.

SINGLE_NODE CHAR(5) Yes No Indicates whether this data stream is on a single

or on multiple database partitions:

MULT On multiple database partitions

COOR On coordinator node

HASH Directed using hashing

RID Directed using the row ID

FUNC Directed using a function

(HASHEDVALUE() or

DBPARTITIONNUM())

CORR Directed using a correlation value

Numberic

Directed to predetermined single node

PARTITION_COLUMNS CLOB(2M) Yes No List of the columns on which this data stream is

distributed.

SEQUENCE_SIZES CLOB(2M) Yes No Lists the expected sequence size for XML

columns, or shows ″NA″ (not applicable) for any

non-XML columns in the data stream.

Set to null if there is not at least one XML column

in the data stream.

EXPLAIN_STREAM table

Appendix I. Explain tables 733

EXPLAIN_STREAM table

734 SQL Reference, Volume 1

Appendix J. Explain register values

Following is a description of the interaction of the CURRENT EXPLAIN MODE

and CURRENT EXPLAIN SNAPSHOT special register values, both with each other

and with the PREP and BIND commands.

With dynamic SQL, the CURRENT EXPLAIN MODE and CURRENT EXPLAIN

SNAPSHOT special register values interact as follows.

 Table 225. Interaction of Explain Special Register Values (Dynamic SQL)

EXPLAIN

SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN REOPT

RECOMMEND

INDEXES

EVALUATE

INDEXES

NO

v Results of

query

returned.

v Explain tables

populated.

v Results of

query

returned.

v Explain tables

populated.

v Results of

query not

returned

(dynamic

statements not

executed).

v Explain tables

populated

when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query

returned.

v Explain tables

populated.

v Results of

query not

returned

(dynamic

statements not

executed).

v Indexes

recommended.

v Explain tables

populated.

v Results of

query not

returned

(dynamic

statements not

executed).

v Indexes

evaluated.

YES

v Explain

Snapshot

taken.

v Results of

query

returned.

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query

returned.

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Explain tables

populated

when a

statement

qualifies for

reoptimization

at execution

time.

v Explain

Snapshot

taken.

v Results of

query

returned.

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Indexes

recommended.

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Indexes

evaluated.

© Copyright IBM Corp. 1993, 2009 735

Table 225. Interaction of Explain Special Register Values (Dynamic SQL) (continued)

EXPLAIN

SNAPSHOT

values

EXPLAIN MODE values

NO YES EXPLAIN REOPT

RECOMMEND

INDEXES

EVALUATE

INDEXES

EXPLAIN

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Explain tables

populated

when a

statement

qualifies for

reoptimization

at execution

time.

v Explain

Snapshot

taken when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query not

returned

(dynamic or

incremental-
bind

statements not

executed).

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Indexes

recommended.

v Explain tables

populated.

v Explain

Snapshot

taken.

v Results of

query not

returned

(dynamic

statements not

executed).

v Indexes

evaluated.

REOPT

v Explain

Snapshot

taken when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query

returned.

v Explain tables

populated.

v Explain

Snapshot

taken when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query

returned.

v Explain tables

populated.

v Explain

Snapshot

taken when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query not

returned

(dynamic or

incremental-
bind

statements not

executed).

v Explain tables

populated

when a

statement

qualifies for

reoptimization

at execution

time.

v Explain

Snapshot

taken when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query

returned.

v Explain tables

populated.

v Explain

Snapshot

taken when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query not

returned

(dynamic or

incremental-
bind

statements not

executed).

v Indexes

recommended.

v Explain tables

populated.

v Explain

Snapshot

taken when a

statement

qualifies for

reoptimization

at execution

time.

v Results of

query not

returned

(dynamic or

incremental-
bind

statements not

executed).

v Indexes

evaluated.

The CURRENT EXPLAIN MODE special register interacts with the EXPLAIN bind

option in the following way for dynamic SQL.

Explain register values

736 SQL Reference, Volume 1

Table 226. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE

EXPLAIN MODE

values

EXPLAIN Bind option values

NO YES REOPT ALL

NO v Results of query

returned.

v Explain tables

populated for static

SQL.

v Results of query

returned.

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

returned.

YES v Explain tables

populated for

dynamic SQL.

v Results of query

returned.

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

returned.

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

returned.

EXPLAIN v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

not returned

(dynamic

statements not

executed).

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

Explain register values

Appendix J. Explain register values 737

Table 226. Interaction of EXPLAIN Bind Option and CURRENT EXPLAIN MODE (continued)

EXPLAIN MODE

values

EXPLAIN Bind option values

NO YES REOPT ALL

REOPT v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

RECOMMEND

INDEXES

v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Recommend

indexes.

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Recommend

indexes.

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

not returned

(dynamic

statements not

executed).

v Recommend

indexes.

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Recommend

indexes.

EVALUATE INDEXES v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Evaluate indexes.

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Evaluate indexes.

v Explain tables

populated for static

SQL when

statement qualifies

for reoptimization

at execution time.

v Explain tables

populated for

dynamic SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

not returned

(dynamic

statements not

executed).

v Evaluate indexes.

v Explain tables

populated for static

SQL.

v Explain tables

populated for

dynamic SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Evaluate indexes.

Explain register values

738 SQL Reference, Volume 1

The CURRENT EXPLAIN SNAPSHOT special register interacts with the

EXPLSNAP bind option in the following way for dynamic SQL.

 Table 227. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT

EXPLAIN

SNAPSHOT values

EXPLSNAP Bind option values

NO YES REOPT ALL

NO v Results of query

returned.

v Explain Snapshot

taken for static

SQL.

v Results of query

returned.

v Explain Snapshot

taken for static SQL

when statement

qualifies for

reoptimization at

execution time.

v Explain Snapshot

taken for dynamic

SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain Snapshot

taken for static

SQL.

v Explain Snapshot

taken for dynamic

SQL.

v Results of query

returned.

YES v Explain Snapshot

taken for dynamic

SQL.

v Results of query

returned.

v Explain Snapshot

taken for static

SQL.

v Explain Snapshot

taken for dynamic

SQL.

v Results of query

returned.

v Explain Snapshot

taken for static SQL

when statement

qualifies for

reoptimization at

execution time.

v Explain Snapshot

taken for dynamic

SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain Snapshot

taken for static

SQL.

v Explain Snapshot

taken for dynamic

SQL.

v Results of query

returned.

EXPLAIN v Explain Snapshot

taken for dynamic

SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Explain Snapshot

taken for static

SQL.

v Explain Snapshot

taken for dynamic

SQL.

v Results of query

not returned

(dynamic

statements not

executed).

v Explain Snapshot

taken for static SQL

when statement

qualifies for

reoptimization at

execution time.

v Explain Snapshot

taken for dynamic

SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

not returned

(dynamic

statements not

executed).

v Explain Snapshot

taken for static

SQL.

v Explain Snapshot

taken for dynamic

SQL.

v Results of query

not returned

(dynamic

statements not

executed).

Explain register values

Appendix J. Explain register values 739

Table 227. Interaction of EXPLSNAP bind Option and CURRENT EXPLAIN SNAPSHOT (continued)

EXPLAIN

SNAPSHOT values

EXPLSNAP Bind option values

NO YES REOPT ALL

REOPT v Explain Snapshot

taken for dynamic

SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain Snapshot

taken for static SQL

when statement

qualifies for

reoptimization at

execution time.

v Explain Snapshot

taken for dynamic

SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain Snapshot

taken for static SQL

when statement

qualifies for

reoptimization at

execution time.

v Explain Snapshot

taken for dynamic

SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

v Explain Snapshot

taken for static SQL

when statement

qualifies for

reoptimization at

execution time.

v Explain Snapshot

taken for dynamic

SQL when

statement qualifies

for reoptimization

at execution time.

v Results of query

returned.

Explain register values

740 SQL Reference, Volume 1

Appendix K. Exception tables

Exception tables are user-created tables that mimic the definition of the tables that

are specified to be checked using the SET INTEGRITY statement with the

IMMEDIATE CHECKED option. They are used to store copies of the rows that

violate constraints in the tables being checked.

The exception tables that are used by the load utility are identical to the ones

described here, and can therefore be reused during checking with the SET

INTEGRITY statement.

Rules for creating an exception table

The rules for creating an exception table are as follows:

v If the table is protected by a security policy, the exception table must be

protected by the same security policy.

v The first “n” columns of the exception table are the same as the columns of the

table being checked. All column attributes, including name, data type, and

length should be identical. For protected columns, the security label protecting

the column must be the same in both tables.

v All of the columns of the exception table must be free of constraints and

triggers. Constraints include referential integrity and check constraints, as well

as unique index constraints that could cause errors on insert.

v The “(n+1)” column of the exception table is an optional TIMESTAMP column.

This serves to identify successive invocations of checking by the SET

INTEGRITY statement on the same table, if the rows within the exception table

have not been deleted before issuing the SET INTEGRITY statement to check the

data.

v The “(n+2)” column should be of type CLOB(32K) or larger. This column is

optional but recommended, and will be used to give the names of the

constraints that the data within the row violates. If this column is not provided

(as could be warranted if, for example, the original table had the maximum

number of columns allowed), then only the row where the constraint violation

was detected is copied.

v The exception table should be created with both “(n+1)” and “(n+2)” columns.

v There is no enforcement of any particular name for the above additional

columns. However, the type specification must be exactly followed.

v No additional columns are allowed.

v If the original table has generated columns (including the IDENTITY property),

the corresponding columns in the exception table should not specify the

generated property.

v Users invoking the SET INTEGRITY statement to check data must hold the

INSERT privilege on the exception tables.

v The exception table cannot be a data partitioned table, a range clustered table, or

a detached table.

v The exception table cannot be a materialized query table or a staging table.

v The exception table cannot have any dependent refresh immediate materialized

query tables or any dependent propagate immediate staging tables.

The information in the “message” column has the following structure:

© Copyright IBM Corp. 1993, 2009 741

Table 228. Exception Table Message Column Structure

Field

number Contents Size Comments

1 Number of constraint violations 5 bytes Right justified padded with ’0’

2 Type of first constraint violation 1 byte

 ’K’ - Check Constraint violation

’F’ - Foreign Key violation

’G’ - Generated Column violation

’I’ - Unique Index violationa

’D’ - Delete Cascade violation

’P’ - Data Partitioning violation

’S’ - Invalid Row Security Label

’L’ - DB2 LBAC Write rules

 violation

3 Length of constraint/columnb /index IDc 5 bytes Right justified padded with ’0’

4 Constraint name/Column nameb/index

IDc

length from the previous field

5 Separator 3 bytes <space><colon><space>

6 Type of next constraint violation 1 byte

 ’K’ - Check Constraint violation

’F’ - Foreign Key violation

’G’ - Generated Column violation

’I’ - Unique Index violation

’D’ - Delete Cascade violation

’P’ - Data Partitioning violation

’S’ - Invalid Row Security Label

’L’ - DB2 LBAC Write rules

 violation

7 Length of constraint/column/index ID 5 bytes Right justified padded with ’0’

8 Constraint name/Column name/Index ID length from the previous field

..... Repeat Field 5 through 8 for each

violation

v

a Unique index violations will not occur during checking using the SET INTEGRITY statement, unless it is after an attach

operation. This will be reported, however, when running LOAD if the FOR EXCEPTION option is chosen. LOAD, on the other

hand, will not report check constraint, generated column, foreign key, delete cascade, or data partitioning violations in the

exception tables.

v

b To retrieve the expression of a generated column from the catalog views, use a select statement. For example, if field 4 is

MYSCHEMA.MYTABLE.GEN_1, then SELECT SUBSTR(TEXT, 1, 50) FROM SYSCAT.COLUMNS WHERE

TABSCHEMA=’MYSCHEMA’ AND TABNAME=’MYNAME’ AND COLNAME=’GEN_1’; will return the first fifty bytes of the

expression, in the form ″AS (<expression>)″

v

c To retrieve an index ID from the catalog views, use a select statement. For example, if field 4 is 1234, then SELECT

INDSCHEMA, INDNAME FROM SYSCAT.INDEXES WHERE IID=1234.

Handling rows in an exception table

The information in exception tables can be processed in various ways. Data can be

corrected and rows re-inserted into the original tables.

If there are no INSERT triggers on the original table, transfer the corrected rows by

issuing an INSERT statement with a subquery on the exception table.

If there are INSERT triggers, and you want to complete the load operation with the

corrected rows from exception tables without firing the triggers:

v Design the INSERT triggers to be fired depending on the value in a column that

has been defined explicitly for the purpose.

Exception tables

742 SQL Reference, Volume 1

v Unload data from the exception tables and append it using the load utility. In

this case, if you want to recheck the data, note that constraints checking is not

confined to the appended rows.

v Save the trigger definition text from the relevant system catalog view. Then drop

the INSERT trigger and use INSERT to transfer the corrected rows from the

exception tables. Finally, recreate the trigger using the saved trigger definition.

No explicit provision is made to prevent the firing of triggers when inserting rows

from exception tables.

Only one violation per row is reported for unique index violations.

If values with long string or LOB data types are in the table, the values are not

inserted into the exception table in the case of unique index violations.

Querying exception tables

The message column structure in an exception table is a concatenated list of

constraint names, lengths, and delimiters, as described earlier. This information can

be queried.

For example, to retrieve a list of all violations, repeating each row with only the

constraint name, assume that the original table T1 had two columns, C1 and C2.

Assume also, that the corresponding exception table, E1, has columns C1 and C2,

corresponding to those in T1, as well as a message column, MSGCOL. The

following query uses recursion to list one constraint name per row (repeating rows

that have more than one violation):

WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS

 (SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, 12,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

 1,

 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

 FROM E1

 UNION ALL

 SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, J+6,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

 I+1,

 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

 FROM IV

 WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV;

To list all of the rows that violated a particular constraint, the previous query could

be extended as follows:

WITH IV (C1, C2, MSGCOL, CONSTNAME, I, J) AS

 (SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, 12,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

 1,

 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

 FROM E1

 UNION ALL

 SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, J+6,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

 I+1,

 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

Exception tables

Appendix K. Exception tables 743

FROM IV

 WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTNAME = ’constraintname’;

The following query could be used to obtain all of the check constraint violations:

WITH IV (C1, C2, MSGCOL, CONSTNAME, CONSTTYPE, I, J) AS

 (SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, 12,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0)))),

 CHAR(SUBSTR(MSGCOL, 6, 1)),

 1,

 15+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,7,5)),5,0))

 FROM E1

 UNION ALL

 SELECT C1, C2, MSGCOL,

 CHAR(SUBSTR(MSGCOL, J+6,

 INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0)))),

 CHAR(SUBSTR(MSGCOL, J, 1)),

 I+1,

 J+9+INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,J+1,5)),5,0))

 FROM IV

 WHERE I < INTEGER(DECIMAL(VARCHAR(SUBSTR(MSGCOL,1,5)),5,0))

) SELECT C1, C2, CONSTNAME FROM IV WHERE CONSTTYPE = ’K’;

Exception tables

744 SQL Reference, Volume 1

Appendix L. SQL statements allowed in routines

The following table indicates whether or not an SQL statement (specified in the

first column) is allowed to execute in a routine with the specified SQL data access

indication. If an executable SQL statement is encountered in a routine defined with

NO SQL, SQLSTATE 38001 is returned. For other execution contexts, SQL

statements that are not supported in any context return SQLSTATE 38003. For

other SQL statements not allowed in a CONTAINS SQL context, SQLSTATE 38004

is returned. In a READS SQL DATA context, SQLSTATE 38002 is returned. During

creation of an SQL routine, a statement that does not match the SQL data access

indication will cause SQLSTATE 42985 to be returned.

If a statement invokes a routine, the effective SQL data access indication for the

statement will be the greater of:

v The SQL data access indication of the statement from the following table.

v The SQL data access indication of the routine specified when the routine was

created.

For example, the CALL statement has an SQL data access indication of CONTAINS

SQL. However, if a stored procedure defined as READS SQL DATA is called, the

effective SQL data access indication for the CALL statement is READS SQL DATA.

When a routine invokes an SQL statement, the effective SQL data access indication

for the statement must not exceed the SQL data access indication declared for the

routine. For example, a function defined as READS SQL DATA could not call a

stored procedure defined as MODIFIES SQL DATA.

 Table 229. SQL Statement and SQL Data Access Indication

SQL Statement NO SQL

CONTAINS

SQL

READS SQL

DATA

MODIFIES

SQL DATA

ALTER... N N N Y

AUDIT N N N Y

BEGIN DECLARE

SECTION

Y(1) Y Y Y

CALL N Y Y Y

CLOSE N N Y Y

COMMENT ON N N N Y

COMMIT N N(4) N(4) N(4)

COMPOUND SQL N Y Y Y

CONNECT(2) N N N N

CREATE N N N Y

DECLARE CURSOR Y(1) Y Y Y

DECLARE GLOBAL

TEMPORARY TABLE

N N N Y

DELETE N N N Y

DESCRIBE N Y Y Y

DISCONNECT(2) N N N N

DROP ... N N N Y

© Copyright IBM Corp. 1993, 2009 745

Table 229. SQL Statement and SQL Data Access Indication (continued)

SQL Statement NO SQL

CONTAINS

SQL

READS SQL

DATA

MODIFIES

SQL DATA

END DECLARE SECTION Y(1) Y Y Y

EXECUTE N Y(3) Y(3) Y

EXECUTE IMMEDIATE N Y(3) Y(3) Y

EXPLAIN N N N Y

FETCH N N Y Y

FREE LOCATOR N Y Y Y

FLUSH EVENT MONITOR N N N Y

GRANT ... N N N Y

INCLUDE Y(1) Y Y Y

INSERT N N N Y

LOCK TABLE N Y Y Y

MERGE N N N Y

OPEN N N Y(5) Y

PREPARE N Y Y Y

REFRESH TABLE N N N Y

RELEASE

CONNECTION(2)

N N N N

RELEASE SAVEPOINT N N N Y

RENAME TABLE N N N Y

REVOKE ... N N N Y

ROLLBACK N N(4) N(4) N(4)

ROLLBACK TO

SAVEPOINT

N N N Y

SAVEPOINT N N N Y

SELECT INTO N N Y(5) Y

SET CONNECTION(2) N N N N

SET INTEGRITY N N N Y

SET special register N Y Y Y

SET variable N Y(6) Y(5) Y

TRANSFER OWNERSHIP N N N Y

UPDATE N N N Y

VALUES INTO N N Y Y

WHENEVER Y(1) Y Y Y

Note:

1. Although the NO SQL option implies that no SQL statements can be specified,

non-executable statements are not restricted.

2. Connection management statements are not allowed in any routine execution

context.

3. It depends on the statement being executed. The statement specified for the

EXECUTE statement must be a statement that is allowed in the context of the

SQL statements allowed in routines

746 SQL Reference, Volume 1

particular SQL access level in effect. For example, if the SQL access level

READS SQL DATA is in effect, the statement cannot be INSERT, UPDATE, or

DELETE.

4. The COMMIT statement and the ROLLBACK statement without the TO

SAVEPOINT clause can be used in a stored procedure, but only if the stored

procedure is called directly from an application, or indirectly through nested

stored procedure calls from an application. (If any trigger, function, method, or

atomic compound statement is in the call chain to the stored procedure,

COMMIT or ROLLBACK of a unit of work is not allowed.)

5. If the SQL access level READS SQL DATA is in effect, no SQL data change

statement can be embedded in the SELECT INTO statement, in the cursor

referenced by the OPEN statement, or the right hand side expression of the SET

variable statement.

6. If the SQL access level CONTAINS SQL is in effect, no scalar fullselect can be

embedded in the right hand side expression of the SET variable statement.

SQL statements allowed in routines

Appendix L. Statements allowed in routines 747

SQL statements allowed in routines

748 SQL Reference, Volume 1

Appendix M. CALL invoked from a compiled statement

Invokes a procedure stored at the location of a database. A procedure, for example,

executes at the location of the database, and returns data to the client application.

Programs using the SQL CALL statement are designed to run in two parts, one on

the client and the other on the server. The server procedure at the database runs

within the same transaction as the client application. If the client application and

procedure are on the same database partition, the stored procedure is executed

locally.

Note: This form of the CALL statement is deprecated, and is only being provided

for compatibility with previous versions of DB2.

Invocation

This form of the CALL statement can only be embedded in an application program

that is precompiled with the CALL_RESOLUTION DEFERRED option. It cannot

invoke a federated procedure. It cannot be used in triggers, SQL procedures, or

any other non-application contexts. It is an executable statement that cannot be

dynamically prepared. However, the procedure name can be specified through a

host variable and this, coupled with the use of the USING DESCRIPTOR clause,

allows both the procedure name and the parameter list to be provided at run time,

which achieves an effect similar to that of a dynamically prepared statement.

Authorization

The privileges held by the authorization ID of the statement at run time must

include at least one of the following:

v EXECUTE privilege on the package that is associated with the procedure;

EXECUTE privilege on the procedure is not checked

v CONTROL privilege on the package that is associated with the procedure

v SYSADM or DBADM authority

Syntax

�� CALL procedure-name

host-variable

�

(

)

,

host-variable

USING DESCRIPTOR

descriptor-name

 ��

Description

procedure-name or host-variable

Identifies the procedure to call. The procedure name may be specified either

directly or within a host variable. The procedure identified must exist at the

current server (SQLSTATE 42724).

 If procedure-name is specified, it must be an ordinary identifier that is not

greater than 254 bytes. Because this can only be an ordinary identifier, it cannot

© Copyright IBM Corp. 1993, 2009 749

contain blanks or special characters. The value is converted to uppercase. If it

is necessary to use lowercase names, blanks, or special characters, the name

must be specified via a host-variable.

If host-variable is specified, it must be a CHAR or VARCHAR variable with a

length attribute that is not greater than 254 bytes, and it must not include an

indicator variable. The value is not converted to uppercase. The character string

must be left-justified.

The procedure name can take one of several forms:

procedure-name

The name (with no extension) of the procedure to execute. The procedure

that is invoked is determined as follows.

1. The procedure-name is used to search the defined procedures (in

SYSCAT.ROUTINES) for a matching procedure. A matching procedure

is determined using the steps that follow.

a. Find the procedures (ROUTINETYPE is ’P’) from the catalog

(SYSCAT.ROUTINES), where the ROUTINENAME matches the

specified procedure-name, and the ROUTINESCHEMA is a schema

name in the SQL path (CURRENT PATH special register). If the

schema name is explicitly specified, the SQL path is ignored, and

only procedures with the specified schema name are considered.

b. Next, eliminate any of these procedures that do not have the same

number of parameters as the number of arguments specified in the

CALL statement.

c. Chose the remaining procedure that is earliest in the SQL path.
If a procedure is selected, DB2 will invoke the procedure defined by the

external name.

2. If no matching procedure was found, procedure-name is used both as the

name of the procedure library, and the function name within that

library. For example, if procedure-name is proclib, the DB2 server will

load the procedure library named proclib and execute the function

routine proclib() within that library.

On UNIX systems, the default directory for procedure libraries is

sqllib/function. The default directory for unfenced procedures is

sqllib/function/unfenced.

In Windows-based systems, the default directory for procedure libraries

is sqllib\function. The default directory for unfenced procedures is

sqllib\function\unfenced.

If the library or function could not be found, an error is returned

(SQLSTATE 42884).

procedure-library!function-name

The exclamation character (!) acts as a delimiter between the library name

and the function name of the procedure. For example, if proclib!func is

specified, proclib is loaded into memory, and the function func from that

library is executed. This allows multiple functions to be placed in the same

procedure library.

 The procedure library is located in the directories or specified in the

LIBPATH variable, as described in procedure-name.

absolute-path!function-name

The absolute-path specifies the complete path to the stored procedure

library.

CALL invoked from a compiled statement

750 SQL Reference, Volume 1

On a UNIX system, for example, if /u/terry/proclib!func is specified, the

procedure library proclib is obtained from the directory /u/terry, and the

function func from that library is executed.

 In all of these cases, the total length of the procedure name, including its

implicit or explicit full path, must not be longer than 254 bytes.

(host-variable,...)

Each specification of host-variable is a parameter of the CALL statement. The

nth parameter of the CALL corresponds to the nth parameter of the server’s

procedure.

 Each host-variable is assumed to be used for exchanging data in both directions

between client and server. To avoid sending unnecessary data between client

and server, the client application should provide an indicator variable with

each parameter, and set the indicator to -1 if the parameter is not used to

transmit data to the procedure. The procedure should set the indicator variable

to -128 for any parameter that is not used to return data to the client

application.

If the server is DB2 9.1 database server, the parameters must have matching

data types in both the client and server program.

USING DESCRIPTOR descriptor-name

Identifies an SQLDA that must contain a valid description of host variables.

The nth SQLVAR element corresponds to the nth parameter of the server’s

procedure.

 Before the CALL statement is processed, the application must set the following

fields in the SQLDA:

v SQLN to indicate the number of SQLVAR occurrences provided in the

SQLDA

v SQLDABC to indicate the number of bytes of storage allocated for the

SQLDA

v SQLD to indicate the number of variables used in the SQLDA when

processing the statement

v SQLVAR occurrences to indicate the attributes of the variables. The following

fields of each Base SQLVAR element passed must be initialized:

– SQLTYPE

– SQLLEN

– SQLDATA

– SQLIND
The following fields of each Secondary SQLVAR element passed must be

initialized:

– LEN.SQLLONGLEN

– SQLDATALEN

– SQLDATATYPE_NAME

The SQLDA is assumed to be used for exchanging data in both directions

between client and server. To avoid sending unnecessary data between client

and server, the client application should set the SQLIND field to -1 if the

parameter is not used to transmit data to the procedure. The procedure should

set the SQLIND field -128 for any parameter that is not used to return data to

the client application.

CALL invoked from a compiled statement

Appendix M. CALL invoked from a compiled statement 751

Notes

v Use of Large Object (LOB) data types:

If the client and server application needs to specify LOB data from an SQLDA,

allocate double the number of SQLVAR entries.

LOB data types have been supported by procedures since DB2 Version 2. The

LOB data types are not supported by all down level clients or servers.

v Retrieving the DB2_RETURN_STATUS from an SQL procedure:

If an SQL procedure successfully issues a RETURN statement with a status

value, this value is returned in the first SQLERRD field of the SQLCA. If the

CALL statement is issued in an SQL procedure, use the GET DIAGNOSTICS

statement to retrieve the DB2_RETURN_STATUS value. The value is -1 if the

SQLSTATE indicates an error.

v Returning result sets from procedures:

If the client application program is written using CLI, result sets can be returned

directly to the client application. The procedure indicates that a result set is to be

returned by declaring a cursor on that result set, opening a cursor on the result

set, and leaving the cursor open when exiting the procedure.

At the end of a procedure:

– For every cursor that has been left open, a result set is returned to the

application.

– If more than one cursor is left open, the result sets are returned in the order

in which their cursors were opened.

– Only unread rows are passed back. For example, if the result set of a cursor

has 500 rows, and 150 of those rows have been read by the procedure at the

time the procedure is terminated, rows 151 through 500 will be returned to

the procedure.
v Handling of special registers:

The settings of special registers for the caller are inherited by the procedure on

invocation, and restored upon return to the caller. Special registers may be

changed within a procedure, but these changes do not affect the caller. This is

not true for legacy procedures (those defined with parameter style DB2DARI, or

found in the default library), where the changes made to special registers in a

procedure become the settings for the caller.

v Compatibilities

There is a newer, preferred, form of the CALL statement that can be embedded

in an application (by precompiling the application with the

CALL_RESOLUTION IMMEDIATE option), or that can be dynamically

prepared.

Examples

Example 1:

In C, invoke a procedure called TEAMWINS in the ACHIEVE library, passing it a

parameter stored in the host variable HV_ARGUMENT.

 strcpy(HV_PROCNAME, "ACHIEVE!TEAMWINS");

 CALL :HV_PROCNAME (:HV_ARGUMENT);

Example 2:

In C, invoke a procedure called :SALARY_PROC, using the SQLDA named

INOUT_SQLDA.

CALL invoked from a compiled statement

752 SQL Reference, Volume 1

struct sqlda *INOUT_SQLDA;

 /* Setup code for SQLDA variables goes here */

 CALL :SALARY_PROC

 USING DESCRIPTOR :*INOUT_SQLDA;

Example 3:

A Java procedure is defined in the database, using the following statement:

 CREATE PROCEDURE PARTS_ON_HAND (IN PARTNUM INTEGER,

 OUT COST DECIMAL(7,2),

 OUT QUANTITY INTEGER)

 EXTERNAL NAME ’parts!onhand’

 LANGUAGE JAVA

 PARAMETER STYLE DB2GENERAL;

A Java application calls this procedure using the following code fragment:

 ...

 CallableStatement stpCall;

 String sql = "CALL PARTS_ON_HAND (?,?,?)";

 stpCall = con.prepareCall(sql) ; /* con is the connection */

 stpCall.setInt(1, variable1) ;

 stpCall.setBigDecimal(2, variable2) ;

 stpCall.setInt(3, variable3) ;

 stpCall.registerOutParameter(2, Types.DECIMAL, 2) ;

 stpCall.registerOutParameter(3, Types.INTEGER) ;

 stpCall.execute() ;

 variable2 = stpCall.getBigDecimal(2) ;

 variable3 = stpCall.getInt(3) ;

 ...

This application code fragment will invoke the Java method onhand in class parts,

because the procedure name specified on the CALL statement is found in the

database and has the external name ’parts!onhand’.

CALL invoked from a compiled statement

Appendix M. CALL invoked from a compiled statement 753

754 SQL Reference, Volume 1

Appendix N. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

If you would like to help IBM make the IBM Information Management products

easier to use, take the Consumability Survey: http://www.ibm.com/software/
data/info/consumability-survey/.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

© Copyright IBM Corp. 1993, 2009 755

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Although the tables identify books available in print, the books might not be

available in your country or region.

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 230. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC23-5842-02 Yes April, 2009

Administrative Routines

and Views

SC23-5843-02 No April, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC23-5844-02 Yes April, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC23-5845-02 Yes April, 2009

Command Reference SC23-5846-02 Yes April, 2009

Data Movement Utilities

Guide and Reference

SC23-5847-02 Yes April, 2009

Data Recovery and High

Availability Guide and

Reference

SC23-5848-02 Yes April, 2009

Data Servers, Databases,

and Database Objects

Guide

SC23-5849-02 Yes April, 2009

Database Security Guide SC23-5850-02 Yes April, 2009

Developing ADO.NET

and OLE DB

Applications

SC23-5851-02 Yes April, 2009

Developing Embedded

SQL Applications

SC23-5852-02 Yes April, 2009

Developing Java

Applications

SC23-5853-02 Yes April, 2009

Developing Perl and

PHP Applications

SC23-5854-02 No April, 2009

Developing User-defined

Routines (SQL and

External)

SC23-5855-02 Yes April, 2009

Getting Started with

Database Application

Development

GC23-5856-02 Yes April, 2009

Getting Started with

DB2 installation and

administration on Linux

and Windows

GC23-5857-02 Yes April, 2009

Internationalization

Guide

SC23-5858-02 Yes April, 2009

DB2 technical library in hardcopy or PDF format

756 SQL Reference, Volume 1

Table 230. DB2 technical information (continued)

Name Form Number Available in print Last updated

Message Reference,

Volume 1

GI11-7855-01 No April, 2009

Message Reference,

Volume 2

GI11-7856-01 No April, 2009

Migration Guide GC23-5859-02 Yes April, 2009

Net Search Extender

Administration and

User’s Guide

SC23-8509-02 Yes April, 2009

Partitioning and

Clustering Guide

SC23-5860-02 Yes April, 2009

Query Patroller

Administration and

User’s Guide

SC23-8507-01 Yes April, 2009

Quick Beginnings for

IBM Data Server Clients

GC23-5863-02 No April, 2009

Quick Beginnings for

DB2 Servers

GC23-5864-02 Yes April, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC23-8508-02 Yes April, 2009

SQL Reference, Volume 1 SC23-5861-02 Yes April, 2009

SQL Reference, Volume 2 SC23-5862-02 Yes April, 2009

System Monitor Guide

and Reference

SC23-5865-02 Yes April, 2009

Text Search Guide SC23-5866-01 Yes April, 2009

Troubleshooting Guide GI11-7857-02 No April, 2009

Tuning Database

Performance

SC23-5867-02 Yes April, 2009

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-02 Yes April, 2009

Workload Manager

Guide and Reference

SC23-5870-02 Yes April, 2009

pureXML Guide SC23-5871-02 Yes April, 2009

XQuery Reference SC23-5872-02 No April, 2009

 Table 231. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Quick Beginnings for

DB2 Connect Personal

Edition

GC23-5839-02 Yes April, 2009

Quick Beginnings for

DB2 Connect Servers

GC23-5840-02 Yes April, 2009

DB2 Connect User’s

Guide

SC23-5841-02 Yes April, 2009

DB2 technical library in hardcopy or PDF format

Appendix N. Overview of the DB2 technical information 757

Table 232. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes March, 2008

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-02 Yes March, 2008

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-01 No

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-01 Yes March, 2008

Information Integration:

Introduction to

Replication and Event

Publishing

SC19-1028-01 Yes March, 2008

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

DB2 technical library in hardcopy or PDF format

758 SQL Reference, Volume 1

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 755.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

Ordering printed DB2 books

Appendix N. Overview of the DB2 technical information 759

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. Non-Administrative and Non-Root

DB2 Information Centers always run in stand-alone mode. .

2. Use the update feature to see what updates are available. If there are updates

that you would like to install, you can use the update feature to obtain and

install them.

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the update feature to get the packages.

However, the update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center

on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

Displaying topics in your preferred language in the DB2 Information Center

760 SQL Reference, Volume 1

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

Program_files\IBM\DB2 Information Center\Version 9.5 directory, where

Program_files represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

Updating the DB2 Information Center installed on your computer or intranet server

Appendix N. Overview of the DB2 technical information 761

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Database fundamentals section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 database products.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

DB2 tutorials

762 SQL Reference, Volume 1

http://publib.boulder.ibm.com/infocenter/db2luw/v9
http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Terms and Conditions

Appendix N. Overview of the DB2 technical information 763

764 SQL Reference, Volume 1

Appendix O. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© Copyright IBM Corp. 1993, 2009 765

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

Notices

766 SQL Reference, Volume 1

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at Copyright and

trademark information at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries. Intel trademark information

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Notices

Appendix O. Notices 767

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

768 SQL Reference, Volume 1

Index

A
ABS scalar function 257

ABSVAL scalar function 257

access plans
description 41

ACOS scalar function
description 257

values and arguments 257

administrative SQL routines
supported 210

ADVISE_INDEX table 703

ADVISE_INSTANCE table 707

ADVISE_MQT table 707

ADVISE_PARTITION table 708

ADVISE_TABLE table 710

ADVISE_WORKLOAD table 710

aggregate functions
ARRAY_AGG 238

COUNT 241

description 237

MIN 246

aliases
alias name 47

chaining process 9

description 47

overview 9

TABLE_NAME function 371

TABLE_SCHEMA function 372

ALL clause
quantified predicate 193

SELECT statement 447

ALL option 485

ambiguous reference errors 47

AND truth table 190

ANY clause 193

application design
character conversion in SQL statements 24

code points for special characters 24

double-byte character support (DBCS) 24

application process
definition 15

applications
requesters 25

arguments of COALESCE 106

arithmetic
AVG function, operation of 239

columns, adding values (SUM) 251

CORRELATION function operation 240

COVARIANCE function operation 243

decimal values from numeric expressions 283

expressions, adding values (SUM) 251

finding maximum value 245

floating point values from numeric expressions 291, 345

integer values, returning from expressions 260, 309

operators 149

regression functions 247

returning small integer values from expressions 363

STDDEV function 250

VARIANCE function operation 252

ARRAY element
specification 170

ARRAY_AGG function 238

AS clause
in SELECT clause 447

ORDER BY clause 447

ASC clause
SELECT statement 447

ASCII scalar function
description 258

values and arguments 258

ASIN scalar function
description 258

values and arguments 258

assignments
basic SQL operations 92

asterisk (*)
in COUNT 241

in COUNT_BIG 242

in select column names 447

in subselect column names 447

asterisks
select column names 447

subselect column names 447

ATAN scalar function
description 259

values and arguments 259

ATAN2 scalar function
description 259

values and arguments 259

ATANH scalar function
description 259

values and arguments 259

attributes
attribute name 47

authority levels
See privileges 10

authorization ID 47

authorization names
definition 47

description 47

restrictions governing 47

AVG aggregate function 239

B
basic predicate 192

best fit
function 134

method 142

BETWEEN predicate 195

BIGINT data type 70

sign and precision 70

BIGINT function 260

binary large objects (BLOBs)
definition 76

scalar functions 263

binary string data types 76

binding
data retrieval

role in optimizing 1

function semantics 134

method semantics 134

© Copyright IBM Corp. 1993, 2009 769

bit data 73

bit manipulation functions 261

BITAND function 261

BITANDNOT function 261

BITNOT function 261

BITOR function 261

BITXOR function 261

BLAST
supported versions 36

BLOBs (binary large objects)
description 76

scalar functions 263

books
printed

ordering 758

buffer pools
names 47

built-in functions
description 134

string units 73

byte length
data type values 314

C
call level interface (CLI)

definition 2

CALL statement
invoked from a compiled statement 749

CARDINALITY function 263

CASE
expression 163

case sensitivity
in token identifiers 46

CAST
specification 165

casting
between data types 85

data type 165

reference types 85

structured type expression to a subtype 181

user-defined types 85

XML values 169

catalog views
ATTRIBUTES 532

AUDITPOLICIES 533

AUDITUSE 535

BUFFERPOOLDBPARTITIONS 535

BUFFERPOOLS 536

CASTFUNCTIONS 536

CHECKS 537

COLAUTH 538

COLCHECKS 539

COLDIST 539, 642

COLGROUPCOLS 540

COLGROUPDIST 540, 643

COLGROUPDISTCOUNTS 541, 643

COLGROUPS 541, 644

COLIDENTATTRIBUTES 542

COLOPTIONS 542

COLUMNS 543, 644

COLUSE 547

CONSTDEP 548

CONTEXTATTRIBUTES 548

CONTEXTS 548

DATAPARTITIONEXPRESSION 549

DATAPARTITIONS 549

catalog views (continued)
DATATYPES 550

DBAUTH 552

DBPARTITIONGROUPDEF 554

DBPARTITIONGROUPS 554

description 15

EVENTMONITORS 555

EVENTS 556

EVENTTABLES 557

FULLHIERARCHIES 558

FUNCMAPOPTIONS 559

FUNCMAPPARMOPTIONS 559

FUNCMAPPINGS 559

HIERARCHIES 560

HISTOGRAMTEMPLATEBINS 561

HISTOGRAMTEMPLATES 561

HISTOGRAMTEMPLATEUSE 561

INDEXAUTH 562

INDEXCOLUSE 562

INDEXDEP 563

INDEXES 564, 645

INDEXEXPLOITRULES 569

INDEXEXTENSIONDEP 570

INDEXEXTENSIONMETHODS 571

INDEXEXTENSIONPARMS 571

INDEXEXTENSIONS 572

INDEXOPTIONS 572

INDEXXMLPATTERNS 573

KEYCOLUSE 573

NAMEMAPPINGS 574

NICKNAMES 574

overview 527, 528

PACKAGEAUTH 577

PACKAGEDEP 578

PACKAGES 579

PARTITIONMAPS 584

PASSTHRUAUTH 584

PREDICATESPECS 584

read-only 527

REFERENCES 585

ROLEAUTH 586

ROLES 586

ROUTINEAUTH 586

ROUTINEDEP 587

ROUTINEOPTIONS 588

ROUTINEPARMOPTIONS 589

ROUTINEPARMS 589

ROUTINES 591, 648

ROUTINESFEDERATED 598

SCHEMAAUTH 600

SCHEMATA 600

SECURITYLABELACCESS 601

SECURITYLABELCOMPONENTELEMENTS 601

SECURITYLABELCOMPONENTS 602

SECURITYLABELS 602

SECURITYPOLICIES 602

SECURITYPOLICYCOMPONENTRULES 603

SECURITYPOLICYEXEMPTIONS 604

SEQUENCEAUTH 605

SEQUENCES 605

SERVEROPTIONS 607

SERVERS 607

SERVICECLASSES 607

STATEMENTS 608

SURROGATEAUTHIDS 609

SYSDUMMY1 642

TABAUTH 610

770 SQL Reference, Volume 1

catalog views (continued)
TABCONST 611

TABDEP 612

TABDETACHEDDEP 613

TABLES 614, 649

TABLESPACES 619

TABOPTIONS 621

TBSPACEAUTH 621

THRESHOLDS 621

TRANSFORMS 623

TRIGDEP 624

TRIGGERS 624

TYPEMAPPINGS 626

updatable 527

USEROPTIONS 628

VARIABLEAUTH 629

VARIABLEDEP 629

VARIABLES 630

VIEWS 631

WORKACTIONS 632

WORKACTIONSETS 634

WORKCLASSES 634

WORKCLASSSETS 635

WORKLOADAUTH 636

WORKLOADCONNATTR 636

WORKLOADS 637

WRAPOPTIONS 638

WRAPPERS 638

XDBMAPGRAPHS 638

XDBMAPSHREDTREES 638

XSROBJECTAUTH 639

XSROBJECTCOMPONENTS 639

XSROBJECTDEP 640

XSROBJECTHIERARCHIES 641

XSROBJECTS 641

CEIL scalar function
description 264

values and arguments 264

CEILING scalar function
description 264

values and arguments 264

CHAR data type
description 73

CHAR scalar function
description 264

character conversion
coding SQL statements 24

rules for assignments 92

rules for comparison 92

rules for operations combining strings 109

rules when comparing strings 109

character sets
definition 22

description 41

character strings
assignment 92

BLOB string representation 263

comparisons 92

data types 73

double-byte character string 396

equality
collating sequence examples 92

definition 92

POSSTR scalar function 339

returning from host variable name 382

string constants 113

translating string syntax 382

character strings (continued)
VARCHAR scalar function 390

VARGRAPHIC scalar function 396

character subtypes 73

CHARACTER_LENGTH scalar function
description 268

characters
conversion 22

SQL language elements 45

CHR scalar function
description 270

values and arguments 270

CLI (call level interface)
definition 2

CLIENT USERID special register 120

CLIENT WRKSTNNAME special register 121

CLOBs (character large objects)
data type

description 73

function
description 270

values and arguments 270

CLSCHED sample table 669

COALESCE function 271

code pages
attributes 22

definition 22

description 41

code points
character conversion 22

collating sequences
COLLATION_KEY_BIT scalar function 271

description 41

planning 41

string comparison rules 92

COLLATING_SEQUENCE server option
example 41

COLLATION_KEY_BIT scalar function
description 271

collocation
table 27

column database functions
description 134

column options
description 34

columns
adding values (SUM) 251

ambiguous name reference errors 47

averaging a set of values (AVG) 239

BASIC predicate in matching strings 192

BETWEEN predicate in matching strings 195

column name
definition 47

qualification in COMMENT ON statement 47

uses 47

correlation 240

covariance 243

EXISTS predicate, in matching strings 195

finding maximum value 245

GROUP BY
use in limiting in SELECT clause 447

grouping column names in GROUP BY 447

HAVING
use in limiting in SELECT clause 447

HAVING clause
search names rules 447

IN predicate, fullselect, values returned 196

Index 771

columns (continued)
LIKE predicate, in matching strings 197

names
in ORDER BY clause 447

qualified conditions 47

unqualified conditions 47

naming conventions 47

nested table expression 47

null values
in result columns 447

qualified column name rules 47

result data 447

scalar fullselect 47

searching using WHERE clause 447

SELECT clause syntax diagram 447

standard deviation 250

string assignment rules 92

subquery 47

undefined name reference errors 47

variance 252

combining grouping sets 447

comments
host language, format 46

SQL, format 46

commit
release of locks 15

common table expressions
definition 489

recursive 489

select statement 489

COMPARE_DECFLOAT scalar function
description 273

comparing 92

a value with a collection 195

two predicates, truth conditions 192, 203

comparison
SQL operation 92

compatibility
data types 92

rules 92

rules for operation types 92

component-name
description 47

composite column values 447

CONCAT scalar function
description 274

values and arguments 274

concatenation
distinct type 149

operators 149

concurrent transactions 25

condition name
SQL procedures 47

consistency
points of 15

constants
character string 113

decimal 113

floating-point 113

graphic string 113

hexadecimal 113

integer 113

SQL language element 113

with user-defined types 113

constraints
description 4

Explain tables 703

constraints (continued)
names, definition 47

conversions
CHAR, returning converted datetime values 264

character string to timestamp 375

datetime to string variable 92

DBCS from mixed SBCS and DBCS 396

decimal values from numeric expressions 283

double-byte character string 396

floating point values from numeric expressions 291, 345

numeric, scale and precision, summary 92

rules
assignments 92

comparisons 92

operations combining strings 109

string comparisons 109

correlated reference
in nested table expression 47

in scalar fullselect 47

in subquery 47

in subselect 447

CORRELATION function 240

correlation name
definition 47

FROM clause
subselect rules 447

in SELECT clause
syntax diagram 447

qualified reference 47

rules 47

COS scalar function
description 274

values and arguments 274

COSH scalar function
description 274

values and arguments 274

COT scalar function
description 275

values and arguments 275

COUNT function 241

COUNT_BIG function
detailed format description 242

values and arguments 242

COVARIANCE function 243

CREATE SERVER statement 36

cross-tabulation rows 447

CS (cursor stability)
isolation level 17

CUBE grouping
examples 447

query description 447

CURRENT CLIENT_ACCTNG special register 120

CURRENT CLIENT_APPLNAME special register 120

CURRENT CLIENT_USERID special register 120

CURRENT CLIENT_WRKSTNNAME special register 121

CURRENT DATE special register 121

CURRENT DBPARTITIONNUM special register 121

CURRENT DECFLOAT ROUNDING MODE special

register 122

CURRENT DEFAULT TRANSFORM GROUP special

register 123

CURRENT DEGREE special register
description 123

CURRENT EXPLAIN MODE special register
description 124

CURRENT EXPLAIN SNAPSHOT special register
description 125

772 SQL Reference, Volume 1

CURRENT FEDERATED ASYNCHRONY special register 125

CURRENT FUNCTION PATH special register
description 129

CURRENT IMPLICIT XMLPARSE OPTION special

register 126

CURRENT ISOLATION special register 126

CURRENT LOCK TIMEOUT special register 127

CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register 127

CURRENT MDC ROLLOUT MODE special register 128

CURRENT OPTIMIZATION PROFILE special register 128

CURRENT PACKAGE PATH special register 128

CURRENT PATH special register
description 129

CURRENT QUERY OPTIMIZATION special register
description 129

CURRENT REFRESH AGE special register
description 130

CURRENT SCHEMA special register 130

CURRENT SERVER special register 130

CURRENT SQLID special register 130

CURRENT TIME special register 131

CURRENT TIMESTAMP special register 131

CURRENT TIMEZONE special register 132

CURRENT USER special register 132

cursor name
definition 47

cursor stability (CS)
isolation level 17

D
data

partitioning 27

Data Definition Language (DDL)
description 1

statements
description 1

data source objects
description 34

data sources 31

description 30

identifying 47

valid server types 651

data structures
packed decimal 517

data type mappings
description 35

forward 652

reverse 662

data types
BIGINT 70

binary string 76

BLOB 76

casting 85

CHAR 73

character string 73

CLOB 73

DATE 78

datetime 78

DBCLOB 76

DECIMAL
overview 70

DOUBLE 70

floating-point
overview 70

graphic string 76

data types (continued)
INTEGER

overview 70

numeric
overview 70

partition compatibility 112

promotion
overview 84

REAL 70

result columns 447

SMALLINT 70

SQL
overview 69

TIME 78

TIMESTAMP 78

TYPE_ID function 386

TYPE_NAME function 387

TYPE_SCHEMA function 387

unsupported 35

user-defined
overview 81

VARCHAR
overview 73

VARGRAPHIC 76

XML
values 81

database manager
limits 501

SQL interpretation 1

database partition compatibility
overview 112

databases
creating

sample 669

distributed 1

erasing sample 669

partitioned 1

relational 1

DATALINK data type
unsupported 35

DATAPARTITIONNUM scalar function 275

DATE data type
overview 78

WEEK_ISO scalar function 398

date data types
operations 158

DATE function 276

date functions
DAY 277

DAYS 279

MONTH 328

YEAR 431

dates
string representation formats 78

DAY scalar function 277

DAYNAME scalar function
description 278

DAYOFWEEK scalar function
description 278

DAYOFWEEK_ISO scalar function
description 278

DAYOFYEAR scalar function
description 279

DAYS scalar function 279

DB2 for Linux, UNIX and Windows
default forward type mappings 652

default reverse type mappings 662

Index 773

DB2 for Linux, UNIX and Windows (continued)
supported versions 36

DB2 for System i
default forward type mappings 652

default reverse type mappings 662

supported versions 36

DB2 for VM and VSE
default forward type mappings 652

default reverse type mappings 662

supported versions 36

DB2 for z/OS
supported versions 36

DB2 for z/OS and OS/390
default forward type mappings 652

default reverse type mappings 662

DB2 Information Center
languages 759

updating 760

versions 759

viewing in different languages 759

db2nodes.cfg file
DBPARTITIONNUM function 280

DBCLOB data type
description 76

DBCLOB function
description 280

DBPARTITIONNUM function
description 280

DDL (Data Definition Language)
See Data Definition Language (DDL) 1

DECFLOAT scalar function 282

decimal constants 113

decimal conversion 92

DECIMAL data type
conversion

floating-point 92

precision 70

sign 70

DECIMAL scalar function 283

declarations
XMLNAMESPACES 411

declustering
partial 27

DECODE scalar function
description 286

DECRYPT_BIN function 287

DECRYPT_CHAR function 287

decrypting information 287

DEGREES scalar function
description 288

delimiters
token 46

DEPARTMENT sample table 669

DEREF function
description 289

dereference operation 170

descriptor-name
syntax diagram 47

DIFFERENCE scalar function
description 289

DIGITS function 290

DISABLE function mapping option
valid settings 652

DISTINCT keyword
aggregate function 237

subselect statement 447

distinct types
arithmetic operands 149

comparisons
overview 92

concatenation 149

constants 113

names 47

overview 81

distributed database management system 29

distributed relational databases
connecting to 25

documentation
overview 755

PDF 755

printed 755

terms and conditions of use 762

DOUBLE data type
CHAR scalar function 264

precision 70

sign 70

DOUBLE scalar function 291

double-byte character set (DBCS)
characters truncated during assignment 92

returning strings 396

double-precision floating-point data type
overview 70

durations
overview 158

dynamic dispatch
description 142

dynamic SQL
SQLDA

description 517

E
embedded SQL applications

Java 2

EMPACT sample table 669

EMPLOYEE sample table 669

EMPPHOTO sample table 669

EMPRESUME sample table 669

empty strings
character 73

graphic 76

encoding schemes
character conversion 22

ENCRYPT scalar function 292

encryption
ENCRYPT function 292

GETHINT function 297

XMLGROUP function 254

XMLROW function 418

Entrez
supported versions 36

error messages
SQLCA definitions 511

ESCAPE clauses
LIKE predicate 197

evaluation order
expressions 149

event monitors
EVENT_MON_STATE function 293

names 47

overview 26

Excel files
supported versions 36

774 SQL Reference, Volume 1

EXCEPT operator of fullselect 485

exception tables
structure 741

exclusive locks 17

EXECUTE IMMEDIATE statement
dynamic SQL 1

EXECUTE privilege
functions 134

methods 142

EXECUTE statement
dynamic SQL 1

EXISTS predicate 195

EXP scalar function
description 294

explain tables
overview 703

EXPLAIN_ARGUMENT table 711

EXPLAIN_DIAGNOSTIC table 717

EXPLAIN_DIAGNOSTIC_DATA table 718

EXPLAIN_INSTANCE table 719

EXPLAIN_OBJECT table 722

EXPLAIN_OPERATOR table 724

EXPLAIN_PREDICATE table 726

EXPLAIN_STATEMENT table 729

EXPLAIN_STREAM table 731

exposed correlation names
FROM clause 47

expressions
CASE 163

description 149

GROUP BY clause 447

ORDER BY clause 447

ROW CHANGE 185

SELECT clause 447

structured type 181

subselect 447

external functions
overview 134

F
federated database

wrapper modules 31

wrappers 31

federated databases
description 31

system catalog 40

federated server 30

description 36

federated systems
overview 29

file reference variables
BLOBs 47

CLOBs 47

DBCLOBs 47

fixed-length character string 73

fixed-length graphic string 76

flat files
See also table-structured files 36

FLOAT data type
sign and precision 70

FLOAT function
description 294

values and arguments 294

floating point
constant 113

to decimal conversion 92

FLOOR function
description 295

values and arguments 295

FOR FETCH ONLY clause
SELECT statement 489

FOR READ ONLY clause
SELECT statement 489

forward type mappings
default mappings 652

FROM clause
correlation-name example 47

exposed names explained 47

non-exposed names explained 47

subselect syntax 447

use of correlation names 47

fullselect
detailed syntax 485

examples 485

initialization 489

iterative 489

multiple operations, order of execution 485

ORDER BY clause 447

scalar 149

subquery role, search condition 47

table reference 447

function mappings
mapping name 47

options 652

function name 47

function signature 134

functions
aggregate

ARRAY_AGG 238

COUNT 241

description 237

MIN 246

XMLAGG 252

arguments 209

bit manipulation 261

built-in 134

casting
CAST 165

XMLCAST 169

column
ARRAY_AGG 238

AVG 239

CORR 240

CORRELATION 240

COUNT 241

COUNT_BIG 242

COVAR 243

COVARIANCE 243

description 134, 237

MAX 245

MIN 246

REGR_AVGX 247

REGR_AVGY 247

REGR_COUNT 247

REGR_ICPT 247

REGR_INTERCEPT 247

REGR_R2 247

REGR_SLOPE 247

REGR_SXX 247

REGR_SXY 247

REGR_SYY 247

regression functions 247

STDDEV 250

Index 775

functions (continued)
column (continued)

SUM 251

VAR, options 252

VAR, results 252

VARIANCE, options 252

VARIANCE, results 252

XMLAGG 252

description 209

external 134

in a Unicode database 257

in expressions 209

OLAP (Online Analytical Processing) 172

overloaded 134

procedures 439

row 134

scalar
ABS 257

ABSVAL 257

ACOS 257

ASCII 258

ASIN 258

ATAN 259

ATAN2 259

ATANH 259

AVG 239

BIGINT 260

BITAND 261

BITANDNOT 261

BITNOT 261

BITOR 261

BITXOR 261

BLOB 263

CARDINALITY 263

CEIL 264

CEILING 264

CHAR 264

CHARACTER_LENGTH 268

CHR 270

CLOB 270

COALESCE 271

COLLATION_KEY_BIT 271

COMPARE_DECFLOAT 273

CONCAT 274

COS 274

COSH 274

COT 275

DATE 276

DAY 277

DAYNAME 278

DAYOFWEEK 278

DAYOFWEEK_ISO 278

DAYOFYEAR 279

DAYS 279

DBCLOB 280

DBPARTITIONNUM 280

DECFLOAT 282

DECIMAL 283

DECODE 286

DECRYPTBIN 287

DECRYPTCHAR 287

DEGREES 288

DEREF 289

description 134, 257

DIFFERENCE 289

DIGITS 290

DOUBLE 291

functions (continued)
scalar (continued)

DOUBLE_PRECISION 291

ENCRYPT 292

EVENT_MON_STATE 293

EXP 294

FLOAT 294

FLOOR 295

GENERATE_UNIQUE 295

GETHINT 297

GRAPHIC 297

GREATEST 299

GROUPING 244

HASHEDVALUE 299

HEX 300

HOUR 302

IDENTITY_VAL_LOCAL 302

INSERT 306

INTEGER 309

JULIAN_DAY 310

LCASE 311

LCASE (locale sensitive) 311

LEAST 311

LEFT 312

LENGTH 314

LN 316

LOCATE 317

LOG10 320

LONG_VARCHAR 320

LONG_VARGRAPHIC 321

LOWER 321

LOWER (locale sensitive) 321

LTRIM 323

MAX 324

MAX_CARDINALITY 324

MICROSECOND 325

MIDNIGHT_SECONDS 325

MIN 326

MINUTE 327

MOD 328

MONTH 328

MONTHNAME 329

MULTIPLY_ALT 329

NODENUMBER (see DBPARTITIONNUM) 280

NORMALIZE_DECFLOAT 330

NULLIF 331

NVL 331

OCTET_LENGTH 332

OVERLAY 332

PARAMETER 336

PARTITION (see HASHEDVALUE) 299

POSITION 336

POSSTR 339

POWER 341, 343

QUANTIZE 342

QUARTER 343

RAISE_ERROR 344

RAND 345

REAL 345

REC2XML 346

REPEAT 350

REPLACE 350

RID 352

RID_BIT 352

RIGHT 353

ROUND 356

RTRIM 358

776 SQL Reference, Volume 1

functions (continued)
scalar (continued)

SECLABEL 358

SECLABEL_BY_NAME 359

SECLABEL_TO_CHAR 360

SECOND 361

SIGN 362

SIN 363

SINH 363

SMALLINT 363

SOUNDEX 364

SPACE 365

SQRT 365

STRIP 366

SUBSTR 366

SUBSTRING 369

TABLE_NAME 371

TABLE_SCHEMA 372

TAN 373

TANH 374

TIME 374

TIMESTAMP 375

TIMESTAMP_FORMAT 376

TIMESTAMP_ISO 379

TIMESTAMPDIFF 379

TO_CHAR 380

TO_DATE 381

TOTALORDER 381

TRANSLATE 382

TRIM 384

TRUNC 385

TRUNCATE 385

TYPE_ID 386

TYPE_NAME 387

TYPE_SCHEMA 387

UCASE 388

UCASE (locale sensitive) 388

UPPER 388

UPPER (locale sensitive) 388

VALUE 390

VARCHAR 390

VARCHAR_FORMAT 393

VARGRAPHIC 396

WEEK 398

WEEK_ISO 398

XMLATTRIBUTES 399

XMLCOMMENT 400

XMLCONCAT 401

XMLDOCUMENT 402

XMLELEMENT 403

XMLFOREST 408

XMLGROUP 254

XMLNAMESPACES 411

XMLPARSE 413

XMLPI 415

XMLQUERY 416

XMLROW 418

XMLSERIALIZE 420

XMLTEXT 422

XMLVALIDATE 423

XMLXSROBJECTID 427

XSLTRANSFORM 428

YEAR 431

sourced 134

SQL 134

SQL language element 134

supported 210

functions (continued)
table

XMLTABLE 432

table functions
description 134, 432

user-defined 134, 436

G
GENERATE_UNIQUE function

syntax 295

GETHINT function
description 297

values and arguments 297

global catalog
description 40

global variables 133

grand total row 447

GRAPHIC data type
description 76

GRAPHIC function
description 297

values and arguments 297

GRAPHIC space 24

graphic string constant
description 113

graphic string data type
description 76

graphic strings
returning from host variable name 382

translating string syntax 382

GREATEST function 299

GROUP BY clause
subselect results 447

subselect rules and syntax 447

GROUPING function 244

grouping-expression 447

groups
defining names 47

H
hash partitioning 27

HASHEDVALUE function 299

HAVING clause 447

help
configuring language 759

SQL statements 759

HEX function 300

hexadecimal constant
description 113

HMMER data source
supported versions 36

host identifiers
overview 47

host variables
BLOB 47

CLOB 47

DBCLOB 47

indicator variables 47

overview 47

syntax diagrams 47

HOUR scalar function
description 302

Index 777

I
identifiers

delimited 47

host 47

length limits 501

ordinary 47

SQL 47

IDENTITY_VAL_LOCAL function
description 302

values and arguments 302

IMPLICIT_SCHEMA authority 3

IN predicate 196

indexes
description 5

name
definition 47

overview 5

indicator variables
description 47

host variable, uses in declaring 47

Informix
default forward type mappings 652

default reverse type mappings 662

supported versions 36

initializing
fullselect 489

INSERT function
description 306

values and arguments 306

integer constant
description 113

INTEGER data type
sign and precision 70

INTEGER function
description 309

values and arguments 309

integer values from expressions
INTEGER function 309

integers
decimal conversion summary 92

in ORDER BY clause 447

interactive SQL 1

intermediate result tables 447

INTERSECT operator
duplicate rows, use of ALL 485

of fullselect, role in comparison 485

INTO clause
FETCH statement, use in host variable 47

SELECT INTO statement, use in host variable 47

values from applications programs 47

INTRAY sample table 669

invoking
function 134

methods 180

isolation levels
cursor stability 17

description 17

in DELETE statement 489

read stability (RS) 17

repeatable read (RR) 17

uncommitted read (UR) 17

iterative fullselect 489

J
Java Database Connectivity (JDBC)

embedded SQL for Java (SQLJ) 2

overview 2

joins
subselect component of fullselect 447

tables
subselect clause 447

types
full outer 447

inner 447

left outer 447

right outer 447

JULIAN_DAY scalar function
description 310

L
label-based access control (LBAC)

exception tables 741

limits 501

labels
durations 158

object names in SQL procedures 47

large integers 70

large objects (LOBs)
behavior 28

description 77

locator 77

with partitioned tables 28

lateral correlation 447

LBAC (label-based access control)
exception tables 741

limits 501

security labels
component name length 501

name length 501

security policies
name length 501

LCASE (Locale sensitive) scalar function
overview 311

LEAST function 311

LEFT scalar function
description 312

values and arguments 312

length
LENGTH scalar function 314

LENGTH scalar function
description 314

values and arguments 314

LIKE predicate 197

limits
identifier length 501

SQL 501

literals
description 113

LN function
description 316

values and arguments 316

LOB locators 77

LOBs (large objects)
description 77

local catalog
See global catalog 40

LOCATE scalar function
description 317

778 SQL Reference, Volume 1

LOCATE scalar function (continued)
values and arguments 317

locators
large object (LOB) 77

variable description 47

locks
definition 15

exclusive (X) 17

share (S) 17

update (U) 17

LOG10 scalar function
description 320

values and arguments 320

logical operators
search rules 190

LONG_VARCHAR function
description 320

LONG_VARGRAPHIC function
description 321

LOWER (Locale sensitive) scalar function
description 321

values and arguments 321

LOWER scalar function
description 321

values and arguments 321

LTRIM scalar function
description 323

values and arguments 323

M
MAX function 324

detailed format description 245

values and arguments 245

MAX_CARDINALITY function 324

method name 47

method signature 142

methods
built-in 142

dynamic dispatch of 142

external 142

invoking 180

overloaded 142

SQL 142

SQL language element 142

type preserving 142

user-defined 142

MICROSECOND function
description 325

values and arguments 325

Microsoft Excel
See Excel files 36

Microsoft SQL Server
default forward type mappings 652

default reverse type mappings 662

supported versions 36

MIDNIGHT_SECONDS function
description 325

values and arguments 325

MIN function 246, 326

MINUTE scalar function
description 327

values and arguments 327

mixed data
definition 73

LIKE predicate 197

MOD function
description 328

values and arguments 328

monitoring
database events 26

MONTH function
description 328

values and arguments 328

MONTHNAME function
description 329

values and arguments 329

multibyte character support
code points for special characters 24

multiple row VALUES clause
result data type 106

MULTIPLY_ALT function
detailed format description 329

values and arguments, rules for 329

N
names

subselect columns 447

naming conventions
identifiers 47

qualified column rules 47

nested table expressions 447

nickname column options
description 34

nicknames
definition 47

description 34

FROM clause
exposed names 47

nonexposed names 47

subselect 447

qualifying a column name 47

SELECT clause 447

NODENUMBER function
DBPARTITIONNUM 280

nonexposed correlation-name in FROM clause 47

nonrelational data sources
specifying data type mappings 35

NORMALIZE_DECFLOAT scalar function
description 330

NOT NULL clause
in NULL predicate 202

notices 765

NUL-terminated character strings 73

NULL predicate rules 202

NULL value
SQL

assignment 92

definition 69

grouping-expressions, allowable uses 447

occurrences in duplicate rows 447

result columns 447

specified by indicator variable 47

unknown condition 190

NULLIF function
description 331

values and arguments 331

numbers
precision 517

scale 517

numeric
assignments in SQL operations 92

Index 779

numeric (continued)
comparisons 92

data types 70

NUMERIC or DECIMAL data type
sign and precision 70

NVL scalar function
overview 331

O
object table 47

OCTET_LENGTH scalar function
description 332

ODBC
default forward type mappings 652

supported versions 36

ODBC (open database connectivity)
description 2

OLAP
specification 172

OLAP (Online Analytical Processing)
functions 172

OLE DB
supported versions 36

Online Analytical Processing (OLAP)
functions 172

open database connectivity (ODBC) 2

operands
decimal 149

floating-point 149

integer 149

result data type 106

strings 149

operations
assignments 92

comparisons 92

datetime 158

dereference 170

operators
arithmetic 149

optimizer
description 41

OR truth table 190

Oracle
default forward type mappings 652

default reverse type mappings 662

ORDER BY clause
culturally correct collation 271

select statement 447

order of evaluation
expressions 149

ordering DB2 books 758

ordinary tokens 46

ORG sample table 669

outer joins
joined table 447

OVERLAY scalar function
description 332

overloaded function
multiple function instances 134

overloaded method 142

ownership
database objects 10

P
packages

authorization IDs
binding 47

dynamic statements 47

names
overview 47

overview 9

PARAMETER function
description 336

parameter markers
dynamic SQL

host variables 47

parameters
naming conventions 47

PARTITION function
substitution for HASHEDVALUE name 299

partitioned database environments
overview 27

partition compatibility 112

partitioned tables
large objects (LOBs) 28

path
SQL 134

pattern matching
Unicode databases 111

phantom row 17

point of consistency
database 15

POSITION scalar function 336

POSSTR function 339

POWER scalar function
description 341

precedence
overview 149

precision
numbers

SQLLEN variable 517

precision-integer DECIMAL function 283

predicates
basic 192

BETWEEN 195

EXISTS 195

IN 196

LIKE 197

NULL 202

overview 186

quantified 193

query processing 187

TYPE 203

VALIDATED 204

XMLEXISTS 206

PREPARE statement
dynamic SQL 1

privileges
EXECUTE

functions 134

methods 142

hierarchy 10

implicit for packages 10

individual 10

overview 10

ownership (CONTROL) 10

problem determination
information available 762

tutorials 762

780 SQL Reference, Volume 1

procedures
names

overview 47

PROJECT sample table 669

pushdown analysis
description 41

Q
qualified column names 47

qualifiers
object name 47

reserved 697

quantified predicate 193

QUANTIZE scalar function
description 342

QUARTER function
description 343

values and arguments 343

queries
authorization IDs 447

definition 447

description 2

examples
SELECT statement 489

fragments 41

recursive 489

query optimization
description 41

R
RADIANS scalar function

description 343

values and arguments 343

RAISE_ERROR scalar function
description 344

values and arguments 344

RAND scalar function
description 345

values and arguments 345

read stability (RS)
description 17

REAL function
description 345

single precision conversion 345

values and arguments 345

REAL SQL data type
sign and precision 70

REC2XML scalar function
description 346

values and arguments 346

recursion queries 489

recursive common table expression 489

reference types
casting 85

comparisons 92

DEREF function 289

description 81

regression functions
description 247

REGR_AVGX 247

REGR_AVGY 247

REGR_COUNT 247

REGR_ICPT 247

REGR_INTERCEPT 247

regression functions (continued)
REGR_R2 247

REGR_SLOPE 247

REGR_SXX 247

REGR_SXY 247

REGR_SYY 247

remote
function name 47

type name 47

remote authorization name 47

remote catalog information 40

REMOTE_NAME function mapping option
valid settings 652

remote-object-name 47

remote-schema-name 47

remote-table-name 47

REPEAT scalar function
description 350

values and arguments 350

repeatable read (RR)
description 17

REPLACE scalar function
description 350

values and arguments 350

reserved
qualifiers 697

schemas 697

words 697

resolution
function 134

method 142

result columns
subselect 447

result data type
arguments of COALESCE 106

multiple row VALUES clause 106

operands 106

result expressions of CASE 106

set operator 106

result expressions of CASE
result data type 106

result tables
query 447

return identity column value
IDENTITY_VAL_LOCAL function 302

returning hour part of values
HOUR function 302

returning microsecond from value
MICROSECOND function 325

returning minute from value
MINUTE function 327

returning month from value
MONTH function 328

returning seconds from value
SECOND function 361

returning substrings from a string
SUBSTR function 366

returning timestamp from values
TIMESTAMP function 375

reverse type mappings
default mappings 662

RID function 352

RID_BIT function 352

RIGHT scalar function
description 353

values and arguments 353

Index 781

rollback
definition 15

ROLLUP grouping of GROUP BY clause 447

ROUND scalar function
description 356

values and arguments 356

routines
procedures 439

SQL administrative
supported 210

SQL statements allowed 745

ROW CHANGE
expression 185

row functions
description 134

rows
COUNT_BIG function 242

GROUP BY clause 447

HAVING clause 447

search conditions, syntax 190

SELECT clause
syntax diagram 447

RR (repeatable read) isolation level
description 17

RS (read stability) isolation level
description 17

RTRIM scalar function
description 358

run-time authorization ID 47

S
SALES sample table 669

SAMPLE database
creating 669

description 669

erasing 669

sampling
subselect tablesample-clauses 447

savepoints
names 47

SBCS (single-byte character set) data
overview 73

scalar fullselect expressions 149

scalar functions
DECIMAL function 283

regualr functions 134

scalar functions 257

VARCHAR_BIT_FORMAT 392

VARCHAR_FORMAT_BIT 395

scale
data

comparisons in SQL 92

determined by SQLLEN variable 517

number conversion in SQL 92

numbers
determined by SQLLEN variable 517

schemas
description 3

names 47

reserved 697

scope
definition 81

Script
supported versions 36

search conditions
AND logical operator 190

search conditions (continued)
description 190

HAVING clause
arguments and rules 447

NOT logical operator 190

OR logical operator 190

order of evaluation 190

WHERE clause 447

SECADM
database authority 10

SECLABEL
scalar function 358

SECLABEL_BY_NAME scalar function
description 359

SECLABEL_TO_CHAR scalar function
description 360

SECOND scalar function
description 361

values and arguments 361

sections
definition 9

security administrator authority (SECADM) 10

security labels (LBAC)
component name length 501

name length 501

policies
name length 501

security-label-name 47

security-policy-name 47

SELECT clause
list notation

column reference 447

with DISTINCT keyword 447

select list
application rules and syntax 447

description 447

notation rules and conventions 447

SELECT statement
definition 489

examples 489

fullselect detailed syntax 485

subselects 447

VALUES clause 485

sequences
ordering 295

values 182

server definitions
description 32

server options
description 32

temporary 32

server types
valid federated types 651

servers
names 47

SESSION USER special register 132

set operators
EXCEPT, comparing differences 485

INTERSECT, role of AND in comparisons 485

result data type 106

UNION, correspondence to OR 485

SET SERVER OPTION statement
setting an option temporarily 32

share locks 17

shift-in characters
not truncated by assignments 92

782 SQL Reference, Volume 1

SIGN scalar function
description 362

values and arguments 362

signatures
function 134

method 142

SIN scalar function
description 363

values and arguments 363

single-precision floating-point data type 70

SINH scalar function
description 363

values and arguments 363

size limits
identifier length 501

SQL 501

small integer values from expressions
SMALLINT function 363

small integers
See SMALLINT data type 70

SMALLINT data type
sign and precision 70

SMALLINT function
description 363

values and arguments 363

SOME quantified predicate 193

sorting 41

ordering of results 92

string comparisons 92

SOUNDEX scalar function
description 364

values and arguments 364

sourced functions 134

space
rules governing 46

SPACE scalar function
description 365

values and arguments 365

special registers
CLIENT ACCTNG 120

CLIENT APPLNAME 120

CURRENT CLIENT_ACCTNG 120

CURRENT CLIENT_APPLNAME 120

CURRENT CLIENT_USERID 120

CURRENT CLIENT_WRKSTNNAME 121

CURRENT DATE 121

CURRENT DBPARTITIONNUM 121

CURRENT DECFLOAT ROUNDING MODE 122

CURRENT DEFAULT TRANSFORM GROUP 123

CURRENT DEGREE 123

CURRENT EXPLAIN MODE 124

CURRENT EXPLAIN SNAPSHOT 125

CURRENT FEDERATED ASYNCHRONY 125

CURRENT FUNCTION PATH 129

CURRENT IMPLICIT XMLPARSE OPTION 126

CURRENT ISOLATION 126

CURRENT LOCK TIMEOUT 127

CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION 127

CURRENT MDC ROLLOUT MODE 128

CURRENT NODE (see CURRENT

DBPARTITIONNUM) 121

CURRENT OPTIMIZATION PROFILE 128

CURRENT PACKAGE PATH 128

CURRENT PATH 129

CURRENT QUERY OPTIMIZATION 129

CURRENT REFRESH AGE 130

special registers (continued)
CURRENT SCHEMA 130

CURRENT SERVER 130

CURRENT SQLID 130

CURRENT TIME 131

CURRENT TIMESTAMP 131

CURRENT TIMEZONE 132

CURRENT USER 132

interaction, Explain 735

SESSION USER 132

SQL language element 117

SYSTEM USER 133

updatable 117

USER 133

specific name
definition 47

specifications
ARRAY element 170

CAST 165

OLAP 172

XMLCAST 169

SQL (Structured Query Language)
limits 501

path 134

SQL compiler
in a federated system 31

SQL functions 134

SQL operations
basic 92

SQL path
built-in 134

SQL statements
allowed in routines 745

CALL 749

displaying help 759

dynamic SQL
definition 1

immediate execution 1

interactive SQL
definition 1

preparing and executing dynamic SQL 1

static
definition 1

SQL subquery
WHERE clause 447

SQL syntax
AVG aggregate function, results on column set 239

basic predicate, detailed diagram 192

BETWEEN predicate, rules 195

comparing two predicates, truth conditions 192, 203

CORRELATION aggregate function results 240

COUNT_BIG function, arguments and results 242

COVARIANCE aggregate function results 243

EXISTS predicate 195

GENERATE_UNIQUE function 295

GROUP BY clause
subselect 447

IN predicate description 196

LIKE predicate, rules 197

multiple operations, order of execution 485

regression functions results 247

search conditions, detailed formats and rules 190

SELECT clause description 447

STDDEV aggregate function, results 250

TYPE predicate 203

VARIANCE aggregate function results 252

WHERE clause search conditions 447

Index 783

SQL variable name 47

SQLCA (SQL communication area)
description 511

error reporting 511

partitioned database systems 511

viewing interactively 511

SQLD field in SQLDA 517

SQLDA (SQL descriptor area)
contents 517

SQLDABC field in SQLDA 517

SQLDAID field in SQLDA 517

SQLDATA field in SQLDA 517

SQLDATALEN field in SQLDA 517

SQLDATATYPE_NAME field in SQLDA 517

SQLIND field in SQLDA 517

SQLJ
connectivity 2

SQLLEN field in SQLDA 517

SQLLONGLEN field in SQLDA 517

SQLN field in SQLDA 517

SQLNAME field in SQLDA 517

SQLSTATE
in RAISE_ERROR function 344

SQLTYPE field in SQLDA 517

SQLVAR field in SQLDA 517

SQRT scalar function
description 365

STAFF sample table 669

STAFFG sample table 669

statements
names 47

static SQL
description 1

STDDEV function 250

stored procedures
CALL statement 749

XSR_ADDSCHEMADOC 439

XSR_COMPLETE 440

XSR_DTD 441

XSR_ENTITY 442

XSR_REGISTER 444

XSR_UPDATE 445

string units
built-in functions 73

strings
assignment conversion rules 92

collating sequences 41

definition 22

Unicode comparisons 111

STRIP scalar function
description 366

Structured Query Language (SQL)
assignments 92

basic operands, assignments and comparisons 92

comparison operation, overview 92

structured types
description 81

expression
casting to a subtype 181

host variables 47

sub-total rows 447

subqueries
HAVING clause 447

using fullselect as search condition 47

WHERE clause 447

subselect
description 447

subselect (continued)
example sequence of operations 447

examples 447

FROM clause
subselect 447

SUBSTR function
fragments 366

SUBSTR scalar function
description 366

values and arguments 366

SUBSTRING scalar function
description 369

substrings 366

SUM function
detailed format description 251

values and arguments 251

super-aggregate rows 447

super-groups 447

supertypes
identifier names 47

supported functions 210

Sybase
default forward type mappings 652

default reverse type mappings 662

supported versions 36

symmetric super-aggregate rows 447

synonyms
qualifying a column name 47

syntax
description x

system catalog views
description 15

system catalogs
views on system tables 527

SYSTEM USER special register 133

T
TABLE clause

table reference 447

table functions
description 134, 432

table reference
alias 447

nested table expressions 447

nickname 447

table name 447

view name 447

table spaces
description 20

name 47

TABLE_NAME function
alias 371

description 371

values and arguments 371

TABLE_SCHEMA function
alias 372

description 372

values and arguments 372

table-structured files
supported versions 36

tables
aliases 9

catalog views on system tables 527

collocation 27

correlation name 47

description 4

784 SQL Reference, Volume 1

tables (continued)
designator to avoid ambiguity 47

exception 741

exposed names in FROM clause 47

expressions
common 2

common table expressions 489

description 2

FROM clause
subselect naming conventions 447

names
description 47

in FROM clause 447

in SELECT clause, syntax diagram 447

nested table expression 47

non-exposed names in FROM clause 47

qualified column name 47

reference 447

SAMPLE database 669

scalar fullselect 47

subquery 47

unique correlation names 47

TAN scalar function
description 373

values and arguments 373

TANH scalar function
description 374

values and arguments 374

Teradata
default forward type mappings 652

default reverse type mappings 662

terms and conditions
use of publications 762

time
CHAR, use in format conversion 264

hour values, using in an expression (HOUR) 302

in expressions, TIME function 374

returning
microseconds, from datetime value 325

minutes, from datetime value 327

seconds, from datetime value 361

timestamp from values 375

values based on time 374

string representation formats 78

using time in expressions 374

TIME data types
description 78

operations 158

TIME functions
description 374

values and arguments 374

TIMESTAMP data type
description 78

WEEK scalar function 398

WEEK_ISO scalar function 398

TIMESTAMP function
description 375

values and arguments 375

TIMESTAMP_FORMAT function
description 376

values and arguments 376

TIMESTAMP_ISO function
description 379

values and arguments 379

TIMESTAMPDIFF scalar function
description 379

values and arguments 379

timestamps
GENERATE_UNIQUE 295

string representation formats 78

TO_CHAR function
description 380

values and arguments 380

TO_DATE function
description 381

values and arguments 381

tokens
case sensitivity 46

delimiter 46

ordinary 46

SQL language element 46

TOTALORDER scalar function
description 381

TRANSLATE scalar function
character string 382

description 382

graphic string 382

values and arguments 382

triggers
cascading 6

constraints, interaction 701

description 6

Explain tables 703

interactions 701

maximum name length 501

names 47

TRIM scalar function
description 384

troubleshooting
online information 762

tutorials 762

TRUNCATE scalar function 385

truncation
numbers 92

truth tables 190

truth valued logic 190

tutorials
problem determination 762

troubleshooting 762

Visual Explain 762

type mapping
name 47

type name 47

TYPE predicate
format 203

type preserving method 142

TYPE_ID function
data types 386

description 386

values and arguments 386

TYPE_NAME function
description 387

values and arguments 387

TYPE_SCHEMA function
data types 387

description 387

values and arguments 387

typed tables
names 47

typed views
description 8

names 47

Index 785

types
distinct

user-defined 81

reference 81

structured 81

U
UCASE (Locale sensitive) scalar function 388

UCASE scalar function 388

UDFs
see user-defined functions 436

unary operators
minus sign 149

plus sign 149

uncommitted reads (UR)
isolation levels 17

undefined reference errors 47

Unicode
conversion to uppercase 46

Unicode (UCS-2)
functions in 257

pattern matching 111

string comparisons 111

UNION operator
role in comparison of fullselect 485

unique correlation names
table designators 47

units of work (UOW)
definition 15

unknown condition
null value 190

update lock 17

updates
DB2 Information Center 760

updatable special registers 117

UPPER (Locale sensitive) scalar function
description 388

values and arguments 388

UPPER scalar function
description 388

values and arguments 388

UR (uncommitted read) isolation level 17

user mappings
description 33

storing 33

USER special register 133

user-defined functions
description 134, 209, 436

user-defined methods
description 142

user-defined types
casting 85

description 81

distinct types
description 81

reference type 81

structured types 81

user-defined types (UDTs)
unsupported data types 35

V
VALIDATED predicate

description 204

VALUE function
description 390

values and arguments 390

values
definition 69

null 69

sequence 182

VALUES clause
fullselect 485

VARCHAR data type
description 73

DOUBLE scalar function 291

WEEK scalar function 398

WEEK_ISO scalar function 398

VARCHAR function
description 390

values and arguments 390

VARCHAR_BIT_FORMAT function
description 392

VARCHAR_FORMAT function
description 393

values and arguments 393

VARCHAR_FORMAT_BIT function
description 395

VARGRAPHIC data type
description 76

VARGRAPHIC function
description 396

values and arguments 396

variables
global 133

VARIANCE aggregate function 252

varying-length character string 73

varying-length graphic string 76

view
aliases 9

view name
definition 47

views
description 8

exposed names in FROM clause 47

FROM clause
subselect naming conventions 447

names in FROM clause 447

names in SELECT clause
syntax diagram 447

non-exposed names in FROM clause 47

overview 8

qualifying a column name 47

Visual Explain
tutorial 762

W
WEEK scalar function

description 398

WEEK_ISO scalar function
description 398

WHERE clause
subselect component of fullselect 447

wild cards
LIKE predicate 197

WITH common table expression
select-statement 489

words
SQL reserved 697

786 SQL Reference, Volume 1

wrappers
description 31

names 47

X
XML

data type 81

supported versions 36

XMLAGG aggregate function
description 252

XMLATTRIBUTES scalar function
description 399

XMLCAST specification
description 169

XMLCOMMENT scalar function
description 400

XMLCONCAT scalar function
description 401

XMLDOCUMENT scalar function
description 402

XMLELEMENT scalar function
description 403

XMLEXISTS predicate 206

XMLFOREST scalar function
description 408

XMLGROUP scalar function 254

XMLNAMESPACES declaration
description 411

XMLPARSE scalar function
description 413

XMLPI scalar function
description 415

XMLQUERY scalar function
description 416

XMLROW scalar function 418

XMLSERIALIZE scalar function
description 420

XMLTABLE table function
description 432

XMLTEXT scalar function
description 422

XMLVALIDATE scalar function
description 423

XMLXSROBJECTID scalar function
description 427

XSLTRANSFORM scalar function
description 428

XSR_ADDSCHEMADOC stored procedure 439

XSR_COMPLETE stored procedure 440

XSR_DTD stored procedure 441

XSR_ENTITY stored procedure 442

XSR_REGISTER stored procedure 444

XSR_UPDATE stored procedure 445

Y
YEAR scalar function

description 431

values and arguments 431

Index 787

788 SQL Reference, Volume 1

����

Printed in USA

SC23-5861-02

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

SQ
L

Re
fe

re
nc

e,

Vo

lu
m

e
1

�
�

�

	Contents
	About this book
	Who should use this book
	How this book is structured
	How to read the syntax diagrams
	Conventions used in this manual
	Error conditions
	Highlighting conventions

	Related documentation

	Chapter 1. Concepts
	Databases
	Structured Query Language (SQL)
	Queries and table expressions
	DB2 Call level interface (CLI) and open database connectivity (ODBC)
	Java database connectivity (JDBC) and embedded SQL for Java (SQLJ) programs
	Schemas
	Tables
	Constraints
	Indexes
	Triggers
	Views
	Table or view aliases
	Packages
	Authorization, privileges, and object ownership
	System catalog views
	Application processes, concurrency, and recovery
	Isolation levels
	Table spaces
	Character conversion
	National language support and SQL statements
	Connecting to distributed relational databases
	Event monitors
	Database partitioning across multiple database partitions
	Large object behavior in partitioned tables
	DB2 federated systems
	Federated systems
	What is a data source?
	The federated database
	The SQL compiler
	Wrappers and wrapper modules
	Server definitions and server options
	User mappings
	Nicknames and data source objects
	Nickname column options
	Data type mappings
	The federated server
	Supported data sources
	The federated database system catalog
	The query optimizer
	Collating sequences
	How collating sequences determine sort orders
	Setting the local collating sequence to optimize queries

	Chapter 2. Language elements
	Characters
	Tokens
	Identifiers
	Data types
	Data type list
	Numbers
	Character strings
	Graphic strings
	Binary strings
	Large objects (LOBs)
	Datetime values
	XML values
	User-defined types

	Promotion of data types
	Casting between data types
	Assignments and comparisons
	Rules for result data types
	Rules for string conversions
	String comparisons in a Unicode database
	Database partition-compatible data types

	Constants
	Special registers
	CURRENT CLIENT_ACCTNG
	CURRENT CLIENT_APPLNAME
	CURRENT CLIENT_USERID
	CURRENT CLIENT_WRKSTNNAME
	CURRENT DATE
	CURRENT DBPARTITIONNUM
	CURRENT DECFLOAT ROUNDING MODE
	CURRENT DEFAULT TRANSFORM GROUP
	CURRENT DEGREE
	CURRENT EXPLAIN MODE
	CURRENT EXPLAIN SNAPSHOT
	CURRENT FEDERATED ASYNCHRONY
	CURRENT IMPLICIT XMLPARSE OPTION
	CURRENT ISOLATION
	CURRENT LOCK TIMEOUT
	CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
	CURRENT MDC ROLLOUT MODE
	CURRENT OPTIMIZATION PROFILE
	CURRENT PACKAGE PATH
	CURRENT PATH
	CURRENT QUERY OPTIMIZATION
	CURRENT REFRESH AGE
	CURRENT SCHEMA
	CURRENT SERVER
	CURRENT TIME
	CURRENT TIMESTAMP
	CURRENT TIMEZONE
	CURRENT USER
	SESSION_USER
	SYSTEM_USER
	USER

	Global variables
	Functions
	Methods
	Expressions
	Datetime operations and durations
	CASE expression
	CAST specification
	XMLCAST specification
	ARRAY element specification
	Dereference operation
	OLAP specifications
	Method invocation
	Subtype treatment
	Sequence reference
	ROW CHANGE expression

	Predicates
	Predicate processing for queries
	Search conditions
	Basic predicate
	Quantified predicate
	BETWEEN predicate
	EXISTS predicate
	IN predicate
	LIKE predicate
	NULL predicate
	TYPE predicate
	VALIDATED predicate
	XMLEXISTS predicate

	Chapter 3. Functions
	Functions overview
	Supported functions and administrative SQL routines and views
	Aggregate functions
	ARRAY_AGG
	AVG
	CORRELATION
	COUNT
	COUNT_BIG
	COVARIANCE
	GROUPING
	MAX
	MIN
	Regression functions
	STDDEV
	SUM
	VARIANCE
	XMLAGG
	XMLGROUP

	Scalar functions
	ABS or ABSVAL
	ACOS
	ASCII
	ASIN
	ATAN
	ATAN2
	ATANH
	BIGINT
	BITAND, BITANDNOT, BITOR, BITXOR, and BITNOT
	BLOB
	CARDINALITY
	CEILING
	CHAR
	CHARACTER_LENGTH
	CHR
	CLOB
	COALESCE
	COLLATION_KEY_BIT
	COMPARE_DECFLOAT
	CONCAT
	COS
	COSH
	COT
	DATAPARTITIONNUM
	DATE
	DAY
	DAYNAME
	DAYOFWEEK
	DAYOFWEEK_ISO
	DAYOFYEAR
	DAYS
	DBCLOB
	DBPARTITIONNUM
	DECFLOAT
	DECIMAL
	DECODE
	DECRYPT_BIN and DECRYPT_CHAR
	DEGREES
	DEREF
	DIFFERENCE
	DIGITS
	DOUBLE
	ENCRYPT
	EVENT_MON_STATE
	EXP
	FLOAT
	FLOOR
	GENERATE_UNIQUE
	GETHINT
	GRAPHIC
	GREATEST
	HASHEDVALUE
	HEX
	HOUR
	IDENTITY_VAL_LOCAL
	INSERT
	INTEGER
	JULIAN_DAY
	LCASE
	LCASE (Locale sensitive)
	LEAST
	LEFT
	LENGTH
	LN
	LOCATE scalar function
	LOG10
	LONG_VARCHAR
	LONG_VARGRAPHIC
	LOWER
	LOWER (Locale sensitive)
	LTRIM
	MAX
	MAX_CARDINALITY
	MICROSECOND
	MIDNIGHT_SECONDS
	MIN
	MINUTE
	MOD
	MONTH
	MONTHNAME
	MULTIPLY_ALT
	NORMALIZE_ DECFLOAT
	NULLIF
	NVL
	OCTET_LENGTH
	OVERLAY
	PARAMETER
	POSITION scalar function
	POSSTR scalar function
	POWER
	QUANTIZE
	QUARTER
	RADIANS
	RAISE_ERROR
	RAND
	REAL
	REC2XML
	REPEAT
	REPLACE
	RID_BIT and RID
	RIGHT
	ROUND
	RTRIM
	SECLABEL
	SECLABEL_BY_NAME
	SECLABEL_TO_CHAR
	SECOND
	SIGN
	SIN
	SINH
	SMALLINT
	SOUNDEX
	SPACE
	SQRT
	STRIP
	SUBSTR
	SUBSTRING
	TABLE_NAME
	TABLE_SCHEMA
	TAN
	TANH
	TIME
	TIMESTAMP
	TIMESTAMP_FORMAT
	TIMESTAMP_ISO
	TIMESTAMPDIFF
	TO_CHAR
	TO_DATE
	TOTALORDER
	TRANSLATE scalar function
	TRIM
	TRUNCATE
	TYPE_ID
	TYPE_NAME
	TYPE_SCHEMA
	UCASE
	UCASE (Locale sensitive)
	UPPER
	UPPER (Locale sensitive)
	VALUE
	VARCHAR
	VARCHAR_BIT_FORMAT
	VARCHAR_FORMAT
	VARCHAR_FORMAT_BIT
	VARGRAPHIC
	WEEK
	WEEK_ISO
	XMLATTRIBUTES
	XMLCOMMENT
	XMLCONCAT
	XMLDOCUMENT
	XMLELEMENT
	XMLFOREST
	XMLNAMESPACES
	XMLPARSE
	XMLPI
	XMLQUERY
	XMLROW
	XMLSERIALIZE
	XMLTEXT
	XMLVALIDATE
	XMLXSROBJECTID
	XSLTRANSFORM
	YEAR

	Table functions
	XMLTABLE

	User-defined functions

	Chapter 4. Procedures
	Procedures overview
	XSR_ADDSCHEMADOC procedure
	XSR_COMPLETE procedure
	XSR_DTD procedure
	XSR_EXTENTITY procedure
	XSR_REGISTER procedure
	XSR_UPDATE procedure

	Chapter 5. SQL queries
	Subselect
	Fullselect
	Select-statement

	Appendix A. SQL and XML limits
	Appendix B. SQLCA (SQL communications area)
	Appendix C. SQLDA (SQL descriptor area)
	Appendix D. System catalog views
	Road map to the catalog views
	SYSCAT.ATTRIBUTES
	SYSCAT.AUDITPOLICIES
	SYSCAT.AUDITUSE
	SYSCAT.BUFFERPOOLDBPARTITIONS
	SYSCAT.BUFFERPOOLS
	SYSCAT.CASTFUNCTIONS
	SYSCAT.CHECKS
	SYSCAT.COLAUTH
	SYSCAT.COLCHECKS
	SYSCAT.COLDIST
	SYSCAT.COLGROUPCOLS
	SYSCAT.COLGROUPDIST
	SYSCAT.COLGROUPDISTCOUNTS
	SYSCAT.COLGROUPS
	SYSCAT.COLIDENTATTRIBUTES
	SYSCAT.COLOPTIONS
	SYSCAT.COLUMNS
	SYSCAT.COLUSE
	SYSCAT.CONSTDEP
	SYSCAT.CONTEXTATTRIBUTES
	SYSCAT.CONTEXTS
	SYSCAT.DATAPARTITIONEXPRESSION
	SYSCAT.DATAPARTITIONS
	SYSCAT.DATATYPES
	SYSCAT.DBAUTH
	SYSCAT.DBPARTITIONGROUPDEF
	SYSCAT.DBPARTITIONGROUPS
	SYSCAT.EVENTMONITORS
	SYSCAT.EVENTS
	SYSCAT.EVENTTABLES
	SYSCAT.FULLHIERARCHIES
	SYSCAT.FUNCMAPOPTIONS
	SYSCAT.FUNCMAPPARMOPTIONS
	SYSCAT.FUNCMAPPINGS
	SYSCAT.HIERARCHIES
	SYSCAT.HISTOGRAMTEMPLATEBINS
	SYSCAT.HISTOGRAMTEMPLATES
	SYSCAT.HISTOGRAMTEMPLATEUSE
	SYSCAT.INDEXAUTH
	SYSCAT.INDEXCOLUSE
	SYSCAT.INDEXDEP
	SYSCAT.INDEXES
	SYSCAT.INDEXEXPLOITRULES
	SYSCAT.INDEXEXTENSIONDEP
	SYSCAT.INDEXEXTENSIONMETHODS
	SYSCAT.INDEXEXTENSIONPARMS
	SYSCAT.INDEXEXTENSIONS
	SYSCAT.INDEXOPTIONS
	SYSCAT.INDEXXMLPATTERNS
	SYSCAT.KEYCOLUSE
	SYSCAT.NAMEMAPPINGS
	SYSCAT.NICKNAMES
	SYSCAT.PACKAGEAUTH
	SYSCAT.PACKAGEDEP
	SYSCAT.PACKAGES
	SYSCAT.PARTITIONMAPS
	SYSCAT.PASSTHRUAUTH
	SYSCAT.PREDICATESPECS
	SYSCAT.REFERENCES
	SYSCAT.ROLEAUTH
	SYSCAT.ROLES
	SYSCAT.ROUTINEAUTH
	SYSCAT.ROUTINEDEP
	SYSCAT.ROUTINEOPTIONS
	SYSCAT.ROUTINEPARMOPTIONS
	SYSCAT.ROUTINEPARMS
	SYSCAT.ROUTINES
	SYSCAT.ROUTINESFEDERATED
	SYSCAT.SCHEMAAUTH
	SYSCAT.SCHEMATA
	SYSCAT.SECURITYLABELACCESS
	SYSCAT. SECURITYLABELCOMPONENTELEMENTS
	SYSCAT.SECURITYLABELCOMPONENTS
	SYSCAT.SECURITYLABELS
	SYSCAT.SECURITYPOLICIES
	SYSCAT. SECURITYPOLICYCOMPONENTRULES
	SYSCAT.SECURITYPOLICYEXEMPTIONS
	SYSCAT.SEQUENCEAUTH
	SYSCAT.SEQUENCES
	SYSCAT.SERVEROPTIONS
	SYSCAT.SERVERS
	SYSCAT.SERVICECLASSES
	SYSCAT.STATEMENTS
	SYSCAT.SURROGATEAUTHIDS
	SYSCAT.TABAUTH
	SYSCAT.TABCONST
	SYSCAT.TABDEP
	SYSCAT.TABDETACHEDDEP
	SYSCAT.TABLES
	SYSCAT.TABLESPACES
	SYSCAT.TABOPTIONS
	SYSCAT.TBSPACEAUTH
	SYSCAT.THRESHOLDS
	SYSCAT.TRANSFORMS
	SYSCAT.TRIGDEP
	SYSCAT.TRIGGERS
	SYSCAT.TYPEMAPPINGS
	SYSCAT.USEROPTIONS
	SYSCAT.VARIABLEAUTH
	SYSCAT.VARIABLEDEP
	SYSCAT.VARIABLES
	SYSCAT.VIEWS
	SYSCAT.WORKACTIONS
	SYSCAT.WORKACTIONSETS
	SYSCAT.WORKCLASSES
	SYSCAT.WORKCLASSSETS
	SYSCAT.WORKLOADAUTH
	SYSCAT.WORKLOADCONNATTR
	SYSCAT.WORKLOADS
	SYSCAT.WRAPOPTIONS
	SYSCAT.WRAPPERS
	SYSCAT.XDBMAPGRAPHS
	SYSCAT.XDBMAPSHREDTREES
	SYSCAT.XSROBJECTAUTH
	SYSCAT.XSROBJECTCOMPONENTS
	SYSCAT.XSROBJECTDEP
	SYSCAT.XSROBJECTHIERARCHIES
	SYSCAT.XSROBJECTS
	SYSIBM.SYSDUMMY1
	SYSSTAT.COLDIST
	SYSSTAT.COLGROUPDIST
	SYSSTAT.COLGROUPDISTCOUNTS
	SYSSTAT.COLGROUPS
	SYSSTAT.COLUMNS
	SYSSTAT.INDEXES
	SYSSTAT.ROUTINES
	SYSSTAT.TABLES

	Appendix E. Federated systems
	Valid server types in SQL statements
	Function mapping options for federated systems
	Default forward data type mappings
	DB2 Database for Linux, UNIX, and Windows data sources
	DB2 for System i data sources
	DB2 for VM and VSE data sources
	DB2 for z/OS data sources
	Informix data sources
	Microsoft SQL Server data sources
	ODBC data sources
	Oracle NET8 data sources
	Sybase data sources
	Teradata data sources

	Default reverse data type mappings
	DB2 Database for Linux, UNIX, and Windows data sources
	DB2 for System i data sources
	DB2 for VM and VSE data sources
	DB2 for z/OS data sources
	Informix data sources
	Microsoft SQL Server data sources
	Oracle NET8 data sources
	Sybase data sources
	Teradata data sources

	Appendix F. The SAMPLE database
	Appendix G. Reserved schema names and reserved words
	Appendix H. Examples of interaction between triggers and referential constraints
	Appendix I. Explain tables
	ADVISE_INDEX table
	ADVISE_INSTANCE table
	ADVISE_MQT table
	ADVISE_PARTITION table
	ADVISE_TABLE table
	ADVISE_WORKLOAD table
	EXPLAIN_ARGUMENT table
	EXPLAIN_DIAGNOSTIC table
	EXPLAIN_DIAGNOSTIC_DATA table
	EXPLAIN_INSTANCE table
	EXPLAIN_OBJECT table
	EXPLAIN_OPERATOR table
	EXPLAIN_PREDICATE table
	EXPLAIN_STATEMENT table
	EXPLAIN_STREAM table

	Appendix J. Explain register values
	Appendix K. Exception tables
	Appendix L. SQL statements allowed in routines
	Appendix M. CALL invoked from a compiled statement
	Appendix N. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix O. Notices
	Index

