
DB2 Version 9.5

for Linux, UNIX, and Windows

Call Level Interface Guide and Reference, Volume 2
Updated March, 2008

SC23-5845-01

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Call Level Interface Guide and Reference, Volume 2
Updated March, 2008

SC23-5845-01

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 495.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Part 1. CLI 1

Chapter 1. CLI and ODBC function

summary 3

Unicode functions (CLI) 7

SQLAllocConnect function (CLI) - Allocate

connection handle 8

SQLAllocEnv function (CLI) - Allocate environment

handle 8

SQLAllocHandle function (CLI) - Allocate handle . . 9

SQLAllocStmt function (CLI) - Allocate a statement

handle 11

SQLBindCol function (CLI) - Bind a column to an

application variable or LOB locator 12

SQLBindFileToCol function (CLI) - Bind LOB file

reference to LOB column 18

SQLBindFileToParam function (CLI) - Bind LOB file

reference to LOB parameter 21

SQLBindParameter function (CLI) - Bind a

parameter marker to a buffer or LOB locator . . . 24

SQLBrowseConnect function (CLI) - Get required

attributes to connect to data source 37

SQLBulkOperations function (CLI) - Add, update,

delete or fetch a set of rows 43

SQLCancel function (CLI) - Cancel statement . . . 48

SQLCloseCursor function (CLI) - Close cursor and

discard pending results 50

SQLColAttribute function (CLI) - Return a column

attribute 51

SQLColAttributes function (CLI) - Get column

attributes 60

SQLColumnPrivileges function (CLI) - Get

privileges associated with the columns of a table . . 60

SQLColumns function (CLI) - Get column

information for a table 64

SQLConnect function (CLI) - Connect to a data

source 70

SQLCopyDesc function (CLI) - Copy descriptor

information between handles 72

SQLDataSources function (CLI) - Get list of data

sources 75

SQLDescribeCol function (CLI) - Return a set of

attributes for a column 78

SQLDescribeParam function (CLI) - Return

description of a parameter marker 81

SQLDisconnect function (CLI) - Disconnect from a

data source 83

SQLDriverConnect function (CLI) - (Expanded)

Connect to a data source 85

SQLEndTran function (CLI) - End transactions of a

connection or an Environment 90

SQLError function (CLI) - Retrieve error information 93

SQLExecDirect function (CLI) - Execute a statement

directly 94

SQLExecute function (CLI) - Execute a statement . . 99

SQLExtendedBind function (CLI) - Bind an array of

columns 101

SQLExtendedFetch function (CLI) - Extended fetch

(fetch array of rows) 104

SQLExtendedPrepare function (CLI) - Prepare a

statement and set statement attributes 105

SQLFetch function (CLI) - Fetch next row 110

SQLFetchScroll function (CLI) - Fetch rowset and

return data for all bound columns 116

SQLForeignKeys function (CLI) - Get the list of

foreign key columns 122

SQLFreeConnect function (CLI) - Free connection

handle 127

SQLFreeEnv function (CLI) - Free environment

handle 127

SQLFreeHandle function (CLI) - Free handle

resources 128

SQLFreeStmt function (CLI) - Free (or reset) a

statement handle 130

SQLGetConnectAttr function (CLI) - Get current

attribute setting 133

SQLGetConnectOption function (CLI) - Return

current setting of a connect option 135

SQLGetCursorName function (CLI) - Get cursor

name 135

SQLGetData function (CLI) - Get data from a

column 137

SQLGetDescField function (CLI) - Get single field

settings of descriptor record 144

SQLGetDescRec function (CLI) - Get multiple field

settings of descriptor record 148

SQLGetDiagField function (CLI) - Get a field of

diagnostic data 151

SQLGetDiagRec function (CLI) - Get multiple fields

settings of diagnostic record 156

SQLGetEnvAttr function (CLI) - Retrieve current

environment attribute value 159

SQLGetFunctions function (CLI) - Get functions 160

SQLGetInfo function (CLI) - Get general

information 162

SQLGetLength function (CLI) - Retrieve length of a

string value 192

SQLGetPosition function (CLI) - Return starting

position of string 194

SQLGetSQLCA function (CLI) - Get SQLCA data

structure 197

SQLGetStmtAttr function (CLI) - Get current

setting of a statement attribute 197

SQLGetStmtOption function (CLI) - Return current

setting of a statement option 200

SQLGetSubString function (CLI) - Retrieve portion

of a string value 200

© Copyright IBM Corp. 1993, 2008 iii

SQLGetTypeInfo function (CLI) - Get data type

information 203

SQLMoreResults function (CLI) - Determine if

there are more result sets 207

SQLNativeSql function (CLI) - Get native SQL text 209

SQLNumParams function (CLI) - Get number of

parameters in a SQL statement 211

SQLNextResult function (CLI) - Associate next

result set with another statement handle 213

SQLNumResultCols function (CLI) - Get number of

result columns 215

SQLParamData function (CLI) - Get next parameter

for which a data value is needed 216

SQLParamOptions function (CLI) - Specify an

input array for a parameter 219

SQLPrepare function (CLI) - Prepare a statement 219

SQLPrimaryKeys function (CLI) - Get primary key

columns of a table 223

SQLProcedureColumns function (CLI) - Get

input/output parameter information for a

procedure 226

SQLProcedures function (CLI) - Get list of

procedure names 232

SQLPutData function (CLI) - Passing data value for

a parameter 236

SQLRowCount function (CLI) - Get row count . . 239

SQLSetColAttributes function (CLI) - Set column

attributes 240

SQLSetConnectAttr function (CLI) - Set connection

attributes 240

SQLSetConnection function (CLI) - Set connection

handle 244

SQLSetConnectOption function (CLI) - Set

connection option 245

SQLSetCursorName function (CLI) - Set cursor

name 246

SQLSetDescField function (CLI) - Set a single field

of a descriptor record 249

SQLSetDescRec function (CLI) - Set multiple

descriptor fields for a column or parameter data . 253

SQLSetEnvAttr function (CLI) - Set environment

attribute 256

SQLSetParam function (CLI) - Bind a parameter

marker to a buffer or LOB locator 258

SQLSetPos function (CLI) - Set the cursor position

in a rowset 258

SQLSetStmtAttr function (CLI) - Set options related

to a statement 265

SQLSetStmtOption function (CLI) - Set statement

option 270

SQLSpecialColumns function (CLI) - Get special

(row identifier) columns 271

SQLStatistics function (CLI) - Get index and

statistics information for a base table 275

SQLTablePrivileges function (CLI) - Get privileges

associated with a table 280

SQLTables function (CLI) - Get table information 284

SQLTransact function (CLI) - Transaction

management 288

Chapter 2. CLI/ODBC configuration

keywords listing by category 289

db2cli.ini initialization file 293

AllowGetDataLOBReaccess CLI/ODBC

configuration keyword 296

AltHostName CLI/ODBC configuration keyword 296

AltPort CLI/ODBC configuration keyword . . . 296

AppUsesLOBLocator CLI/ODBC configuration

keyword 297

AppendAPIName CLI/ODBC configuration

keyword 297

AppendForFetchOnly CLI/ODBC configuration

keyword 298

AppendRowColToErrorMessage CLI/ODBC

configuration keyword 298

ArrayInputChain CLI/ODBC configuration

keyword 299

AsyncEnable CLI/ODBC configuration keyword 299

Authentication CLI/ODBC configuration keyword 300

AutoCommit CLI/ODBC configuration keyword 301

BIDI CLI/ODBC configuration keyword 301

BitData CLI/ODBC configuration keyword . . . 302

BlockForNRows CLI/ODBC configuration

keyword 302

BlockLobs CLI/ODBC configuration keyword . . 303

CLIPkg CLI/ODBC configuration keyword . . . 303

CheckForFork CLI/ODBC configuration keyword 304

ClientAcctStr CLI/ODBC configuration keyword 304

ClientApplName CLI/ODBC configuration

keyword 305

ClientBuffersUnboundLOBS CLI/ODBC

configuration keyword 305

ClientUserID CLI/ODBC configuration keyword 306

ClientWrkStnName CLI/ODBC configuration

keyword 306

ConnectNode CLI/ODBC configuration keyword 307

ConnectTimeout CLI/ODBC configuration

keyword 308

ConnectType CLI/ODBC configuration keyword 308

CurrentFunctionPath CLI/ODBC configuration

keyword 309

CurrentImplicitXMLParseOption CLI/ODBC

configuration keyword 309

CurrentMaintainedTableTypesForOpt CLI/ODBC

configuration keyword 310

CURRENTOPTIMIZATIONPROFILE CLI/ODBC

configuration keyword 310

CurrentPackagePath CLI/ODBC configuration

keyword 311

CurrentPackageSet CLI/ODBC configuration

keyword 311

CurrentRefreshAge CLI/ODBC configuration

keyword 312

CurrentSQLID CLI/ODBC configuration keyword 312

CurrentSchema CLI/ODBC configuration keyword 313

CursorHold CLI/ODBC configuration keyword 313

CursorTypes CLI/ODBC configuration keyword 314

DB2Degree CLI/ODBC configuration keyword . . 314

DB2Explain CLI/ODBC configuration keyword 315

DB2NETNamedParam CLI/ODBC configuration

keyword 315

iv Call Level Interface Guide and Reference, Volume 2

DB2Optimization CLI/ODBC configuration

keyword 316

DBAlias CLI/ODBC configuration keyword . . . 316

DBName CLI/ODBC configuration keyword . . . 317

DSN CLI/ODBC configuration keyword 317

Database CLI/ODBC configuration keyword . . . 317

DateTimeStringFormat CLI/ODBC configuration

keyword 318

DecimalFloatRoundingMode CLI/ODBC

configuration keyword 318

DeferredPrepare CLI/ODBC configuration

keyword 320

DescribeCall CLI/ODBC configuration keyword 320

DescribeInputOnPrepare CLI/ODBC configuration

keyword 321

DescribeOutputLevel CLI/ODBC configuration

keyword 321

DescribeParam CLI/ODBC configuration keyword 323

DiagLevel CLI/ODBC configuration keyword . . 323

DiagPath CLI/ODBC configuration keyword . . . 324

DisableKeysetCursor CLI/ODBC configuration

keyword 324

DisableMultiThread CLI/ODBC configuration

keyword 324

DisableUnicode CLI/ODBC configuration keyword 325

FileDSN CLI/ODBC configuration keyword . . . 325

FloatPrecRadix CLI/ODBC configuration keyword 325

GetDataLobNoTotal CLI/ODBC configuration

keyword 326

GranteeList CLI/ODBC configuration keyword . . 326

GrantorList CLI/ODBC configuration keyword . . 327

Graphic CLI/ODBC configuration keyword . . . 327

Hostname CLI/ODBC configuration keyword . . 328

IgnoreWarnList CLI/ODBC configuration keyword 328

IgnoreWarnings CLI/ODBC configuration keyword 329

Instance CLI/ODBC configuration keyword . . . 329

Interrupt CLI/ODBC configuration keyword . . . 329

KRBPlugin CLI/ODBC configuration keyword . . 330

KeepDynamic CLI/ODBC configuration keyword 330

LOBCacheSize CLI/ODBC configuration keyword 331

LOBFileThreshold CLI/ODBC configuration

keyword 332

LOBMaxColumnSize CLI/ODBC configuration

keyword 332

LoadXAInterceptor CLI/ODBC configuration

keyword 332

LockTimeout CLI/ODBC configuration keyword 333

LongDataCompat CLI/ODBC configuration

keyword 333

MapBigintCDefault CLI/ODBC configuration

keyword 334

MapCharToWChar CLI/ODBC configuration

keyword 334

MapDateCDefault CLI/ODBC configuration

keyword 335

MapDateDescribe CLI/ODBC configuration

keyword 335

MapDecimalFloatDescribe CLI/ODBC

configuration keyword 336

MapGraphicDescribe CLI/ODBC configuration

keyword 336

MapTimeCDefault CLI/ODBC configuration

keyword 337

MapTimeDescribe CLI/ODBC configuration

keyword 338

MapTimestampCDefault CLI/ODBC configuration

keyword 338

MapTimestampDescribe CLI/ODBC configuration

keyword 339

MapXMLCDefault CLI/ODBC configuration

keyword 339

MapXMLDescribe CLI/ODBC configuration

keyword 340

MaxLOBBlockSize CLI/ODBC configuration

keyword 340

Mode CLI/ODBC configuration keyword 341

NotifyLevel CLI/ODBC configuration keyword 341

OleDbReportIsLongForLongTypes CLI/ODBC

configuration keyword 341

OleDbReturnCharAsWChar CLI/ODBC

configuration keyword 342

OleDbSQLColumnsSortByOrdinal CLI/ODBC

configuration keyword 343

OptimizeForNRows CLI/ODBC configuration

keyword 343

PWD CLI/ODBC configuration keyword 344

PWDPlugin CLI/ODBC configuration keyword 344

Patch1 CLI/ODBC configuration keyword 344

Patch2 CLI/ODBC configuration keyword 346

Port CLI/ODBC configuration keyword 349

ProgramName CLI/ODBC configuration keyword 350

PromoteLONGVARtoLOB CLI/ODBC

configuration keyword 350

Protocol CLI/ODBC configuration keyword . . . 351

QueryTimeoutInterval CLI/ODBC configuration

keyword 351

ReadCommonSectionOnNullConnect CLI/ODBC

configuration keyword 352

ReceiveTimeout CLI/ODBC configuration keyword 352

Reopt CLI/ODBC configuration keyword 353

ReportPublicPrivileges CLI/ODBC configuration

keyword 353

ReportRetryErrorsAsWarnings CLI/ODBC

configuration keyword 354

RetCatalogAsCurrServer CLI/ODBC configuration

keyword 354

RetOleDbConnStr CLI/ODBC configuration

keyword 355

RetryOnError CLI/ODBC configuration keyword 355

ReturnAliases CLI/ODBC configuration keyword 356

ReturnSynonymSchema CLI/ODBC configuration

keyword 357

SQLOverrideFileName CLI/ODBC configuration

keyword 357

SaveFile CLI/ODBC configuration keyword . . . 358

SchemaList CLI/ODBC configuration keyword . . 358

ServerMsgMask CLI/ODBC configuration keyword 359

ServiceName CLI/ODBC configuration keyword 359

SkipTrace CLI/ODBC configuration keyword . . . 360

StaticCapFile CLI/ODBC configuration keyword 360

StaticLogFile CLI/ODBC configuration keyword 360

StaticMode CLI/ODBC configuration keyword . . 361

Contents v

StaticPackage CLI/ODBC configuration keyword 361

StreamGetData CLI/ODBC configuration keyword 362

StreamPutData CLI/ODBC configuration keyword 362

SysSchema CLI/ODBC Configuration Keyword 363

TableType CLI/ODBC configuration keyword . . 364

TempDir CLI/ODBC configuration keyword . . . 364

Trace CLI/ODBC configuration keyword 365

TraceComm CLI/ODBC configuration keyword 365

TraceErrImmediate CLI/ODBC configuration

keyword 366

TraceFileName CLI/ODBC configuration keyword 367

TraceFlush CLI/ODBC configuration keyword . . 367

TraceFlushOnError CLI/ODBC configuration

keyword 368

TraceLocks CLI/ODBC configuration keyword . . 368

TracePIDList CLI/ODBC configuration keyword 369

TracePIDTID CLI/ODBC configuration keyword 370

TracePathName CLI/ODBC configuration keyword 370

TraceRefreshInterval CLI/ODBC configuration

keyword 371

TraceStmtOnly CLI/ODBC configuration keyword 371

TraceTime CLI/ODBC configuration keyword . . 372

TraceTimestamp CLI/ODBC configuration

keyword 372

Trusted_Connection CLI/ODBC configuration

keyword 373

TxnIsolation CLI/ODBC configuration keyword 374

UID CLI/ODBC configuration keyword 374

Underscore CLI/ODBC configuration keyword . . 375

UseOldStpCall CLI/ODBC configuration keyword 375

UseServerMsgSP CLI/ODBC configuration

keyword 376

ServerMsgTextSP CLI/ODBC configuration

keyword 376

WarningList CLI/ODBC configuration keyword 377

XMLDeclaration CLI/ODBC configuration

keyword 377

Chapter 3. Environment, connection,

and statement attributes in CLI

applications 379

Environment attributes (CLI) list 381

Connection attributes (CLI) list 386

Statement attributes (CLI) list 408

Chapter 4. Cursor positioning rules

for SQLFetchScroll() (CLI) 425

Chapter 5. Extended scalar functions

for CLI applications 429

Chapter 6. Descriptor values 439

Descriptor FieldIdentifier argument values (CLI) 439

Descriptor header and record field initialization

values (CLI) 450

Chapter 7. Header and record fields

for the DiagIdentifier argument (CLI) . 455

Chapter 8. CLI data type attributes 459

SQL symbolic and default data types for CLI

applications 459

C data types for CLI applications 460

Data conversions supported in CLI 464

SQL to C data conversion in CLI 467

C to SQL data conversion in CLI 473

Data type attributes 477

Data type precision (CLI) table 477

Data type scale (CLI) table 478

Data type length (CLI) table 479

Data type display (CLI) table 481

Part 2. Appendixes 483

Appendix A. Overview of the DB2

technical information 485

DB2 technical library in hardcopy or PDF format 485

Ordering printed DB2 books 488

Displaying SQL state help from the command line

processor 488

Accessing different versions of the DB2

Information Center 489

Displaying topics in your preferred language in the

DB2 Information Center 489

Updating the DB2 Information Center installed on

your computer or intranet server 490

DB2 tutorials 491

DB2 troubleshooting information 492

Terms and Conditions 492

Appendix B. Notices 495

Index 499

vi Call Level Interface Guide and Reference, Volume 2

About this book

The Call Level Interface (CLI) Guide and Reference is in two volumes:

v Volume 1 describes how to use CLI to create database applications for DB2®

Database for Linux®, UNIX®, and Windows®.

v Volume 2 is a reference that describes CLI functions, keywords and

configuration.

© Copyright IBM Corp. 1993, 2008 vii

viii Call Level Interface Guide and Reference, Volume 2

Part 1. CLI

© Copyright IBM Corp. 1993, 2008 1

2 Call Level Interface Guide and Reference, Volume 2

Chapter 1. CLI and ODBC function summary

Depr in the ODBC column indicates that the function has been deprecated in

ODBC.

The SQL/CLI column can have the following values:

v 95 - Defined in the SQL/CLI 9075-3 specification.

v SQL3 - Defined in the SQL/CLI part of the ISO SQL3 draft replacement for

SQL/CLI 9075-3.

 Table 1. DB2 CLI Function list by category

 Task

Function Name ODBC 3.0 SQL/CLI

 DB2 CLI

First Version

Supported Purpose

Connecting to a data source

SQLConnect() Depr 95 V 1.1 Obtains a connection handle.

SQLAllocEnv() Depr 95 V 1.1 Obtains an environment handle. One

environment handle is used for one or

more connections.

SQLAllocHandle() Core 95 V 5 Obtains a handle.

SQLBrowseConnect() Level 1 95 V 5 Get required attributes to connect to a

data source.

SQLConnect() Core 95 V 1.1 Connects to specific driver by data source

name, user Id, and password.

SQLDriverConnect() Core SQL3 V 2.1

a Connects to a specific driver by

connection string or optionally requests

that the Driver Manager and driver

display connection dialogs for the user.

Note: This function is also affected by

the additional IBM® keywords supported

in the ODBC.INI file.

SQLDrivers() Core No NONE DB2 CLI does not support this function

as it is implemented by a Driver

Manager.

SQLSetConnectAttr() Core 95 V 5 Set connection attributes.

SQLSetConnectOption() Depr 95 V 2.1 Set connection attributes.

SQLSetConnection() No SQL3 V 2.1 Sets the current active connection. This

function only needs to be used when

using embedded SQL within a DB2 CLI

application with multiple concurrent

connections.

Obtaining information about a driver and data source

SQLDataSources() Lvl 2 95 V 1.1 Returns the list of available data sources.

SQLGetInfo() Core 95 V 1.1 Returns information about a specific

driver and data source.

SQLGetFunctions() Core 95 V 1.1 Returns supported driver functions.

SQLGetTypeInfo() Core 95 V 1.1 Returns information about supported

data types.

© Copyright IBM Corporation 1993, 2008 3

Table 1. DB2 CLI Function list by category (continued)

 Task

Function Name ODBC 3.0 SQL/CLI

 DB2 CLI

First Version

Supported Purpose

Setting and retrieving driver options

SQLSetEnvAttr() Core 95 V 2.1 Sets an environment option.

SQLGetEnvAttr() Core 95 V 2.1 Returns the value of an environment

option.

SQLGetConnectAttr() Lvl 1 95 V 5 Returns the value of a connection option.

SQLGetConnectOption() Depr 95 V 2.1

a Returns the value of a connection option.

SQLSetStmtAttr() Core 95 V 5 Sets a statement attribute.

SQLSetStmtOption() Depr 95 V 2.1

a Sets a statement option.

SQLGetStmtAttr() Core 95 V 5 Returns the value of a statement

attribute.

SQLGetStmtOption() Depr 95 V 2.1

a Returns the value of a statement option.

Preparing SQL requests

SQLAllocStmt() Depr 95 V 1.1 Allocates a statement handle.

SQLPrepare() Core 95 V 1.1 Prepares an SQL statement for later

execution.

SQLExtendedPrepare() No No V 6 Prepares an array of statement attributes

for an SQL statement for later execution.

SQLExtendedBind() No No V 6 Bind an array of columns instead of

using repeated calls to SQLBindCol() and

SQLBindParameter()

SQLBindParameter() Lvl 1 95

b V 2.1 Assigns storage for a parameter in an

SQL statement (ODBC 2.0)

SQLSetParam() Depr No V 1.1 Assigns storage for a parameter in an

SQL statement (ODBC 1.0).

Note: In ODBC 2.0 this function has been

replaced by SQLBindParameter().

SQLParamOptions() Depr No V 2.1 Specifies the use of multiple values for

parameters.

SQLGetCursorName() Core 95 V 1.1 Returns the cursor name associated with

a statement handle.

SQLSetCursorName() Core 95 V 1.1 Specifies a cursor name.

Submitting requests

SQLDescribeParam() Level 2 SQL3 V 5 Returns description of a parameter

marker.

SQLExecute() Core 95 V 1.1 Executes a prepared statement.

SQLExecDirect() Core 95 V 1.1 Executes a statement.

SQLNativeSql() Lvl 2 95 V 2.1

a Returns the text of an SQL statement as

translated by the driver.

SQLNumParams() Lvl 2 95 V 2.1

a Returns the number of parameters in a

statement.

SQLParamData() Lvl 1 95 V 2.1

a Used in conjunction with SQLPutData() to

supply parameter data at execution time.

(Useful for long data values.)

4 Call Level Interface Guide and Reference, Volume 2

Table 1. DB2 CLI Function list by category (continued)

 Task

Function Name ODBC 3.0 SQL/CLI

 DB2 CLI

First Version

Supported Purpose

SQLPutData() Core 95 V 2.1

a Send part or all of a data value for a

parameter. (Useful for long data values.)

Retrieving results and information about results

SQLRowCount() Core 95 V 1.1 Returns the number of rows affected by

an insert, update, or delete request.

SQLNumResultCols() Core 95 V 1.1 Returns the number of columns in the

result set.

SQLDescribeCol() Core 95 V 1.1 Describes a column in the result set.

SQLColAttribute() Core Yes V 5 Describes attributes of a column in the

result set.

SQLColAttributes() Depr Yes V 1.1 Describes attributes of a column in the

result set.

SQLColumnPrivileges() Level 2 95 V 2.1 Get privileges associated with the

columns of a table.

SQLSetColAttributes() No No V 2.1 Sets attributes of a column in the result

set.

SQLBindCol() Core 95 V 1.1 Assigns storage for a result column and

specifies the data type.

SQLFetch() Core 95 V 1.1 Returns a result row.

SQLFetchScroll() Core 95 V 5 Returns a rowset from a result row.

SQLExtendedFetch() Depr 95 V 2.1 Returns multiple result rows.

SQLGetData() Core 95 V 1.1 Returns part or all of one column of one

row of a result set. (Useful for long data

values.)

SQLMoreResults() Lvl 1 SQL3 V 2.1

a Determines whether there are more result

sets available and, if so, initializes

processing for the next result set.

SQLNextResult() No Yes V7.1 SQLNextResult allows non-sequential

access to multiple result sets returned

from a stored procedure.

SQLError() Depr 95 V 1.1 Returns additional error or status

information.

SQLGetDiagField() Core 95 V 5 Get a field of diagnostic data.

SQLGetDiagRec() Core 95 V 5 Get multiple fields of diagnostic data.

SQLSetPos() Level 1 SQL3 V 5 Set the cursor position in a rowset.

SQLGetSQLCA() No No V 2.1 Returns the SQLCA associated with a

statement handle.

SQLBulkOperations() Level 1 No V 6 Perform bulk insertions, updates,

deletions, and fetches by bookmark.

Descriptors

SQLCopyDesc() Core 95 V 5 Copy descriptor information between

handles.

SQLGetDescField() Core 95 V 5 Get single field settings of a descriptor

record.

Chapter 1. CLI and ODBC functions 5

Table 1. DB2 CLI Function list by category (continued)

 Task

Function Name ODBC 3.0 SQL/CLI

 DB2 CLI

First Version

Supported Purpose

SQLGetDescRec() Core 95 V 5 Get multiple field settings of a descriptor

record.

SQLSetDescField() Core 95 V 5 Set a single field of a descriptor record.

SQLSetDescRec() Core 95 V 5 Set multiple field settings of a descriptor

record.

Large object support

SQLBindFileToCol() No No V 2.1 Associates LOB file reference with a LOB

column.

SQLBindFileToParam() No No V 2.1 Associates LOB file reference with a

parameter marker.

SQLGetLength() No SQL3 V 2.1 Gets length of a string referenced by a

LOB locator.

SQLGetPosition() No SQL3 V 2.1 Gets the position of a string within a

source string referenced by a LOB locator.

SQLGetSubString() No SQL3 V 2.1 Creates a new LOB locator that references

a substring within a source string (the

source string is also represented by a

LOB locator).

Obtaining information about the data source’s system tables (catalog functions)

SQLColumns() Lvl 1 SQL3 V 2.1

a Returns the list of column names in

specified tables.

SQLForeignKeys() Lvl 2 SQL3 V 2.1 Returns a list of column names that

comprise foreign keys, if they exist for a

specified table.

SQLPrimaryKeys() Lvl 1 SQL3 V 2.1 Returns the list of column name(s) that

comprise the primary key for a table.

SQLProcedureColumns() Lvl 2 No V 2.1 Returns the list of input and output

parameters for the specified procedures.

SQLProcedures() Lvl 2 No V 2.1 Returns the list of procedure names

stored in a specific data source.

SQLSpecialColumns() Core SQL3 V 2.1

a Returns information about the optimal set

of columns that uniquely identifies a row

in a specified table.

SQLStatistics() Core SQL3 V 2.1

a Returns statistics about a single table and

the list of indexes associated with the

table.

SQLTablePrivileges() Lvl 2 SQL3 V 2.1 Returns a list of tables and the privileges

associated with each table.

SQLTables() Core SQL3 V 2.1

a Returns the list of table names stored in a

specific data source.

Terminating a statement

SQLFreeHandle() Core 95 V 1.1 Free handle resources.

6 Call Level Interface Guide and Reference, Volume 2

Table 1. DB2 CLI Function list by category (continued)

 Task

Function Name ODBC 3.0 SQL/CLI

 DB2 CLI

First Version

Supported Purpose

SQLFreeStmt() Core 95 V 1.1 End statement processing and closes the

associated cursor, discards pending

results, and, optionally, frees all resources

associated with the statement handle.

SQLCancel() Core 95 V 1.1 Cancels an SQL statement.

SQLTransact() Depr No V 1.1 Commits or rolls back a transaction.

SQLCloseCursor() Core 95 V 5 Commits or rolls back a transaction.

Terminating a connection

SQLDisconnect() Core 95 V 1.1 Closes the connection.

SQLEndTran() Core 95 V 5 Ends transaction of a connection.

SQLFreeConnect() Depr 95 V 1.1 Releases the connection handle.

SQLFreeEnv() Depr 95 V 1.1 Releases the environment handle.

Note:

a Runtime support for this function was also available in the DB2 Client Application Enabler for DOS

Version 1.2 product.

b SQLBindParam() has been replaced by SQLBindParameter().

The ODBC function(s):

v SQLSetScrollOptions() is supported for runtime only, because it has been superceded by the SQL_CURSOR_TYPE,

SQL_CONCURRENCY, SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE statement options.

v SQLDrivers() is implemented by the ODBC driver manager.

Unicode functions (CLI)

DB2 CLI Unicode functions accept Unicode string arguments in place of ANSI

string arguments. The Unicode string arguments must be in UCS-2 encoding

(native-endian format). ODBC API functions have suffixes to indicate the format of

their string arguments: those that accept Unicode end in W, and those that accept

ANSI have no suffix (ODBC adds equivalent functions with names that end in A,

but these are not offered by DB2 CLI). The following is a list of functions available

in DB2 CLI which have both ANSI and Unicode versions:

SQLBrowseConnect SQLForeignKeys SQLPrimaryKeys

SQLColAttribute SQLGetConnectAttr SQLProcedureColumns

SQLColAttributes SQLGetConnectOption SQLProcedures

SQLColumnPrivileges SQLGetCursorName SQLSetConnectAttr

SQLColumns SQLGetDescField SQLSetConnectOption

SQLConnect SQLGetDescRec SQLSetCursorName

SQLDataSources SQLGetDiagField SQLSetDescField

SQLDescribeCol SQLGetDiagRec SQLSetStmtAttr

SQLDriverConnect SQLGetInfo SQLSpecialColumns

SQLError SQLGetStmtAttr SQLStatistics

SQLExecDirect SQLNativeSQL SQLTablePrivileges

SQLExtendedPrepare SQLPrepare SQLTables

Unicode functions that have arguments which are always the length of strings

interpret these arguments as the number of SQLWCHAR elements needed to store

the string. For functions that return length information for server data, the display

Chapter 1. CLI and ODBC functions 7

size and precision are again described in terms of the number of SQLWCHAR

elements used to store them. When the length (transfer size of the data) could refer

to string or non-string data, it is interpreted as the number of bytes needed to store

the data.

For example, SQLGetInfoW() will still take the length as the number of bytes, but

SQLExecDirectW() will use the number of SQLWCHAR elements. Consider a single

character from the UTF-16 extended character set (UTF-16 is an extended character

set of UCS-2; Microsoft® Windows 2000 and Microsoft Windows XP use UTF-16).

Microsoft Windows 2000 will use two SQL_C_WCHAR elements, which is

equivalent to 4 bytes, to store this single character. The character therefore has a

display size of 1, a string length of 2 (when using SQL_C_WCHAR), and a byte

count of 4. CLI will return data from result sets in either Unicode or ANSI,

depending on the application’s binding. If an application binds to SQL_C_CHAR,

the driver will convert SQL_WCHAR data to SQL_CHAR. An ODBC driver

manager, if used, maps SQL_C_WCHAR to SQL_C_CHAR for ANSI drivers but

does no mapping for Unicode drivers.

ANSI to Unicode function mappings

The syntax for a DB2 CLI Unicode function is the same as the syntax for its

corresponding ANSI function, except that SQLCHAR parameters are defined as

SQLWCHAR. Character buffers defined as SQLPOINTER in the ANSI syntax can

be defined as either SQLCHAR or SQLWCHAR in the Unicode function. Refer to

the ANSI version of the CLI Unicode functions for ANSI syntax details.

SQLAllocConnect function (CLI) - Allocate connection handle

Deprecated

Note:

In ODBC 3.0, SQLAllocConnect() has been deprecated and replaced with

SQLAllocHandle().

Although this version of DB2 CLI continues to support SQLAllocConnect(), it is

recommended that you use SQLAllocHandle() in your DB2 CLI programs so that

they conform to the latest standards.

Migrating to the new function

The statement:

 SQLAllocConnect(henv, &hdbc);

for example, would be rewritten using the new function as:

 SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

SQLAllocEnv function (CLI) - Allocate environment handle

Deprecated

Note:

In ODBC 3.0, SQLAllocEnv() has been deprecated and replaced with

SQLAllocHandle().

8 Call Level Interface Guide and Reference, Volume 2

Although this version of DB2 CLI continues to support SQLAllocEnv(), we

recommend that you use SQLAllocHandle() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLAllocEnv(&henv);

for example, would be rewritten using the new function as:

 SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

SQLAllocHandle function (CLI) - Allocate handle

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLAllocHandle() is a generic function that allocates environment, connection,

statement, or descriptor handles.

Note: This function replaces the deprecated ODBC 2.0 functions

SQLAllocConnect(), SQLAllocEnv(), and SQLAllocStmt().

Syntax

SQLRETURN SQLAllocHandle (

 SQLSMALLINT HandleType, /* fHandleType */

 SQLHANDLE InputHandle, /* hInput */

 SQLHANDLE *OutputHandlePtr); /* *phOutput */

Function Arguments

 Table 2. SQLAllocHandle arguments

Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be allocated by

SQLAllocHandle(). Must be one of the following

values:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

v SQL_HANDLE_DESC

SQLHANDLE InputHandle input Existing handle to use as a context for the new

handle being allocated. If HandleType is

SQL_HANDLE_ENV, this is SQL_NULL_HANDLE.

If HandleType is SQL_HANDLE_DBC, this must be

an environment handle, and if it is

SQL_HANDLE_STMT or SQL_HANDLE_DESC, it

must be a connection handle.

SQLHANDLE * OutputHandlePtr output Pointer to a buffer in which to return the handle to

the newly allocated data structure.

Chapter 1. CLI and ODBC functions 9

Usage

SQLAllocHandle() is used to allocate environment, connection, statement, and

descriptor handles. An application can allocate multiple environment, connection,

statement, or descriptor handles at any time a valid InputHandle exists.

If the application calls SQLAllocHandle() with *OutputHandlePtr set to an existing

environment, connection, statement, or descriptor handle, DB2 CLI overwrites the

handle, and new resources appropriate to the handle type are allocated. There are

no changes made to the CLI resources associated with the original handle.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_INVALID_HANDLE

v SQL_ERROR

If SQLAllocHandle() returns SQL_INVALID_HANDLE, it will set OutputHandlePtr

to SQL_NULL_HENV, SQL_NULL_HDBC, SQL_NULL_HSTMT, or

SQL_NULL_HDESC, depending on the value of HandleType, unless the output

argument is a null pointer. The application can then obtain additional information

from the diagnostic data structure associated with the handle in the InputHandle

argument.

Diagnostics

 Table 3. SQLAllocHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The HandleType argument was SQL_HANDLE_STMT or

SQL_HANDLE_DESC, but the connection handle specified by the

InputHandle argument did not have an open connection. The

connection process must be completed successfully (and the

connection must be open) for DB2 CLI to allocate a statement or

descriptor handle.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY013 Unexpected memory handling

error.

The HandleType argument was SQL_HANDLE_DBC,

SQL_HANDLE_STMT, or SQL_HANDLE_DESC; and the function

call could not be processed because the underlying memory

objects could not be accessed, possibly because of low memory

conditions.

HY014 No more handles. The limit for the number of handles that can be allocated for the

type of handle indicated by the HandleType argument has been

reached, or in some cases, insufficient system resources exist to

properly initialize the new handle.

10 Call Level Interface Guide and Reference, Volume 2

Table 3. SQLAllocHandle SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. The HandleType argument was not one of:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

v SQL_HANDLE_DESC

Restrictions

None.

Example

 SQLHANDLE henv; /* environment handle */

 SQLHANDLE hdbc; /* connection handle */

 SQLHANDLE hstmt; /* statement handle */

 SQLHANDLE hdesc; /* descriptor handle */

 /* ... */

 /* allocate an environment handle */

 cliRC = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

 /* ... */

 /* allocate a database connection handle */

 cliRC = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

 /* ... */

 /* connect to database using hdbc */

 /* ... */

 /* allocate one or more statement handles */

 cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 /* ... */

 /* allocate a descriptor handle */

 cliRC = SQLAllocHandle(SQL_HANDLE_DESC, hstmt, &hdesc);

SQLAllocStmt function (CLI) - Allocate a statement handle

Deprecated

Note:

In ODBC 3.0, SQLAllocStmt() has been deprecated and replaced with

SQLAllocHandle().

Although this version of DB2 CLI continues to support SQLAllocStmt(), we

recommend that you use SQLAllocHandle() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLAllocStmt(hdbc, &hstmt);

for example, would be rewritten using the new function as:

Chapter 1. CLI and ODBC functions 11

SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

SQLBindCol function (CLI) - Bind a column to an application variable

or LOB locator

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLBindCol() is used to associate (bind) columns in a result set to either:

v Application variables or arrays of application variables (storage buffers), for all

C data types. Data is transferred from the DBMS to the application when

SQLFetch() or SQLFetchScroll() is called. Data conversion might occur as the

data is transferred.

v A LOB locator, for LOB columns. A LOB locator, not the data itself, is transferred

from the DBMS to the application when SQLFetch() is called.

Alternatively, LOB columns can be bound directly to a file using

SQLBindFileToCol().

SQLBindCol() is called once for each column in the result set that the application

needs to retrieve.

In general, SQLPrepare(), SQLExecDirect() or one of the schema functions is called

before this function, and SQLFetch(), SQLFetchScroll(), SQLBulkOperations(), or

SQLSetPos() is called after. Column attributes might also be needed before calling

SQLBindCol(), and can be obtained using SQLDescribeCol() or SQLColAttribute().

Syntax

SQLRETURN SQLBindCol (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ColumnNumber, /* icol */

 SQLSMALLINT TargetType, /* fCType */

 SQLPOINTER TargetValuePtr, /* rgbValue */

 SQLLEN BufferLength, /* dbValueMax */

 SQLLEN *StrLen_or_IndPtr); /* *pcbValue */

Function arguments

 Table 4. SQLBindCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Number identifying the column. Columns are

numbered sequentially, from left to right.

v Column numbers start at 1 if bookmarks are not

used (SQL_ATTR_USE_BOOKMARKS statement

attribute set to SQL_UB_OFF).

v Column numbers start at 0 if bookmarks are

used (the statement attribute is set to

SQL_UB_ON). Column 0 is the bookmark

column.

12 Call Level Interface Guide and Reference, Volume 2

Table 4. SQLBindCol arguments (continued)

Data type Argument Use Description

SQLSMALLINT TargetType input The C data type for column number ColumnNumber

in the result set. When the application retrieves

data from the data source, it will convert the data

to this C type. When using SQLBulkOperations() or

SQLSetPos(), the driver will convert data from this

C data type when sending information to the data

source. The following types are supported:

v SQL_C_BINARY

v SQL_C_BIT

v SQL_C_BLOB_LOCATOR

v SQL_C_CHAR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCHAR

v SQL_C_DBCLOB_LOCATOR

v SQL_C_DECIMAL_IBM

v SQL_C_DOUBLE

v SQL_C_FLOAT

v SQL_C_LONG

v SQL_C_NUMERIC

a

v SQL_C_SBIGINT

v SQL_C_SHORT

v SQL_C_TYPE_DATE

v SQL_C_TYPE_TIME

v SQL_C_TYPE_TIMESTAMP

v SQL_C_TINYINT

v SQL_C_UBIGINT

v SQL_C_UTINYINT

v SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be

transferred to its default C data type.

SQLPOINTER TargetValuePtr input/output

(deferred)

Pointer to buffer or an array of buffers with either

column-wise or row-wise binding, where DB2 CLI

is to store the column data or the LOB locator

when the fetch occurs.

This buffer is used to return data when any of the

following functions are called: SQLFetch(),

SQLFetchScroll(), SQLSetPos() using the Operation

argument SQL_REFRESH, or SQLBulkOperations()

using the Operation argument

SQL_FETCH_BY_BOOKMARK. Otherwise,

SQLBulkOperations() and SQLSetPos() use the

buffer to retrieve data.

If TargetValuePtr is null, the column is unbound. All

columns can be unbound with a call to

SQLFreeStmt() with the SQL_UNBIND option.

Chapter 1. CLI and ODBC functions 13

Table 4. SQLBindCol arguments (continued)

Data type Argument Use Description

SQLLEN BufferLength input Size in bytes of TargetValuePtr buffer available to

store the column data or the LOB locator.

If TargetType denotes a binary or character string

(either single or double byte) or is

SQL_C_DEFAULT for a column returning variable

length data, then BufferLength must be > 0, or an

error will be returned. Note that for character data,

the driver counts the NULL termination character

and so space must be allocated for it. For all other

data types, this argument is ignored.

SQLLEN * StrLen_or_IndPtr input/output

(deferred)

Pointer to value (or array of values) which

indicates the number of bytes DB2 CLI has

available to return in the TargetValuePtr buffer. If

TargetType is a LOB locator, the size of the locator is

returned, not the size of the LOB data.

This buffer is used to return data when any of the

following functions are called: SQLFetch(),

SQLFetchScroll(), SQLSetPos() using the Operation

argument SQL_REFRESH, or SQLBulkOperations()

using the Operation argument

SQL_FETCH_BY_BOOKMARK. Otherwise,

SQLBulkOperations() and SQLSetPos() use the

buffer to retrieve data.

SQLFetch() returns SQL_NULL_DATA in this

argument if the data value of the column is null.

This pointer value must be unique for each bound

column, or NULL.

A value of SQL_COLUMN_IGNORE, SQL_NTS,

SQL_NULL_DATA, or the length of the data can be

set for use with SQLBulkOperations().

SQL_NO_LENGTH might also be returned, refer to

the Usage section below for more information.

v For this function, both TargetValuePtr and StrLen_or_IndPtr are deferred outputs,

meaning that the storage locations these pointers point to do not get updated

until a result set row is fetched. As a result, the locations referenced by these

pointers must remain valid until SQLFetch() or SQLFetchScroll() is called. For

example, if SQLBindCol() is called within a local function, SQLFetch() must be

called from within the same scope of the function or the TargetValuePtr buffer

must be allocated as static or global.

v DB2 CLI will be able to optimize data retrieval for all variable length data types

if TargetValuePtr is placed consecutively in memory after StrLen_or_IndPtr.

Usage

Call SQLBindCol() once for each column in the result set for which either the data

or, for LOB columns, the LOB locator is to be retrieved. When SQLFetch() or

SQLFetchScroll() is called to retrieve data from the result set, the data in each of

the bound columns is placed in the locations assigned by the TargetValuePtr and

StrLen_or_IndPtr pointers. When the statement attribute

SQL_ATTR_ROW_ARRAY_SIZE is greater than 1, then TargetType should refer to

14 Call Level Interface Guide and Reference, Volume 2

an array of buffers. If TargetType is a LOB locator, a locator value is returned, not

the actual LOB data. The LOB locator references the entire data value in the LOB

column.

If a CLI application does not provide an output buffer for a LOB column using the

function SQLBindCol() the DB2 Client will, by default, request a LOB locator on

behalf of the application for each LOB column in the result sets.

Columns are identified by a number, assigned sequentially from left to right.

v Column numbers start at 1 if bookmarks are not used

(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).

v Column numbers start at 0 if bookmarks are used (the statement attribute set to

SQL_UB_ON).

After columns have been bound, in subsequent fetches the application can change

the binding of these columns or bind previously unbound columns by calling

SQLBindCol(). The new binding does not apply to data already fetched, it will be

used on the next fetch. To unbind a single column (including columns bound with

SQLBindFileToCol()), call SQLBindCol() with the TargetValuePtr pointer set to

NULL. To unbind all the columns, the application should call SQLFreeStmt() with

the Option input set to SQL_UNBIND.

The application must ensure enough storage is allocated for the data to be

retrieved. If the buffer is to contain variable length data, the application must

allocate as much storage as the maximum length of the bound column plus the

NULL terminator. Otherwise, the data might be truncated. If the buffer is to

contain fixed length data, DB2 CLI assumes the size of the buffer is the length of

the C data type. If data conversion is specified, the required size might be affected.

If string truncation does occur, SQL_SUCCESS_WITH_INFO is returned and

StrLen_or_IndPtr will be set to the actual size of TargetValuePtr available for return

to the application.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute

(used to limit the amount of data returned to the application). The application can

specify not to report truncation by calling SQLSetStmtAttr() with

SQL_ATTR_MAX_LENGTH and a value for the maximum length to return for all

variable length columns, and by allocating a TargetValuePtr buffer of the same size

(plus the null-terminator). If the column data is larger than the set maximum

length, SQL_SUCCESS will be returned when the value is fetched and the

maximum length, not the actual length, will be returned in StrLen_or_IndPtr.

If the column to be bound is a SQL_GRAPHIC, SQL_VARGRAPHIC or

SQL_LONGVARGRAPHIC type, then TargetType can be set to SQL_C_DBCHAR or

SQL_C_CHAR. If TargetType is SQL_C_DBCHAR, the data fetched into the

TargetValuePtr buffer will be null-terminated with a double byte null-terminator. If

TargetType is SQL_C_CHAR, then there will be no null-termination of the data. In

both cases, the length of the TargetValuePtr buffer (BufferLength) is in units of bytes

and should therefore be a multiple of 2. It is also possible to force DB2 CLI to null

terminate graphic strings using the PATCH1 keyword.

Note: SQL_NO_TOTAL will be returned in StrLen_or_IndPtr if:

v The SQL type is a variable length type, and

v StrLen_or_IndPtr and TargetValuePtr are contiguous, and

v The column type is NOT NULLABLE, and

v String truncation occurred.

Chapter 1. CLI and ODBC functions 15

Descriptors and SQLBindCol

The following sections describe how SQLBindCol() interacts with descriptors.

Note: Calling SQLBindCol() for one statement can affect other statements. This

occurs when the ARD associated with the statement is explicitly allocated and is

also associated with other statements. Because SQLBindCol() modifies the

descriptor, the modifications apply to all statements with which this descriptor is

associated. If this is not the required behavior, the application should dissociate

this descriptor from the other statements before calling SQLBindCol().

Argument mappings

Conceptually, SQLBindCol() performs the following steps in sequence:

v Calls SQLGetStmtAttr() to obtain the ARD handle.

v Calls SQLGetDescField() to get this descriptor’s SQL_DESC_COUNT field, and if

the value in the ColumnNumber argument exceeds the value of

SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of

SQL_DESC_COUNT to ColumnNumber.

v Calls SQLSetDescField() multiple times to assign values to the following fields

of the ARD:

– Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

TargetType.

– Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION,

SQL_DESC_SCALE as appropriate for TargetType.

– Sets the SQL_DESC_OCTET_LENGTH field to the value of BufferLength.

– Sets the SQL_DESC_DATA_PTR field to the value of TargetValue.

– Sets the SQL_DESC_INDICATOR_PTR field to the value of StrLen_or_IndPtr

(see the following paragraph).

– Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of

StrLen_or_IndPtr (see the following paragraph).

The variable that the StrLen_or_IndPtr argument refers to is used for both indicator

and length information. If a fetch encounters a null value for the column, it stores

SQL_NULL_DATA in this variable; otherwise, it stores the data length in this

variable. Passing a null pointer as StrLen_or_IndPtr keeps the fetch operation from

returning the data length, but makes the fetch fail if it encounters a null value and

has no way to return SQL_NULL_DATA.

If the call to SQLBindCol() fails, the content of the descriptor fields it would have

set in the ARD are undefined, and the value of the SQL_DESC_COUNT field of

the ARD is unchanged.

Implicit resetting of COUNT field

SQLBindCol() sets SQL_DESC_COUNT to the value of the ColumnNumber

argument only when this would increase the value of SQL_DESC_COUNT. If the

value in the TargetValuePtr argument is a null pointer and the value in the

ColumnNumber argument is equal to SQL_DESC_COUNT (that is, when unbinding

the highest bound column), then SQL_DESC_COUNT is set to the number of the

highest remaining bound column.

Cautions regarding SQL_C_DEFAULT

To retrieve column data successfully, the application must determine correctly the

length and starting point of the data in the application buffer. When the

16 Call Level Interface Guide and Reference, Volume 2

application specifies an explicit TargetType, application misconceptions are readily

detected. However, when the application specifies a TargetType of

SQL_C_DEFAULT, SQLBindCol() can be applied to a column of a different data

type from the one intended by the application, either from changes to the metadata

or by applying the code to a different column. In this case, the application might

fail to determine the start or length of the fetched column data. This can lead to

unreported data errors or memory violations.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 5. SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index The value specified for the argument ColumnNumber exceeded the

maximum number of columns in the result set, or the value

specified was less than 0.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY003 Program type out of range. TargetType was not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 1

and the argument TargetType is either SQL_C_CHAR,

SQL_C_BINARY or SQL_C_DEFAULT.

HYC00 Driver not capable. DB2 CLI recognizes, but does not support the data type specified

in the argument TargetType

A LOB locator C data type was specified, but the connected server

does not support LOB data types.

Note: Additional diagnostic messages relating to the bound columns might be reported at fetch time.

Restrictions

The LOB data support is only available when connected to a server that supports

large object data types. If the application attempts to specify a LOB locator C data

type for a server that does not support it, SQLSTATE HYC00 will be returned.

Chapter 1. CLI and ODBC functions 17

Example

 /* bind column 1 to variable */

 cliRC = SQLBindCol(hstmt, 1, SQL_C_SHORT, &deptnumb.val, 0, &deptnumb.ind);

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB

column

Purpose

 Specification: DB2 CLI 2.1

SQLBindFileToCol() is used to associate or bind a LOB or XML column in a result

set to a file reference or an array of file references. This enables data in that

column to be transferred directly into a file when each row is fetched for the

statement handle.

The LOB file reference arguments (file name, file name length, file reference

options) refer to a file within the application’s environment (on the client). Before

fetching each row, the application must make sure that these variables contain the

name of a file, the length of the file name, and a file option (new / overwrite /

append). These values can be changed between each row fetch operation.

Syntax

SQLRETURN SQLBindFileToCol (SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ColumnNumber, /* icol */

 SQLCHAR *FileName,

 SQLSMALLINT *FileNameLength,

 SQLUINTEGER *FileOptions,

 SQLSMALLINT MaxFileNameLength,

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 6. SQLBindFileToCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT icol input Number identifying the column. Columns are

numbered sequentially, from left to right, starting at

1.

SQLCHAR * FileName input

(deferred)

Pointer to the location that will contain the file name

or an array of file names at the time of the next fetch

using the StatementHandle. This is either the complete

path name of the file(s) or a relative file name(s). If

relative file name(s) are provided, they are appended

to the current path of the running application. This

pointer cannot be NULL.

SQLSMALLINT * FileNameLength input

(deferred)

Pointer to the location that will contain the length of

the file name (or an array of lengths) at the time of

the next fetch using the StatementHandle. If this

pointer is NULL, then the FileName will be

considered a null-terminated string, similar to

passing a length of SQL_NTS.

The maximum value of the file name length is 255.

18 Call Level Interface Guide and Reference, Volume 2

Table 6. SQLBindFileToCol arguments (continued)

Data type Argument Use Description

SQLUINTEGER * FileOptions input

(deferred)

Pointer to the location that will contain the file

option or (array of file options) to be used when

writing the file at the time of the next fetch using the

StatementHandle. The following FileOptions are

supported:

SQL_FILE_CREATE

Create a new file. If a file by this name

already exists, SQL_ERROR will be

returned.

SQL_FILE_OVERWRITE

If the file already exists, overwrite it.

Otherwise, create a new file.

SQL_FILE_APPEND

If the file already exists, append the data to

it. Otherwise, create a new file.

Only one option can be chosen per file, there is no

default.

SQLSMALLINT MaxFileNameLength input This specifies the length of the FileName buffer or, if

the application uses SQLFetchScroll() to retrieve

multiple rows for the LOB column, this specifies the

length of each element in the FileName array.

SQLINTEGER * StringLength output

(deferred)

Pointer to the location that contains the length (or

array of lengths) in bytes of the LOB data that is

returned. If this pointer is NULL, nothing is

returned.

SQLINTEGER * IndicatorValue output

(deferred)

Pointer to the location that contains an indicator

value (or array of values).

Usage

The application calls SQLBindFileToCol() once for each column that should be

transferred directly to a file when a row is fetched. LOB data is written directly to

the file without any data conversion, and without appending null-terminators.

XML data is written out in UTF-8, with an XML declaration generated according to

the setting of the SQL_ATTR_XML_DECLARATION connection or statement

attribute.

FileName, FileNameLength, and FileOptions must be set before each fetch. When

SQLFetch() or SQLFetchScroll() is called, the data for any column which has been

bound to a LOB file reference is written to the file or files pointed to by that file

reference. Errors associated with the deferred input argument values of

SQLBindFileToCol() are reported at fetch time. The LOB file reference, and the

deferred StringLength and IndicatorValue output arguments are updated between

fetch operations.

If SQLFetchScroll() is used to retrieve multiple rows for the LOB column,

FileName, FileNameLength, and FileOptions point to arrays of LOB file reference

variables. In this case, MaxFileNameLength specifies the length of each element in

the FileName array and is used by DB2 CLI to determine the location of each

element in the FileName array. The contents of the array of file references must be

Chapter 1. CLI and ODBC functions 19

valid at the time of the SQLFetchScroll() call. The StringLength and IndicatorValue

pointers each point to an array whose elements are updated upon the

SQLFetchScroll() call.

Using SQLFetchScroll(), multiple LOB values can be written to multiple files, or

to the same file depending on the file names specified. If writing to the same file,

the SQL_FILE_APPEND file option should be specified for each file name entry.

Only column-wise binding of arrays of file references is supported with

SQLFetchScroll().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 7. SQLBindFileToCol SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid column number. The value specified for the argument icol was less than 1.

The value specified for the argument icol exceeded the maximum

number of columns supported by the data source.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. FileName, StringLength or FileOptions is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument MaxFileNameLength was less

than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does

not support large objects.

Restrictions

This function is not available when connected to DB2 servers that do not support

large object data types. Call SQLGetFunctions() with the function type set to

SQL_API_SQLBINDFILETOCOL and check the SupportedPtr output argument to

determine if the function is supported for the current connection.

20 Call Level Interface Guide and Reference, Volume 2

Example

 /* bind a file to the BLOB column */

 rc = SQLBindFileToCol(hstmt,

 1,

 fileName,

 &fileNameLength,

 &fileOption,

 14,

 NULL,

 &fileInd);

SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB

parameter

Purpose

 Specification: DB2 CLI 2.1

SQLBindFileToParam() is used to associate or bind a parameter marker in an SQL

statement to a file reference or an array of file references. This enables data from

the file to be transferred directly into a LOB or XML column when the statement is

subsequently executed.

The LOB file reference arguments (file name, file name length, file reference

options) refer to a file within the application’s environment (on the client). Before

calling SQLExecute() or SQLExecDirect(), the application must make sure that this

information is available in the deferred input buffers. These values can be changed

between SQLExecute() calls.

Syntax

SQLRETURN SQLBindFileToParam (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT TargetType, /* ipar */

 SQLSMALLINT DataType, /* fSqlType */

 SQLCHAR *FileName,

 SQLSMALLINT *FileNameLength,

 SQLUINTEGER *FileOptions,

 SQLSMALLINT MaxFileNameLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 8. SQLBindFileToParam arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT TargetType input Parameter marker number. Parameters are numbered

sequentially, from left to right, starting at 1.

SQLSMALLINT DataType input SQL Data Type of the column. The data type must

be one of:

v SQL_BLOB

v SQL_CLOB

v SQL_DBCLOB

v SQL_XML

Chapter 1. CLI and ODBC functions 21

Table 8. SQLBindFileToParam arguments (continued)

Data type Argument Use Description

SQLCHAR * FileName input

(deferred)

Pointer to the location that will contain the file name

or an array of file names when the statement

(StatementHandle) is executed. This is either the

complete path name of the file or a relative file

name. If a relative file name is provided, it is

appended to the current path of the client process.

This argument cannot be NULL.

SQLSMALLINT * FileNameLength input

(deferred)

Pointer to the location that will contain the length of

the file name (or an array of lengths) at the time of

the next SQLExecute() or SQLExecDirect() using the

StatementHandle.

If this pointer is NULL, then the FileName will be

considered a null-terminated string, similar to

passing a length of SQL_NTS.

The maximum value of the file name length is 255.

SQLUINTEGER * FileOptions input

(deferred)

Pointer to the location that will contain the file

option (or an array of file options) to be used when

reading the file. The location will be accessed when

the statement (StatementHandle) is executed. Only one

option is supported (and it must be specified):

SQL_FILE_READ

A regular file that can be opened, read and

closed. (The length is computed when the

file is opened)

This pointer cannot be NULL.

SQLSMALLINT MaxFileNameLength input This specifies the length of the FileName buffer. If the

application calls SQLParamOptions() to specify

multiple values for each parameter, this is the length

of each element in the FileName array.

SQLINTEGER * IndicatorValue input

(deferred)

Pointer to the location that contains an indicator

value (or array of values), which is set to

SQL_NULL_DATA if the data value of the parameter

is to be null. It must be set to 0 (or the pointer can

be set to null) when the data value is not null.

Usage

The application calls SQLBindFileToParam() once for each parameter marker whose

value should be obtained directly from a file when a statement is executed. Before

the statement is executed, FileName, FileNameLength, and FileOptions values must be

set. When the statement is executed, the data for any parameter which has been

bound using SQLBindFileToParam() is read from the referenced file and passed to

the server.

If the application uses SQLParamOptions() to specify multiple values for each

parameter, then FileName, FileNameLength, and FileOptions point to an array of LOB

file reference variables. In this case, MaxFileNameLength specifies the length of each

element in the FileName array and is used by DB2 CLI to determine the location of

each element in the FileName array.

22 Call Level Interface Guide and Reference, Volume 2

A LOB parameter marker can be associated with (bound to) an input file using

SQLBindFileToParam(), or with a stored buffer using SQLBindParameter(). The most

recent bind parameter function call determines the type of binding that is in effect.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 9. SQLBindFileToParam SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY004 SQL data type out of range. The value specified for DataType was not a valid SQL type for this

function call.

HY009 Invalid argument value. FileName, FileOptions FileNameLength, is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the input argument MaxFileNameLength

was less than 0.

HY093 Invalid parameter number. The value specified for TargetType was either less than 1 or greater

than the maximum number of parameters supported.

HYC00 Driver not capable. The server does not support Large Object data types.

Restrictions

This function is not available when connected to DB2 servers that do not support

large object data types. Call SQLGetFunctions() with the function type set to

SQL_API_SQLBINDFILETOPARAM and check the SupportedPtr output argument

to determine if the function is supported for the current connection.

Example

 /* bind the file parameter */

 rc = SQLBindFileToParam(hstmt,

 3,

 SQL_BLOB,

 fileName,

Chapter 1. CLI and ODBC functions 23

&fileNameLength,

 &fileOption,

 14,

 &fileInd);

SQLBindParameter function (CLI) - Bind a parameter marker to a

buffer or LOB locator

Purpose

 Specification: DB2 CLI 2.1 ODBC 2.0

SQLBindParameter() is used to associate or bind parameter markers in an SQL

statement to either:

v Application variables or arrays of application variables (storage buffers) for all C

data types. In this case data is transferred from the application to the DBMS

when SQLExecute() or SQLExecDirect() is called. Data conversion might occur

as the data is transferred.

v A LOB locator, for SQL LOB data types. In this case a LOB locator value, not the

LOB data itself, is transferred from the application to the server when the SQL

statement is executed.

Alternatively, LOB parameters can be bound directly to a file using

SQLBindFileToParam()

This function must also be used to bind a parameter of a stored procedure CALL

statement to the application where the parameter can be input, output or both.

Syntax

SQLRETURN SQLBindParameter(

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ParameterNumber, /* ipar */

 SQLSMALLINT InputOutputType, /* fParamType */

 SQLSMALLINT ValueType, /* fCType */

 SQLSMALLINT ParameterType, /* fSqlType */

 SQLULEN ColumnSize, /* cbColDef */

 SQLSMALLINT DecimalDigits, /* ibScale */

 SQLPOINTER ParameterValuePtr, /* rgbValue */

 SQLLEN BufferLength, /* cbValueMax */

 SQLLEN *StrLen_or_IndPtr); /* pcbValue */

Function arguments

 Table 10. SQLBindParameter arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement Handle

SQLUSMALLINT ParameterNumber input Parameter marker number, ordered sequentially left

to right, starting at 1.

24 Call Level Interface Guide and Reference, Volume 2

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT InputOutputType input The type of parameter. The value of the

SQL_DESC_PARAMETER_TYPE field of the IPD is

also set to this argument. The supported types are:

v SQL_PARAM_INPUT: The parameter marker is

associated with an SQL statement that is not a

stored procedure CALL; or, it marks an input

parameter of the CALLed stored procedure.

When the statement is executed, the data for the

parameter is sent to the server and as such, the

ParameterValuePtr buffer must contain valid input

data value(s), unless the StrLen_or_IndPtr buffer

contains SQL_NULL_DATA or

SQL_DATA_AT_EXEC (if the value should be sent

via SQLParamData() and SQLPutData()).

v SQL_PARAM_INPUT_OUTPUT: The parameter

marker is associated with an input/output

parameter of the CALLed stored procedure.

When the statement is executed, the data for the

parameter is sent to the server and as such, the

ParameterValuePtr buffer must contain valid input

data value(s), unless the StrLen_or_IndPtr buffer

contains SQL_NULL_DATA or

SQL_DATA_AT_EXEC (if the value should be sent

via SQLParamData() and SQLPutData()).

v SQL_PARAM_OUTPUT: The parameter marker is

associated with an output parameter of the

CALLed stored procedure or the return value of

the stored procedure.

After the statement is executed, data for the

output parameter is returned to the application

buffer specified by ParameterValuePtr and

StrLen_or_IndPtr, unless both are NULL pointers,

in which case the output data is discarded. If an

output parameter does not have a return value

then StrLen_or_IndPtr is set to SQL_NULL_DATA.

Chapter 1. CLI and ODBC functions 25

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT ValueType input C data type of the parameter. The following types

are supported:

v SQL_C_BINARY

v SQL_C_BIT

v SQL_C_BLOB_LOCATOR

v SQL_C_CHAR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCHAR

v SQL_C_DBCLOB_LOCATOR

v SQL_C_DECIMAL_IBM

v SQL_C_DOUBLE

v SQL_C_FLOAT

v SQL_C_LONG

v SQL_C_NUMERIC

a

v SQL_C_SBIGINT

v SQL_C_SHORT

v SQL_C_TYPE_DATE

v SQL_C_TYPE_TIME

v SQL_C_TYPE_TIMESTAMP

v SQL_C_TINYINT

v SQL_C_UBIGINT

v SQL_C_UTINYINT

v SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be

transferred from its default C data type to the type

indicated in ParameterType.

 a Windows 32-bit only

26 Call Level Interface Guide and Reference, Volume 2

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT ParameterType input SQL data type of the parameter. The supported types

are:

v SQL_BIGINT

v SQL_BINARY

v SQL_BIT

v SQL_BLOB

v SQL_BLOB_LOCATOR

v SQL_CHAR

v SQL_CLOB

v SQL_CLOB_LOCATOR

v SQL_DBCLOB

v SQL_DBCLOB_LOCATOR

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_LONG

v SQL_LONGVARBINARY

v SQL_LONGVARCHAR

v SQL_LONGVARGRAPHIC

v SQL_NUMERIC

v SQL_REAL

v SQL_SHORT

v SQL_SMALLINT

v SQL_TINYINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_WCHAR

v SQL_XML

Note: SQL_BLOB_LOCATOR,

SQL_CLOB_LOCATOR, SQL_DBCLOB_LOCATOR

are application related concepts and do not map to a

data type for column definition during a CREATE

TABLE statement.

Chapter 1. CLI and ODBC functions 27

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLULEN ColumnSize input Precision of the corresponding parameter marker. If

ParameterType denotes:

v A binary or single byte character string (for

example, SQL_CHAR, SQL_BLOB), this is the

maximum length in bytes for this parameter

marker.

v A double byte character string (for example,

SQL_GRAPHIC), this is the maximum length in

double-byte characters for this parameter.

v SQL_DECIMAL, SQL_NUMERIC, this is the

maximum decimal precision.

v An XML value (SQL_XML) for an external routine

argument, this is the maximum length in bytes, n,

of the declared XML AS CLOB(n) argument. For

all other parameters of type SQL_XML, this

argument is ignored.

v Otherwise, this argument is ignored.

SQLSMALLINT DecimalDigits input If ParameterType is SQL_DECIMAL or

SQL_NUMERIC, DecimalDigits represents the scale of

the corresponding parameter and sets the

SQL_DESC_SCALE field of the IPD.

If ParameterType is SQL_TYPE_TIMESTAMP or

SQL_TYPE_TIME, Decimal Digits represents the

precision of the corresponding parameter and sets

the SQL_DESC_PRECISION field of the IPD. The

precision of a time timestamp value is the number of

digits to the right of the decimal point in the string

representation of a time or timestamp (for example,

the scale of yyyy-mm-dd hh:mm:ss.fff is 3).

Other than for the ParameterType values mentioned

here, DecimalDigits is ignored.

28 Call Level Interface Guide and Reference, Volume 2

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLPOINTER ParameterValuePtr input

(deferred),

output

(deferred), or

both

v On input (InputOutputType set to

SQL_PARAM_INPUT, or

SQL_PARAM_INPUT_OUTPUT):

At execution time, if StrLen_or_IndPtr does not

contain SQL_NULL_DATA or

SQL_DATA_AT_EXEC, then ParameterValuePtr

points to a buffer that contains the actual data for

the parameter.

If StrLen_or_IndPtr contains SQL_DATA_AT_EXEC,

then ParameterValuePtr is an application-defined

32-bit value that is associated with this parameter.

This 32-bit value is returned to the application via

a subsequent SQLParamData() call.

If SQLParamOptions() is called to specify multiple

values for the parameter, then ParameterValuePtr is

a pointer to a input buffer array of BufferLength

bytes.

v On output (InputOutputType set to

SQL_PARAM_OUTPUT, or

SQL_PARAM_INPUT_OUTPUT):

ParameterValuePtr points to the buffer where the

output parameter value of the stored procedure

will be stored.

If InputOutputType is set to

SQL_PARAM_OUTPUT, and both

ParameterValuePtr and StrLen_or_IndPtr are NULL

pointers, then the output parameter value or the

return value from the stored procedure call is

discarded.

Chapter 1. CLI and ODBC functions 29

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLLEN BufferLength input For character and binary data, BufferLength specifies

the length of the ParameterValuePtr buffer (if is

treated as a single element) or the length of each

element in the ParameterValuePtr array (if the

application calls SQLParamOptions() to specify

multiple values for each parameter). For

non-character and non-binary data, this argument is

ignored -- the length of the ParameterValuePtr buffer

(if it is a single element) or the length of each

element in the ParameterValuePtr array (if

SQLParamOptions() is used to specify an array of

values for each parameter) is assumed to be the

length associated with the C data type.

For output parameters, BufferLength is used to

determine whether to truncate character or binary

output data in the following manner:

v For character data, if the number of bytes

available to return is greater than or equal to

BufferLength, the data in ParameterValuePtr is

truncated to BufferLength-1 bytes and is

null-terminated (unless null-termination has been

turned off).

v For binary data, if the number of bytes available

to return is greater than BufferLength, the data in

ParameterValuePtr is truncated to BufferLength

bytes.

30 Call Level Interface Guide and Reference, Volume 2

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLLEN * StrLen_or_IndPtr input

(deferred),

output

(deferred), or

both

If this is an input or input/output parameter:

This is the pointer to the location which contains

(when the statement is executed) the length of the

parameter marker value stored at ParameterValuePtr.

To specify a null value for a parameter marker, this

storage location must contain SQL_NULL_DATA.

If ValueType is SQL_C_CHAR, this storage location

must contain either the exact length of the data

stored at ParameterValuePtr, or SQL_NTS if the

contents at ParameterValuePtr is null-terminated.

If ValueType indicates character data (explicitly, or

implicitly using SQL_C_DEFAULT), and this pointer

is set to NULL, it is assumed that the application

will always provide a null-terminated string in

ParameterValuePtr. This also implies that this

parameter marker will never have a null value.

If ParameterType denotes a graphic data type and the

ValueType is SQL_C_CHAR, the pointer to

StrLen_or_IndPtr can never be NULL and the

contents of StrLen_or_IndPtr can never hold

SQL_NTS. In general for graphic data types, this

length should be the number of octets that the

double byte data occupies; therefore, the length

should always be a multiple of 2. In fact, if the

length is odd, then an error will occur when the

statement is executed.

When SQLExecute() or SQLExecDirect() is called,

and StrLen_or_IndPtr points to a value of

SQL_DATA_AT_EXEC, the data for the parameter

will be sent with SQLPutData(). This parameter is

referred to as a data-at-execution parameter.

Chapter 1. CLI and ODBC functions 31

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr (cont) input

(deferred),

output

(deferred), or

both

If SQLSetStmtAttr() is used with the

SQL_ATTR_PARAMSET_SIZE attribute to specify

multiple values for each parameter, StrLen_or_IndPtr

points to an array of SQLINTEGER values where

each of the elements can be the number of bytes in

the corresponding ParameterValuePtr element

(excluding the null-terminator), or

SQL_NULL_DATA.

If this is an output parameter (InputOutputType is set

to SQL_PARAM_OUTPUT):

This must be an output parameter or return value of

a stored procedure CALL and points to one of the

following, after the execution of the stored

procedure:

v number of bytes available to return in

ParameterValuePtr, excluding the null-termination

character.

v SQL_NULL_DATA

v SQL_NO_TOTAL if the number of bytes available

to return cannot be determined.

Usage

SQLBindParameter() extends the capability of the deprecated SQLSetParam()

function, by providing a method of:

v Specifying whether a parameter is input, input / output, or output, necessary

for proper handling of parameters for stored procedures.

v Specifying an array of input parameter values when SQLSetStmtAttr() with the

SQL_ATTR_PARAMSET_SIZE attribute is used in conjunction with

SQLBindParameter().

This function can be called before SQLPrepare() if the data types and lengths of the

target columns in the WHERE or UPDATE clause, or the parameters for the stored

procedure are known. Otherwise, you can obtain the attributes of the target

columns or stored procedure parameters after the statement is prepared using

SQLDescribeParam(), and then bind the parameter markers.

Parameter markers are referenced by number (ParameterNumber) and are numbered

sequentially from left to right, starting at 1.

The C buffer data type given by ValueType must be compatible with the SQL data

type indicated by ParameterType, or an error will occur.

All parameters bound by this function remain in effect until one of the following

occurs:

v SQLFreeStmt() is called with the SQL_RESET_PARAMS option, or

v SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, or

SQLFreeStmt() is called with the SQL_DROP option, or

v SQLBindParameter() is called again for the same ParameterNumber, or

32 Call Level Interface Guide and Reference, Volume 2

v SQLSetDescField() is called, with the associated APD descriptor handle, to set

SQL_DESC_COUNT in the header field of the APD to zero (0).

A parameter can only be bound to either a file or a storage location, not both. The

most recent parameter binding function call determines the bind that is in effect.

Parameter type

The InputOutputType argument specifies the type of the parameter. All parameters

in the SQL statements that do not call procedures are input parameters. Parameters

in stored procedure calls can be input, input/output, or output parameters. Even

though the DB2 stored procedure argument convention typically implies that all

procedure arguments are input/output, the application programmer can still

choose to specify more exactly the input or output nature on the

SQLBindParameter() to follow a more rigorous coding style.

v If an application cannot determine the type of a parameter in a procedure call,

set InputOutputType to SQL_PARAM_INPUT; if the data source returns a value

for the parameter, DB2 CLI discards it.

v If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or

SQL_PARAM_OUTPUT and the data source does not return a value, DB2 CLI

sets the StrLen_or_IndPtr buffer to SQL_NULL_DATA.

v If an application marks a parameter as SQL_PARAM_OUTPUT, data for the

parameter is returned to the application after the CALL statement has been

processed. If the ParameterValuePtr and StrLen_or_IndPtr arguments are both null

pointers, DB2 CLI discards the output value. If the data source does not return a

value for an output parameter, DB2 CLI sets the StrLen_or_IndPtr buffer to

SQL_NULL_DATA.

v For this function, ParameterValuePtr and StrLen_or_IndPtr are deferred arguments.

In the case where InputOutputType is set to SQL_PARAM_INPUT or

SQL_PARAM_INPUT_OUTPUT, the storage locations must be valid and contain

input data values when the statement is executed. This means either keeping the

SQLExecDirect() or SQLExecute() call in the same procedure scope as the

SQLBindParameter() calls, or, these storage locations must be dynamically

allocated or statically / globally declared.

Similarly, if InputOutputType is set to SQL_PARAM_OUTPUT or

SQL_PARAM_INPUT_OUTPUT, the ParameterValuePtr and StrLen_or_IndPtr

buffer locations must remain valid until the CALL statement has been executed.

ParameterValuePtr and StrLen_or_IndPtr arguments

ParameterValuePtr and StrLen_or_IndPtr are deferred arguments, so the storage

locations they point to must be valid and contain input data values when the

statement is executed. This means either keeping the SQLExecDirect() or

SQLExecute() call in the same application function scope as the

SQLBindParameter() calls, or dynamically allocating or statically or globally

declaring these storage locations.

Since the data in the variables referenced by ParameterValuePtr and

StrLen_or_IndPtr is not verified until the statement is executed, data content or

format errors are not detected or reported until SQLExecute() or SQLExecDirect()

is called.

An application can pass the value for a parameter either in the ParameterValuePtr

buffer or with one or more calls to SQLPutData(). In the latter case, these

parameters are data-at-execution parameters. The application informs DB2 CLI of a

Chapter 1. CLI and ODBC functions 33

data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the

buffer pointed to by StrLen_or_IndPtr. It sets the ParameterValuePtr input argument

to a 32-bit value which will be returned on a subsequent SQLParamData() call and

can be used to identify the parameter position.

When SQLBindParameter() is used to bind an application variable to an output

parameter for a stored procedure, DB2 CLI can provide some performance

enhancement if the ParameterValuePtr buffer is placed consecutively in memory

after the StrLen_or_IndPtr buffer. For example:

 struct { SQLINTEGER StrLen_or_IndPtr;

 SQLCHAR ParameterValuePtr[MAX_BUFFER];

 } column;

BufferLength argument

For character and binary C data, the BufferLength argument specifies the length of

the ParameterValuePtr buffer if it is a single element; or, if the application calls

SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE attribute to specify

multiple values for each parameter, BufferLength is the length of each element in the

ParameterValuePtr array, including the null-terminator. If the application specifies

multiple values, BufferLength is used to determine the location of values in the

ParameterValuePtr array. For all other types of C data, the BufferLength argument is

ignored.

ColumnSize argument

When actual size of the target column or output parameter is not known, the

application can specify 0 for the length of the column. (ColumnSize set to 0).

If the column’s data type is of fixed-length, the DB2 CLI driver will base the length

from the data type itself. However, setting ColumnSize to 0 means different things

when the data type is of type character, binary string or large object:

Input parameter

A 0 ColumnSize means that DB2 CLI will use the maximum length for the

SQL type provided as the size of the column or stored procedure

parameter. DB2 CLI will perform any necessary conversions using this size.

Output parameter (stored procedures only)

A 0 ColumnSize means that DB2 CLI will use BufferLength as the

parameter’s size. Note that this means that the stored procedure must not

return more than BufferLength bytes of data or a truncation error will occur.

For Input-output parameter (store procedures only)

A 0 ColumnSize means that DB2 CLI will set both the input and output to

BufferLength as the target parameter. This means that the input data will be

converted to this new size if necessary before being sent to the stored

procedure and at most BufferLength bytes of data are expected to be

returned.

Setting ColumnSize to 0 is not recommended unless it is required; it causes DB2 CLI

to perform costly checking for the length of the data at run time.

Descriptors

How a parameter is bound is determined by fields of the APD and IPD. The

arguments in SQLBindParameter() are used to set those descriptor fields. The fields

34 Call Level Interface Guide and Reference, Volume 2

can also be set by the SQLSetDescField() functions, although SQLBindParameter()

is more efficient to use because the application does not have to obtain a descriptor

handle to call SQLBindParameter().

Note: Calling SQLBindParameter() for one statement can affect other statements.

This occurs when the APD associated with the statement is explicitly allocated and

is also associated with other statements. Because SQLBindParameter() modifies the

fields of the APD, the modifications apply to all statements with which this

descriptor is associated. If this is not the required behavior, the application should

dissociate the descriptor from the other statements before calling

SQLBindParameter().

Conceptually, SQLBindParameter() performs the following steps in sequence:

v Calls SQLGetStmtAttr() to obtain the APD handle.

v Calls SQLGetDescField() to get the SQL_DESC_COUNT header field from the

APD, and if the value of the ParameterNumber argument exceeds the value of

SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of

SQL_DESC_COUNT to ParameterNumber.

v Calls SQLSetDescField() multiple times to assign values to the following fields

of the APD:

– Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

ValueType, except that if ValueType is one of the concise identifiers of a

datetime, it sets SQL_DESC_TYPE to SQL_DATETIME, sets

SQL_DESC_CONCISE_TYPE to the concise identifier, and sets

SQL_DESC_DATETIME_INTERVAL_CODE to the corresponding datetime

subcode.

– Sets the SQL_DESC_DATA_PTR field to the value of ParameterValue.

– Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of

StrLen_or_Ind.

– Sets the SQL_DESC_INDICATOR_PTR field also to the value of StrLen_or_Ind.

The StrLen_or_Ind parameter specifies both the indicator information and the

length for the parameter value.

v Calls SQLGetStmtAttr() to obtain the IPD handle.

v Calls SQLGetDescField() to get the IPD’s SQL_DESC_COUNT field, and if the

value of the ParameterNumber argument exceeds the value of

SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of

SQL_DESC_COUNT to ParameterNumber.

v Calls SQLSetDescField() multiple times to assign values to the following fields

of the IPD:

– Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

ParameterType, except that if ParameterType is one of the concise identifiers of a

datetime, it sets SQL_DESC_TYPE to SQL_DATETIME, sets

SQL_DESC_CONCISE_TYPE to the concise identifier, and sets

SQL_DESC_DATETIME_INTERVAL_CODE to the corresponding datetime

subcode.

– Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION, and

SQL_DESC_SCALE as appropriate for ParameterType.

If the call to SQLBindParameter() fails, the content of the descriptor fields that it

would have set in the APD are undefined, and the SQL_DESC_COUNT field of the

APD is unchanged. In addition, the SQL_DESC_LENGTH,

SQL_DESC_PRECISION, SQL_DESC_SCALE, and SQL_DESC_TYPE fields of the

appropriate record in the IPD are undefined and the SQL_DESC_COUNT field of

the IPD is unchanged.

Chapter 1. CLI and ODBC functions 35

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 11. SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the ValueType

argument to the data type identified by the ParameterType

argument is not a meaningful conversion. (For example,

conversion from SQL_C_DATE to SQL_DOUBLE.)

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY003 Program type out of range. The value specified by the argument ParameterNumber not a valid

data type or SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument ParameterType is not a valid

SQL data type.

HY009 Invalid argument value. The argument ParameterValuePtr was a null pointer and the

argument StrLen_or_IndPtr was a null pointer, and

InputOutputType is not SQL_PARAM_OUTPUT.

HY010 Function sequence error. Function was called after SQLExecute() or SQLExecDirect() had

returned SQL_NEED_DATA, but data has not been sent for all

data-at-execution parameters.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY021 Inconsistent descriptor

information

The descriptor information checked during a consistency check

was not consistent.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY093 Invalid parameter number. The value specified for the argument ValueType was less than 1 or

greater than the maximum number of parameters supported by

the server.

HY094 Invalid scale value. The value specified for ParameterType was either SQL_DECIMAL

or SQL_NUMERIC and the value specified for DecimalDigits was

less than 0 or greater than the value for the argument ParamDef

(precision).

The value specified for ParameterType was SQL_C_TIMESTAMP

and the value for ParameterType was either SQL_CHAR or

SQL_VARCHAR and the value for DecimalDigits was less than 0

or greater than 6.

HY104 Invalid precision value. The value specified for ParameterType was either SQL_DECIMAL

or SQL_NUMERIC and the value specified for ParamDef was less

than 1.

36 Call Level Interface Guide and Reference, Volume 2

Table 11. SQLBindParameter SQLSTATEs (continued)

SQLSTATE Description Explanation

HY105 Invalid parameter type. InputOutputType is not one of SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYC00 Driver not capable. DB2 CLI or data source does not support the conversion specified

by the combination of the value specified for the argument

ValueType and the value specified for the argument ParameterType.

The value specified for the argument ParameterType is not

supported by either DB2 CLI or the data source.

Restrictions

SQLBindParameter() replaces the deprecated SQLSetParam() API in DB2 CLI V5 and

above, and ODBC 2.0 and above.

An additional value for StrLen_or_IndPtr, SQL_DEFAULT_PARAM, was introduced

in ODBC 2.0, to indicate that the procedure is to use the default value of a

parameter, rather than a value sent from the application. Since DB2 stored

procedure arguments do not support default values, specification of this value for

StrLen_or_IndPtr argument will result in an error when the CALL statement is

executed since the SQL_DEFAULT_PARAM value will be considered an invalid

length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be

used with the StrLen_or_IndPtr argument. The macro is used to specify the sum

total length of the entire data that would be sent for character or binary C data via

the subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this

information, the macro is not needed. An ODBC application calls SQLGetInfo()

with the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this

information. The DB2 ODBC driver will return ’N’ to indicate that this information

is not needed by SQLPutData().

Example

 SQLSMALLINT parameter1 = 0;

 /* ... */

 cliRC = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_SHORT,

 SQL_SMALLINT,

 0,

 0,

 ¶meter1,

 0,

 NULL);

SQLBrowseConnect function (CLI) - Get required attributes to connect

to data source

Purpose

 Specification: DB2 CLI 5.0 ODBC 1

Chapter 1. CLI and ODBC functions 37

SQLBrowseConnect() supports an iterative method of discovering and enumerating

the attributes and attribute values required to connect to a data source. Each call to

SQLBrowseConnect() returns successive levels of attributes and attribute values.

When all levels have been enumerated, a connection to the data source is

completed and a complete connection string is returned by SQLBrowseConnect(). A

return code of SQL_SUCCESS or SQL_SUCCESS_WITH_INFO indicates that all

connection information has been specified and the application is now connected to

the data source.

Unicode Equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLBrowseConnectW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLBrowseConnect (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLCHAR *InConnectionString, /* *szConnStrIn */

 SQLSMALLINT InConnectionStringLength, /* dbConnStrIn */

 SQLCHAR *OutConnectionString, /* *szConnStrOut */

 SQLSMALLINT OutConnectionStringCapacity, /* dbConnStrOutMax */

 SQLSMALLINT *OutConnectionStringLengthPtr); /* *pcbConnStrOut */

Function Arguments

 Table 12. SQLBrowseConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLCHAR * InConnectionString input Browse request connection string (see

InConnectionString argument).

SQLSMALLINT InConnectionStringLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store *InConnectionString.

SQLCHAR * OutConnectionString output Pointer to a buffer in which to return the browse

result connection string (see OutConnectionString

argument).

SQLSMALLINT

 OutConnectionString

Capacity

input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the *OutConnectionString buffer.

SQLSMALLINT *

 OutConnectionString

LengthPtr

output The total number of elements (excluding the null

termination character) available to return in

*OutConnectionString. If the number of elements

available to return is greater than or equal to

OutConnectionStringCapacity, the connection string in

*OutConnectionString is truncated to

OutConnectionStringCapacity minus the length of a

null termination character.

Usage

SQLBrowseConnect() requires an allocated connection. If SQLBrowseConnect()

returns SQL_ERROR, outstanding connection information is discarded, and the

connection is returned to an unconnected state.

38 Call Level Interface Guide and Reference, Volume 2

When SQLBrowseConnect() is called for the first time on a connection, the browse

request connection string must contain the DSN keyword.

On each call to SQLBrowseConnect(), the application specifies the connection

attribute values in the browse request connection string. DB2 CLI returns

successive levels of attributes and attribute values in the browse result connection

string; it returns SQL_NEED_DATA as long as there are connection attributes that

have not yet been enumerated in the browse request connection string. The

application uses the contents of the browse result connection string to build the

browse request connection string for the next call to SQLBrowseConnect(). All

mandatory attributes (those not preceded by an asterisk in the OutConnectionString

argument) must be included in the next call to SQLBrowseConnect(). Note that the

application cannot simply copy the entire content of previous browse result

connection strings when building the current browse request connection string;

that is, it cannot specify different values for attributes set in previous levels.

When all levels of connection and their associated attributes have been

enumerated, DB2 CLI returns SQL_SUCCESS, the connection to the data source is

complete, and a complete connection string is returned to the application. The

connection string is suitable to use as an argument for SQLDriverConnect() in

conjunction with the SQL_DRIVER_NOPROMPT option to establish another

connection. The complete connection string cannot be used in another call to

SQLBrowseConnect(), however; if SQLBrowseConnect() were called again, the entire

sequence of calls would have to be repeated.

SQLBrowseConnect() also returns SQL_NEED_DATA if there are recoverable,

nonfatal errors during the browse process, for example, an invalid password

supplied by the application or an invalid attribute keyword supplied by the

application. When SQL_NEED_DATA is returned and the browse result connection

string is unchanged, an error has occurred and the application can call

SQLGetDiagRec() to return the SQLSTATE for browse-time errors. This permits the

application to correct the attribute and continue the browse.

An application can terminate the browse process at any time by calling

SQLDisconnect(). DB2 CLI will terminate any outstanding connection information

and return the connection to an unconnected state.

InConnectionString argument

A browse request connection string has the following syntax:

connection-string ::= attribute[] | attribute: connection-string

attribute ::= attribute-keyword=attribute-value

| DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | NEWPWD

| driver-defined-attribute-keyword

attribute-value ::= character-string

driver-defined-attribute-keyword ::= identifier

where

v character-string has zero or more SQLCHAR or SQLWCHAR elements

v identifier has one or more SQLCHAR or SQLWCHAR elements

v attribute-keyword is case insensitive

Chapter 1. CLI and ODBC functions 39

v attribute-value might be case sensitive

v the value of the DSN keyword does not consist solely of blanks

v NEWPWD is used as part of a change password request. The application can

either specify the new string to use, for example, NEWPWD=anewpass; or

specify NEWPWD=; and rely on a dialog box generated by the DB2 CLI driver

to prompt for the new password

Because of connection string and initialization file grammar, keywords and

attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because

of the grammar in the system information, keywords and data source names

cannot contain the backslash (\) character. For DB2 CLI Version 2, braces are

required around the DRIVER keyword.

If any keywords are repeated in the browse request connection string, DB2 CLI

uses the value associated with the first occurrence of the keyword. If the DSN and

DRIVER keywords are included in the same browse request connection string,

DB2 CLI uses whichever keyword appears first.

OutConnectionString argument

The browse result connection string is a list of connection attributes. A connection

attribute consists of an attribute keyword and a corresponding attribute value. The

browse result connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= [*]attribute-keyword=attribute-value

attribute-keyword ::= ODBC-attribute-keyword

| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}[:localized-identifier]

driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?

(The braces are literal; they are returned by DB2 CLI.)

attribute-value-list ::= character-string [:localized-character

string] | character-string [:localized-character string], attribute-value-list

where

v character-string and localized-character string have zero or more SQLCHAR or

SQLWCHAR elements

v identifier and localized-identifier have one or more elements; attribute-keyword

is case insensitive

v attribute-value might be case sensitive

Because of connection string and initialization file grammar, keywords, localized

identifiers, and attribute values that contain the characters []{}(),;?*=!@ should be

avoided. Because of the grammar in the system information, keywords and data

source names cannot contain the backslash (\) character.

The browse result connection string syntax is used according to the following

semantic rules:

v If an asterisk (*) precedes an attribute-keyword, the attribute is optional, and can

be omitted in the next call to SQLBrowseConnect().

v The attribute keywords UID and PWD have the same meaning as defined in

SQLDriverConnect().

40 Call Level Interface Guide and Reference, Volume 2

v When connecting to a DB2 database, only DSN, UID and PWD are required.

Other keywords can be specified but do not affect the connection.

v ODBC-attribute-keywords and driver-defined-attribute-keywords include a

localized or user-friendly version of the keyword. This might be used by

applications as a label in a dialog box. However, UID, PWD, or the identifier

alone must be used when passing a browse request string to DB2 CLI.

v The {attribute-value-list} is an enumeration of actual values valid for the

corresponding attribute-keyword. Note that the braces ({}) do not indicate a list

of choices; they are returned by DB2 CLI. For example, it might be a list of

server names or a list of database names.

v If the attribute-value is a single question mark (?), a single value corresponds to

the attribute-keyword. For example, UID=JohnS; PWD=Sesame.

v Each call to SQLBrowseConnect() returns only the information required to satisfy

the next level of the connection process. DB2 CLI associates state information

with the connection handle so that the context can always be determined on

each call.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NEED_DATA

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 13. SQLBrowseConnect SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *OutConnectionString was not large enough to return

entire browse result connection string, so the string was truncated.

The buffer *OutConnectionStringLengthPtr contains the length of

the untruncated browse result connection string. (Function returns

SQL_SUCCESS_WITH_INFO.)

01S00 Invalid connection string

attribute.

An invalid attribute keyword was specified in the browse request

connection string (InConnectionString). (Function returns

SQL_NEED_DATA.)

An attribute keyword was specified in the browse request

connection string (InConnectionString) that does not apply to the

current connection level. (Function returns SQL_NEED_DATA.)

01S02 Option value changed. DB2 CLI did not support the specified value of the ValuePtr

argument in SQLSetConnectAttr() and substituted a similar value.

(Function returns SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect to data source. DB2 CLI was unable to establish a connection with the data

source.

08002 Connection in use. The specified connection had already been used to establish a

connection with a data source and the connection was open.

08004 The application server rejected

establishment of the connection.

The data source rejected the establishment of the connection for

implementation defined reasons.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was trying to connect failed before the function

completed processing.

Chapter 1. CLI and ODBC functions 41

Table 13. SQLBrowseConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

28000 Invalid authorization

specification.

Either the user identifier or the authorization string or both as

specified in the browse request connection string

(InConnectionString) violated restrictions defined by the data

source.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument InConnectionStringLength was

less than 0 and was not equal to SQL_NTS.

The value specified for argument OutConnectionStringCapacity was

less than 0.

Restrictions

None.

Example

 SQLCHAR connInStr[255]; /* browse request connection string */

 SQLCHAR outStr[1025]; /* browse result connection string*/

 /* ... */

 cliRC = SQL_NEED_DATA;

 while (cliRC == SQL_NEED_DATA)

 {

 /* get required attributes to connect to data source */

 cliRC = SQLBrowseConnect(hdbc,

 connInStr,

 SQL_NTS,

 outStr,

 sizeof(outStr),

 &indicator);

 DBC_HANDLE_CHECK(hdbc, cliRC);

 printf(" So far, have connected %d times to database %s\n",

 count++, db1Alias);

 printf(" Resulting connection string:

 /* if inadequate connection information was provided, exit

 the program */

 if (cliRC == SQL_NEED_DATA)

 {

 printf(" You can provide other connection information "

 "here by setting connInStr\n");

 break;

 }

 /* if the connection was successful, output confirmation */

 if (cliRC == SQL_SUCCESS)

42 Call Level Interface Guide and Reference, Volume 2

{

 printf(" Connected to the database

 }

 }

SQLBulkOperations function (CLI) - Add, update, delete or fetch a set

of rows

Purpose

 Specification: DB2 CLI 6.0 ODBC 3.0

SQLBulkOperations() is used to perform the following operations on a

keyset-driven cursor:

v Add new rows

v Update a set of rows where each row is identified by a bookmark

v Delete a set of rows where each row is identified by a bookmark

v Fetch a set of rows where each row is identified by a bookmark

Syntax

SQLRETURN SQLBulkOperations (

 SQLHSTMT StatementHandle,

 SQLSMALLINT Operation);

Function arguments

 Table 14. SQLBulkOperations arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT Operation Input Operation to perform:

v SQL_ADD

v SQL_UPDATE_BY_BOOKMARK

v SQL_DELETE_BY_BOOKMARK

v SQL_FETCH_BY_BOOKMARK

Usage

An application uses SQLBulkOperations() to perform the following operations on

the base table or view that corresponds to the current query in a keyset-driven

cursor:

v Add new rows

v Update a set of rows where each row is identified by a bookmark

v Delete a set of rows where each row is identified by a bookmark

v Fetch a set of rows where each row is identified by a bookmark

A generic application should first ensure that the required bulk operation is

supported. To do so, it can call SQLGetInfo() with an InfoType of

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 and

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 (to see if

SQL_CA1_BULK_UPDATE_BY_BOOKMARK is returned, for instance).

After a call to SQLBulkOperations(), the block cursor position is undefined. The

application has to call SQLFetchScroll() to set the cursor position. An application

should only call SQLFetchScroll() with a FetchOrientation argument of

SQL_FETCH_FIRST, SQL_FETCH_LAST, SQL_FETCH_ABSOLUTE, or

Chapter 1. CLI and ODBC functions 43

SQL_FETCH_BOOKMARK. The cursor position is undefined if the application

calls SQLFetch(), or SQLFetchScroll() with a FetchOrientation argument of

SQL_FETCH_PRIOR, SQL_FETCH_NEXT, or SQL_FETCH_RELATIVE.

A column can be ignored in bulk operations (calls to SQLBulkOperations()). To do

so, call SQLBindCol() and set the column length/indicator buffer (StrLen_or_IndPtr)

to SQL_COLUMN_IGNORE. This does not apply to

SQL_DELETE_BY_BOOKMARK bulk operation.

It is not necessary for the application to set the

SQL_ATTR_ROW_OPERATION_PTR statement attribute when calling

SQLBulkOperations() because rows cannot be ignored when performing bulk

operations with this function.

The buffer pointed to by the SQL_ATTR_ROWS_FETCHED_PTR statement

attribute contains the number of rows affected by a call to SQLBulkOperations().

When the Operation argument is SQL_ADD or SQL_UPDATE_BY_BOOKMARK,

and the select-list of the query specification associated with the cursor contains

more than one reference to the same column, an error is generated.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NEED_DATA

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 15. SQLBulkOperations SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The Operation argument was SQL_FETCH_BY_BOOKMARK, and

string or binary data returned for a column or columns with a

data type of SQL_C_CHAR or SQL_C_BINARY resulted in the

truncation of non-blank character or non-NULL binary data.

01S07 Invalid conversion. The Operation argument was SQL_FETCH_BY_BOOKMARK, the

data type of the application buffer was not SQL_C_CHAR or

SQL_C_BINARY, and the data returned to application buffers for

one or more columns was truncated. (For numeric C data types,

the fractional part of the number was truncated. For time and

timestamp data types, the fractional portion of the time was

truncated.)

(Function returns SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type attribute

violation.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and

the data value of a column in the result set could not be

converted to the data type specified by the TargetType argument in

the call to SQLBindCol().

The Operation argument was SQL_UPDATE_BY_BOOKMARK or

SQL_ADD, and the data value in the application buffers could not

be converted to the data type of a column in the result set.

44 Call Level Interface Guide and Reference, Volume 2

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

07009 Invalid descriptor index. The argument Operation was SQL_ADD and a column was bound

with a column number greater than the number of columns in the

result set, or the column number was less than 0.

21S02 Degree of derived table does not

match column list.

The argument Operation was SQL_UPDATE_BY_BOOKMARK;

and no columns were updatable because all columns were either

unbound, read-only, or the value in the bound length/indicator

buffer was SQL_COLUMN_IGNORE.

22001 String data right truncation. The assignment of a character or binary value to a column in the

result set resulted in the truncation of non-blank (for characters)

or non-null (for binary) characters or bytes.

22003 Numeric value out of range. The Operation argument was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK, and the assignment of a

numeric value to a column in the result set caused the whole (as

opposed to fractional) part of the number to be truncated.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and

returning the numeric value for one or more bound columns

would have caused a loss of significant digits.

22007 Invalid datetime format. The Operation argument was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK, and the assignment of a date or

timestamp value to a column in the result set caused the year,

month, or day field to be out of range.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and

returning the date or timestamp value for one or more bound

columns would have caused the year, month, or day field to be

out of range.

22008 Date/time field overflow. The Operation argument was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK, and the performance of

datetime arithmetic on data being sent to a column in the result

set resulted in a datetime field (the year, month, day, hour,

minute, or second field) of the result being outside the permissible

range of values for the field, or being invalid based on the natural

rules for datetimes based on the Gregorian calendar.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and

the performance of datetime arithmetic on data being retrieved

from the result set resulted in a datetime field (the year, month,

day, hour, minute, or second field) of the result being outside the

permissible range of values for the field, or being invalid based on

the natural rules for datetimes based on the Gregorian calendar.

22018 Invalid character value for cast

specification.

The Operation argument was SQL_FETCH_BY_BOOKMARK; the

C type was an exact or approximate numeric or datetime data

type; the SQL type of the column was a character data type; and

the value in the column was not a valid literal of the bound C

type.

The argument Operation was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK; the SQL type was an exact or

approximate numeric or datetime data type; the C type was

SQL_C_CHAR; and the value in the column was not a valid literal

of the bound SQL type.

Chapter 1. CLI and ODBC functions 45

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

23000 Integrity constraint violation. The Operation argument was SQL_ADD,

SQL_DELETE_BY_BOOKMARK, or

SQL_UPDATE_BY_BOOKMARK, and an integrity constraint was

violated.

The Operation argument was SQL_ADD, and a column that was

not bound is defined as NOT NULL and has no default.

The Operation argument was SQL_ADD, the length specified in

the bound StrLen_or_IndPtr buffer was SQL_COLUMN_IGNORE,

and the column did not have a default value.

24000 Invalid cursor state. The StatementHandle was in an executed state but no result set was

associated with the StatementHandle. SQLFetch() or

SQLFetchScroll() was not called by the application after

SQLExecute() or SQLExecDirect().

40001 Serialization failure. The transaction was rolled back due to a resource deadlock with

another transaction.

40003 Statement completion unknown. The associated connection failed during the execution of this

function and the state of the transaction cannot be determined.

42000 Syntax error or access violation. DB2 CLI was unable to lock the row as needed to perform the

operation requested in the Operation argument.

44000 WITH CHECK OPTION

violation.

The Operation argument was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK, and the insert or update was

performed on a viewed table or a table derived from the viewed

table which was created by specifying WITH CHECK OPTION,

such that one or more rows affected by the insert or update will

no longer be present in the viewed table.

HY000 General error. An error occurred for which there was no specific SQLSTATE and

for which no implementation-specific SQLSTATE was defined. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation error. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

For the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

46 Call Level Interface Guide and Reference, Volume 2

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

HY011 Operation invalid at this time. The SQL_ATTR_ROW_STATUS_PTR statement attribute was set

between calls to SQLFetch() or SQLFetchScroll() and

SQLBulkOperations.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of this function.

HY090 Invalid string or buffer length. The Operation argument was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK, a data value was a null pointer,

and the column length value was not 0, SQL_DATA_AT_EXEC,

SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less than or

equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

The Operation argument was SQL_ADD or

SQL_UPDATE_BY_BOOKMARK, a data value was not a null

pointer; the C data type was SQL_C_BINARY or SQL_C_CHAR;

and the column length value was less than 0, but not equal to

SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE, SQL_NTS, or

SQL_NULL_DATA, or less than or equal to

SQL_LEN_DATA_AT_EXEC_OFFSET.

The value in a length/indicator buffer was SQL_DATA_AT_EXEC;

the SQL type was either SQL_LONGVARCHAR,

SQL_LONGVARBINARY, or a long data type; and the

SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo()

was “Y”.

The Operation argument was SQL_ADD, the

SQL_ATTR_USE_BOOKMARKS statement attribute was set to

SQL_UB_VARIABLE, and column 0 was bound to a buffer whose

length was not equal to the maximum length for the bookmark

for this result set. (This length is available in the

SQL_DESC_OCTET_LENGTH field of the IRD, and can be

obtained by calling SQLDescribeCol(), SQLColAttribute(), or

SQLGetDescField().)

HY092 Invalid attribute identifier. The value specified for the Operation argument was invalid.

The Operation argument was SQL_ADD,

SQL_UPDATE_BY_BOOKMARK, or

SQL_DELETE_BY_BOOKMARK, and the

SQL_ATTR_CONCURRENCY statement attribute was set to

SQL_CONCUR_READ_ONLY.

The Operation argument was SQL_DELETE_BY_BOOKMARK,

SQL_FETCH_BY_BOOKMARK, or

SQL_UPDATE_BY_BOOKMARK, and the bookmark column was

not bound or the SQL_ATTR_USE_BOOKMARKS statement

attribute was set to SQL_UB_OFF.

HYC00 Optional feature not

implemented.

DB2 CLI or data source does not support the operation requested

in the Operation argument.

HYT00 Timeout expired. The query timeout period expired before the data source returned

the result set. The timeout period is set through SQLSetStmtAttr()

with an Attribute argument of SQL_ATTR_QUERY_TIMEOUT.

HYT01 Connection timeout expired. The connection timeout period expired before the data source

responded to the request. The connection timeout period is set

through SQLSetConnectAttr(),

SQL_ATTR_CONNECTION_TIMEOUT.

Chapter 1. CLI and ODBC functions 47

Restrictions

None.

SQLCancel function (CLI) - Cancel statement

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLCancel() can be used to prematurely terminate the data-at-execution sequence

for sending and retrieving long data in pieces.

SQLCancel() can also be used to cancel a function called in a different thread.

Syntax

SQLRETURN SQLCancel (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

 Table 16. SQLCancel arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

After SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA to solicit for

values for data-at-execution parameters, SQLCancel() can be used to cancel the

data-at-execution sequence for sending and retrieving long data in pieces.

SQLCancel() can be called any time before the final SQLParamData() in the

sequence. After the cancellation of this sequence, the application can call

SQLExecute() or SQLExecDirect() to re-initiate the data-at-execution sequence.

If no processing is being done on the statement, SQLCancel() has no effect.

Applications should not call SQLCancel() to close a cursor, but rather

SQLFreeStmt() should be used.

Canceling queries on host databases

To call SQLCancel() against a server which does not have native interrupt support

(such as DB2 Universal Database™ for z/OS® and OS/390®, Version 7 and earlier,

and DB2 for iSeries™), the INTERRUPT_ENABLED option must be set when

cataloging the DCS database entry for the server.

When the INTERRUPT_ENABLED option is set and SQLCancel() is received by the

server, the server drops the connection and rolls back the unit of work. The

application receives an SQL30081N error indicating that the connection to the

server has been terminated. In order for the application to process additional

database requests, the application must establish a new connection with the

database server.

48 Call Level Interface Guide and Reference, Volume 2

Canceling asynchronous processing

After an application calls a function asynchronously, it calls the function repeatedly

to determine whether it has finished processing. If the function is still processing, it

returns SQL_STILL_EXECUTING.

After any call to the function that returns SQL_STILL_EXECUTING, an application

can call SQLCancel() to cancel the function. If the cancel request is successful,

SQL_SUCCESS is returned. This message does not indicate that the function was

actually canceled; it indicates that the cancel request was processed. The

application must then continue to call the original function until the return code is

not SQL_STILL_EXECUTING. If the function was successfully canceled, the return

code is for that function is SQL_ERROR and SQLSTATE HY008 (Operation was

cancelled.). If the function succeeded by completing its normal processing, the

return code is SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. If the function

failed for reasons other than cancellation, the return code is SQL_ERROR and an

SQLSTATE other than HY008 (Operation was cancelled.).

Canceling functions in multithread applications

In a multithread application, the application can cancel a function that is running

synchronously on a statement. To cancel the function, the application calls

SQLCancel() with the same statement handle as that used by the target function,

but on a different thread. How the function is canceled depends upon the

operating system. The return code of the SQLCancel() call indicates only whether

DB2 CLI processed the request successfully. Only SQL_SUCCESS or SQL_ERROR

can be returned; no SQLSTATEs are returned. If the original function is canceled, it

returns SQL_ERROR and SQLSTATE HY008 (Operation was cancelled.).

If an SQL statement is being executed when SQLCancel() is called on another

thread to cancel the statement execution, it is possible that the execution succeeds

and returns SQL_SUCCESS, while the cancel is also successful. In this case, DB2

CLI assumes that the cursor opened by the statement execution is closed by the

cancel, so the application will not be able to use the cursor.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_INVALID_HANDLE

v SQL_ERROR

Note: SQL_SUCCESS means that the cancel request was processed, not that the

function call was canceled.

Diagnostics

 Table 17. SQLCancel SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

Chapter 1. CLI and ODBC functions 49

Table 17. SQLCancel SQLSTATEs (continued)

SQLSTATE Description Explanation

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY018 Server declined cancel request. The server declined the cancel request.

HY506 Error closing a file. An error occurred when closing the temporary file generated by

DB2 CLI when inserting LOB data in pieces using

SQLParamData()/SQLPutData().

Restrictions

None.

Example

 /* cancel the SQL_DATA_AT_EXEC state for hstmt */

 cliRC = SQLCancel(hstmt);

SQLCloseCursor function (CLI) - Close cursor and discard pending

results

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLCloseCursor() closes a cursor that has been opened on a statement and

discards pending results.

Syntax

SQLRETURN SQLCloseCursor (SQLHSTMT StatementHandle); /* hStmt */

Function arguments

 Table 18. SQLCloseCursor arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

After an application calls SQLCloseCursor(), the application can reopen the cursor

later by executing a SELECT statement again with the same or different parameter

values. SQLCloseCursor() can be called before a transaction is completed.

SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state) if no cursor is

open. Calling SQLCloseCursor() is equivalent to calling SQLFreeStmt() with the

SQL_CLOSE option, with the exception that SQLFreeStmt() with SQL_CLOSE has

no effect on the application if no cursor is open on the statement, while

SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state).

The statement attribute SQL_ATTR_CLOSE_BEHAVIOR can be used to indicate

whether or not DB2 CLI should attempt to release read locks acquired during a

cursor’s operation when the cursor is closed. If SQL_ATTR_CLOSE_BEHAVIOR is

50 Call Level Interface Guide and Reference, Volume 2

set to SQL_CC_RELEASE then the database manager will attempt to release all

read locks (if any) that have been held for the cursor.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 19. SQLCloseCursor SQLSTATEs

SQLSTATE Description Explanation

01000 General warning Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. No cursor was open on the StatementHandle. (This is returned only

by DB2 CLI Version 5 or later.)

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. An asynchronously executing function was called for the

StatementHandle and was still executing when this function was

called.

SQLExecute() or SQLExecDirect() was called for the

StatementHandle and returned SQL_NEED_DATA. This function

was called before data was sent for all data-at-execution

parameters or columns.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Restrictions

None.

Example

 /* close the cursor */

 cliRC = SQLCloseCursor(hstmt);

SQLColAttribute function (CLI) - Return a column attribute

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLColAttribute() returns descriptor information for a column in a result set.

Descriptor information is returned as a character string, a 32-bit

descriptor-dependent value, or an integer value.

Chapter 1. CLI and ODBC functions 51

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLColAttributeW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

In a Windows 64-bit environment, the syntax is as follows:

SQLRETURN SQLColAttribute (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT ColumnNumber, /* icol */

 SQLSMALLINT FieldIdentifier, /* fDescType */

 SQLPOINTER CharacterAttributePtr, /* rgbDesc */

 SQLSMALLINT BufferLength, /* cbDescMax */

 SQLSMALLINT *StringLengthPtr, /* pcbDesc */

 SQLLEN *NumericAttributePtr); /* pfDesc */

The syntax for all other platforms is as follows:

SQLRETURN SQLColAttribute (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT ColumnNumber, /* icol */

 SQLSMALLINT FieldIdentifier, /* fDescType */

 SQLPOINTER CharacterAttributePtr, /* rgbDesc */

 SQLSMALLINT BufferLength, /* cbDescMax */

 SQLSMALLINT *StringLengthPtr, /* pcbDesc */

 SQLPOINTER NumericAttributePtr); /* pfDesc */

Function arguments

 Table 20. SQLColAttribute arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ColumnNumber input

The number of the record in the IRD from which the

field value is to be retrieved. This argument

corresponds to the column number of result data,

ordered sequentially from left to right, starting at 1.

Columns can be described in any order.

Column 0 can be specified in this argument, but all

values except SQL_DESC_TYPE and

SQL_DESC_OCTET_LENGTH will return undefined

values.

SQLSMALLINT FieldIdentifier input The field in row ColumnNumber of the IRD that is to

be returned (see Table 21 on page 54).

SQLPOINTER CharacterAttributePtr output Pointer to a buffer in which to return the value in

the FieldIdentifier field of the ColumnNumber row of

the IRD, if the field is a character string. Otherwise,

the field is unused.

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the *CharacterAttributePtr buffer, if

the field is a character string. Otherwise, the field is

ignored.

52 Call Level Interface Guide and Reference, Volume 2

Table 20. SQLColAttribute arguments (continued)

Data type Argument Use Description

SQLSMALLINT * StringLengthPtr output

Pointer to a buffer in which to return the total

number of bytes (excluding the byte count of the

null termination character for character data)

available to return in *CharacterAttributePtr.

For character data, if the number of bytes available

to return is greater than or equal to BufferLength, the

descriptor information in *CharacterAttributePtr is

truncated to BufferLength minus the length of a null

termination character and is null-terminated by DB2

CLI.

For all other types of data, the value of BufferLength

is ignored and DB2 CLI assumes the size of

*CharacterAttributePtr is 32 bits.

SQLLEN* (Window

64-bit) or

SQLPOINTER

NumericAttributePtr output Pointer to a buffer in which to return the value in

the FieldIdentifier field of the ColumnNumber row of

the IRD, if the field is a numeric descriptor type,

such as SQL_DESC_COLUMN_LENGTH. Otherwise,

the field is unused.

Usage

SQLColAttribute() returns information either in *NumericAttributePtr or in

*CharacterAttributePtr. Integer information is returned in *NumericAttributePtr as a

32-bit, signed value; all other formats of information are returned in

*CharacterAttributePtr. When information is returned in *NumericAttributePtr, DB2

CLI ignores CharacterAttributePtr, BufferLength, and StringLengthPtr When

information is returned in *CharacterAttributePtr, DB2 CLI ignores

NumericAttributePtr.

SQLColAttribute() returns values from the descriptor fields of the IRD. The

function is called with a statement handle rather than a descriptor handle. The

values returned by SQLColAttribute() for the FieldIdentifier values listed below can

also be retrieved by calling SQLGetDescField() with the appropriate IRD handle.

The currently defined descriptor types, the version of DB2 CLI in which they were

introduced (perhaps with a different name), and the arguments in which

information is returned for them are shown below; it is expected that more

descriptor types will be defined to take advantage of different data sources.

DB2 CLI must return a value for each of the descriptor types. If a descriptor type

does not apply to a data source, then, unless otherwise stated, DB2 CLI returns 0

in *StringLengthPtr or an empty string in *CharacterAttributePtr.

The following table lists the descriptor types returned by SQLColAttribute().

Chapter 1. CLI and ODBC functions 53

Table 21. SQLColAttribute arguments

FieldIdentifier

Information

returned in Description

SQL_DESC_AUTO_UNIQUE_VALUE

(DB2 CLI v2)

Numeric

AttributePtr

Indicates if the column data type is an auto

increment data type.

SQL_FALSE is returned in NumericAttributePtr for all

DB2 SQL data types. Currently DB2 CLI is not able

to determine if a column is an identity column,

therefore SQL_FALSE is always returned. This

limitation does not fully conform to the ODBC

specifications. Future versions of DB2 CLI for Unix

and Windows servers will provide auto-unique

support.

SQL_DESC_BASE_COLUMN_NAME

(DB2 CLI v5)

Character

AttributePtr

The base column name for the set column. If a base

column name does not exist (as in the case of

columns that are expressions), then this variable

contains an empty string.

This information is returned from the

SQL_DESC_BASE_COLUMN_NAME record field of

the IRD, which is a read-only field.

SQL_DESC_BASE_TABLE_NAME (DB2

CLI v5)

Character

AttributePtr

The name of the base table that contains the column.

If the base table name cannot be defined or is not

applicable, then this variable contains an empty

string.

SQL_DESC_CASE_SENSITIVE (DB2

CLI v2)

Numeric

AttributePtr

Indicates if the column data type is a case sensitive

data type.

Either SQL_TRUE or SQL_FALSE will be returned in

NumericAttributePtr depending on the data type.

Case sensitivity does not apply to graphic data types,

SQL_FALSE is returned.

SQL_FALSE is returned for non-character data types

and for the XML data type.

SQL_DESC_CATALOG_NAME (DB2

CLI v2)

Character

AttributePtr

An empty string is returned since DB2 CLI only

supports two part naming for a table.

SQL_DESC_CONCISE_TYPE (DB2

CLI v5)

Numeric

AttributePtr

The concise data type.

For the datetime data types, this field returns the

concise data type, for example, SQL_TYPE_TIME.

This information is returned from the

SQL_DESC_CONCISE_TYPE record field of the IRD.

SQL_DESC_COUNT (DB2 CLI v2) Numeric

AttributePtr

The number of columns in the result set is returned

in NumericAttributePtr.

SQL_DESC_DISPLAY_SIZE (DB2 CLI v2) Numeric

AttributePtr

The maximum number of bytes needed to display

the data in character form is returned in

NumericAttributePtr.

Refer to the data type display size table for the

display size of each of the column types.

54 Call Level Interface Guide and Reference, Volume 2

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier

Information

returned in Description

SQL_DESC_DISTINCT_TYPE (DB2

CLI v2)

Character

AttributePtr

The user defined distinct type name of the column is

returned in CharacterAttributePtr. If the column is a

built-in SQL type and not a user defined distinct

type, an empty string is returned.

Note: This is an IBM defined extension to the list of

descriptor attributes defined by ODBC.

SQL_DESC_FIXED_PREC_SCALE (DB2

CLI v2)

Numeric

AttributePtr

SQL_TRUE if the column has a fixed precision and

non-zero scale that are data-source-specific.

SQL_FALSE if the column does not have a fixed

precision and non-zero scale that are

data-source-specific.

SQL_FALSE is returned in NumericAttributePtr for all

DB2 SQL data types.

SQL_DESC_LABEL (DB2 CLI v2) Character

AttributePtr

The column label is returned in CharacterAttributePtr.

If the column does not have a label, the column

name or the column expression is returned. If the

column is unlabeled and unnamed, an empty string

is returned.

SQL_DESC_LENGTH (DB2 CLI v2) Numeric

AttributePtr

A numeric value that is either the maximum or

actual element (SQLCHAR or SQLWCHAR) length of

a character string or binary data type. It is the

maximum element length for a fixed-length data

type, or the actual element length for a

variable-length data type. Its value always excludes

the null termination byte that ends the character

string.

This information is returned from the

SQL_DESC_LENGTH record field of the IRD.

This value is 0 for the XML data type.

SQL_DESC_LITERAL_PREFIX (DB2

CLI v5)

Character

AttributePtr

This VARCHAR(128) record field contains the

character or characters that DB2 CLI recognizes as a

prefix for a literal of this data type. This field

contains an empty string for a data type for which a

literal prefix is not applicable.

SQL_DESC_LITERAL_SUFFIX (DB2

CLI v5)

Character

AttributePtr

This VARCHAR(128) record field contains the

character or characters that DB2 CLI recognizes as a

suffix for a literal of this data type. This field

contains an empty string for a data type for which a

literal suffix is not applicable.

SQL_DESC_LOCAL_TYPE_NAME (DB2

CLI v5)

Character

AttributePtr

This VARCHAR(128) record field contains any

localized (native language) name for the data type

that might be different from the regular name of the

data type. If there is no localized name, then an

empty string is returned. This field is for display

purposes only. The character set of the string is

locale-dependent and is typically the default

character set of the server.

Chapter 1. CLI and ODBC functions 55

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier

Information

returned in Description

SQL_DESC_NAME (DB2 CLI v2) Character

AttributePtr

The name of the column ColumnNumber is returned

in CharacterAttributePtr. If the column is an

expression, then the column number is returned.

In either case, SQL_DESC_UNNAMED is set to

SQL_NAMED. If there is no column name or a

column alias, an empty string is returned and

SQL_DESC_UNNAMED is set to SQL_UNNAMED.

This information is returned from the

SQL_DESC_NAME record field of the IRD.

SQL_DESC_NULLABLE (DB2 CLI v2) Numeric

AttributePtr

If the column identified by ColumnNumber can

contain nulls, then SQL_NULLABLE is returned in

NumericAttributePtr.

If the column is constrained not to accept nulls, then

SQL_NO_NULLS is returned in NumericAttributePtr.

This information is returned from the

SQL_DESC_NULLABLE record field of the IRD.

SQL_DESC_NUM_PREX_RADIX (DB2

CLI v5)

Numeric

AttributePtr

v If the data type in the SQL_DESC_TYPE field is an

approximate data type, this SQLINTEGER field

contains a value of 2 because the

SQL_DESC_PRECISION field contains the number

of bits.

v If the data type in the SQL_DESC_TYPE field is an

exact numeric data type, this field contains a value

of 10 because the SQL_DESC_PRECISION field

contains the number of decimal digits.

SQL_DESC_OCTET_LENGTH (DB2

CLI v2)

Numeric

AttributePtr

The number of bytes of data associated with the

column is returned in NumericAttributePtr. This is the

length in bytes of data transferred on the fetch or

SQLGetData() for this column if SQL_C_DEFAULT is

specified as the C data type. Refer to data type

length table for the length of each of the SQL data

types.

If the column identified in ColumnNumber is a fixed

length character or binary string, (for example,

SQL_CHAR or SQL_BINARY) the actual length is

returned.

If the column identified in ColumnNumber is a

variable length character or binary string, (for

example, SQL_VARCHAR or SQL_BLOB) the

maximum length is returned.

If the column identified in ColumnNumber is of type

SQL_XML, 0 is returned.

56 Call Level Interface Guide and Reference, Volume 2

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier

Information

returned in Description

SQL_DESC_PRECISION (DB2 CLI v2) Numeric

AttributePtr

The precision in units of digits is returned in

NumericAttributePtr if the column is SQL_DECIMAL,

SQL_NUMERIC, SQL_DOUBLE, SQL_FLOAT,

SQL_INTEGER, SQL_REAL or SQL_SMALLINT.

If the column is a character SQL data type, then the

precision returned in NumericAttributePtr, indicates

the maximum number of SQLCHAR or SQLWCHAR

elements the column can hold.

If the column is a graphic SQL data type, then the

precision returned in NumericAttributePtr, indicates

the maximum number of double-byte elements the

column can hold.

If the column is the XML data type, the precision is

0.

Refer to data type precision table for the precision of

each of the SQL data types.

This information is returned from the

SQL_DESC_PRECISION record field of the IRD.

SQL_DESC_SCALE (DB2 CLI v2) Numeric

AttributePtr

The scale attribute of the column is returned. Refer to

the data type scale table for the scale of each of the

SQL data types.

This information is returned from the SCALE record

field of the IRD.

SQL_DESC_SCHEMA_NAME (DB2

CLI v2)

Character

AttributePtr

The schema of the table that contains the column is

returned in CharacterAttributePtr. An empty string is

returned as DB2 CLI is unable to determine this

attribute.

SQL_DESC_SEARCHABLE (DB2 CLI v2) Numeric

AttributePtr

Indicates if the column data type is searchable:

v SQL_PRED_NONE (SQL_UNSEARCHABLE in

DB2 CLI v2) if the column cannot be used in a

WHERE clause.

v SQL_PRED_CHAR (SQL_LIKE_ONLY in DB2

CLI v2) if the column can be used in a WHERE

clause only with the LIKE predicate.

v SQL_PRED_BASIC (SQL_ALL_EXCEPT_LIKE in

DB2 CLI v2) if the column can be used in a

WHERE clause with all comparison operators

except LIKE.

v SQL_SEARCHABLE if the column can be used in

a WHERE clause with any comparison operator.

SQL_DESC_TABLE_NAME (DB2 CLI v2) Character

AttributePtr

An empty string is returned as DB2 CLI cannot

determine this attribute.

Chapter 1. CLI and ODBC functions 57

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier

Information

returned in Description

SQL_DESC_TYPE (DB2 CLI v2) Numeric

AttributePtr

The SQL data type of the column identified in

ColumnNumber is returned in NumericAttributePtr.

The possible values returned are listed in table of

symbolic and default data types for CLI.

When ColumnNumber is equal to 0, SQL_BINARY is

returned for variable-length bookmarks, and

SQL_INTEGER is returned for fixed-length

bookmarks.

For the datetime data types, this field returns the

verbose data type, for example, SQL_DATETIME.

This information is returned from the

SQL_DESC_TYPE record field of the IRD.

SQL_DESC_TYPE_NAME (DB2 CLI v2) Character

AttributePtr

The type of the column (as entered in an SQL

statement) is returned in CharacterAttributePtr.

For information on each data type refer to the list of

symbolic and default data types for CLI.

SQL_DESC_UNNAMED (DB2 CLI v5) Numeric

AttributePtr

SQL_NAMED or SQL_UNNAMED. If the

SQL_DESC_NAME field of the IRD contains a

column alias, or a column name, SQL_NAMED is

returned. If there is no column name or a column

alias, SQL_UNNAMED is returned.

This information is returned from the

SQL_DESC_UNNAMED record field of the IRD.

SQL_DESC_UNSIGNED (DB2 CLI v2) Numeric

AttributePtr

Indicates if the column data type is an unsigned type

or not.

SQL_TRUE is returned in NumericAttributePtr for all

non-numeric data types, SQL_FALSE is returned for

all numeric data types.

SQL_DESC_UPDATABLE (DB2 CLI v2) Numeric

AttributePtr

Indicates if the column data type is an updateable

data type:

v SQL_ATTR_READWRITE_UNKNOWN is returned

in NumericAttributePtr for all DB2 SQL data types.

It is returned because DB2 CLI is not currently

able to determine if a column is updateable.

Future versions of DB2 CLI for Unix and Windows

servers will be able to determine if a column is

updateable.

v SQL_ATTR_READONLY is returned if the column

is obtained from a catalog function call.

Although DB2 CLI does not return them, ODBC also

defines the following value:

v SQL_ATTR_WRITE

This function is an extensible alternative to SQLDescribeCol(). SQLDescribeCol()

returns a fixed set of descriptor information based on ANSI-89 SQL.

SQLColAttribute() allows access to the more extensive set of descriptor

information available in ANSI SQL-92 and DBMS vendor extensions.

58 Call Level Interface Guide and Reference, Volume 2

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 22. SQLColAttribute SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *CharacterAttributePtr was not large enough to return

the entire string value, so the string was truncated. The length of

the untruncated string value is returned in *StringLengthPtr.

(Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return a

result set.

The statement associated with the StatementHandle did not return

a result set. There were no columns to describe.

07009 Invalid descriptor index. The value specified for ColumnNumber was equal to 0, and the

SQL_ATTR_USE_BOOKMARKS statement attribute was

SQL_UB_OFF. The value specified for the argument

ColumnNumber was greater than the number of columns in the

result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

SQLExecute() or SQLExecDirect() was called for the

StatementHandle and returned SQL_NEED_DATA. This function

was called before data was sent for all data-at-execution

parameters or columns.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY091 Invalid descriptor field identifier. The value specified for the argument FieldIdentifier was not one of

the defined values, and was not an implementation-defined value.

HYC00 Driver not capable. The value specified for the argument FieldIdentifier was not

supported by DB2 CLI.

Chapter 1. CLI and ODBC functions 59

SQLColAttribute() can return any SQLSTATE that can be returned by

SQLPrepare() or SQLExecute() when called after SQLPrepare() and before

SQLExecute() depending on when the data source evaluates the SQL statement

associated with the StatementHandle.

For performance reasons, an application should not call SQLColAttribute() before

executing a statement.

Restrictions

None.

Example

 /* get display size for column */

 cliRC = SQLColAttribute(hstmt,

 (SQLSMALLINT)(i + 1),

 SQL_DESC_DISPLAY_SIZE,

 NULL,

 0,

 NULL,

 &colDataDisplaySize)

SQLColAttributes function (CLI) - Get column attributes

Deprecated

Note:

In ODBC 3.0, SQLColAttributes() has been deprecated and replaced with

SQLColAttribute().

Although this version of DB2 CLI continues to support SQLColAttributes(), we

recommend that you use SQLColAttribute() in your DB2 CLI programs so that

they conform to the latest standards.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLColAttributesW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Migrating to the new function

The statement:

 SQLColAttributes (hstmt, colNum, SQL_DESC_COUNT, NULL, len,

 NULL, &numCols);

for example, would be rewritten using the new function as:

 SQLColAttribute (hstmt, colNum, SQL_DESC_COUNT, NULL, len,

 NULL, &numCols);

SQLColumnPrivileges function (CLI) - Get privileges associated with

the columns of a table

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

60 Call Level Interface Guide and Reference, Volume 2

SQLColumnPrivileges() returns a list of columns and associated privileges for the

specified table. The information is returned in an SQL result set, which can be

retrieved using the same functions that are used to process a result set generated

from a query.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLColumnPrivilegesW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLColumnPrivileges(

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR *TableName /* szTableName */

 SQLSMALLINT NameLength3, /* cbTableName */

 SQLCHAR *ColumnName, /* szColumnName */

 SQLSMALLINT NameLength4); /* cbColumnName */

Function arguments

 Table 23. SQLColumnPrivileges arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

CatalogName is not a null pointer and does not point

to a zero-length string, then an empty result set and

SQL_SUCCESS will be returned. Otherwise, this is a

valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName input Schema qualifier of table name.

SQLSMALLINT NameLength2 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * TableName input Table name.

SQLSMALLINT NameLength3 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableName, or SQL_NTS if TableName

is null-terminated.

SQLCHAR * ColumnName input Buffer that might contain a pattern value to qualify

the result set by column name.

SQLSMALLINT NameLength4 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store ColumnName, or SQL_NTS if

ColumnName is null-terminated.

Chapter 1. CLI and ODBC functions 61

Usage

The results are returned as a standard result set containing the columns listed in

Columns Returned by SQLColumnPrivileges. The result set is ordered by

TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, and

PRIVILEGE. If multiple privileges are associated with any given column, each

privilege is returned as a separate row. A typical application might want to call this

function after a call to SQLColumns() to determine column privilege information.

The application should use the character strings returned in the TABLE_CAT,

TABLE_SCHEM, TABLE_NAME, COLUMN_NAME columns of the SQLColumns()

result set as input arguments to this function.

Since calls to SQLColumnPrivileges() in many cases map to a complex and thus

expensive query against the system catalog, they should be used sparingly, and the

results saved rather than repeating the calls.

Note that the ColumnName input argument accepts a search pattern, however, all

other input arguments do not.

Sometimes, an application calls the function and no attempt is made to restrict the

result set returned. For some data sources that contain a large quantity of tables,

views and aliases for example, this scenario maps to an extremely large result set

and very long retrieval times. In order to help reduce the long retrieval times, the

configuration keyword SchemaList can be specified in the CLI initialization file to

help restrict the result set when the application has supplied a null pointer for

SchemaName. If the application specifies a SchemaName string, the SchemaList

keyword is still used to restrict the output. Therefore, if the schema name supplied

is not in the SchemaList string, then the result will be an empty result set.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

Columns returned by SQLColumnPrivileges

Column 1 TABLE_CAT (VARCHAR(128) Data type)

Name of the catalog. The value is NULL if this table does not have

catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))

Name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)

Name of the table or view.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)

Name of the column of the specified table or view.

Column 5 GRANTOR (VARCHAR(128))

Authorization ID of the user who granted the privilege.

Column 6 GRANTEE (VARCHAR(128))

Authorization ID of the user to whom the privilege is granted.

Column 7 PRIVILEGE (VARCHAR(128))

The column privilege. This can be:

v INSERT

v REFERENCES

v SELECT

v UPDATE

62 Call Level Interface Guide and Reference, Volume 2

Note: Some IBM RDBMSs do not offer column level privileges at the

column level. DB2 Database for Linux, UNIX, and Windows, DB2 for

MVS/ESA™, and DB2 Server for VSE & VM support the UPDATE column

privilege; there is one row in this result set for each updateable column.

For all other privileges for DB2 Database for Linux, UNIX, and Windows,

DB2 for MVS/ESA, and DB2 Server for VSE & VM, and for all privileges

for other IBM RDBMSs, if a privilege has been granted at the table level, a

row is present in this result set.

Column 8 IS_GRANTABLE (VARCHAR(3) Data type)

Indicates whether the grantee is permitted to grant the privilege to other

users.

 Either “YES” or “NO”.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE

specification style. The column types, contents and order are identical to those

defined for the SQLColumnPrivileges() result set in ODBC.

If there is more than one privilege associated with a column, then each privilege is

returned as a separate row in the result set.

Return Codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 24. SQLColumnPrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40001 Serialization failure The transaction was rolled back due to a resource deadlock with

another transaction.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY009 Invalid argument value. TableName is NULL.

Chapter 1. CLI and ODBC functions 63

Table 24. SQLColumnPrivileges SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for the

StatementHandle and returned SQL_NEED_DATA. This function

was called before data was sent for all data-at-execution

parameters or columns.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example

 cliRC = SQLColumnPrivileges(hstmt,

 NULL,

 0,

 tbSchema,

 SQL_NTS,

 tbName,

 SQL_NTS,

 colNamePattern,

 SQL_NTS);

SQLColumns function (CLI) - Get column information for a table

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLColumns() returns a list of columns in the specified tables. The information is

returned in an SQL result set, which can be retrieved using the same functions that

are used to fetch a result set generated by a query.

Unicode Equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLColumnsW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLColumns (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

64 Call Level Interface Guide and Reference, Volume 2

SQLCHAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3, /* cbTableName */

 SQLCHAR *ColumnName, /* szColumnName */

 SQLSMALLINT NameLength4); /* cbColumnName */

Function arguments

 Table 25. SQLColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

CatalogName is not a null pointer and does not point

to a zero-length string, then an empty result set and

SQL_SUCCESS will be returned. Otherwise, this is a

valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName input Buffer that might contain a pattern value to qualify

the result set by schema name.

SQLSMALLINT NameLength2 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * TableName input Buffer that might contain a pattern value to qualify

the result set by table name.

SQLSMALLINT NameLength3 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableName, or SQL_NTS if TableName

is null-terminated.

SQLCHAR * ColumnName input Buffer that might contain a pattern value to qualify

the result set by column name.

SQLSMALLINT NameLength4 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store ColumnName, or SQL_NTS if

ColumnName is null-terminated.

Usage

This function is called to retrieve information about the columns of either a table

or a set of tables. An application might want to call this function after a call to

SQLTables() to determine the columns of a table. The application should use the

character strings returned in the TABLE_SCHEMA and TABLE_NAME columns of

the SQLTables() result set as input to this function.

SQLColumns() returns a standard result set, ordered by TABLE_CAT,

TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION. Columns returned by

SQLColumns lists the columns in the result set.

The SchemaName, TableName, and ColumnName input arguments accept search

patterns.

Chapter 1. CLI and ODBC functions 65

Sometimes, an application calls the function and no attempt is made to restrict the

result set returned. For some data sources that contain a large quantity of tables,

views and aliases for example, this scenario maps to an extremely large result set

and very long retrieval times. In order to help reduce the long retrieval times, the

configuration keyword SchemaList can be specified in the CLI initialization file to

help restrict the result set when the application has supplied a null pointer for

SchemaName. If the application specifies a SchemaName string, the SchemaList

keyword is still used to restrict the output. Therefore, if the schema name supplied

is not in the SchemaList string, then the result will be an empty result set.

This function does not return information on the columns of a result set;

SQLDescribeCol() or SQLColAttribute() should be used instead.

If the SQL_ATTR_LONGDATA_COMPAT attribute is set to

SQL_LD_COMPAT_YES via either a call to SQLSetConnectAttr() or by setting the

LONGDATACOMPAT keyword in the DB2 CLI initialization file, then the LOB

data types are reported as SQL_LONGVARCHAR, SQL_LONGVARBINARY or

SQL_LONGVARGRAPHIC.

Since calls to SQLColumns() in many cases map to a complex and thus expensive

query against the system catalog, they should be used sparingly, and the results

saved rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of

the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns

supported by the connected DBMS.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

Optimize SQL columns keyword and attribute

It is possible to set up the DB2 CLI/ODBC Driver to optimize calls to

SQLColumns() using either:

v OPTIMIZESQLCOLUMNS DB2 CLI/ODBC configuration keyword

v SQL_ATTR_OPTIMIZESQLCOLUMNS connection attribute of

SQLSetConnectAttr()

If either of these values are set, then the information contained in the following

columns will not be returned:

v Column 12 REMARKS

v Column 13 COLUMN_DEF

Columns returned by SQLColumns

Column 1 TABLE_CAT (VARCHAR(128))

Name of the catalog. The value is NULL if this table does not have

catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))

Name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)

Name of the table, view, alias, or synonym.

66 Call Level Interface Guide and Reference, Volume 2

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)

Column identifier. Name of the column of the specified table, view, alias,

or synonym.

Column 5 DATA_TYPE (SMALLINT not NULL)

SQL data type of column identified by COLUMN_NAME. This is one of

the values in the Symbolic SQL Data Type column in the table of symbolic

and default data types for CLI.

Column 6 TYPE_NAME (VARCHAR(128) not NULL)

Character string representing the name of the data type corresponding to

DATA_TYPE.

Column 7 COLUMN_SIZE (INTEGER)

If the DATA_TYPE column value denotes a character or binary string, then

this column contains the maximum length in SQLCHAR or SQLWCHAR

elements for the column.

 For date, time, timestamp data types, this is the total number of SQLCHAR

or SQLWCHAR elements required to display the value when converted to

character.

For numeric data types, this is either the total number of digits, or the total

number of bits allowed in the column, depending on the value in the

NUM_PREC_RADIX column in the result set.

For the XML data type, the length of zero is returned.

See also the table of data type precision.

Column 8 BUFFER_LENGTH (INTEGER)

The maximum number of bytes for the associated C buffer to store data

from this column if SQL_C_DEFAULT were specified on the SQLBindCol(),

SQLGetData() and SQLBindParameter() calls. This length does not include

any null-terminator. For exact numeric data types, the length accounts for

the decimal and the sign.

 See also the table of data type lengths.

Column 9 DECIMAL_DIGITS (SMALLINT)

The scale of the column. NULL is returned for data types where scale is

not applicable.

 See also the table of data type scale.

Column 10 NUM_PREC_RADIX (SMALLINT)

Either 10 or 2 or NULL. If DATA_TYPE is an approximate numeric data

type, this column contains the value 2 and the COLUMN_SIZE column

contains the number of bits allowed in the column.

 If DATA_TYPE is an exact numeric data type, this column contains the

value 10 and the COLUMN_SIZE contains the number of decimal digits

allowed for the column.

For numeric data types, the DBMS can return a NUM_PREC_RADIX of 10

or 2.

NULL is returned for data types where the radix is not applicable.

Column 11 NULLABLE (SMALLINT not NULL)

SQL_NO_NULLS if the column does not accept NULL values.

 SQL_NULLABLE if the column accepts NULL values.

Chapter 1. CLI and ODBC functions 67

Column 12 REMARKS (VARCHAR(254))

Might contain descriptive information about the column. It is possible that

no information is returned in this column; see Optimize SQL columns

keyword and attribute for more details.

Column 13 COLUMN_DEF (VARCHAR(254))

The column’s default value. If the default value is a numeric literal, then

this column contains the character representation of the numeric literal

with no enclosing single quotation marks. If the default value is a character

string, then this column is that string enclosed in single quotation marks. If

the default value a pseudo-literal, such as for DATE, TIME, and

TIMESTAMP columns, then this column contains the keyword of the

pseudo-literal (for example. CURRENT DATE) with no enclosing quotation

marks.

 If NULL was specified as the default value, then this column returns the

word NULL, not enclosed in quotation marks. If the default value cannot

be represented without truncation, then this column contains TRUNCATED

with no enclosing single quotation marks. If no default value was

specified, then this column is NULL.

It is possible that no information is returned in this column; see Optimize

SQL columns keyword and attribute for more details.

Column 14 SQL_DATA_TYPE (SMALLINT not NULL)

SQL data type, as it appears in the SQL_DESC_TYPE record field in the

IRD. This column is the same as the DATA_TYPE column in Columns

returned by SQLColumns for the Date, Time, and Timestamp data types.

Column 15 SQL_DATETIME_SUB (SMALLINT)

The subtype code for datetime data types:

v SQL_CODE_DATE

v SQL_CODE_TIME

v SQL_CODE_TIMESTAMP

For all other data types this column returns NULL.

Column 16 CHAR_OCTET_LENGTH (INTEGER)

For single byte character sets, this is the same as COLUMN_SIZE. For the

XML type, zero is returned. For all other data types it is NULL.

Column 17 ORDINAL_POSITION (INTEGER not NULL)

The ordinal position of the column in the table. The first column in the

table is number 1.

Column 18 IS_NULLABLE (VARCHAR(254))

Contains the string ’NO’ if the column is known to be not nullable; and

’YES’ otherwise.

Note: This result set is identical to the X/Open CLI Columns() result set

specification, which is an extended version of the SQLColumns() result set specified

in ODBC V2. The ODBC SQLColumns() result set includes every column in the

same position.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

68 Call Level Interface Guide and Reference, Volume 2

Diagnostics

 Table 26. SQLColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restriction

SQLColumns() does not support returning data from an alias of an alias. When

called against an alias of an alias, SQLColumns() returns an empty result set.

Example

 /* get column information for a table */

 cliRC = SQLColumns(hstmt,

 NULL,

 0,

 tbSchemaPattern,

 SQL_NTS,

 tbNamePattern,

 SQL_NTS,

 colNamePattern,

 SQL_NTS);

Chapter 1. CLI and ODBC functions 69

SQLConnect function (CLI) - Connect to a data source

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLConnect() establishes a connection or a trusted connection to the target

database. The application must supply a target SQL database, and optionally an

authorization-name and an authentication-string.

A connection must be established before allocating a statement handle using

SQLAllocHandle().

Unicode Equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLConnectW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLConnect (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLCHAR *ServerName, /* szDSN */

 SQLSMALLINT ServerNameLength, /* cbDSN */

 SQLCHAR *UserName, /* szUID */

 SQLSMALLINT UserNameLength, /* cbUID */

 SQLCHAR *Authentication, /* szAuthStr */

 SQLSMALLINT AuthenticationLength); /* cbAuthStr */

Function arguments

 Table 27. SQLConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLCHAR * ServerName input Data Source: The name or alias-name of the

database.

SQLSMALLINT ServerNameLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the ServerName argument.

SQLCHAR * UserName input Authorization-name (user identifier)

SQLSMALLINT UserNameLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the UserName argument.

SQLCHAR * Authentication input Authentication-string (password)

SQLSMALLINT AuthenticationLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the Authentication argument.

Usage

The target database (also known as data source) for IBM RDBMSs is the

database-alias. The application can obtain a list of databases available to connect to

by calling SQLDataSources().

70 Call Level Interface Guide and Reference, Volume 2

The input length arguments to SQLConnect() (ServerNameLength, UserNameLength,

AuthenticationLength) can be set to the actual length of their associated data in

elements (SQLCHAR or SQLWCHAR), not including any null-terminating

character, or to SQL_NTS to indicate that the associated data is null-terminated.

The ServerName and UserName argument values must not contain any blanks.

Stored procedures written using DB2 CLI must make a null SQLConnect() call. A

null SQLConnect() is where the ServerName, UserName, and Authentication argument

pointers are all set to NULL and their respective length arguments all set to 0. A

null SQLConnect() still requires SQLAllocHandle() to be called first, but does not

require that SQLEndTran() be called before SQLDisconnect().

To create a trusted connection, specify the connection attribute

SQL_ATTR_USE_TRUSTED_CONTEXT before calling SQLConnect(). If the database

server accepts the connection as trusted the connection is treated as a trusted

connection. Otherwise the connection is a regular connection and a warning is

returned.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 28. SQLConnect SQLSTATEs

SQLSTATE Description Explanation

01679 Unable to establish a trusted

connection.

DB2 CLI requested a trusted connection but the trust attributes of

the connection do not match any trusted context object on the

database server. The connection is allowed but it is a regular

connection, not a trusted connection.

08001 Unable to connect to data source. DB2 CLI was unable to establish a connection with the data

source (server).

The connection request was rejected because an existing

connection established via embedded SQL already exists.

08002 Connection in use. The specified ConnectionHandle has already been used to establish

a connection with a data source and the connection is still open.

08004 The application server rejected

establishment of the connection.

The data source (server) rejected the establishment of the

connection.

28000 Invalid authorization

specification.

The value specified for the argument UserName or the value

specified for the argument Authentication violated restrictions

defined by the data source.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Chapter 1. CLI and ODBC functions 71

Table 28. SQLConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value specified for argument ServerNameLength was less than

0, but not equal to SQL_NTS and the argument ServerName was

not a null pointer.

The value specified for argument UserNameLength was less than 0,

but not equal to SQL_NTS and the argument UserName was not a

null pointer.

The value specified for argument AuthenticationLength was less

than 0, but not equal to SQL_NTS and the argument

Authentication was not a null pointer.

HY501 Invalid data source name. An invalid data source name was specified in argument

ServerName.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

The implicit connection (or default database) option for IBM RDBMSs is not

supported. SQLConnect() must be called before any SQL statements can be

executed.

Example

 /* connect to the database */

 cliRC = SQLConnect(hdbc,

 (SQLCHAR *)db1Alias,

 SQL_NTS,

 (SQLCHAR *)user,

 SQL_NTS,

 (SQLCHAR *)pswd,

 SQL_NTS);

SQLCopyDesc function (CLI) - Copy descriptor information between

handles

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLCopyDesc() copies descriptor information from one descriptor handle to

another.

Syntax

SQLRETURN SQLCopyDesc (

 SQLHDESC SourceDescHandle, /* hDescSource */

 SQLHDESC TargetDescHandle); /* hDescTarget */

72 Call Level Interface Guide and Reference, Volume 2

Function arguments

 Table 29. SQLCopyDesc arguments

Data type Argument Use Description

SQLHDESC SourceDescHandle input Source descriptor handle.

SQLHDESC TargetDescHandle input Target descriptor handle. TargetDescHandle can be a

handle to an application descriptor or an IPD.

SQLCopyDesc() will return SQLSTATE HY016 (Cannot

modify an implementation descriptor) if

TargetDescHandle is a handle to an IRD.

Usage

A call to SQLCopyDesc() copies the fields of the source descriptor handle to the

target descriptor handle. Fields can only be copied to an application descriptor or

an IPD, but not to an IRD. Fields can be copied from either an application or an

implementation descriptor.

All fields of the descriptor, except SQL_DESC_ALLOC_TYPE (which specifies

whether the descriptor handle was automatically or explicitly allocated), are

copied, whether or not the field is defined for the destination descriptor. Copied

fields overwrite the existing fields in the TargetDescHandle.

All descriptor fields are copied, even if SourceDescHandle and TargetDescHandle are

on two different connections or environments.

The call to SQLCopyDesc() is immediately aborted if an error occurs.

When the SQL_DESC_DATA_PTR field is copied, a consistency check is

performed. If the consistency check fails, SQLSTATE HY021 (Inconsistent

descriptor information.) is returned and the call to SQLCopyDesc() is immediately

aborted.

Note: Descriptor handles can be copied across connections or environments. An

application may, however, be able to associate an explicitly allocated descriptor

handle with a StatementHandle, rather than calling SQLCopyDesc() to copy fields

from one descriptor to another. An explicitly allocated descriptor can be associated

with another StatementHandle on the same ConnectionHandle by setting the

SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC statement

attribute to the handle of the explicitly allocated descriptor. When this is done,

SQLCopyDesc() does not have to be called to copy descriptor field values from one

descriptor to another.

A descriptor handle cannot be associated with a StatementHandle on another

ConnectionHandle, however; to use the same descriptor field values on

StatementHandle on different ConnectionHandle, SQLCopyDesc() has to be called.

Copying rows between tables

An ARD on one statement handle can serve as the APD on another statement

handle. This allows an application to copy rows between tables without copying

data at the application level. To do this, an application calls SQLCopyDesc() to copy

the fields of an ARD that describes a fetched row of a table, to the APD for a

parameter in an INSERT statement on another statement handle. The

SQL_ACTIVE_STATEMENTS InfoType returned by the driver for a call to

Chapter 1. CLI and ODBC functions 73

SQLGetInfo() must be greater than 1 for this operation to succeed.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

When SQLCopyDesc() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an

associated SQLSTATE value may be obtained by calling SQLGetDiagRec() with a

HandleType of SQL_HANDLE_DESC and a Handle of TargetDescHandle. If an

invalid SourceDescHandle was passed in the call, SQL_INVALID_HANDLE will be

returned, but no SQLSTATE will be returned.

When an error is returned, the call to SQLCopyDesc() is immediately aborted, and

the contents of the fields in the TargetDescHandle descriptor are undefined.

 Table 30. SQLCopyDesc SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was trying to connect failed before the function

completed processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY007 Associated statement is not

prepared.

SourceDescHandle was associated with an IRD, and the associated

statement handle was not in the prepared or executed state.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

HY016 Cannot modify an

implementation row descriptor.

TargetDescHandle was associated with an IRD.

HY021 Inconsistent descriptor

information.

The descriptor information checked during a consistency check

was not consistent.

HY092 Option type out of range. The call to SQLCopyDesc() prompted a call to SQLSetDescField(),

but *ValuePtr was not valid for the FieldIdentifier argument on

TargetDescHandle.

74 Call Level Interface Guide and Reference, Volume 2

Restrictions

None.

Example

 SQLHANDLE hIRD, hARD; /* descriptor handles */

 /* ... */

 /* copy descriptor information between handles */

 rc = SQLCopyDesc(hIRD, hARD);

SQLDataSources function (CLI) - Get list of data sources

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLDataSources() returns a list of target databases available, one at a time. A

database must be cataloged to be available.

SQLDataSources() is usually called before a connection is made, to determine the

databases that are available to connect to.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLDataSourcesW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLDataSources (

 SQLHENV EnvironmentHandle, /* henv */

 SQLUSMALLINT Direction, /* fDirection */

 SQLCHAR *ServerName, /* *szDSN */

 SQLSMALLINT BufferLength1, /* cbDSNMax */

 SQLSMALLINT *NameLength1Ptr, /* *pcbDSN */

 SQLCHAR *Description, /* *szDescription */

 SQLSMALLINT BufferLength2, /* cbDescriptionMax */

 SQLSMALLINT *NameLength2Ptr); /* *pcbDescription */

Function arguments

 Table 31. SQLDataSources arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLUSMALLINT Direction input Used by application to request the first data source

name in the list or the next one in the list. Direction

can take on only the following values:

v SQL_FETCH_FIRST

v SQL_FETCH_NEXT

SQLCHAR * ServerName output Pointer to buffer in which to return the data source

name.

Chapter 1. CLI and ODBC functions 75

Table 31. SQLDataSources arguments (continued)

Data type Argument Use Description

SQLSMALLINT BufferLength1 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the ServerName buffer. This number

should be less than or equal to

SQL_MAX_DSN_LENGTH + 1.

SQLSMALLINT * NameLength1Ptr output Pointer to a buffer in which to return the total

number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function),

excluding the null-termination character, available to

return in *ServerName. If the number of SQLCHAR

or SQLWCHAR elements available to return is

greater than or equal to BufferLength1, the data

source name in *ServerName is truncated to

BufferLength1 minus the length of a null-termination

character.

SQLCHAR * Description output Pointer to buffer where the description of the data

source is returned. DB2 CLI will return the Comment

field associated with the database catalogued to the

DBMS.

SQLSMALLINT BufferLength2 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the Description buffer.

SQLSMALLINT * NameLength2Ptr output Pointer to a buffer in which to return the total

number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function),

excluding the null-termination character, available to

return in *Description. If the number of SQLCHAR or

SQLWCHAR elements available to return is greater

than or equal to BufferLength2, the driver description

in *Description is truncated to BufferLength2 minus

the length of a null-termination character.

Usage

The application can call this function any time with Direction set to either

SQL_FETCH_FIRST or SQL_FETCH_NEXT.

If SQL_FETCH_FIRST is specified, the first database in the list will always be

returned.

If SQL_FETCH_NEXT is specified:

v Directly following a SQL_FETCH_FIRST call, the second database in the list is

returned

v Before any other SQLDataSources() call, the first database in the list is returned

v When there are no more databases in the list, SQL_NO_DATA_FOUND is

returned. If the function is called again, the first database is returned.

v Any other time, the next database in the list is returned.

In an ODBC environment, the ODBC Driver Manager will perform this function.

Since the IBM RDBMSs always returns the description of the data source blank

padded to 30 bytes, DB2 CLI will do the same.

76 Call Level Interface Guide and Reference, Volume 2

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Diagnostics

 Table 32. SQLDataSources SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data source name returned in the argument ServerName was

longer than the value specified in the argument BufferLength1. The

argument NameLength1Ptr contains the length of the full data

source name. (Function returns SQL_SUCCESS_WITH_INFO.)

The data source name returned in the argument Description was

longer than the value specified in the argument BufferLength2. The

argument NameLength2Ptr contains the length of the full data

source description. (Function returns

SQL_SUCCESS_WITH_INFO.)

58004 Unexpected system failure. Unrecoverable system error.

HY000 General error. An error occurred for which there was no specific SQLSTATE and

for which no implementation-specific SQLSTATE was defined. The

error message returned by SQLGetDiagRec() in the MessageText

argument describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument BufferLength1 was less than 0.

The value specified for argument BufferLength2 was less than 0.

HY103 Direction option out of range. The value specified for the argument Direction was not equal to

SQL_FETCH_FIRST or SQL_FETCH_NEXT.

Authorization

None.

Example

 /* get list of data sources */

 cliRC = SQLDataSources(henv,

 SQL_FETCH_FIRST,

 dbAliasBuf,

 SQL_MAX_DSN_LENGTH + 1,

 &aliasLen,

 dbCommentBuf,

 255,

 &commentLen);

Chapter 1. CLI and ODBC functions 77

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLDescribeCol() returns a set of commonly used descriptor information (column

name, type, precision, scale, nullability) for the indicated column in the result set

generated by a query.

This information is also available in the fields of the IRD.

If the application needs only one attribute of the descriptor information, or needs

an attribute not returned by SQLDescribeCol(), the SQLColAttribute() function can

be used in place of SQLDescribeCol().

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

This function (or SQLColAttribute()) is usually called before a bind column

function (SQLBindCol(), SQLBindFileToCol()) to determine the attributes of a

column before binding it to an application variable.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLDescribeColW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLDescribeCol (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ColumnNumber, /* icol */

 SQLCHAR *ColumnName, /* szColName */

 SQLSMALLINT BufferLength, /* cbColNameMax */

 SQLSMALLINT *NameLengthPtr, /* pcbColName */

 SQLSMALLINT *DataTypePtr, /* pfSqlType */

 SQLULEN *ColumnSizePtr, /* pcbColDef */

 SQLSMALLINT *DecimalDigitsPtr, /* pibScale */

 SQLSMALLINT *NullablePtr); /* pfNullable */

Function arguments

 Table 33. SQLDescribeCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Column number to be described. Columns are

numbered sequentially from left to right, starting at

1. This can also be set to 0 to describe the bookmark

column.

SQLCHAR * ColumnName output Pointer to column name buffer. This value is read

from the SQL_DESC_NAME field of the IRD. This is

set to NULL if the column name cannot be

determined.

SQLSMALLINT BufferLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the * ColumnName buffer.

78 Call Level Interface Guide and Reference, Volume 2

Table 33. SQLDescribeCol arguments (continued)

Data type Argument Use Description

SQLSMALLINT * NameLengthPtr output Pointer to a buffer in which to return the total

number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function),

excluding the null-termination character, available to

return in * ColumnName. Truncation of column name

(* ColumnName) to BufferLength - 1 SQLCHAR or

SQLWCHAR elements occurs if NameLengthPtr is

greater than or equal to BufferLength.

SQLSMALLINT * DataTypePtr output Base SQL data type of column. To determine if there

is a User Defined Type associated with the column,

call SQLColAttribute() with fDescType set to

SQL_COLUMN_DISTINCT_TYPE. Refer to the

Symbolic SQL Data Type column of the symbolic

and default data types table for the data types that

are supported.

SQLULEN * ColumnSizePtr output Precision of column as defined in the database.

If fSqlType denotes a graphic or DBCLOB SQL data

type, then this variable indicates the maximum

number of double-byte characters the column can

hold.

SQLSMALLINT * DecimalDigitsPtr output Scale of column as defined in the database (only

applies to SQL_DECIMAL, SQL_NUMERIC,

SQL_TIMESTAMP). Refer to the data type scale table

for the scale of each of the SQL data types.

SQLSMALLINT * NullablePtr output Indicates whether NULLS are allowed for this

column

v SQL_NO_NULLS

v SQL_NULLABLE

Usage

Columns are identified by a number, are numbered sequentially from left to right,

and can be described in any order.

v Column numbers start at 1 if bookmarks are not used

(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).

v The ColumnNumber argument can be set to 0 to describe the bookmark column if

bookmarks are used (the statement attribute is set to SQL_UB_ON).

If a null pointer is specified for any of the pointer arguments, DB2 CLI assumes

that the information is not needed by the application and nothing is returned.

If the column is a User Defined Type, SQLDescribeCol() only returns the built-in

type in DataTypePtr. Call SQLColAttribute() with fDescType set to

SQL_COLUMN_DISTINCT_TYPE to obtain the User Defined Type.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Chapter 1. CLI and ODBC functions 79

Diagnostics

If SQLDescribeCol() returns either SQL_ERROR, or SQL_SUCCESS_WITH_INFO,

one of the following SQLSTATEs can be obtained by calling the SQLGetDiagRec()

or SQLGetDiagField() function.

 Table 34. SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument * ColumnName was

longer than the value specified in the argument BufferLength. The

argument * NameLengthPtr contains the length of the full column

name. (Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return a

result set.

The statement associated with the StatementHandle did not return

a result set. There were no columns to describe. (Call

SQLNumResultCols() first to determine if there are any rows in the

result set.)

07009 Invalid descriptor index The value specified for ColumnNumber was equal to 0, and the

SQL_ATTR_USE_BOOKMARKS statement attribute was

SQL_UB_OFF. The value specified for the argument

ColumnNumber was greater than the number of columns in the

result set.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The length specified in argument BufferLength less than 1.

HYC00 Driver not capable. The SQL data type of column ColumnNumber is not recognized by

DB2 CLI.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

80 Call Level Interface Guide and Reference, Volume 2

Restrictions

The following ODBC defined data types are not supported:

v SQL_BIT

v SQL_TINYINT

Example

 /* return a set of attributes for a column */

 cliRC = SQLDescribeCol(hstmt,

 (SQLSMALLINT)(i + 1),

 colName,

 sizeof(colName),

 &colNameLen,

 &colType,

 &colSize,

 &colScale,

 NULL);

SQLDescribeParam function (CLI) - Return description of a parameter

marker

Purpose

 Specification: DB2 CLI 5.0 ODBC 1.0 ISO CLI

SQLDescribeParam() returns the description of a parameter marker associated with

a prepared SQL statement. This information is also available in the fields of the

IPD. If deferred prepared is enabled, and this is the first call to

SQLDescribeParam(), SQLNumResultCols(), or SQLDescribeCol(), the call will force a

PREPARE of the SQL statement to be flowed to the server.

Syntax

SQLRETURN SQLDescribeParam (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ParameterNumber, /* ipar */

 SQLSMALLINT *DataTypePtr, /* pfSqlType */

 SQLULEN *ParameterSizePtr, /* pcbParamDef */

 SQLSMALLINT *DecimalDigitsPtr, /* pibScale */

 SQLSMALLINT *NullablePtr); /* pfNullable */

Function arguments

 Table 35. SQLDescribeParam arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ParameterNumber input Parameter marker number ordered sequentially in

increasing parameter order, starting at 1.

SQLSMALLINT * DataTypePtr output Pointer to a buffer in which to return the SQL data

type of the parameter. This value is read from the

SQL_DESC_CONCISE_TYPE record field of the IPD.

When ColumnNumber is equal to 0 (for a bookmark

column), SQL_BINARY is returned in *DataTypePtr

for variable-length bookmarks.

Chapter 1. CLI and ODBC functions 81

Table 35. SQLDescribeParam arguments (continued)

Data type Argument Use Description

SQLULEN * ParameterSizePtr output Pointer to a buffer in which to return the size of the

column or expression of the corresponding

parameter marker as defined by the data source.

SQLSMALLINT * DecimalDigitsPtr output Pointer to a buffer in which to return the number of

decimal digits of the column or expression of the

corresponding parameter as defined by the data

source.

SQLSMALLINT * NullablePtr output Pointer to a buffer in which to return a value that

indicates whether the parameter allows NULL

values. This value is read from the

SQL_DESC_NULLABLE field of the IPD.

One of the following:

v SQL_NO_NULLS: The parameter does not allow

NULL values (this is the default value).

v SQL_NULLABLE: The parameter allows NULL

values.

v SQL_NULLABLE_UNKNOWN: Cannot determine

if the parameter allows NULL values.

Usage

Parameter markers are numbered in increasing order as they appear in the SQL

statement, starting with 1.

SQLDescribeParam() does not return the type (input, input/output, or output) of a

parameter in an SQL statement. Except in calls to stored procedures, all parameters

in SQL statements are input parameters. To determine the type of each parameter

in a call to a stored procedure, call SQLProcedureColumns().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 36. SQLDescribeParam SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The value specified for the argument ParameterNumber less than 1.

The value specified for the argument ParameterNumber was greater

than the number of parameters in the associated SQL statement.

The parameter marker was part of a non-DML statement.

The parameter marker was part of a SELECT list.

82 Call Level Interface Guide and Reference, Volume 2

Table 36. SQLDescribeParam SQLSTATEs (continued)

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

21S01 Insert value list does not match

column list.

The number of parameters in the INSERT statement did not match

the number of columns in the table named in the statement.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

SQLExecute() SQLExecDirect(), SQLBulkOperations(), or

SQLSetPos() was called for the StatementHandle and returned

SQL_NEED_DATA. This function was called before data was sent

for all data-at-execution parameters or columns.

HY013 Unexpected memory handling

error.

The function call could not be processed because the underlying

memory objects could not be accessed, possibly because of low

memory conditions.

HYC00 Driver not capable. The schema function stored procedures are not accessible on the

server. Install the schema function stored procedures on the server

and ensure they are accessible.

Restrictions

None.

SQLDisconnect function (CLI) - Disconnect from a data source

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLDisconnect() closes the connection associated with the database connection

handle.

SQLEndTran() must be called before calling SQLDisconnect() if an outstanding

transaction exists on this connection.

Chapter 1. CLI and ODBC functions 83

After calling this function, either call SQLConnect() to connect to another database,

or use SQLFreeHandle() to free the connection handle.

Syntax

SQLRETURN SQLDisconnect (SQLHDBC ConnectionHandle;) /* hdbc */

Function arguments

 Table 37. SQLDisconnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

Usage

If an application calls SQLDisconnect() before it has freed all the statement handles

associated with the connection, DB2 CLI frees them after it successfully disconnects

from the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the

disconnect from the database is successful, additional error or implementation

specific information is available. For example, a problem was encountered on the

clean up subsequent to the disconnect, or if there is no current connection because

of an event that occurred independently of the application (such as communication

failure).

After a successful SQLDisconnect() call, the application can re-use ConnectionHandle

to make another SQLConnect() or SQLDriverConnect() request.

An application should not rely on SQLDisconnect() to close cursors (with both

stored procedures and regular client applications). In both cases the cursor should

be closed using SQLCloseCursor(), then the statement handle freed using

SQLFreeHandle().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 38. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurred during the disconnect. However, the disconnect

succeeded. (Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The connection specified in the argument ConnectionHandle was

not open.

25000 25501 Invalid transaction state. There was a transaction in process on the connection specified by

the argument ConnectionHandle. The transaction remains active,

and the connection cannot be disconnected.

Note: This error does not apply to stored procedures written in

DB2 CLI.

84 Call Level Interface Guide and Reference, Volume 2

Table 38. SQLDisconnect SQLSTATEs (continued)

SQLSTATE Description Explanation

25501 Invalid transaction state. There was a transaction in process on the connection specified by

the argument ConnectionHandle. The transaction remains active,

and the connection cannot be disconnected.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Restrictions

None.

Example

 SQLHANDLE hdbc; /* connection handle */

 /* ... */

 /* disconnect from the database */

 cliRC = SQLDisconnect(hdbc);

SQLDriverConnect function (CLI) - (Expanded) Connect to a data

source

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLDriverConnect() is an alternative to SQLConnect(). Both functions establish a

connection to the target database, but SQLDriverConnect() supports additional

connection parameters and the ability to prompt the user for connection

information.

Use SQLDriverConnect() when the data source requires parameters other than the 3

input arguments supported by SQLConnect() (data source name, user ID and

password), or when you want to use DB2 CLI’s graphical user interface to prompt

the user for mandatory connection information.

Once a connection is established, the completed connection string is returned.

Applications can store this string for future connection requests.

Syntax

Generic

Chapter 1. CLI and ODBC functions 85

SQLRETURN SQLDriverConnect (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLHWND WindowHandle, /* hwnd */

 SQLCHAR *InConnectionString, /* szConnStrIn */

 SQLSMALLINT InConnectionStringLength, /* cbConnStrIn */

 SQLCHAR *OutConnectionString, /* szConnStrOut */

 SQLSMALLINT OutConnectionStringCapacity, /* cbConnStrOutMax */

 SQLSMALLINT *OutConnectionStringLengthPtr, /* pcbConnStrOut */

 SQLUSMALLINT DriverCompletion); /* fDriverCompletion */

Function arguments

 Table 39. SQLDriverConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLHWND WindowHandle input Window handle. On the Windows platform, this is

the parent Windows handle. Currently the window

handle is only supported on Windows.

If a NULL is passed, then no dialog will be

presented.

SQLCHAR * InConnectionString input A full, partial or empty (null pointer) connection

string (see syntax and description below).

SQLSMALLINT InConnectionStringLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store InConnectionString.

SQLCHAR * OutConnectionString output Pointer to buffer for the completed connection string.

If the connection was established successfully, this

buffer will contain the completed connection string.

Applications should allocate at least

SQL_MAX_OPTION_STRING_LENGTH bytes for

this buffer.

SQLSMALLINT

 OutConnectionString

Capacity

input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store OutConnectionString.

SQLCHAR *

 OutConnectionString

LengthPtr

output Pointer to the number of SQLCHAR elements (or

SQLWCHAR elements for the Unicode variant of this

function), excluding the null-termination character,

available to return in the OutConnectionString buffer.

If the value of *OutConnectionStringLengthPtr is

greater than or equal to OutConnectionStringCapacity,

the completed connection string in

OutConnectionString is truncated to

OutConnectionStringCapacity - 1 SQLCHAR or

SQLWCHAR elements.

SQLUSMALLINT DriverCompletion input Indicates when DB2 CLI should prompt the user for

more information.

Possible values:

v SQL_DRIVER_PROMPT

v SQL_DRIVER_COMPLETE

v SQL_DRIVER_COMPLETE_REQUIRED

v SQL_DRIVER_NOPROMPT

86 Call Level Interface Guide and Reference, Volume 2

Usage

InConnectionString Argument

A request connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= attribute-keyword=attribute-value

| DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | NEWPWD

| driver-defined-attribute-keyword

attribute-value ::= character-string

driver-defined-attribute-keyword ::= identifier

where

v character-string has zero or more SQLCHAR or SQLWCHAR elements

v identifier has one or more SQLCHAR or SQLWCHAR elements

v attribute-keyword is case insensitive

v attribute-value may be case sensitive

v the value of the DSN keyword does not consist solely of blanks

v NEWPWD is used as part of a change password request. The application can

either specify the new string to use, for example, NEWPWD=anewpass; or

specify NEWPWD=; and rely on a dialog box generated by the DB2 CLI driver

to prompt for the new password

Because of connection string and initialization file grammar, keywords and

attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because

of the grammar in the system information, keywords and data source names

cannot contain the backslash (\) character. For DB2 CLI Version 2, braces are

required around the DRIVER keyword.

If any keywords are repeated in the browse request connection string, DB2 CLI

uses the value associated with the first occurrence of the keyword. If the DSN and

DRIVER keywords are included in the same browse request connection string,

DB2 CLI uses whichever keyword appears first.

OutConnectionString Argument

The result connection string is a list of connection attributes. A connection attribute

consists of an attribute keyword and a corresponding attribute value. The browse

result connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= [*]attribute-keyword=attribute-value

attribute-keyword ::= ODBC-attribute-keyword

| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}:[localized-identifier]

driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?

(The braces are literal; they are returned by DB2 CLI.)

Chapter 1. CLI and ODBC functions 87

attribute-value-list ::= character-string [:localized-character

string] | character-string [:localized-character string], attribute-value-list

where

v character-string and localized-character string have zero or more SQLCHAR or

SQLWCHAR elements

v identifier and localized-identifier have one or more SQLCHAR or SQLWCHAR

elements; attribute-keyword is case insensitive

v attribute-value may be case sensitive

Because of connection string and initialization file grammar, keywords, localized

identifiers, and attribute values that contain the characters []{}(),;?*=!@ should be

avoided. Because of the grammar in the system information, keywords and data

source names cannot contain the backslash (\) character.

The connection string is used to pass one or more values needed to complete a

connection. The contents of the connection string and the value of DriverCompletion

will determine if DB2 CLI needs to establish a dialog with the user.

��

�

 ;

Connection string syntax

=

attribute

��

Connection string syntax

 DSN

UID

PWD

NEWPWD

DB2 CLI-defined-keyword

Each keyword above has an attribute that is equal to the following:

DSN Data source name. The name or alias-name of the database. Required if

DriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier).

PWD The password corresponding to the authorization name. If there is no

password for the user ID, an empty value is specified (PWD=;).

NEWPWD

New password used as part of a change password request. The application

can either specify the new string to use, for example,

NEWPWD=anewpass; or specify NEWPWD=; and rely on a dialog box

generated by the DB2 CLI driver to prompt for the new password (set the

DriverCompletion argument to anything other than

SQL_DRIVER_NOPROMPT).

Any one of the CLI keywords can be specified on the connection string. If any

keywords are repeated in the connection string, the value associated with the first

occurrence of the keyword is used.

If any keywords exists in the CLI initialization file, the keywords and their

respective values are used to augment the information passed to DB2 CLI in the

88 Call Level Interface Guide and Reference, Volume 2

connection string. If the information in the CLI initialization file contradicts

information in the connection string, the values in connection string take

precedence.

If the end user Cancels a dialog box presented, SQL_NO_DATA_FOUND is

returned.

The following values of DriverCompletion determines when a dialog will be opened:

SQL_DRIVER_PROMPT:

A dialog is always initiated. The information from the connection string

and the CLI initialization file are used as initial values, to be supplemented

by data input via the dialog box.

SQL_DRIVER_COMPLETE:

A dialog is only initiated if there is insufficient information in the

connection string. The information from the connection string is used as

initial values, to be supplemented by data entered via the dialog box.

SQL_DRIVER_COMPLETE_REQUIRED:

A dialog is only initiated if there is insufficient information in the

connection string. The information from the connection string is used as

initial values. Only mandatory information is requested. The user is

prompted for required information only.

SQL_DRIVER_NOPROMPT:

The user is not prompted for any information. A connection is attempted

with the information contained in the connection string. If there is not

enough information, SQL_ERROR is returned.

Once a connection is established, the complete connection string is returned.

Applications that need to set up multiple connections to the same database for a

given user ID should store this output connection string. This string can then be

used as the input connection string value on future SQLDriverConnect() calls.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLDriverConnectW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NO_DATA_FOUND

v SQL_INVALID_HANDLE

v SQL_ERROR

Diagnostics

All of the diagnostics generated by SQLConnect() can be returned here as well. The

following table shows the additional diagnostics that can be returned.

 Table 40. SQLDriverConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer szConnstrOut was not large enough to hold the entire

connection string. The argument *OutConnectionStringLengthPtr

contains the actual length of the connection string available for

return. (Function returns SQL_SUCCESS_WITH_INFO)

Chapter 1. CLI and ODBC functions 89

Table 40. SQLDriverConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

01S00 Invalid connection string

attribute.

An invalid keyword or attribute value was specified in the input

connection string, but the connection to the data source was

successful anyway because one of the following occurred:

v The unrecognized keyword was ignored.

v The invalid attribute value was ignored, the default value was

used instead.

(Function returns SQL_SUCCESS_WITH_INFO)

HY000 General error.

Dialog Failed

The information specified in the connection string was insufficient

for making a connect request, but the dialog was prohibited by

setting fCompletion to SQL_DRIVER_NOPROMPT.

The attempt to display the dialog failed.

HY090 Invalid string or buffer length. The value specified for InConnectionStringLength was less than 0,

but not equal to SQL_NTS.

The value specified for OutConnectionStringCapacity was less than

0.

HY110 Invalid driver completion. The value specified for the argument fCompletion was not equal to

one of the valid values.

Restrictions

None.

Example

 rc = SQLDriverConnect(hdbc,

 (SQLHWND)sqlHWND,

 InConnectionString,

 InConnectionStringLength,

 OutConnectionString,

 OutConnectionStringCapacity,

 StrLength2,

 DriveCompletion);

SQLEndTran function (CLI) - End transactions of a connection or an

Environment

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLEndTran() requests a commit or rollback operation for all active operations on

all statements associated with a connection, or for all connections associated with

an environment.

Syntax

SQLRETURN SQLEndTran (

 SQLSMALLINT HandleType, /* fHandleType */

 SQLHANDLE Handle, /* hHandle */

 SQLSMALLINT CompletionType); /* fType */

90 Call Level Interface Guide and Reference, Volume 2

Function arguments

 Table 41. SQLEndTran arguments

Data type Argument Use Description

SQLSMALLINT HandleType input Handle type identifier. Contains either

SQL_HANDLE_ENV if Handle is an environment

handle, or SQL_HANDLE_DBC if Handle is a

connection handle.

SQLHANDLE Handle input The handle, of the type indicated by HandleType,

indicating the scope of the transaction. See the Usage

section below for more information.

SQLSMALLINT CompletionType input One of the following two values:

v SQL_COMMIT

v SQL_ROLLBACK

Usage

If HandleType is SQL_HANDLE_ENV and Handle is a valid environment handle,

then DB2 CLI will attempt to commit or roll back transactions one at a time,

depending on the value of CompletionType, on all connections that are in a

connected state on that environment. SQL_SUCCESS will only be returned if it

receives SQL_SUCCESS for each connection. If it receives SQL_ERROR on one or

more connections, it will return SQL_ERROR to the application, and the diagnostic

information will be placed in the diagnostic data structure of the environment. To

determine which connection(s) failed during the commit or rollback operation, the

application can call SQLGetDiagRec() for each connection.

SQLEndTran() should not be used when working in a Distributed Unit of Work

environment. The transaction manager APIs should be used instead.

If CompletionType is SQL_COMMIT, SQLEndTran() issues a commit request for all

active operations on any statement associated with an affected connection. If

CompletionType is SQL_ROLLBACK, SQLEndTran() issues a rollback request for all

active operations on any statement associated with an affected connection. If no

transactions are active, SQLEndTran() returns SQL_SUCCESS with no effect on any

data sources.

To determine how transaction operations affect cursors, an application calls

SQLGetInfo() with the SQL_CURSOR_ROLLBACK_BEHAVIOR and

SQL_CURSOR_COMMIT_BEHAVIOR options.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or

SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_DELETE,

SQLEndTran() closes and deletes all open cursors on all statements associated with

the connection and discards all pending results. SQLEndTran() leaves any statement

present in an allocated (unprepared) state; the application can reuse them for

subsequent SQL requests or can call SQLFreeStmt() or SQLFreeHandle() with a

HandleType of SQL_HANDLE_STMT to deallocate them.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or

SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_CLOSE, SQLEndTran()

closes all open cursors on all statements associated with the connection.

SQLEndTran() leaves any statement present in a prepared state; the application can

call SQLExecute() for a statement associated with the connection without first

calling SQLPrepare().

Chapter 1. CLI and ODBC functions 91

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or

SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_PRESERVE,

SQLEndTran() does not affect open cursors associated with the connection. Cursors

remain at the row they pointed to prior to the call to SQLEndTran().

When autocommit mode is off, calling SQLEndTran() with either SQL_COMMIT or

SQL_ROLLBACK when no transaction is active will return SQL_SUCCESS

(indicating that there is no work to be committed or rolled back) and have no

effect on the data source, unless errors not related to transactions occur.

When autocommit mode is on, calling SQLEndTran() with a CompletionType of either

SQL_COMMIT or SQL_ROLLBACK always returns SQL_SUCCESS, unless errors

not related to transactions occur.

When a DB2 CLI application is running in autocommit mode, the DB2 CLI driver

does not pass the SQLEndTran() statement to the server.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 42. SQLEndTran SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The ConnectionHandle was not in a connected state.

08007 Connection failure during

transaction.

The connection associated with the ConnectionHandle failed during

the execution of the function and it cannot be determined whether

the requested COMMIT or ROLLBACK occurred before the

failure.

40001 Transaction rollback. The transaction was rolled back due to a resource deadlock with

another transaction.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. An asynchronously executing function was called for a

StatementHandle associated with the ConnectionHandle and was still

executing when SQLEndTran() was called.

SQLExecute() or SQLExecDirect() was called for a StatementHandle

associated with the ConnectionHandle and returned

SQL_NEED_DATA. This function was called before data was sent

for all data-at-execution parameters or columns.

HY012 Invalid transaction code. The value specified for the argument CompletionType was neither

SQL_COMMIT nor SQL_ROLLBACK.

92 Call Level Interface Guide and Reference, Volume 2

Table 42. SQLEndTran SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. The value specified for the argument HandleType was neither

SQL_HANDLE_ENV nor SQL_HANDLE_DBC.

Restrictions

None.

Example

 /* commit all active transactions on the connection */

 cliRC = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT)

 /* ... */

 /* rollback all active transactions on the connection */

 cliRC = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);

 /* ... */

 /* rollback all active transactions on all connections

 in this environment */

 cliRC = SQLEndTran(SQL_HANDLE_ENV, henv, SQL_ROLLBACK);

SQLError function (CLI) - Retrieve error information

Deprecated

Note:

In ODBC 3.0, SQLError() has been deprecated and replaced with SQLGetDiagRec()

and SQLGetDiagField().

Although this version of DB2 CLI continues to support SQLError(), we recommend

that you use SQLGetDiagRec() in your DB2 CLI programs so that they conform to

the latest standards.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLErrorW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Migrating to the new function

To read the error diagnostic records for a statement handle, the SQLError()

function,

 SQLError(henv, hdbc, hstmt, *szSqlState, *pfNativeError,

 *szErrorMsg, cbErrorMsgMax, *pcbErrorMsg);

for example, would be rewritten using the new function as:

 SQLGetDiagRec(SQL_HANDLE_HSTMT, hstmt, 1, szSqlState, pfNativeError,

 szErrorMsg, cbErrorMsgMax, pcbErrorMsg);

Chapter 1. CLI and ODBC functions 93

SQLExecDirect function (CLI) - Execute a statement directly

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLExecDirect() directly executes the specified SQL statement or XQuery

expression using the current values of the parameter marker variables if any

parameters exist in the statement. The statement or expression can only be

executed once.

For XQuery expressions, you cannot specify parameter markers in the expression

itself. You can, however, use the XMLQUERY function to bind parameter markers

to XQuery variables. The values of the bound parameter markers will then be

passed to the XQuery expression specified in XMLQUERY for execution.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLExecDirectW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLExecDirect (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *StatementText, /* szSqlStr */

 SQLINTEGER TextLength); /* cbSqlStr */

Function arguments

 Table 43. SQLExecDirect arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor

associated with StatementHandle.

SQLCHAR * StatementText input SQL statement or XQuery expression string.

SQLINTEGER TextLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the StatementText argument, or

SQL_NTS if StatementText is null-terminated.

Usage

If the SQL statement text contains vendor escape clause sequences, DB2 CLI will

first modify the SQL statement text to the appropriate DB2-specific format before

submitting it for preparation and execution. If the application does not generate

SQL statements that contain vendor escape clause sequences, then it should set the

SQL_ATTR_NOSCAN statement attribute to SQL_NOSCAN_ON at the connection

level so that DB2 CLI does not perform a scan for vendor escape clauses.

The SQL statement can be COMMIT or ROLLBACK if it is called using

SQLExecDirect(). Doing so yields the same result as calling SQLEndTran() on the

current connection handle.

The SQL statement string can contain parameter markers, however all parameters

must be bound before calling SQLExecDirect().

94 Call Level Interface Guide and Reference, Volume 2

If the SQL statement is a query, or StatementText is an XQuery expression,

SQLExecDirect() will generate a cursor name, and open the cursor. If the

application has used SQLSetCursorName() to associate a cursor name with the

statement handle, DB2 CLI associates the application generated cursor name with

the internally generated one.

If a result set is generated, SQLFetch() or SQLFetchScroll() will retrieve the next

row (or rows) of data into bound variables, LOB locators, or LOB file references.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor

referenced by the statement must be positioned on a row and must be defined on a

separate statement handle under the same connection handle.

There must not already be an open cursor on the statement handle.

If SQLSetStmtAttr() has been called with the SQL_ATTR_PARAMSET_SIZE

attribute to specify that an array of input parameter values has been bound to each

parameter marker, then the application needs to call SQLExecDirect() only once to

process the entire array of input parameter values.

If the executed statement returns multiple result sets (one for each set of input

parameters), then SQLMoreResults() should be used to advance to the next result

set once processing on the current result set is complete.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NEED_DATA

v SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input

data-at-execute parameter values by setting the *StrLen_or_IndPtr value specified

during SQLBindParameter() to SQL_DATA_AT_EXEC for one or more parameters.

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE

or Searched DELETE and no rows satisfy the search condition.

Diagnostics

 Table 44. SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE

statement does not include a

WHERE clause.

StatementText contained an UPDATE or DELETE statement which

did not contain a WHERE clause. (Function returns

SQL_SUCCESS_WITH_INFO or SQL_NO_DATA_FOUND if there

were no rows in the table).

01508 Statement disqualified for

blocking.

The statement was disqualified for blocking for reasons other than

storage.

07001 Wrong number of parameters. The number of parameters bound to application variables using

SQLBindParameter() was less than the number of parameter

markers in the SQL statement contained in the argument

StatementText.

Chapter 1. CLI and ODBC functions 95

Table 44. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

07006 Invalid conversion. Transfer of data between DB2 CLI and the application variables

would result in an incompatible data conversion.

21S01 Insert value list does not match

column list.

StatementText contained an INSERT statement and the number of

values to be inserted did not match the degree of the derived

table.

21S02 Degrees of derived table does

not match column list.

StatementText contained a CREATE VIEW statement and the

number of names specified is not the same degree as the derived

table defined by the query specification.

22001 String data right truncation. A character string assigned to a character type column exceeded

the maximum length of the column.

22003 Numeric value out of range. A numeric value assigned to a numeric type column caused

truncation of the whole part of the number, either at the time of

assignment or in computing an intermediate result.

StatementText contained an SQL statement with an arithmetic

expression which caused division by zero.

Note: as a result the cursor state is undefined for DB2 Database

for Linux, UNIX, and Windows (the cursor will remain open for

other RDBMSs).

22005 Error in assignment. StatementText contained an SQL statement with a parameter or

literal and the value or LOB locator was incompatible with the

data type of the associated table column.

The length associated with a parameter value (the contents of the

pcbValue buffer specified on SQLBindParameter()) is not valid.

The argument fSQLType used in SQLBindParameter() or

SQLSetParam(), denoted an SQL graphic data type, but the

deferred length argument (pcbValue) contains an odd length value.

The length value must be even for graphic data types.

22007 Invalid datetime format. StatementText contained an SQL statement with an invalid

datetime format; that is, an invalid string representation or value

was specified, or the value was an invalid date, time, or

timestamp.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic

operation on a date or timestamp has a result that is not within

the valid range of dates, or a datetime value cannot be assigned to

a bound variable because it is too small.

22012 Division by zero is invalid. StatementText contained an SQL statement with an arithmetic

expression that caused division by zero.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted because the

execution would cause integrity constraint violation in the DBMS.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

24504 The cursor identified in the

UPDATE, DELETE, SET, or GET

statement is not positioned on a

row.

Results were pending on the StatementHandle from a previous

query or a cursor associated with the hstmt had not been closed.

34000 Invalid cursor name. StatementText contained a Positioned DELETE or a Positioned

UPDATE and the cursor referenced by the statement being

executed was not open.

96 Call Level Interface Guide and Reference, Volume 2

Table 44. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

37xxx

a Invalid SQL syntax. StatementText contained one or more of the following:

v an SQL statement that the connected database server could not

prepare

v a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled

back due to a deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

42xxx Syntax Error or Access Rule

Violation.

425xx indicates the authorization ID does not have permission to

execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access

problems with the statement.

428A1 Unable to access a file referenced

by a host file variable.

This can be raised for any of the following scenarios. The

associated reason code in the text identifies the particular error:

v 01 - The file name length is invalid, or the file name, the path

has an invalid format, or both.

v 02 - The file option is invalid. It must have one of the following

values:

 SQL_FILE_READ -read from an existing file

 SQL_FILE_CREATE -create a new file for write

 SQL_FILE_OVERWRITE -overwrite an existing file.

 If the file does not exist,

 create the file.

 SQL_FILE_APPEND -append to an existing file.

 If the file does not exist,

 create the file.

v 03 - The file cannot be found.

v 04 - The SQL_FILE_CREATE option was specified for a file with

the same name as an existing file.

v 05 - Access to the file was denied. The user does not have

permission to open the file.

v 06 - Access to the file was denied. The file is in use with

incompatible modes. Files to be written to are opened in

exclusive mode.

v 07 - Disk full was encountered while writing to the file.

v 08 - Unexpected end of file encountered while reading from the

file.

v 09 - A media error was encountered while accessing the file.

42895 The value of a host variable in

the EXECUTE or OPEN

statement cannot be used

because of its data type.

The LOB locator type specified on the bind parameter function

call does not match the LOB data type of the parameter marker.

The argument fSQLType used on the bind parameter function

specified a LOB locator type but the corresponding parameter

marker is not a LOB.

44000 Integrity constraint violation. StatementText contained an SQL statement which contained a

parameter or literal. This parameter value was NULL for a

column defined as NOT NULL in the associated table column, or

a duplicate value was supplied for a column constrained to

contain only unique values, or some other integrity constraint was

violated.

56084 LOB data is not supported in

DRDA®.

LOB columns cannot either be selected or updated when

connecting to host or AS/400® servers (using DB2 Connect™).

Chapter 1. CLI and ODBC functions 97

Table 44. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already exists. StatementText contained a CREATE TABLE or CREATE VIEW

statement and the table name or view name specified already

existed.

S0002 Database object does not exist. StatementText contained an SQL statement that references a table

name or view name which does not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the

specified index name already existed.

S0012 Index not found. StatementText contained a DROP INDEX statement and the

specified index name did not exist.

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the

column specified in the ADD clause was not unique or identified

an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a column

name which does not exist.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. StatementText was a null pointer.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The argument TextLength was less than 1 but not equal to

SQL_NTS.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()

operation was not valid.

HY503 Invalid file name length. The fileNameLength argument value from SQLBindFileToParam()

was less than 0, but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Restrictions

None.

Example

 /* directly execute a statement - end the COMPOUND statement */

 cliRC = SQLExecDirect(hstmt, (SQLCHAR *)"SELECT * FROM ORG", SQL_NTS);

98 Call Level Interface Guide and Reference, Volume 2

SQLExecute function (CLI) - Execute a statement

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLExecute() executes a statement that was successfully prepared using

SQLPrepare() on the same statement handle, once or multiple times. The statement

is executed using the current values of any application variables that were bound

to parameter markers by SQLBindParameter() or SQLBindFileToParam().

Syntax

SQLRETURN SQLExecute (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

 Table 45. SQLExecute arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor

associated with StatementHandle.

Usage

The SQL statement string previously prepared on StatementHandle using

SQLPrepare() may contain parameter markers. All parameters must be bound

before calling SQLExecute().

Note: For XQuery expressions, you cannot specify parameter markers in the

expression itself. You can, however, use the XMLQUERY function to bind

parameter markers to XQuery variables. The values of the bound parameter

markers will then be passed to the XQuery expression specified in XMLQUERY for

execution.

Once the application has processed the results from the SQLExecute() call, it can

execute the statement again with new (or the same) parameter values.

A statement executed by SQLExecDirect() cannot be re-executed by calling

SQLExecute(). Only statements prepared with SQLPrepare() can be executed and

re-executed with SQLExecute().

If the prepared SQL statement is a query or an XQuery expression, SQLExecute()

will generate a cursor name, and open the cursor. If the application has used

SQLSetCursorName() to associate a cursor name with the statement handle, DB2 CLI

associates the application generated cursor name with the internally generated one.

To execute a query more than once on a given statement handle, the application

must close the cursor by calling SQLCloseCursor() or SQLFreeStmt() with the

SQL_CLOSE option. There must not be an open cursor on the statement handle

when calling SQLExecute().

If a result set is generated, SQLFetch() or SQLFetchScroll() will retrieve the next

row (or rows) of data into bound variables, LOB locators or LOB file references.

Chapter 1. CLI and ODBC functions 99

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor

referenced by the statement must be positioned on a row at the time SQLExecute()

is called, and must be defined on a separate statement handle under the same

connection handle.

If SQLSetStmtAttr() has been called with the SQL_ATTR_PARAMSET_SIZE

attribute to specify that an array of input parameter values has been bound to each

parameter marker, the application needs to call SQLExecute() only once to process

the entire array of input parameter values. If the executed statement returns

multiple result sets (one for each set of input parameters), then SQLMoreResults()

should be used to advance to the next result set once processing on the current

result set is complete.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NEED_DATA

v SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input

data-at-execute parameter values by setting the *StrLen_or_IndPtr value specified

during SQLBindParameter() to SQL_DATA_AT_EXEC for one or more parameters.

SQL_NO_DATA_FOUND is returned if the SQL statement is a searched UPDATE

or searched DELETE and no rows satisfy the search condition.

Diagnostics

The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() except for

HY009, HY090 and with the addition of the SQLSTATE in the table below. Any

SQLSTATE that SQLPrepare() could return can also be returned on a call to

SQLExecute() as a result of deferred prepare behavior.

 Table 46. SQLExecute SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. The specified StatementHandle was not in a prepared state.

SQLExecute() was called without first calling SQLPrepare().

Authorization

None.

Example

 SQLHANDLE hstmt; /* statement handle */

 SQLCHAR *stmt = (SQLCHAR *)"DELETE FROM org WHERE deptnumb = ? ";

 SQLSMALLINT parameter1 = 0;

 /* allocate a statement handle */

 cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

 /* ... */

 /* prepare the statement */

 cliRC = SQLPrepare(hstmt, stmt, SQL_NTS);

100 Call Level Interface Guide and Reference, Volume 2

/* ... */

 /* bind parameter1 to the statement */

 cliRC = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_SHORT,

 SQL_SMALLINT,

 0,

 0,

 ¶meter1,

 0,

 NULL);

 /* ... */

 parameter1 = 15;

 /* execute the statement for parameter1 = 15 */

 cliRC = SQLExecute(hstmt);

SQLExtendedBind function (CLI) - Bind an array of columns

Purpose

 Specification: DB2 CLI 6

SQLExtendedBind() is used to bind an array of columns or parameters instead of

using repeated calls to SQLBindCol() or SQLBindParameter().

Syntax

SQLRETURN SQLExtendedBind (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT fBindCol,

 SQLSMALLINT cRecords,

 SQLSMALLINT * pfCType,

 SQLPOINTER * rgbValue,

 SQLINTEGER * cbValueMax,

 SQLUINTEGER * puiPrecisionCType,

 SQLSMALLINT * psScaleCType,

 SQLINTEGER ** pcbValue,

 SQLINTEGER ** piIndicator,

 SQLSMALLINT * pfParamType,

 SQLSMALLINT * pfSQLType,

 SQLUINTEGER * pcbColDef,

 SQLSMALLINT * pibScale) ;

Function arguments

 Table 47. SQLExtendedBind() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSMALLINT fBindCol input If SQL_TRUE then the result is similar to

SQLBindCol(), otherwise, it is similar to

SQLBindParameter().

SQLSMALLINT cRecords input Number of columns or parameters to bind.

SQLSMALLINT * pfCType input Array of values for the application data type.

SQLPOINTER * rgbValue input Array of pointers to application data area.

SQLINTEGER * cbValueMax input Array of maximum sizes for rgbValue.

Chapter 1. CLI and ODBC functions 101

Table 47. SQLExtendedBind() arguments (continued)

Data type Argument Use Description

SQLUINTEGER * puiPrecisionCType input Array of decimal precision values. Each value is

used only if the application data type of the

corresponding record is SQL_C_DECIMAL_IBM.

SQLSMALLINT * psScaleCType input Array of decimal scale values. Each value is used

only if the application data type of the

corresponding record is SQL_C_DECIMAL_IBM.

SQLINTEGER ** pcbValue input Array of pointers to length values.

SQLINTEGER ** piIndicator input Array of pointers to indicator values.

SQLSMALLINT * pfParamType input Array of parameter types. Only used if fBindCol is

FALSE.

Each row in this array serves the same purpose as

the SQLBindParameter() argument InputOutputType.

It can be set to:

v SQL_PARAM_INPUT

v SQL_PARAM_INPUT_OUTPUT

v SQL_PARAM_OUTPUT

SQLSMALLINT * pfSQLType input Array of SQL data types. Only used if fBindCol is

FALSE.

Each row in this array serves the same purpose as

the SQLBindParameter() argument ParameterType.

SQLUINTEGER * pcbColDef input Array of SQL precision values. Only used if fBindCol

is FALSE.

Each row in this array serves the same purpose as

the SQLBindParameter() argument ColumnSize.

SQLSMALLINT * pibScale input Array of SQL scale values. Only used if fBindCol is

FALSE.

Each row in this array serves the same purpose as

the SQLBindParameter() argument DecimalDigits.

Usage

The argument fBindCol determines whether this function call is used to associate

(bind):

v parameter markers in an SQL statement (as with SQLBindParameter()) - fBindCol

= SQL_FALSE

v columns in a result set (as with SQLBindCol()) - fBindCol = SQL_TRUE

This function can be used to replace multiple calls to SQLBindCol() or

SQLBindParameter(), however, important differences should be noted. Depending

on how the fBindCol parameter has been set, the input expected by

SQLExtendedBind() is similar to either SQLBindCol() or SQLBindParameter() with

the following exceptions:

v When SQLExtendedBind() is set to SQLBindCol() mode:

– targetValuePtr must be a positive integer that specifies in bytes, the maximum

length of the data that will be in the returned column.
v When SQLExtendedBind() is set to SQLBindParameter() mode:

– ColumnSize must be a positive integer that specifies the maximum length of

the target column in bytes, where applicable.

102 Call Level Interface Guide and Reference, Volume 2

– DecimalDigits must be set to the correct scale for the target column, where

applicable.

– ValueType of SQL_C_DEFAULT should not be used.

– If ValueType is a locator type, the corresponding ParameterType should be a

matching locator type.

– All ValueType to ParameterType mappings should be as closely matched as

possible to minimize the conversion that DB2 CLI must perform.

Each array reference passed to SQLExtendedBind() must contain at least the

number of elements indicated by cRecords. If the calling application fails to pass in

sufficiently large arrays, DB2 CLI may attempt to read beyond the end of the

arrays resulting in corrupt data or critical application failure.

Each array passed to SQLExtendedBind() is considered to be a deferred argument,

which means the values in the array are examined and retrieved at the time of

execution. As a result, ensure that each array is in a valid state and contains valid

data when DB2 CLI executes using the values in the array. Following a successful

execution, if a statement needs to be executed again, you do not need to call

SQLExtendedBind() a second time if the handles passed to the original call to

SQLExtendedBind() still refer to valid arrays.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 48. SQLExtendedBind() SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by a row in the

pfCType argument to the data type identified by the pfParamType

argument is not a meaningful conversion. (For example,

conversion from SQL_C_DATE to SQL_DOUBLE.)

07009 Invalid descriptor index The value specified for the argument cRecords exceeded the

maximum number of columns in the result set.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY003 Program type out of range. A row in pfParamType or pfSQLType was not a valid data type or

SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument pfParamType is not a valid

SQL data type.

HY009 Invalid argument value. The argument rgbValue was a null pointer and the argument

cbValueMax was a null pointer, and pfParamType is not

SQL_PARAM_OUTPUT.

Chapter 1. CLI and ODBC functions 103

Table 48. SQLExtendedBind() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY021 Inconsistent descriptor

information

The descriptor information checked during a consistency check

was not consistent.

HY090 Invalid string or buffer length. The value specified for the argument cbValueMax is less than 1

and the argument the corresponding row in pfParamType or

pfSQLType is either SQL_C_CHAR, SQL_C_BINARY or

SQL_C_DEFAULT.

HY093 Invalid parameter number. The value specified for a row in the argument pfCType was less

than 1 or greater than the maximum number of parameters

supported by the server.

HY094 Invalid scale value. The value specified for pfParamType was either SQL_DECIMAL or

SQL_NUMERIC and the value specified for DecimalDigits was less

than 0 or greater than the value for the argument pcbColDef

(precision).

The value specified for pfParamType was SQL_C_TIMESTAMP and

the value for pfParamType was either SQL_CHAR or

SQL_VARCHAR and the value for DecimalDigits was less than 0

or greater than 6.

HY104 Invalid precision value. The value specified for pfParamType was either SQL_DECIMAL or

SQL_NUMERIC and the value specified by pcbColDef was less

than 1.

HY105 Invalid parameter type. pfParamType is not one of SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYC00 Driver not capable. DB2 CLI recognizes, but does not support the data type specified

in the row in pfParamType or pfSQLType.

A LOB locator C data type was specified, but the connected server

does not support LOB data types.

Restrictions

None.

SQLExtendedFetch function (CLI) - Extended fetch (fetch array of

rows)

Deprecated

Note:

In ODBC 3.0, SQLExtendedFetch() has been deprecated and replaced with

SQLFetchScroll().

104 Call Level Interface Guide and Reference, Volume 2

Although this version of DB2 CLI continues to support SQLExtendedFetch(), we

recommend that you use SQLFetchScroll() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLExtendedFetch(hstmt, SQL_FETCH_ABSOLUTE, 5, &rowCount, &rowStatus);

for example, would be rewritten using the new function as:

 SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 5);

Note:

The information returned in the rowCount and rowStatus parameters of

SQLExtendedFetch() are handled by SQLFetchScroll() as follows:

v rowCount: SQLFetchScroll() returns the number of rows fetched in the buffer

pointed to by the SQL_ATTR_ROWS_FETCHED_PTR statement attribute.

v rowStatus: SQLFetchScroll() returns the array of statuses for each row in the

buffer pointed to by the SQL_ATTR_ROW_STATUS_PTR statement attribute.

SQLExtendedPrepare function (CLI) - Prepare a statement and set

statement attributes

Purpose

 Specification: DB2 CLI 6.0

SQLExtendedPrepare() is used to prepare a statement and set a group of statement

attributes, all in one call.

This function can be used in place of a call to SQLPrepare() followed by a number

of calls to SQLSetStmtAttr().

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLExtendedPrepareW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLExtendedPrepare(

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *StatementText, /* pszSqlStmt */

 SQLINTEGER TextLength, /* cbSqlStmt */

 SQLINTEGER cPars,

 SQLSMALLINT sStmtType,

 SQLINTEGER cStmtAttrs,

 SQLINTEGER *piStmtAttr,

 SQLINTEGER *pvParams);

Chapter 1. CLI and ODBC functions 105

Function arguments

 Table 49. SQLExtendedPrepare() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * StatementText Input SQL statement string.

SQLINTEGER TextLength Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the StatementText argument, or

SQL_NTS if StatementText is null-terminated.

SQLINTEGER cPars Input Number of parameter markers in statement.

SQLSMALLINT cStmtType Input Statement type. For possible values see List of

cStmtType Values.

SQLINTEGER cStmtAttrs Input Number of statement attributes specified on this call.

SQLINTEGER * piStmtAttr Input Array of statement attributes to set.

SQLINTEGER * pvParams Input Array of corresponding statement attributes values

to set.

Usage

The first three arguments of this function are exactly the same as the arguments in

SQLPrepare().

There are two requirements when using SQLExtendedPrepare():

1. The SQL statements will not be scanned for ODBC/vendor escape clauses. It

behaves as if the SQL_ATTR_NOSCAN statement attribute is set to

SQL_NOSCAN. If the SQL statement contains ODBC/vendor escape clauses

then SQLExtendedPrepare() cannot be used.

2. You must indicate in advance (through cPars) the number of parameter markers

that are included in the SQL statement.

The cPars argument indicates the number of parameter markers in StatementText.

The argument cStmtType is used to indicate the type of statement that is being

prepared. See List of cStmtType Values for the list of possible values.

The final three arguments are used to indicate a set of statement attributes to use.

Set cStmtAttrs to the number of statement attributes specified on this call. Create

two arrays, one to hold the list of statement attributes, one to hold the value for

each. Use these arrays for piStmtAttr and pvParams.

List of cStmtType Values

The argument cStmtType can be set to one of the following values:

v SQL_CLI_STMT_UNDEFINED

v SQL_CLI_STMT_ALTER_TABLE

v SQL_CLI_STMT_CREATE_INDEX

v SQL_CLI_STMT_CREATE_TABLE

v SQL_CLI_STMT_CREATE_VIEW

v SQL_CLI_STMT_DELETE_SEARCHED

v SQL_CLI_STMT_DELETE_POSITIONED

v SQL_CLI_STMT_GRANT

106 Call Level Interface Guide and Reference, Volume 2

v SQL_CLI_STMT_INSERT

v SQL_CLI_STMT_REVOKE

v SQL_CLI_STMT_SELECT

v SQL_CLI_STMT_UPDATE_SEARCHED

v SQL_CLI_STMT_UPDATE_POSITIONED

v SQL_CLI_STMT_CALL

v SQL_CLI_STMT_SELECT_FOR_UPDATE

v SQL_CLI_STMT_WITH

v SQL_CLI_STMT_SELECT_FOR_FETCH

v SQL_CLI_STMT_VALUES

v SQL_CLI_STMT_CREATE_TRIGGER

v SQL_CLI_STMT_SELECT_OPTIMIZE_FOR_NROWS

v SQL_CLI_STMT_SELECT_INTO

v SQL_CLI_STMT_CREATE_PROCEDURE

v SQL_CLI_STMT_CREATE_FUNCTION

v SQL_CLI_STMT_SET_CURRENT_QUERY_OPT

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 50. SQLExtendedPrepare SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01504 The UPDATE or DELETE

statement does not include a

WHERE clause.

StatementText contained an UPDATE or DELETE statement which

did not contain a WHERE clause.

01508 Statement disqualified for

blocking.

The statement was disqualified for blocking for reasons other than

storage.

01S02 Option value changed. DB2 CLI did not support a value specified in *pvParams, or a

value specified in *pvParams was invalid because of SQL

constraints or requirements, so DB2 CLI substituted a similar

value. (Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

21S01 Insert value list does not match

column list.

StatementText contained an INSERT statement and the number of

values to be inserted did not match the degree of the derived

table.

21S02 Degrees of derived table does

not match column list.

StatementText contained a CREATE VIEW statement and the

number of names specified is not the same degree as the derived

table defined by the query specification.

22018 Invalid character value for cast

specification.

*StatementText contained an SQL statement that contained a literal

or parameter and the value was incompatible with the data type

of the associated table column.

22019 Invalid escape character The argument StatementText contained a LIKE predicate with an

ESCAPE in the WHERE clause, and the length of the escape

character following ESCAPE was not equal to 1.

Chapter 1. CLI and ODBC functions 107

Table 50. SQLExtendedPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

22025 Invalid escape sequence The argument StatementText contained “LIKE pattern value

ESCAPE escape character” in the WHERE clause, and the character

following the escape character in the pattern value was not one of

″%″ or ″_″.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

34000 Invalid cursor name. StatementText contained a positioned DELETE or a positioned

UPDATE and the cursor referenced by the statement being

executed was not open.

37xxx

a Invalid SQL syntax. StatementText contained one or more of the following:

v an SQL statement that the connected database server could not

prepare

v a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled

back due to deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

42xxx

a Syntax Error or Access Rule

Violation.

425xx indicates the authorization ID does not have permission to

execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access

problems with the statement.

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already exists. StatementText contained a CREATE TABLE or CREATE VIEW

statement and the table name or view name specified already

existed.

S0002 Database object does not exist. StatementText contained an SQL statement that references a table

name or a view name which did not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the

specified index name already existed.

S0012 Index not found. StatementText contained a DROP INDEX statement and the

specified index name did not exist.

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the

column specified in the ADD clause was not unique or identified

an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a column

name which did not exist.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

108 Call Level Interface Guide and Reference, Volume 2

Table 50. SQLExtendedPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

HY009 Invalid argument value. StatementText was a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY011 Operation invalid at this time. The Attribute was SQL_ATTR_CONCURRENCY, SQL_

ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, or

SQL_ATTR_USE_BOOKMARKS and the statement was prepared.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY017 Invalid use of an automatically

allocated descriptor handle.

The Attribute argument was SQL_ATTR_IMP_ROW_DESC or

SQL_ATTR_IMP_PARAM_DESC. The Attribute argument was

SQL_ATTR_APP_ROW_DESC or

SQL_ATTR_APP_PARAM_DESC, and the value in *ValuePtr was

an implicitly allocated descriptor handle.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified

in *ValuePtr. (DB2 CLI returns this SQLSTATE only for connection

and statement attributes that accept a discrete set of values, such

as SQL_ATTR_ACCESS_MODE. For all other connection and

statement attributes, the driver must verify the value specified in

*ValuePtr.)

HY090 Invalid string or buffer length. The argument TextLength was less than 1, but not equal to

SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for

this version of DB2 CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid

connection or statement attribute for the version of the DB2 CLI

driver, but was not supported by the data source.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Note: Not all DBMSs report all of the above diagnostic messages at prepare time.

If deferred prepare is left on as the default behavior (controlled by the

SQL_ATTR_DEFERRED_PREPARE statement attribute), then these errors could

occur when the PREPARE is flowed to the server. The application must be able to

handle these conditions when calling functions that cause this flow. These

functions include SQLExecute(), SQLDescribeParam(), SQLNumResultCols(),

SQLDescribeCol(), and SQLColAttribute().

Restrictions

None.

Chapter 1. CLI and ODBC functions 109

SQLFetch function (CLI) - Fetch next row

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLFetch() advances the cursor to the next row of the result set, and retrieves any

bound columns.

Columns can be bound to:

v application storage

v LOB locators

v LOB file references

When SQLFetch() is called, the appropriate data transfer is performed, along with

any data conversion if conversion was indicated when the column was bound. The

columns can also be received individually after the fetch, by calling SQLGetData().

SQLFetch() can only be called after a result set has been generated (using the same

statement handle) by either executing a query, calling SQLGetTypeInfo() or calling

a catalog function.

Syntax

SQLRETURN SQLFetch (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

 Table 51. SQLFetch arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

SQLFetch() can only be called after a result set has been generated on the same

statement handle. Before SQLFetch() is called the first time, the cursor is positioned

before the start of the result set.

The number of application variables bound with SQLBindCol() must not exceed the

number of columns in the result set or SQLFetch() will fail.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does not

return data to the application, but just advances the cursor. In this case

SQLGetData() could be called to obtain all of the columns individually. If the cursor

is a multirow cursor (that is, the SQL_ATTR_ROW_ARRAY_SIZE is greater than 1),

SQLGetData() can be called only if SQL_GD_BLOCK is returned when

SQLGetInfo() is called with an InfoType of SQL_GETDATA_EXTENSIONS. (Not all

DB2 data sources support SQL_GD_BLOCK.) Data in unbound columns is

discarded when SQLFetch() advances the cursor to the next row. For fixed length

data types, or small variable length data types, binding columns provides better

performance than using SQLGetData().

If LOB values are too large to be retrieved in one fetch, they can be retrieved in

pieces by either using SQLGetData() (which can be used for any column type), or

by binding a LOB locator, and using SQLGetSubString().

110 Call Level Interface Guide and Reference, Volume 2

If any bound storage buffer is not large enough to hold the data returned by

SQLFetch(), the data will be truncated. If character data is truncated,

SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is generated

indicating truncation. The SQLBindCol() deferred output argument pcbValue will

contain the actual length of the column data retrieved from the server. The

application should compare the actual output length to the input buffer length

(pcbValue and cbValueMax arguments from SQLBindCol()) to determine which

character columns have been truncated.

Truncation of numeric data types is reported as a warning if the truncation

involves digits to the right of the decimal point. If truncation occurs to the left of

the decimal point, an error is returned (refer to the diagnostics section).

Truncation of graphic data types is treated the same as character data types, except

that the rgbValue buffer is filled to the nearest multiple of two bytes that is still less

than or equal to the cbValueMax specified in SQLBindCol(). Graphic (DBCS) data

transferred between DB2 CLI and the application is not null-terminated if the C

buffer type is SQL_C_CHAR (unless the CLI/ODBC configuration keyword

PATCH1 includes the value 64). If the buffer type is SQL_C_DBCHAR, then

null-termination of graphic data does occur.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute.

The application can specify that DB2 CLI should not report truncation by calling

SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a value for the maximum

length to return for any one column, and by allocating a rgbValue buffer of the

same size (plus the null-terminator). If the column data is larger than the set

maximum length, SQL_SUCCESS will be returned and the maximum length, not

the actual length will be returned in pcbValue.

When all the rows have been retrieved from the result set, or the remaining rows

are not needed, SQLCloseCursor() or SQLFreeStmt() with an option of SQL_CLOSE

or SQL_DROP should be called to close the cursor and discard the remaining data

and associated resources.

An application cannot mix SQLFetch() with SQLExtendedFetch() calls on the same

statement handle. It can, however, mix SQLFetch() with SQLFetchScroll() calls on

the same statement handle. Note that SQLExtendedFetch() has been deprecated and

replaced with SQLFetchScroll().

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result

set. SQLFetch() fetches the next rowset. It is equivalent to calling SQLFetchScroll()

with FetchOrientation set to SQL_FETCH_NEXT.

The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of

rows in the rowset. If the rowset being fetched by SQLFetch() overlaps the end of

the result set, SQLFetch() returns a partial rowset. That is, if S + R-1 is greater than

L, where S is the starting row of the rowset being fetched, R is the rowset size, and

L is the last row in the result set, then only the first L-S+1 rows of the rowset are

valid. The remaining rows are empty and have a status of SQL_ROW_NOROW.

Refer to the cursor positioning rules of SQL_FETCH_NEXT for SQLFetchScroll()

for more information.

After SQLFetch() returns, the current row is the first row of the rowset.

Chapter 1. CLI and ODBC functions 111

Row status array

SQLFetch() sets values in the row status array in the same manner as

SQLFetchScroll() and SQLBulkOperations(). The row status array is used to return

the status of each row in the rowset. The address of this array is specified with the

SQL_ATTR_ROW_STATUS_PTR statement attribute.

Rows fetched buffer

SQLFetch() returns the number of rows fetched in the rows fetched buffer

including those rows for which no data was returned. The address of this buffer is

specified with the SQL_ATTR_ROWSFETCHED_PTR statement attribute. The

buffer is set by SQLFetch() and SQLFetchScroll().

Error handling

Errors and warnings can apply to individual rows or to the entire function. They

can be retrieved using the SQLGetDiagField() function.

Errors and Warnings on the Entire Function

If an error applies to the entire function, such as SQLSTATE HYT00 (Timeout

expired) or SQLSTATE 24000 (Invalid cursor state), SQLFetch() returns

SQL_ERROR and the applicable SQLSTATE. The contents of the rowset buffers are

undefined and the cursor position is unchanged.

If a warning applies to the entire function, SQLFetch() returns

SQL_SUCCESS_WITH_INFO and the applicable SQLSTATE. The status records for

warnings that apply to the entire function are returned before the status records

that apply to individual rows.

Errors and warnings in individual rows

If an error (such as SQLSTATE 22012 (Division by zero)) or a warning (such as

SQLSTATE 01004 (Data truncated)) applies to a single row, SQLFetch() returns

SQL_SUCCESS_WITH_INFO, unless an error occurs in every row, in which case

SQL_ERROR is returned. SQLFetch() also:

v Sets the corresponding element of the row status array to SQL_ROW_ERROR for

errors or SQL_ROW_SUCCESS_WITH_INFO for warnings.

v Adds zero or more status records containing SQLSTATEs for the error or

warning.

v Sets the row and column number fields in the status records. If SQLFetch()

cannot determine a row or column number, it sets that number to

SQL_ROW_NUMBER_UNKNOWN or SQL_COLUMN_NUMBER_UNKNOWN

respectively. If the status record does not apply to a particular column,

SQLFetch() sets the column number to SQL_NO_COLUMN_NUMBER.

SQLFetch() returns the status records in row number order. That is, it returns all

status records for unknown rows (if any), then all status records for the first row

(if any), then all status records for the second row (if any), and so on. The status

records for each individual row are ordered according to the normal rules for

ordering status records, described in SQLGetDiagField().

Descriptors and SQLFetch

112 Call Level Interface Guide and Reference, Volume 2

The following sections describe how SQLFetch() interacts with descriptors.

Argument mappings

The driver does not set any descriptor fields based on the arguments of

SQLFetch().

Other descriptor fields

The following descriptor fields are used by SQLFetch():

 Table 52. Descriptor fields

Descriptor field Desc. Location Set through

SQL_DESC_ARRAY_SIZE ARD header SQL_ATTR_ROW_ARRAY_SIZE statement

attribute

SQL_DESC_ARRAY_STATUS_PTR IRD header SQL_ATTR_ROW_STATUS_PTR statement

attribute

SQL_DESC_BIND_OFFSET_PTR ARD header SQL_ATTR_ROW_BIND_OFFSET_PTR

statement attribute

SQL_DESC_BIND_TYPE ARD header SQL_ATTR_ROW_BIND_TYPE statement

attribute

SQL_DESC_COUNT ARD header ColumnNumber argument of SQLBindCol()

SQL_DESC_DATA_PTR ARD records TargetValuePtr argument of SQLBindCol()

SQL_DESC_INDICATOR_PTR ARD records StrLen_or_IndPtr argument in SQLBindCol()

SQL_DESC_OCTET_LENGTH ARD records BufferLength argument in SQLBindCol()

SQL_DESC_OCTET_LENGTH_PTR ARD records StrLen_or_IndPtr argument in SQLBindCol()

SQL_DESC_ROWS_PROCESSED_PTR IRD header SQL_ATTR_ROWS_FETCHED_PTR

statement attribute

SQL_DESC_TYPE ARD records TargetType argument in SQLBindCol()

All descriptor fields can also be set through SQLSetDescField().

Separate length and indicator buffers

Applications can bind a single buffer or two separate buffers to be used to hold

length and indicator values. When an application calls SQLBindCol(),

SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_INDICATOR_PTR fields of the

ARD are set to the same address, which is passed in the StrLen_or_IndPtr

argument. When an application calls SQLSetDescField() or SQLSetDescRec(), it can

set these two fields to different addresses.

SQLFetch() determines whether the application has specified separate length and

indicator buffers. In this case, when the data is not NULL, SQLFetch() sets the

indicator buffer to 0 and returns the length in the length buffer. When the data is

NULL, SQLFetch() sets the indicator buffer to SQL_NULL_DATA and does not

modify the length buffer.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Chapter 1. CLI and ODBC functions 113

v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or

previous SQLFetch() calls have fetched all the rows from the result set.

If all the rows have been fetched, the cursor is positioned after the end of the

result set.

Diagnostics

 Table 53. SQLFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns was truncated. String

values or numeric values are right truncated.

(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

07002 Too many columns. A column number specified in the binding for one or more

columns was greater than the number of columns in the result set.

07006 Invalid conversion. The data value could not be converted in a meaningful manner to

the data type specified by fCType in SQLBindCol()

07009 Invalid descriptor index Column 0 was bound but bookmarks are not being used (the

SQL_ATTR_USE_BOOKMARKS statement attribute was set to

SQL_UB_OFF).

22002 Invalid output or indicator

buffer specified.

The pointer value specified for the argument pcbValue in

SQLBindCol() was a null pointer and the value of the

corresponding column is null. There is no means to report

SQL_NULL_DATA. The pointer specified for the argument

IndicatorValue in SQLBindFileToCol() was a null pointer and the

value of the corresponding LOB column is NULL. There is no

means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or

more columns would have caused the whole part of the number

to be truncated either at the time of assignment or in computing

an intermediate result.

A value from an arithmetic expression was returned which

resulted in division by zero.

Note: The associated cursor is undefined if this error is detected

by DB2 Database for Linux, UNIX, and Windows. If the error was

detected by DB2 CLI or by other IBM RDBMSs, the cursor will

remain open and continue to advance on subsequent fetch calls.

22005 Error in assignment. A returned value was incompatible with the data type of binding.

A returned LOB locator was incompatible with the data type of

the bound column.

22007 Invalid datetime format. Conversion from character a string to a datetime format was

indicated, but an invalid string representation or value was

specified, or the value was an invalid date.

The value of a date, time, or timestamp does not conform to the

syntax for the specified data type.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic

operation on a date or timestamp has a result that is not within

the valid range of dates, or a datetime value cannot be assigned to

a bound variable because it is too small.

22012 Division by zero is invalid. A value from an arithmetic expression was returned which

resulted in division by zero.

114 Call Level Interface Guide and Reference, Volume 2

Table 53. SQLFetch SQLSTATEs (continued)

SQLSTATE Description Explanation

24000 Invalid cursor state. The previous SQL statement executed on the statement handle

was not a query.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

428A1 Unable to access a file referenced

by a host file variable.

This can be raised for any of the following scenarios. The

associated reason code in the text identifies the particular error:

v 01 - The file name length is invalid, or the file name, the path

or both has an invalid format.

v 02 - The file option is invalid. It must have one of the following

values:

 SQL_FILE_READ -read from an existing file

 SQL_FILE_CREATE -create a new file for write

 SQL_FILE_OVERWRITE -overwrite an existing file.

 If the file does not exist,

 create the file.

 SQL_FILE_APPEND -append to an existing file.

 If the file does not exist,

 create the file.

v 03 - The file cannot be found.

v 04 - The SQL_FILE_CREATE option was specified for a file with

the same name as an existing file.

v 05 - Access to the file was denied. The user does not have

permission to open the file.

v 06 - Access to the file was denied. The file is in use with

incompatible modes. Files to be written to are opened in

exclusive mode.

v 07 - Disk full was encountered while writing to the file.

v 08 - Unexpected end of file encountered while reading from the

file.

v 09 - A media error was encountered while accessing the file.

54028 The maximum number of

concurrent LOB handles has

been reached.

Maximum LOB locator assigned.

The maximum number of concurrent LOB locators has been

reached. A new locator can not be assigned.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

Chapter 1. CLI and ODBC functions 115

Table 53. SQLFetch SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. SQLFetch() was called for an StatementHandle after

SQLExtendedFetch() was called and before SQLFreeStmt() had

been called with the SQL_CLOSE option.

The function was called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToCol()

operation was not valid.

HYC00 Driver not capable. DB2 CLI or the data source does not support the conversion

specified by the combination of the fCType in SQLBindCol() or

SQLBindFileToCol() and the SQL data type of the corresponding

column.

A call to SQLBindCol() was made for a column data type which is

not supported by DB2 CLI.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example

 /* fetch each row and display */

 cliRC = SQLFetch(hstmt);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 if (cliRC == SQL_NO_DATA_FOUND)

 {

 printf("\n Data not found.\n");

 }

 while (cliRC != SQL_NO_DATA_FOUND)

 {

 printf("

 /* fetch next row */

 cliRC = SQLFetch(hstmt);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 }

SQLFetchScroll function (CLI) - Fetch rowset and return data for all

bound columns

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

116 Call Level Interface Guide and Reference, Volume 2

SQLFetchScroll() fetches the specified rowset of data from the result set and

returns data for all bound columns. Rowsets can be specified at an absolute or

relative position or by bookmark.

Syntax

SQLRETURN SQLFetchScroll (SQLHSTMT StatementHandle,

 SQLSMALLINT FetchOrientation,

 SQLLEN FetchOffset);

Function arguments

 Table 54. SQLFetchScroll arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT FetchOrientation input Type of fetch:

v SQL_FETCH_NEXT

v SQL_FETCH_PRIOR

v SQL_FETCH_FIRST

v SQL_FETCH_LAST

v SQL_FETCH_ABSOLUTE

v SQL_FETCH_RELATIVE

v SQL_FETCH_BOOKMARK

For more information, see Positioning the Cursor.

SQLLEN FetchOffset input Number of the row to fetch. The interpretation of

this argument depends on the value of the

FetchOrientation argument. For more information, see

Positioning the Cursor.

Usage

Overview

SQLFetchScroll() returns a specified rowset from the result set. Rowsets can be

specified by absolute or relative position or by bookmark. SQLFetchScroll() can be

called only while a result set exists, that is, after a call that creates a result set and

before the cursor over that result set is closed. If any columns are bound, it returns

the data in those columns. If the application has specified a pointer to a row status

array or a buffer in which to return the number of rows fetched, SQLFetchScroll()

returns this information as well. Calls to SQLFetchScroll() can be mixed with calls

to SQLFetch() but cannot be mixed with calls to SQLExtendedFetch().

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result

set. SQLFetchScroll() positions the block cursor based on the values of the

FetchOrientation and FetchOffset arguments as shown in the following table. The

exact rules for determining the start of the new rowset are shown in the next

section.

FetchOrientation

Meaning

SQL_FETCH_NEXT

Return the next rowset. This is equivalent to calling SQLFetch().

SQLFetchScroll() ignores the value of FetchOffset.

Chapter 1. CLI and ODBC functions 117

SQL_FETCH_PRIOR

Return the prior rowset. SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_RELATIVE

Return the rowset FetchOffset from the start of the current rowset.

SQL_FETCH_ABSOLUTE

Return the rowset starting at row FetchOffset.

SQL_FETCH_FIRST

Return the first rowset in the result set. SQLFetchScroll() ignores the value

of FetchOffset.

SQL_FETCH_LAST

Return the last complete rowset in the result set. SQLFetchScroll() ignores

the value of FetchOffset.

SQL_FETCH_BOOKMARK

Return the rowset FetchOffset rows from the bookmark specified by the

SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute.

Not all cursors support all of these options. A static forward-only cursor, for

example, will only support SQL_FETCH_NEXT. Scrollable cursors, such as keyset

cursors, will support all of these options. The SQL_ATTR_ROW_ARRAY_SIZE

statement attribute specifies the number of rows in the rowset. If the rowset being

fetched by SQLFetchScroll() overlaps the end of the result set, SQLFetchScroll()

returns a partial rowset. That is, if S + R-1 is greater than L, where S is the starting

row of the rowset being fetched, R is the rowset size, and L is the last row in the

result set, then only the first L-S+1 rows of the rowset are valid. The remaining

rows are empty and have a status of SQL_ROW_NOROW.

After SQLFetchScroll() returns, the rowset cursor is positioned on the first row of

the result set.

Returning data in bound columns

SQLFetchScroll() returns data in bound columns in the same way as SQLFetch().

If no columns are bound, SQLFetchScroll() does not return data but does move

the block cursor to the specified position. As with SQLFetch(), you can use

SQLGetData() to retrieve the information in this case.

Row status array

The row status array is used to return the status of each row in the rowset. The

address of this array is specified with the SQL_ATTR_ROW_STATUS_PTR

statement attribute. The array is allocated by the application and must have as

many elements as are specified by the SQL_ATTR_ROW_ARRAY_SIZE statement

attribute. Its values are set by SQLFetch(), SQLFetchScroll(), or SQLSetPos()

(except when they have been called after the cursor has been positioned by

SQLExtendedFetch()). If the value of the SQL_ATTR_ROW_STATUS_PTR statement

attribute is a null pointer, these functions do not return the row status.

The contents of the row status array buffer are undefined if SQLFetch() or

SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO.

The following values are returned in the row status array.

118 Call Level Interface Guide and Reference, Volume 2

Row status array value

Description

SQL_ROW_SUCCESS

The row was successfully fetched.

SQL_ROW_SUCCESS_WITH_INFO

The row was successfully fetched. However, a warning was returned about

the row.

SQL_ROW_ERROR

An error occurred while fetching the row.

SQL_ROW_ADDED

The row was inserted by SQLBulkOperations(). If the row is fetched again,

or is refreshed by SQLSetPos() its status is SQL_ROW_SUCCESS.

 This value is not set by SQLFetch() or SQLFetchScroll().

SQL_ROW_UPDATED

The row was successfully fetched and has changed since it was last fetched

from this result set. If the row is fetched again from this result set, or is

refreshed by SQLSetPos(), the status changes to the row’s new status.

SQL_ROW_DELETED

The row has been deleted since it was last fetched from this result set.

SQL_ROW_NOROW

The rowset overlapped the end of the result set and no row was returned

that corresponded to this element of the row status array.

Rows fetched buffer

The rows fetched buffer is used to return the number of rows fetched, including

those rows for which no data was returned because an error occurred while they

were being fetched. In other words, it is the number of rows for which the value in

the row status array is not SQL_ROW_NOROW. The address of this buffer is

specified with the SQL_ATTR_ROWS_FETCHED_PTR statement attribute. The

buffer is allocated by the application. It is set by SQLFetch() and SQLFetchScroll().

If the value of the SQL_ATTR_ROWS_FETCHED_PTR statement attribute is a null

pointer, these functions do not return the number of rows fetched. To determine

the number of the current row in the result set, an application can call

SQLGetStmtAttr() with the SQL_ATTR_ROW_NUMBER attribute.

The contents of the rows fetched buffer are undefined if SQLFetch() or

SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO,

except when SQL_NO_DATA is returned, in which case the value in the rows

fetched buffer is set to 0.

Error handling

SQLFetchScroll() returns errors and warnings in the same manner as SQLFetch().

Descriptors and SQLFetchScroll()

SQLFetchScroll() interacts with descriptors in the same manner as SQLFetch().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

Chapter 1. CLI and ODBC functions 119

v SQL_NO_DATA

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

The return code associated with each SQLSTATE value is SQL_ERROR, unless

noted otherwise. If an error occurs on a single column, SQLGetDiagField() can be

called with a DiagIdentifier of SQL_DIAG_COLUMN_NUMBER to determine the

column the error occurred on; and SQLGetDiagField() can be called with a

DiagIdentifier of SQL_DIAG_ROW_NUMBER to determine the row containing that

column.

 Table 55. SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. String or binary data returned for a column resulted in the

truncation of non-blank character or non-NULL binary data.

String values are right truncated. (Function returns

SQL_SUCCESS_WITH_INFO.)

01S01 Error in row. An error occurred while fetching one or more rows. (Function

returns SQL_SUCCESS_WITH_INFO.) (This SQLSTATE is only

returned when connected to DB2 CLI v2.)

01S06 Attempt to fetch before the result

set returned the first rowset.

The requested rowset overlapped the start of the result set when

the current position was beyond the first row, and either

FetchOrientation was SQL_PRIOR, or FetchOrientation was

SQL_RELATIVE with a negative FetchOffset whose absolute value

was less than or equal to the current

SQL_ATTR_ROW_ARRAY_SIZE. (Function returns

SQL_SUCCESS_WITH_INFO.)

01S07 Fractional truncation. The data returned for a column was truncated. For numeric data

types, the fractional part of the number was truncated. For time or

timestamp data types, the fractional portion of the time was

truncated.

07002 Too many columns. A column number specified in the binding for one or more

columns was greater than the number of columns in the result set.

07006 Invalid conversion. A data value of a column in the result set could not be converted

to the C data type specified by TargetType in SQLBindCol().

07009 Invalid descriptor index. Column 0 was bound and the SQL_USE_BOOKMARKS statement

attribute was set to SQL_UB_OFF.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

22001 String data right truncation. A variable-length bookmark returned for a row was truncated.

22002 Invalid output or indicator

buffer specified.

NULL data was fetched into a column whose StrLen_or_IndPtr set

by SQLBindCol() (or SQL_DESC_INDICATOR_PTR set by

SQLSetDescField() or SQLSetDescRec()) was a null pointer.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or

more bound columns would have caused the whole (as opposed

to fractional) part of the number to be truncated.

120 Call Level Interface Guide and Reference, Volume 2

Table 55. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

22007 Invalid datetime format. A character column in the result set was bound to a date, time, or

timestamp C structure, and a value in the column was,

respectively, an invalid date, time, or timestamp.

22012 Division by zero is invalid. A value from an arithmetic expression was returned which

resulted in division by zero.

22018 Invalid character value for cast

specification.

A character column in the result set was bound to a character C

buffer and the column contained a character for which there was

no representation in the character set of the buffer. A character

column in the result set was bound to an approximate numeric C

buffer and a value in the column could not be cast to a valid

approximate numeric value. A character column in the result set

was bound to an exact numeric C buffer and a value in the

column could not be cast to a valid exact numeric value. A

character column in the result set was bound to a datetime C

buffer and a value in the column could not be cast to a valid

datetime value.

24000 Invalid cursor state. The StatementHandle was in an executed state but no result set was

associated with the StatementHandle.

40001 Transaction rollback. The transaction in which the fetch was executed was terminated

to prevent deadlock.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. The specified StatementHandle was not in an executed state. The

function was called without first calling SQLExecDirect(),

SQLExecute(), or a catalog function.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

SQLExecute() or SQLExecDirect() was called for the

StatementHandle and returned SQL_NEED_DATA. This function

was called before data was sent for all data-at-execution

parameters or columns.

SQLFetchScroll() was called for a StatementHandle after

SQLExtendedFetch() was called and before SQLFreeStmt() with

SQL_CLOSE was called.

Chapter 1. CLI and ODBC functions 121

Table 55. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

HY106 Fetch type out of range. The value specified for the argument FetchOrientation was invalid.

The argument FetchOrientation was SQL_FETCH_BOOKMARK,

and the SQL_ATTR_USE_BOOKMARKS statement attribute was

set to SQL_UB_OFF.

The value of the SQL_CURSOR_TYPE statement attribute was

SQL_CURSOR_FORWARD_ONLY and the value of argument

FetchOrientation was not SQL_FETCH_NEXT.

HY107 Row value out of range. The value specified with the SQL_ATTR_CURSOR_TYPE

statement attribute was SQL_CURSOR_KEYSET_DRIVEN, but the

value specified with the SQL_ATTR_KEYSET_SIZE statement

attribute was greater than 0 and less than the value specified with

the SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

HY111 Invalid bookmark value. The argument FetchOrientation was SQL_FETCH_BOOKMARK

and the bookmark pointed to by the value in the

SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute was

not valid or was a null pointer.

HYC00 Driver not capable. The specified fetch type is not supported.

The conversion specified by the combination of the TargetType in

SQLBindCol() and the SQL data type of the corresponding column

is not supported.

Restrictions

None.

Example

 /* fetch the rowset: row15, row16, row17, row18, row19 */

 printf("\n Fetch the rowset: row15, row16, row17, row18, row19.\n");

 /* fetch the rowset and return data for all bound columns */

 cliRC = SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 15);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 /* call SQLFetchScroll with SQL_FETCH_RELATIVE offset 3 */

 printf(" SQLFetchScroll with SQL_FETCH_RELATIVE offset 3.\n");

 printf(" COL1 COL2 \n");

 printf(" ------------ -------------\n");

 /* fetch the rowset and return data for all bound columns */

 cliRC = SQLFetchScroll(hstmt, SQL_FETCH_RELATIVE, 3);

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLForeignKeys() returns information about foreign keys for the specified table.

The information is returned in an SQL result set which can be processed using the

same functions that are used to retrieve a result generated by a query.

122 Call Level Interface Guide and Reference, Volume 2

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLForeignKeysW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLForeignKeys (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *PKCatalogName, /* szPkCatalogName */

 SQLSMALLINT NameLength1, /* cbPkCatalogName */

 SQLCHAR *PKSchemaName, /* szPkSchemaName */

 SQLSMALLINT NameLength2, /* cbPkSchemaName */

 SQLCHAR *PKTableName, /* szPkTableName */

 SQLSMALLINT NameLength3, /* cbPkTableName */

 SQLCHAR *FKCatalogName, /* szFkCatalogName */

 SQLSMALLINT NameLength4, /* cbFkCatalogName */

 SQLCHAR *FKSchemaName, /* szFkSchemaName */

 SQLSMALLINT NameLength5, /* cbFkSchemaName */

 SQLCHAR *FKTableName, /* szFkTableName */

 SQLSMALLINT NameLength6); /* cbFkTableName */

Function arguments

 Table 56. SQLForeignKeys arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * PKCatalogName input Catalog qualifier of the 3-part primary key table

name. If the target DBMS does not support 3-part

naming, and PKCatalogName is not a null pointer and

does not point to a zero-length string, then an empty

result set and SQL_SUCCESS will be returned.

Otherwise, this is a valid filter for DBMSs that

support 3-part naming.

SQLSMALLINT NameLength1 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store PKCatalogName, or SQL_NTS if

PKCatalogName is null-terminated.

SQLCHAR * PKSchemaName input Schema qualifier of the primary key table.

SQLSMALLINT NameLength2 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store PKSchemaName, or SQL_NTS if

PKSchemaName is null-terminated.

SQLCHAR * PKTableName input Name of the table name containing the primary key.

SQLSMALLINT NameLength3 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store PKTableName, or SQL_NTS if

PKTableName is null-terminated.

SQLCHAR * FKCatalogName input Catalog qualifier of the 3-part foreign key table

name. If the target DBMS does not support 3-part

naming, and FKCatalogName is not a null pointer and

does not point to a zero-length string, then an empty

result set and SQL_SUCCESS will be returned.

Otherwise, this is a valid filter for DBMSs that

support 3-part naming.

Chapter 1. CLI and ODBC functions 123

Table 56. SQLForeignKeys arguments (continued)

Data type Argument Use Description

SQLSMALLINT NameLength4 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store FKCatalogName, or SQL_NTS if

FKCatalogName is null-terminated.

SQLCHAR * FKSchemaName input Schema qualifier of the table containing the foreign

key.

SQLSMALLINT NameLength5 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store FKSchemaName, or SQL_NTS if

FKSchemaName is null-terminated.

SQLCHAR * FKTableName input Name of the table containing the foreign key.

SQLSMALLINT NameLength6 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store FKTableName, or SQL_NTS if

FKTableName is null-terminated.

Usage

If PKTableName contains a table name, and FKTableName is an empty string,

SQLForeignKeys() returns a result set containing the primary key of the specified

table and all of the foreign keys (in other tables) that refer to it.

If FKTableName contains a table name, and PKTableName is an empty string,

SQLForeignKeys() returns a result set containing all of the foreign keys in the

specified table and the primary keys (in other tables) to which they refer.

If both PKTableName and FKTableName contain table names, SQLForeignKeys()

returns the foreign keys in the table specified in FKTableName that refer to the

primary key of the table specified in PKTableName. This should be one key at the

most.

If the schema qualifier argument associated with a table name is not specified, then

the schema name defaults to the one currently in effect for the current connection.

Columns Returned by SQLForeignKeys lists the columns of the result set generated

by the SQLForeignKeys() call. If the foreign keys associated with a primary key are

requested, the result set is ordered by FKTABLE_CAT, FKTABLE_SCHEM,

FKTABLE_NAME, and ORDINAL_POSITION. If the primary keys associated with

a foreign key are requested, the result set is ordered by PKTABLE_CAT,

PKTABLE_SCHEM, PKTABLE_NAME, and ORDINAL_POSITION.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of

the associated TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and

COLUMN_NAME columns supported by the connected DBMS.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

Columns returned by SQLForeignKeys

124 Call Level Interface Guide and Reference, Volume 2

Column 1 PKTABLE_CAT (VARCHAR(128))

Name of the catalog for PKTABLE_NAME. The value is NULL if this table

does not have catalogs.

Column 2 PKTABLE_SCHEM (VARCHAR(128))

Name of the schema containing PKTABLE_NAME.

Column 3 PKTABLE_NAME (VARCHAR(128) not NULL)

Name of the table containing the primary key.

Column 4 PKCOLUMN_NAME (VARCHAR(128) not NULL)

Primary key column name.

Column 5 FKTABLE_CAT (VARCHAR(128))

Name of the catalog for FKTABLE_NAME. The value is NULL if this table

does not have catalogs.

Column 6 FKTABLE_SCHEM (VARCHAR(128))

Name of the schema containing FKTABLE_NAME.

Column 7 FKTABLE_NAME (VARCHAR(128) not NULL)

Name of the table containing the foreign key.

Column 8 FKCOLUMN_NAME (VARCHAR(128) not NULL)

Foreign key column name.

Column 9 KEY_SEQ (SMALLINT not NULL)

Ordinal position of the column in the key, starting at 1.

Column 10 UPDATE_RULE (SMALLINT)

Action to be applied to the foreign key when the SQL operation is

UPDATE:

v SQL_RESTRICT

v SQL_NO_ACTION

The update rule for IBM DB2 DBMSs is always either RESTRICT or

SQL_NO_ACTION. However, ODBC applications might encounter the

following UPDATE_RULE values when connected to non-IBM RDBMSs:

v SQL_CASCADE

v SQL_SET_NULL

Column 11 DELETE_RULE (SMALLINT)

Action to be applied to the foreign key when the SQL operation is

DELETE:

v SQL_CASCADE

v SQL_NO_ACTION

v SQL_RESTRICT

v SQL_SET_DEFAULT

v SQL_SET_NULL

Column 12 FK_NAME (VARCHAR(128))

Foreign key identifier. NULL if not applicable to the data source.

Column 13 PK_NAME (VARCHAR(128))

Primary key identifier. NULL if not applicable to the data source.

Column 14 DEFERRABILITY (SMALLINT)

One of:

v SQL_INITIALLY_DEFERRED

v SQL_INITIALLY_IMMEDIATE

v SQL_NOT_DEFERRABLE

Chapter 1. CLI and ODBC functions 125

Note: The column names used by DB2 CLI follow the X/Open CLI CAE

specification style. The column types, contents and order are identical to those

defined for the SQLForeignKeys() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 57. SQLForeignKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. The arguments PKTableName and FKTableName were both NULL

pointers.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

For the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

The length of the table or owner name is greater than the

maximum length supported by the server.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

126 Call Level Interface Guide and Reference, Volume 2

Example

 /* get the list of foreign key columns */

 cliRC = SQLForeignKeys(hstmt,

 NULL,

 0,

 tbSchema,

 SQL_NTS,

 tbName,

 SQL_NTS,

 NULL,

 0,

 NULL,

 SQL_NTS,

 NULL,

 SQL_NTS);

SQLFreeConnect function (CLI) - Free connection handle

Deprecated

Note:

In ODBC 3.0, SQLFreeConnect() has been deprecated and replaced with

SQLFreeHandle().

Although this version of DB2 CLI continues to support SQLFreeConnect(), we

recommend that you use SQLFreeHandle() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLFreeConnect(hdbc);

for example, would be rewritten using the new function as:

 SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

SQLFreeEnv function (CLI) - Free environment handle

Deprecated

Note:

In ODBC 3.0, SQLFreeEnv() has been deprecated and replaced with

SQLFreeHandle().

Although this version of DB2 CLI continues to support SQLFreeEnv(), we

recommend that you use SQLFreeHandle() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLFreeEnv(henv);

for example, would be rewritten using the new function as:

 SQLFreeHandle(SQL_HANDLE_ENV, henv);

Chapter 1. CLI and ODBC functions 127

SQLFreeHandle function (CLI) - Free handle resources

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLFreeHandle() frees resources associated with a specific environment,

connection, statement, or descriptor handle.

Note: This function is a generic function for freeing resources. It replaces the

ODBC 2.0 functions SQLFreeConnect() (for freeing a connection handle), and

SQLFreeEnv() (for freeing an environment handle). SQLFreeHandle() also replaces

the ODBC 2.0 function SQLFreeStmt() (with the SQL_DROP Option) for freeing a

statement handle.

Syntax

SQLRETURN SQLFreeHandle (

 SQLSMALLINT HandleType, /* fHandleType */

 SQLHANDLE Handle); /* hHandle */

Function arguments

 Table 58. SQLFreeHandle arguments

Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be freed by SQLFreeHandle().

Must be one of the following values:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

v SQL_HANDLE_DESC

If HandleType is not one of the above values,

SQLFreeHandle() returns SQL_INVALID_HANDLE.

SQLHANDLE Handle input The handle to be freed.

Usage

SQLFreeHandle() is used to free handles for environments, connections, statements,

and descriptors.

An application should not use a handle after it has been freed; DB2 CLI does not

check the validity of a handle in a function call.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

If SQLFreeHandle() returns SQL_ERROR, the handle is still valid.

128 Call Level Interface Guide and Reference, Volume 2

Diagnostics

 Table 59. SQLFreeHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The HandleType argument was SQL_HANDLE_DBC, and the

communication link between DB2 CLI and the data source to

which it was trying to connect failed before the function

completed processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. The HandleType argument was SQL_HANDLE_ENV, and at least

one connection was in an allocated or connected state.

SQLDisconnect() and SQLFreeHandle() with a HandleType of

SQL_HANDLE_DBC must be called for each connection before

calling SQLFreeHandle() with a HandleType of

SQL_HANDLE_ENV. The HandleType argument was

SQL_HANDLE_DBC, and the function was called before calling

SQLDisconnect() for the connection.

The HandleType argument was SQL_HANDLE_STMT; an

asynchronously executing function was called on the statement

handle; and the function was still executing when this function

was called.

The HandleType argument was SQL_HANDLE_STMT;

SQLExecute() or SQLExecDirect() was called with the statement

handle, and returned SQL_NEED_DATA. This function was called

before data was sent for all data-at-execution parameters or

columns. (DM) All subsidiary handles and other resources were

not released before SQLFreeHandle() was called.

HY013 Unexpected memory handling

error.

The HandleType argument was SQL_HANDLE_STMT or

SQL_HANDLE_DESC, and the function call could not be

processed because the underlying memory objects could not be

accessed, possibly because of low memory conditions.

HY017 Invalid use of an automatically

allocated descriptor handle.

The Handle argument was set to the handle for an automatically

allocated descriptor or an implementation descriptor.

Restrictions

None.

Example

 /* free the statement handle */

 cliRC = SQLFreeHandle(SQL_HANDLE_STMT, hstmt2);

 SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_STMT,

 hstmt2,

 cliRC,

 henv,

 hdbc,

Chapter 1. CLI and ODBC functions 129

pOutSqlrc,

 outMsg,

 "SQLFreeHandle");

 /* ... */

 /* free the database handle */

 cliRC = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

 SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_DBC,

 hdbc,

 cliRC,

 henv,

 hdbc,

 pOutSqlrc,

 outMsg,

 "SQLFreeHandle");

 /* free the environment handle */

 cliRC = SQLFreeHandle(SQL_HANDLE_ENV, henv);

 SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_ENV,

 henv,

 cliRC,

 henv,

 hdbc,

 pOutSqlrc,

 outMsg,

 "SQLFreeHandle");

SQLFreeStmt function (CLI) - Free (or reset) a statement handle

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLFreeStmt() ends processing on the statement referenced by the statement

handle. Use this function to:

v Close a cursor and discard all pending results

v Disassociate (reset) parameters from application variables and LOB file

references

v Unbind columns from application variables and LOB file references

v Drop the statement handle and free the DB2 CLI resources associated with the

statement handle.

SQLFreeStmt() is called after executing an SQL statement and processing the

results.

Syntax

SQLRETURN SQLFreeStmt (SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT Option); /* fOption */

Function arguments

 Table 60. SQLFreeStmt arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

130 Call Level Interface Guide and Reference, Volume 2

Table 60. SQLFreeStmt arguments (continued)

Data type Argument Use Description

SQLUSMALLINT Option input Option which specifies the manner of freeing the

statement handle. The option must have one of the

following values:

v SQL_CLOSE

v SQL_DROP

v SQL_UNBIND

v SQL_RESET_PARAMS

Usage

SQLFreeStmt() can be called with the following options:

SQL_CLOSE

The cursor (if any) associated with the statement handle (StatementHandle)

is closed and all pending results are discarded. The application can reopen

the cursor by calling SQLExecute() with the same or different values in the

application variables (if any) that are bound to StatementHandle. The cursor

name is retained until the statement handle is dropped or a subsequent call

to SQLGetCursorName() is successful. If no cursor has been associated with

the statement handle, this option has no effect (no warning or error is

generated).

 SQLCloseCursor() can also be used to close a cursor.

SQL_DROP

DB2 CLI resources associated with the input statement handle are freed,

and the handle is invalidated. The open cursor, if any, is closed and all

pending results are discarded.

 This option has been replaced with a call to SQLFreeHandle() with the

HandleType set to SQL_HANDLE_STMT. Although this version of DB2 CLI

continues to support this option, we recommend that you begin using

SQLFreeHandle() in your DB2 CLI programs so that they conform to the

latest standards.

SQL_UNBIND

Sets the SQL_DESC_COUNT field of the ARD (Application Row

Descriptor) to 0, releasing all column buffers bound by SQLBindCol() or

SQLBindFileToCol() for the given StatementHandle. This does not unbind

the bookmark column; to do that, the SQL_DESC_DATA_PTR field of the

ARD for the bookmark column is set to NULL. Note that if this operation

is performed on an explicitly allocated descriptor that is shared by more

than one statement, the operation will affect the bindings of all statements

that share the descriptor.

SQL_RESET_PARAMS

Sets the SQL_DESC_COUNT field of the APD (Application Parameter

Descriptor) to 0, releasing all parameter buffers set by SQLBindParameter()

or SQLBindFileToParam() for the given StatementHandle. Note that if this

operation is performed on an explicitly allocated descriptor that is shared

by more than one statement, this operation will affect the bindings of all

the statements that share the descriptor.

SQLFreeStmt() has no effect on LOB locators, call SQLExecDirect() with the FREE

LOCATOR statement to free a locator.

Chapter 1. CLI and ODBC functions 131

It is possible to reuse a statement handle to execute a different statement:

v If the handle was associated with a query, catalog function or SQLGetTypeInfo(),

you must close the cursor.

v If the handle was bound with a different number or type of parameters, the

parameters must be reset.

v If the handle was bound with a different number or type of column bindings,

the columns must be unbound.

Alternatively you may drop the statement handle and allocate a new one.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if Option is set to SQL_DROP, as there

would be no statement handle to use when SQLGetDiagRec() or SQLGetDiagField()

is called.

Diagnostics

 Table 61. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

HY092 Option type out of range. The value specified for the argument Option was not SQL_CLOSE,

SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

Authorization

None.

Example

 /* free the statement handle */

 cliRC = SQLFreeStmt(hstmt, SQL_UNBIND);

 rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, cliRC, __LINE__, __FILE__);

 if (rc != 0)

 {

 return 1;

 }

 /* free the statement handle */

 cliRC = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);

 rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, cliRC, __LINE__, __FILE__);

 if (rc != 0)

132 Call Level Interface Guide and Reference, Volume 2

{

 return 1;

 }

 /* free the statement handle */

 cliRC = SQLFreeStmt(hstmt, SQL_CLOSE);

 rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, cliRC, __LINE__, __FILE__);

 if (rc != 0)

 {

 return 1;

 }

SQLGetConnectAttr function (CLI) - Get current attribute setting

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLGetConnectAttr() returns the current setting of a connection attribute.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetConnectAttrW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetConnectAttr(SQLHDBC ConnectionHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr);

Function arguments

 Table 62. SQLGetConnectAttr arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output A pointer to memory in which to return the current

value of the attribute specified by Attribute.

SQLINTEGER BufferLength input v If ValuePtr points to a character string, this

argument should be the length of *ValuePtr.

v If ValuePtr is a pointer, but not to a string, then

BufferLength should have the value

SQL_IS_POINTER.

v If the value in *ValuePtr is a Unicode string the

BufferLength argument must be an even number.

SQLINTEGER * StringLengthPtr output A pointer to a buffer in which to return the total

number of bytes (excluding the null-termination

character) available to return in *ValuePtr. If ValuePtr

is a null pointer, no length is returned. If the

attribute value is a character string, and the number

of bytes available to return is greater than

BufferLength minus the length of the

null-termination character, the data in *ValuePtr is

truncated to BufferLength minus the length of the

null-termination character and is null-terminated by

DB2 CLI.

Chapter 1. CLI and ODBC functions 133

Usage

If Attribute specifies an attribute that returns a string, ValuePtr must be a pointer to

a buffer for the string. The maximum length of the string, including the null

termination character, will be BufferLength bytes.

Depending on the attribute, an application does not need to establish a connection

prior to calling SQLGetConnectAttr(). However, if SQLGetConnectAttr() is called

and the specified attribute does not have a default and has not been set by a prior

call to SQLSetConnectAttr(), SQLGetConnectAttr() will return SQL_NO_DATA.

If Attribute is SQL_ATTR_TRACE or SQL_ATTR_TRACEFILE, ConnectionHandle

does not have to be valid, and SQLGetConnectAttr() will not return SQL_ERROR if

ConnectionHandle is invalid. These attributes apply to all connections.

SQLGetConnectAttr() will return SQL_ERROR if another argument is invalid.

While an application can set statement attributes using SQLSetConnectAttr(), an

application cannot use SQLGetConnectAttr() to retrieve statement attribute values;

it must call SQLGetStmtAttr() to retrieve the setting of statement attributes.

The SQL_ATTR_AUTO_IPD connection attribute can be returned by a call to

SQLGetConnectAttr(), but cannot be set by a call to SQLSetConnectAttr().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NO_DATA

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 63. SQLGetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength

minus the length of a null termination character. The length of the

untruncated string value is returned in *StringLengthPtr. (Function

returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. An Attribute value was specified that required an open connection.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. SQLBrowseConnect() was called for the ConnectionHandle and

returned SQL_NEED_DATA. This function was called before

SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or

SQL_SUCCESS.

134 Call Level Interface Guide and Reference, Volume 2

Table 63. SQLGetConnectAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid

connection or statement attribute for the version of the DB2 CLI

driver, but was not supported by the data source.

Restrictions

None.

Example

 SQLINTEGER autocommit;

 /* ... */

 /* get the current setting for the AUTOCOMMIT attribute */

 cliRC = SQLGetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, &autocommit, 0, NULL);

SQLGetConnectOption function (CLI) - Return current setting of a

connect option

Deprecated

Note:

In ODBC version 3, SQLGetConnectOption() has been deprecated and replaced with

SQLGetConnectAttr().

Although this version of DB2 CLI continues to support SQLGetConnectOption(), we

recommend that you begin using SQLGetConnectAttr() in your DB2 CLI programs

so that they conform to the latest standards.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetConnectOptionW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Migrating to the new function

The statement:

 SQLGetConnectOption(hdbc, SQL_ATTR_AUTOCOMMIT, pvAutoCommit);

for example, would be rewritten using the new function as:

 SQLGetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, pvAutoCommit,

 SQL_IS_POINTER, NULL);

SQLGetCursorName function (CLI) - Get cursor name

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

Chapter 1. CLI and ODBC functions 135

SQLGetCursorName() returns the cursor name associated with the input statement

handle. If a cursor name was explicitly set by calling SQLSetCursorName(), this

name will be returned; otherwise, an implicitly generated name will be returned.

Unicode Equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetCursorNameW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetCursorName (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CursorName, /* szCursor */

 SQLSMALLINT BufferLength, /* cbCursorMax */

 SQLSMALLINT *NameLengthPtr); /* pcbCursor */

Function arguments

 Table 64. SQLGetCursorName arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName output Cursor name

SQLSMALLINT BufferLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CursorName.

SQLSMALLINT * NameLengthPtr output Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function),

excluding the null-termination character, available to

return for CursorName.

Usage

SQLGetCursorName() will return the cursor name set explicitly with

SQLSetCursorName(), or if no name was set, it will return the cursor name

internally generated by DB2 CLI. If SQLGetCursorName() is called before a

statement has been prepared on the input statement handle, an error will result.

The internal cursor name is generated on a statement handle the first time

dynamic SQL is prepared on the statement handle, not when the handle is

allocated.

If a name is set explicitly using SQLSetCursorName(), this name will be returned

until the statement is dropped, or until another explicit name is set.

Internally generated cursor names always begin with SQLCUR or SQL_CUR.

Cursor names are always 128 SQLCHAR or SQLWCHAR elements or less, and are

always unique within a connection.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

136 Call Level Interface Guide and Reference, Volume 2

Diagnostics

 Table 65. SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name returned in CursorName was longer than the

value in BufferLength, and is truncated to BufferLength - 1 bytes.

The argument NameLengthPtr contains the length of the full cursor

name available for return. The function returns

SQL_SUCCESS_WITH_INFO.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

For the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 0.

Restrictions

ODBC generated cursor names start with SQL_CUR, DB2 CLI generated cursor

names start with SQLCUR, and X/Open CLI generated cursor names begin with

either SQLCUR or SQL_CUR.

Example

 SQLCHAR cursorName[20];

 /* ... */

 /* get the cursor name of the SELECT statement */

 cliRC = SQLGetCursorName(hstmtSelect, cursorName, 20, &cursorLen);

SQLGetData function (CLI) - Get data from a column

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

Chapter 1. CLI and ODBC functions 137

SQLGetData() retrieves data for a single column in the current row of the result set.

This is an alternative to SQLBindCol(), which is used to transfer data directly into

application variables or LOB locators on each SQLFetch() or SQLFetchScroll() call.

An application can either bind LOBs with SQLBindCol() or use SQLGetData() to

retrieve LOBs, but both methods cannot be used together. SQLGetData() can also be

used to retrieve large data values in pieces.

SQLFetch() or SQLFetchScroll() must be called before SQLGetData().

After calling SQLGetData() for each column, SQLFetch() or SQLFetchScroll() is

called to retrieve the next row.

Syntax

SQLRETURN SQLGetData (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT ColumnNumber, /* icol */

 SQLSMALLINT TargetType, /* fCType */

 SQLPOINTER TargetValuePtr, /* rgbValue */

 SQLLEN BufferLength, /* cbValueMax */

 SQLLEN *StrLen_or_IndPtr); /* pcbValue */

Function arguments

 Table 66. SQLGetData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Column number for which the data retrieval is

requested. Result set columns are numbered

sequentially from left to right.

v Column numbers start at 1 if bookmarks are not

used (SQL_ATTR_USE_BOOKMARKS statement

attribute set to SQL_UB_OFF).

v Column numbers start at 0 if bookmarks are used

(the statement attribute set to SQL_UB_ON or

SQL_UB_VARIABLE).

138 Call Level Interface Guide and Reference, Volume 2

Table 66. SQLGetData arguments (continued)

Data type Argument Use Description

SQLSMALLINT TargetType input The C data type of the column identifier by

ColumnNumber. The following types are supported:

v SQL_C_BINARY

v SQL_C_BIT

v SQL_C_BLOB_LOCATOR

v SQL_C_CHAR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCHAR

v SQL_C_DBCLOB_LOCATOR

v SQL_C_DECIMAL_IBM

v SQL_C_DOUBLE

v SQL_C_FLOAT

v SQL_C_LONG

v SQL_C_NUMERIC

a

v SQL_C_SBIGINT

v SQL_C_SHORT

v SQL_C_TYPE_DATE

v SQL_C_TYPE_TIME

v SQL_C_TYPE_TIMESTAMP

v SQL_C_TINYINT

v SQL_C_UBIGINT

v SQL_C_UTINYINT

v SQL_C_WCHAR

Specifying SQL_ARD_TYPE results in the data being

converted to the data type specified in the

SQL_DESC_CONCISE_TYPE field of the ARD.

Specifying SQL_C_DEFAULT results in the data

being converted to its default C data type.

SQLPOINTER TargetValuePtr output Pointer to buffer where the retrieved column data is

to be stored.

SQLLEN BufferLength input Maximum size of the buffer pointed to by

TargetValuePtr. This value is ignored when the driver

returns fixed-length data.

SQLLEN * StrLen_or_IndPtr output Pointer to value which indicates the number of bytes

DB2 CLI has available to return in the TargetValuePtr

buffer. If the data is being retrieved in pieces, this

contains the number of bytes still remaining.

The value is SQL_NULL_DATA if the data value of

the column is null. If this pointer is NULL and

SQLFetch() has obtained a column containing null

data, then this function will fail because it has no

means of reporting this.

If SQLFetch() has fetched a column containing

binary data, then the pointer to StrLen_or_IndPtr

must not be NULL or this function will fail because

it has no other means of informing the application

about the length of the data retrieved in the

TargetValuePtr buffer.

Note: DB2 CLI will provide some performance enhancement if TargetValuePtr is placed consecutively in memory

after StrLen_or_IndPtr

Chapter 1. CLI and ODBC functions 139

Usage

Different DB2 data sources have different restrictions on how SQLGetData() can be

used. For an application to be sure about the functional capabilities of this

function, it should call SQLGetInfo() with any of the following

SQL_GETDATA_EXTENSIONS options:

v SQL_GD_ANY_COLUMN: If this option is returned, SQLGetData() can be called

for any unbound column, including those before the last bound column. All DB2

data sources support this feature.

v SQL_GD_ANY_ORDER: If this option is returned, SQLGetData() can be called

for unbound columns in any order. All DB2 data sources support this feature.

v SQL_GD_BLOCK: If this option if returned by SQLGetInfo() for the

SQL_GETDATA_EXTENSIONS InfoType argument, then the driver will support

calls to SQLGetData() when the rowset size is greater than 1. The application can

also call SQLSetPos() with the SQL_POSITION option to position the cursor on

the correct row before calling SQLGetData(). At least DB2 for Unix and Windows

data sources support this feature.

v SQL_GD_BOUND: If this option is returned, SQLGetData() can be called for

bound columns as well as unbound columns. DB2 Database for Linux, UNIX,

and Windows does not currently support this feature.

SQLGetData() can also be used to retrieve long columns if the C data type

(TargetType) is SQL_C_CHAR, SQL_C_BINARY, SQL_C_DBCHAR,

SQL_C_WCHAR, or if TargetType is SQL_C_DEFAULT and the column type

denotes a binary or character string.

Upon each SQLGetData() call, if the data available for return is greater than or

equal to BufferLength, truncation occurs. Truncation is indicated by a function

return code of SQL_SUCCESS_WITH_INFO coupled with a SQLSTATE denoting

data truncation. The application can call SQLGetData() again, with the same

ColumnNumber value, to get subsequent data from the same unbound column

starting at the point of truncation. To obtain the entire column, the application

repeats such calls until the function returns SQL_SUCCESS. The next call to

SQLGetData() returns SQL_NO_DATA_FOUND.

When the application calls the function SQLGetData() to retrieve the actual LOB

data it will, by default, make one request to the server and will store the entire

LOB in memory provided BufferLength is large enough. If BufferLength is not large

enough to hold the requested LOB data, it will be retrieved in pieces.

Although SQLGetData() can be used for the sequential retrieval of LOB column

data, use the DB2 CLI LOB functions if only a portion of the LOB data or a few

sections of the LOB column data are needed:

1. Bind the column to a LOB locator.

2. Fetch the row.

3. Use the locator in a SQLGetSubString() call, to retrieve the data in pieces

(SQLGetLength() and SQLGetPosition() might also be required in order to

determine the values of some of the arguments).

4. Repeat step 2.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute.

The application can specify that truncation is not to be reported by calling

SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a value for the maximum

length to return for any one column, and by allocating a TargetValuePtr buffer of

140 Call Level Interface Guide and Reference, Volume 2

the same size (plus the null-terminator). If the column data is larger than the set

maximum length, SQL_SUCCESS will be returned and the maximum length, not

the actual length will be returned in StrLen_or_IndPtr.

To discard the column data part way through the retrieval, the application can call

SQLGetData() with ColumnNumber set to the next column position of interest. To

discard data that has not been retrieved for the entire row, the application should

call SQLFetch() to advance the cursor to the next row; or, if it does not want any

more data from the result set, the application can close the cursor by calling

SQLCloseCursor() or SQLFreeStmt() with the SQL_CLOSE or SQL_DROP option.

The TargetType input argument determines the type of data conversion (if any)

needed before the column data is placed into the storage area pointed to by

TargetValuePtr.

For SQL graphic column data:

v The length of the TargetValuePtr buffer (BufferLength) should be a multiple of 2.

The application can determine the SQL data type of the column by first calling

SQLDescribeCol() or SQLColAttribute().

v The pointer to StrLen_or_IndPtr must not be NULL since DB2 CLI will be storing

the number of octets stored in TargetValuePtr.

v If the data is to be retrieved in piecewise fashion, DB2 CLI will attempt to fill

TargetValuePtr to the nearest multiple of two octets that is still less than or equal

to BufferLength. This means if BufferLength is not a multiple of two, the last byte

in that buffer will be untouched; DB2 CLI will not split a double-byte character.

The content returned in TargetValuePtr is always null-terminated unless the column

data to be retrieved is binary, or if the SQL data type of the column is graphic

(DBCS) and the C buffer type is SQL_C_CHAR. If the application is retrieving the

data in multiple chunks, it should make the proper adjustments (for example, strip

off the null-terminator before concatenating the pieces back together assuming the

null termination environment attribute is in effect).

Truncation of numeric data types is reported as a warning if the truncation

involves digits to the right of the decimal point. If truncation occurs to the left of

the decimal point, an error is returned (refer to the diagnostics section).

With the exception of scrollable cursors, applications that use SQLFetchScroll() to

retrieve data should call SQLGetData() only when the rowset size is 1 (equivalent

to issuing SQLFetch()). SQLGetData() can only retrieve column data for a row

where the cursor is currently positioned.

Using SQLGetData() with Scrollable Cursors

SQLGetData() can also be used with scrollable cursors. You can save a pointer to

any row in the result set with a bookmark. The application can then use that

bookmark as a relative position to retrieve a rowset of information.

Once you have positioned the cursor to a row in a rowset using SQLSetPos(), you

can obtain the bookmark value from column 0 using SQLGetData(). In most cases

you will not want to bind column 0 and retrieve the bookmark value for every

row, but use SQLGetData() to retrieve the bookmark value for the specific row you

require.

Chapter 1. CLI and ODBC functions 141

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

v SQL_NO_TOTAL

SQL_NO_DATA_FOUND is returned when the preceding SQLGetData() call has

retrieved all of the data for this column.

SQL_SUCCESS is returned if a zero-length string is retrieved by SQLGetData(). If

this is the case, StrLen_or_IndPtr will contain 0, and TargetValuePtr will contain a

null terminator.

SQL_NO_TOTAL is returned as the length when truncation occurs if the DB2 CLI

configuration keyword StreamGetData is set to 1 and DB2 CLI cannot determine

the number of bytes still available to return in the output buffer.

If the preceding call to SQLFetch() failed, SQLGetData() should not be called since

the result is undefined.

Diagnostics

 Table 67. SQLGetData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. Data returned for the specified column (ColumnNumber) was

truncated. String or numeric values are right truncated.

SQL_SUCCESS_WITH_INFO is returned.

07006 Invalid conversion. The data value cannot be converted to the C data type specified

by the argument TargetType.

The function has been called before for the same ColumnNumber

value but with a different TargetType value.

07009 Invalid descriptor index. The value specified for ColumnNumber was equal to 0, and the

SQL_ATTR_USE_BOOKMARKS statement attribute was

SQL_UB_OFF. The value specified for the argument

ColumnNumber was greater than the number of columns in the

result set.

22002 Invalid output or indicator

buffer specified.

The pointer value specified for the argument StrLen_or_IndPtr

was a null pointer and the value of the column is null. There is no

means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for the column

would have caused the whole part of the number to be truncated.

22005 Error in assignment. A returned value was incompatible with the data type denoted by

the argument TargetType.

22007 Invalid datetime format. Conversion from character a string to a datetime format was

indicated, but an invalid string representation or value was

specified, or the value was an invalid date.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic

operation on a date or timestamp has a result that is not within

the valid range of dates, or a datetime value cannot be assigned to

a bound variable because it is too small.

142 Call Level Interface Guide and Reference, Volume 2

Table 67. SQLGetData SQLSTATEs (continued)

SQLSTATE Description Explanation

24000 Invalid cursor state. The previous SQLFetch() resulted in SQL_ERROR or

SQL_NO_DATA found; as a result, the cursor is not positioned on

a row.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY003 Program type out of range. TargetType was not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The specified StatementHandle was not in a cursor positioned state.

The function was called without first calling SQLFetch().

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

For the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY011 Operation invalid at this time. Calls to SQLGetData() for previously accessed LOB columns are

not allowed. Refer to “AllowGetDataLOBReaccess CLI/ODBC

configuration keyword” on page 296 for more information.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value of the argument BufferLength is less than 0 and the

argument TargetType is SQL_C_CHAR, SQL_C_BINARY,

SQL_C_DBCHAR or (SQL_C_DEFAULT and the default type is

one of SQL_C_CHAR, SQL_C_BINARY, or SQL_C_DBCHAR).

HYC00 Driver not capable. The SQL data type for the specified data type is recognized but

not supported by DB2 CLI.

The requested conversion from the SQL data type to the

application data TargetType cannot be performed by DB2 CLI or

the data source.

The column was bound using SQLBindFileToCol().

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Chapter 1. CLI and ODBC functions 143

Example

 /* use SQLGetData to get the results */

 /* get data from column 1 */

 cliRC = SQLGetData(hstmt,

 1,

 SQL_C_SHORT,

 &deptnumb.val,

 0,

 &deptnumb.ind);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 /* get data from column 2 */

 cliRC = SQLGetData(hstmt,

 2,

 SQL_C_CHAR,

 location.val,

 15,

 &location.ind);

SQLGetDescField function (CLI) - Get single field settings of descriptor

record

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDescField() returns the current settings of a single field of a descriptor

record.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetDescFieldW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetDescField (

 SQLHDESC DescriptorHandle,

 SQLSMALLINT RecNumber,

 SQLSMALLINT FieldIdentifier,

 SQLPOINTER ValuePtr, /* Value */

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr); /* *StringLength */

Function arguments

 Table 68. SQLGetDescField arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record from which the

application seeks information. Descriptor records are

numbered from 0, with record number 0 being the

bookmark record. If the FieldIdentifier argument

indicates a field of the descriptor header record,

RecNumber must be 0. If RecNumber is less than

SQL_DESC_COUNT, but the row does not contain

data for a column or parameter, a call to

SQLGetDescField() will return the default values of

the fields.

144 Call Level Interface Guide and Reference, Volume 2

Table 68. SQLGetDescField arguments (continued)

Data type Argument Use Description

SQLSMALLINT FieldIdentifier input Indicates the field of the descriptor whose value is to

be returned.

SQLPOINTER ValuePtr output Pointer to a buffer in which to return the descriptor

information. The data type depends on the value of

FieldIdentifier.

SQLINTEGER BufferLength input v If ValuePtr points to a character string, this

argument should be the length of *ValuePtr.

v If ValuePtr is a pointer, but not to a string, then

BufferLength should have the value

SQL_IS_POINTER.

v If the value in *ValuePtr is of a Unicode data type

the BufferLength argument must be an even

number.

SQLSMALLINT * StringLengthPtr output Pointer to the total number of bytes (excluding the

number of bytes required for the null termination

character) available to return in *ValuePtr.

Usage

An application can call SQLGetDescField() to return the value of a single field of a

descriptor record. A call to SQLGetDescField() can return the setting of any field in

any descriptor type, including header fields, record fields, and bookmark fields. An

application can obtain the settings of multiple fields in the same or different

descriptors, in arbitrary order, by making repeated calls to SQLGetDescField().

SQLGetDescField() can also be called to return DB2 CLI defined descriptor fields.

For performance reasons, an application should not call SQLGetDescField() for an

IRD before executing a statement. Calling SQLGetDescField() in this case causes

the CLI driver to describe the statement, resulting in an extra network flow. When

deferred prepare is on and SQLGetDescField() is called, you lose the benefit of

deferred prepare because the statement must be prepared at the server to obtain

describe information.

The settings of multiple fields that describe the name, data type, and storage of

column or parameter data can also be retrieved in a single call to SQLGetDescRec().

SQLGetStmtAttr() can be called to return the value of a single field in the

descriptor header that has an associated statement attribute.

When an application calls SQLGetDescField() to retrieve the value of a field that is

undefined for a particular descriptor type, the function returns SQLSTATE HY091

(Invalid descriptor field identifier). When an application calls SQLGetDescField() to

retrieve the value of a field that is defined for a particular descriptor type, but has

no default value and has not been set yet, the function returns SQL_SUCCESS but

the value returned for the field is undefined. Refer to the list of initialization

values of descriptor fields for any default values which may exist.

The SQL_DESC_ALLOC_TYPE header field is available as read-only. This field is

defined for all types of descriptors.

Each of these fields is defined either for the IRD only, or for both the IRD and the

IPD.

Chapter 1. CLI and ODBC functions 145

SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_LITERAL_SUFFIX

SQL_DESC_BASE_COLUMN_NAME SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_CASE_SENSITIVE SQL_DESC_SCHEMA_NAME

SQL_DESC_CATALOG_NAME SQL_DESC_SEARCHABLE

SQL_DESC_DISPLAY_SIZE SQL_DESC_TABLE_NAME

SQL_DESC_FIXED_PREC_SCALE SQL_DESC_TYPE_NAME

SQL_DESC_LABEL SQL_DESC_UNSIGNED

SQL_DESC_LITERAL_PREFIX SQL_DESC_UPDATABLE

Refer to the list of descriptor FieldIdentifier values for more information about the

above fields.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_NO_DATA

v SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor

records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement

is in the prepared or executed state, but there was no open cursor associated with

it.

Diagnostics

 Table 69. SQLGetDescField SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *ValuePtr was not large enough to return the entire

descriptor field, so the field was truncated. The length of the

untruncated descriptor field is returned in *StringLengthPtr.

(Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The value specified for the RecNumber argument was less than 1,

the SQL_ATTR_USE_BOOKMARKS statement attribute was

SQL_UB_OFF, and the field was not a header field or a DB2 CLI

defined field.

The FieldIdentifier argument was a record field, and the RecNumber

argument was 0.

The RecNumber argument was less than 0, and the field was not a

header field or a DB2 CLI defined field.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

146 Call Level Interface Guide and Reference, Volume 2

Table 69. SQLGetDescField SQLSTATEs (continued)

SQLSTATE Description Explanation

HY007 Associated statement is not

prepared.

DescriptorHandle was associated with an IRD, and the associated

statement handle was not in the prepared or executed state.

HY010 Function sequence error. DescriptorHandle was associated with a StatementHandle for which

an asynchronously executing function (not this one) was called

and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for which

SQLExecute() or SQLExecDirect() was called and returned

SQL_NEED_DATA. This function was called before data was sent

for all data-at-execution parameters or columns.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY021 Inconsistent descriptor

information.

The descriptor information checked during a consistency check

was not consistent.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

HY091 Invalid descriptor field identifier. FieldIdentifier was undefined for the DescriptorHandle.

The value specified for the RecNumber argument was greater than

the value in the SQL_DESC_COUNT field.

Restrictions

None.

Example

 /* see how the field SQL_DESC_PARAMETER_TYPE is set */

 cliRC = SQLGetDescField(hIPD,

 1, /* look at the parameter */

 SQL_DESC_PARAMETER_TYPE,

 &descFieldParameterType, /* result */

 SQL_IS_SMALLINT,

 NULL);

 /* ... */

 /* see how the descriptor record field SQL_DESC_TYPE_NAME is set */

 rc = SQLGetDescField(hIRD,

 (SQLSMALLINT)colCount,

 SQL_DESC_TYPE_NAME, /* record field */

 descFieldTypeName, /* result */

 25,

 NULL);

 /* ... */

 /* see how the descriptor record field SQL_DESC_LABEL is set */

 rc = SQLGetDescField(hIRD,

 (SQLSMALLINT)colCount,

 SQL_DESC_LABEL, /* record field */

 descFieldLabel, /* result */

 25,

 NULL);

Chapter 1. CLI and ODBC functions 147

SQLGetDescRec function (CLI) - Get multiple field settings of

descriptor record

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDescRec() returns the current settings of multiple fields of a descriptor

record. The fields returned describe the name, data type, and storage of column or

parameter data.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetDescRecW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetDescRec (

 SQLHDESC DescriptorHandle, /* hDesc */

 SQLSMALLINT RecNumber,

 SQLCHAR *Name,

 SQLSMALLINT BufferLength,

 SQLSMALLINT *StringLengthPtr, /* *StringLength */

 SQLSMALLINT *TypePtr, /* *Type */

 SQLSMALLINT *SubTypePtr, /* *SubType */

 SQLLEN *LengthPtr, /* *Length */

 SQLSMALLINT *PrecisionPtr, /* *Precision */

 SQLSMALLINT *ScalePtr, /* *Scale */

 SQLSMALLINT *NullablePtr); /* *Nullable */

Function arguments

 Table 70. SQLGetDescRec arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record from which the

application seeks information. Descriptor records are

numbered from 0, with record number 0 being the

bookmark record. The RecNumber argument must be

less than or equal to the value of

SQL_DESC_COUNT. If RecNumber is less than

SQL_DESC_COUNT, but the row does not contain

data for a column or parameter, a call to

SQLGetDescRec() will return the default values of the

fields.

SQLCHAR * Name output A pointer to a buffer in which to return the

SQL_DESC_NAME field for the descriptor record.

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the *Name buffer.

148 Call Level Interface Guide and Reference, Volume 2

Table 70. SQLGetDescRec arguments (continued)

Data type Argument Use Description

SQLSMALLINT * StringLengthPtr output A pointer to a buffer in which to return the number

of SQLCHAR elements (or SQLWCHAR elements for

the Unicode variant of this function) available to

return in the Name buffer, excluding the

null-termination character. If the number of

SQLCHAR or SQLWCHAR elements was greater

than or equal to BufferLength, the data in *Name is

truncated to BufferLength minus the length of a

null-termination character, and is null terminated by

DB2 CLI.

SQLSMALLINT * TypePtr output A pointer to a buffer in which to return the value of

the SQL_DESC_TYPE field for the descriptor record.

SQLSMALLINT * SubTypePtr output For records whose type is SQL_DATETIME, this is a

pointer to a buffer in which to return the value of

the SQL_DESC_DATETIME_INTERVAL_CODE field.

SQLLEN * LengthPtr output A pointer to a buffer in which to return the value of

the SQL_DESC_OCTET_LENGTH field for the

descriptor record.

SQLSMALLINT * PrecisionPtr output A pointer to a buffer in which to return the value of

the SQL_DESC_PRECISION field for the descriptor

record.

SQLSMALLINT * ScalePtr output A pointer to a buffer in which to return the value of

the SQL_DESC_SCALE field for the descriptor

record.

SQLSMALLINT * NullablePtr output A pointer to a buffer in which to return the value of

the SQL_DESC_NULLABLE field for the descriptor

record.

Usage

An application can call SQLGetDescRec() to retrieve the values of the following

fields for a single column or parameter:

v SQL_DESC_NAME

v SQL_DESC_TYPE

v SQL_DESC_DATETIME_INTERVAL_CODE (for records whose type is

SQL_DATETIME)

v SQL_DESC_OCTET_LENGTH

v SQL_DESC_PRECISION

v SQL_DESC_SCALE

v SQL_DESC_NULLABLE

SQLGetDescRec() does not retrieve the values for header fields.

An application can inhibit the return of a field’s setting by setting the argument

corresponding to the field to a null pointer. When an application calls

SQLGetDescRec() to retrieve the value of a field that is undefined for a particular

descriptor type, the function returns SQL_SUCCESS but the value returned for the

field is undefined. For example, calling SQLGetDescRec() for the

SQL_DESC_NAME or SQL_DESC_NULLABLE field of an APD or ARD will return

SQL_SUCCESS but an undefined value for the field.

Chapter 1. CLI and ODBC functions 149

When an application calls SQLGetDescRec() to retrieve the value of a field that is

defined for a particular descriptor type, but has no default value and has not been

set yet, the function returns SQL_SUCCESS but the value returned for the field is

undefined.

The values of fields can also be retrieved individually by a call to

SQLGetDescField().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_NO_DATA

v SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor

records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement

in the prepared or executed state, but there was no open cursor associated with it.

Diagnostics

 Table 71. SQLGetDescRec SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *Name was not large enough to return the entire

descriptor field, so the field was truncated. The length of the

untruncated descriptor field is returned in *StringLengthPtr.

(Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The RecNumber argument was set to 0 and the DescriptorHandle

argument was an IPD handle.

The RecNumber argument was set to 0, and the

SQL_ATTR_USE_BOOKMARKS statement attribute was set to

SQL_UB_OFF.

The RecNumber argument was less than 0.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY007 Associated statement is not

prepared.

DescriptorHandle was associated with an IRD, and the associated

statement handle was not in the prepared or executed state.

150 Call Level Interface Guide and Reference, Volume 2

Table 71. SQLGetDescRec SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. DescriptorHandle was associated with a StatementHandle for which

an asynchronously executing function (not this one) was called

and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for which

SQLExecute() or SQLExecDirect() was called and returned

SQL_NEED_DATA. This function was called before data was sent

for all data-at-execution parameters or columns.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Restrictions

None.

Example

 /* get multiple field settings of descriptor record */

 rc = SQLGetDescRec(hIRD,

 i,

 colname,

 sizeof(colname),

 &namelen,

 &type,

 &subtype,

 &width,

 &precision,

 &scale,

 &nullable);

 /* ... */

 /* get the record/column value after setting */

 rc = SQLGetDescRec(hARD,

 i,

 colname,

 sizeof(colname),

 &namelen,

 &type,

 &subtype,

 &width,

 &precision,

 &scale,

 &nullable);

SQLGetDiagField function (CLI) - Get a field of diagnostic data

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDiagField() returns the current value of a field of a diagnostic data

structure, associated with a specific handle, that contains error, warning, and status

information.

Chapter 1. CLI and ODBC functions 151

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetDiagFieldW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetDiagField (

 SQLSMALLINT HandleType, /* fHandleType */

 SQLHANDLE Handle, /* hHandle */

 SQLSMALLINT RecNumber, /* iRecNumber */

 SQLSMALLINT DiagIdentifier, /* fDiagIdentifier */

 SQLPOINTER DiagInfoPtr, /* pDiagInfo */

 SQLSMALLINT BufferLength, /* cbDiagInfoMax */

 SQLSMALLINT *StringLengthPtr); /* *pcgDiagInfo */

Function arguments

 Table 72. SQLGetDiagField arguments

Data type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of

handle for which diagnostics are desired. Must be

one of the following:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

v SQL_HANDLE_DESC

SQLHANDLE Handle input A handle for the diagnostic data structure, of the

type indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the

application seeks information. Status records are

numbered from 1. If the DiagIdentifier argument

indicates any field of the diagnostics header record,

RecNumber must be 0. If not, it should be greater

than 0.

SQLSMALLINT DiagIdentifier input Indicates the field of the diagnostic data structure

whose value is to be returned. For more information,

see DiagIdentifier argument.

SQLPOINTER DiagInfoPtr output Pointer to a buffer in which to return the diagnostic

information. The data type depends on the value of

DiagIdentifier.

152 Call Level Interface Guide and Reference, Volume 2

Table 72. SQLGetDiagField arguments (continued)

Data type Argument Use Description

SQLINTEGER BufferLength input If DiagIdentifier is ODBC-defined diagnostic:

v If DiagInfoPtr points to a character string or binary

buffer, BufferLength should be the length of

*DiagInfoPtr.

v If *DiagInfoPtr is an integer, BufferLength is

ignored.

v If *DiagInfoPtr is a Unicode string, BufferLength

must be an even number.

If DiagIdentifier is a DB2 CLI diagnostic:

v If *DiagInfoPtr is a pointer to a character string,

BufferLength is the number of bytes needed to store

the string, or SQL_NTS.

v If *DiagInfoPtr is a pointer to a binary buffer, then

the application places the result of the

SQL_LEN_BINARY_ATTR(length) macro in

BufferLength. This places a negative value in

BufferLength.

v If *DiagInfoPtr is a pointer to a value other than a

character string or binary string, then BufferLength

should have the value SQL_IS_POINTER.

v If *DiagInfoPtr contains a fixed-length data type,

then BufferLength is SQL_IS_INTEGER,

SQL_IS_UINTEGER, SQL_IS_SMALLINT, or

SQL_IS_USMALLINT, as appropriate.

SQLSMALLINT * StringLengthPtr output Pointer to a buffer in which to return the total

number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function),

excluding the number of bytes required for the

null-termination character, available to return in

*DiagInfoPtr, for character data. If the number of

bytes available to return is greater than BufferLength,

then the text in *DiagInfoPtr is truncated to

BufferLength minus the length of a null-termination

character. This argument is ignored for non-character

data.

Usage

An application typically calls SQLGetDiagField() to accomplish one of three goals:

1. To obtain specific error or warning information when a function call has

returned the SQL_ERROR or SQL_SUCCESS_WITH_INFO (or

SQL_NEED_DATA for the SQLBrowseConnect() function) return codes.

2. To find out the number of rows in the data source that were affected when

insert, delete, or update operations were performed with a call to SQLExecute(),

SQLExecDirect(), SQLBulkOperations(), or SQLSetPos() (from the

SQL_DIAG_ROW_COUNT header field), or to find out the number of rows

that exist in the current open static scrollable cursor (from the

SQL_DIAG_CURSOR_ROW_COUNT header field).

3. To determine which function was executed by a call to SQLExecDirect() or

SQLExecute() (from the SQL_DIAG_DYNAMIC_FUNCTION and

SQL_DIAG_DYNAMIC_FUNCTION_CODE header fields).

Chapter 1. CLI and ODBC functions 153

Any DB2 CLI function can post zero or more errors each time it is called, so an

application can call SQLGetDiagField() after any function call. SQLGetDiagField()

retrieves only the diagnostic information most recently associated with the

diagnostic data structure specified in the Handle argument. If the application calls

another function, any diagnostic information from a previous call with the same

handle is lost.

An application can scan all diagnostic records by incrementing RecNumber, as long

as SQLGetDiagField() returns SQL_SUCCESS. The number of status records is

indicated in the SQL_DIAG_NUMBER header field. Calls to SQLGetDiagField() are

non-destructive as far as the header and status records are concerned. The

application can call SQLGetDiagField() again at a later time to retrieve a field from

a record, as long as another function other than SQLGetDiagField(),

SQLGetDiagRec(), or SQLError() has not been called in the interim, which would

post records on the same handle.

An application can call SQLGetDiagField() to return any diagnostic field at any

time, with the exception of SQL_DIAG_ROW_COUNT, which will return

SQL_ERROR if Handle was not a statement handle on which an SQL statement had

been executed. If any other diagnostic field is undefined, the call to

SQLGetDiagField() will return SQL_SUCCESS (provided no other error is

encountered), and an undefined value is returned for the field.

HandleType argument

Each handle type can have diagnostic information associated with it. The

HandleType argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:

environment, connection, statement, and descriptor. Those handles for which a

field is not applicable are indicated in the Header Field and Record Fields sections

below.

No DB2 CLI-specific header diagnostic field should be associated with an

environment handle.

DiagIdentifier argument

This argument indicates the identifier of the field desired from the diagnostic data

structure. If RecNumber is greater than or equal to 1, the data in the field describes

the diagnostic information returned by a function. If RecNumber is 0, the field is in

the header of the diagnostic data structure, so it contains data pertaining to the

function call that returned the diagnostic information, not the specific information.

Refer to the list of header and record fields for the DiagIdentifier argument for

further information.

Sequence of status records

Status records are placed in a sequence based upon row number and the type of

the diagnostic.

If there are two or more status records, the sequence of the records is determined

first by row number. The following rules apply to determining the sequence of

errors by row:

154 Call Level Interface Guide and Reference, Volume 2

v Records that do not correspond to any row appear in front of records that

correspond to a particular row, since SQL_NO_ROW_NUMBER is defined to be

-1.

v Records for which the row number is unknown appear in front of all other

records, since SQL_ROW_NUMBER_UNKNOWN is defined to be -2.

v For all records that pertain to specific rows, records are sorted by the value in

the SQL_DIAG_ROW_NUMBER field. All errors and warnings of the first row

affected are listed, then all errors and warnings of the next row affected, and so

on.

Within each row, or for all those records that do not correspond to a row or for

which the row number is unknown, the first record listed is determined using a set

of sorting rules. After the first record, the order of the other records affecting a row

is undefined. An application cannot assume that errors precede warnings after the

first record. Applications should scan the entire diagnostic data structure to obtain

complete information on an unsuccessful call to a function.

The following rules are followed to determine the first record within a row. The

record with the highest rank is the first record.

v Errors. Status records that describe errors have the highest rank. The following

rules are followed to sort errors:

– Records that indicate a transaction failure or possible transaction failure

outrank all other records.

– If two or more records describe the same error condition, then SQLSTATEs

defined by the X/Open CLI specification (classes 03 through HZ) outrank

ODBC- and driver-defined SQLSTATEs.
v Implementation-defined No Data values. Status records that describe DB2 CLI

No Data values (class 02) have the second highest rank.

v Warnings. Status records that describe warnings (class 01) have the lowest rank.

If two or more records describe the same warning condition, then warning

SQLSTATEs defined by the X/Open CLI specification outrank ODBC- and

driver-defined SQLSTATEs.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA

Diagnostics

SQLGetDiagField() does not post error values for itself. It uses the following return

values to report the outcome of its own execution:

v SQL_SUCCESS: The function successfully returned diagnostic information.

v SQL_SUCCESS_WITH_INFO: *DiagInfoPtr was too small to hold the requested

diagnostic field so the data in the diagnostic field was truncated. To determine

that a truncation occurred, the application must compare BufferLength to the

actual number of bytes available, which is written to *StringLengthPtr.

v SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was

not a valid handle.

v SQL_ERROR: One of the following occurred:

Chapter 1. CLI and ODBC functions 155

– The DiagIdentifier argument was not one of the valid values.

– The DiagIdentifier argument was SQL_DIAG_CURSOR_ROW_COUNT,

SQL_DIAG_DYNAMIC_FUNCTION,

SQL_DIAG_DYNAMIC_FUNCTION_CODE, or SQL_DIAG_ROW_COUNT,

but Handle was not a statement handle.

– The RecNumber argument was negative or 0 when DiagIdentifier indicated a

field from a diagnostic record. RecNumber is ignored for header fields.

– The value requested was a character string and BufferLength was less than

zero.
v SQL_NO_DATA: RecNumber was greater than the number of diagnostic records

that existed for the handle specified in Handle. The function also returns

SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for

Handle.

Restrictions

None.

SQLGetDiagRec function (CLI) - Get multiple fields settings of

diagnostic record

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDiagRec() returns the current values of multiple fields of a diagnostic record

that contains error, warning, and status information. Unlike SQLGetDiagField(),

which returns one diagnostic field per call, SQLGetDiagRec() returns several

commonly used fields of a diagnostic record: the SQLSTATE, native error code,

and error message text.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetDiagRecW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetDiagRec (

 SQLSMALLINT HandleType, /* fHandleType */

 SQLHANDLE Handle, /* hHandle */

 SQLSMALLINT RecNumber, /* iRecNumber */

 SQLCHAR *SQLState, /* *pszSqlState */

 SQLINTEGER *NativeErrorPtr, /* *pfNativeError */

 SQLCHAR *MessageText, /* *pszErrorMsg */

 SQLSMALLINT BufferLength, /* cbErrorMsgMax */

 SQLSMALLINT *TextLengthPtr); /* *pcbErrorMsg */

156 Call Level Interface Guide and Reference, Volume 2

Function arguments

 Table 73. SQLGetDiagRec arguments

Data type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of

handle for which diagnostics are desired. Must be

one of the following:

v SQL_HANDLE_ENV

v SQL_HANDLE_DBC

v SQL_HANDLE_STMT

v SQL_HANDLE_DESC

SQLHANDLE Handle input A handle for the diagnostic data structure, of the

type indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the

application seeks information. Status records are

numbered from 1.

SQLCHAR * SQLState output Pointer to a buffer in which to return 5 characters

plus a NULL terminator for the SQLSTATE code

pertaining to the diagnostic record RecNumber. The

first two characters indicate the class; the next three

indicate the subclass.

SQLINTEGER * NativeErrorPtr output Pointer to a buffer in which to return the native error

code, specific to the data source.

SQLCHAR * MessageText output Pointer to a buffer in which to return the error

message text. The fields returned by

SQLGetDiagRec() are contained in a text string.

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the MessageText buffer.

SQLSMALLINT * TextLengthPtr output Pointer to a buffer in which to return the total

number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function),

excluding the null-termination character, available to

return in *MessageText. If the number of SQLCHAR

or SQLWCHAR elements available to return is

greater than BufferLength, then the error message text

in *MessageText is truncated to BufferLength minus the

length of a null-termination character.

Usage

An application typically calls SQLGetDiagRec() when a previous call to a DB2 CLI

function has returned anything other than SQL_SUCCESS. However, any function

can post zero or more errors each time it is called, so an application can call

SQLGetDiagRec() after any function call. An application can call SQLGetDiagRec()

multiple times to return some or all of the records in the diagnostic data structure.

SQLGetDiagRec() returns a character string containing the following fields of the

diagnostic data structure record:

SQL_DIAG_MESSAGE_TEXT (return type CHAR *)

An informational message on the error or warning.

SQL_DIAG_NATIVE (return type SQLINTEGER)

A driver/data-source-specific native error code. If there is no native error

code, the driver returns 0.

Chapter 1. CLI and ODBC functions 157

SQL_DIAG_SQLSTATE (return type CHAR *)

A five-character SQLSTATE diagnostic code.

SQLGetDiagRec() cannot be used to return fields from the header of the diagnostic

data structure (the RecNumber argument must be greater than 0). The application

should call SQLGetDiagField() for this purpose.

SQLGetDiagRec() retrieves only the diagnostic information most recently associated

with the handle specified in the Handle argument. If the application calls another

function, except SQLGetDiagRec() or SQLGetDiagField(), any diagnostic

information from the previous calls on the same handle is lost.

An application can scan all diagnostic records by looping, incrementing RecNumber,

as long as SQLGetDiagRec() returns SQL_SUCCESS. Calls to SQLGetDiagRec() are

non-destructive to the header and record fields. The application can call

SQLGetDiagRec() again at a later time to retrieve a field from a record, as long as

no other function, except SQLGetDiagRec() or SQLGetDiagField(), has been called

in the interim. The application can call SQLGetDiagField() to retrieve the value of

the SQL_DIAG_NUMBER field, which is the total number of diagnostic records

available. SQLGetDiagRec() should then be called that many times.

HandleType argument

Each handle type can have diagnostic information associated with it. The

HandleType argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:

environment, connection, statement, and descriptor. Those handles for which a

field is not applicable are indicated in the list of header and record fields for the

DiagIdentifier argument.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

SQLGetDiagRec() does not post error values for itself. It uses the following return

values to report the outcome of its own execution:

v SQL_SUCCESS: The function successfully returned diagnostic information.

v SQL_SUCCESS_WITH_INFO: The *MessageText buffer was too small to hold the

requested diagnostic message. No diagnostic records were generated. To

determine that a truncation occurred, the application must compare BufferLength

to the actual number of bytes available, which is written to *StringLengthPtr.

v SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was

not a valid handle.

v SQL_ERROR: One of the following occurred:

– RecNumber was negative or 0.

– BufferLength was less than zero.
v SQL_NO_DATA: RecNumber was greater than the number of diagnostic records

that existed for the handle specified in Handle. The function also returns

SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for

Handle.

158 Call Level Interface Guide and Reference, Volume 2

Example

 /* get multiple fields settings of diagnostic record */

 SQLGetDiagRec(SQL_HANDLE_STMT,

 hstmt,

 1,

 sqlstate,

 &sqlcode,

 message,

 200,

 &length);

SQLGetEnvAttr function (CLI) - Retrieve current environment attribute

value

Purpose

 Specification: DB2 CLI 2.1 ISO CLI

SQLGetEnvAttr() returns the current setting for the specified environment attribute.

These options are set using the SQLSetEnvAttr() function.

Syntax

SQLRETURN SQLGetEnvAttr (

 SQLHENV EnvironmentHandle, /* henv */

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr, /* Value */

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr); /* StringLength */

Function arguments

 Table 74. SQLGetEnvAttr arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLINTEGER Attribute input Attribute to receive. Refer to the list of environment

attributes and their descriptions.

SQLPOINTER ValuePtr output A pointer to memory in which to return the current

value of the attribute specified by Attribute.

SQLINTEGER BufferLength input Maximum size of buffer pointed to by ValuePtr, if

the attribute value is a character string; otherwise,

ignored.

SQLINTEGER * StringLengthPtr output Pointer to a buffer in which to return the total

number of bytes (excluding the number of bytes

returned for the null-termination character) available

to return in ValuePtr. If ValuePtr is a null pointer, no

length is returned. If the attribute value is a

character string, and the number of bytes available

to return is greater than or equal to BufferLength, the

data in ValuePtr is truncated to BufferLength minus

the length of a null-termination character and is

null-terminated by DB2 CLI.

If Attribute does not denote a string, then DB2 CLI ignores BufferLength and does

not set StringLengthPtr.

Chapter 1. CLI and ODBC functions 159

Usage

SQLGetEnvAttr() can be called at any time between the allocation and freeing of

the environment handle. It obtains the current value of the environment attribute.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 75. SQLGetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY092 Option type out of range. An invalid Attribute value was specified.

Restrictions

None.

Example

 /* retrieve the current environment attribute value */

 cliRC = SQLGetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, &output_nts, 0, NULL);

SQLGetFunctions function (CLI) - Get functions

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0 ISO CLI

SQLGetFunctions() can be used to query whether a specific DB2 CLI or ODBC

function is supported. This allows applications to adapt to varying levels of

support when connecting to different database servers.

A connection to a database server must exist before calling this function.

Syntax

SQLRETURN SQLGetFunctions (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLUSMALLINT FunctionId, /* fFunction */

 SQLUSMALLINT *SupportedPtr); /* pfExists */

Function arguments

 Table 76. SQLGetFunctions arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Database connection handle.

SQLUSMALLINT FunctionId input The function being queried.

160 Call Level Interface Guide and Reference, Volume 2

Table 76. SQLGetFunctions arguments (continued)

Data type Argument Use Description

SQLUSMALLINT * SupportedPtr output Pointer to location where this function will return

SQL_TRUE or SQL_FALSE depending on whether

the function being queried is supported.

Usage

If FunctionId is set to SQL_API_ALL_FUNCTIONS, then SupportedPtr must point to

an SQLSMALLINT array of 100 elements. The array is indexed by the FunctionId

values used to identify many of the functions. Some elements of the array are

unused and reserved. Since some FunctionId values are greater than 100, the array

method can not be used to obtain a list of functions. The SQLGetFunctions() call

must be explicitly issued for all FunctionId values equal to or above 100. The

complete set of FunctionId values is defined in sqlcli1.h.

Note: The LOB support functions (SQLGetLength(), SQLGetPosition(),

SQLGetSubString(), SQLBindFileToCol(), SQLBindFileToCol()) are not supported

when connected to IBM RDBMSs that do not support LOB data types.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 77. SQLGetFunctions SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. SQLGetFunctions() was called before a database connection was

established.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Authorization

None.

Example

 /* check to see if SQLGetInfo() is supported */

 cliRC = SQLGetFunctions(hdbc, SQL_API_SQLGETINFO, &supported);

Chapter 1. CLI and ODBC functions 161

References

None.

SQLGetInfo function (CLI) - Get general information

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLGetInfo() returns general information about the DBMS that the application is

currently connected to.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetInfoW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetInfo (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLUSMALLINT InfoType, /* fInfoType */

 SQLPOINTER InfoValuePtr, /* rgbInfoValue */

 SQLSMALLINT BufferLength, /* cbInfoValueMax */

 SQLSMALLINT *StringLengthPtr); /* pcbInfoValue */

Function arguments

 Table 78. SQLGetInfo arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Database connection handle

SQLUSMALLINT InfoType input The type of information desired. The possible values

for this argument are described in Information

returned by SQLGetInfo().

SQLPOINTER InfoValuePtr output (also

input)

Pointer to buffer where this function will store the

desired information. Depending on the type of

information being retrieved, 5 types of information

can be returned:

v 16 bit integer value

v 32 bit integer value

v 32 bit binary value

v 32 bit mask

v null-terminated character string

If the InfoType argument is SQL_DRIVER_HDESC or

SQL_DRIVER_HSTMT, the InfoValuePtr argument is

both input and output.

SQLSMALLINT BufferLength input Maximum length of the buffer pointed by

InfoValuePtr pointer. If *InfoValuePtr is a Unicode

string, the BufferLength argument must be an even

number.

162 Call Level Interface Guide and Reference, Volume 2

Table 78. SQLGetInfo arguments (continued)

Data type Argument Use Description

SQLSMALLINT * StringLengthPtr output Pointer to location where this function will return

the total number of bytes of information available to

return. In the case of string output, this size does not

include the null terminating character.

If the value in the location pointed to by

StringLengthPtr is greater than the size of the

InfoValuePtr buffer as specified in BufferLength, then

the string output information would be truncated to

BufferLength - 1 bytes and the function would return

with SQL_SUCCESS_WITH_INFO.

Usage

Refer to Information returned by SQLGetInfo() for a list of the possible values of

InfoType and a description of the information that SQLGetInfo() would return for

that value.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 79. SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The requested information was returned as a string and its length

exceeded the length of the application buffer as specified in

BufferLength. The argument StringLengthPtr contains the actual

(not truncated) length of the requested information. (Function

returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The type of information requested in InfoType requires an open

connection. Only SQL_ODBC_VER does not require an open

connection.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY090 Invalid string or buffer length. The value specified for argument BufferLength was less than 0.

HY096 Information type out of range. An invalid InfoType was specified.

HYC00 Driver not capable. The value specified in the argument InfoType is not supported by

either DB2 CLI or the data source.

Chapter 1. CLI and ODBC functions 163

Restrictions

None.

Example

 /* get server name information */

 cliRC = SQLGetInfo(hdbc, SQL_DBMS_NAME, imageInfoBuf, 255, &outlen);

 /* ... */

 /* get client driver name information */

 cliRC = SQLGetInfo(hdbc, SQL_DRIVER_NAME, imageInfoBuf, 255, &outlen);

Information returned by SQLGetInfo()

Note: DB2 CLI returns a value for each InfoType in this table. If the InfoType does

not apply or is not supported, the result is dependent on the return type. If the

return type is a:

v Character string (″Y″ or ″N″), ″N″ is returned.

v Character string (not ″Y″ or ″N″), an empty string is returned.

v 32-bit integer, 0 (zero) is returned.

v 32-bit mask, 0 (zero) is returned.

SQL_ACCESSIBLE_PROCEDURES (string)

A character string of ″Y″ indicates that the user can execute all procedures

returned by the function SQLProcedures(). ″N″ indicates there might be

procedures returned that the user cannot execute.

SQL_ACCESSIBLE_TABLES (string)

A character string of ″Y″ indicates that the user is guaranteed SELECT

privilege to all tables returned by the function SQLTables(). ″N″ indicates

that there might be tables returned that the user cannot access.

SQL_AGGREGATE_FUNCTIONS (32-bit mask)

A bitmask enumerating support for aggregation functions:

v SQL_AF_ALL

v SQL_AF_AVG

v SQL_AF_COUNT

v SQL_AF_DISTINCT

v SQL_AF_MAX

v SQL_AF_MIN

v SQL_AF_SUM

SQL_ALTER_DOMAIN (32-bit mask)

DB2 CLI returns 0 indicating that the ALTER DOMAIN statement is not

supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_AD_ADD_CONSTRAINT_DEFERRABLE

v SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE

v SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED

v SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE

v SQL_AD_ADD_DOMAIN_CONSTRAINT

v SQL_AD_ADD_DOMAIN_DEFAULT

v SQL_AD_CONSTRAINT_NAME_DEFINITION

v SQL_AD_DROP_DOMAIN_CONSTRAINT

v SQL_AD_DROP_DOMAIN_DEFAULT

164 Call Level Interface Guide and Reference, Volume 2

SQL_ALTER_TABLE (32-bit mask)

Indicates which clauses in the ALTER TABLE statement are supported by

the DBMS.

v SQL_AT_ADD_COLUMN_COLLATION

v SQL_AT_ADD_COLUMN_DEFAULT

v SQL_AT_ADD_COLUMN_SINGLE

v SQL_AT_ADD_CONSTRAINT

v SQL_AT_ADD_TABLE_CONSTRAINT

v SQL_AT_CONSTRAINT_NAME_DEFINITION

v SQL_AT_DROP_COLUMN_CASCADE

v SQL_AT_DROP_COLUMN_DEFAULT

v SQL_AT_DROP_COLUMN_RESTRICT

v SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE

v SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT

v SQL_AT_SET_COLUMN_DEFAULT

v SQL_AT_CONSTRAINT_INITIALLY_DEFERRED

v SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE

v SQL_AT_CONSTRAINT_DEFERRABLE

v SQL_AT_CONSTRAINT_NON_DEFERRABLE

SQL_APPLICATION_CODEPAGE (32-bit unsigned integer)

Indicates the application code page.

SQL_ASYNC_MODE (32-bit unsigned integer)

Indicates the level of asynchronous support in the driver:

v SQL_AM_CONNECTION, connection level asynchronous execution is

supported. Either all statement handles associated with a given

connection handle are in asynchronous mode, or all are in synchronous

mode. A statement handle on a connection cannot be in asynchronous

mode while another statement handle on the same connection is in

synchronous mode, and vice versa.

v SQL_AM_STATEMENT, statement level asynchronous execution is

supported. Some statement handles associated with a connection handle

can be in asynchronous mode, while other statement handles on the

same connection are in synchronous mode.

v SQL_AM_NONE, asynchronous mode is not supported.

This value is also returned if the DB2 CLI/ODBC configuration keyword

ASYNCENABLE is set to disable asynchronous execution.

SQL_BATCH_ROW_COUNT (32-bit mask)

Indicates how row counts are dealt with. DB2 CLI always returns

SQL_BRC_ROLLED_UP indicating that row counts for consecutive

INSERT, DELETE, or UPDATE statements are rolled up into one.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_BRC_PROCEDURES

v SQL_BRC_EXPLICIT

SQL_BATCH_SUPPORT (32-bit mask)

Indicates which levels of batches are supported:

v SQL_BS_SELECT_EXPLICIT, supports explicit batches that can have

result-set generating statements.

v SQL_BS_ROW_COUNT_EXPLICIT, supports explicit batches that can

have row-count generating statements.

v SQL_BS_SELECT_PROC, supports explicit procedures that can have

result-set generating statements.

v SQL_BS_ROW_COUNT_PROC, supports explicit procedures that can

have row-count generating statements.

Chapter 1. CLI and ODBC functions 165

SQL_BOOKMARK_PERSISTENCE (32-bit mask)

Indicates when bookmarks remain valid after an operation:

v SQL_BP_CLOSE, bookmarks are valid after an application calls

SQLFreeStmt() with the SQL_CLOSE option, or SQLCloseCursor() to

close the cursor associated with a statement.

v SQL_BP_DELETE, the bookmark for a row is valid after that row has

been deleted.

v SQL_BP_DROP, bookmarks are valid after an application calls

SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT to drop a

statement.

v SQL_BP_TRANSACTION, bookmarks are valid after an application

commits or rolls back a transaction.

v SQL_BP_UPDATE, the bookmark for a row is valid after any column in

that row has been updated, including key columns.

v SQL_BP_OTHER_HSTMT, a bookmark associated with one statement

can be used with another statement. Unless SQL_BP_CLOSE or

SQL_BP_DROP is specified, the cursor on the first statement must be

open.

SQL_CATALOG_LOCATION (16-bit integer)

A 16-bit integer value indicated the position of the qualifier in a qualified

table name. DB2 CLI always returns SQL_CL_START for this information

type. ODBC also defines the value SQL_CL_END which is not returned by

DB2 CLI.

 In previous versions of DB2 CLI this InfoType was

SQL_QUALIFIER_LOCATION.

SQL_CATALOG_NAME (string)

A character string of ″Y″ indicates that the server supports catalog names.

″N″ indicates that catalog names are not supported.

SQL_CATALOG_NAME_SEPARATOR (string)

The character(s) used as a separator between a catalog name and the

qualified name element that follows or precedes it.

 In previous versions of DB2 CLI this InfoType was

SQL_QUALIFIER_NAME_SEPARATOR.

SQL_CATALOG_TERM (string)

The database vendor’s terminology for a qualifier (catalog).

 The name that the vendor uses for the high order part of a three part

name.

If the target DBMS does not support 3-part naming, a zero-length string is

returned.

In previous versions of DB2 CLI this InfoType was

SQL_QUALIFIER_TERM.

SQL_CATALOG_USAGE (32-bit mask)

This is similar to SQL_SCHEMA_USAGE except that this is used for

catalogs.

 A 32-bit mask enumerating the statements in which catalogs can be used:

v SQL_CU_DML_STATEMENTS - Catalogs are supported in all DML

statements.

v SQL_CU_INDEX_DEFINITION - Catalogs are supported in all index

definition statements.

166 Call Level Interface Guide and Reference, Volume 2

v SQL_CU_PRIVILEGE_DEFINITION - Catalogs are supported in all

privilege definition statements.

v SQL_CU_PROCEDURE_INVOCATION - Catalogs are supported in the

ODBC procedure invocation statement.

v SQL_CU_TABLE_DEFINITION - Catalogs are supported in all table

definition statements.

A value of zero is returned if catalogs are not supported by the data

source.

In previous versions of DB2 CLI, this InfoType was

SQL_QUALIFIER_USAGE.

SQL_COLLATION_SEQ (string)

The name of the collation sequence. This is a character string that indicates

the name of the default collation for the default character set for this server

(for example ISO 8859-1 or EBCDIC). If this is unknown, an empty string

will be returned.

SQL_COLUMN_ALIAS (string)

Returns ″Y″ if column aliases are supported, or ″N″ if they are not.

SQL_CONCAT_NULL_BEHAVIOR (16-bit integer)

Indicates how the concatenation of NULL valued character data type

columns with non-NULL valued character data type columns is handled.

v SQL_CB_NULL - indicates the result is a NULL value (this is the case

for IBM RDBMS).

v SQL_CB_NON_NULL - indicates the result is a concatenation of

non-NULL column values.

SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BIT

SQL_CONVERT_CHAR

SQL_CONVERT_DATE

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SQL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_INTERVAL_YEAR_MONTH

SQL_CONVERT_INTERVAL_DAY_TIME

SQL_CONVERT_LONGVARBINARY

SQL_CONVERT_LONGVARCHAR

SQL_CONVERT_NUMERIC

SQL_CONVERT_REAL

SQL_CONVERT_SMALLINT

SQL_CONVERT_TIME

SQL_CONVERT_TIMESTAMP

SQL_CONVERT_TINYINT

SQL_CONVERT_VARBINARY

SQL_CONVERT_VARCHAR

SQL_CONVERT_WCHAR

SQL_CONVERT_WLONGVARCHAR

SQL_CONVERT_WVARCHAR

(all above are 32-bit masks)

Indicates the conversions supported by the data source with the CONVERT

scalar function for data of the type named in the InfoType. If the bitmask

Chapter 1. CLI and ODBC functions 167

equals zero, the data source does not support any conversions for the data

of the named type, including conversions to the same data type.

 For example, to find out if a data source supports the conversion of

SQL_INTEGER data to the SQL_DECIMAL data type, an application calls

SQLGetInfo() with InfoType of SQL_CONVERT_INTEGER. The application

then ANDs the returned bitmask with SQL_CVT_DECIMAL. If the

resulting value is nonzero then the conversion is supported.

The following bitmasks are used to determine which conversions are

supported:

v SQL_CVT_BIGINT

v SQL_CVT_BINARY

v SQL_CVT_BIT

v SQL_CVT_CHAR

v SQL_CVT_DATE

v SQL_CVT_DECIMAL

v SQL_CVT_DOUBLE

v SQL_CVT_FLOAT

v SQL_CVT_INTEGER

v SQL_CVT_INTERVAL_YEAR_MONTH

v SQL_CVT_INTERVAL_DAY_TIME

v SQL_CVT_LONGVARBINARY

v SQL_CVT_LONGVARCHAR

v SQL_CVT_NUMERIC

v SQL_CVT_REAL

v SQL_CVT_SMALLINT

v SQL_CVT_TIME

v SQL_CVT_TIMESTAMP

v SQL_CVT_TINYINT

v SQL_CVT_VARBINARY

v SQL_CVT_VARCHAR

v SQL_CVT_WCHAR

v SQL_CVT_WLONGVARCHAR

v SQL_CVT_WVARCHAR

SQL_CONNECT_CODEPAGE (32-bit unsigned integer)

Indicates the code page of the current connection.

SQL_CONVERT_FUNCTIONS (32-bit mask)

Indicates the scalar conversion functions supported by the driver and

associated data source.

 DB2 CLI Version 2.1.1 and later supports ODBC scalar conversions

between char variables (CHAR, VARCHAR, LONG VARCHAR and CLOB)

and DOUBLE (or FLOAT).

v SQL_FN_CVT_CONVERT - used to determine which conversion

functions are supported.

SQL_CORRELATION_NAME (16-bit integer)

Indicates the degree of correlation name support by the server:

v SQL_CN_ANY, supported and can be any valid user-defined name.

v SQL_CN_NONE, correlation name not supported.

v SQL_CN_DIFFERENT, correlation name supported but it must be

different than the name of the table that it represent.

SQL_CREATE_ASSERTION (32-bit mask)

Indicates which clauses in the CREATE ASSERTION statement are

168 Call Level Interface Guide and Reference, Volume 2

supported by the DBMS. DB2 CLI always returns zero; the CREATE

ASSERTION statement is not supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_CA_CREATE_ASSERTION

v SQL_CA_CONSTRAINT_INITIALLY_DEFERRED

v SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE

v SQL_CA_CONSTRAINT_DEFERRABLE

v SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_CHARACTER_SET (32-bit mask)

Indicates which clauses in the CREATE CHARACTER SET statement are

supported by the DBMS. DB2 CLI always returns zero; the CREATE

CHARACTER SET statement is not supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_CCS_CREATE_CHARACTER_SET

v SQL_CCS_COLLATE_CLAUSE

v SQL_CCS_LIMITED_COLLATION

SQL_CREATE_COLLATION (32-bit mask)

Indicates which clauses in the CREATE COLLATION statement are

supported by the DBMS. DB2 CLI always returns zero; the CREATE

COLLATION statement is not supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_CCOL_CREATE_COLLATION

SQL_CREATE_DOMAIN (32-bit mask)

Indicates which clauses in the CREATE DOMAIN statement are supported

by the DBMS. DB2 CLI always returns zero; the CREATE DOMAIN

statement is not supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_CDO_CREATE_DOMAIN

v SQL_CDO_CONSTRAINT_NAME_DEFINITION

v SQL_CDO_DEFAULT

v SQL_CDO_CONSTRAINT

v SQL_CDO_COLLATION

v SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED

v SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE

v SQL_CDO_CONSTRAINT_DEFERRABLE

v SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_SCHEMA (32-bit mask)

Indicates which clauses in the CREATE SCHEMA statement are supported

by the DBMS:

v SQL_CS_CREATE_SCHEMA

v SQL_CS_AUTHORIZATION

v SQL_CS_DEFAULT_CHARACTER_SET

SQL_CREATE_TABLE (32-bit mask)

Indicates which clauses in the CREATE TABLE statement are supported by

the DBMS.

 The following bitmasks are used to determine which clauses are supported:

v SQL_CT_CREATE_TABLE

v SQL_CT_TABLE_CONSTRAINT

v SQL_CT_CONSTRAINT_NAME_DEFINITION

The following bits specify the ability to create temporary tables:

Chapter 1. CLI and ODBC functions 169

v SQL_CT_COMMIT_PRESERVE, deleted rows are preserved on commit.

v SQL_CT_COMMIT_DELETE, deleted rows are deleted on commit.

v SQL_CT_GLOBAL_TEMPORARY, global temporary tables can be

created.

v SQL_CT_LOCAL_TEMPORARY, local temporary tables can be created.

The following bits specify the ability to create column constraints:

v SQL_CT_COLUMN_CONSTRAINT, specifying column constraints is

supported.

v SQL_CT_COLUMN_DEFAULT, specifying column defaults is supported.

v SQL_CT_COLUMN_COLLATION, specifying column collation is

supported.

The following bits specify the supported constraint attributes if specifying

column or table constraints is supported:

v SQL_CT_CONSTRAINT_INITIALLY_DEFERRED

v SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE

v SQL_CT_CONSTRAINT_DEFERRABLE

v SQL_CT_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_TRANSLATION (32-bit mask)

Indicates which clauses in the CREATE TRANSLATION statement are

supported by the DBMS. DB2 CLI always returns zero; the CREATE

TRANSLATION statement is not supported.

 ODBC also defines the following value that is not returned by DB2 CLI:

v SQL_CTR_CREATE_TRANSLATION

SQL_CREATE_VIEW (32-bit mask)

Indicates which clauses in the CREATE VIEW statement are supported by

the DBMS:

v SQL_CV_CREATE_VIEW

v SQL_CV_CHECK_OPTION

v SQL_CV_CASCADED

v SQL_CV_LOCAL

A return value of 0 means that the CREATE VIEW statement is not

supported.

SQL_CURSOR_COMMIT_BEHAVIOR (16-bit integer)

Indicates how a COMMIT operation affects cursors. A value of:

v SQL_CB_DELETE, destroy cursors and drops access plans for dynamic

SQL statements.

v SQL_CB_CLOSE, destroy cursors, but retains access plans for dynamic

SQL statements (including non-query statements)

v SQL_CB_PRESERVE, retains cursors and access plans for dynamic

statements (including non-query statements). Applications can continue

to fetch data, or close the cursor and re-execute the query without

re-preparing the statement.

Note: After COMMIT, a FETCH must be issued to reposition the cursor

before actions such as positioned updates or deletes can be taken.

SQL_CURSOR_ROLLBACK_BEHAVIOR (16-bit integer)

Indicates how a ROLLBACK operation affects cursors. A value of:

v SQL_CB_DELETE, destroy cursors and drops access plans for dynamic

SQL statements.

v SQL_CB_CLOSE, destroy cursors, but retains access plans for dynamic

SQL statements (including non-query statements)

170 Call Level Interface Guide and Reference, Volume 2

v SQL_CB_PRESERVE, retains cursors and access plans for dynamic

statements (including non-query statements). Applications can continue

to fetch data, or close the cursor and re-execute the query without

re-preparing the statement.

Note: DB2 servers do not have the SQL_CB_PRESERVE property.

SQL_CURSOR_SENSITIVITY (32-bit unsigned integer)

Indicates support for cursor sensitivity:

v SQL_INSENSITIVE, all cursors on the statement handle show the result

set without reflecting any changes made to it by any other cursor within

the same transaction.

v SQL_UNSPECIFIED, it is unspecified whether cursors on the statement

handle make visible the changes made to a result set by another cursor

within the same transaction. Cursors on the statement handle might

make visible none, some, or all such changes.

v SQL_SENSITIVE, cursors are sensitive to changes made by other cursors

within the same transaction.

SQL_DATA_SOURCE_NAME (string)

A character string with the data source name used during connection. If

the application called SQLConnect(), this is the value of the szDSN

argument. If the application called SQLDriverConnect() or

SQLBrowseConnect(), this is the value of the DSN keyword in the

connection string passed to the driver. If the connection string did not

contain the DSN keyword, this is an empty string.

SQL_DATA_SOURCE_READ_ONLY (string)

A character string of ″Y″ indicates that the database is set to READ ONLY

mode, ″N″ indicates that is not set to READ ONLY mode. This

characteristic pertains only to the data source itself; it is not characteristic

of the driver that enables access to the data source.

SQL_DATABASE_CODEPAGE (32-bit unsigned integer)

Indicates the code page of the database that the application is currently

connected to.

SQL_DATABASE_NAME (string)

The name of the current database in use

Note: This string is the same as that returned by the SELECT CURRENT

SERVER statement on non-host systems. For host databases, such as DB2

for OS/390 or DB2 for OS/400®, the string returned is the DCS database

name that was provided when the CATALOG DCS DATABASE

DIRECTORY command was issued at the DB2 Connect gateway.

SQL_DATETIME_LITERALS (32-bit unsigned integer)

Indicates the datetime literals that are supported by the DBMS. DB2 CLI

always returns zero; datetime literals are not supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_DL_SQL92_DATE

v SQL_DL_SQL92_TIME

v SQL_DL_SQL92_TIMESTAMP

v SQL_DL_SQL92_INTERVAL_YEAR

v SQL_DL_SQL92_INTERVAL_MONTH

v SQL_DL_SQL92_INTERVAL_DAY

v SQL_DL_SQL92_INTERVAL_HOUR

v SQL_DL_SQL92_INTERVAL_MINUTE

Chapter 1. CLI and ODBC functions 171

v SQL_DL_SQL92_INTERVAL_SECOND

v SQL_DL_SQL92_INTERVAL_YEAR_TO_MONTH

v SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR

v SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE

v SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND

v SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE

v SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND

v SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND

SQL_DBMS_NAME (string)

The name of the DBMS product being accessed

 For example:

v ″DB2/6000″

v ″DB2/2″

SQL_DBMS_VER (string)

The Version of the DBMS product accessed. A string of the form

’mm.vv.rrrr’ where mm is the major version, vv is the minor version and

rrrr is the release. For example, ″0r.01.0000″ translates to major version r,

minor version 1, release 0.

SQL_DDL_INDEX (32-bit unsigned integer)

Indicates support for the creation and dropping of indexes:

v SQL_DI_CREATE_INDEX

v SQL_DI_DROP_INDEX

SQL_DEFAULT_TXN_ISOLATION (32-bit mask)

The default transaction isolation level supported

 One of the following masks are returned:

v SQL_TXN_READ_UNCOMMITTED = Changes are immediately

perceived by all transactions (dirty read, non-repeatable read, and

phantoms are possible).

This is equivalent to IBM’s Uncommitted Read level.

v SQL_TXN_READ_COMMITTED = Row read by transaction 1 can be

altered and committed by transaction 2 (non-repeatable read and

phantoms are possible)

This is equivalent to IBM’s Cursor Stability level.

v SQL_TXN_REPEATABLE_READ = A transaction can add or remove

rows matching the search condition or a pending transaction (repeatable

read, but phantoms are possible)

This is equivalent to IBM’s Read Stability level.

v SQL_TXN_SERIALIZABLE = Data affected by pending transaction is not

available to other transactions (repeatable read, phantoms are not

possible)

This is equivalent to IBM’s Repeatable Read level.

v SQL_TXN_VERSIONING = Not applicable to IBM DBMSs.

v SQL_TXN_NOCOMMIT = Any changes are effectively committed at the

end of a successful operation; no explicit commit or rollback is allowed.

This is a DB2 Universal Database for AS/400 (DB2 UDB for AS/400)

isolation level.

In IBM terminology,

v SQL_TXN_READ_UNCOMMITTED is Uncommitted Read;

v SQL_TXN_READ_COMMITTED is Cursor Stability;

v SQL_TXN_REPEATABLE_READ is Read Stability;

172 Call Level Interface Guide and Reference, Volume 2

v SQL_TXN_SERIALIZABLE is Repeatable Read.

SQL_DESCRIBE_PARAMETER (string)

″Y″ if parameters can be described; ″N″ if not.

SQL_DM_VER (string)

Reserved.

SQL_DRIVER_HDBC (32 bits)

DB2 CLI’s database handle

SQL_DRIVER_HDESC (32 bits)

DB2 CLI’s descriptor handle

SQL_DRIVER_HENV (32 bits)

DB2 CLI’s environment handle

SQL_DRIVER_HLIB (32 bits)

Reserved.

SQL_DRIVER_HSTMT (32 bits)

DB2 CLI’s statement handle

 In an ODBC environment with an ODBC Driver Manager, if InfoType is set

to SQL_DRIVER_HSTMT, the Driver Manager statement handle (the one

returned from SQLAllocStmt()) must be passed on input in rgbInfoValue

from the application. In this case rgbInfoValue is both an input and an

output argument. The ODBC Driver Manager is responsible for returning

the mapped value. ODBC applications wishing to call DB2 CLI specific

functions (such as the LOB functions) can access them, by passing these

handle values to the functions after loading the DB2 CLI library and

issuing an operating system call to invoke the desired functions.

SQL_DRIVER_NAME (string)

The file name of the DB2 CLI implementation.

SQL_DRIVER_ODBC_VER (string)

The version number of ODBC that the Driver supports. DB2 CLI will

return ″03.00″.

SQL_DRIVER_VER (string)

The version of the CLI driver. A string of the form ’mm.vv.rrrr’ where mm

is the major version, vv is the minor version and rrrr is the release. For

example, ″05.01.0000″ translates to major version 5, minor version 1, release

0.

SQL_DROP_ASSERTION (32-bit unsigned integer)

Indicates which clause in the DROP ASSERTION statement is supported by

the DBMS. DB2 CLI always returns zero; the DROP ASSERTION statement

is not supported.

 ODBC also defines the following value that is not returned by DB2 CLI:

v SQL_DA_DROP_ASSERTION

SQL_DROP_CHARACTER_SET (32-bit unsigned integer)

Indicates which clause in the DROP CHARACTER SET statement is

supported by the DBMS. DB2 CLI always returns zero; the DROP

CHARACTER SET statement is not supported.

 ODBC also defines the following value that is not returned by DB2 CLI:

v SQL_DCS_DROP_CHARACTER_SET

Chapter 1. CLI and ODBC functions 173

SQL_DROP_COLLATION (32-bit unsigned integer)

Indicates which clause in the DROP COLLATION statement is supported

by the DBMS. DB2 CLI always returns zero; the DROP COLLATION

statement is not supported.

 ODBC also defines the following value that is not returned by DB2 CLI:

v SQL_DC_DROP_COLLATION

SQL_DROP_DOMAIN (32-bit unsigned integer)

Indicates which clauses in the DROP DOMAIN statement are supported by

the DBMS. DB2 CLI always returns zero; the DROP DOMAIN statement is

not supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_DD_DROP_DOMAIN

v SQL_DD_CASCADE

v SQL_DD_RESTRICT

SQL_DROP_SCHEMA (32-bit unsigned integer)

Indicates which clauses in the DROP SCHEMA statement are supported by

the DBMS. DB2 CLI always returns zero; the DROP SCHEMA statement is

not supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_DS_CASCADE

v SQL_DS_RESTRICT

SQL_DROP_TABLE (32-bit unsigned integer)

Indicates which clauses in the DROP TABLE statement are supported by

the DBMS:

v SQL_DT_DROP_TABLE

v SQL_DT_CASCADE

v SQL_DT_RESTRICT

SQL_DROP_TRANSLATION (32-bit unsigned integer)

Indicates which clauses in the DROP TRANSLATION statement are

supported by the DBMS. DB2 CLI always returns zero; the DROP

TRANSLATION statement is not supported.

 ODBC also defines the following value that is not returned by DB2 CLI:

v SQL_DTR_DROP_TRANSLATION

SQL_DROP_VIEW (32-bit unsigned integer)

Indicates which clauses in the DROP VIEW statement are supported by the

DBMS. DB2 CLI always returns zero; the DROP VIEW statement is not

supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_DV_CASCADE

v SQL_DV_RESTRICT

SQL_DTC_TRANSITION_COST (32-bit unsigned mask)

Used by Microsoft Transaction Server to determine whether or not the

enlistment process for a connection is expensive. DB2 CLI returns:

v SQL_DTC_ENLIST_EXPENSIVE

v SQL_DTC_UNENLIST_EXPENSIVE

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 (32-bit mask)

Indicates the attributes of a dynamic cursor that are supported by DB2 CLI

(subset 1 of 2).

v SQL_CA1_NEXT

v SQL_CA1_ABSOLUTE

174 Call Level Interface Guide and Reference, Volume 2

v SQL_CA1_RELATIVE

v SQL_CA1_BOOKMARK

v SQL_CA1_LOCK_EXCLUSIVE

v SQL_CA1_LOCK_NO_CHANGE

v SQL_CA1_LOCK_UNLOCK

v SQL_CA1_POS_POSITION

v SQL_CA1_POS_UPDATE

v SQL_CA1_POS_DELETE

v SQL_CA1_POS_REFRESH

v SQL_CA1_POSITIONED_UPDATE

v SQL_CA1_POSITIONED_DELETE

v SQL_CA1_SELECT_FOR_UPDATE

v SQL_CA1_BULK_ADD

v SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v SQL_CA1_BULK_DELETE_BY_BOOKMARK

v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 (32-bit mask)

Indicates the attributes of a dynamic cursor that are supported by DB2 CLI

(subset 2 of 2).

v SQL_CA2_READ_ONLY_CONCURRENCY

v SQL_CA2_LOCK_CONCURRENCY

v SQL_CA2_OPT_ROWVER_CONCURRENCY

v SQL_CA2_OPT_VALUES_CONCURRENCY

v SQL_CA2_SENSITIVITY_ADDITIONS

v SQL_CA2_SENSITIVITY_DELETIONS

v SQL_CA2_SENSITIVITY_UPDATES

v SQL_CA2_MAX_ROWS_SELECT

v SQL_CA2_MAX_ROWS_INSERT

v SQL_CA2_MAX_ROWS_DELETE

v SQL_CA2_MAX_ROWS_UPDATE

v SQL_CA2_MAX_ROWS_CATALOG

v SQL_CA2_MAX_ROWS_AFFECTS_ALL

v SQL_CA2_CRC_EXACT

v SQL_CA2_CRC_APPROXIMATE

v SQL_CA2_SIMULATE_NON_UNIQUE

v SQL_CA2_SIMULATE_TRY_UNIQUE

v SQL_CA2_SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY (string)

The character string ″Y″ indicates the database server supports the DIRECT

specification of expressions in the ORDER BY list, ″N″ indicates that it does

not.

SQL_FETCH_DIRECTION (32-bit mask)

The supported fetch directions.

 The following bit-masks are used in conjunction with the flag to determine

which options are supported.

v SQL_FD_FETCH_NEXT

v SQL_FD_FETCH_FIRST

v SQL_FD_FETCH_LAST

v SQL_FD_FETCH_PREV

v SQL_FD_FETCH_ABSOLUTE

v SQL_FD_FETCH_RELATIVE

v SQL_FD_FETCH_RESUME

Chapter 1. CLI and ODBC functions 175

SQL_FILE_USAGE (16-bit integer)

Indicates how a single-tier driver directly treats files in a data source. The

DB2 CLI driver is not a single-tier driver and therefor always returns

SQL_FILE_NOT_SUPPORTED.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_FILE_TABLE

v SQL_FILE_CATALOG

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 (32-bit mask)

Indicates the attributes of a forward-only cursor that are supported by DB2

CLI (subset 1 of 2).

v SQL_CA1_NEXT

v SQL_CA1_POSITIONED_UPDATE

v SQL_CA1_POSITIONED_DELETE

v SQL_CA1_SELECT_FOR_UPDATE

v SQL_CA1_LOCK_EXCLUSIVE

v SQL_CA1_LOCK_NO_CHANGE

v SQL_CA1_LOCK_UNLOCK

v SQL_CA1_POS_POSITION

v SQL_CA1_POS_UPDATE

v SQL_CA1_POS_DELETE

v SQL_CA1_POS_REFRESH

v SQL_CA1_BULK_ADD

v SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v SQL_CA1_BULK_DELETE_BY_BOOKMARK

v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 (32-bit mask)

Indicates the attributes of a forward-only cursor that are supported by DB2

CLI (subset 2 of 2).

v SQL_CA2_READ_ONLY_CONCURRENCY

v SQL_CA2_LOCK_CONCURRENCY

v SQL_CA2_MAX_ROWS_SELECT

v SQL_CA2_MAX_ROWS_CATALOG

v SQL_CA2_OPT_ROWVER_CONCURRENCY

v SQL_CA2_OPT_VALUES_CONCURRENCY

v SQL_CA2_SENSITIVITY_ADDITIONS

v SQL_CA2_SENSITIVITY_DELETIONS

v SQL_CA2_SENSITIVITY_UPDATES

v SQL_CA2_MAX_ROWS_INSERT

v SQL_CA2_MAX_ROWS_DELETE

v SQL_CA2_MAX_ROWS_UPDATE

v SQL_CA2_MAX_ROWS_AFFECTS_ALL

v SQL_CA2_CRC_EXACT

v SQL_CA2_CRC_APPROXIMATE

v SQL_CA2_SIMULATE_NON_UNIQUE

v SQL_CA2_SIMULATE_TRY_UNIQUE

v SQL_CA2_SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS (32-bit mask)

Indicates whether extensions to the SQLGetData() function are supported.

The following extensions are currently identified and supported by DB2

CLI:

v SQL_GD_ANY_COLUMN, SQLGetData() can be called for unbound

columns that precede the last bound column.

v SQL_GD_ANY_ORDER, SQLGetData() can be called for columns in any

order.

176 Call Level Interface Guide and Reference, Volume 2

ODBC also defines the following extensions which are not returned by DB2

CLI:

v SQL_GD_BLOCK

v SQL_GD_BOUND

SQL_GROUP_BY (16-bit integer)

Indicates the degree of support for the GROUP BY clause by the server:

v SQL_GB_NO_RELATION, there is no relationship between the columns

in the GROUP BY and in the SELECT list

v SQL_GB_NOT_SUPPORTED, GROUP BY not supported

v SQL_GB_GROUP_BY_EQUALS_SELECT, GROUP BY must include all

non-aggregated columns in the select list.

v SQL_GB_GROUP_BY_CONTAINS_SELECT, the GROUP BY clause must

contain all non-aggregated columns in the SELECT list.

v SQL_GB_COLLATE, a COLLATE clause can be specified at the end of

each grouping column.

SQL_IDENTIFIER_CASE (16-bit integer)

Indicates case sensitivity of object names (such as table-name).

 A value of:

v SQL_IC_UPPER = identifier names are stored in uppercase in the system

catalog.

v SQL_IC_LOWER = identifier names are stored in lowercase in the

system catalog.

v SQL_IC_SENSITIVE = identifier names are case sensitive, and are stored

in mixed case in the system catalog.

v SQL_IC_MIXED = identifier names are not case sensitive, and are stored

in mixed case in the system catalog.

Note: Identifier names in IBM DBMSs are not case sensitive.

SQL_IDENTIFIER_QUOTE_CHAR (string)

Indicates the character used to surround a delimited identifier

SQL_INDEX_KEYWORDS (32-bit mask)

Indicates the keywords in the CREATE INDEX statement that are

supported:

v SQL_IK_NONE, none of the keywords are supported.

v SQL_IK_ASC, ASC keyword is supported.

v SQL_IK_DESC, DESC keyword is supported.

v SQL_IK_ALL, all keywords are supported.

To see if the CREATE INDEX statement is supported, an application can

call SQLGetInfo() with the SQL_DLL_INDEX InfoType.

SQL_INFO_SCHEMA_VIEWS (32-bit mask)

Indicates the views in the INFORMATION_SCHEMA that are supported.

DB2 CLI always returns zero; no views in the INFORMATION_SCHEMA

are supported.

 ODBC also defines the following values that are not returned by DB2 CLI:

v SQL_ISV_ASSERTIONS

v SQL_ISV_CHARACTER_SETS

v SQL_ISV_CHECK_CONSTRAINTS

v SQL_ISV_COLLATIONS

v SQL_ISV_COLUMN_DOMAIN_USAGE

v SQL_ISV_COLUMN_PRIVILEGES

v SQL_ISV_COLUMNS

v SQL_ISV_CONSTRAINT_COLUMN_USAGE

Chapter 1. CLI and ODBC functions 177

v SQL_ISV_CONSTRAINT_TABLE_USAGE

v SQL_ISV_DOMAIN_CONSTRAINTS

v SQL_ISV_DOMAINS

v SQL_ISV_KEY_COLUMN_USAGE

v SQL_ISV_REFERENTIAL_CONSTRAINTS

v SQL_ISV_SCHEMATA

v SQL_ISV_SQL_LANGUAGES

v SQL_ISV_TABLE_CONSTRAINTS

v SQL_ISV_TABLE_PRIVILEGES

v SQL_ISV_TABLES

v SQL_ISV_TRANSLATIONS

v SQL_ISV_USAGE_PRIVILEGES

v SQL_ISV_VIEW_COLUMN_USAGE

v SQL_ISV_VIEW_TABLE_USAGE

v SQL_ISV_VIEWS

SQL_INSERT_STATEMENT (32-bit mask)

Indicates support for INSERT statements:

v SQL_IS_INSERT_LITERALS

v SQL_IS_INSERT_SEARCHED

v SQL_IS_SELECT_INTO

SQL_INTEGRITY (string)

The ″Y″ character string indicates that the data source supports Integrity

Enhanced Facility (IEF) in SQL89 and in X/Open XPG4 Embedded SQL, an

″N″ indicates it does not.

 In previous versions of DB2 CLI this InfoType was

SQL_ODBC_SQL_OPT_IEF.

SQL_KEYSET_CURSOR_ATTRIBUTES1 (32-bit mask)

Indicates the attributes of a keyset cursor that are supported by DB2 CLI

(subset 1 of 2).

v SQL_CA1_NEXT

v SQL_CA1_ABSOLUTE

v SQL_CA1_RELATIVE

v SQL_CA1_BOOKMARK

v SQL_CA1_LOCK_EXCLUSIVE

v SQL_CA1_LOCK_NO_CHANGE

v SQL_CA1_LOCK_UNLOCK

v SQL_CA1_POS_POSITION

v SQL_CA1_POS_UPDATE

v SQL_CA1_POS_DELETE

v SQL_CA1_POS_REFRESH

v SQL_CA1_POSITIONED_UPDATE

v SQL_CA1_POSITIONED_DELETE

v SQL_CA1_SELECT_FOR_UPDATE

v SQL_CA1_BULK_ADD

v SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v SQL_CA1_BULK_DELETE_BY_BOOKMARK

v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2 (32-bit mask)

Indicates the attributes of a keyset cursor that are supported by DB2 CLI

(subset 2 of 2).

v SQL_CA2_READ_ONLY_CONCURRENCY

v SQL_CA2_LOCK_CONCURRENCY

v SQL_CA2_OPT_ROWVER_CONCURRENCY

178 Call Level Interface Guide and Reference, Volume 2

v SQL_CA2_OPT_VALUES_CONCURRENCY

v SQL_CA2_SENSITIVITY_ADDITIONS

v SQL_CA2_SENSITIVITY_DELETIONS

v SQL_CA2_SENSITIVITY_UPDATES

v SQL_CA2_MAX_ROWS_SELECT

v SQL_CA2_MAX_ROWS_INSERT

v SQL_CA2_MAX_ROWS_DELETE

v SQL_CA2_MAX_ROWS_UPDATE

v SQL_CA2_MAX_ROWS_CATALOG

v SQL_CA2_MAX_ROWS_AFFECTS_ALL

v SQL_CA2_CRC_EXACT

v SQL_CA2_CRC_APPROXIMATE

v SQL_CA2_SIMULATE_NON_UNIQUE

v SQL_CA2_SIMULATE_TRY_UNIQUE

v SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS (string)

A character string containing a comma-separated list of all data

source-specific keywords. This is a list of all reserved keywords.

Interoperable applications should not use these keywords in object names.

This list does not contain keywords specific to ODBC or keywords used by

both the data source and ODBC.

SQL_LIKE_ESCAPE_CLAUSE (string)

A character string ″Y″ if the data source supports an escape character for

the percent character (%) and underscore (_) character in a LIKE predicate,

and the driver supports the ODBC syntax for defining a LIKE predicate

escape character; ″N″ otherwise.

SQL_LOCK_TYPES (32-bit mask)

Reserved option, zero is returned for the bit-mask.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS (32-bit unsigned integer)

The maximum number of active concurrent statements in asynchronous

mode that DB2 CLI can support on a given connection. This value is zero

if there is no specific limit, or the limit is unknown.

SQL_MAX_BINARY_LITERAL_LEN (32-bit unsigned integer)

A 32-bit unsigned integer value specifying the maximum length (number

of hexadecimal characters, excluding the literal prefix and suffix returned

by SQLGetTypeInfo()) of a binary literal in an SQL statement. For example,

the binary literal 0xFFAA has a length of 4. If there is no maximum length

or the length is unknown, this value is set to zero.

SQL_MAX_CATALOG_NAME_LEN (16-bit integer)

The maximum length of a catalog name in the data source. This value is

zero if there is no maximum length, or the length is unknown.

 In previous versions of DB2 CLI this fInfoType was

SQL_MAX_QUALIFIER_NAME_LEN.

SQL_MAX_CHAR_LITERAL_LEN (32-bit unsigned integer)

The maximum length of a character literal in an SQL statement (in bytes).

Zero if there is no limit.

SQL_MAX_COLUMN_NAME_LEN (16-bit integer)

The maximum length of a column name (in bytes). Zero if there is no limit.

SQL_MAX_COLUMNS_IN_GROUP_BY (16-bit integer)

Indicates the maximum number of columns that the server supports in a

GROUP BY clause. Zero if no limit.

Chapter 1. CLI and ODBC functions 179

SQL_MAX_COLUMNS_IN_INDEX (16-bit integer)

Indicates the maximum number of columns that the server supports in an

index. Zero if no limit.

SQL_MAX_COLUMNS_IN_ORDER_BY (16-bit integer)

Indicates the maximum number of columns that the server supports in an

ORDER BY clause. Zero if no limit.

SQL_MAX_COLUMNS_IN_SELECT (16-bit integer)

Indicates the maximum number of columns that the server supports in a

select list. Zero if no limit.

SQL_MAX_COLUMNS_IN_TABLE (16-bit integer)

Indicates the maximum number of columns that the server supports in a

base table. Zero if no limit.

SQL_MAX_CONCURRENT_ACTIVITIES (16-bit integer)

The maximum number of active environments that the DB2 CLI driver can

support. If there is no specified limit or the limit is unknown, this value is

set to zero.

 In previous versions of DB2 CLI this InfoType was

SQL_ACTIVE_ENVIRONMENTS.

SQL_MAX_CURSOR_NAME_LEN (16-bit integer)

The maximum length of a cursor name (in bytes). This value is zero if

there is no maximum length, or the length is unknown.

SQL_MAX_DRIVER_CONNECTIONS (16-bit integer)

The maximum number of active connections supported per application.

 Zero is returned, indicating that the limit is dependent on system

resources.

In previous versions of DB2 CLI this InfoType was

SQL_ACTIVE_CONNECTIONS.

SQL_MAX_IDENTIFIER_LEN (16-bit integer)

The maximum size (in characters) that the data source supports for

user-defined names.

SQL_MAX_INDEX_SIZE (32-bit unsigned integer)

Indicates the maximum size in bytes that the server supports for the

combined columns in an index. Zero if no limit.

SQL_MAX_PROCEDURE_NAME_LEN (16-bit integer)

The maximum length of a procedure name (in bytes).

SQL_MAX_ROW_SIZE (32-bit unsigned integer)

Specifies the maximum length in bytes that the server supports in single

row of a base table. Zero if no limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG (string)

Set to ″Y″ to indicate that the value returned by SQL_MAX_ROW_SIZE

InfoType includes the length of product-specific long string data types.

Otherwise, set to ″N″.

SQL_MAX_SCHEMA_NAME_LEN (16-bit integer)

The maximum length of a schema qualifier name (in bytes).

 In previous versions of DB2 CLI this fInfoType was

SQL_MAX_OWNER_NAME_LEN.

180 Call Level Interface Guide and Reference, Volume 2

SQL_MAX_STATEMENT_LEN (32-bit unsigned integer)

Indicates the maximum length of an SQL statement string in bytes,

including the number of white spaces in the statement.

SQL_MAX_TABLE_NAME_LEN (16-bit integer)

The maximum length of a table name (in bytes).

SQL_MAX_TABLES_IN_SELECT (16-bit integer)

Indicates the maximum number of table names allowed in a FROM clause

in a <query specification>.

SQL_MAX_USER_NAME_LEN (16-bit integer)

Indicates the maximum size allowed for a <user identifier> (in bytes).

SQL_MULT_RESULT_SETS (string)

The character string ″Y″ indicates that the database supports multiple

result sets, ″N″ indicates that it does not.

SQL_MULTIPLE_ACTIVE_TXN (string)

The character string ″Y″ indicates that active transactions on multiple

connections are allowed, ″N″ indicates that only one connection at a time

can have an active transaction.

 DB2 CLI returns ″N″ for coordinated distributed unit of work (CONNECT

TYPE 2) connections, (since the transaction or Unit Of Work spans all

connections), and returns ″Y″ for all other connections.

SQL_NEED_LONG_DATA_LEN (string)

A character string reserved for the use of ODBC. “N” is always returned.

SQL_NON_NULLABLE_COLUMNS (16-bit integer)

Indicates whether non-nullable columns are supported:

v SQL_NNC_NON_NULL, columns can be defined as NOT NULL.

v SQL_NNC_NULL, columns can not be defined as NOT NULL.

SQL_NULL_COLLATION (16-bit integer)

Indicates where NULLs are sorted in a result set:

v SQL_NC_HIGH, null values sort high

v SQL_NC_LOW, to indicate that null values sort low

SQL_NUMERIC_FUNCTIONS (32-bit mask)

Indicates the ODBC scalar numeric functions supported These functions

are intended to be used with the ODBC vendor escape sequence.

 The following bit-masks are used to determine which numeric functions

are supported:

v SQL_FN_NUM_ABS

v SQL_FN_NUM_ACOS

v SQL_FN_NUM_ASIN

v SQL_FN_NUM_ATAN

v SQL_FN_NUM_ATAN2

v SQL_FN_NUM_CEILING

v SQL_FN_NUM_COS

v SQL_FN_NUM_COT

v SQL_FN_NUM_DEGREES

v SQL_FN_NUM_EXP

v SQL_FN_NUM_FLOOR

v SQL_FN_NUM_LOG

v SQL_FN_NUM_LOG10

v SQL_FN_NUM_MOD

v SQL_FN_NUM_PI

Chapter 1. CLI and ODBC functions 181

v SQL_FN_NUM_POWER

v SQL_FN_NUM_RADIANS

v SQL_FN_NUM_RAND

v SQL_FN_NUM_ROUND

v SQL_FN_NUM_SIGN

v SQL_FN_NUM_SIN

v SQL_FN_NUM_SQRT

v SQL_FN_NUM_TAN

v SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE (16-bit integer)

The level of ODBC conformance.

v SQL_OAC_NONE

v SQL_OAC_LEVEL1

v SQL_OAC_LEVEL2

SQL_ODBC_INTERFACE_CONFORMANCE (32-bit unsigned integer)

Indicates the level of the ODBC 3.0 interface that the DB2 CLI driver

conforms to:

v SQL_OIC_CORE, the minimum level that all ODBC drivers are expected

to conform to. This level includes basic interface elements such as

connection functions; functions for preparing and executing an SQL

statement; basic result set metadata functions; basic catalog functions;

and so on.

v SQL_OIC_LEVEL1, a level including the core standards compliance level

functionality, plus scrollable cursors, bookmarks, positioned updates and

deletes, and so on.

v SQL_OIC_LEVEL2, a level including level 1 standards compliance level

functionality, plus advanced features such as sensitive cursors; update,

delete, and refresh by bookmarks; stored procedure support; catalog

functions for primary and foreign keys; multi-catalog support; and so

on.

SQL_ODBC_SAG_CLI_CONFORMANCE (16-bit integer)

The compliance to the functions of the SQL Access Group (SAG) CLI

specification.

 A value of:

v SQL_OSCC_NOT_COMPLIANT - the driver is not SAG-compliant.

v SQL_OSCC_COMPLIANT - the driver is SAG-compliant.

SQL_ODBC_SQL_CONFORMANCE (16-bit integer)

A value of:

v SQL_OSC_MINIMUM, minimum ODBC SQL grammar supported

v SQL_OSC_CORE, core ODBC SQL Grammar supported

v SQL_OSC_EXTENDED, extended ODBC SQL Grammar supported

SQL_ODBC_VER (string)

The version number of ODBC that the driver manager supports.

 DB2 CLI will return the string ″03.01.0000″.

SQL_OJ_CAPABILITIES (32-bit mask)

A 32-bit bit-mask enumerating the types of outer join supported.

 The bitmasks are:

v SQL_OJ_LEFT : Left outer join is supported.

v SQL_OJ_RIGHT : Right outer join is supported.

v SQL_OJ_FULL : Full outer join is supported.

v SQL_OJ_NESTED : Nested outer join is supported.

182 Call Level Interface Guide and Reference, Volume 2

v SQL_OJ_ORDERED : The order of the tables underlying the columns in

the outer join ON clause need not be in the same order as the tables in

the JOIN clause.

v SQL_OJ_INNER : The inner table of an outer join can also be an inner

join.

v SQL_OJ_ALL_COMPARISONS_OPS : Any predicate can be used in the

outer join ON clause. If this bit is not set, only the equality (=)

comparison operator can be used in outer joins.

SQL_ORDER_BY_COLUMNS_IN_SELECT (string)

Set to ″Y″ if columns in the ORDER BY clauses must be in the select list;

otherwise set to ″N″.

SQL_OUTER_JOINS (string)

The character string:

v ″Y″ indicates that outer joins are supported, and DB2 CLI supports the

ODBC outer join request syntax.

v ″N″ indicates that it is not supported.

SQL_PARAM_ARRAY_ROW_COUNTS (32-bit unsigned integer)

Indicates the availability of row counts in a parameterized execution:

v SQL_PARC_BATCH, individual row counts are available for each set of

parameters. This is conceptually equivalent to the driver generating a

batch of SQL statements, one for each parameter set in the array.

Extended error information can be retrieved by using the

SQL_PARAM_STATUS_PTR descriptor field.

v SQL_PARC_NO_BATCH, there is only one row count available, which is

the cumulative row count resulting from the execution of the statement

for the entire array of parameters. This is conceptually equivalent to

treating the statement along with the entire parameter array as one

atomic unit. Errors are handled the same as if one statement were

executed.

SQL_PARAM_ARRAY_SELECTS (32-bit unsigned integer)

Indicates the availability of result sets in a parameterized execution:

v SQL_PAS_BATCH, there is one result set available per set of parameters.

This is conceptually equivalent to the driver generating a batch of SQL

statements, one for each parameter set in the array.

v SQL_PAS_NO_BATCH, there is only one result set available, which

represents the cumulative result set resulting from the execution of the

statement for the entire array of parameters. This is conceptually

equivalent to treating the statement along with the entire parameter

array as one atomic unit.

v SQL_PAS_NO_SELECT, a driver does not allow a result-set generating

statement to be executed with an array of parameters.

SQL_POS_OPERATIONS (32-bit mask)

Reserved option, zero is returned for the bit-mask.

SQL_POSITIONED_STATEMENTS (32-bit mask)

Indicates the degree of support for Positioned UPDATE and Positioned

DELETE statements:

v SQL_PS_POSITIONED_DELETE

v SQL_PS_POSITIONED_UPDATE

v SQL_PS_SELECT_FOR_UPDATE, indicates whether or not the server

requires the FOR UPDATE clause to be specified on a <query

expression> in order for a column to be updateable via the cursor.

Chapter 1. CLI and ODBC functions 183

SQL_PROCEDURE_TERM (string)

The name a database vendor uses for a procedure

SQL_PROCEDURES (string)

A character string of ″Y″ indicates that the data source supports procedures

and DB2 CLI supports the ODBC procedure invocation syntax specified by

the CALL statement. ″N″ indicates that it does not.

SQL_QUOTED_IDENTIFIER_CASE (16-bit integer)

Returns:

v SQL_IC_UPPER - quoted identifiers in SQL are case insensitive and

stored in uppercase in the system catalog.

v SQL_IC_LOWER - quoted identifiers in SQL are case insensitive and are

stored in lowercase in the system catalog.

v SQL_IC_SENSITIVE - quoted identifiers (delimited identifiers) in SQL

are case sensitive and are stored in mixed case in the system catalog.

v SQL_IC_MIXED - quoted identifiers in SQL are case insensitive and are

stored in mixed case in the system catalog.

This should be contrasted with the SQL_IDENTIFIER_CASE InfoType which

is used to determine how (unquoted) identifiers are stored in the system

catalog.

SQL_ROW_UPDATES (string)

A character string of ″Y″ indicates a keyset-driven or mixed cursor

maintains row versions or values for all fetched rows and therefore can

only detect any updates made to a row by any user since the row was last

fetched. (This only applies to updates, not to deletions or insertions.) The

driver can return the SQL_ROW_UPDATED flag to the row status array

when SQLFetchScroll() is called. Otherwise, ″N″.

SQL_SCHEMA_TERM (string)

The database vendor’s terminology for a schema (owner).

 In previous versions of DB2 CLI this InfoType was SQL_OWNER_TERM.

SQL_SCHEMA_USAGE (32-bit mask)

Indicates the type of SQL statements that have schema (owners) associated

with them when these statements are executed, Schema qualifiers (owners)

are:

v SQL_SU_DML_STATEMENTS - supported in all DML statements.

v SQL_SU_PROCEDURE_INVOCATION - supported in the procedure

invocation statement.

v SQL_SU_TABLE_DEFINITION - supported in all table definition

statements.

v SQL_SU_INDEX_DEFINITION - supported in all index definition

statements.

v SQL_SU_PRIVILEGE_DEFINITION - supported in all privilege

definition statements (that is, in grant and revoke statements).

In previous versions of DB2 CLI this InfoType was SQL_OWNER_USAGE.

SQL_SCROLL_CONCURRENCY (32-bit mask)

Indicates the concurrency options supported for the cursor.

 The following bit-masks are used in conjunction with the flag to determine

which options are supported:

v SQL_SCCO_READ_ONLY

v SQL_SCCO_LOCK

v SQL_SCCO_TIMESTAMP

v SQL_SCCO_VALUES

184 Call Level Interface Guide and Reference, Volume 2

DB2 CLI returns SQL_SCCO_LOCK. indicating that the lowest level of

locking that is sufficient to ensure the row can be updated is used.

SQL_SCROLL_OPTIONS (32-bit mask)

The scroll options supported for scrollable cursors.

 The following bit-masks are used in conjunction with the flag to determine

which options are supported:

v SQL_SO_FORWARD_ONLY: The cursor only scrolls forward.

v SQL_SO_KEYSET_DRIVEN: The driver saves and uses the keys for

every row in the result set.

v SQL_SO_STATIC: The data in the result set is static.

v SQL_SO_DYNAMIC: The driver keeps the keys for every row in the

rowset (the keyset size is the same as the rowset size).

v SQL_SO_MIXED: The driver keeps the keys for every row in the keyset,

and the keyset size is greater than the rowset size. The cursor is

keyset-driven inside the keyset and dynamic outside the keyset.

SQL_SEARCH_PATTERN_ESCAPE (string)

Used to specify what the driver supports as an escape character for catalog

functions such as SQLTables(), SQLColumns().

SQL_SERVER_NAME (string)

The Name of the DB2 Instance. In contrast to

SQL_DATA_SOURCE_NAME, this is the actual name of the database

server. (Some DBMSs provide a different name on CONNECT than the real

server-name of the database.)

SQL_SPECIAL_CHARACTERS (string)

A character string containing all special characters (that is, all characters

except a...z, A...Z, 0...9, and underscore) that can be used in an identifier

name, such as table, column, or index name, on the data source. For

example, ″@#″. If an identifier contains one or more of these characters, the

identifier must be a delimited identifier.

SQL_SQL_CONFORMANCE (32-bit unsigned integer)

Indicates the level of SQL-92 supported:

v SQL_SC_SQL92_ENTRY, entry level SQL-92 compliant.

v SQL_SC_FIPS127_2_TRANSITIONAL, FIPS 127-2 transitional level

compliant.

v SQL_SC_SQL92_FULL, full level SQL-92 compliant.

v SQL_SC_ SQL92_INTERMEDIATE, intermediate level SQL-92 compliant.

SQL_SQL92_DATETIME_FUNCTIONS (32-bit mask)

Indicates the datetime scalar functions that are supported by DB2 CLI and

the data source:

v SQL_SDF_CURRENT_DATE

v SQL_SDF_CURRENT_TIME

v SQL_SDF_CURRENT_TIMESTAMP

SQL_SQL92_FOREIGN_KEY_DELETE_RULE (32-bit mask)

Indicates the rules supported for a foreign key in a DELETE statement, as

defined by SQL-92:

v SQL_SFKD_CASCADE

v SQL_SFKD_NO_ACTION

v SQL_SFKD_SET_DEFAULT

v SQL_SFKD_SET_NULL

Chapter 1. CLI and ODBC functions 185

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE (32-bit mask)

Indicates the rules supported for a foreign key in an UPDATE statement,

as defined by SQL-92:

v SQL_SFKU_CASCADE

v SQL_SFKU_NO_ACTION

v SQL_SFKU_SET_DEFAULT

v SQL_SFKU_SET_NULL

SQL_SQL92_GRANT (32-bit mask)

Indicates the clauses supported in a GRANT statement, as defined by

SQL-92:

v SQL_SG_DELETE_TABLE

v SQL_SG_INSERT_COLUMN

v SQL_SG_INSERT_TABLE

v SQL_SG_REFERENCES_TABLE

v SQL_SG_REFERENCES_COLUMN

v SQL_SG_SELECT_TABLE

v SQL_SG_UPDATE_COLUMN

v SQL_SG_UPDATE_TABLE

v SQL_SG_USAGE_ON_DOMAIN

v SQL_SG_USAGE_ON_CHARACTER_SET

v SQL_SG_USAGE_ON_COLLATION

v SQL_SG_USAGE_ON_TRANSLATION

v SQL_SG_WITH_GRANT_OPTION

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS (32-bit mask)

Indicates the numeric value scalar functions that are supported by DB2 CLI

and the data source, as defined in SQL-92:

v SQL_SNVF_BIT_LENGTH

v SQL_SNVF_CHAR_LENGTH

v SQL_SNVF_CHARACTER_LENGTH

v SQL_SNVF_EXTRACT

v SQL_SNVF_OCTET_LENGTH

v SQL_SNVF_POSITION

SQL_SQL92_PREDICATES (32-bit mask)

Indicates the predicates supported in a SELECT statement, as defined by

SQL-92.

v SQL_SP_BETWEEN

v SQL_SP_COMPARISON

v SQL_SP_EXISTS

v SQL_SP_IN

v SQL_SP_ISNOTNULL

v SQL_SP_ISNULL

v SQL_SP_LIKE

v SQL_SP_MATCH_FULL

v SQL_SP_MATCH_PARTIAL

v SQL_SP_MATCH_UNIQUE_FULL

v SQL_SP_MATCH_UNIQUE_PARTIAL

v SQL_SP_OVERLAPS

v SQL_SP_QUANTIFIED_COMPARISON

v SQL_SP_UNIQUE

SQL_SQL92_RELATIONAL_JOIN_OPERATORS (32-bit mask)

Indicates the relational join operators supported in a SELECT statement, as

defined by SQL-92.

v SQL_SRJO_CORRESPONDING_CLAUSE

v SQL_SRJO_CROSS_JOIN

186 Call Level Interface Guide and Reference, Volume 2

v SQL_SRJO_EXCEPT_JOIN

v SQL_SRJO_FULL_OUTER_JOIN

v SQL_SRJO_INNER_JOIN (indicates support for the INNER JOIN syntax,

not for the inner join capability)

v SQL_SRJO_INTERSECT_JOIN

v SQL_SRJO_LEFT_OUTER_JOIN

v SQL_SRJO_NATURAL_JOIN

v SQL_SRJO_RIGHT_OUTER_JOIN

v SQL_SRJO_UNION_JOIN

SQL_SQL92_REVOKE (32-bit mask)

Indicates which clauses the data source supports in the REVOKE

statement, as defined by SQL-92:

v SQL_SR_CASCADE

v SQL_SR_DELETE_TABLE

v SQL_SR_GRANT_OPTION_FOR

v SQL_SR_INSERT_COLUMN

v SQL_SR_INSERT_TABLE

v SQL_SR_REFERENCES_COLUMN

v SQL_SR_REFERENCES_TABLE

v SQL_SR_RESTRICT

v SQL_SR_SELECT_TABLE

v SQL_SR_UPDATE_COLUMN

v SQL_SR_UPDATE_TABLE

v SQL_SR_USAGE_ON_DOMAIN

v SQL_SR_USAGE_ON_CHARACTER_SET

v SQL_SR_USAGE_ON_COLLATION

v SQL_SR_USAGE_ON_TRANSLATION

SQL_SQL92_ROW_VALUE_CONSTRUCTOR (32-bit mask)

Indicates the row value constructor expressions supported in a SELECT

statement, as defined by SQL-92.

v SQL_SRVC_VALUE_EXPRESSION

v SQL_SRVC_NULL

v SQL_SRVC_DEFAULT

v SQL_SRVC_ROW_SUBQUERY

SQL_SQL92_STRING_FUNCTIONS (32-bit mask)

Indicates the string scalar functions that are supported by DB2 CLI and the

data source, as defined by SQL-92:

v SQL_SSF_CONVERT

v SQL_SSF_LOWER

v SQL_SSF_UPPER

v SQL_SSF_SUBSTRING

v SQL_SSF_TRANSLATE

v SQL_SSF_TRIM_BOTH

v SQL_SSF_TRIM_LEADING

v SQL_SSF_TRIM_TRAILING

SQL_SQL92_VALUE_EXPRESSIONS (32-bit mask)

Indicates the value expressions supported, as defined by SQL-92.

v SQL_SVE_CASE

v SQL_SVE_CAST

v SQL_SVE_COALESCE

v SQL_SVE_NULLIF

SQL_STANDARD_CLI_CONFORMANCE (32-bit mask)

Indicates the CLI standard or standards to which DB2 CLI conforms:

Chapter 1. CLI and ODBC functions 187

v SQL_SCC_XOPEN_CLI_VERSION1

v SQL_SCC_ISO92_CLI

SQL_STATIC_CURSOR_ATTRIBUTES1 (32-bit mask)

Indicates the attributes of a static cursor that are supported by DB2 CLI

(subset 1 of 2):

v SQL_CA1_NEXT

v SQL_CA1_ABSOLUTE

v SQL_CA1_RELATIVE

v SQL_CA1_BOOKMARK

v SQL_CA1_LOCK_NO_CHANGE

v SQL_CA1_LOCK_EXCLUSIVE

v SQL_CA1_LOCK_UNLOCK

v SQL_CA1_POS_POSITION

v SQL_CA1_POS_UPDATE

v SQL_CA1_POS_DELETE

v SQL_CA1_POS_REFRESH

v SQL_CA1_POSITIONED_UPDATE

v SQL_CA1_POSITIONED_DELETE

v SQL_CA1_SELECT_FOR_UPDATE

v SQL_CA1_BULK_ADD

v SQL_CA1_BULK_UPDATE_BY_BOOKMARK

v SQL_CA1_BULK_DELETE_BY_BOOKMARK

v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_STATIC_CURSOR_ATTRIBUTES2 (32-bit mask)

Indicates the attributes of a static cursor that are supported by DB2 CLI

(subset 2 of 2):

v SQL_CA2_READ_ONLY_CONCURRENCY

v SQL_CA2_LOCK_CONCURRENCY

v SQL_CA2_OPT_ROWVER_CONCURRENCY

v SQL_CA2_OPT_VALUES_CONCURRENCY

v SQL_CA2_SENSITIVITY_ADDITIONS

v SQL_CA2_SENSITIVITY_DELETIONS

v SQL_CA2_SENSITIVITY_UPDATES

v SQL_CA2_MAX_ROWS_SELECT

v SQL_CA2_MAX_ROWS_INSERT

v SQL_CA2_MAX_ROWS_DELETE

v SQL_CA2_MAX_ROWS_UPDATE

v SQL_CA2_MAX_ROWS_CATALOG

v SQL_CA2_MAX_ROWS_AFFECTS_ALL

v SQL_CA2_CRC_EXACT

v SQL_CA2_CRC_APPROXIMATE

v SQL_CA2_SIMULATE_NON_UNIQUE

v SQL_CA2_SIMULATE_TRY_UNIQUE

v SQL_CA2_SIMULATE_UNIQUE

SQL_STATIC_SENSITIVITY (32-bit mask)

Indicates whether changes made by an application with a positioned

update or delete statement can be detected by that application:

v SQL_SS_ADDITIONS: Added rows are visible to the cursor; the cursor

can scroll to these rows. All DB2 servers see added rows.

v SQL_SS_DELETIONS: Deleted rows are no longer available to the cursor

and do not leave a hole in the result set; after the cursor scrolls from a

deleted row, it cannot return to that row.

188 Call Level Interface Guide and Reference, Volume 2

v SQL_SS_UPDATES: Updates to rows are visible to the cursor; if the

cursor scrolls from and returns to an updated row, the data returned by

the cursor is the updated data, not the original data.

SQL_STRING_FUNCTIONS (32-bit mask)

Indicates which string functions are supported.

 The following bit-masks are used to determine which string functions are

supported:

v SQL_FN_STR_ASCII

v SQL_FN_STR_BIT_LENGTH

v SQL_FN_STR_CHAR

v SQL_FN_STR_CHAR_LENGTH

v SQL_FN_STR_CHARACTER_LENGTH

v SQL_FN_STR_CONCAT

v SQL_FN_STR_DIFFERENCE

v SQL_FN_STR_INSERT

v SQL_FN_STR_LCASE

v SQL_FN_STR_LEFT

v SQL_FN_STR_LENGTH

v SQL_FN_STR_LOCATE

v SQL_FN_STR_LOCATE_2

v SQL_FN_STR_LTRIM

v SQL_FN_STR_OCTET_LENGTH

v SQL_FN_STR_POSITION

v SQL_FN_STR_REPEAT

v SQL_FN_STR_REPLACE

v SQL_FN_STR_RIGHT

v SQL_FN_STR_RTRIM

v SQL_FN_STR_SOUNDEX

v SQL_FN_STR_SPACE

v SQL_FN_STR_SUBSTRING

v SQL_FN_STR_UCASE

If an application can call the LOCATE scalar function with the string_exp1,

string_exp2, and start arguments, the SQL_FN_STR_LOCATE bitmask is

returned. If an application can only call the LOCATE scalar function with

the string_exp1 and string_exp2, the SQL_FN_STR_LOCATE_2 bitmask is

returned. If the LOCATE scalar function is fully supported, both bitmasks

are returned.

SQL_SUBQUERIES (32-bit mask)

Indicates which predicates support subqueries:

v SQL_SQ_COMPARISION - the comparison predicate

v SQL_SQ_CORRELATE_SUBQUERIES - all predicates that support

subqueries support correlated subqueries

v SQL_SQ_EXISTS - the exists predicate

v SQL_SQ_IN - the in predicate

v SQL_SQ_QUANTIFIED - the predicates containing a quantification

scalar function.

SQL_SYSTEM_FUNCTIONS (32-bit mask)

Indicates which scalar system functions are supported.

 The following bit-masks are used to determine which scalar system

functions are supported:

v SQL_FN_SYS_DBNAME

v SQL_FN_SYS_IFNULL

v SQL_FN_SYS_USERNAME

Chapter 1. CLI and ODBC functions 189

Note: These functions are intended to be used with the escape sequence in

ODBC.

SQL_TABLE_TERM (string)

The database vendor’s terminology for a table

SQL_TIMEDATE_ADD_INTERVALS (32-bit mask)

Indicates whether or not the special ODBC system function

TIMESTAMPADD is supported, and, if it is, which intervals are supported.

 The following bitmasks are used to determine which intervals are

supported:

v SQL_FN_TSI_FRAC_SECOND

v SQL_FN_TSI_SECOND

v SQL_FN_TSI_MINUTE

v SQL_FN_TSI_HOUR

v SQL_FN_TSI_DAY

v SQL_FN_TSI_WEEK

v SQL_FN_TSI_MONTH

v SQL_FN_TSI_QUARTER

v SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS (32-bit mask)

Indicates whether or not the special ODBC system function

TIMESTAMPDIFF is supported, and, if it is, which intervals are supported.

 The following bitmasks are used to determine which intervals are

supported:

v SQL_FN_TSI_FRAC_SECOND

v SQL_FN_TSI_SECOND

v SQL_FN_TSI_MINUTE

v SQL_FN_TSI_HOUR

v SQL_FN_TSI_DAY

v SQL_FN_TSI_WEEK

v SQL_FN_TSI_MONTH

v SQL_FN_TSI_QUARTER

v SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS (32-bit mask)

Indicates which time and date functions are supported.

 The following bit-masks are used to determine which date functions are

supported:

v SQL_FN_TD_CURRENT_DATE

v SQL_FN_TD_CURRENT_TIME

v SQL_FN_TD_CURRENT_TIMESTAMP

v SQL_FN_TD_CURDATE

v SQL_FN_TD_CURTIME

v SQL_FN_TD_DAYNAME

v SQL_FN_TD_DAYOFMONTH

v SQL_FN_TD_DAYOFWEEK

v SQL_FN_TD_DAYOFYEAR

v SQL_FN_TD_EXTRACT

v SQL_FN_TD_HOUR

v SQL_FN_TD_JULIAN_DAY

v SQL_FN_TD_MINUTE

v SQL_FN_TD_MONTH

v SQL_FN_TD_MONTHNAME

v SQL_FN_TD_NOW

190 Call Level Interface Guide and Reference, Volume 2

v SQL_FN_TD_QUARTER

v SQL_FN_TD_SECOND

v SQL_FN_TD_SECONDS_SINCE_MIDNIGHT

v SQL_FN_TD_TIMESTAMPADD

v SQL_FN_TD_TIMESTAMPDIFF

v SQL_FN_TD_WEEK

v SQL_FN_TD_YEAR

Note: These functions are intended to be used with the escape sequence in

ODBC.

SQL_TXN_CAPABLE (16-bit integer)

Indicates whether transactions can contain DDL or DML or both.

v SQL_TC_NONE = transactions not supported.

v SQL_TC_DML = transactions can only contain DML statements (for

example, SELECT, INSERT, UPDATE and DELETE). DDL statements (for

example, CREATE TABLE and DROP INDEX) encountered in a

transaction cause an error.

v SQL_TC_DDL_COMMIT = transactions can only contain DML

statements. DDL statements encountered in a transaction cause the

transaction to be committed.

v SQL_TC_DDL_IGNORE = transactions can only contain DML

statements. DDL statements encountered in a transaction are ignored.

v SQL_TC_ALL = transactions can contain DDL and DML statements in

any order.

SQL_TXN_ISOLATION_OPTION (32-bit mask)

The transaction isolation levels available at the currently connected

database server.

 The following masks are used in conjunction with the flag to determine

which options are supported:

v SQL_TXN_READ_UNCOMMITTED

v SQL_TXN_READ_COMMITTED

v SQL_TXN_REPEATABLE_READ

v SQL_TXN_SERIALIZABLE

v SQL_TXN_NOCOMMIT

v SQL_TXN_VERSIONING

For descriptions of each level refer to SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION (32-bit mask)

Indicates if the server supports the UNION operator:

v SQL_U_UNION - supports the UNION clause

v SQL_U_UNION_ALL - supports the ALL keyword in the UNION clause

If SQL_U_UNION_ALL is set, so is SQL_U_UNION.

SQL_USER_NAME (string)

The user name used in a particular database. This is the identifier specified

on the SQLConnect() call.

SQL_XOPEN_CLI_YEAR (string)

Indicates the year of publication of the X/Open specification with which

the version of the driver fully complies.

Chapter 1. CLI and ODBC functions 191

SQLGetLength function (CLI) - Retrieve length of a string value

Purpose

 Specification: DB2 CLI 2.1

SQLGetLength() is used to retrieve the length of a large object value, referenced by

a large object locator that has been returned from the server (as a result of a fetch,

or an SQLGetSubString() call) during the current transaction.

Syntax

SQLRETURN SQLGetLength (SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER Locator,

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 80. SQLGetLength arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle

which has been allocated but which does not

currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Must be set to the LOB locator value.

SQLINTEGER * StringLength output The length of the returned information in rgbValue in

bytesa if the target C buffer type is intended for a

binary or character string variable and not a locator

value.

If the pointer is set to NULL then the SQLSTATE

HY009 is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in characters for DBCLOB data.

Usage

SQLGetLength() can be used to determine the length of the data value represented

by a LOB locator. It is used by applications to determine the overall length of the

referenced LOB value so that the appropriate strategy to obtain some or all of the

LOB value can be chosen. The length is calculated by the database server using the

server code page, and so if the application code page is different from the server

code page, then there may be some complexity in calculating space requirements

on the client. The application will need to allow for code page expansion if any is

needed.

192 Call Level Interface Guide and Reference, Volume 2

The Locator argument can contain any valid LOB locator which has not been

explicitly freed using a FREE LOCATOR statement nor implicitly freed because the

transaction during which it was created has ended.

The statement handle must not have been associated with any prepared statements

or catalog function calls.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 81. SQLGetLength SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of LocatorCType and Locator is not valid.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY003 Program type out of range. LocatorCType is not one of SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009 Invalid argument value. Pointer to StringLength was NULL.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HYC00 Driver not capable. The application is currently connected to a data source that does

not support large objects.

0F001 The LOB token variable does not

currently represent any value.

The value specified for Locator has not been associated with a LOB

locator.

Restrictions

This function is not available when connected to a DB2 server that does not

support large objects. Call SQLGetFunctions() with the function type set to

SQL_API_SQLGETLENGTH and check the fExists output argument to determine if

the function is supported for the current connection.

Chapter 1. CLI and ODBC functions 193

Example

 /* get the length of the whole CLOB data */

 cliRC = SQLGetLength(hstmtLocUse,

 SQL_C_CLOB_LOCATOR,

 clobLoc,

 &clobLen,

 &ind);

SQLGetPosition function (CLI) - Return starting position of string

Purpose

 Specification: DB2 CLI 2.1

SQLGetPosition() is used to return the starting position of one string within a LOB

value (the source). The source value must be a LOB locator, the search string can

be a LOB locator or a literal string.

The source and search LOB locators can be any that have been returned from the

database from a fetch or a SQLGetSubString() call during the current transaction.

Syntax

SQLRETURN SQLGetPosition (SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER SourceLocator,

 SQLINTEGER SearchLocator,

 SQLCHAR *SearchLiteral,

 SQLINTEGER SearchLiteralLength,

 SQLUINTEGER FromPosition,

 SQLUINTEGER *LocatedAt,

 SQLINTEGER *IndicatorValue);

Function arguments

 Table 82. SQLGetPosition arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle

which has been allocated but which does not

currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This can be:

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Locator must be set to the source LOB locator.

SQLINTEGER SearchLocator input If the SearchLiteral pointer is NULL and if

SearchLiteralLength is set to 0, then SearchLocator must

be set to the LOB locator associated with the search

string; otherwise, this argument is ignored.

SQLCHAR * SearchLiteral input This argument points to the area of storage that

contains the search string literal.

If SearchLiteralLength is 0, this pointer must be NULL.

SQLINTEGER SearchLiteralLength input The length of the string in SearchLiteral(in bytes).

a

If this argument value is 0, then the argument

SearchLocator is meaningful.

194 Call Level Interface Guide and Reference, Volume 2

Table 82. SQLGetPosition arguments (continued)

Data type Argument Use Description

SQLUINTEGER FromPosition input For BLOBs and CLOBs, this is the position of the

first byte within the source string at which the

search is to start. For DBCLOBs, this is the first

character. The start byte or character is numbered 1.

SQLUINTEGER * LocatedAt output For BLOBs and CLOBs, this is the byte position at

which the string was located or, if not located, the

value zero. For DBCLOBs, this is the character

position.

If the length of the source string is zero, the value 1

is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

Usage

SQLGetPosition() is used in conjunction with SQLGetSubString() in order to obtain

any portion of a LOB in a random manner. In order to use SQLGetSubString(), the

location of the substring within the overall string must be known in advance. In

situations where the start of that substring can be found by a search string,

SQLGetPosition() can be used to obtain the starting position of that substring.

The Locator and SearchLocator (if used) arguments can contain any valid LOB

locator which has not been explicitly freed using a FREE LOCATOR statement or

implicitly freed because the transaction during which it was created has ended.

The Locator and SearchLocator must have the same LOB locator type.

The statement handle must not have been associated with any prepared statements

or catalog function calls.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 83. SQLGetPosition SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of LocatorCType and either of the LOB locator

values is not valid.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

Chapter 1. CLI and ODBC functions 195

Table 83. SQLGetPosition SQLSTATEs (continued)

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. The pointer to the LocatedAt argument was NULL.

The argument value for FromPosition was not greater than 0.

LocatorCType is not one of SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value of SearchLiteralLength was less than 1, and not

SQL_NTS.

The length of the pattern is longer than the maximum data length

of the associated variable SQL data type (for DB2 UDB for z/OS

and OS/390 servers, the pattern length is a maximum of 4000

bytes regardless of the data type or the LocatorCType). For

LocatorCType of SQL_C_CLOB_LOCATOR, the literal maximum

size is that of an SQLCLOB; for LocatorCType of

SQL_C_BLOB_LOCATOR, the literal maximum size is that of an

SQLVARBINARY; for LocatorCType of

SQL_C_DBLOB_LOCATOR, the literal maximum size is that of an

SQLVARGRAPHIC.

HYC00 Driver not capable. The application is currently connected to a data source that does

not support large objects.

0F001 The LOB token variable does not

currently represent any value.

The value specified for Locator or SearchLocator is not currently a

LOB locator.

Restrictions

This function is not available when connected to a DB2 server that does not

support large objects. Call SQLGetFunctions() with the function type set to

SQL_API_SQLGETPOSITION and check the fExists output argument to determine

if the function is supported for the current connection.

Example

 /* get the starting position of the CLOB piece of data */

 cliRC = SQLGetPosition(hstmtLocUse,

 SQL_C_CLOB_LOCATOR,

 clobLoc,

 0,

196 Call Level Interface Guide and Reference, Volume 2

(SQLCHAR *)"Interests",

 strlen("Interests"),

 1,

 &clobPiecePos,

 &ind);

SQLGetSQLCA function (CLI) - Get SQLCA data structure

Deprecated

Note:

SQLGetSQLCA() has been deprecated.

Although this version of DB2 CLI continues to support SQLGetSQLCA(), it is

recommended that you stop using it in your DB2 CLI programs so that they

conform to the latest standards.

Use SQLGetDiagField() and SQLGetDiagRec() to retrieve diagnostic information.

SQLGetStmtAttr function (CLI) - Get current setting of a statement

attribute

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLGetStmtAttr() returns the current setting of a statement attribute.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLGetStmtAttrW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLGetStmtAttr (SQLHSTMT StatementHandle,

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength,

 SQLINTEGER *StringLengthPtr);

Function arguments

 Table 84. SQLGetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output Pointer to a buffer in which to return the value of

the attribute specified in Attribute.

Chapter 1. CLI and ODBC functions 197

Table 84. SQLGetStmtAttr arguments (continued)

Data type Argument Use Description

SQLINTEGER BufferLength input If Attribute is an ODBC-defined attribute and

ValuePtr points to a character string or a binary

buffer, this argument should be the length of

*ValuePtr. If Attribute is an ODBC-defined attribute

and *ValuePtr is an integer, BufferLength is ignored.

If Attribute is a DB2 CLI attribute, the application

indicates the nature of the attribute by setting the

BufferLength argument. BufferLength can have the

following values:

v If *ValuePtr is a pointer to a character string, then

BufferLength is the number of bytes needed to store

the string, or SQL_NTS.

v If *ValuePtr is a pointer to a binary buffer, then the

application places the result of the

SQL_LEN_BINARY_ATTR(length) macro in

BufferLength. This places a negative value in

BufferLength.

v If *ValuePtr is a pointer to a value other than a

character string or binary string, then BufferLength

should have the value SQL_IS_POINTER.

v If *ValuePtr is contains a fixed-length data type,

then BufferLength is either SQL_IS_INTEGER or

SQL_IS_UINTEGER, as appropriate.

v If the value returned in ValuePtr is a Unicode

string, the BufferLength argument must be an even

number.

SQLSMALLINT * StringLengthPtr output A pointer to a buffer in which to return the total

number of bytes (excluding the null termination

character) available to return in *ValuePtr. If this is a

null pointer, no length is returned. If the attribute

value is a character string, and the number of bytes

available to return is greater than or equal to

BufferLength, the data in *ValuePtr is truncated to

BufferLength minus the length of a null termination

character and is null-terminated by the DB2 CLI.

Usage

A call to SQLGetStmtAttr() returns in *ValuePtr the value of the statement attribute

specified in Attribute. That value can either be a 32-bit value or a null-terminated

character string. If the value is a null-terminated string, the application specifies

the maximum length of that string in the BufferLength argument, and DB2 CLI

returns the length of that string in the *StringLengthPtr buffer. If the value is a

32-bit value, the BufferLength and StringLengthPtr arguments are not used.

The following statement attributes are read-only, so can be retrieved by

SQLGetStmtAttr(), but not set by SQLSetStmtAttr(). Refer to the list of statement

attributes for all statement attributes that can be set and retrieved.

v SQL_ATTR_IMP_PARAM_DESC

v SQL_ATTR_IMP_ROW_DESC

v SQL_ATTR_ROW_NUMBER

198 Call Level Interface Guide and Reference, Volume 2

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 85. SQLGetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength

minus the length of a null termination character. The length of the

untruncated string value is returned in *StringLengthPtr. (Function

returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. The argument Attribute was SQL_ATTR_ROW_NUMBER and the

cursor was not open, or the cursor was positioned before the start

of the result set or after the end of the result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. An asynchronously executing function was called for the

StatementHandle and was still executing when this function was

called.

SQLExecute() or SQLExecDirect() was called for the

StatementHandle and returned SQL_NEED_DATA. This function

was called before data was sent for all data-at-execution

parameters or columns.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for

this version of DB2 CLI

HY109 Invalid cursor position. The Attribute argument was SQL_ATTR_ROW_NUMBER and the

row had been deleted or could not be fetched.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid DB2

CLI attribute for the version of DB2 CLI, but was not supported

by the data source.

Restrictions

None.

Chapter 1. CLI and ODBC functions 199

Example

 /* get the handle for the implicitly allocated descriptor */

 rc = SQLGetStmtAttr(hstmt,

 SQL_ATTR_IMP_ROW_DESC,

 &hIRD,

 SQL_IS_INTEGER,

 &indicator);

SQLGetStmtOption function (CLI) - Return current setting of a

statement option

Deprecated

Note:

In ODBC 3.0, SQLGetStmtOption() has been deprecated and replaced with

SQLGetStmtAttr().

Although this version of DB2 CLI continues to support SQLGetStmtOption(), we

recommend that you use SQLGetStmtAttr() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLGetStmtOption(hstmt, SQL_ATTR_CURSOR_HOLD, pvCursorHold);

for example, would be rewritten using the new function as:

 SQLGetStmtAttr(hstmt, SQL_ATTR_CURSOR_HOLD, pvCursorHold,

 SQL_IS_INTEGER, NULL);

SQLGetSubString function (CLI) - Retrieve portion of a string value

Purpose

 Specification: DB2 CLI 2.1

SQLGetSubString() is used to retrieve a portion of a large object value, referenced

by a large object locator that has been returned from the server (returned by a

fetch or a previous SQLGetSubString() call) during the current transaction.

Syntax

SQLRETURN SQLGetSubString (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT LocatorCType,

 SQLINTEGER SourceLocator,

 SQLUINTEGER FromPosition,

 SQLUINTEGER ForLength,

 SQLSMALLINT TargetCType,

 SQLPOINTER DataPtr, /* rgbValue */

 SQLINTEGER BufferLength, /* cbValueMax */

 SQLINTEGER *StringLength,

 SQLINTEGER *IndicatorValue);

200 Call Level Interface Guide and Reference, Volume 2

Function arguments

 Table 86. SQLGetSubString arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle

which has been allocated but which does not

currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Locator must be set to the source LOB locator value.

SQLUINTEGER FromPosition input For BLOBs and CLOBs, this is the position of the

first byte to be returned by the function. For

DBCLOBs, this is the first character. The start byte or

character is numbered 1.

SQLUINTEGER ForLength input This is the length of the string to be returned by the

function. For BLOBs and CLOBs, this is the length in

bytes. For DBCLOBs, this is the length in characters.

If FromPosition is less than the length of the source

string but FromPosition + ForLength - 1 extends

beyond the end of the source string, the result is

padded on the right with the necessary number of

characters (X’00’ for BLOBs, single byte blank

character for CLOBs, and double byte blank

character for DBCLOBs).

SQLSMALLINT TargetCType input The C data type of the DataPtr. The target must

always be either a LOB locator C buffer type:

v SQL_C_CLOB_LOCATOR

v SQL_C_BLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

or a C string type:

v SQL_C_CHAR

v SQL_C_WCHAR

v SQL_C_BINARY

v SQL_C_DBCHAR

SQLPOINTER DataPtr output Pointer to the buffer where the retrieved string value

or a LOB locator is to be stored.

SQLINTEGER BufferLength input Maximum size of the buffer pointed to by DataPtr in

bytes.

SQLINTEGER * StringLength output The length of the returned information in DataPtr in

bytesa if the target C buffer type is intended for a

binary or character string variable and not a locator

value.

If the pointer is set to NULL, nothing is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

Chapter 1. CLI and ODBC functions 201

Usage

SQLGetSubString() is used to obtain any portion of the string that is represented

by the LOB locator. There are two choices for the target:

v The target can be an appropriate C string variable.

v A new LOB value can be created on the server and the LOB locator for that

value can be assigned to a target application variable on the client.

SQLGetSubString() can be used as an alternative to SQLGetData() for getting LOB

data in pieces. In this case a column is first bound to a LOB locator, which is then

used to fetch the LOB as a whole or in pieces.

The Locator argument can contain any valid LOB locator which has not been

explicitly freed using a FREE LOCATOR statement nor implicitly freed because the

transaction during which it was created has ended.

The statement handle must not have been associated with any prepared statements

or catalog function calls.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 87. SQLGetSubString SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The amount of data to be returned is longer than BufferLength. The

actual length of data available for return is stored in StringLength.

07006 Invalid conversion. The value specified for TargetCType was not SQL_C_CHAR,

SQL_WCHAR, SQL_C_BINARY, SQL_C_DBCHAR, or a LOB

locator.

The value specified for TargetCType is inappropriate for the source

(for example SQL_C_DBCHAR for a BLOB column).

22011 A substring error occurred. FromPosition is greater than the of length of the source string.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY003 Program type out of range. LocatorCType is not one of SQL_C_CLOB_LOCATOR,

SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009 Invalid argument value. The value specified for FromPosition or for ForLength was not a

positive integer.

202 Call Level Interface Guide and Reference, Volume 2

Table 87. SQLGetSubString SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The value of BufferLength was less than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does

not support large objects.

0F001 No locator currently assigned The value specified for Locator is not currently a LOB locator.

Restrictions

This function is not available when connected to a DB2 server that does not

support large objects. Call SQLGetFunctions() with the function type set to

SQL_API_SQLGETSUBSTRING and check the fExists output argument to

determine if the function is supported for the current connection.

Example

 /* read the piece of CLOB data in buffer */

 cliRC = SQLGetSubString(hstmtLocUse,

 SQL_C_CLOB_LOCATOR,

 clobLoc,

 clobPiecePos,

 clobLen - clobPiecePos,

 SQL_C_CHAR,

 buffer,

 clobLen - clobPiecePos + 1,

 &clobPieceLen,

 &ind);

SQLGetTypeInfo function (CLI) - Get data type information

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLGetTypeInfo() returns information about the data types that are supported by

the DBMSs associated with DB2 CLI. The information is returned in an SQL result

set. The columns can be received using the same functions that are used to process

a query.

Syntax

SQLRETURN SQLGetTypeInfo (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT DataType); /* fSqlType */

Chapter 1. CLI and ODBC functions 203

Function arguments

 Table 88. SQLGetTypeInfo arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSMALLINT DataType input The SQL data type being queried. The supported

types are:

v SQL_ALL_TYPES

v SQL_BIGINT

v SQL_BINARY

v SQL_BIT

v SQL_BLOB

v SQL_CHAR

v SQL_CLOB

v SQL_DATE

v SQL_DBCLOB

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_LONGVARBINARY

v SQL_LONGVARCHAR

v SQL_LONGVARGRAPHIC

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TIME

v SQL_TIMESTAMP

v SQL_TINYINT

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_XML

If SQL_ALL_TYPES is specified, information about

all supported data types would be returned in

ascending order by TYPE_NAME. All unsupported

data types would be absent from the result set.

Usage

Since SQLGetTypeInfo() generates a result set and is equivalent to executing a

query, it will generate a cursor and begin a transaction. To prepare and execute

another statement on this statement handle, the cursor must be closed.

If SQLGetTypeInfo() is called with an invalid DataType, an empty result set is

returned.

If either the LONGDATACOMPAT keyword or the

SQL_ATTR_LONGDATA_COMPAT connection attribute is set, then

SQL_LONGVARBINARY, SQL_LONGVARCHAR and SQL_LONGVARGRAPHIC

will be returned for the DATA_TYPE argument instead of SQL_BLOB, SQL_CLOB

and SQL_DBCLOB.

The columns of the result set generated by this function are described below.

204 Call Level Interface Guide and Reference, Volume 2

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

The data types returned are those that can be used in a CREATE TABLE, ALTER

TABLE, DDL statement. Non-persistent data types such as the locator data types

are not part of the returned result set. User-defined data types are not returned

either.

Columns returned by SQLGetTypeInfo

Column 1 TYPE_NAME (VARCHAR(128) NOT NULL Data Type)

Data source-dependent data type name; for example, ″CHAR()″, ″LONG

VARBINARY″. Applications must use this name in the CREATE TABLE

and ALTER TABLE statements.

Column 2 DATA_TYPE (SMALLINT NOT NULL Data Type)

SQL data type define values, for example, SQL_VARCHAR, SQL_BLOB,

SQL_DATE, SQL_INTEGER.

Column 3 COLUMN_SIZE (INTEGER Data Type)

If the data type is a character or binary string, then this column contains

the maximum length in bytes; if it is a graphic (DBCS) string, this is the

number of double byte characters for the column (the CLI/ODBC

configuration keyword Graphic can change this default behaviour). If the

data type is XML, zero is returned.

 For date, time, timestamp data types, this is the total number of characters

required to display the value when converted to character.

For numeric data types, this is the total number of digits (precision).

Column 4 LITERAL_PREFIX (VARCHAR(128) Data Type)

Character that DB2 recognizes as a prefix for a literal of this data type.

This column is null for data types where a literal prefix is not applicable.

Column 5 LITERAL_SUFFIX (VARCHAR(128) Data Type)

Character that DB2 recognizes as a suffix for a literal of this data type. This

column is null for data types where a literal prefix is not applicable.

Column 6 CREATE_PARAMS (VARCHAR(128) Data Type)

The text of this column contains a list of keywords, separated by commas,

corresponding to each parameter the application might specify in

parenthesis when using the name in the TYPE_NAME column as a data

type in SQL. The keywords in the list can be any of the following:

LENGTH, PRECISION, SCALE. They appear in the order that the SQL

syntax requires that they be used.

 A NULL indicator is returned if there are no parameters for the data type

definition, (such as INTEGER).

Note: The intent of CREATE_PARAMS is to enable an application to

customize the interface for a DDL builder. An application should expect,

using this, only to be able to determine the number of arguments required

to define the data type and to have localized text that could be used to

label an edit control.

Column 7 NULLABLE (SMALLINT NOT NULL Data Type)

Indicates whether the data type accepts a NULL value

v Set to SQL_NO_NULLS if NULL values are disallowed.

v Set to SQL_NULLABLE if NULL values are allowed.

v Set to SQL_NULLABLE_UNKNOWN if it is not known whether NULL

values are allowed or not.

Chapter 1. CLI and ODBC functions 205

Column 8 CASE_SENSITIVE (SMALLINT NOT NULL Data Type)

Indicates whether a character data type is case-sensitive in collations and

comparisons. Valid values are SQL_TRUE and SQL_FALSE.

Column 9 SEARCHABLE (SMALLINT NOT NULL Data Type)

Indicates how the data type is used in a WHERE clause. Valid values are:

v SQL_UNSEARCHABLE : if the data type cannot be used in a WHERE

clause.

v SQL_LIKE_ONLY : if the data type can be used in a WHERE clause only

with the LIKE predicate.

v SQL_ALL_EXCEPT_LIKE : if the data type can be used in a WHERE

clause with all comparison operators except LIKE.

v SQL_SEARCHABLE : if the data type can be used in a WHERE clause

with any comparison operator.

Column 10 UNSIGNED_ATTRIBUTE (SMALLINT Data Type)

Indicates whether the data type is unsigned. The valid values are:

SQL_TRUE, SQL_FALSE or NULL. A NULL indicator is returned if this

attribute is not applicable to the data type.

Column 11 FIXED_PREC_SCALE (SMALLINT NOT NULL Data Type)

Contains the value SQL_TRUE if the data type is exact numeric and

always has the same precision and scale; otherwise, it contains

SQL_FALSE.

Column 12 AUTO_INCREMENT (SMALLINT Data Type)

Contains SQL_TRUE if a column of this data type is automatically set to a

unique value when a row is inserted; otherwise, contains SQL_FALSE.

Column 13 LOCAL_TYPE_NAME (VARCHAR(128) Data Type)

This column contains any localized (native language) name for the data

type that is different from the regular name of the data type. If there is no

localized name, this column is NULL.

 This column is intended for display only. The character set of the string is

locale-dependent and is typically the default character set of the database.

Column 14 MINIMUM_SCALE (INTEGER Data Type)

The minimum scale of the SQL data type. If a data type has a fixed scale,

the MINIMUM_SCALE and MAXIMUM_SCALE columns both contain the

same value. NULL is returned where scale is not applicable.

Column 15 MAXIMUM_SCALE (INTEGER Data Type)

The maximum scale of the SQL data type. NULL is returned where scale is

not applicable. If the maximum scale is not defined separately in the

DBMS, but is defined instead to be the same as the maximum length of the

column, then this column contains the same value as the COLUMN_SIZE

column.

Column 16 SQL_DATA_TYPE (SMALLINT NOT NULL Data Type)

The value of the SQL data type as it appears in the SQL_DESC_TYPE field

of the descriptor. This column is the same as the DATA_TYPE column

(except for interval and datetime data types which DB2 CLI does not

support).

Column 17 SQL_DATETIME_SUB (SMALLINT Data Type)

This field is always NULL (DB2 CLI does not support interval and

datetime data types).

Column 18 NUM_PREC_RADIX (INTEGER Data Type)

If the data type is an approximate numeric type, this column contains the

206 Call Level Interface Guide and Reference, Volume 2

value 2 to indicate that COLUMN_SIZE specifies a number of bits. For

exact numeric types, this column contains the value 10 to indicate that

COLUMN_SIZE specifies a number of decimal digits. Otherwise, this

column is NULL.

Column 19 INTERVAL_PRECISION (SMALLINT Data Type)

This field is always NULL (DB2 CLI does not support interval data types).

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 89. SQLGetTypeInfo SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

StatementHandle had not been closed.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY004 SQL data type out of range. An invalid DataType was specified.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Example

 /* get data type information */

 cliRC = SQLGetTypeInfo(hstmt, SQL_ALL_TYPES);

SQLMoreResults function (CLI) - Determine if there are more result

sets

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLMoreResults() determines whether there is more information available on the

statement handle which has been associated with:

v an array input of parameter values for a query

v a stored procedure that is returning result sets

v or batched SQL

Chapter 1. CLI and ODBC functions 207

Syntax

SQLRETURN SQLMoreResults (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

 Table 90. SQLMoreResults arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

Usage

This function is used to return multiple results set in a sequential manner upon the

execution of:

v a parameterized query with an array of input parameter values specified with

the SQL_ATTR_PARAMSET_SIZE statement attribute and SQLBindParameter(),

or

v a stored procedure containing SQL queries, the cursors of which have been left

open so that the result sets remain accessible when the stored procedure has

finished execution. For this scenario, the stored procedure is typically trying to

return multiple result sets.

v or batched SQL. When multiple SQL statements are batched together during a

single SQLExecute() or SQLExecDirect().

After completely processing the first result set, the application can call

SQLMoreResults() to determine if another result set is available. If the current

result set has unfetched rows, SQLMoreResults() discards them by closing the

cursor and, if another result set is available, returns SQL_SUCCESS.

If all the result sets have been processed, SQLMoreResults() returns

SQL_NO_DATA_FOUND.

Applications that want to be able to manipulate more than one result set at the

same time can use the DB2 CLI function SQLNextResult() to move a result set to

another statement handle. SQLNextResult() does not support batched statements.

When using batched SQL, SQLExecute() or SQLExecDirect() will only execute the

first SQL statement in the batch. SQLMoreResults() can then be called to execute

the next SQL statement and will return SQL_SUCCESS if the next statement is

successfully executed. If there are no more statements to be executed, then

SQL_NO_DATA_FOUND is returned. If the batched SQL statement is an UPDATE,

INSERT, or DELETE statement, then SQLRowCount() can be called to determine the

number of rows affected.

If SQLCloseCursor() or if SQLFreeStmt() is called with the SQL_CLOSE option, or

SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, all

pending result sets on this statement handle are discarded.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

208 Call Level Interface Guide and Reference, Volume 2

v SQL_NO_DATA_FOUND

Diagnostics

 Table 91. SQLMoreResults SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

In addition SQLMoreResults() can return the SQLSTATEs associated with

SQLExecute().

Example

 cliRC = SQLMoreResults(hstmt);

SQLNativeSql function (CLI) - Get native SQL text

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLNativeSql() is used to show how DB2 CLI interprets vendor escape clauses. If

the original SQL string passed in by the application contained vendor escape

clause sequences, then DB2 CLI will return the transformed SQL string that would

be seen by the data source (with vendor escape clauses either converted or

discarded, as appropriate).

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLNativeSqlW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLNativeSql (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLCHAR *InStatementText, /* szSqlStrIn */

 SQLINTEGER TextLength1, /* cbSqlStrIn */

Chapter 1. CLI and ODBC functions 209

SQLCHAR *OutStatementText, /* szSqlStr */

 SQLINTEGER BufferLength, /* cbSqlStrMax */

 SQLINTEGER *TextLength2Ptr); /* pcbSqlStr */

Function arguments

 Table 92. SQLNativeSql arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection Handle

SQLCHAR * InStatementText input Input SQL string

SQLINTEGER TextLength1 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store InStatementText.

SQLCHAR * OutStatementText output Pointer to buffer for the transformed output string

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store OutStatementText.

SQLINTEGER * TextLength2Ptr output The total number of SQLCHAR elements (or

SQLWCHAR elements for the Unicode variant of this

function), excluding the null-terminator, available to

return in OutStatementText. If the number of

SQLCHAR elements (or SQLWCHAR elements for

the Unicode variant of this function) available to

return is greater than or equal to BufferLength, the

output SQL string in OutStatementText is truncated to

BufferLength - 1 SQLCHAR or SQLWCHAR elements.

Usage

This function is called when the application wishes to examine or display the

transformed SQL string that would be passed to the data source by DB2 CLI.

Translation (mapping) would only occur if the input SQL statement string contains

vendor escape clause sequence(s).

DB2 CLI can only detect vendor escape clause syntax errors when SQLNativeSql()

is called. Because DB2 CLI does not pass the transformed SQL string to the data

source for preparation, syntax errors that are detected by the DBMS are not

generated at this time. (The statement is not passed to the data source for

preparation because the preparation may potentially cause the initiation of a

transaction.)

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

210 Call Level Interface Guide and Reference, Volume 2

Diagnostics

 Table 93. SQLNativeSql SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer OutStatementText was not large enough to contain the

entire SQL string, so truncation occurred. The argument

TextLength2Ptr contains the total length of the untruncated SQL

string. (Function returns with SQL_SUCCESS_WITH_INFO)

08003 Connection is closed. The ConnectionHandle does not reference an open database

connection.

37000 Invalid SQL syntax. The input SQL string in InStatementText contained a syntax error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. The argument InStatementText is a NULL pointer.

The argument OutStatementText is a NULL pointer.

HY090 Invalid string or buffer length. The argument TextLength1 was less than 0, but not equal to

SQL_NTS.

The argument BufferLength was less than 0.

Restrictions

None.

SQLNumParams function (CLI) - Get number of parameters in a SQL

statement

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLNumParams() returns the number of parameter markers in an SQL statement.

Syntax

SQLRETURN SQLNumParams (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT *ParameterCountPtr); /* pcpar */

Function arguments

 Table 94. SQLNumParams arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT * ParameterCountPtr Output Number of parameters in the statement.

Chapter 1. CLI and ODBC functions 211

Usage

If the prepared SQL statement associated with Statement Handle contains batch SQL

(multiple SQL statements separated by a semicolon ’;’), the parameters are counted

for the entire string and are not differentiated by the individual statements making

up the batch.

This function can only be called after the statement associated with StatementHandle

has been prepared. If the statement does not contain any parameter markers,

ParameterCountPtr is set to 0.

An application can call this function to determine how many SQLBindParameter()

(or SQLBindFileToParam()) calls are necessary for the SQL statement associated

with the statement handle.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 95. SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. This function was called before SQLPrepare() was called for the

specified StatementHandle

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

212 Call Level Interface Guide and Reference, Volume 2

SQLNextResult function (CLI) - Associate next result set with another

statement handle

Purpose

 Specification: DB2 CLI 7.x

SQLNextResult() allows non-sequential access to multiple result sets returned from

a stored procedure.

Syntax

SQLRETURN SQLNextResult (SQLHSTMT StatementHandle1

 SQLHSTMT StatementHandle2);

Function arguments

 Table 96. SQLNextResult arguments

Data type Argument Use Description

SQLHSTMT StatementHandle1 input Statement handle.

SQLHSTMT StatementHandle2 input Statement handle.

Usage

A stored procedure returns multiple result sets by leaving one or more cursors

open after exiting. The first result set is always accessed by using the statement

handle that called the stored procedure. If multiple result sets are returned, either

SQLMoreResults() or SQLNextResult() can be used to describe and fetch the result

set.

SQLMoreResults() is used to close the cursor for the first result set and allow the

next result set to be processed on the same statement handle, whereas

SQLNextResult() moves the next result set to StatementHandle2, without closing the

cursor on StatementHandle1. Both functions return SQL_NO_DATA_FOUND if there

are no result sets to be fetched.

Using SQLNextResult() allows result sets to be processed in any order once they

have been transferred to other statement handles. Mixed calls to SQLMoreResults()

and SQLNextResult() are allowed until there are no more cursors (open result sets)

on StatementHandle1.

When SQLNextResult() returns SQL_SUCCESS, the next result set is no longer

associated with StatementHandle1. Instead, the next result set is associated with

StatementHandle2, as if a call to SQLExecDirect() had just successfully executed a

query on StatementHandle2. The cursor, therefore, can be described using

SQLNumResultCols(), SQLDescribeCol(), or SQLColAttribute().

After SQLNextResult() has been called, the result set now associated with

StatementHandle2 is removed from the chain of remaining result sets and cannot be

used again in either SQLNextResult() or SQLMoreResults(). This means that for ’n’

result sets, SQLNextResult() can be called successfully at most ’n-1’ times.

Chapter 1. CLI and ODBC functions 213

If SQLCloseCursor() or if SQLFreeStmt() is called with the SQL_CLOSE option, or

SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, all

pending result sets on this statement handle are discarded.

SQLNextResult() returns SQL_ERROR if StatementHandle2 has an open cursor or

StatementHandle1 and StatementHandle2 are not on the same connection. If any

errors or warnings are returned, SQLGetDiagRec() must always be called on

StatementHandle1.

Note: SQLMoreResults() also works with a parameterized query with an array of

input parameter values specified with the SQL_ATTR_ROW_ARRAY_SIZE

statement attribute and SQLBindParameter(). SQLNextResult(), however, does not

support this.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NO_DATA_FOUND

Diagnostics

 Table 97. SQLNextResult SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication Link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate the memory required to support

execution or completion of the function.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

StatementHandle2 has an open cursor associated with it.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access the memory required to support

execution or completion of the function.

HYT00 Time-out expired. The time-out period expired before the data source returned the

result set. The time-out period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

Only SQLMoreResults() can be used for parameterized queries and batched SQL.

Example

 /* use SQLNextResult to push Result Set 2 onto the second statement handle */

 cliRC = SQLNextResult(hstmt, hstmt2); /* open second cursor */

214 Call Level Interface Guide and Reference, Volume 2

SQLNumResultCols function (CLI) - Get number of result columns

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLNumResultCols() returns the number of columns in the result set associated

with the input statement handle.

SQLPrepare() or SQLExecDirect() must be called before calling this function.

After calling this function, you can call SQLColAttribute(), or one of the bind

column functions.

Syntax

SQLRETURN SQLNumResultCols (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSMALLINT *ColumnCountPtr); /* pccol */

Function arguments

 Table 98. SQLNumResultCols arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLSMALLINT * ColumnCountPtr output Number of columns in the result set

Usage

The function sets the output argument to zero if the last statement or function

executed on the input statement handle did not generate a result set.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 99. SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

Chapter 1. CLI and ODBC functions 215

Table 99. SQLNumResultCols SQLSTATEs (continued)

SQLSTATE Description Explanation

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or

SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Authorization

None.

Example

 /* identify the number of output columns */

 cliRC = SQLNumResultCols(hstmt, &nResultCols);

SQLParamData function (CLI) - Get next parameter for which a data

value is needed

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0 ISO CLI

SQLParamData() is used in conjunction with SQLPutData() to send long data in

pieces. It can also be used to send fixed-length data at execution time.

Syntax

SQLRETURN SQLParamData (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLPOINTER *ValuePtrPtr); /* prgbValue */

Function arguments

 Table 100. SQLParamData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

216 Call Level Interface Guide and Reference, Volume 2

Table 100. SQLParamData arguments (continued)

Data type Argument Use Description

SQLPOINTER * ValuePtrPtr output Pointer to a buffer in which to return the address of

the ParameterValuePtr buffer specified in

SQLBindParameter() (for parameter data) or the

address of the TargetValuePtr buffer specified in

SQLBindCol() (for column data), as contained in the

SQL_DESC_DATA_PTR descriptor record field.

Usage

SQLParamData() returns SQL_NEED_DATA if there is at least one

SQL_DATA_AT_EXEC parameter for which data still has not been assigned. This

function returns an application-provided value in ValuePtrPtr supplied by the

application during a previous SQLBindParameter() call. SQLPutData() is called one

or more times (in the case of long data) to send the parameter data.

SQLParamData() is called to signal that all the data has been sent for the current

parameter and to advance to the next SQL_DATA_AT_EXEC parameter.

SQL_SUCCESS is returned when all the parameters have been assigned data

values and the associated statement has been executed successfully. If any errors

occur during or before actual statement execution, SQL_ERROR is returned.

If SQLParamData() returns SQL_NEED_DATA, then only SQLPutData() or

SQLCancel() calls can be made. All other function calls using this statement handle

will fail. In addition, all function calls referencing the parent connection handle of

StatementHandle will fail if they involve changing any attribute or state of that

connection; that is, that following function calls on the parent connection handle

are also not permitted:

v SQLSetConnectAttr()

v SQLEndTran()

Should they be invoked during an SQL_NEED_DATA sequence, these functions

will return SQL_ERROR with SQLSTATE of HY010 and the processing of the

SQL_DATA_AT_EXEC parameters will not be affected.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NEED_DATA

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

v SQL_NEED_DATA

Diagnostics

SQLParamData() can return any SQLSTATE returned by the SQLPrepare(),

SQLExecDirect(), and SQLExecute() functions. In addition, the following

diagnostics can also be generated:

 Table 101. SQLParamData SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. Transfer of data between DB2 CLI and the application variables

would result in incompatible data conversion.

Chapter 1. CLI and ODBC functions 217

Table 101. SQLParamData SQLSTATEs (continued)

SQLSTATE Description Explanation

22026 String data, length mismatch The SQL_NEED_LONG_DATA_LEN information type in

SQLGetInfo() was ’Y’ and less data was sent for a long parameter

(the data type was SQL_LONGVARCHAR,

SQL_LONGVARBINARY, or other long data type) than was

specified with the StrLen_or_IndPtr argument in

SQLBindParameter().

The SQL_NEED_LONG_DATA_LEN information type in

SQLGetInfo() was ’Y’ and less data was sent for a long column

(the data type was SQL_LONGVARCHAR,

SQL_LONGVARBINARY, or other long data type) than was

specified in the length buffer corresponding to a column in a row

of data that was updated with SQLSetPos().

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled

back due to a deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY000 General error. An error occurred for which there was no specific SQLSTATE and

for which no implementation-specific SQLSTATE was defined. The

error message returned by SQLGetDiagRec() in the argument

MessageText describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. SQLParamData() was called out of sequence. This call is only valid

after an SQLExecDirect() or an SQLExecute(), or after an

SQLPutData() call.

Even though this function was called after an SQLExecDirect() or

an SQLExecute() call, there were no SQL_DATA_AT_EXEC

parameters (left) to process.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()

operation was not valid.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

HY509 Error deleting a file. Error encountered while trying to delete a temporary file.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

218 Call Level Interface Guide and Reference, Volume 2

Example

 /* get next parameter for which a data value is needed */

 cliRC = SQLParamData(hstmt, (SQLPOINTER *)&valuePtr);

SQLParamOptions function (CLI) - Specify an input array for a

parameter

Deprecated

Note:

In ODBC 3.0, SQLParamOptions() has been deprecated and replaced with

SQLSetStmtAttr().

Although this version of DB2 CLI continues to support SQLParamOptions(), we

recommend that you use SQLSetStmtAttr() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLParamOptions(hstmt, crow, pirow);

for example, would be rewritten using the new function as:

 SQLSetStmtAttr(hstmt, fOption, pvParam, fStrLen);

SQLPrepare function (CLI) - Prepare a statement

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLPrepare() associates an SQL statement or XQuery expression with the input

statement handle provided. The application can include one or more parameter

markers in the SQL statement. To include a parameter marker, the application

embeds a question mark (?) into the SQL string at the appropriate position. The

application can reference this prepared statement by passing the statement handle

to other functions.

Note: For XQuery expressions, you cannot specify parameter markers in the

expression itself. You can, however, use the XMLQUERY function to bind

parameter markers to XQuery variables. The values of the bound parameter

markers will then be passed to the XQuery expression specified in XMLQUERY for

execution.

If the statement handle has been previously used with a query statement (or any

function that returns a result set), either SQLCloseCursor() or SQLFreeStmt() with

the SQL_CLOSE option must be called to close the cursor before calling

SQLPrepare().

XQuery expressions must be prefixed with the ″XQUERY″ keyword. To prepare

and execute XQuery expressions without having to include this keyword, set the

statement attribute SQL_ATTR_XQUERY_STATEMENT to SQL_TRUE before

calling SQLPrepare() or SQLExecDirect().

Chapter 1. CLI and ODBC functions 219

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLPrepareW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLPrepare (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *StatementText, /* szSqlStr */

 SQLINTEGER TextLength); /* cbSqlStr */

Function arguments

 Table 102. SQLPrepare arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor

associated with StatementHandle.

SQLCHAR * StatementText input SQL statement string

SQLINTEGER TextLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the StatementText argument, or

SQL_NTS if StatementText is null-terminated.

Usage

Deferred prepare is on by default. The prepare request is not sent to the server

until either SQLDescribeParam(), SQLExecute(), SQLNumResultCols(),

SQLDescribeCol(), or SQLColAttribute() is called using the same statement handle

as the prepared statement. This minimizes network flow and improves

performance.

If the SQL statement text contains vendor escape clause sequences, DB2 CLI will

first modify the SQL statement text to the appropriate DB2 specific format before

submitting it to the database for preparation. If the application does not generate

SQL statements that contain vendor escape clause sequences then the

SQL_ATTR_NOSCAN statement attribute should be set to SQL_NOSCAN at the

connection level so that DB2 CLI does not perform a scan for any vendor escape

clauses.

Once a statement has been prepared using SQLPrepare(), the application can

request information about the format of the result set (if the statement was a

query) by calling:

v SQLNumResultCols()

v SQLDescribeCol()

v SQLColAttribute()

Information about the parameter markers in StatementText can be requested using

the following:

v SQLDescribeParam()

v SQLNumParams()

Note: The first invocation of any of the above functions except SQLNumParams()

will force the PREPARE request to be sent to the server if deferred prepare is

enabled.

220 Call Level Interface Guide and Reference, Volume 2

The SQL statement string might contain parameter markers and SQLNumParams()

can be called to determine the number of parameter markers in the statement. A

parameter marker is represented by a “?” character, and is used to indicate a

position in the statement where an application-supplied value is to be substituted

when SQLExecute() is called. The bind parameter functions, SQLBindParameter(),

SQLSetParam() and SQLBindFileToParam(), are used to bind or associate application

variables with each parameter marker and to indicate if any data conversion

should be performed at the time the data is transferred. An application can call

SQLDescribeParam() to retrieve information about the data expected by the

database server for the parameter marker.

All parameters must be bound before calling SQLExecute().

Refer to the PREPARE statement for information on rules related to parameter

markers.

Once the application has processed the results from the SQLExecute() call, it can

execute the statement again with new (or the same) parameter values.

The SQL statement can be COMMIT or ROLLBACK and executing either of these

statements has the same effect as calling SQLEndTran() on the current connection

handle.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor

referenced by the statement must be defined on a separate statement handle under

the same connection handle and same isolation level.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 103. SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE

statement does not include a

WHERE clause.

StatementText contained an UPDATE or DELETE statement which

did not contain a WHERE clause.

01508 Statement disqualified for

blocking.

The statement was disqualified for blocking for reasons other than

storage.

21S01 Insert value list does not match

column list.

StatementText contained an INSERT statement and the number of

values to be inserted did not match the degree of the derived

table.

21S02 Degrees of derived table does

not match column list.

StatementText contained a CREATE VIEW statement and the

number of names specified is not the same degree as the derived

table defined by the query specification.

22018 Invalid character value for cast

specification.

StatementText contained an SQL statement that contained a literal

or parameter and the value was incompatible with the data type

of the associated table column.

Chapter 1. CLI and ODBC functions 221

Table 103. SQLPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

22019 Invalid escape character The argument StatementText contained a LIKE predicate with an

ESCAPE in the WHERE clause, and the length of the escape

character following ESCAPE was not equal to 1.

22025 Invalid escape sequence The argument StatementText contained “LIKE pattern value

ESCAPE escape character” in the WHERE clause, and the character

following the escape character in the pattern value was not one of

″%″ or ″_″.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

34000 Invalid cursor name. StatementText contained a positioned DELETE or a positioned

UPDATE and the cursor referenced by the statement being

executed was not open.

37xxx

a Invalid SQL syntax. StatementText contained one or more of the following:

v an SQL statement that the connected database server could not

prepare

v a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled

back due to deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

42xxx

a Syntax Error or Access Rule

Violation.

425xx indicates the authorization ID does not have permission to

execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access

problems with the statement.

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already exists. StatementText contained a CREATE TABLE or CREATE VIEW

statement and the table name or view name specified already

existed.

S0002 Database object does not exist. StatementText contained an SQL statement that references a table

name or a view name which did not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the

specified index name already existed.

S0012 Index not found. StatementText contained a DROP INDEX statement and the

specified index name did not exist.

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the

column specified in the ADD clause was not unique or identified

an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a column

name which did not exist.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

222 Call Level Interface Guide and Reference, Volume 2

Table 103. SQLPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

HY009 Invalid argument value. StatementText was a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The argument TextLength was less than 1, but not equal to

SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Note: Not all DBMSs report all of the above diagnostic messages at prepare time.

If deferred prepare is left on as the default behavior (controlled by the

SQL_ATTR_DEFERRED_PREPARE statement attribute), then these errors could

occur when the PREPARE is flowed to the server. The application must be able to

handle these conditions when calling functions that cause this flow. These

functions include SQLExecute(), SQLDescribeParam(), SQLNumResultCols(),

SQLDescribeCol(), and SQLColAttribute().

Authorization

None.

Example

 SQLCHAR *stmt = (SQLCHAR *)"DELETE FROM org WHERE deptnumb = ? ";

 /* ... */

 /* prepare the statement */

 cliRC = SQLPrepare(hstmt, stmt, SQL_NTS);

SQLPrimaryKeys function (CLI) - Get primary key columns of a table

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLPrimaryKeys() returns a list of column names that comprise the primary key for

a table. The information is returned in an SQL result set, which can be retrieved

using the same functions that are used to process a result set generated by a query.

Chapter 1. CLI and ODBC functions 223

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLPrimaryKeysW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLPrimaryKeys (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3); /* cbTableName */

Function arguments

 Table 104. SQLPrimaryKeys arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

CatalogName is not a null pointer and does not point

to a zero-length string, then an empty result set and

SQL_SUCCESS will be returned. Otherwise, this is a

valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName input Schema qualifier of table name.

SQLSMALLINT NameLength2 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * TableName input Table name.

SQLSMALLINT NameLength3 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableName, or SQL_NTS if TableName

is null-terminated.

Usage

SQLPrimaryKeys() returns the primary key columns from a single table. Search

patterns cannot be used to specify any of the arguments.

The result set contains the columns listed in Columns Returned By

SQLPrimaryKeys, ordered by TABLE_CAT, TABLE_SCHEM, TABLE_NAME and

ORDINAL_POSITION.

Since calls to SQLPrimaryKeys() in many cases map to a complex and, thus,

expensive query against the system catalog, they should be used sparingly, and the

results saved rather than repeating calls.

224 Call Level Interface Guide and Reference, Volume 2

If the schema name is not provided, then the schema name defaults to the one

currently in effect for the current connection.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of

the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns

supported by the connected DBMS.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

Columns Returned By SQLPrimaryKeys

Column 1 TABLE_CAT (VARCHAR(128))

Primary key table catalog name. The value is NULL if this table does not

have catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))

The name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)

Name of the specified table.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)

Primary key column name.

Column 5 KEY_SEQ (SMALLINT not NULL)

Column sequence number in the primary key, starting with 1.

Column 6 PK_NAME (VARCHAR(128))

Primary key identifier. NULL if not applicable to the data source.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE

specification style. The column types, contents and order are identical to those

defined for the SQLPrimaryKeys() result set in ODBC.

If the specified table does not contain a primary key, an empty result set is

returned.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 105. SQLPrimaryKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

Chapter 1. CLI and ODBC functions 225

Table 105. SQLPrimaryKeys SQLSTATEs (continued)

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

HYC00 Driver not capable. DB2 CLI does not support catalog as a qualifier for table name.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example

 /* get the primary key columns of a table */

 cliRC = SQLPrimaryKeys(hstmt, NULL, 0, tbSchema, SQL_NTS, tbName, SQL_NTS);

SQLProcedureColumns function (CLI) - Get input/output parameter

information for a procedure

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLProcedureColumns() returns a list of input and output parameters associated

with a stored procedure. The information is returned in an SQL result set, which

can be retrieved using the same functions that are used to process a result set

generated by a query.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLProcedureColumnsW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

226 Call Level Interface Guide and Reference, Volume 2

Syntax

SQLRETURN SQLProcedureColumns(

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* szProcCatalog */

 SQLSMALLINT NameLength1, /* cbProcCatalog */

 SQLCHAR *SchemaName, /* szProcSchema */

 SQLSMALLINT NameLength2, /* cbProcSchema */

 SQLCHAR *ProcName, /* szProcName */

 SQLSMALLINT NameLength3, /* cbProcName */

 SQLCHAR *ColumnName, /* szColumnName */

 SQLSMALLINT NameLength4); /* cbColumnName */

Function arguments

 Table 106. SQLProcedureColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCHAR * CatalogName input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

CatalogName is not a null pointer and does not point

to a zero-length string, then an empty result set and

SQL_SUCCESS will be returned. Otherwise, this is a

valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName input Buffer that can contain a pattern value to qualify the

result set by schema name.

For DB2 for MVS/ESA V 4.1 and above, all the

stored procedures are in one schema; the only

acceptable value for the SchemaName argument is a

null pointer. If a value is specified, an empty result

set and SQL_SUCCESS are returned. For DB2

Database for Linux, UNIX, and Windows,

SchemaName can contain a valid pattern value. For

more information about valid search patterns, refer

to the catalog functions input arguments.

SQLSMALLINT NameLength2 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * ProcName input Buffer that can contain a pattern value to qualify the

result set by procedure name.

SQLSMALLINT NameLength3 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store ProcName, or SQL_NTS if ProcName

is null-terminated.

SQLCHAR * ColumnName input Buffer that can contain a pattern value to qualify the

result set by parameter name. This argument is to be

used to further qualify the result set already

restricted by specifying a non-empty value for

ProcName, SchemaName, or both.

Chapter 1. CLI and ODBC functions 227

Table 106. SQLProcedureColumns arguments (continued)

Data type Argument Use Description

SQLSMALLINT NameLength4 input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store ColumnName, or SQL_NTS if

ColumnName is null-terminated.

Usage

SQLProcedureColumns() returns the information in a result set, ordered by

PROCEDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, and

COLUMN_TYPE. Columns returned by SQLProcedureColumns lists the columns

in the result set. Applications should be aware that columns beyond the last

column might be defined in future releases.

Since calls to SQLProcedureColumns() in many cases map to a complex and thus

expensive query against the system catalog, they should be used sparingly, and the

results saved rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to

determine respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, and

COLUMN_NAME columns supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column

types will be reported as LONG VARCHAR, LONG VARBINARY or LONG

VARGRAPHIC types.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

If the stored procedure is at a DB2 for MVS/ESA V4.1 up to V6 server, the name of

the stored procedure must be registered in the server’s SYSIBM.SYSPROCEDURES

catalog table. For V7 and later servers, the stored procedures must be registered in

the server’s SYSIBM.SYSROUTINES and SYSIBM.SYSPARAMS catalog tables.

For versions of other DB2 servers that do not provide facilities for a stored

procedure catalog, an empty result set will be returned.

DB2 CLI will return information on the input, input/output, and output

parameters associated with the stored procedure, but cannot return descriptor

information for any result sets that the stored procedure might return.

Columns returned by SQLProcedureColumns

Column 1 PROCEDURE_CAT (VARCHAR(128))

Procedure catalog name. The value is NULL if this procedure does not

have catalogs.

Column 2 PROCEDURE_SCHEM (VARCHAR(128))

Name of the schema containing PROCEDURE_NAME. (This is also NULL

for DB2 for MVS/ESA V 4.1 or later SQLProcedureColumns() result sets.)

Column 3 PROCEDURE_NAME (VARCHAR(128))

Name of the procedure.

228 Call Level Interface Guide and Reference, Volume 2

Column 4 COLUMN_NAME (VARCHAR(128))

Name of the parameter.

Column 5 COLUMN_TYPE (SMALLINT not NULL)

Identifies the type information associated with this row. The values can be:

v SQL_PARAM_TYPE_UNKNOWN : the parameter type is unknown.

Note: This is not returned.

v SQL_PARAM_INPUT : this parameter is an input parameter.

v SQL_PARAM_INPUT_OUTPUT : this parameter is an input / output

parameter.

v SQL_PARAM_OUTPUT : this parameter is an output parameter.

v SQL_RETURN_VALUE : the procedure column is the return value of the

procedure.

Note: This is not returned.

v SQL_RESULT_COL : this parameter is actually a column in the result

set.

Note: This is not returned.

Column 6 DATA_TYPE (SMALLINT not NULL)

SQL data type.

Column 7 TYPE_NAME (VARCHAR(128) not NULL)

Character string representing the name of the data type corresponding to

DATA_TYPE.

Column 8 COLUMN_SIZE (INTEGER)

For XML arguments in SQL routines, zero is returned (as XML arguments

have no length). For cataloged external routines, however, XML parameters

are declared as XML AS CLOB(n), in which case COLUMN_SIZE is the

cataloged length, n.

 If the DATA_TYPE column value denotes a character or binary string, then

this column contains the maximum length in SQLCHAR or SQLWCHAR

elements; if it is a graphic (DBCS) string, this is the number of double byte

SQLCHAR or SQLWCHAR elements for the parameter.

For date, time, timestamp data types, this is the total number of SQLCHAR

or SQLWCHAR elements required to display the value when converted to

character.

For numeric data types, this is either the total number of digits, or the total

number of bits allowed in the column, depending on the value in the

NUM_PREC_RADIX column in the result set.

See also the table of data type precision.

Column 9 BUFFER_LENGTH (INTEGER)

The maximum number of bytes for the associated C buffer to store data

from this parameter if SQL_C_DEFAULT were specified on the

SQLBindCol(), SQLGetData() and SQLBindParameter() calls. This length

excludes any null-terminator. For exact numeric data types, the length

accounts for the decimal and the sign.

Chapter 1. CLI and ODBC functions 229

For XML arguments in SQL routines, zero is returned (as XML arguments

have no length). For cataloged external routines, however, XML parameters

are declared as XML AS CLOB(n), in which case BUFFER_LENGTH is the

cataloged length, n.

See the table of data type length.

Column 10 DECIMAL_DIGITS (SMALLINT)

The scale of the parameter. NULL is returned for data types where scale is

not applicable.

 See the table of data type scale.

Column 11 NUM_PREC_RADIX (SMALLINT)

Either 10 or 2 or NULL. If DATA_TYPE is an approximate numeric data

type, this column contains the value 2, then the COLUMN_SIZE column

contains the number of bits allowed in the parameter.

 If DATA_TYPE is an exact numeric data type, this column contains the

value 10 and the COLUMN_SIZE and DECIMAL_DIGITS columns contain

the number of decimal digits allowed for the parameter.

For numeric data types, the DBMS can return a NUM_PREC_RADIX of

either 10 or 2.

NULL is returned for data types where radix is not applicable.

Column 12 NULLABLE (SMALLINT not NULL)

SQL_NO_NULLS if the parameter does not accept NULL values.

 SQL_NULLABLE if the parameter accepts NULL values.

Column 13 REMARKS (VARCHAR(254))

Might contain descriptive information about the parameter.

Column 14 COLUMN_DEF (VARCHAR)

The default value of the column.

 If NULL was specified as the default value, then this column is the word

NULL, not enclosed in quotation marks. If the default value cannot be

represented without truncation, then this column contains TRUNCATED,

with no enclosing single quotation marks. If no default value was

specified, then this column is NULL.

The value of COLUMN_DEF can be used in generating a new column

definition, except when it contains the value TRUNCATED.

Column 15 SQL_DATA_TYPE (SMALLINT not NULL)

The value of the SQL data type as it appears in the SQL_DESC_TYPE field

of the descriptor. This column is the same as the DATA_TYPE column

except for datetime data types (DB2 CLI does not support interval data

types).

 For datetime data types, the SQL_DATA_TYPE field in the result set will

be SQL_DATETIME, and the SQL_DATETIME_SUB field will return the

subcode for the specific datetime data type (SQL_CODE_DATE,

SQL_CODE_TIME or SQL_CODE_TIMESTAMP).

Column 16 SQL_DATETIME_SUB (SMALLINT)

The subtype code for datetime data types. For all other data types this

column returns a NULL (including interval data types which DB2 CLI does

not support).

230 Call Level Interface Guide and Reference, Volume 2

Column 17 CHAR_OCTET_LENGTH (INTEGER)

The maximum length in bytes of a character data type column. For all

other data types, this column returns a NULL.

Column 18 ORDINAL_POSITION (INTEGER NOT NULL)

Contains the ordinal position of the parameter given by COLUMN_NAME

in this result set. This is the ordinal position of the argument to be

provided on the CALL statement. The leftmost argument has an ordinal

position of 1.

Column 19 IS_NULLABLE (Varchar)

v “NO” if the column does not include NULLs.

v “YES” if the column can include NULLs.

v zero-length string if nullability is unknown.

ISO rules are followed to determine nullability.

An ISO SQL-compliant DBMS cannot return an empty string.

The value returned for this column is different than the value returned for

the NULLABLE column. (See the description of the NULLABLE column.)

Note: The column names used by DB2 CLI follow the X/Open CLI CAE

specification style. The column types, contents and order are identical to those

defined for the SQLProcedureColumns() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 107. SQLProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

42601 PARMLIST syntax error. The PARMLIST value in the stored procedures catalog table

contains a syntax error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

Chapter 1. CLI and ODBC functions 231

Table 107. SQLProcedureColumns SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

SQLProcedureColumns() does not return information about the attributes of result

sets that might be returned from stored procedures.

If an application is connected to a DB2 server that does not provide support for a

stored procedure catalog, or does not provide support for stored procedures,

SQLProcedureColumns() will return an empty result set.

Example

 /* get input/output parameter information for a procedure */

 sqlrc = SQLProcedureColumns(hstmt,

 NULL,

 0, /* catalog name not used */

 (unsigned char *)colSchemaNamePattern,

 SQL_NTS, /* schema name not currently used */

 (unsigned char *)procname,

 SQL_NTS,

 colNamePattern,

 SQL_NTS); /* all columns */

SQLProcedures function (CLI) - Get list of procedure names

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLProcedures() returns a list of stored procedure names that have been registered

at the server, and which match the specified search pattern.

The information is returned in an SQL result set, which can be retrieved using the

same functions that are used to process a result set generated by a query.

232 Call Level Interface Guide and Reference, Volume 2

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLProceduresW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLProcedures (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* szProcCatalog */

 SQLSMALLINT NameLength1, /* cbProcCatalog */

 SQLCHAR *SchemaName, /* szProcSchema */

 SQLSMALLINT NameLength2, /* cbProcSchema */

 SQLCHAR *ProcName, /* szProcName */

 SQLSMALLINT NameLength3); /* cbProcName */

Function arguments

 Table 108. SQLProcedures arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * CatalogName Input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

CatalogName is not a null pointer and does not point

to a zero-length string, then an empty result set and

SQL_SUCCESS will be returned. Otherwise, this is a

valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName Input Buffer that can contain a pattern value to qualify the

result set by schema name.

For DB2 for MVS/ESA V 4.1 and above, all the

stored procedures are in one schema; the only

acceptable value for the SchemaName argument is a

null pointer. If a value is specified, an empty result

set and SQL_SUCCESS are returned. For DB2

Database for Linux, UNIX, and Windows,

SchemaName can contain a valid pattern value. For

more information about valid search patterns, refer

to the catalog functions input arguments.

SQLSMALLINT NameLength2 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * ProcName Input Buffer that can contain a pattern value to qualify the

result set by table name.

SQLSMALLINT NameLength3 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store ProcName, or SQL_NTS if ProcName

is null-terminated.

Chapter 1. CLI and ODBC functions 233

Usage

The result set returned by SQLProcedures() contains the columns listed in Columns

returned by SQLProcedures in the order given. The rows are ordered by

PROCEDURE_CAT, PROCEDURE_SCHEMA, and PROCEDURE_NAME.

Since calls to SQLProcedures() in many cases map to a complex and thus expensive

query against the system catalog, they should be used sparingly, and the results

saved rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of

the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns

supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column

types will be reported as LONG VARCHAR, LONG VARBINARY, or LONG

VARGRAPHIC types.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

If the stored procedure is at a DB2 for MVS/ESA V4.1 up to V6 server, the name of

the stored procedures must be registered in the server’s SYSIBM.SYSPROCEDURES

catalog table. For V7 and later servers, the stored procedure must be registered in

the server’s SYSIBM.SYSROUTINES and SYSIBM.SYSPARAMS catalog tables.

For other versions of DB2 servers that do not provide facilities for a stored

procedure catalog, an empty result set will be returned.

Columns returned by SQLProcedures

Column 1 PROCEDURE_CAT (VARCHAR(128))

Procedure catalog name. The value is NULL if this procedure does not

have catalogs.

Column 2 PROCEDURE_SCHEM (VARCHAR(128))

The name of the schema containing PROCEDURE_NAME.

Column 3 PROCEDURE_NAME (VARCHAR(128) NOT NULL)

The name of the procedure.

Column 4 NUM_INPUT_PARAMS (INTEGER not NULL)

Number of input parameters. INOUT parameters are not counted as part

of this number.

 To determine information regarding INOUT parameters, examine the

COLUMN_TYPE column returned by SQLProcedureColumns().

Column 5 NUM_OUTPUT_PARAMS (INTEGER not NULL)

Number of output parameters. INOUT parameters are not counted as part

of this number.

 To determine information regarding INOUT parameters, examine the

COLUMN_TYPE column returned by SQLProcedureColumns().

Column 6 NUM_RESULT_SETS (INTEGER not NULL)

Number of result sets returned by the procedure.

234 Call Level Interface Guide and Reference, Volume 2

This column should not be used, it is reserved for future use by ODBC.

Column 7 REMARKS (VARCHAR(254))

Contains the descriptive information about the procedure.

Column 8 PROCEDURE_TYPE (SMALLINT)

Defines the procedure type:

v SQL_PT_UNKNOWN: It cannot be determined whether the procedure

returns a value.

v SQL_PT_PROCEDURE: The returned object is a procedure; that is, it

does not have a return value.

v SQL_PT_FUNCTION: The returned object is a function; that is, it has a

return value.

DB2 CLI always returns SQL_PT_PROCEDURE.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE

specification style. The column types, contents and order are identical to those

defined for the SQLProcedures() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 109. SQLProcedures SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

Chapter 1. CLI and ODBC functions 235

Table 109. SQLProcedures SQLSTATEs (continued)

SQLSTATE Description Explanation

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

If an application is connected to a DB2 server that does not provide support for a

stored procedure catalog, or does not provide support for stored procedures,

SQLProcedureColumns() will return an empty result set.

SQLPutData function (CLI) - Passing data value for a parameter

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0 ISO CLI

SQLPutData() is called following an SQLParamData() call returning

SQL_NEED_DATA to supply parameter data values. This function can be used to

send large parameter values in pieces.

Syntax

SQLRETURN SQLPutData (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLPOINTER DataPtr, /* rgbValue */

 SQLLEN StrLen_or_Ind); /* cbValue */

Function arguments

 Table 110. SQLPutData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLPOINTER DataPtr Input Pointer to the actual data, or portion of data, for a

parameter. The data must be in the form specified in

the SQLBindParameter() call that the application used

when specifying the parameter.

236 Call Level Interface Guide and Reference, Volume 2

Table 110. SQLPutData arguments (continued)

Data type Argument Use Description

SQLLEN StrLen_or_Ind Input The length of DataPtr. Specifies the amount of data

sent in a call to SQLPutData() .

The amount of data can vary with each call for a

given parameter. The application can also specify

SQL_NTS or SQL_NULL_DATA for StrLen_or_Ind.

StrLen_or_Ind is ignored for all fixed length C buffer

types, such as date, time, timestamp, and all numeric

C buffer types.

For cases where the C buffer type is SQL_C_CHAR

or SQL_C_BINARY, or if SQL_C_DEFAULT is

specified as the C buffer type and the C buffer type

default is SQL_C_CHAR or SQL_C_BINARY, this is

the number of bytes of data in the DataPtr buffer.

Usage

The application calls SQLPutData() after calling SQLParamData() on a statement in

the SQL_NEED_DATA state to supply the data values for an

SQL_DATA_AT_EXEC parameter. Long data can be sent in pieces via repeated

calls to SQLPutData(). DB2 CLI generates a temporary file for each

SQL_DATA_AT_EXEC parameter to which each piece of data is appended when

SQLPutData() is called. The path in which DB2 CLI creates its temporary files can

be set using the TEMPDIR keyword in the db2cli.ini file. If this keyword is not set,

DB2 CLI attempts to write to the path specified by the environment variables

TEMP or TMP. After all the pieces of data for the parameter have been sent, the

application calls SQLParamData() again to proceed to the next

SQL_DATA_AT_EXEC parameter, or, if all parameters have data values, to execute

the statement.

SQLPutData() cannot be called more than once for a fixed length C buffer type,

such as SQL_C_LONG.

After an SQLPutData() call, the only legal function calls are SQLParamData(),

SQLCancel(), or another SQLPutData() if the input data is character or binary data.

As with SQLParamData(), all other function calls using this statement handle will

fail. In addition, all function calls referencing the parent connection handle of

StatementHandle will fail if they involve changing any attribute or state of that

connection; that is, the following function calls on the parent connection handle are

also not permitted:

v SQLSetConnectAttr()

v SQLEndTran()

Should they be invoked during an SQL_NEED_DATA sequence, these functions

will return SQL_ERROR with SQLSTATE of HY010 and the processing of the

SQL_DATA_AT_EXEC parameters will not be affected.

If one or more calls to SQLPutData() for a single parameter results in

SQL_SUCCESS, attempting to call SQLPutData() with StrLen_or_Ind set to

SQL_NULL_DATA for the same parameter results in an error with SQLSTATE of

22005. This error does not result in a change of state; the statement handle is still

in a Need Data state and the application can continue sending parameter data.

Chapter 1. CLI and ODBC functions 237

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

Some of the following diagnostics conditions might also be reported on the final

SQLParamData() call rather than at the time the SQLPutData() is called.

 Table 111. SQLPutData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data sent for a numeric parameter was truncated without the

loss of significant digits.

Timestamp data sent for a date or time column was truncated.

Function returns with SQL_SUCCESS_WITH_INFO.

22001 String data right truncation. More data was sent for a binary or char data than the data source

can support for that column.

22003 Numeric value out of range. The data sent for a numeric parameter caused the whole part of

the number to be truncated when assigned to the associated

column.

SQLPutData() was called more than once for a fixed length

parameter.

22005 Error in assignment. The data sent for a parameter was incompatible with the data

type of the associated table column.

22007 Invalid datetime format. The data value sent for a date, time, or timestamp parameters was

invalid.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY009 Invalid argument value. The argument DataPtr was a NULL pointer, and the argument

StrLen_or_Ind was neither 0 nor SQL_NULL_DATA.

HY010 Function sequence error. The statement handle StatementHandle must be in a need data

state and must have been positioned on an SQL_DATA_AT_EXEC

parameter via a previous SQLParamData() call.

HY090 Invalid string or buffer length. The argument DataPtr was not a NULL pointer, and the argument

StrLen_or_Ind was less than 0, but not equal to SQL_NTS or

SQL_NULL_DATA.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

238 Call Level Interface Guide and Reference, Volume 2

Restrictions

A additional value for StrLen_or_Ind, SQL_DEFAULT_PARAM, was introduced in

ODBC 2.0, to indicate that the procedure is to use the default value of a parameter,

rather than a value sent from the application. Since DB2 stored procedure

arguments do not support default values, specification of this value for

StrLen_or_Ind argument will result in an error when the CALL statement is

executed since the SQL_DEFAULT_PARAM value will be considered an invalid

length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be

used with the StrLen_or_Ind argument. The macro is used to specify the sum total

length of the entire data that would be sent for character or binary C data via the

subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this

information, the macro is not needed. An ODBC application calls SQLGetInfo()

with the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this

information. The DB2 ODBC driver will return ’N’ to indicate that this information

is not needed by SQLPutData().

Example

 SQLCHAR buffer[BUFSIZ];

 size_t n = BUFSIZ;

 /* ... */

 /* passing data value for a parameter */

 cliRC = SQLPutData(hstmt, buffer, n);

SQLRowCount function (CLI) - Get row count

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLRowCount() returns the number of rows in a table that were affected by an

UPDATE, INSERT, DELETE, or MERGE statement executed against the table, or a

view based on the table.

SQLExecute() or SQLExecDirect() must be called before calling this function.

Syntax

SQLRETURN SQLRowCount (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLLEN *RowCountPtr); /* pcrow */

Function arguments

 Table 112. SQLRowCount arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLLEN * RowCountPtr output Pointer to location where the number of rows

affected is stored.

Chapter 1. CLI and ODBC functions 239

Usage

If the last executed statement referenced by the input statement handle was not an

UPDATE, INSERT, DELETE, or MERGE statement, or if it did not execute

successfully, then the function sets the contents of RowCountPtr to -1.

Any rows in other tables that might have been affected by the statement (for

example, cascading deletes) are not included in the count.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 113. SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. The function was called prior to calling SQLExecute() or

SQLExecDirect() for the StatementHandle.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

Authorization

None.

SQLSetColAttributes function (CLI) - Set column attributes

Deprecated

Note:

In ODBC 3.0, SQLSetColAttributes() has been deprecated, and DB2 CLI no longer

supports this function.

Now that DB2 CLI uses deferred prepare by default, there is no need for the

functionality of SQLSetColAttributes().

SQLSetConnectAttr function (CLI) - Set connection attributes

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

240 Call Level Interface Guide and Reference, Volume 2

SQLSetConnectAttr() sets attributes that govern aspects of connections.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLSetConnectAttrW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLSetConnectAttr (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLINTEGER Attribute, /* fOption */

 SQLPOINTER ValuePtr, /* pvParam */

 SQLINTEGER StringLength); /* fStrLen */

Function arguments

 Table 114. SQLSetConnectAttr arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Attribute to set, listed in the connection attributes

list.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.

Depending on the value of Attribute, ValuePtr will be

a 32-bit unsigned integer value or pointer to a

null-terminated character string. Note that if the

Attribute argument is a driver-specific value, the

value in *ValuePtr can be a signed integer. Refer to

the connection attributes list for details.

SQLINTEGER StringLength input If Attribute is an ODBC-defined attribute and

ValuePtr points to a character string or a binary

buffer, this argument should be the length of

*ValuePtr. For character string data, StringLength

should contain the number of bytes in the string. If

Attribute is an ODBC-defined attribute and ValuePtr

is an integer, StringLength is ignored.

If Attribute is a DB2 CLI attribute, the application

indicates the nature of the attribute by setting the

StringLength argument. StringLength can have the

following values:

v If ValuePtr is a pointer to a character string, then

StringLength is the number of bytes needed to

store the string or SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, then the

application places the result of the

SQL_LEN_BINARY_ATTR(length) macro in

StringLength. This places a negative value in

StringLength.

v If ValuePtr is a pointer to a value other than a

character string or a binary string, then

StringLength should have the value

SQL_IS_POINTER.

v If ValuePtr contains a fixed-length value, then

StringLength is either SQL_IS_INTEGER or

SQL_IS_UINTEGER, as appropriate.

Chapter 1. CLI and ODBC functions 241

Usage

Setting statement attributes using SQLSetConnectAttr() no longer supported

The ability to set statement attributes using SQLSetConnectAttr() is no longer

supported. To support applications written before version 5, some statement

attributes can be set using SQLSetConnectAttr() in this release of DB2 CLI. All

applications that rely on this behavior, however, should be updated to use

SQLSetStmtAttr() instead.

If SQLSetConnectAttr() is called to set a statement attribute that sets the header

field of a descriptor, the descriptor field is set for the application descriptors

currently associated with all statements on the connection. However, the attribute

setting does not affect any descriptors that might be associated with the statements

on that connection in the future.

Connection Attributes

At any time between allocating and freeing a connection, an application can call

SQLSetConnectAttr(). All connection and statement attributes successfully set by

the application for the connection persist until SQLFreeHandle() is called on the

connection.

Some connection attributes can be set only before a connection has been made;

others can be set only after a connection has been made, while some cannot be set

once a statement is allocated. Refer to the connection attributes list for details on

when each attribute can be set.

Some connection attributes support substitution of a similar value if the data

source does not support the value specified in ValuePtr. In such cases, DB2 CLI

returns SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value

changed.). To determine the substituted value, an application calls

SQLGetConnectAttr().

The format of information set through ValuePtr depends on the specified Attribute.

SQLSetConnectAttr() will accept attribute information in one of two different

formats: a null-terminated character string or a 32-bit integer value. The format of

each is noted in the attribute’s description. Character strings pointed to by the

ValuePtr argument of SQLSetConnectAttr() have a length of StringLength bytes. The

StringLength argument is ignored if the length is defined by the attribute.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

DB2 CLI can return SQL_SUCCESS_WITH_INFO to provide information about the

result of setting an option.

When Attribute is a statement attribute, SQLSetConnectAttr() can return any

SQLSTATEs returned by SQLSetStmtAttr().

242 Call Level Interface Guide and Reference, Volume 2

Table 115. SQLSetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 General error. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. DB2 CLI did not support the value specified in *ValuePtr and

substituted a similar value. (Function returns

SQL_SUCCESS_WITH_INFO.)

08002 Connection in use. The argument Attribute was SQL_ATTR_ODBC_CURSORS and

DB2 CLI was already connected to the data source.

08003 Connection is closed. An Attribute value was specified that required an open connection,

but the ConnectionHandle was not in a connected state.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

24000 Invalid cursor state. The argument Attribute was SQL_ATTR_CURRENT_QUALIFIER

and a result set was pending.

HY000 General error. An error occurred for which there was no specific SQLSTATE and

for which no implementation-specific SQLSTATE was defined. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. A null pointer was passed for ValuePtr and the value in *ValuePtr

was a string value.

HY010 Function sequence error. An asynchronously executing function was called for a

StatementHandle associated with the ConnectionHandle and was still

executing when SQLSetConnectAttr() was called.

SQLExecute() or SQLExecDirect() was called for a StatementHandle

associated with the ConnectionHandle and returned

SQL_NEED_DATA. This function was called before data was sent

for all data-at-execution parameters or columns.

SQLBrowseConnect() was called for the ConnectionHandle and

returned SQL_NEED_DATA. This function was called before

SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or

SQL_SUCCESS.

HY011 Operation invalid at this time. The argument Attribute was SQL_ATTR_TXN_ISOLATION and a

transaction was open.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified

in *ValuePtr. (DB2 CLI returns this SQLSTATE only for connection

and statement attributes that accept a discrete set of values, such

as SQL_ATTR_ACCESS_MODE. For all other connection and

statement attributes, DB2 CLI must verify the value specified in

ValuePtr.)

The Attribute argument was SQL_ATTR_TRACEFILE or

SQL_ATTR_TRANSLATE_LIB, and *ValuePtr was an empty string.

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not

SQL_NTS.

Chapter 1. CLI and ODBC functions 243

Table 115. SQLSetConnectAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. The value specified for the argument Attribute was not valid for

this version of DB2 CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid

connection or statement attribute for the version of the DB2 CLI

driver, but was not supported by the data source.

Restrictions

None.

Example

 /* set AUTOCOMMIT on */

 cliRC = SQLSetConnectAttr(hdbc,

 SQL_ATTR_AUTOCOMMIT,

 (SQLPOINTER)SQL_AUTOCOMMIT_ON,

 SQL_NTS);

 /* ... */

 /* set AUTOCOMMIT OFF */

 cliRC = SQLSetConnectAttr(hdbc,

 SQL_ATTR_AUTOCOMMIT,

 (SQLPOINTER)SQL_AUTOCOMMIT_OFF,

 SQL_NTS);

SQLSetConnection function (CLI) - Set connection handle

Purpose

 Specification: DB2 CLI 2.1

This function is needed if the application needs to deterministically switch to a

particular connection before continuing execution. It should only be used when the

application is mixing DB2 CLI function calls with embedded SQL function calls

and where multiple connections are used.

Syntax

SQLRETURN SQLSetConnection (SQLHDBC ConnectionHandle); /* hdbc */

Function arguments

 Table 116. SQLSetConnection arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input The connection handle associated with the

connection that the application wishes to switch to.

Usage

In DB2 CLI version 1 it was possible to mix DB2 CLI calls with calls to routines

containing embedded SQL as long as the connect request was issued via the DB2

CLI connect function. The embedded SQL routine would simply use the existing

DB2 CLI connection.

244 Call Level Interface Guide and Reference, Volume 2

Although this is still true, there is a potential complication: DB2 CLI allows

multiple concurrent connections. This means that it is no longer clear which

connection an embedded SQL routine would use upon being invoked. In practice,

the embedded routine would use the connection associated with the most recent

network activity. However, from the application’s perspective, this is not always

deterministic and it is difficult to keep track of this information.

SQLSetConnection() is used to allow the application to explicitly specify which

connection is active. The application can then call the embedded SQL routine.

SQLSetConnection() is not needed if the application makes use of DB2 CLI

exclusively. Under those conditions, each statement handle is implicitly associated

with a connection handle and there is never any confusion as to which connection

a particular DB2 CLI function applies.

Return codes

v SQL_SUCCESS

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 117. SQLSetConnection SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection handle provided is not currently associated with

an open connection to a database server.

HY000 General error. An error occurred for which there was no specific SQLSTATE and

for which no implementation-specific SQLSTATE was defined. The

error message returned by SQLGetDiagRec() in the argument

MessageText describes the error and its cause.

Restrictions

None.

Example

 /* perform statements on the first connection */

 cliRC = SQLSetConnection(hdbc1);

 /* ... */

 /* perform statements on the second connection */

 cliRC = SQLSetConnection(hdbc2);

SQLSetConnectOption function (CLI) - Set connection option

Deprecated

Note:

In ODBC 3.0, SQLSetConnectOption() has been deprecated and replaced with

SQLSetConnectAttr().

Although this version of DB2 CLI continues to support SQLSetConnectOption(), we

recommend that you use SQLSetConnectAttr() in your DB2 CLI programs so that

they conform to the latest standards.

Chapter 1. CLI and ODBC functions 245

This deprecated function cannot be used in a 64-bit environment.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLSetConnectOptionW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Migrating to the new function

The statement:

 SQLSetConnectOption(

 hdbc,

 SQL_AUTOCOMMIT,

 SQL_AUTOCOMMIT_OFF);

for example, would be rewritten using the new function as:

 SQLSetConnectAttr(

 hdbc,

 SQL_ATTR_AUTOCOMMIT,

 SQL_AUTOCOMMIT_OFF,

 0);

SQLSetCursorName function (CLI) - Set cursor name

Purpose

 Specification: DB2 CLI 1.1 ODBC 1.0 ISO CLI

SQLSetCursorName() associates a cursor name with the statement handle. This

function is optional because DB2 CLI implicitly generates a cursor name. The

implicit cursor name is available after the dynamic SQL has been prepared on the

statement handle.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLSetCursorNameW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLSetCursorName (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CursorName, /* szCursor */

 SQLSMALLINT NameLength); /* cbCursor */

Function arguments

 Table 118. SQLSetCursorName arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName input Cursor name

SQLSMALLINT NameLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store the CursorName argument.

246 Call Level Interface Guide and Reference, Volume 2

Usage

DB2 CLI always generates and uses an internally generated cursor name when a

query is prepared or executed directly. SQLSetCursorName() allows an

application-defined cursor name to be used in an SQL statement (a positioned

UPDATE or DELETE). DB2 CLI maps this name to the internal name. The name

will remain associated with the statement handle, until the handle is dropped, or

another SQLSetCursorName() is called on this statement handle.

Although SQLGetCursorName() will return the name set by the application (if one

was set), error messages associated with positioned UPDATE and DELETE

statements will refer to the internal name. For this reason, we recommend that you

do not use SQLSetCursorName() for positioned UPDATEs and DELETEs, but

instead use the internal name which can be obtained by calling

SQLGetCursorName().

Cursor names must follow these rules:

v All cursor names within the connection must be unique.

v Each cursor name must be less than or equal to 128 bytes in length. Any attempt

to set a cursor name longer than 128 bytes results in truncation of that cursor

name to 128 bytes. (No warning is generated.)

v Since internally generated names begin with SQLCUR or SQL_CUR, the

application must not input a cursor name starting with either SQLCUR or

SQL_CUR in order to avoid conflicts with internal names.

v Since a cursor name is considered an identifier in SQL, it must begin with an

English letter (a-z, A-Z) followed by any combination of digits (0-9), English

letters or the underscore character (_).

v To permit cursor names containing characters other than those listed above (such

as National Language Set or Double Bytes Character Set characters), the

application must enclose the cursor name in double quotes (″).

v Unless the input cursor name is enclosed in double quotes, all leading and

trailing blanks from the input cursor name string will be removed.

For efficient processing, applications should not include any leading or trailing

spaces in the CursorName buffer. If the CursorName buffer contains a delimited

identifier, applications should position the first double quote as the first character

in the CursorName buffer.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Chapter 1. CLI and ODBC functions 247

Diagnostics

 Table 119. SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

34000 Invalid cursor name. The cursor name specified by the argument CursorName was

invalid. The cursor name either begins with ″SQLCUR″ or

″SQL_CUR″ or violates the cursor naming rules (Must begin with

a-z or A-Z followed by any combination of English letters, digits,

or the ’_’ character.

The cursor name specified by the argument CursorName already

exists.

The cursor name length is greater than the value returned by

SQLGetInfo() with the SQL_MAX_CURSOR_NAME_LEN

argument.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. CursorName was a null pointer.

HY010 Function sequence error. There is an open or positioned cursor on the statement handle.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY090 Invalid string or buffer length. The argument NameLength was less than 0, but not equal to

SQL_NTS.

Authorization

None.

Example

 /* set the name of the cursor */

 rc = SQLSetCursorName(hstmtSelect, (SQLCHAR *)"CURSNAME", SQL_NTS);

248 Call Level Interface Guide and Reference, Volume 2

SQLSetDescField function (CLI) - Set a single field of a descriptor

record

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLSetDescField() sets the value of a single field of a descriptor record.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLSetDescFieldW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLSetDescField (SQLHDESC DescriptorHandle,

 SQLSMALLINT RecNumber,

 SQLSMALLINT FieldIdentifier,

 SQLPOINTER ValuePtr,

 SQLINTEGER BufferLength);

Function arguments

 Table 120. SQLSetDescField arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record containing the field

that the application seeks to set. Descriptor records

are numbered from 0, with record number 0 being

the bookmark record. The RecNumber argument is

ignored for header fields.

SQLSMALLINT FieldIdentifier input Indicates the field of the descriptor whose value is to

be set. For more information, refer to the list of

values for the descriptor FieldIdentifier argument.

SQLPOINTER ValuePtr input Pointer to a buffer containing the descriptor

information, or a four-byte value. The data type

depends on the value of FieldIdentifier. If ValuePtr is a

four-byte value, either all four of the bytes are used,

or just two of the four are used, depending on the

value of the FieldIdentifier argument.

Chapter 1. CLI and ODBC functions 249

Table 120. SQLSetDescField arguments (continued)

Data type Argument Use Description

SQLINTEGER BufferLength input If FieldIdentifier is an ODBC-defined field and

ValuePtr points to a character string or a binary

buffer, this argument should be the length of

*ValuePtr. For character string data, BufferLength

should contain the number of bytes in the string. If

FieldIdentifier is an ODBC-defined field and ValuePtr

is an integer, BufferLength is ignored.

If FieldIdentifier is a driver-defined field, the

application indicates the nature of the field by

setting the BufferLength argument. BufferLength can

have the following values:

v If ValuePtr is a pointer to a character string, then

BufferLength is the number of bytes needed to store

the string or SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, then the

application places the result of the

SQL_LEN_BINARY_ATTR(length) macro in

BufferLength This places a negative value in

BufferLength.

v If ValuePtr is a pointer to a value other than a

character string or a binary string, then

BufferLength should have the value

SQL_IS_POINTER.

v If ValuePtr contains a fixed-length value, then

BufferLength is either SQL_IS_INTEGER,

SQL_IS_UINTEGER, SQL_IS_SMALLINT, or

SQL_IS_USMALLINT, as appropriate.

Usage

An application can call SQLSetDescField() to set any descriptor field one at a time.

One call to SQLSetDescField() sets a single field in a single descriptor. This

function can be called to set any field in any descriptor type, provided the field

can be set. See the descriptor header and record field initialization values for more

information.

Note: If a call to SQLSetDescField() fails, the contents of the descriptor record

identified by the RecNumber argument are undefined.

Other functions can be called to set multiple descriptor fields with a single call of

the function. The SQLSetDescRec() function sets a variety of fields that affect the

data type and buffer bound to a column or parameter (the SQL_DESC_TYPE,

SQL_DESC_DATETIME_INTERVAL_CODE, SQL_DESC_OCTET_LENGTH,

SQL_DESC_PRECISION, SQL_DESC_SCALE, SQL_DESC_DATA_PTR,

SQL_DESC_OCTET_LENGTH_PTR, and SQL_DESC_INDICATOR_PTR fields).

SQLBindCol() or SQLBindParameter() can be used to make a complete specification

for the binding of a column or parameter. These functions each set a specific group

of descriptor fields with one function call.

SQLSetDescField() can be called to change the binding buffers by adding an offset

to the binding pointers (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, or

SQL_DESC_OCTET_LENGTH_PTR). This changes the binding buffers without

250 Call Level Interface Guide and Reference, Volume 2

calling SQLBindCol() or SQLBindParameter(). This allows an application to quickly

change SQL_DESC_DATA_PTR without concern for changing other fields, for

instance SQL_DESC_DATA_TYPE.

Descriptor header fields are set by calling SQLSetDescField() with a RecNumber of

0, and the appropriate FieldIdentifier. Many header fields contain statement

attributes, so can also be set by a call to SQLSetStmtAttr(). This allows applications

to set a statement attribute without first obtaining a descriptor handle. A

RecNumber of 0 is also used to set bookmark fields.

Note: The statement attribute SQL_ATTR_USE_BOOKMARKS should always be

set before calling SQLSetDescField() to set bookmark fields. While this is not

mandatory, it is strongly recommended.

Sequence of setting descriptor fields

When setting descriptor fields by calling SQLSetDescField(), the application must

follow a specific sequence:

v The application must first set the SQL_DESC_TYPE,

SQL_DESC_CONCISE_TYPE, or SQL_DESC_DATETIME_INTERVAL_CODE

field.

Note: SQL_DESC_DATETIME_INTERVAL_CODE is defined by ODBC but not

supported by DB2 CLI.

v After one of these fields has been set, the application can set an attribute of a

data type, and the driver sets data type attribute fields to the appropriate default

values for the data type. Automatic defaulting of type attribute fields ensures

that the descriptor is always ready to use once the application has specified a

data type. If the application explicitly sets a data type attribute, it is overriding

the default attribute.

v After one of the fields listed in Step 1 has been set, and data type attributes have

been set, the application can set SQL_DESC_DATA_PTR. This prompts a

consistency check of descriptor fields. If the application changes the data type or

attributes after setting the SQL_DESC_DATA_PTR field, then the driver sets

SQL_DESC_DATA_PTR to a null pointer, unbinding the record. This forces the

application to complete the proper steps in sequence, before the descriptor

record is usable.

Initialization of descriptor fields

When a descriptor is allocated, the fields in the descriptor can be initialized to a

default value, be initialized without a default value, or be undefined for the type

of descriptor. Refer to the list of descriptor header and record field initialization

values for details.

The fields of an IRD have a default value only after the statement has been

prepared or executed and the IRD has been populated, not when the statement

handle or descriptor has been allocated. Until the IRD has been populated, any

attempt to gain access to a field of an IRD will return an error.

Some descriptor fields are defined for one or more, but not all, of the descriptor

types (ARDs and IRDs, and APDs and IPDs). When a field is undefined for a type

of descriptor, it is not needed by any of the functions that use that descriptor.

Because a descriptor is a logical view of data, rather than an actual data structure,

these extra fields have no effect on the defined fields.

Chapter 1. CLI and ODBC functions 251

The fields that can be accessed by SQLGetDescField() are not necessarily set by

SQLSetDescField(). Fields that can be set by SQLSetDescField() are described in

the descriptor header and record field initialization values list.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 121. SQLSetDescField SQLSTATEs

SQLSTATE Description Explanation

01000 General warning Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. DB2 CLI did not support the value specified in *ValuePtr (if

ValuePtr was a pointer) or the value in ValuePtr (if ValuePtr was a

four-byte value), or *ValuePtr was invalid because of SQL

constraints or requirements, so DB2 CLI substituted a similar

value. (Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The FieldIdentifier argument was a header field, and the RecNumber

argument was not 0.

The RecNumber argument was 0 and the DescriptorHandle was an

IPD.

The RecNumber argument was less than 0.

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY010 Function sequence error. The DescriptorHandle was associated with a StatementHandle for

which an asynchronously executing function (not this one) was

called and was still executing when this function was called.

SQLExecute() or SQLExecDirect() was called for the

StatementHandle with which the DescriptorHandle was associated

and returned SQL_NEED_DATA. This function was called before

data was sent for all data-at-execution parameters or columns.

HY016 Cannot modify an

implementation row descriptor.

The DescriptorHandle argument was associated with an IRD, and

the FieldIdentifier argument was not

SQL_DESC_ARRAY_STATUS_PTR.

HY021 Inconsistent descriptor

information.

The TYPE field, or any other field associated with the TYPE field

in the descriptor, was not valid or consistent. The TYPE field was

not a valid DB2 CLI C type.

Descriptor information checked during a consistency check was

not consistent.

252 Call Level Interface Guide and Reference, Volume 2

Table 121. SQLSetDescField SQLSTATEs (continued)

SQLSTATE Description Explanation

HY091 Invalid descriptor field identifier. The value specified for the FieldIdentifier argument was not a DB2

CLI defined field and was not a defined value.

The value specified for the RecNumber argument was greater than

the value in the SQL_DESC_COUNT field.

The FieldIdentifier argument was SQL_DESC_ALLOC_TYPE.

HY092 Option type out of range. The value specified for the Attribute argument was not valid.

HY094 Invalid scale value. The value specified for pfParamType was either SQL_DECIMAL or

SQL_NUMERIC and the value specified for DecimalDigits was less

than 0 or greater than the value for the argument pcbColDef

(precision).

The value specified for pfParamType was SQL_C_TIMESTAMP and

the value for pfParamType was either SQL_CHAR or

SQL_VARCHAR and the value for DecimalDigits was less than 0

or greater than 6.

HY105 Invalid parameter type. The value specified for the SQL_DESC_PARAMETER_TYPE field

was invalid. (For more information, see the InputOutputType

Argument section in SQLBindParameter().)

Restrictions

None.

Example

 /* set a single field of a descriptor record */

 rc = SQLSetDescField(hARD,

 1,

 SQL_DESC_TYPE,

 (SQLPOINTER)SQL_SMALLINT,

 SQL_IS_SMALLINT);

SQLSetDescRec function (CLI) - Set multiple descriptor fields for a

column or parameter data

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

The SQLSetDescRec() function sets multiple descriptor fields that affect the data

type and buffer bound to a column or parameter data.

Syntax

SQLRETURN SQLSetDescRec (SQLHDESC DescriptorHandle,

 SQLSMALLINT RecNumber,

 SQLSMALLINT Type,

 SQLSMALLINT SubType,

 SQLLEN Length,

 SQLSMALLINT Precision,

 SQLSMALLINT Scale,

 SQLPOINTER DataPtr,

 SQLLEN *StringLengthPtr,

 SQLLEN *IndicatorPtr);

Chapter 1. CLI and ODBC functions 253

Function arguments

 Table 122. SQLSetDescRec arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle. This must not be an IRD handle.

SQLSMALLINT RecNumber input Indicates the descriptor record that contains the

fields to be set. Descriptor records are numbered

from 0, with record number 0 being the bookmark

record. This argument must be equal to or greater

than 0. If RecNumber is greater than the value of

SQL_DESC_COUNT, SQL_DESC_COUNT is changed

to the value of RecNumber.

SQLSMALLINT Type input The value to which to set the SQL_DESC_TYPE field

for the descriptor record.

SQLSMALLINT SubType input For records whose type is SQL_DATETIME, this is

the value to which to set the

SQL_DESC_DATETIME_INTERVAL_CODE field.

SQLLEN Length input The value to which to set the

SQL_DESC_OCTET_LENGTH field for the descriptor

record.

SQLSMALLINT Precision input The value to which to set the

SQL_DESC_PRECISION field for the descriptor

record.

SQLSMALLINT Scale input The value to which to set the SQL_DESC_SCALE

field for the descriptor record.

SQLPOINTER DataPtr Deferred

Input or

Output

The value to which to set the

SQL_DESC_DATA_PTR field for the descriptor

record. DataPtr can be set to a null pointer to set the

SQL_DESC_DATA_PTR field to a null pointer.

SQLLEN * StringLengthPtr Deferred

Input or

Output

The value to which to set the

SQL_DESC_OCTET_LENGTH_PTR field for the

descriptor record. StringLengthPtr can be set to a null

pointer to set the SQL_DESC_OCTET_LENGTH_PTR

field to a null pointer.

SQLLEN * IndicatorPtr Deferred

Input or

Output

The value to which to set the

SQL_DESC_INDICATOR_PTR field for the

descriptor record. IndicatorPtr can be set to a null

pointer to set the SQL_DESC_INDICATOR_PTR field

to a null pointer.

Usage

An application can call SQLSetDescRec() to set the following fields for a single

column or parameter:

v SQL_DESC_TYPE

v SQL_DESC_OCTET_LENGTH

v SQL_DESC_PRECISION

v SQL_DESC_SCALE

v SQL_DESC_DATA_PTR

v SQL_DESC_OCTET_LENGTH_PTR

v SQL_DESC_INDICATOR_PTR

SQL_DESC_DATETIME_INTERVAL_CODE can only be updated if

SQL_DESC_TYPE indicates SQL_DATETIME.

254 Call Level Interface Guide and Reference, Volume 2

Note: If a call to SQLSetDescRec() fails, the contents of the descriptor record

identified by the RecNumber argument are undefined.

When binding a column or parameter, SQLSetDescRec() allows you to change

multiple fields affecting the binding without calling SQLBindCol() or

SQLBindParameter(), or making multiple calls to SQLSetDescField().

SQLSetDescRec() can set fields on a descriptor not currently associated with a

statement. Note that SQLBindParameter() sets more fields than SQLSetDescRec(),

can set fields on both an APD and an IPD in one call, and does not require a

descriptor handle.

The statement attribute SQL_ATTR_USE_BOOKMARKS should always be set

before calling SQLSetDescRec() with a RecNumber argument of 0 to set bookmark

fields. While this is not mandatory, it is strongly recommended.

Return Codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 123. SQLSetDescRec SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The RecNumber argument was set to 0, and the DescriptorHandle

was an IPD handle.

The RecNumber argument was less than 0.

The RecNumber argument was greater than the maximum number

of columns or parameters that the data source can support, and

the DescriptorHandle argument was an APD, IPD, or ARD.

The RecNumber argument was equal to 0, and the DescriptorHandle

argument referred to an implicitly allocated APD. (This error does

not occur with an explicitly allocated application descriptor,

because it is not known whether an explicitly allocated application

descriptor is an APD or ARD until execute time.)

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

Chapter 1. CLI and ODBC functions 255

Table 123. SQLSetDescRec SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The DescriptorHandle was associated with a StatementHandle for

which an asynchronously executing function (not this one) was

called and was still executing when this function was called.

SQLExecute() or SQLExecDirect() was called for the

StatementHandle with which the DescriptorHandle was associated

and returned SQL_NEED_DATA. This function was called before

data was sent for all data-at-execution parameters.

HY013 Unexpected memory handling

error.

DB2 CLI was unable to access memory required to support

execution or completion of the function.

HY016 Cannot modify an

implementation row descriptor.

The DescriptorHandle argument was associated with an IRD.

HY021 Inconsistent descriptor

information.

The Type field, or any other field associated with the TYPE field in

the descriptor, was not valid or consistent.

Descriptor information checked during a consistency check was

not consistent.

HY094 Invalid scale value. The value specified for pfParamType was either SQL_DECIMAL or

SQL_NUMERIC and the value specified for DecimalDigits was less

than 0 or greater than the value for the argument pcbColDef

(precision).

The value specified for pfParamType was SQL_C_TIMESTAMP and

the value for pfParamType was either SQL_CHAR or

SQL_VARCHAR and the value for DecimalDigits was less than 0

or greater than 6.

Restrictions

None.

Example

 SQLSMALLINT type;

 SQLINTEGER length, datalen;

 SQLSMALLINT id_no;

 /* ... */

 /* set multiple descriptor fields for a column or parameter data */

 rc = SQLSetDescRec(hARD, 1, type, 0, length, 0, 0, &id_no, &datalen, NULL);

SQLSetEnvAttr function (CLI) - Set environment attribute

Purpose

 Specification: DB2 CLI 2.1 ISO CLI

SQLSetEnvAttr() sets an environment attribute for the current environment.

Syntax

SQLRETURN SQLSetEnvAttr (SQLHENV EnvironmentHandle, /* henv */

 SQLINTEGER Attribute,

 SQLPOINTER ValuePtr, /* Value */

 SQLINTEGER StringLength);

256 Call Level Interface Guide and Reference, Volume 2

Function arguments

 Table 124. SQLSetEnvAttr arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle Input Environment handle.

SQLINTEGER Attribute Input Environment attribute to set; refer to the list of CLI

environment attributes for descriptions.

SQLPOINTER ValuePtr Input The desired value for Attribute.

SQLINTEGER StringLength Input Length of ValuePtr in bytes if the attribute value is a

character string; if Attribute does not denote a string,

then DB2 CLI ignores StringLength.

Usage

Once set, the attribute’s value affects all connections under this environment.

The application can obtain the current attribute value by calling SQLGetEnvAttr().

Refer to the list of CLI environment attributes for the attributes that can be set

with SQLSetEnvAttr().

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 125. SQLSetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY011 Operation invalid at this time. Applications cannot set environment attributes while connection

handles are allocated on the environment handle.

HY024 Invalid attribute value Given the specified Attribute value, an invalid value was specified

in *ValuePtr.

HY090 Invalid string or buffer length The StringLength argument was less than 0, but was not

SQL_NTS.

HY092 Option type out of range. An invalid Attribute value was specified.

HYC00 Driver not capable. The specified Attribute is not supported by DB2 CLI.

Given specified Attribute value, the value specified for the

argument ValuePtr is not supported.

Restrictions

None.

Example

 /* set environment attribute */

 cliRC = SQLSetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, (SQLPOINTER) SQL_TRUE, 0);

Chapter 1. CLI and ODBC functions 257

SQLSetParam function (CLI) - Bind a parameter marker to a buffer or

LOB locator

Deprecated

Note:

In ODBC 2.0 and above, SQLSetParam() is deprecated and replaced with

SQLBindParameter().

Although this version of DB2 CLI continues to support SQLSetParam(), we

recommend that you use SQLBindParameter() in your DB2 CLI programs so that

they conform to the latest standards.

Equivalent function: SQLBindParameter()

The CLI function SQLBindParameter() is functionally the same as the

SQLSetParam() function. Both take a similar number and type of arguments, behave

the same, and return the same return codes. The difference is that SQLSetParam()

does not have the InputOutputType or BufferLength arguments to specify the

parameter type and maximum buffer length. Calling SQLSetParam() is functionally

equivalent to calling SQLBindParameter() with the InputOutputType argument set to

SQL_PARAM_INPUT and the BufferLength argument set to

SQL_SETPARAM_VALUE_MAX.

Migrating to the new function

The statement:

 SQLSetParam(hstmt, 1, SQL_C_SHORT, SQL_SMALLINT, 0, 0,

 ¶meter1, NULL);

for example, would be rewritten using the new function as:

 SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SHORT,

 SQL_SMALLINT, 0, 0, ¶meter1,

 SQL_SETPARAM_VALUE_MAX, NULL);

SQLSetPos function (CLI) - Set the cursor position in a rowset

Purpose

 Specification: DB2 CLI 5.0 ODBC 1

SQLSetPos() sets the cursor position in a rowset.

Syntax

SQLRETURN SQLSetPos (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLSETPOSIROW RowNumber, /* irow */

 SQLUSMALLINT Operation, /* fOption */

 SQLUSMALLINT LockType); /* fLock */

258 Call Level Interface Guide and Reference, Volume 2

Function arguments

 Table 126. SQLSetPos arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSETPOSIROW RowNumber input

Position of the row in the rowset on which to

perform the operation specified with the Operation

argument. If RowNumber is 0, the operation applies

to every row in the rowset.

For additional information, see RowNumber

argument.

SQLUSMALLINT Operation input Operation to perform:

v SQL_POSITION

v SQL_REFRESH

v SQL_UPDATE

v SQL_DELETE

v SQL_ADD

ODBC also specifies the following operations for

backwards compatibility only, which DB2 CLI also

supports:

v SQL_ADD

While DB2 CLI does support SQL_ADD in

SQLSetPos() calls, it is suggested that you use

SQLBulkOperations() with the Operation argument

set to SQL_ADD.

SQLUSMALLINT LockType input Specifies how to lock the row after performing the

operation specified in the Operation argument.

v SQL_LOCK_NO_CHANGE

ODBC also specifies the following operations which

DB2 CLI does not support:

v SQL_LOCK_EXCLUSIVE

v SQL_LOCK_UNLOCK

For additional information, see LockType argument.

Usage

RowNumber argument

The RowNumber argument specifies the number of the row in the rowset on which

to perform the operation specified by the Operation argument. If RowNumber is 0,

the operation applies to every row in the rowset. RowNumber must be a value from

0 to the number of rows in the rowset.

Note In the C language, arrays are 0-based, while the RowNumber argument is

1-based. For example, to update the fifth row of the rowset, an application

modifies the rowset buffers at array index 4, but specifies a RowNumber of 5.

All operations position the cursor on the row specified by RowNumber. The

following operations require a cursor position:

v Positioned update and delete statements.

v Calls to SQLGetData().

Chapter 1. CLI and ODBC functions 259

v Calls to SQLSetPos() with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATE

options.

An application can specify a cursor position when it calls SQLSetPos(). Generally, it

calls SQLSetPos() with the SQL_POSITION or SQL_REFRESH operation to position

the cursor before executing a positioned update or delete statement or calling

SQLGetData().

Operation argument

To determine which options are supported by a data source, an application calls

SQLGetInfo() with one of the following information types, depending on the type

of cursor:

v SQL_DYNAMIC_CURSOR_ATTRIBUTES1

v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

v SQL_KEYSET_CURSOR_ATTRIBUTES1

v SQL_STATIC_CURSOR_ATTRIBUTES1

SQL_POSITION

 DB2 CLI positions the cursor on the row specified by RowNumber.

The contents of the row status array pointed to by the

SQL_ATTR_ROW_OPERATION_PTR statement attribute are ignored for

the SQL_POSITION Operation.

SQL_REFRESH

 DB2 CLI positions the cursor on the row specified by RowNumber and

refreshes data in the rowset buffers for that row. For more information

about how DB2 CLI returns data in the rowset buffers, see the descriptions

of row-wise and column-wise binding.

SQLSetPos() with an Operation of SQL_REFRESH simply updates the status

and content of the rows within the current fetched rowset. This includes

refreshing the bookmarks. The data in the buffers is refreshed, but not

refetched, so the membership in the rowset is fixed.

A successful refresh with SQLSetPos() will not change a row status of

SQL_ROW_DELETED. Deleted rows within the rowset will continue to be

marked as deleted until the next fetch. The rows will disappear at the next

fetch if the cursor supports packing (in which case a subsequent

SQLFetch() or SQLFetchScroll() does not return deleted rows).

A successful refresh with SQLSetPos() will change a row status of

SQL_ROW_ADDED to SQL_ROW_SUCCESS (if the row status array

exists).

A refresh with SQLSetPos() will change a row status of

SQL_ROW_UPDATED to the row’s new status (if the row status array

exists).

If an error occurs in a SQLSetPos() operation on a row, the row status is set

to SQL_ROW_ERROR (if the row status array exists).

For a cursor opened with a SQL_ATTR_CONCURRENCY statement

attribute of SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES, a

refresh with SQLSetPos() will update the optimistic concurrency values

used by the data source to detect that the row has changed. This occurs for

each row that is refreshed.

260 Call Level Interface Guide and Reference, Volume 2

The contents of the row status array are ignored for the SQL_REFRESH

Operation.

SQL_UPDATE

 DB2 CLI positions the cursor on the row specified by RowNumber and

updates the underlying row of data with the values in the rowset buffers

(the TargetValuePtr argument in SQLBindCol()). It retrieves the lengths of

the data from the length/indicator buffers (the StrLen_or_IndPtr argument

in SQLBindCol()). If the length of any column is SQL_COLUMN_IGNORE,

the column is not updated. After updating the row, the corresponding

element of the row status array is updated to SQL_ROW_UPDATED or

SQL_ROW_SUCCESS_WITH_INFO (if the row status array exists).

The row operation array pointed to by the

SQL_ATTR_ROW_OPERATION_PTR statement attribute can be used to

indicate that a row in the current rowset should be ignored during a bulk

update. For more information, see Status and operation arrays.

SQL_DELETE

 DB2 CLI positions the cursor on the row specified by RowNumber and

deletes the underlying row of data. It changes the corresponding element

of the row status array to SQL_ROW_DELETED. After the row has been

deleted, the following are not valid for the row:

v positioned update and delete statements

v calls to SQLGetData()

v calls to SQLSetPos() with Operation set to anything except

SQL_POSITION.

Deleted rows remain visible to static and keyset-driven cursors; however,

the entry in the implementation row status array (pointed to by the

SQL_ATTR_ROW_STATUS_PTR statement attribute) for the deleted row is

changed to SQL_ROW_DELETED.

The row operation array pointed to by the

SQL_ATTR_ROW_OPERATION_PTR statement attribute can be used to

indicate that a row in the current rowset should be ignored during a bulk

delete. For more information, see Status and operation arrays.

SQL_ADD

 ODBC also specifies the SQL_ADD Operation for backwards compatibility

only, which DB2 CLI also supports. It is suggested, however, that you use

SQLBulkOperations() with the Operation argument set to SQL_ADD.

LockType argument

The LockType argument provides a way for applications to control concurrency.

Generally, data sources that support concurrency levels and transactions will only

support the SQL_LOCK_NO_CHANGE value of the LockType argument.

Although the LockType argument is specified for a single statement, the lock

accords the same privileges to all statements on the connection. In particular, a lock

that is acquired by one statement on a connection can be unlocked by a different

statement on the same connection.

ODBC defines the following LockType arguments. DB2 CLI supports

SQL_LOCK_NO_CHANGE. To determine which locks are supported by a data

source, an application calls SQLGetInfo() with the SQL_LOCK_TYPES information

Chapter 1. CLI and ODBC functions 261

type.

 Table 127. Operation values

LockType argument Lock type

SQL_LOCK_NO_CHANGE Ensures that the row is in the same locked or unlocked state

as it was before SQLSetPos() was called. This value of

LockType allows data sources that do not support explicit

row-level locking to use whatever locking is required by the

current concurrency and transaction isolation levels.

SQL_LOCK_EXCLUSIVE Not supported by DB2 CLI. Locks the row exclusively.

SQL_LOCK_UNLOCK Not supported by DB2 CLI. Unlocks the row.

Status and operation arrays

The following status and operation arrays are used when calling SQLSetPos():

v The row status array (as pointed to by the SQL_DESC_ARRAY_STATUS_PTR

field in the IRD and the SQL_ATTR_ROW_STATUS_ARRAY statement attribute)

contains status values for each row of data in the rowset. The status values are

set in this array after a call to SQLFetch(), SQLFetchScroll(), or SQLSetPos().

This array is pointed to by the SQL_ATTR_ROW_STATUS_PTR statement

attribute.

v The row operation array (as pointed to by the SQL_DESC_ARRAY_STATUS_PTR

field in the ARD and the SQL_ATTR_ROW_OPERATION_ARRAY statement

attribute) contains a value for each row in the rowset that indicates whether a

call to SQLSetPos() for a bulk operation is ignored or performed. Each element

in the array is set to either SQL_ROW_PROCEED (the default) or

SQL_ROW_IGNORE. This array is pointed to by the

SQL_ATTR_ROW_OPERATION_PTR statement attribute.

The number of elements in the status and operation arrays must equal the number

of rows in the rowset (as defined by the SQL_ATTR_ROW_ARRAY_SIZE statement

attribute).

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NEED_DATA

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 128. SQLSetPos SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The Operation argument was SQL_REFRESH, and string or binary

data returned for a column or columns with a data type of

SQL_C_CHAR or SQL_C_BINARY resulted in the truncation of

non-blank character or non-NULL binary data

262 Call Level Interface Guide and Reference, Volume 2

Table 128. SQLSetPos SQLSTATEs (continued)

SQLSTATE Description Explanation

01S01 Error in row. The RowNumber argument was 0 and an error occurred in one or

more rows while performing the operation specified with the

Operation argument.

(SQL_SUCCESS_WITH_INFO is returned if an error occurs on one

or more, but not all, rows of a multirow operation, and

SQL_ERROR is returned if an error occurs on a single-row

operation.)

01S07 Fractional truncation. The Operation argument was SQL_REFRESH, the data type of the

application buffer was not SQL_C_CHAR or SQL_C_BINARY, and

the data returned to application buffers for one or more columns

was truncated. For numeric data types, the fractional part of the

number was truncated. For time and timestamp data types, the

fractional portion of the time was truncated.

07006 Invalid conversion. The data value of a column in the result set could not be

converted to the data type specified by TargetType in the call to

SQLBindCol().

07009 Invalid descriptor index. The argument Operation was SQL_REFRESH or SQL_UPDATE

and a column was bound with a column number greater than the

number of columns in the result set or a column number less than

0.

21S02 Degrees of derived table does

not match column list.

The argument Operation was SQL_UPDATE and no columns were

updateable because all columns were either unbound, read-only,

or the value in the bound length/indicator buffer was

SQL_COLUMN_IGNORE.

22001 String data right truncation. The assignment of a character or binary value to a column

resulted in the truncation of non-blank (for characters) or non-null

(for binary) characters or bytes.

22003 Numeric value out of range. The argument Operation was SQL_UPDATE and the assignment of

a numeric value to a column in the result set caused the whole (as

opposed to fractional) part of the number to be truncated.

The argument Operation was SQL_REFRESH, and returning the

numeric value for one or more bound columns would have

caused a loss of significant digits.

22007 Invalid datetime format. The argument Operation was SQL_UPDATE, and the assignment

of a date or timestamp value to a column in the result set caused

the year, month, or day field to be out of range.

The argument Operation was SQL_REFRESH, and returning the

date or timestamp value for one or more bound columns would

have caused the year, month, or day field to be out of range.

22008 Datetime field overflow. The Operation argument was SQL_UPDATE, and the performance

of datetime arithmetic on data being sent to a column in the result

set resulted in a datetime field (the year, month, day, hour,

minute, or second field) of the result being outside the permissible

range of values for the field, or being invalid based on the natural

rules for datetimes based on the Gregorian calendar.

The Operation argument was SQL_REFRESH, and the performance

of datetime arithmetic on data being retrieved from the result set

resulted in a datetime field (the year, month, day, hour, minute, or

second field) of the result being outside the permissible range of

values for the field, or being invalid based on the natural rules for

datetimes based on the Gregorian calendar.

Chapter 1. CLI and ODBC functions 263

Table 128. SQLSetPos SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error. The specified StatementHandle was not in an executed state. The

function was called without first calling SQLExecDirect(),

SQLExecute(), or a catalog function.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for the

StatementHandle and returned SQL_NEED_DATA. This function

was called before data was sent for all data-at-execution

parameters or columns.

An ODBC 2.0 application called SQLSetPos() for a StatementHandle

before SQLFetchScroll() was called or after SQLFetch() was

called, and before SQLFreeStmt() was called with the SQL_CLOSE

option.

HY011 Operation invalid at this time. An ODBC 2.0 application set the SQL_ATTR_ROW_STATUS_PTR

statement attribute; then SQLSetPos() was called before

SQLFetch(), SQLFetchScroll(), or SQLExtendedFetch() was called.

HY090 Invalid string or buffer length. The Operation argument was SQL_ADD, SQL_UPDATE, or

SQL_UPDATE_BY_BOOKMARK, a data value was a null pointer,

and the column length value was not 0, SQL_DATA_AT_EXEC,

SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less than or

equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

The Operation argument was SQL_ADD, SQL_UPDATE, or

SQL_UPDATE_BY_BOOKMARK, a data value was not a null

pointer, and the column length value was less than 0, but not

equal to SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE,

SQL_NTS, or SQL_NULL_DATA, or less than or equal to

SQL_LEN_DATA_AT_EXEC_OFFSET.

A value in a length/indicator buffer was SQL_DATA_AT_EXEC;

the SQL type was either SQL_LONGVARCHAR,

SQL_LONGVARBINARY, or a other, data-source-specific data

type; and the SQL_NEED_LONG_DATA_LEN information type in

SQLGetInfo() was Y.

HY092 Option type out of range. The Operation argument was SQL_UPDATE_BY_BOOKMARK,

SQL_DELETE_BY_BOOKMARK, or

SQL_REFRESH_BY_BOOKMARK, and the

SQL_ATTR_USE_BOOKMARKS statement attribute was set to

SQL_UB_OFF.

264 Call Level Interface Guide and Reference, Volume 2

Table 128. SQLSetPos SQLSTATEs (continued)

SQLSTATE Description Explanation

HY107 Row value out of range. The value specified for the argument RowNumber was greater than

the number of rows in the rowset.

HY109 Invalid cursor position. The cursor associated with the StatementHandle was defined as

forward only, so the cursor could not be positioned within the

rowset. See the description for the SQL_ATTR_CURSOR_TYPE

attribute in SQLSetStmtAttr().

The Operation argument was SQL_UPDATE, SQL_DELETE, or

SQL_REFRESH, and the row identified by the RowNumber

argument had been deleted or had not be fetched.

The RowNumber argument was 0 and the Operation argument was

SQL_POSITION.

HYC00 Driver not capable. DB2 CLI or the data source does not support the operation

requested in the Operation argument or the LockType argument.

HYT00 Timeout expired The query timeout period expired before the data source returned

the result set. The timeout period is set through SQLSetStmtAttr()

with an Attribute of SQL_ATTR_QUERY_TIMEOUT.

Restrictions

None.

Example

 /* set the cursor position in a rowset */

 cliRC = SQLSetPos(hstmt, 3, SQL_POSITION, SQL_LOCK_NO_CHANGE);

SQLSetStmtAttr function (CLI) - Set options related to a statement

Purpose

 Specification: DB2 CLI 5.0 ODBC 3.0 ISO CLI

SQLSetStmtAttr() sets options related to a statement. To set an option for all

statements associated with a specific connection, an application can call

SQLSetConnectAttr().

Refer to the CLI statement attributes list for all available statement attributes.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLSetStmtAttrW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLSetStmtAttr (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLINTEGER Attribute, /* fOption */

 SQLPOINTER ValuePtr, /* pvParam */

 SQLINTEGER StringLength); /* fStrLen */

Chapter 1. CLI and ODBC functions 265

Function arguments

 Table 129. SQLSetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Option to set, described in the CLI statement

attributes list.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.

If Attribute is an ODBC-defined attribute, the

application might need to qualify the attribute value

in ValuePtr by setting the StringLength attribute as

described in the StringLength description.

If Attribute is a DB2 CLI attribute, the application

should always qualify the attribute value in ValuePtr

by setting the StringLength attribute as described in

the StringLength description.

Note: If Attribute is an ODBC attribute, ValuePtr can,

depending on the attribute, be set to an unsigned

integer. If Attribute is a DB2 CLI attribute, ValuePtr

can, depending on the attribute, be set to a signed

integer. If ValuePtr is set to a signed negative integer

and an unsigned integer is expected, ValuePtr might

be treated as a large unsigned integer by DB2 CLI

without warning. Alternatively, DB2 CLI might

return an error (SQLSTATE HY024).

266 Call Level Interface Guide and Reference, Volume 2

Table 129. SQLSetStmtAttr arguments (continued)

Data type Argument Use Description

SQLINTEGER StringLength input If Attribute is an ODBC attribute, the application

might need to qualify the attribute by setting

StringLength to the following values:

v If ValuePtr points to a character string or a binary

buffer, StringLength should be the length of

*ValuePtr. For character string data, StringLength

should contain the number of bytes in the string.

v If ValuePtr is a pointer, but not to a string or

binary buffer, then StringLength should have the

value SQL_IS_POINTER.

v If ValuePtr points to an unsigned integer, the

StringLength attribute is ignored.

If Attribute is a DB2 CLI attribute, the application

must qualify the attribute by setting StringLength to

the following values:

v If ValuePtr is a pointer to a character string, then

StringLength is the number of bytes needed to

store the string or SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, then the

application should place the result of the

SQL_LEN_BINARY_ATTR (length) macro in

StringLength. This places a negative value in

StringLength.

v If ValuePtr contains a fixed-length value, then

StringLength is either SQL_IS_INTEGER or

SQL_IS_UINTEGER, as appropriate.

v If ValuePtr is a pointer to a value other than a

character string, a binary string, or a fixed-length

value, then StringLength should have the value

SQL_IS_POINTER.

Usage

Statement attributes for a statement remain in effect until they are changed by

another call to SQLSetStmtAttr() or the statement is dropped by calling

SQLFreeHandle(). Calling SQLFreeStmt() with the SQL_CLOSE, SQL_UNBIND, or

SQL_RESET_PARAMS options does not reset statement attributes.

Some statement attributes support substitution of a similar value if the data source

does not support the value specified in *ValuePtr. In such cases, DB2 CLI returns

SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). For

example, DB2 CLI supports a pure keyset cursor. As a result, DB2 CLI does not

allow applications to change the default value of the SQL_ATTR_KEYSET_SIZE

attribute. Instead, DB2 CLI substitutes SQL_KEYSET_SIZE_DEFAULT for all other

values that might be supplied in the *ValuePtr argument and returns

SQL_SUCCESS_WITH_INFO. To determine the substituted value, an application

calls SQLGetStmtAttr().

The format of information set with ValuePtr depends on the specified Attribute.

SQLSetStmtAttr() accepts attribute information in one of two different formats: a

null-terminated character string or a 32-bit integer value. The format of

information returned in SQLGetStmtAttr() reflects what was specified in

Chapter 1. CLI and ODBC functions 267

SQLSetStmtAttr(). For example, character strings pointed to by the ValuePtr

argument of SQLSetStmtAttr() have a length of StringLength, and this is the value

that would be returned by SQLGetStmtAttr().

Setting statement attributes by setting descriptors

Many statement attributes also corresponding to a header field of one or more

descriptors. These attributes can be set not only by a call to SQLSetStmtAttr(), but

also by a call to SQLSetDescField(). Setting these options by a call to

SQLSetStmtAttr(), rather than SQLSetDescField(), has the advantage that a

descriptor handle does not have to be fetched.

Note: Calling SQLSetStmtAttr() for one statement can affect other statements. This

occurs when the application parameter descriptor (APD) or application row

descriptor (ARD) associated with the statement is explicitly allocated and is also

associated with other statements. Because SQLSetStmtAttr() modifies the APD or

ARD, the modifications apply to all statements with which this descriptor is

associated. If this is not the desired behavior, the application should dissociate this

descriptor from the other statement (by calling SQLSetStmtAttr() to set the

SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC field to a

different descriptor handle) before calling SQLSetStmtAttr() again.

When a statement attribute that is also a descriptor field is set by a call to

SQLSetStmtAttr(), the corresponding field in the descriptor that is associated with

the statement is also set. The field is set only for the applicable descriptors that are

currently associated with the statement identified by the StatementHandle argument,

and the attribute setting does not affect any descriptors that might be associated

with that statement in the future. When a descriptor field that is also a statement

attribute is set by a call to SQLSetDescField(), the corresponding statement

attribute is also set.

Statement attributes determine which descriptors a statement handle is associated

with. When a statement is allocated (see SQLAllocHandle()), four descriptor

handles are automatically allocated and associated with the statement. Explicitly

allocated descriptor handles can be associated with the statement by calling

SQLAllocHandle() with a HandleType of SQL_HANDLE_DESC to allocate a

descriptor handle, then calling SQLSetStmtAttr() to associate the descriptor handle

with the statement.

The following statement attributes correspond to descriptor header fields:

 Table 130. Statement attributes

Statement attribute Header field Descriptor

SQL_ATTR_PARAM_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR APD

SQL_ATTR_PARAM_BIND_TYPE SQL_DESC_BIND_TYPE APD

SQL_ATTR_PARAM_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR APD

SQL_ATTR_PARAM_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IPD

SQL_ATTR_PARAMS_PROCESSED_PTR SQL_DESC_ROWS_PROCESSED_PTR IPD

SQL_ATTR_PARAMSET_SIZE SQL_DESC_ARRAY_SIZE APD

SQL_ATTR_ROW_ARRAY_SIZE SQL_DESC_ARRAY_SIZE APD

SQL_ATTR_ROW_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR ARD

SQL_ATTR_ROW_BIND_TYPE SQL_DESC_BIND_TYPE ARD

SQL_ATTR_ROW_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR APD

SQL_ATTR_ROW_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IRD

SQL_ATTR_ROWS_FETCHED_PTR SQL_DESC_ROWS_PROCESSED_PTR IRD

268 Call Level Interface Guide and Reference, Volume 2

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 131. SQLSetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns

SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. DB2 CLI did not support the value specified in *ValuePtr, or the

value specified in *ValuePtr was invalid because of SQL

constraints or requirements, so DB2 CLI substituted a similar

value. (Function returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between DB2 CLI and the data source to

which it was connected failed before the function completed

processing.

24000 Invalid cursor state. The Attribute was SQL_ATTR_CONCURRENCY,

SQL_ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, or

SQL_ATTR_USE_BOOKMARKS and the cursor was open.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The

error message returned by SQLGetDiagRec() in the *MessageText

buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY009 Invalid argument value. A null pointer was passed for ValuePtr and the value in *ValuePtr

was a string attribute.

HY010 Function sequence error. An asynchronously executing function was called for the

StatementHandle and was still executing when this function was

called.

SQLExecute() or SQLExecDirect() was called for the

StatementHandle and returned SQL_NEED_DATA. This function

was called before data was sent for all data-at-execution

parameters or columns.

HY011 Operation invalid at this time. The Attribute was SQL_ATTR_CONCURRENCY, SQL_

ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, or

SQL_ATTR_USE_BOOKMARKS and the statement was prepared.

HY017 Invalid use of an automatically

allocated descriptor handle.

The Attribute argument was SQL_ATTR_IMP_ROW_DESC or

SQL_ATTR_IMP_PARAM_DESC. The Attribute argument was

SQL_ATTR_APP_ROW_DESC or

SQL_ATTR_APP_PARAM_DESC, and the value in *ValuePtr was

an implicitly allocated descriptor handle.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified

in *ValuePtr. (DB2 CLI returns this SQLSTATE only for connection

and statement attributes that accept a discrete set of values, such

as SQL_ATTR_ACCESS_MODE.)

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not

SQL_NTS.

Chapter 1. CLI and ODBC functions 269

Table 131. SQLSetStmtAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. The value specified for the argument Attribute was not valid for

this version of DB2 CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid

connection or statement attribute for the version of the DB2 CLI

driver, but was not supported by the data source.

Restrictions

None.

Example

 /* set the required statement attributes */

 cliRC = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

 (SQLPOINTER)ROWSET_SIZE,

 0);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 /* set the required statement attributes */

 cliRC = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_BIND_TYPE,

 SQL_BIND_BY_COLUMN,

 0);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 /* set the required statement attributes */

 cliRC = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROWS_FETCHED_PTR,

 &rowsFetchedNb,

 0);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

SQLSetStmtOption function (CLI) - Set statement option

Deprecated

Note:

In ODBC 3.0, SQLSetStmtOption() has been deprecated and replaced with

SQLSetStmtAttr().

Although this version of DB2 CLI continues to support SQLSetStmtOption(), we

recommend that you use SQLSetStmtAttr() in your DB2 CLI programs so that they

conform to the latest standards.

Note: This deprecated function cannot be used in a 64-bit environment.

Migrating to the new function

The statement:

 SQLSetStmtOption(

 hstmt,

 SQL_ROWSET_SIZE,

 RowSetSize);

270 Call Level Interface Guide and Reference, Volume 2

for example, would be rewritten using the new function as:

 SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

 (SQLPOINTER) RowSetSize,

 0);

SQLSpecialColumns function (CLI) - Get special (row identifier)

columns

Purpose

 Specification: DB2 Call Level

Interface 2.1

ODBC 1.0

SQLSpecialColumns() returns unique row identifier information (primary key or

unique index) for a table. The information is returned in an SQL result set, which

can be retrieved using the same functions that are used to process a result set

generated by a query.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLSpecialColumnsW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLSpecialColumns(

 SQLHSTMT StatementHandle, /* hstmt */

 SQLUSMALLINT IdentifierType, /* fColType */

 SQLCHAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3, /* cbTableName */

 SQLUSMALLINT Scope, /* fScope */

 SQLUSMALLINT Nullable); /* fNullable */

Function arguments

 Table 132. SQLSpecialColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle

SQLUSMALLINT IdentifierType Input Type of unique row identifier to return. Only the

following type is supported:

v SQL_BEST_ROWID

Returns the optimal set of column(s) which can

uniquely identify any row in the specified table.

Note: For compatibility with ODBC applications,

SQL_ROWVER is also recognized, but not

supported; therefore, if SQL_ROWVER is specified,

an empty result will be returned.

Chapter 1. CLI and ODBC functions 271

Table 132. SQLSpecialColumns arguments (continued)

Data type Argument Use Description

SQLCHAR * CatalogName Input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

CatalogName is not a null pointer and does not point

to a zero-length string, then an empty result set and

SQL_SUCCESS will be returned. Otherwise, this is a

valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName Input Schema qualifier of the specified table.

SQLSMALLINT NameLength2 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * TableName Input Table name.

SQLSMALLINT NameLength3 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableName, or SQL_NTS if TableName

is null-terminated.

SQLUSMALLINT Scope Input Minimum required duration for which the unique

row identifier will be valid.

Scope must be one of the following:

v SQL_SCOPE_CURROW: The row identifier is

guaranteed to be valid only while positioned on

that row. A later re-select using the same row

identifier values might not return a row if the row

was updated or deleted by another transaction.

v SQL_SCOPE_TRANSACTION: The row identifier

is guaranteed to be valid for the duration of the

current transaction.

v SQL_SCOPE_SESSION: The row identifier is

guaranteed to be valid for the duration of the

connection.

The duration over which a row identifier value is

guaranteed to be valid depends on the current

transaction isolation level.

SQLUSMALLINT Nullable Input Determines whether to return special columns that

can have a NULL value.

Must be one of the following:

v SQL_NO_NULLS - The row identifier column set

returned cannot have any NULL values.

v SQL_NULLABLE - The row identifier column set

returned might include columns where NULL

values are permitted.

272 Call Level Interface Guide and Reference, Volume 2

Usage

If multiple ways exist to uniquely identify any row in a table (for example, if there

are multiple unique indexes on the specified table), then DB2 Call Level Interface

will return the best set of row identifier column set based on its internal criterion.

If the schema qualifier argument associated with a table name is not specified, then

the schema name defaults to the one currently in effect for the current connection.

If there is no column set which allows any row in the table to be uniquely

identified, an empty result set is returned.

The unique row identifier information is returned in the form of a result set where

each column of the row identifier is represented by one row in the result set.

Columns returned by SQLSpecialColumns shows the order of the columns in the

result set returned by SQLSpecialColumns(), sorted by SCOPE.

Since calls to SQLSpecialColumns() in many cases map to a complex and thus

expensive query against the system catalog, they should be used sparingly, and the

results saved rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_COLUMN_NAME_LEN to determine the

actual length of the COLUMN_NAME column supported by the connected DBMS.

Although new columns might be added and the names of the columns changed in

future releases, the position of the current columns will not change.

Columns returned by SQLSpecialColumns

Column 1 SCOPE (SMALLINT)

The duration for which the name in COLUMN_NAME is guaranteed to

point to the same row. Valid values are the same as for the Scope argument:

Actual scope of the row identifier. Contains one of the following values:

v SQL_SCOPE_CURROW

v SQL_SCOPE_TRANSACTION

v SQL_SCOPE_SESSION

Refer to Scope in Table 132 on page 271 for a description of each value.

Column 2 COLUMN_NAME (VARCHAR(128) not NULL)

Name of the column that is (or is part of) the table’s primary key.

Column 3 DATA_TYPE (SMALLINT not NULL)

SQL data type of the column.

Column 4 TYPE_NAME (VARCHAR(128) not NULL)

DBMS character string representation of the name associated with

DATA_TYPE column value.

Column 5 COLUMN_SIZE (INTEGER)

If the DATA_TYPE column value denotes a character or binary string, then

this column contains the maximum length in bytes; if it is a graphic

(DBCS) string, this is the number of double byte characters for the

parameter.

 For date, time, timestamp data types, this is the total number of SQLCHAR

or SQLWCHAR elements required to display the value when converted to

character.

Chapter 1. CLI and ODBC functions 273

For numeric data types, this is either the total number of digits, or the total

number of bits allowed in the column, depending on the value in the

NUM_PREC_RADIX column in the result set.

Refer to the table of data type precision.

Column 6 BUFFER_LENGTH (INTEGER)

The maximum number of bytes for the associated C buffer to store data

from this column if SQL_C_DEFAULT were specified on the SQLBindCol(),

SQLGetData() and SQLBindParameter() calls. This length does not include

any null-terminator. For exact numeric data types, the length accounts for

the decimal and the sign.

 Refer to the table of data type length.

Column 7 DECIMAL_DIGITS (SMALLINT)

The scale of the column. NULL is returned for data types where scale is

not applicable. Refer to the table of data type scale.

Column 8 PSEUDO_COLUMN (SMALLINT)

Indicates whether or not the column is a pseudo-column DB2 Call Level

Interface will only return:

v SQL_PC_NOT_PSEUDO

DB2 DBMSs do not support pseudo columns. ODBC applications might

receive the following values from other non-IBM RDBMS servers:

v SQL_PC_UNKNOWN

v SQL_PC_PSEUDO

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 133. SQLSpecialColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY009 Invalid argument value. TableName is null.

274 Call Level Interface Guide and Reference, Volume 2

Table 133. SQLSpecialColumns SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the length arguments was less than 0, but not

equal to SQL_NTS.

The value of one of the length arguments exceeded the maximum

length supported by the DBMS for that qualifier or name.

HY097 Column type out of range. An invalid IdentifierType value was specified.

HY098 Scope type out of range. An invalid Scope value was specified.

HY099 Nullable type out of range. An invalid Nullable values was specified.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example

 /* get special columns */

 cliRC = SQLSpecialColumns(hstmt,

 SQL_BEST_ROWID,

 NULL,

 0,

 tbSchema,

 SQL_NTS,

 tbName,

 SQL_NTS,

 SQL_SCOPE_CURROW,

 SQL_NULLABLE);

SQLStatistics function (CLI) - Get index and statistics information for a

base table

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLStatistics() retrieves index information for a given table. It also returns the

cardinality and the number of pages associated with the table and the indexes on

Chapter 1. CLI and ODBC functions 275

the table. The information is returned in a result set, which can be retrieved using

the same functions that are used to process a result set generated by a query.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLStatisticsW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLStatistics (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3, /* cbTableName */

 SQLUSMALLINT Unique, /* fUnique */

 SQLUSMALLINT Reserved); /* fAccuracy */

Function arguments

 Table 134. SQLStatistics arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * CatalogName Input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

CatalogName is not a null pointer and does not point

to a zero-length string, then an empty result set and

SQL_SUCCESS will be returned. Otherwise, this is a

valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName Input Schema qualifier of the specified table.

SQLSMALLINT NameLength2 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * TableName Input Table name.

SQLSMALLINT NameLength3 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableName, or SQL_NTS if TableName

is null-terminated.

SQLUSMALLINT Unique Input Type of index information to return:

v SQL_INDEX_UNIQUE

Only unique indexes will be returned.

v SQL_INDEX_ALL

All indexes will be returned.

276 Call Level Interface Guide and Reference, Volume 2

Table 134. SQLStatistics arguments (continued)

Data type Argument Use Description

SQLUSMALLINT Reserved Input Indicate whether the CARDINALITY and PAGES

columns in the result set contain the most current

information:

v SQL_ENSURE : This value is reserved for future

use, when the application requests the most up to

date statistics information. New applications

should not use this value. Existing applications

specifying this value will receive the same results

as SQL_QUICK.

v SQL_QUICK : Statistics which are readily available

at the server are returned. The values might not be

current, and no attempt is made to ensure that

they be up to date.

Usage

SQLStatistics() returns two types of information:

v Statistics information for the table (if it is available):

– when the TYPE column of the result set described below is set to

SQL_TABLE_STAT, the number of rows in the table and the number of pages

used to store the table.

– when the TYPE column of the result set indicates an index, the number of

unique values in the index, and the number of pages used to store the

indexes.
v Information about each index, where each index column is represented by one

row of the result set. The result set columns are given in Columns returned by

SQLStatistics in the order shown; the rows in the result set are ordered by

NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME and KEY_SEQ.

Since calls to SQLStatistics() in many cases map to a complex and thus expensive

query against the system catalog, they should be used sparingly, and the results

saved rather than repeating calls.

If the schema qualifier argument associated with a table name is not specified, then

the schema name defaults to the one currently in effect for the current connection.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of

the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns

supported by the connected DBMS.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

Columns returned by SQLStatistics

Column 1 TABLE_CAT (VARCHAR(128))

Catalog name of the table for which the index applies. The value is NULL

if this table does not have catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))

Name of the schema containing TABLE_NAME.

Chapter 1. CLI and ODBC functions 277

Column 3 TABLE_NAME (VARCHAR(128) not NULL)

Name of the table.

Column 4 NON_UNIQUE (SMALLINT)

Indicates whether the index prohibits duplicate values:

v SQL_TRUE if the index allows duplicate values.

v SQL_FALSE if the index values must be unique.

v NULL is returned if the TYPE column indicates that this row is

SQL_TABLE_STAT (statistics information on the table itself).

Column 5 INDEX_QUALIFIER (VARCHAR(128))

The string that would be used to qualify the index name in the DROP

INDEX statement. Appending a period (.) plus the INDEX_NAME results

in a full specification of the index.

Column 6 INDEX_NAME (VARCHAR(128))

The name of the index. If the TYPE column has the value

SQL_TABLE_STAT, this column has the value NULL.

Column 7 TYPE (SMALLINT not NULL)

Indicates the type of information contained in this row of the result set:

v SQL_TABLE_STAT - Indicates this row contains statistics information on

the table itself.

v SQL_INDEX_CLUSTERED - Indicates this row contains information on

an index, and the index type is a clustered index.

v SQL_INDEX_HASHED - Indicates this row contains information on an

index, and the index type is a hashed index.

v SQL_INDEX_OTHER - Indicates this row contains information on an

index, and the index type is other than clustered or hashed.

Column 8 ORDINAL_POSITION (SMALLINT)

Ordinal position of the column within the index whose name is given in

the INDEX_NAME column. A NULL value is returned for this column if

the TYPE column has the value of SQL_TABLE_STAT.

Column 9 COLUMN_NAME (VARCHAR(128))

Name of the column in the index. A NULL value is returned for this

column if the TYPE column has the value of SQL_TABLE_STAT.

Column 10 ASC_OR_DESC (CHAR(1))

Sort sequence for the column; ″A″ for ascending, ″D″ for descending.

NULL value is returned if the value in the TYPE column is

SQL_TABLE_STAT.

Column 11 CARDINALITY (INTEGER)

v If the TYPE column contains the value SQL_TABLE_STAT, this column

contains the number of rows in the table.

v If the TYPE column value is not SQL_TABLE_STAT, this column

contains the number of unique values in the index.

v A NULL value is returned if information is not available from the

DBMS.

Column 12 PAGES (INTEGER)

v If the TYPE column contains the value SQL_TABLE_STAT, this column

contains the number of pages used to store the table.

v If the TYPE column value is not SQL_TABLE_STAT, this column

contains the number of pages used to store the indexes.

v A NULL value is returned if information is not available from the

DBMS.

278 Call Level Interface Guide and Reference, Volume 2

Column 13 FILTER_CONDITION (VARCHAR(128))

If the index is a filtered index, this is the filter condition. Since DB2 servers

do not support filtered indexes, NULL is always returned. NULL is also

returned if TYPE is SQL_TABLE_STAT.

For the row in the result set that contains table statistics (TYPE is set to

SQL_TABLE_STAT), the columns values of NON_UNIQUE, INDEX_QUALIFIER,

INDEX_NAME, ORDINAL_POSITION, COLUMN_NAME, and ASC_OR_DESC

are set to NULL. If the CARDINALITY or PAGES information cannot be

determined, then NULL is returned for those columns.

Note: An application can check the SQLERRD(3) and SQLERRD(4) fields of the

SQLCA to gather some statistics on a table. However, the accuracy of the

information returned in those fields depends on many factors, such as the use of

parameter markers and expressions within the statement. The main factor which

can be controlled is the accuracy of the database statistics. That is, when the

statistics were last updated, (for example, for DB2 Database for Linux, UNIX, and

Windows, the last time the RUNSTATS command was run). Therefore, the statistics

information returned by SQLStatistics() is often more consistent and reliable than

the statistics information contained in the SQLCA fields discussed above.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 135. SQLStatistics SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY009 Invalid argument value. TableName is null.

Chapter 1. CLI and ODBC functions 279

Table 135. SQLStatistics SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the

maximum value supported for that data source. The maximum

supported value can be obtained by calling the SQLGetInfo()

function.

HY100 Uniqueness option type out of

range.

An invalid Unique value was specified.

HY101 Accuracy option type out of

range.

An invalid Reserved value was specified.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example

 /* get index and statistics information for a base table */

 cliRC = SQLStatistics(hstmt,

 NULL,

 0,

 tbSchema,

 SQL_NTS,

 tbName,

 SQL_NTS,

 SQL_INDEX_UNIQUE,

 SQL_QUICK);

SQLTablePrivileges function (CLI) - Get privileges associated with a

table

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

280 Call Level Interface Guide and Reference, Volume 2

SQLTablePrivileges() returns a list of tables and associated privileges for each

table. The information is returned in an SQL result set, which can be retrieved

using the same functions that are used to process a result set generated by a query.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLTablePrivilegesW(). Refer to

“Unicode functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLTablePrivileges (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* *szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR *SchemaName, /* *szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR *TableName, /* *szTableName */

 SQLSMALLINT NameLength3); /* cbTableName */

Function arguments

 Table 136. SQLTablePrivileges arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * CatalogName Input Catalog qualifier of a 3-part table name. If the target

DBMS does not support 3-part naming, and

PKCatalogName is not a null pointer and does not

point to a zero-length string, then an empty result

set and SQL_SUCCESS will be returned. Otherwise,

this is a valid filter for DBMSs that support 3-part

naming.

SQLSMALLINT NameLength1 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName Input Buffer that can contain a pattern value to qualify the

result set by schema name.

SQLSMALLINT NameLength2 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * TableName Input Buffer that can contain a pattern value to qualify the

result set by table name.

SQLSMALLINT NameLength3 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableName, or SQL_NTS if TableName

is null-terminated.

Note that the SchemaName and TableName input arguments accept search patterns.

Usage

The results are returned as a standard result set containing the columns listed in

the following table. The result set is ordered by TABLE_CAT, TABLE_SCHEM,

Chapter 1. CLI and ODBC functions 281

TABLE_NAME, and PRIVILEGE. If multiple privileges are associated with any

given table, each privilege is returned as a separate row.

The granularity of each privilege reported here might or might not apply at the

column level; for example, for some data sources, if a table can be updated, every

column in that table can also be updated. For other data sources, the application

must call SQLColumnPrivileges() to discover if the individual columns have the

same table privileges.

Since calls to SQLTablePrivileges() in many cases map to a complex and thus

expensive query against the system catalog, they should be used sparingly, and the

results saved rather than repeating calls.

Sometimes, an application calls the function and no attempt is made to restrict the

result set returned. For some data sources that contain a large quantity of tables,

views and aliases for example, this scenario maps to an extremely large result set

and very long retrieval times. In order to help reduce the long retrieval times, the

configuration keyword SchemaList can be specified in the CLI initialization file to

help restrict the result set when the application has supplied a null pointer for

SchemaName. If the application specifies a SchemaName string, the SchemaList

keyword is still used to restrict the output. Therefore, if the schema name supplied

is not in the SchemaList string, then the result will be an empty result set.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of

the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns

supported by the connected DBMS.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

Columns returned by SQLTablePrivileges

Column 1 TABLE_CAT (VARCHAR(128))

Catalog table name. The value is NULL if this table does not have catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))

Name of the schema contain TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)

Name of the table.

Column 4 GRANTOR (VARCHAR(128))

Authorization ID of the user who granted the privilege.

Column 5 GRANTEE (VARCHAR(128))

Authorization ID of the user to whom the privilege is granted.

Column 6 PRIVILEGE (VARCHAR(128))

Table privilege. This can be one of the following strings:

v ALTER

v CONTROL

v INDEX

v DELETE

v INSERT

v REFERENCES

v SELECT

v UPDATE

282 Call Level Interface Guide and Reference, Volume 2

Column 7 IS_GRANTABLE (VARCHAR(3))

Indicates whether the grantee is permitted to grant the privilege to other

users.

 This can be ″YES″, ″NO″ or NULL.

Note: The column names used by DB2 CLI follow the X/Open CLI CAE

specification style. The column types, contents and order are identical to those

defined for the SQLProcedures() result set in ODBC.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 137. SQLTablePrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the

maximum value supported for that data source. The maximum

supported value can be obtained by calling the SQLGetInfo()

function.

Chapter 1. CLI and ODBC functions 283

Table 137. SQLTablePrivileges SQLSTATEs (continued)

SQLSTATE Description Explanation

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example

 /* get privileges associated with a table */

 cliRC = SQLTablePrivileges(hstmt,

 NULL,

 0,

 tbSchemaPattern,

 SQL_NTS,

 tbNamePattern,

 SQL_NTS);

SQLTables function (CLI) - Get table information

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLTables() returns a list of table names and associated information stored in the

system catalog of the connected data source. The list of table names is returned as

a result set, which can be retrieved using the same functions that are used to

process a result set generated by a query.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLTablesW(). Refer to “Unicode

functions (CLI)” on page 7 for information on ANSI to Unicode function

mappings.

Syntax

SQLRETURN SQLTables (

 SQLHSTMT StatementHandle, /* hstmt */

 SQLCHAR *CatalogName, /* szCatalogName */

 SQLSMALLINT NameLength1, /* cbCatalogName */

 SQLCHAR *SchemaName, /* szSchemaName */

 SQLSMALLINT NameLength2, /* cbSchemaName */

 SQLCHAR *TableName, /* szTableName */

 SQLSMALLINT NameLength3, /* cbTableName */

 SQLCHAR *TableType, /* szTableType */

 SQLSMALLINT NameLength4); /* cbTableType */

Function arguments

 Table 138. SQLTables arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

284 Call Level Interface Guide and Reference, Volume 2

Table 138. SQLTables arguments (continued)

Data type Argument Use Description

SQLCHAR * CatalogName Input Catalog qualifier of a 3-part table name that can

contain a pattern value. If the target DBMS does not

support 3-part naming, and CatalogName is not a null

pointer and does not point to a zero-length string,

then an empty result set and SQL_SUCCESS will be

returned. Otherwise, this is a valid filter for DBMSs

that support 3-part naming.

SQLSMALLINT NameLength1 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store CatalogName, or SQL_NTS if

CatalogName is null-terminated.

SQLCHAR * SchemaName Input Buffer that can contain a pattern value to qualify the

result set by schema name.

SQLSMALLINT NameLength2 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store SchemaName, or SQL_NTS if

SchemaName is null-terminated.

SQLCHAR * TableName Input Buffer that can contain a pattern value to qualify the

result set by table name.

SQLSMALLINT NameLength3 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableName, or SQL_NTS if TableName

is null-terminated.

SQLCHAR * TableType Input Buffer that can contain a value list to qualify the

result set by table type.

The value list is a list of uppercase comma-separated

single values for the table types of interest. Valid

table type identifiers include: ALIAS, HIERARCHY

TABLE, INOPERATIVE VIEW, NICKNAME,

MATERIALIZED QUERY TABLE, SYSTEM TABLE,

TABLE, TYPED TABLE, TYPED VIEW, or VIEW. If

TableType argument is a NULL pointer or a zero

length string, then this is equivalent to specifying all

of the possibilities for the table type identifier.

If SYSTEM TABLE is specified, then both system

tables and system views (if there are any) are

returned.

SQLSMALLINT NameLength4 Input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store TableType, or SQL_NTS if TableType is

null-terminated.

Note that the CatalogName, SchemaName, and TableName input arguments accept

search patterns.

Usage

Table information is returned in a result set where each table is represented by one

row of the result set. To determine the type of access permitted on any given table

Chapter 1. CLI and ODBC functions 285

in the list, the application can call SQLTablePrivileges(). The application must be

able to handle a situation where the user selects a table for which SELECT

privileges are not granted.

To support obtaining just a list of schemas, the following special semantics for the

SchemaName argument can be applied: if SchemaName is a string containing a single

percent (%) character, and CatalogName and TableName are empty strings, then the

result set contains a list of valid schemas in the data source.

If TableType is a single percent character (%) and CatalogName, SchemaName, and

TableName are empty strings, then the result set contains a list of valid table types

for the data source. (All columns except the TABLE_TYPE column contain NULLs.)

If TableType is not an empty string, it must contain a list of uppercase,

comma-separated values for the types of interest; each value can be enclosed in

single quotation marks or unquoted. For example, ″’TABLE’,’VIEW’″ or

″TABLE,VIEW″. If the data source does not support or does not recognize a

specified table type, nothing is returned for that type.

Sometimes, an application calls SQLTables() with null pointers for some or all of

the SchemaName, TableName, and TableType arguments so that no attempt is made to

restrict the result set returned. For some data sources that contain a large quantity

of tables, views and aliases for example, this scenario maps to an extremely large

result set and very long retrieval times. Three mechanisms are introduced to help

the user reduce the long retrieval times: three configuration keywords

(SCHEMALIST, SYSSCHEMA, TABLETYPE) can be specified in the CLI

initialization file to help restrict the result set when the application has supplied

null pointers for either or both of SchemaName and TableType. If the application

specifies a SchemaName string, the SCHEMALIST keyword is still used to restrict

the output. Therefore, if the schema name supplied is not in the SCHEMALIST

string, then the result will be an empty result set.

The result set returned by SQLTables() contains the columns listed in Columns

returned by SQLTables in the order given. The rows are ordered by TABLE_TYPE,

TABLE_CAT, TABLE_SCHEM, and TABLE_NAME.

Since calls to SQLTables() in many cases map to a complex and thus expensive

query against the system catalog, they should be used sparingly, and the results

saved rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,

SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and

SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of

the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns

supported by the connected DBMS.

Although new columns might be added and the names of the existing columns

changed in future releases, the position of the current columns will not change.

Columns returned by SQLTables

Column 1 TABLE_CAT (VARCHAR(128))

Name of the catalog containing TABLE_SCHEM. The value is NULL if this

table does not have catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))

Name of the schema containing TABLE_NAME.

286 Call Level Interface Guide and Reference, Volume 2

Column 3 TABLE_NAME (VARCHAR(128))

Name of the table, view, alias or synonym.

Column 4 TABLE_TYPE (VARCHAR(128))

Identifies the type given by the name in the TABLE_NAME column. It can

have the string values ’ALIAS’, ’HIERARCHY TABLE’, ’INOPERATIVE

VIEW’, ’NICKNAME’, ’MATERIALIZED QUERY TABLE’, ’SYSTEM

TABLE’, ’TABLE’, ’TYPED TABLE’, ’TYPED VIEW’, or ’VIEW’.

Column 5 REMARKS (VARCHAR(254))

Descriptive information about the table.

Column

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_ERROR

v SQL_INVALID_HANDLE

Diagnostics

 Table 139. SQLTables SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source

failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support

execution or completion of the function. It is likely that

process-level memory has been exhausted for the application

process. Consult the operating system configuration for

information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The

function was called and before it completed execution,

SQLCancel() was called on StatementHandle from a different thread

in a multithreaded application. Then the function was called again

on StatementHandle.

HY009 Invalid argument value. TableName is null.

HY010 Function sequence error.

The function was called while in a data-at-execute

(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and

END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called

for the StatementHandle and was still executing when this function

was called.

The function was called before a statement was prepared on the

statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource

limitations.

Chapter 1. CLI and ODBC functions 287

Table 139. SQLTables SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,

but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the

maximum value supported for that data source. The maximum

supported value can be obtained by calling the SQLGetInfo()

function.

HYT00 Timeout expired. The timeout period expired before the data source returned the

result set. The timeout period can be set using the

SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example

 /* get table information */

 cliRC = SQLTables(hstmt,

 NULL,

 0,

 tbSchemaPattern,

 SQL_NTS,

 tbNamePattern,

 SQL_NTS,

 NULL,

 0);

SQLTransact function (CLI) - Transaction management

Deprecated

Note:

In ODBC 3.0, SQLTransact() has been deprecated and replaced with SQLEndTran().

Although this version of DB2 CLI continues to support SQLTransact(), we

recommend that you use SQLEndTran() in your DB2 CLI programs so that they

conform to the latest standards.

Migrating to the new function

The statement:

 SQLTransact(henv, hdbc, SQL_COMMIT);

for example, would be rewritten using the new function as:

 SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

288 Call Level Interface Guide and Reference, Volume 2

Chapter 2. CLI/ODBC configuration keywords listing by

category

The CLI/ODBC configuration keywords can be divided into the following

categories:

v Compatibility Configuration Keywords

v Data Source Configuration Keywords

v Data Type Configuration Keywords

v Enterprise Configuration Keywords

v Environment Configuration Keywords

v File DSN Configuration Keywords

v Optimization Configuration Keywords

v Service Configuration Keywords

v Static SQL Configuration Keywords

v Transaction Configuration Keywords

While most CLI/ODBC configuration keywords are set in the db2cli.ini

initialization file, some keywords are set by providing the keyword information in

the connection string to SQLDriverConnect() instead. These keywords are identified

as such below.

Compatibility Configuration Keywords

The Compatibility set of options is used to define DB2 behavior. They can be set

to ensure that other applications are compatible with DB2.

v “CheckForFork CLI/ODBC configuration keyword” on page 304

v “CursorTypes CLI/ODBC configuration keyword” on page 314

v “DeferredPrepare CLI/ODBC configuration keyword” on page 320

v “DescribeCall CLI/ODBC configuration keyword” on page 320

v “DescribeParam CLI/ODBC configuration keyword” on page 323

v “DisableKeysetCursor CLI/ODBC configuration keyword” on page 324

v “DisableMultiThread CLI/ODBC configuration keyword” on page 324

v “DisableUnicode CLI/ODBC configuration keyword” on page 325

v “OleDbReportIsLongForLongTypes CLI/ODBC configuration keyword” on page

341

v “OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration keyword” on page

343

v “RetCatalogAsCurrServer CLI/ODBC configuration keyword” on page 354

v “RetOleDbConnStr CLI/ODBC configuration keyword” on page 355

v “Trusted_Connection CLI/ODBC configuration keyword” on page 373(use

SQLDriverConnect() to set this keyword)

Data Source Configuration Keywords

General keywords.

v “DBAlias CLI/ODBC configuration keyword” on page 316

v “PWD CLI/ODBC configuration keyword” on page 344

© Copyright IBM Corp. 1993, 2008 289

v “UID CLI/ODBC configuration keyword” on page 374

Data Type Configuration Keywords

The Data Type set of options is used to define how DB2 reports and handles

various data types.

v “BitData CLI/ODBC configuration keyword” on page 302

v “CurrentImplicitXMLParseOption CLI/ODBC configuration keyword” on page

309

v “DateTimeStringFormat CLI/ODBC configuration keyword” on page 318

v “DecimalFloatRoundingMode CLI/ODBC configuration keyword” on page 318

v “FloatPrecRadix CLI/ODBC configuration keyword” on page 325

v “GetDataLobNoTotal CLI/ODBC configuration keyword” on page 326

v “Graphic CLI/ODBC configuration keyword” on page 327

v “LOBMaxColumnSize CLI/ODBC configuration keyword” on page 332

v “LongDataCompat CLI/ODBC configuration keyword” on page 333

v “MapBigintCDefault CLI/ODBC configuration keyword” on page 334

v “MapCharToWChar CLI/ODBC configuration keyword” on page 334

v “MapDateCDefault CLI/ODBC configuration keyword” on page 335

v “MapDateDescribe CLI/ODBC configuration keyword” on page 335

v “MapDecimalFloatDescribe CLI/ODBC configuration keyword” on page 336

v “MapGraphicDescribe CLI/ODBC configuration keyword” on page 336

v “MapTimeCDefault CLI/ODBC configuration keyword” on page 337

v “MapTimeDescribe CLI/ODBC configuration keyword” on page 338

v “MapTimestampCDefault CLI/ODBC configuration keyword” on page 338

v “MapTimestampDescribe CLI/ODBC configuration keyword” on page 339

v “MapXMLCDefault CLI/ODBC configuration keyword” on page 339

v “MapXMLDescribe CLI/ODBC configuration keyword” on page 340

v “OleDbReturnCharAsWChar CLI/ODBC configuration keyword” on page 342

v “PromoteLONGVARtoLOB CLI/ODBC configuration keyword” on page 350

v “XMLDeclaration CLI/ODBC configuration keyword” on page 377

Enterprise Configuration Keywords

The Enterprise set of options is used to maximize the efficiency of connections to

large databases.

v “ConnectNode CLI/ODBC configuration keyword” on page 307

v “CurrentPackagePath CLI/ODBC configuration keyword” on page 311

v “CurrentPackageSet CLI/ODBC configuration keyword” on page 311

v “CurrentRefreshAge CLI/ODBC configuration keyword” on page 312

v “CurrentSchema CLI/ODBC configuration keyword” on page 313

v “CurrentSQLID CLI/ODBC configuration keyword” on page 312

v “DBName CLI/ODBC configuration keyword” on page 317

v “GranteeList CLI/ODBC configuration keyword” on page 326

v “GrantorList CLI/ODBC configuration keyword” on page 327

v “ReportPublicPrivileges CLI/ODBC configuration keyword” on page 353

v “ReturnSynonymSchema CLI/ODBC configuration keyword” on page 357

290 Call Level Interface Guide and Reference, Volume 2

v “SchemaList CLI/ODBC configuration keyword” on page 358

v “ServerMsgMask CLI/ODBC configuration keyword” on page 359

v “SysSchema CLI/ODBC Configuration Keyword” on page 363

v “TableType CLI/ODBC configuration keyword” on page 364

v “UseServerMsgSP CLI/ODBC configuration keyword” on page 376

Environment Configuration Keywords

The Environment set of options is used to define environment-specific settings,

such as the location of various files on the server and client machines.

v “ConnectTimeout CLI/ODBC configuration keyword” on page 308

v “CurrentFunctionPath CLI/ODBC configuration keyword” on page 309

v “QueryTimeoutInterval CLI/ODBC configuration keyword” on page 351

v “ReadCommonSectionOnNullConnect CLI/ODBC configuration keyword” on

page 352

v “ReceiveTimeout CLI/ODBC configuration keyword” on page 352

v “TempDir CLI/ODBC configuration keyword” on page 364

File DSN Configuration Keywords

The File DSN set of options is used to set the TCP/IP settings for a file DSN

connection.

v “Database CLI/ODBC configuration keyword” on page 317

v “Hostname CLI/ODBC configuration keyword” on page 328

v “Port CLI/ODBC configuration keyword” on page 349

v “Protocol CLI/ODBC configuration keyword” on page 351

v “ServiceName CLI/ODBC configuration keyword” on page 359

Optimization Configuration Keywords

The Optimization set of options is used to speed up and reduce the amount of

network flow between the CLI/ODBC Driver and the server.

v “AllowGetDataLOBReaccess CLI/ODBC configuration keyword” on page 296

v “AppendForFetchOnly CLI/ODBC configuration keyword” on page 298

v “AppUsesLOBLocator CLI/ODBC configuration keyword” on page 297

v “BlockForNRows CLI/ODBC configuration keyword” on page 302

v “BlockLobs CLI/ODBC configuration keyword” on page 303

v “ClientBuffersUnboundLOBS CLI/ODBC configuration keyword” on page 305

v “CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword” on

page 310

v “DB2Degree CLI/ODBC configuration keyword” on page 314

v “DB2Explain CLI/ODBC configuration keyword” on page 315

v “DB2NETNamedParam CLI/ODBC configuration keyword” on page 315

v “DB2Optimization CLI/ODBC configuration keyword” on page 316

v “DescribeInputOnPrepare CLI/ODBC configuration keyword” on page 321

v “DescribeOutputLevel CLI/ODBC configuration keyword” on page 321

v “KeepDynamic CLI/ODBC configuration keyword” on page 330

v “LOBCacheSize CLI/ODBC configuration keyword” on page 331

Chapter 2. CLI/ODBC configuration keywords 291

v “LOBFileThreshold CLI/ODBC configuration keyword” on page 332

v “LockTimeout CLI/ODBC configuration keyword” on page 333

v “MaxLOBBlockSize CLI/ODBC configuration keyword” on page 340

v “OptimizeForNRows CLI/ODBC configuration keyword” on page 343

v “Reopt CLI/ODBC configuration keyword” on page 353

v “ReturnAliases CLI/ODBC configuration keyword” on page 356

v “SkipTrace CLI/ODBC configuration keyword” on page 360

v “StreamGetData CLI/ODBC configuration keyword” on page 362

v “StreamPutData CLI/ODBC configuration keyword” on page 362

v “Underscore CLI/ODBC configuration keyword” on page 375

Service Configuration Keywords

The Service set of options is used to help in troubleshooting problems with

CLI/ODBC connections. Some options can also be used by programmers to gain a

better understanding of how their CLI programs are translated into calls to the

server.

v “AppendAPIName CLI/ODBC configuration keyword” on page 297

v “AppendRowColToErrorMessage CLI/ODBC configuration keyword” on page

298

v “IgnoreWarnings CLI/ODBC configuration keyword” on page 329

v “IgnoreWarnList CLI/ODBC configuration keyword” on page 328

v “LoadXAInterceptor CLI/ODBC configuration keyword” on page 332

v “Patch1 CLI/ODBC configuration keyword” on page 344

v “Patch2 CLI/ODBC configuration keyword” on page 346

v “ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword” on page 354

v “RetryOnError CLI/ODBC configuration keyword” on page 355

v “ProgramName CLI/ODBC configuration keyword” on page 350

v “Trace CLI/ODBC configuration keyword” on page 365

v “TraceComm CLI/ODBC configuration keyword” on page 365

v “TraceErrImmediate CLI/ODBC configuration keyword” on page 366

v “TraceFileName CLI/ODBC configuration keyword” on page 367

v “TraceFlush CLI/ODBC configuration keyword” on page 367

v “TraceFlushOnError CLI/ODBC configuration keyword” on page 368

v “TraceLocks CLI/ODBC configuration keyword” on page 368

v “TracePathName CLI/ODBC configuration keyword” on page 370

v “TracePIDList CLI/ODBC configuration keyword” on page 369

v “TracePIDTID CLI/ODBC configuration keyword” on page 370

v “TraceRefreshInterval CLI/ODBC configuration keyword” on page 371

v “TraceStmtOnly CLI/ODBC configuration keyword” on page 371

v “TraceTime CLI/ODBC configuration keyword” on page 372

v “TraceTimestamp CLI/ODBC configuration keyword” on page 372

v “WarningList CLI/ODBC configuration keyword” on page 377

292 Call Level Interface Guide and Reference, Volume 2

Static SQL Configuration Keywords

The Static SQL set of options is used when running static SQL statements in

CLI/ODBC applications.

v “StaticCapFile CLI/ODBC configuration keyword” on page 360

v “StaticLogFile CLI/ODBC configuration keyword” on page 360

v “StaticMode CLI/ODBC configuration keyword” on page 361

v “StaticPackage CLI/ODBC configuration keyword” on page 361

Transaction Configuration Keywords

The Transaction set of options is used to control and speed up SQL statements

used in the application.

v “ArrayInputChain CLI/ODBC configuration keyword” on page 299

v “AsyncEnable CLI/ODBC configuration keyword” on page 299

v “AutoCommit CLI/ODBC configuration keyword” on page 301

v “ClientAcctStr CLI/ODBC configuration keyword” on page 304

v “ClientApplName CLI/ODBC configuration keyword” on page 305

v “ClientUserID CLI/ODBC configuration keyword” on page 306

v “ClientWrkStnName CLI/ODBC configuration keyword” on page 306

v “ConnectType CLI/ODBC configuration keyword” on page 308

v “CursorHold CLI/ODBC configuration keyword” on page 313

v “Mode CLI/ODBC configuration keyword” on page 341

v “SQLOverrideFileName CLI/ODBC configuration keyword” on page 357

v “TxnIsolation CLI/ODBC configuration keyword” on page 374

v “UseOldStpCall CLI/ODBC configuration keyword” on page 375

db2cli.ini initialization file

The db2cli.ini initialization file contains various keywords and values that can be

used to configure the behavior of DB2 CLI and the applications using it. The

keywords are associated with the database alias name, and affect all DB2 CLI and

ODBC applications that access the database.

By default, the location of the DB2 CLI/ODBC configuration keyword file is in the

sqllib directory on Window platforms, and in the sqllib/cfg directory of the

database instance running the CLI/ODBC applications on UNIX platforms. If the

ODBC Driver Manager is used to configure a User Data Source on the Windows

platform, a db2cli.ini might be created in:

v On the Windows XP and Windows 2003 operating systems, Documents and

Settings\All Users\Application Data\IBM\DB2\<Copy Name>

v On the Windows Vista operating system, ProgramData\IBM\DB2\<Copy

Name>

The environment variable DB2CLIINIPATH can also be used to override the default

and specify a different location for the file.

The configuration keywords enable you to:

v Configure general features such as data source name, user name, and password.

v Set options that will affect performance.

Chapter 2. CLI/ODBC configuration keywords 293

v Indicate query parameters such as wild card characters.

v Set patches or work-arounds for various ODBC applications.

v Set other, more specific features associated with the connection, such as code

pages and IBM GRAPHIC data types.

v Override default connection options specified by an application. For example, if

an application requests Unicode support from the CLI driver by setting the

SQL_ATTR_ANSI_APP connection attribute, then setting DisableUnicode=1 in

the db2cli.ini file will force the CLI driver not to provide the application with

Unicode support.

Note: If the CLI/ODBC configuration keywords set in the db2cli.ini file conflict

with keywords in the SQLDriverConnect() connection string, then the

SQLDriverConnect() keywords will take precedence.

The db2cli.ini initialization file is an ASCII file which stores values for the DB2 CLI

configuration options. A sample file is shipped to help you get started. While most

CLI/ODBC configuration keywords are set in the db2cli.ini initialization file, some

keywords are set by providing the keyword information in the connection string to

SQLDriverConnect() instead.

There is one section within the file for each database (data source) the user wishes

to configure. If needed, there is also a common section that affects all database

connections.

Only the keywords that apply to all database connections through the DB2

CLI/ODBC driver are included in the COMMON section. This includes the

following keywords:

v CheckForFork

v DiagPath

v DisableMultiThread

v JDBCTrace

v JDBCTraceFlush

v JDBCTracePathName

v QueryTimeoutInterval

v ReadCommonSectionOnNullConnect

v Trace

v TraceComm

v TraceErrImmediate

v TraceFileName

v TraceFlush

v TraceFlushOnError

v TraceLocks

v TracePathName

v TracePIDList

v TracePIDTID

v TraceRefreshInterval

v TraceStmtOnly

v TraceTime

v TraceTimeStamp

294 Call Level Interface Guide and Reference, Volume 2

All other keywords are to be placed in the database specific section, described

below.

Note: Configuration keywords are valid in the COMMON section, however, they

will apply to all database connections.

The COMMON section of the db2cli.ini file begins with:

[COMMON]

Before setting a common keyword it is important to evaluate its impact on all DB2

CLI/ODBC connections from that client. A keyword such as TRACE, for instance,

will generate information on all DB2 CLI/ODBC applications connecting to DB2 on

that client, even if you are intending to troubleshoot only one of those applications.

Each database specific section always begins with the name of the data source

name (DSN) between square brackets:

[data source name]

This is called the section header.

The parameters are set by specifying a keyword with its associated keyword value

in the form:

KeywordName =keywordValue

v All the keywords and their associated values for each database must be located

below the database section header.

v If the database-specific section does not contain a DBAlias keyword, the data

source name is used as the database alias when the connection is established.

The keyword settings in each section apply only to the applicable database alias.

v The keywords are not case sensitive; however, their values can be if the values

are character based.

v If a database is not found in the .INI file, the default values for these keywords

are in effect.

v Comment lines are introduced by having a semicolon in the first position of a

new line.

v Blank lines are permitted.

v If duplicate entries for a keyword exist, the first entry is used (and no warning

is given).

The following is a sample .INI file with 2 database alias sections:

; This is a comment line.

[MYDB22]

AutoCommit=0

TableType="’TABLE’,’SYSTEM TABLE’"

; This is another comment line.

[MYDB2MVS]

CurrentSQLID=SAAID

TableType="’TABLE’"

SchemaList="’USER1’,CURRENT SQLID,’USER2’"

Although you can edit the db2cli.ini file manually on all platforms, it is

recommended that you use the Configuration Assistant if it is available on your

platform or the UPDATE CLI CONFIGURATION command. You must add a blank

line after the last entry if you manually edit the db2cli.ini file.

Chapter 2. CLI/ODBC configuration keywords 295

AllowGetDataLOBReaccess CLI/ODBC configuration keyword

Specifies whether the application can call SQLGetData() for previously accessed

LOB columns when querying database servers that support Dynamic Data Format.

db2cli.ini keyword syntax:

AllowGetDataLOBReaccess = 0 | 1

Default setting:

Do not allow calls to SQLGetData() for previously accessed LOB columns

when querying database servers that support Dynamic Data Format.

Usage notes:

This keyword only affects connections to database servers that support

Dynamic Data Format, also known as progressive streaming. The default

setting of 0 does not allow applications to call SQLGetData() for previously

accessed LOB columns. Specify 1 to allow applications to call SQLGetData()

for previously accessed LOB columns.

 Note that when the keyword is set to 1 to allow re-access to LOB columns,

some resources on the server might not be freed upon completion of

SQLGetData().

If the server does not support Dynamic Data Format, this keyword has no

effect and calls to SQLGetData() for previously accessed LOB columns are

allowed.

AltHostName CLI/ODBC configuration keyword

Specifies the alternate host name to be used if the primary server specified by

HOSTNAME cannot be contacted (Client Reroute.)

db2cli.ini keyword syntax:

AltHostName = fully qualified alternate host name | IP address of node

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies a fully qualified host name or the IP address of

the node where the alternate server for the database resides.

If the primary server returns alternate server information, it will override

this AltHostName setting. However, this keyword is read only. That means

the db2cli.ini will not be updated with the alternate server information

received from the primary server.

AltPort CLI/ODBC configuration keyword

Specifies the alternate port to be used if the primary server specified by HOSTNAME

and PORT cannot be contacted (Client Reroute.)

db2cli.ini keyword syntax:

AltPort = port number

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies the port number of the alternate server of the

database manager instance where the alternate server for the database

resides.

296 Call Level Interface Guide and Reference, Volume 2

If the primary server returns alternate server information, it will override

this AltPort setting. However, this keyword is read only. That means the

db2cli.ini will not be updated with the alternate server information

received from the primary server.

AppUsesLOBLocator CLI/ODBC configuration keyword

Specifies whether applications use LOB locators.

db2cli.ini keyword syntax:

AppUsesLOBLocator = 0 | 1

Default setting:

Applications are using LOB locators.

Equivalent connection or statement attribute:

SQL_ATTR_APP_USES_LOB_LOCATOR

Usage notes:

The default setting of 1 indicates that applications are using LOB locators.

For applications that do not use LOB locators and are querying data on a

server that supports Dynamic Data Format, also known as progressive

streaming, specify 0 to indicate that LOB locators are not used and allow

the return of LOB data to be optimized.

 This keyword is ignored for stored procedure result sets.

If the keyword is set to 0 and an application binds a LOB locator to a

result set using SQLBindCol(), an Invalid conversion error will be returned

by the SQLFetch() function.

AppendAPIName CLI/ODBC configuration keyword

Appends the CLI/ODBC function name which generated an error to the error

message text.

db2cli.ini keyword syntax:

AppendAPIName = 0 | 1

Default setting:

Do NOT display DB2 CLI function name.

Usage notes:

The DB2 CLI function (API) name that generated an error is appended to the error

message retrieved using SQLGetDiagRec() or SQLError(). The function name is

enclosed in curly braces { }.

For example,

[IBM][CLI Driver]" CLIxxxx: < text >

SQLSTATE=XXXXX {SQLGetData}"

v 0 = do NOT append DB2 CLI function name (default)

v 1 = append the DB2 CLI function name

This keyword is only useful for debugging.

Chapter 2. CLI/ODBC configuration keywords 297

AppendForFetchOnly CLI/ODBC configuration keyword

Specifies whether the clause FOR FETCH ONLY is appended to READ-ONLY SQL

statements.

db2cli.ini keyword syntax:

AppendForFetchOnly = 0 | 1

Default setting:

The keyword is not set by default. DB2 CLI appends the ″FOR FETCH

ONLY″ clause only when connected to certain server types.

Equivalent connection attribute:

SQL_ATTR_APPEND_FOR_FETCH_ONLY

Usage notes:

By default, DB2 CLI appends the ″FOR FETCH ONLY″ clause to read

SELECT statements when connected to DB2 for z/OS or DB2 for i5/OS®

databases.

 This keyword allows an application to control when DB2 CLI appends the

″FOR FETCH ONLY″ clause, for example, in a situation where an

application is binding the DB2 CLI packages using different bind

BLOCKING options (for example, BLOCKING UNAMBIG) and wants to

suppress the blocking in order to keep positioned on a given row.

To change the default DB2 CLI behavior, the keyword can be set as

follows:

v 0: DB2 CLI never appends the ″FOR FETCH ONLY″ clause to read

SELECT statements regardless of the server type it is connecting to.

v 1: DB2 CLI always appends the ″FOR FETCH ONLY″ clause to read

SELECT statements regardless of the server type it is connecting to.

AppendRowColToErrorMessage CLI/ODBC configuration keyword

Specifies whether the row and column numbers that generated the error are

appended the error message string.

db2cli.ini keyword syntax:

AppendRowColToErrorMessage= 0 | 1

Default setting:

The default setting of 0 will return the error message string without the

row and column numbers.

Usage notes:

Specify 1 to append the row and column number that generated the error

to the error message string. The values for row and column numbers are

only appended when DB2 CLI is able to apply a row or column number to

the problem.

 The row or column numbers appended to error messages are the same

positive values that would be returned if an application called

SQLGetDiagField() with the DiagIdentifier argument as

SQL_DIAG_ROW_NUMBER or SQL_DIAG_COLUMN_NUMBER. When

AppendRowColToErrorMessage is set to 1, errors returned from calls to

SQLGetDescField(), SQLGetDescRec() or SQLError() will have these row or

column numbers appended with the following format: Row=<r>, Col=<c>,

if they can be determined.

For example, the default text for error CLI0111E is as follows:

298 Call Level Interface Guide and Reference, Volume 2

[IBM][CLI Driver] CLI0111E Numeric value out of range. SQLSTATE=22003

Specifying 1 to append the row and column number will return the

following text for error CLI0111E:

[IBM][CLI Driver] CLI0111E Numeric value out of range.

 SQLSTATE=22003 {Row=2,Col=1}

Note: It is also possible for an error to be returned with only a row

number.

ArrayInputChain CLI/ODBC configuration keyword

Enables array input without needing pre-specified size and memory allocation

requirements of normal array input.

db2cli.ini keyword syntax:

ArrayInputChain = -1 | 0 | <positive integer>

Default setting:

Normal input array is enabled, where the array and its size must be

specified before the corresponding SQLExecute() call is made.

Usage notes:

By default, array input (where an array of values is bound to an input parameter)

requires the array and its size to be specified before the corresponding

SQLExecute() function is called. An application, however, may not know the array

size in advance, or the array size may be too large for the application to allocate

from its pool of available memory. Under these circumstances, the application can

set ArrayInputChain=-1 and use the SQL_ATTR_CHAINING_BEGIN and

SQL_ATTR_CHAINING_END statement attributes to enable chaining, which

allows array input without the pre-specified size and memory requirements of

normal array input.

To enable chaining:

1. Set the keyword ArrayInputChain = -1.

2. Prepare and bind input parameters to the SQL statement.

3. Set the SQL_ATTR_CHAINING_BEGIN statement attribute with

SQLSetStmtAttr().

4. Update the bound parameters with input data and call SQLExecute().

5. Repeat Step 4 for as many rows as there are in the input array.

6. Set the SQL_ATTR_CHAINING_END statement attribute with

SQLSetStmtAttr() after the last row in the array has been processed according

to Step 4.

The effect of completing these steps will be the same as if normal array input had

been used.

Setting ArrayInputChain=0 (the default value) turns this array input feature off.

ArrayInputChain can also be set to any positive integer which sets the array size to

use for the input array.

AsyncEnable CLI/ODBC configuration keyword

Enables or disables the ability to execute queries asynchronously.

Chapter 2. CLI/ODBC configuration keywords 299

db2cli.ini keyword syntax:

AsyncEnable = 0 | 1

Default setting:

Queries can be executed asynchronously.

Usage notes:

This option allows you to enable or disable support that allows queries to

execute asynchronously. This only benefits applications that were written

to take advantage of this feature by setting the

SQL_ATTR_ASYNC_ENABLE attribute using SQLSetStmtAttr() or

SQLSetConnectAttr().

v 0 = Queries are not executed asynchronously

v 1 = Allow queries to be executed asynchronously. The application must

also enable the asynchronous functionality by setting

SQL_ATTR_ASYNC_ENABLE using SQLSetStmtAttr() or

SQLSetConnectAttr(). (default)

Once a function has been called asynchronously, only the original function,

SQLAllocHandle(), SQLCancel(), SQLSetStmtAttr(), SQLGetDiagField(),

SQLGetDiagRec(), or SQLGetFunctions() can be called on the statement

handle, until the original function returns a code other than

SQL_STILL_EXECUTING. Any other function called on any other

statement handle under the same connection returns SQL_ERROR with an

SQLSTATE of HY010 (Function sequence error).

Authentication CLI/ODBC configuration keyword

Specifies the type of authentication to be used with file DSN or DSN-less

connectivity.

db2cli.ini keyword syntax:

Authentication = SERVER | SERVER_ENCRYPT | DATA_ENCRYPT |

KERBEROS | GSSPLUGIN

Default setting:

SERVER

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this option, you must also set the following options:

v Database;

v Protocol.

If Protocol=IPC, you need to set the following too:

v Instance.

If Protocol=TCPIP, you need to set the following too:

v Port; and

v Hostname.

If Kerberos is specified, then the KRBPlugin may also be optionaly

specified. If KRBPlugin is not specified, the default plugin IBMkrb5 will be

used.

300 Call Level Interface Guide and Reference, Volume 2

AutoCommit CLI/ODBC configuration keyword

Specifies whether the application commits each statement by default.

db2cli.ini keyword syntax:

AutoCommit = 1 | 0

Default setting:

Each statement is treated as a single, complete transaction.

Equivalent connection attribute:

SQL_ATTR_AUTOCOMMIT

Usage notes:

To be consistent with ODBC, DB2 CLI defaults with AutoCommit on, which means

each statement is treated as a single, complete transaction. This keyword can

provide an alternative default, but will only be used if the application does not

specify a value for SQL_ATTR_AUTOCOMMIT.

v 1 = SQL_ATTR_AUTOCOMMIT_ON (default)

v 0 = SQL_ATTR_AUTOCOMMIT_OFF

Note: Most ODBC applications assume the default of AutoCommit to be on.

Extreme care must be used when overriding this default during runtime as the

application may depend on this default to operate properly.

This keyword also allows you to specify whether autocommit should be enabled in

a Distributed Unit of Work (DUOW) environment. If a connection is part of a

coordinated Distributed Unit of Work, and AutoCommit is not set, the default does

not apply; implicit commits arising from autocommit processing are suppressed. If

AutoCommit is set to 1, and the connection is part of a coordinated Distributed

Unit of Work, the implicit commits are processed. This may result in severe

performance degradation, and possibly other unexpected results elsewhere in the

DUOW system. However, some applications may not work at all unless this is

enabled.

A thorough understanding of the transaction processing of an application is

necessary, especially applications written by a third party, before applying it to a

DUOW environment.

BIDI CLI/ODBC configuration keyword

Specifies the BIDI codepage when we are connected to a DB2 for z/OS.

db2cli.ini keyword syntax:

BIDI = codepage

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this option, you must also set the following options:

v Database

v Protocol=TCPIP

v Hostname

v Port

Chapter 2. CLI/ODBC configuration keywords 301

BitData CLI/ODBC configuration keyword

Specifies whether binary data types are reported as binary or character data types.

db2cli.ini keyword syntax:

BitData = 1 | 0

Default setting:

Report FOR BIT DATA and BLOB data types as binary data types.

Usage notes:

This option allows you to specify whether ODBC binary data types (SQL_BINARY,

SQL_VARBINARY, SQL_LONGVARBINARY, and SQL_BLOB), are reported as

binary type data. IBM DBMSs support columns with binary data types by defining

CHAR, VARCHAR, and LONG VARCHAR columns with the FOR BIT DATA

attribute. DB2 Database for Linux, UNIX, and Windows will also support binary

data via the BLOB data type (in this case it is mapped to a CLOB data type).

Only set BitData = 0 if you are sure that all columns defined as FOR BIT DATA or

BLOB contain only character data, and the application is incapable of displaying

binary data columns.

v 1 = report FOR BIT DATA and BLOB data types as binary data types (default).

v 0 = report FOR BIT DATA and BLOB data types as character data types.

BlockForNRows CLI/ODBC configuration keyword

Specifies the number of rows of data to be returned in a single fetch.

db2cli.ini keyword syntax:

BlockForNRows = <positive integer>

Default setting:

The server returns as many rows as can fit in a query block in a single

fetch request.

Usage notes:

The BlockForNRows keyword controls the number of rows of data that are

returned to the client in a single fetch request. If BlockForNRows is not specified

(the default setting), then as many rows of non-LOB data as can fit in a query

block are returned from the server. If the result set contains LOB data, then the

behavior BlockForNRows yields can be affected by the BlockLobs CLI/ODBC

configuration keyword and the server’s support for blocking of result sets

returning LOB data types.

All LOB data associated with rows that fit completely within a single query block

are returned in a single fetch request if:

v BlockForNRows is not specified,

v BlockLobs is set to 1 and

v the server supports blocking of result sets returning LOB data types.

LOB data is described here as being associated with a row, because the LOB data

of a result set is itself not contained in the row. Instead, the row contains a

reference to the actual LOB data.

302 Call Level Interface Guide and Reference, Volume 2

If BlockForNRows is set to a positive integer n, then n rows of data will be

returned in a single fetch request. If the result set contains LOB data and the server

supports blocking of result sets returning LOB data types, then the LOB data that

corresponds to the n rows of data will also be returned in the single fetch request.

If the result set contains LOB data, but the server does not support blocking of

result sets returning LOB data types, then only one row of data, including the LOB

data, will be returned in a single fetch request.

BlockLobs CLI/ODBC configuration keyword

Enables LOB blocking fetch against servers that support LOB blocking.

db2cli.ini keyword syntax:

BlockLobs = 0 | 1

Default setting:

Blocking of result sets returning LOB data types is disabled.

Equivalent statement attribute:

SQL_ATTR_BLOCK_LOBS

Usage notes:

Setting BlockLobs to 1 enables all of the LOB data associated with rows that fit

completely within a single query block to be returned in a single fetch request, if

the server supports LOB blocking. CLI clients which enable BlockLobs = 1 and

bind the LOB values directly to buffers can show an increase in memory

consumption depending on the amount of data retrieved for one request compared

to previous releases. LOB data is described here as being associated with a row,

because the LOB data of a result set is itself not contained in the row. Instead, the

row contains a reference to the actual LOB data. Therefore, with blocking of result

sets returning LOB data types, any rows of the result set that fit completely within

the query block (where each row consists of non-LOB data, since LOB data is not

stored directly in the row), will have their associated LOB data returned from the

server, if the server supports blocking of result sets returning LOB data types.

If the server does not support cursor blocking with LOB columns, then only one

row of LOB data will be returned in a single fetch request and the BlockLobs value

is ignored. While DB2 does support cursor blocking with LOB columns, other

servers may not.

CLIPkg CLI/ODBC configuration keyword

Specifies the number of large packages to be generated.

db2cli.ini keyword syntax:

CLIPkg = 3 | 4 | ... | 30

Default setting:

Three large packages are generated.

Usage notes:

This keyword is used to increase the number of sections for SQL statements in

CLI/ODBC applications. If it is used, the administrator should explicitly bind the

required bind files with the CLIPkg bind option. For client applications, the

db2cli.ini file on the client must be updated with this value of CLIPkg. For

Chapter 2. CLI/ODBC configuration keywords 303

CLI/JDBC stored procedures, the db2cli.ini file on the server (DB2 UDB Version

6.1 or later on UNIX or Intel™ platforms) must be updated with the same value of

CLIPkg.

If the value is NOT an integer between 3 and 30, the default will be used without

error or warning.

This setting only applies to large packages (containing 384 sections). The number

of small packages (containing 64 sections) is 3 and cannot be changed.

It is recommended that you only increase the number of sections enough to run

your application as the packages take up space in the database.

CheckForFork CLI/ODBC configuration keyword

Checks for a forked process for each function call.

db2cli.ini keyword syntax:

0 | 1

Default setting:

DB2 CLI does not check for forked processes.

Usage notes:

DB2 CLI assumes that the process will never be forked. The CheckForFork

keyword must be set to 1 if applications want to fork while connection and

statement handles are allocated in order to avoid interfering with the

parent process’ active connections.

 The SQL_ATTR_PROCESSCTL environment attribute can be set to

SQL_PROCESSCTL_NOTHREAD option by an application to override the

CheckForFork keyword for that application.

(This option is contained in the Common section of the initialization file

and therefore applies to all connections to DB2 databases.)

ClientAcctStr CLI/ODBC configuration keyword

Sets the client accounting string that is sent to a host database.

db2cli.ini keyword syntax:

ClientAcctStr = accounting string

Default setting:

None

Only applicable when:

Connected to a host database using DB2 Connect

Equivalent environment or connection attribute:

SQL_ATTR_INFO_ACCTSTR

Usage notes:

This option allows the CLI application to set the client accounting string that is

sent to the host database through DB2 Connect. Applications that do not offer the

accounting string by default can take advantage of this keyword to provide this

information.

Note the following conditions:

304 Call Level Interface Guide and Reference, Volume 2

v When the value is being set, some servers might not handle the entire length

provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 200 characters.

v To ensure that the data is converted correctly when transmitted to a host system,

use only the characters A to Z, 0 to 9, and the underscore (_) or period (.).

ClientApplName CLI/ODBC configuration keyword

Sets the client application name that is sent to a host database.

db2cli.ini keyword syntax:

ClientApplName = application name

Default setting:

None

Only applicable when:

Connected to a host database using DB2 Connect

Equivalent environment or connection attribute:

SQL_ATTR_INFO_APPLNAME

Usage notes:

This option allows the CLI application to set the client application name that is

sent to the host database through DB2 Connect. Applications that do not offer the

application name by default can take advantage of this keyword to provide this

information.

Note the following conditions:

v When the value is being set, some servers might not handle the entire length

provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 32 characters.

v To ensure that the data is converted correctly when transmitted to a host system,

use only the characters A to Z, 0 to 9, and the underscore (_) or period (.).

ClientBuffersUnboundLOBS CLI/ODBC configuration keyword

Specifies whether LOB data is fetched instead of the LOB locator for LOB columns

that have not been bound to application parameters.

db2cli.ini keyword syntax:

ClientBuffersUnboundLOBS = 0 | 1

Default setting:

A LOB locator is retrieved instead of the actual LOB data for LOB columns

that have not been bound to application parameters.

Usage notes:

 By default, when a result set contains a LOB column that has not been

bound to an application parameter, DB2 CLI will fetch the corresponding

LOB locator rather than the LOB data itself. The application must then use

the SQLGetLength(), SQLGetPosition(), and SQLGetSubString() CLI

functions to retrieve the LOB data. If the application regularly wants to

retrieve the LOB data, then this default two-step process is unnecessary

Chapter 2. CLI/ODBC configuration keywords 305

and could decrease performance. In this case, set

ClientBuffersUnboundLOBS = 1 to force DB2 CLI to fetch the LOB data

instead of the LOB locator.

Servers that support Dynamic Data Format, also known as progressive

streaming, optimize the return of LOB and XML data depending on the

actual length of the data. The LOB and XML data can be returned in its

entirety, or as an internal token called a progressive reference. DB2 CLI

manages progressive reference data retrieval.

For applications that are querying data on a server that supports Dynamic

Data Format, setting the LOBCacheSize keyword sets a threshold that is

used to determine if the data is returned in its entirety, or as a progressive

reference. If the data has a length greater than the LOBCacheSize threshold

value, the progressive reference will be returned to DB2 CLI to manage,

but if the data has a length less than or equal to the LOBCacheSize

threshold value, the data will be returned in its entirety. Setting

ClientBuffersUnboundLOBS to 1 is equivalent to setting LOBCacheSize to

2147483647 and will force the server to return the data in its entirety rather

than as a progressive reference.

ClientUserID CLI/ODBC configuration keyword

Sets the client user ID that is sent to a host database.

db2cli.ini keyword syntax:

ClientUserID = userid

Default setting:

None

Only applicable when:

Connected to a host database using DB2 Connect

Equivalent environment or connection attribute:

SQL_ATTR_INFO_USERID

Usage notes:

This option allows the CLI application to set the client user ID (accounting user

ID) that is sent to the host database through DB2 Connect. Applications that do not

offer the user ID by default can take advantage of this keyword to provide this

information.

Note the following conditions:

v When the value is being set, some servers might not handle the entire length

provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 16 characters.

v This user ID is not to be confused with the authentication user ID. This user ID

is for identification purposes only and is not used for any authorization.

v To ensure that the data is converted correctly when transmitted to a host system,

use only the characters A to Z, 0 to 9, and the underscore (_) or period (.).

ClientWrkStnName CLI/ODBC configuration keyword

Sets the client workstation name that is sent to a host database.

306 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:

ClientWrkStnName = workstation name

Default setting:

None

Only applicable when:

Connected to a host database using DB2 Connect

Equivalent environment or connection attribute:

SQL_ATTR_INFO_WRKSTNNAME

Usage notes:

This option allows the CLI application to set the client workstation name that is

sent to the host database through DB2 Connect. Applications that do not offer the

client workstation name by default can take advantage of this keyword to provide

this information.

Note the following conditions:

v When the value is being set, some servers might not handle the entire length

provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 18 characters.

v To ensure that the data is converted correctly when transmitted to a host system,

use only the characters A to Z, 0 to 9, and the underscore (_) or period (.).

ConnectNode CLI/ODBC configuration keyword

Specifies the database partition server to which a connection is to be made.

db2cli.ini keyword syntax:

ConnectNode = integer value from 0 to 999 |

SQL_CONN_CATALOG_NODE

Default setting:

Database partition server which is defined with port 0 on the machine is

used.

Only applicable when:

Connecting to a partitioned database environment.

Equivalent connection attribute:

SQL_ATTR_CONNECT_NODE

Usage notes:

 Used to specify the target database partition server that you want to

connect to. This keyword (or attribute setting) overrides the value of the

environment variable DB2NODE. Can be set to:

v an integer between 0 and 999

v SQL_CONN_CATALOG_NODE

If this variable is not set, the target defaults to the database partition server

that is defined with port 0 on the machine.

Note: This keyword does not affect the Control Center. The Control Center

always connects to the catalog partition referred to by the

SQL_CONN_CATALOG_NODE setting.

Chapter 2. CLI/ODBC configuration keywords 307

ConnectTimeout CLI/ODBC configuration keyword

Specifies the time in seconds to wait for a reply when trying to establish a

connection to a server before terminating the attempt and generating a

communication timeout.

db2cli.ini keyword syntax:

ConnectTimeout = 0 | 1 |2 | ... | 32767

Default setting:

The client waits indefinitely for a reply from the server when trying to

establish a connection.

Equivalent connection attribute:

SQL_ATTR_LOGIN_TIMEOUT

Usage notes:

 If ConnectTimeout is set and client reroute is enabled, a connection will be

attempted only once to the original server and once to the alternate server.

Since the ConnectTimeout value is used when attempting to connect to

each server, the maximum waiting time will be approximately double the

specified value for ConnectTimeout. If neither server can be reached within

the amount of time specified by the keyword, the following error message

will be received:

SQL30081N A communication error has been detected. Communication

 protocol being used: "TCP/IP". Communication API being used:

 "SOCKETS". Location where the error was detected: "<ip address>".

 Communication function detecting the error: "<failing function>".

 Protocol specific error code(s): "<error code>", "*", "*".

 SQLSTATE=08001

If ConnectTimeout is set and Sysplex exploitation is enabled, a connection

will be attempted only once for each of the Sysplex members. Since the

ConnectTimeout value is used when attempting to connect to each Sysplex

member, the maximum waiting time will be approximately equal to the

number of Sysplex members, times the amount of time specified by the

ConnectTimeout keyword.

ConnectTimeout only applies to the TCPIP protocol and is not supported

for connections to databases cataloged on a SOCKS-enabled TCP/IP node.

ConnectType CLI/ODBC configuration keyword

Controls whether the application is to operate in a remote or distributed unit of

work.

db2cli.ini keyword syntax:

ConnectType = 1 | 2

Default setting:

Remote unit of work.

Equivalent environment or connection attribute:

SQL_ATTR_CONNECTTYPE

Usage notes:

This option allows you to specify the default connect type. The options are:

v 1 = Remote unit of work. Multiple concurrent connections, each with its

own commit scope. The concurrent transactions are not coordinated.

This is the default.

308 Call Level Interface Guide and Reference, Volume 2

v 2= Distributed unit of work. Coordinated connections where multiple

databases participate under the same distributed unit of work.

The first connection determines the connect type for all other connections

that are allocated under the same environment handle.

This keyword takes precedence over the environment or connection

attribute.

CurrentFunctionPath CLI/ODBC configuration keyword

Specifies the schema used to resolve function references and data type references in

dynamic SQL statements.

db2cli.ini keyword syntax:

CurrentFunctionPath = current_function_path

Default setting:

See description below.

Usage notes:

This keyword defines the path used to resolve function references and data type

references that are used in dynamic SQL statements. It contains a list of one or

more schema-names, where schema-names are enclosed in double quotes and

separated by commas.

The default value is ″SYSIBM″,″SYSFUN″,X where X is the value of the USER

special register delimited by double quotes. The schema SYSIBM does not need to

be specified. If it is not included in the function path, then it is implicitly assumed

as the first schema.

This keyword is used as part of the process for resolving unqualified function and

stored procedure references that may have been defined in a schema name other

than the current user’s schema. The order of the schema names determines the

order in which the function and procedure names will be resolved.

CurrentImplicitXMLParseOption CLI/ODBC configuration keyword

Sets the value of the CURRENT IMPLICIT XMLPARSE OPTION special register.

db2cli.ini keyword syntax:

CurrentImplicitXMLParseOption = ’STRIP WHITESPACE’ | ’PRESERVE

WHITESPACE’

Default setting:

Whitespace is stripped during implicit non-validating parsing.

Equivalent connection attribute:

SQL_ATTR_CURRENT_IMPLICIT_XMLPARSE_OPTION

Usage notes:

Setting this keyword issues the SET CURRENT IMPLICIT XMLPARSE OPTION

statement after every connection to a database. By default, this statement is not

issued.

Chapter 2. CLI/ODBC configuration keywords 309

The SET CURRENT IMPLICIT XMLPARSE OPTION statement sets the CURRENT

IMPLICIT XMLPARSE OPTION special register, which controls whether white

space is stripped or preserved during implicit non-validating parsing.

CurrentImplicitXMLParseOption does not affect explicit parsing with the

XMLPARSE function.

The supported settings for CurrentImplicitXMLParseOption are:

v STRIP WHITESPACE - white space is removed when an XML document is

implicitly parsed. This is the default setting.

v PRESERVE WHITESPACE - white space is preserved when an XML document is

implicitly parsed.

CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword

Sets the value of the CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION special register.

db2cli.ini keyword syntax:

CurrentMaintainedTableTypesForOpt = ALL | FEDERATED_TOOL |

NONE | SYSTEM | USER | <list>

Default setting:

System-maintained refresh-deferred materialized query tables are

considered in the optimization of a query.

Usage notes:

This keyword defines the default value for the CURRENT MAINTAINED TABLE

TYPES FOR OPTIMIZATION special register. The value of the special register

affects the types of tables which are considered in the optimization of a query.

Refer to the SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION

SQL statement for details on the supported settings of ALL, FEDERATED_TOOL,

NONE, SYSTEM, or USER. The <list> option represents a combination of the

supported settings, however, ALL and NONE cannot be specified with any other

value, and the same value cannot be specified more than once. Separate each value

in the list with a comma, for example:

CurrentMaintainedTableTypesForOpt = SYSTEM,USER

CURRENTOPTIMIZATIONPROFILE CLI/ODBC configuration keyword

Specifies the optimization profile used in a SET CURRENT OPTIMIZATION

PROFILE statement upon a successful connection.

db2cli.ini keyword syntax:

CURRENTOPTIMIZATIONPROFILE =NULL│optimization-profile-name

Default setting:

NULL

Usage notes:

NULL

Sets the register to the null value.

optimization-profile-name

Sets the CURRENT OPTIMIZATION PROFILE special register to the

310 Call Level Interface Guide and Reference, Volume 2

name of an optimization profile. If optimization-profile-name is

unqualified, then the default schema qualification is applied.

Examples

If a DB2CLI.INI file has the following entry, after each successful connection to the

“Rochester” database, the CLI client would issue the command SET CURRENT

OPTIMIZATION PROFILE = ’"Hamid"."RochesterProfile"’.

 [Rochester]

 CURRENTOPTIMIZATIONPROFILE=’"Hamid"."RochesterProfile"’

In this example, the optimization profile name is delimited by quotation marks

because it contains lower case characters.

CurrentPackagePath CLI/ODBC configuration keyword

Issues ’SET CURRENT PACKAGE PATH = schema1, schema2, ...’ after every

connection.

db2cli.ini keyword syntax:

CurrentPackagePath = schema1, schema2, ...

Default setting:

The clause is not appended.

Equivalent connection attribute:

SQL_ATTR_CURRENT_PACKAGE_PATH

Usage notes:

When set, this option issues the command ″SET CURRENT PACKAGE PATH =

schema1, schema2, ...″ after every connection to the database. This setting specifies

the list of schema names (collection identifiers) that will be searched when there is

a package from a different schema.

This keyword is best suited for use with ODBC static processing applications,

rather than CLI applications.

CurrentPackageSet CLI/ODBC configuration keyword

Issues the SET CURRENT PACKAGESET statement after every connection.

db2cli.ini keyword syntax:

CurrentPackageSet = schema name

Default setting:

The clause is not appended.

Equivalent connection attribute:

SQL_ATTR_CURRENT_PACKAGE_SET

Usage notes:

 This option issues the SET CURRENT PACKAGESET SQL statement with

the CurrentPackageSet value after every connection to a database. By

default this clause is not appended.

Chapter 2. CLI/ODBC configuration keywords 311

The SET CURRENT PACKAGESET SQL statement sets the schema name

(collection identifier) that is used to select the package to use for

subsequent SQL statements.

CLI/ODBC applications issue dynamic SQL statements. Using this option

you can control the privileges used to run these statements:

v Choose a schema to use when running SQL statements from CLI/ODBC

applications.

v Ensure the objects in the schema have the desired privileges and then

rebind accordingly.

v Set the CurrentPackageSet option to this schema.

The SQL statements from the CLI/ODBC applications will now run under

the specified schema and use the privileges defined there.

The following package set names are reserved: NULLID, NULLIDR1,

NULLIDRA.

If both the Reopt and CurrentPackageSet keywords are specified,

CurrentPackageSet takes precedence.

CurrentRefreshAge CLI/ODBC configuration keyword

Sets the value of the CURRENT REFRESH AGE special register.

db2cli.ini keyword syntax:

CurrentRefreshAge = 0 | ANY | positive integer

Default setting:

Only materialized query tables defined with REFRESH IMMEDIATE may

be used to optimize the processing of a query.

Usage notes:

Setting this keyword sets the value of the CURRENT REFRESH AGE special

register.

CurrentSQLID CLI/ODBC configuration keyword

Specifies the ID used in a SET CURRENT SQLID statement sent to the DBMS upon

a successful connection.

db2cli.ini keyword syntax:

CurrentSQLID = current_sqlid

Default setting:

No statement is issued.

Only applicable when:

connecting to those DB2 DBMS’s where SET CURRENT SQLID is

supported.

Usage notes:

Upon a successful connection, if this option is set, a SET CURRENT SQLID

statement is sent to the DBMS. This allows the end user and the application to

name SQL objects without having to qualify them by schema name.

312 Call Level Interface Guide and Reference, Volume 2

CurrentSchema CLI/ODBC configuration keyword

Specifies the schema used in a SET CURRENT SCHEMA statement upon a

successful connection.

db2cli.ini keyword syntax:

CurrentSchema = schema name

Default setting:

No statement is issued.

Usage notes:

Upon a successful connect, if this option is set, a SET CURRENT SCHEMA

statement is sent to the DBMS. This allows the end user or application to name

SQL objects without having to qualify them by schema name.

CursorHold CLI/ODBC configuration keyword

Controls the effect of a transaction completion on open cursors.

db2cli.ini keyword syntax:

CursorHold = 1 | 0

Default setting:

Selected--Cursors are not destroyed.

Equivalent statement attribute:

SQL_ATTR_CURSOR_HOLD

Usage notes:

This option controls the effect of a transaction completion on open cursors.

v 1 = SQL_CURSOR_HOLD_ON, the cursors are not destroyed when the

transaction is committed (default).

v 0 = SQL_CURSOR_HOLD_OFF, the cursors are destroyed when the transaction

is committed.

Note: Cursors are always closed when transactions are rolled back.

This option affects the result returned by SQLGetInfo() when called with

SQL_CURSOR_COMMIT_BEHAVIOR or SQL_CURSOR_ROLLBACK_BEHAVIOR.

The value of CursorHold is ignored if connecting to DB2 Server for VSE & VM

where cursor with hold is not supported.

You can use this option to tune performance. It can be set to

SQL_CURSOR_HOLD_OFF (0) if you are sure that your application:

1. Does not have behavior that is dependent on the

SQL_CURSOR_COMMIT_BEHAVIOR or the

SQL_CURSOR_ROLLBACK_BEHAVIOR information returned via

SQLGetInfo(), and

2. Does not require cursors to be preserved from one transaction to the next.

The DBMS will operate more efficiently with CursorHold disabled, as resources no

longer need to be maintained after the end of a transaction.

Chapter 2. CLI/ODBC configuration keywords 313

CursorTypes CLI/ODBC configuration keyword

Specifies which cursor types are permitted.

db2cli.ini keyword syntax:

CursorTypes = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Default setting:

Forward-only, static, keyset-driven, and dynamic cursors are supported if

the server supports them.

Usage notes:

The CursorTypes keyword is a bitmask that indicates what types of cursors an

application can open:

v 0x0 - forward-only (can always be opened)

v 0x1 - static

v 0x2 - keyset-driven

v 0x4 - dynamic

For example,

v to prevent applications from opening dynamic scrollable cursors, set

CursorTypes to 3.

v to allow applications to open only non-scrollable cursors, set CursorTypes to 0.

This keyword only affects calls made to the following DB2 CLI functions:

v SQLBulkOperations()

v SQLExecDirect()

v SQLExecute()

v SQLFetchScroll()

v SQLPrepare()

v SQLSetPos()

DB2Degree CLI/ODBC configuration keyword

Sets the degree of parallelism for the execution of SQL statements.

db2cli.ini keyword syntax:

DB2Degree = 0 | integer value from 1 to 32767 | ANY

Default setting:

No SET CURRENT DEGREE statement is issued.

Only applicable when:

connecting to a cluster database system.

Usage notes:

If the value specified is anything other than 0 (the default) then DB2 CLI will issue

the following SQL statement after a successful connection:

SET CURRENT DEGREE value

This specifies the degree of parallelism for the execution of the SQL statements.

The database manager will determine the degree of parallelism if you specify ANY.

314 Call Level Interface Guide and Reference, Volume 2

DB2Explain CLI/ODBC configuration keyword

Determines whether Explain snapshot and/or Explain table information will be

generated by the server.

db2cli.ini keyword syntax:

DB2Explain = 0 | 1 | 2 | 3

Default setting:

Neither Explain snapshot nor Explain table information will be generated

by the server.

Equivalent connection attribute:

SQL_ATTR_DB2EXPLAIN

Usage notes:

This keyword determines whether Explain snapshot and/or Explain table

information will be generated by the server.

v 0 = both off (default)

A ’SET CURRENT EXPLAIN SNAPSHOT=NO’ and a ’SET CURRENT EXPLAIN

MODE=NO’ statement will be sent to the server to disable both the Explain

snapshot and the Explain table information capture facilities.

v 1 = Only Explain snapshot facility on

A ’SET CURRENT EXPLAIN SNAPSHOT=YES’ and a ’SET CURRENT

EXPLAIN MODE=NO’ statement will be sent to the server to enable the Explain

snapshot facility, and disable the Explain table information capture facility.

v 2 = Only Explain table information capture facility on

A ’SET CURRENT EXPLAIN MODE=YES’ and a ’SET CURRENT EXPLAIN

SNAPSHOT=NO’ will be sent to the server to enable the Explain table

information capture facility and disable the Explain snapshot facility.

v 3 = Both on

A ’SET CURRENT EXPLAIN MODE=YES’ and a ’SET CURRENT EXPLAIN

SNAPSHOT=YES’ will be sent to the server to enable both the Explain snapshot

and the Explain table information capture facilities.

Explain information is inserted into Explain tables, which must be created before

the Explain information can be generated. The current authorization ID must have

INSERT privilege for the Explain tables.

DB2NETNamedParam CLI/ODBC configuration keyword

Specifies if named parameters are used by DB2 .NET applications.

db2cli.ini keyword syntax:

DB2NETNamedParam = 0 | 1

Default setting:

The DB2 .NET Data Provider recognizes named parameters as parameters,

but ignores positioned parameters, in SQL statements.

Usage notes:

By default, the DB2 .NET Data Provider processes tokens in an SQL

statement with the format ″@<paramname>″ as named parameters and

ignores any positioned parameters, where positioned parameters are

specified with a ’?’ character.

 The following is an example of a query that contains a named parameter:

Chapter 2. CLI/ODBC configuration keywords 315

SELECT * FROM T1 WHERE C1 = @param1

This is an example of a query that contains a positioned parameter:

SELECT * FROM T1 WHERE C1 = ?

Specify 0 to indicate that only positioned parameters will be recognized as

parameters in SQL statements. This setting can improve application

performance by reducing the overhead required to process named

parameters.

DB2Optimization CLI/ODBC configuration keyword

Sets the query optimization level.

db2cli.ini keyword syntax:

DB2Optimization = integer value from 0 to 9

Default setting:

No SET CURRENT QUERY OPTIMIZATION statement issued.

Usage notes:

If this option is set then DB2 CLI will issue the following SQL statement after a

successful connection:

SET CURRENT QUERY OPTIMIZATION positive number

This specifies the query optimization level at which the optimizer should operate

the SQL queries.

DBAlias CLI/ODBC configuration keyword

Specifies the database alias for a Data Source Name greater than 8 characters.

db2cli.ini keyword syntax:

DBAlias = dbalias

Default setting:

Use the DB2 database alias as the ODBC Data Source Name.

Usage notes:

This keyword allows for Data Source Names of greater than 8 single byte

characters. The Data Source Name (DSN) is the name, enclosed in square brackets,

that denotes the section header in the db2cli.ini. Typically, this section header is

the database alias name which has a maximum length of 8 bytes. A user who

wishes to refer to the data source with a longer, more meaningful name, can place

the longer name in the section header, and set this keyword value to the database

alias used on the CATALOG command. Here is an example:

; The much longer name maps to an 8 single byte character dbalias

[MyMeaningfulName]

DBAlias=DB2DBT10

The end user can specify [MyMeaningfulName] as the name of the data source on

connect while the actual database alias is DB2DBT10.

316 Call Level Interface Guide and Reference, Volume 2

DBName CLI/ODBC configuration keyword

Specifies the database name to reduce the time it takes for the application to query

z/OS or OS/390 table information.

db2cli.ini keyword syntax:

DBName = dbname

Default setting:

Do not filter on the DBNAME column.

Only applicable when:

connecting to DB2 for z/OS and OS/390.

Usage notes:

This option is only used when connecting to DB2 for z/OS and OS/390, and only

if (base) table catalog information is requested by the application. If a large number

of tables exist in the z/OS or OS/390 subsystem, a dbname can be specified to

reduce the time it takes for the application to query table information, and reduce

the number of tables listed by the application.

If this option is set then the statement IN DATABASE dbname will be appended to

various statements such as CREATE TABLE.

This value maps to the DBNAME column in the z/OS or OS/390 system catalog

tables. If no value is specified, or if views, synonyms, system tables, or aliases are

also specified via TableType, only table information will be restricted; views,

aliases, and synonyms are not restricted with DBName. It can be used in

conjunction with SchemaList, and TableType to further limit the number of tables

for which information will be returned.

DSN CLI/ODBC configuration keyword

Sets the name of a data source as returned by SQLDataSources or the data sources

dialog box of SQLDriverConnect.

db2cli.ini keyword syntax:

You can not set this keyword in the db2cli.ini file.

 You can specify the value of this keyword in the connection string in

SQLDriverConnect like this:

DSN = database name

Database CLI/ODBC configuration keyword

Specifies the database on the server to connect to when using a File DSN.

db2cli.ini keyword syntax:

Database = database name

Default setting:

None

Only applicable when:

Protocol set to TCPIP

Usage notes:

Chapter 2. CLI/ODBC configuration keywords 317

When using a File DSN you must use this option to specify the database on the

server to connect to. This value has nothing to do with any database alias name

specified on the client, it must be set to the database name on the server itself.

This setting is only considered when the Protocol option is set to TCPIP.

DateTimeStringFormat CLI/ODBC configuration keyword

Specifies the format to use when inserting date or time data into character

columns.

db2cli.ini keyword syntax:

DateTimeStringFormat = JIS | ISO | EUR | USA

Default setting:

The JIS format is used when date or time data is inserted into character

columns.

Usage notes:

The DateTimeStringFormat keyword controls the format in which date or time data

is inserted into character columns. This setting affects the insertion of

SQL_C_DATE, SQL_C_TIME, or SQL_C_TIMESTAMP data into the following

column types:

v SQL_CHAR

v SQL_VARCHAR

v SQL_LONGVARCHAR

v SQL_CLOB

This keyword also affects the format of date or time columns that are retrieved

into character strings. For example, retrieving data from an SQL_TIMESTAMP

column into an SQL_C_CHAR string will be affected by the setting of this

keyword.

The four setting values are as follows:

 Format Date Time Timestamp

JIS yyyy-mm-dd hh:mm:ss yyyy-mm-dd

hh:mm:ss.ffffff

ISO yyyy-mm-dd hh.mm.ss yyyy-mm-dd-
hh.mm.ss.ffffff

EUR dd.mm.yyyy hh.mm.ss yyyy-mm-dd

hh:mm:ss.ffffff*

USA mm/dd/yyyy hh:mm AM or PM yyyy-mm-dd

hh:mm:ss.ffffff*

*Timestamps will take the default format if EUR or USA is specified. The default format is

JIS.

DecimalFloatRoundingMode CLI/ODBC configuration keyword

Sets the rounding mode when working with servers that support the DECFLOAT

SQL type.

318 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:

DecimalFloatRoundingMode = 0 | 1 | 2 | 3 | 4

Default setting:

0 (Half even rounding mode)

Equivalent connection attribute:

SQL_ATTR_DECFLOAT_ROUNDING_MODE

Usage notes:

 The decimal float rounding mode determines what type of rounding will

be used if a value is put into a DECFLOAT variable or column but the

value has more digits than are allowed in the DECFLOAT data type. This

can occur when inserting, updating, selecting, converting from another

type, or as the result of a mathematical operation.

The value of SQL_ATTR_DECFLOAT_ROUNDING_MODE determines the

decimal float rounding mode that will be used for new connections unless

another mode is specified by a connection attribute for that connection. For

any given connection both DB2 CLI and DB2 will use the same decimal

float rounding mode for all action initiated as part of that connection.

When your applications are connecting to a DB2 Database for Linux,

UNIX, and Windows Version 9.5 server, you must set the decimal float

rounding mode on the database client to the same mode that is set on the

server. If you set the decimal float rounding mode on the client to a value

that is different from the decimal float rounding mode that is set on the

database server, the database server will return SQL0713N on connection.

The settings correspond to these decimal float rounding modes:

v 0 = Half even (default)

v 1 = Half up

v 2 = Down

v 3 = Ceiling

v 4 = Floor

The different modes are:

Half even (default)

In this mode DB2 CLI and DB2 use the number that will fit in the

target variable and that is closest to the original value. If two

numbers are equally close, they use the one that is even. This

mode produces the smallest rounding errors over large amounts of

data.

Half up

In this mode DB2 CLI and DB2 use the number that will fit in the

target variable and that is closest to the original value. If two

numbers are equally close, they use the one that is greater than the

original value.

Down In this mode DB2 CLI and DB2 use the number that will fit in the

target variable and that is closest to the original value and for

which the absolute value is not greater than the absolute value of

the original value. You can also think of this as rounding toward

zero or as using ceiling for negative values and using floor for

positive values.

Chapter 2. CLI/ODBC configuration keywords 319

Ceiling

In this mode DB2 CLI and DB2 use the smallest number that will

fit in the target variable and that is greater than or equal to the

original value.

Floor In this mode DB2 CLI and DB2 use the largest number that will fit

in the target variable and that is less than or equal to the original

value.

DeferredPrepare CLI/ODBC configuration keyword

Minimizes network flow by combining the PREPARE request with the

corresponding execute request.

db2cli.ini keyword syntax:

DeferredPrepare = 0 | 1

Default setting:

The prepare request will be delayed until the execute request is sent.

Equivalent statement attribute:

SQL_ATTR_DEFERRED_PREPARE

Usage notes:

Defers sending the PREPARE request until the corresponding execute request is

issued. The two requests are then combined into one command/reply flow (instead

of two) to minimize network flow and to improve performance.

v 0 = SQL_DEFERRED_PREPARE_OFF. The PREPARE request will be executed

the moment it is issued.

v 1 = SQL_DEFERRED_PREPARE_ON (default). Defer the execution of the

PREPARE request until the corresponding execute request is issued.

If the target DBMS does not support deferred prepare, the client disables

deferred prepare for that connection.

Note: When deferred prepare is enabled, the row and cost estimates normally

returned in the SQLERRD(3) and SQLERRD(4) of the SQLCA of a PREPARE

statement may become zeros. This may be of concern to users who want to use

these values to decide whether or not to continue the SQL statement.

DescribeCall CLI/ODBC configuration keyword

Determines when stored procedure arguments are described.

db2cli.ini keyword syntax:

DescribeCall = 1 | -1

Default setting:

DB2 CLI does not request stored procedure argument describe information

when it prepares a CALL statement.

Equivalent connection attribute:

SQL_ATTR_DESCRIBE_CALL

Usage notes:

By default, DB2 CLI does not request input parameter describe information

when it prepares a CALL statement. If an application has correctly bound

parameters to a statement, then this describe information is unnecessary

and not requesting it improves performance.

320 Call Level Interface Guide and Reference, Volume 2

The option values are:

v 1 = SQL_DESCRIBE_CALL_BEFORE. DB2 CLI always requests describe

information from the server, ignoring the binding information provided

by the application. Setting DescribeCall to 1 will also set

DeferredPrepare to 0 which means that describe information will also be

requested for dynamic SQL statements. Note that setting

DeferredPrepare to 0 will not set DescribeCall to 1.

v -1 = SQL_DESCRIBE_CALL_DEFAULT (default). DB2 CLI does not

request describe information from the server and uses the binding

information provided by the application. If the CALL statement

execution fails, then the DB2 CLI error recovery logic requests input

parameter describe information from the server and issues the CALL

statement again.

DescribeInputOnPrepare CLI/ODBC configuration keyword

Enables or disables the request for describe information when an SQL statement is

prepared.

db2cli.ini keyword syntax:

DescribeInputOnPrepare = 0 | 1

Default setting:

Do not request describe information when preparing an SQL statement.

Usage notes:

By default, DB2 CLI does not request input parameter describe information when

it prepares an SQL statement. If an application has correctly bound parameters to a

statement, then this describe information is unnecessary and not requesting it

improves performance. If, however, parameters have not been correctly bound,

then statement execution will fail and cause the CLI error recovery retry logic to

request input parameter describe information. The result is an additional server

request and reduced performance, compared to if the describe information had

been requested with the prepare. Setting DescribeInputOnPrepare to 1 causes the

input describe information to be requested with the prepare. This setting may

improve performance for applications which rely heavily on the CLI retry logic to

recover from application binding errors.

DescribeOutputLevel CLI/ODBC configuration keyword

Sets the level of output column describe information that is requested by the CLI

driver during prepare or describe requests.

db2cli.ini keyword syntax:

DescribeOutputLevel = 0 | 1 | 2 | 3

Default setting:

Request the describe information listed in level 2 of Table 140 on page 323.

Equivalent connection attribute:

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL

Usage notes:

 This keyword controls the amount of information the CLI driver requests

on a prepare or describe request. By default, when the server receives a

describe request, it returns the information contained in level 2 of Table 140

on page 323

Chapter 2. CLI/ODBC configuration keywords 321

on page 322 for the result set columns. An application, however, might not

need all of this information or might need additional information. Setting

the DescribeOutputLevel keyword to a level that suits the needs of the

client application might improve performance because the describe data

transferred between the client and server is limited to the minimum

amount that the application requires. If the DescribeOutputLevel setting is

set too low, it might impact the functionality of the application (depending

on the application’s requirements). The CLI functions to retrieve the

describe information might not fail in this case, but the information

returned might be incomplete. Supported settings for DescribeOutputLevel

are:

v 0 - no describe information is returned to the client application

v 1 - describe information categorized in level 1 (see Table 140 on page

323) is returned to the client application

v 2 - (default) describe information categorized in level 2 (see Table 140 on

page 323) is returned to the client application

v 3 - describe information categorized in level 3 (see Table 140 on page

323) is returned to the client application

The following table lists the fields that form the describe information that

the server returns when it receives a prepare or describe request. These

fields are grouped into levels, and the DescribeOutputLevel CLI/ODBC

configuration keyword controls which levels of describe information the

CLI driver requests.

Note:

1. Not all levels of describe information are supported by all DB2 servers.

All levels of describe information are supported on the following DB2

servers: DB2 for Linux, UNIX, and Windows Version 8 and later, DB2

for z/OS Version 8 and later, and DB2 for iSeries Version 5 Release 3

and later. All other DB2 servers support only the 2 or 0 setting for

DescribeOutputLevel.

2. The default behavior allows CLI to promote the level to 3 if the

application asks for describe information that was not initially retrieved

using the default level 2. This might result in two network flows to the

server. If an application uses this keyword to explicitly set a describe

level, then no promotion will occur. Therefore, if the keyword is used

to set the describe level to 2, CLI will not promote to level 3 even if the

application asks for extended information.

322 Call Level Interface Guide and Reference, Volume 2

Table 140. Levels of describe information

Level 1 Level 2 Level 3

SQL_DESC_COUNT

SQL_COLUMN_COUNT

SQL_DESC_TYPE

SQL_DESC_CONCISE_TYPE

SQL_COLUMN_LENGTH

SQL_DESC_OCTET_LENGTH

SQL_DESC_LENGTH

SQL_DESC_PRECISION

SQL_COLUMN_PRECISION

SQL_DESC_SCALE

SQL_COLUMN_SCALE

SQL_DESC_DISPLAY_SIZE

SQL_DESC_NULLABLE

SQL_COLUMN_NULLABLE

SQL_DESC_UNSIGNED

SQL_DESC_SEARCHABLE

SQL_DESC_LITERAL_SUFFIX

SQL_DESC_LITERAL_PREFIX

SQL_DESC_CASE_SENSITIVE

SQL_DESC_FIXED_PREC_SCALE

all fields of level 1 and:

SQL_DESC_NAME

SQL_DESC_LABEL

SQL_COLUMN_NAME

SQL_DESC_UNNAMED

SQL_DESC_TYPE_NAME

SQL_DESC_DISTINCT_TYPE

SQL_DESC_REFERENCE_TYPE

SQL_DESC_STRUCTURED_TYPE

SQL_DESC_USER_TYPE

SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_USER_DEFINED_

 TYPE_CODE

all fields of levels 1

and 2 and:

SQL_DESC_BASE_COLUMN_NAME

SQL_DESC_UPDATABLE

SQL_DESC_AUTO_UNIQUE_VALUE

SQL_DESC_SCHEMA_NAME

SQL_DESC_CATALOG_NAME

SQL_DESC_TABLE_NAME

SQL_DESC_BASE_TABLE_NAME

DescribeParam CLI/ODBC configuration keyword

Enables or disables the SQLDescribeParam() function.

db2cli.ini keyword syntax:

DescribeParam = 0 | 1

Default setting:

The SQLDescribeParam() function is enabled.

Usage notes:

When set to 1 (default), SQLDescribeParam() is enabled and SQLGetFunctions() will

return SQLDescribeParam() as supported.

When set to 0, SQLDescribeParam() is disabled. If SQLDescribeParam() is called,

CLI0150E will be returned. SQLGetFunctions() will return SQLDescribeParam() as

not supported.

DiagLevel CLI/ODBC configuration keyword

Sets the diagnostic level.

db2cli.ini keyword syntax:

DiagLevel = 0 | 1 | 2 | 3 | 4

Default setting:

3

Usage notes:

This can be set in the [COMMON] section of the db2cli.ini file only.

 This is applicable only at Environment Handle allocation time for an entire

process.

This is equivalent to the database manager parameter DIAGLEVEL.

Chapter 2. CLI/ODBC configuration keywords 323

DiagPath CLI/ODBC configuration keyword

Sets the path of the db2diag.log file.

db2cli.ini keyword syntax:

DiagPath = existing directory

Default setting:

The default value is the db2dump directory on UNIX and Linux operating

systems, and the db2 directory on Windows operating systems.

Usage notes:

 This can be set in the [COMMON] section of the db2cli.ini file only.

This is equivalent to the database manager parameter DIAGPATH.

DisableKeysetCursor CLI/ODBC configuration keyword

Disables keyset-driven scrollable cursors.

db2cli.ini keyword syntax:

DisableKeysetCursor = 0 | 1

Default setting:

Keyset-driven scrollable cursors are returned when requested.

Usage notes:

When set to 1, this keyword forces the CLI driver to return a static cursor to the

application, even if the application has requested a keyset-driven scrollable cursor.

The default setting (0) causes keyset-driven cursors to be returned when the

application requests them. This keyword can be used to restore behavior before

scrollable cursors were supported.

DisableMultiThread CLI/ODBC configuration keyword

Disables multithreading.

db2cli.ini keyword syntax:

DisableMultiThread = 0 | 1

Default setting:

Multithreading is enabled.

Usage notes:

The CLI/ODBC driver is capable of supporting multiple concurrent threads.

This option is used to enable or disable multi-thread support.

v 0 = Multithreading is enabled (default).

v 1 = Disable multithreading.

If multithreading is disabled then all calls for all threads will be serialized at the

process level. Use this setting for multithreaded applications that require serialized

behavior.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

324 Call Level Interface Guide and Reference, Volume 2

DisableUnicode CLI/ODBC configuration keyword

Disables underlying Unicode support.

db2cli.ini keyword syntax:

DisableUnicode = <not set> | 0 | 1

Default setting:

Unicode support is enabled.

Usage notes:

With Unicode support enabled, and when called by a Unicode application, CLI

will attempt to connect to the database using the best client code page possible to

ensure there is no unnecessary data loss due to code page conversion. This may

increase the connection time as code pages are exchanged, or may cause code page

conversions on the client that did not occur before this support was added.

If an application is Unicode (the SQL_ATTR_ANSI_APP connection attribute is set

to SQL_AA_FALSE, or the connection occurred with SQLConnectW()), then the

DisableUnicode keyword can be used to effect three different connection behaviors:

v DisableUnicode is not set in the db2cli.ini file: If the target database supports

Unicode, DB2 CLI will connect in Unicode code pages (1208 and 1200).

Otherwise, DB2 CLI will connect in the application code page.

v DisableUnicode=0 is set: DB2 CLI always connects in Unicode, whether or not

the target database supports Unicode.

v DisableUnicode=1 is set: DB2 CLI always connects in the application code page,

whether or not the target database supports Unicode.

FileDSN CLI/ODBC configuration keyword

Specifies a DSN file from which a connection string will be built for the data

source.

db2cli.ini keyword syntax:

You can not set this keyword in the db2cli.ini file.

 You can specify the value of this keyword in the connection string in

SQLDriverConnect like this:

FileDSN = file name

FloatPrecRadix CLI/ODBC configuration keyword

Forces the NUM_PREC_RADIX value of a floating point type to be 2 or 10.

db2cli.ini keyword syntax:

FloatPrecRadix = 2 | 10

Default setting:

Report the NUM_PREC_RADIX as 2 for floating point types, as they have

a base of 2, not 10.

Usage notes:

The NUM_PREC_RADIX value represents a data type’s base. Binary numbers,

such as floating point numbers, have a base of 2, and integers have a base of 10.

An application may expect all values in the COLUMN_SIZE field to represent the

Chapter 2. CLI/ODBC configuration keywords 325

maximum number of digits, which assumes a NUM_PREC_RADIX value of 10.

However, for floating point numeric types, the NUM_PREC_RADIX is 2, in which

case the COLUMN_SIZE will report the number of bits in the data type’s

representation, rather than the maximum number of digits.

FloatPrecRadix can force the NUM_PREC_RADIX to be reported as 10 for floating

point data types, in which case the COLUMN_SIZE will report the maximum

number of digits.

The FloatPrecRadix keyword affects SQLColumns(), SQLGetDescField() (for the

SQL_DESC_NUM_PREC_RADIX field), SQLGetTypeInfo(), SQLProcedureColumns(),

and SQLSpecialColumns().

GetDataLobNoTotal CLI/ODBC configuration keyword

Causes SQLGetData() to fetch column data in pieces of specified size (in bytes)

instead of fetching column data all at once.

db2cli.ini keyword syntax:

GetDataLobNoTotal = positive integer

Usage notes:

 SQLGetData() retrieves data for a single column in the current row of the

result set. The first call to SQLGetData() does the following:

v Fetches all the data from the database server to the client, which requires

allocating memory on the client for the data

v Applies a codepage conversion to that data, if required

v Calculates the total length of the converted data

v Returns the length of the converted data to the client application

When the data is very large, allocating memory for the data on the client

might fail. You can avoid this potential memory allocation problem, by

using the GetDataLobNoTotal keyword.

When you set the GetDataLobNoTotal keyword, SQLGetData() does not

fetch all the data for the given column on the first call. Instead,

SQLGetData() fetches enough data to fill the buffer on the client, as

specified by the value of GetDataLobNoTotal, and returns

SQL_NO_TOTAL (-4) if there is more data to be fetched from the server.

You can call SQLGetData() as many times as needed to fetch all the data.

When all the data has been fetched, SQLGetData() returns SQL_SUCCESS

and the size of the last data chunk.

GranteeList CLI/ODBC configuration keyword

Reduces the amount of information returned when the application gets a list of

table or column privileges.

db2cli.ini keyword syntax:

GranteeList = ″ ’userID1’, ’userID2’,... ’userIDn’ ″

Default setting:

Do not filter the results.

Usage notes:

326 Call Level Interface Guide and Reference, Volume 2

This option can be used to reduce the amount of information returned when the

application gets a list of privileges for tables in a database, or columns in a table.

The list of authorization IDs specified is used as a filter; the only tables or columns

that are returned are those with privileges that have been granted TO those IDs.

Set this option to a list of one or more authorization IDs that have been granted

privileges, delimited with single quotes, and separated by commas. The entire

string must also be enclosed in double quotes. For example:

 GranteeList=" ’USER1’, ’USER2’, ’USER8’ "

In the above example, if the application gets a list of privileges for a specific table,

only those columns that have a privilege granted TO USER1, USER2, or USER8

would be returned.

GrantorList CLI/ODBC configuration keyword

Reduces the amount of information returned when the application gets a list of

table or column privileges.

db2cli.ini keyword syntax:

GrantorList = ″ ’userID1’, ’userID2’,... ’userIDn’ ″

Default setting:

Do not filter the results.

Usage notes:

This option can be used to reduce the amount of information returned when the

application gets a list of privileges for tables in a database, or columns in a table.

The list of authorization IDs specified is used as a filter; the only tables or columns

that are returned are those with privileges that have been granted BY those IDs.

Set this option to a list of one or more authorization IDs that have granted

privileges, delimited with single quotes, and separated by commas. The entire

string must also be enclosed in double quotes. For example:

 GrantorList=" ’USER1’, ’USER2’, ’USER8’ "

In the above example, if the application gets a list of privileges for a specific table,

only those columns that have a privilege granted BY USER1, USER2, or USER8

would be returned.

Graphic CLI/ODBC configuration keyword

Specifies if DB2 CLI returns SQL_GRAPHIC (double-byte character) as a supported

SQL data type and what unit is used to report GRAPHIC column length.

db2cli.ini keyword syntax:

Graphic = 0 | 1 | 2 | 3

Default setting:

The SQL_GRAPHIC data type is not returned as a supported SQL data

type, and the length of GRAPHIC columns equals the maximum number

of DBCS characters in the column.

Usage Notes:

Chapter 2. CLI/ODBC configuration keywords 327

The Graphic keyword controls whether the SQL_GRAPHIC (double-byte character)

data type is reported as a supported SQL data type when SQLGetTypeInfo() is

called, as well as what unit is used to report the length of GRAPHIC columns for

all DB2 CLI functions that return length or precision as either output arguments or

as part of a result set.

Set the Graphic keyword as follows:

v 0 - SQL_GRAPHIC is not returned as a supported SQL data type, and the

reported length of GRAPHIC columns equals the maximum number of DBCS

characters in the column.

v 1 - SQL_GRAPHIC is returned as a supported SQL data type, and the reported

length of GRAPHIC columns equals the maximum number of DBCS characters

in the column.

v 2 - SQL_GRAPHIC is not returned as a supported SQL data type, and the

reported length of GRAPHIC columns equals the maximum number of bytes in

the column.

v 3 - SQL_GRAPHIC is returned as a supported SQL data type, and the reported

length of GRAPHIC columns equals the maximum number of bytes in the

column.

Hostname CLI/ODBC configuration keyword

Specifies the server system’s host name or IP address, used with file DSN or in a

DSN-less connection.

db2cli.ini keyword syntax:

Hostname = host name | IP Address

Default setting:

None

Only applicable when:

Protocol set to TCPIP

Usage notes:

Use this option in conjunction with the ServiceName option to specify the required

attributes for a TCP/IP connection from this client machine to a server running

DB2. These two values are only considered when the Protocol option is set to

TCPIP.

Specify either the server system’s host name or its IP address.

IgnoreWarnList CLI/ODBC configuration keyword

Ignores specified sqlstates.

db2cli.ini keyword syntax:

IgnoreWarnList = “’sqlstate1’, ’sqlstate2’, ...”

Default setting:

Warnings are returned as normal

Usage notes:

328 Call Level Interface Guide and Reference, Volume 2

On rare occasions an application may not correctly handle some warning

messages, but does not want to ignore all warning messages. This keyword can be

used to indicate which warnings are not to be passed on to the application. The

IgnoreWarnings keyword should be used if all database manager warnings are to

be ignored.

If an sqlstate is included in both IgnoreWarnList and WarningList, it will be

ignored altogether.

Each sqlstate must be in uppercase, delimited with single quotes and separated by

commas. The entire string must also be enclosed in double quotes. For example:

 IgnoreWarnList="’01000’, ’01004’,’01504’"

IgnoreWarnings CLI/ODBC configuration keyword

Ignores database manager warnings.

db2cli.ini keyword syntax:

IgnoreWarnings = 0 | 1

Default setting:

Warnings are returned as normal.

Usage notes:

On rare occasions, an application will not correctly handle warning messages. This

keyword can be used to indicate that warnings from the database manager are not

to be passed to the application. The possible settings are:

v 0 - Warnings are reported as usual (default)

v 1 - Database manager warnings are ignored and SQL_SUCCESS is returned.

Warnings from the DB2 CLI/ODBC driver are still returned; many are required

for normal operation.

Although this keyword can be used on its own, it can also be used with the

WarningList CLI/ODBC configuration keyword.

Instance CLI/ODBC configuration keyword

Specifies the instance name for a local IPC connection for file DSN or DSN-less

connectivity.

db2cli.ini keyword syntax:

Instance = instance name

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this keyword, you must also set the following options:

v Database

v Protocol=IPC

Interrupt CLI/ODBC configuration keyword

Sets the interrupt processing mode.

db2cli.ini keyword syntax:

Interrupt = 0 | 1 | 2

Chapter 2. CLI/ODBC configuration keywords 329

Default setting:

1

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this option, you must also set the following options:

v Database

v Protocol=IPC

The keyword values have the following meaning:

0 Disables interrupt processing (SQLCancel calls will not interrupt

the processing.)

1 Interrupts are supported (default.) In this mode, if the server

supports an interrupt, an interrupt will be sent. Otherwise the

connection is dropped.

 The settings for INTERRUPT_ENABLED (a DB2 Connect gateway

setting) and the DB2 registry variable

DB2CONNECT_DISCONNECT_ON_INTERRUPT will take precedence over the

Interrupt keyword setting of 1.

2 Interrupt drops the connection regardless of server’s interrupt

capabilities (SQLCancel will drop the connection.)

KRBPlugin CLI/ODBC configuration keyword

Specifies the name of the Kerberos plug-in library to be used for client side

authentication for file DSN or DSN-less connectivity.

db2cli.ini keyword syntax:

KRBPlugin = plugin name

Default setting:

By default, the value is null on UNIX operating systems, and IBMkrb5 on

Windows operating systems.

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies the name of the Kerberos plug-in library to be

used for client-side connection authentication. The plug-in is used when

the client is authenticated using KERBEROS authentication.

KeepDynamic CLI/ODBC configuration keyword

Specifies if KEEPDYNAMIC functionality is available to DB2 CLI applications.

db2cli.ini keyword syntax:

KeepDynamic = 0 | 1

Default setting:

KEEPDYNAMIC functionality is not available to DB2 CLI applications.

Equivalent connection attribute:

SQL_ATTR_KEEP_DYNAMIC

Usage notes:

330 Call Level Interface Guide and Reference, Volume 2

The KeepDynamic CLI/ODBC configuration keyword should be set according to

how the CLI packages were bound on the DB2 for z/OS and OS/390 server. Set

KeepDynamic as follows:

v 0 - if the CLI packages on the server were bound with the KEEPDYNAMIC NO

option

v 1 - if the CLI packages on the server were bound with the KEEPDYNAMIC YES

option

It is recommended that when KeepDynamic is used, the CurrentPackageSet

CLI/ODBC keyword also be set. Refer to the documentation about enabling

KEEPDYNAMIC support for details on how these keywords can be used together.

LOBCacheSize CLI/ODBC configuration keyword

Specifies maximum cache size (in bytes) for LOBs.

db2cli.ini keyword syntax:

LOBCacheSize = positive integer

Default setting:

LOBs are not cached.

Equivalent connection or statement attribute:

SQL_ATTR_LOB_CACHE_SIZE

Usage notes:

 The use of LOB locators when retrieving unbound LOB data can be

avoided by setting this keyword. For example, if an application does not

bind a column prior to calling SQLFetch() and then calls SQLGetData() to

fetch the LOB, if LOBCacheSize was set to a value large enough to contain

the entire LOB being fetched, then the LOB is retrieved from the LOB

cache rather than from a LOB locator. Using the LOB cache instead of the

LOB locator in this case improves performance.

Servers that support Dynamic Data Format, also known as progressive

streaming, optimize the return of LOB and XML data depending on the

actual length of the data. The LOB and XML data can be returned in its

entirety, or as an internal token called a progressive reference. DB2 CLI

manages progressive reference data retrieval.

For applications that are querying data on a server that supports Dynamic

Data Format, setting the LOBCacheSize keyword sets a threshold that is

used to determine if the data is returned in its entirety, or as a progressive

reference. If the data has a length greater than the LOBCacheSize threshold

value, the progressive reference will be returned to DB2 CLI to manage,

but if the data has a length less than or equal to the LOBCacheSize

threshold value, the data will be returned in its entirety.

For applications that are querying data on a server that does not supports

Dynamic Data Format, the LOBCacheSize threshold value specifies the

maximum defined size of a LOB that DB2 CLI will buffer in memory. If the

defined size of a LOB exceeds the value LOBCacheSize is set to, then the

LOB will not be cached. For example, consider a table that is created with

a CLOB column of 100MB currently holding 20MB of data, with

LOBCacheSize set to 50MB. In this case, even though the size of the LOB

itself (20MB) is less than the value set through LOBCacheSize, the CLOB

column will not be cached because the defined CLOB size (100MB) exceeds

the maximum cache size set through LOBCacheSize (50MB).

Chapter 2. CLI/ODBC configuration keywords 331

ClientBuffersUnboundLOBS is a related keyword.

LOBFileThreshold CLI/ODBC configuration keyword

Specifies the maximum number of bytes of LOB data buffered when SQLPutData()

is used.

db2cli.ini keyword syntax:

LOBFileThreshold = positive integer

Default setting:

25 MB

Usage notes:

This option specifies the maximum number of bytes of LOB data that DB2 CLI will

buffer in memory on calls to SQLPutData(). If the specified cache size is exceeded,

a temporary file will be created on disk to hold the LOB data before it is sent to

the server.

LOBMaxColumnSize CLI/ODBC configuration keyword

Overrides the default value in the COLUMN_SIZE column for LOB data types.

db2cli.ini keyword syntax:

LOBMaxColumnSize = integer greater than zero

Default setting:

2 Gigabytes (1G for DBCLOB)

Only applicable when:

LongDataCompat or MapXMLDescribe with a LOB type is used.

Usage notes:

This will override the 2 Gigabyte (1G for DBCLOB) value that is returned by

SQLGetTypeInfo() for the COLUMN_SIZE column for SQL_CLOB, SQL_BLOB, and

SQL_DBCLOB and SQL_XML SQL data types. For SQL_XML, LOBMaxColumnSize

must be specified with MapXMLDescribe set to a LOB type. Subsequent CREATE

TABLE statements that contain LOB columns will use the column size value you

set here instead of the default.

LoadXAInterceptor CLI/ODBC configuration keyword

Loads the XA Interceptor for debugging.

db2cli.ini keyword syntax:

LoadXAInterceptor = 0 | 1

Default setting:

The XA Interceptor is not loaded.

Usage notes:

This keyword loads the XA Interceptor for debugging purposes in MTS.

332 Call Level Interface Guide and Reference, Volume 2

LockTimeout CLI/ODBC configuration keyword

Sets the default value of the LOCKTIMEOUT configuration parameter.

db2cli.ini keyword syntax:

LockTimeout = -1 | 0 | positive integer ≤ 32767

Default setting:

Timeout is turned off (-1), with the application waiting for a lock until

either the lock is granted or deadlock occurs.

Usage notes:

The LockTimeout keyword specifies the number of seconds a DB2 CLI application

will wait to obtain locks. If the keyword is set to 0, locks will not be waited for.

The -1 setting causes the application to wait indefinitely until either the lock is

granted or deadlock occurs.

LongDataCompat CLI/ODBC configuration keyword

Reports LOBs as long data types or as large object types.

db2cli.ini keyword syntax:

LongDataCompat = 0 | 1 | 2

Default setting:

Reference LOB data types as large object types.

Equivalent connection attribute:

SQL_ATTR_LONGDATA_COMPAT

Usage notes:

This option indicates to DB2 CLI what data type the application expects when

working with a database with large object (LOB) columns.

The values for this option are:

v 0 = Reference LOB data types as large object types.

v 1 = Report LOBs as long data types for DB2 CLI/ODBC applications only.

v 2 = Report LOBs as long data types for JDBC applications only. This does not

affect applications using the DB2 Universal JDBC Driver.

 Table 141. Corresponding large object and long data types for LOB data

Database data type Large objects (0 - Default)

Long data types (1 —

CLI/ODBC; 2 — JDBC)

CLOB SQL_CLOB SQL_LONGVARCHAR

BLOB SQL_BLOB SQL_LONGVARBINARY

DBCLOB SQL_DBCLOB SQL_LONGVARGRAPHIC*

* If the MapGraphicDescribe keyword is set in conjunction with LongDataCompat, DBCLOB

columns will return an SQL type of SQL_LONGVARCHAR if MapGraphicDescribe is 1 and

SQL_WLONGVARCHAR if MapGraphicDescribe is 2.

This option is useful when running ODBC applications that cannot handle the

large object data types.

Chapter 2. CLI/ODBC configuration keywords 333

The DB2 CLI/ODBC option LOBMaxColumnSize can be used in conjunction with

this option to reduce the default size declared for the data.

MapBigintCDefault CLI/ODBC configuration keyword

Specifies the default C type of BIGINT columns and parameter markers.

db2cli.ini keyword syntax:

MapBigintCDefault = 0 | 1 | 2

Default setting:

The default C type representation for BIGINT data is SQL_C_BIGINT.

Usage notes:

MapBigintCDefault controls the C type that is used when SQL_C_DEFAULT is

specified for BIGINT columns and parameter markers. This keyword should be

used primarily with Microsoft applications, such as Microsoft Access, which cannot

handle 8-byte integers. Set MapBigintCDefault as follows:

v 0 - for the default SQL_C_BIGINT C type representation

v 1 - for an SQL_C_CHAR C type representation

v 2 - for an SQL_C_WCHAR C type representation

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT might

be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and

SQLGetData()

MapCharToWChar CLI/ODBC configuration keyword

Specifies the default SQL type associated with SQL_CHAR, SQL_VARCHAR,

SQL_LONGVARCHAR.

db2cli.ini keyword syntax:

MapCharToWChar = 0 | 1

Default setting:

The default SQL type representation for SQL_CHAR, SQL_VARCHAR and

SQL_LONGVARCHAR is used.

Equivalent connection attribute:

SQL_ATTR_MAPCHAR

Usage notes:

MapCharToWChar controls the SQL type that is returned when describing

SQL_CHAR, SQL_VARCHAR and SQL_LONGVARCHAR columns or

parameter markers.

 Set MapCharToWChar as follows:

v 0 - to return the default SQL type representation

v 1 - to return SQL_CHAR as SQL_WCHAR, SQL_VARCHAR as

SQL_WVARCHAR, and SQL_LONGVARCHAR as

SQL_WLONGVARCHAR

Only the following DB2 CLI functions are affected by setting

MapCharToWChar:

v SQLColumns()

v SQLColAttribute()

v SQLDescribeCol()

334 Call Level Interface Guide and Reference, Volume 2

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

MapDateCDefault CLI/ODBC configuration keyword

Specifies the default C type of DATE columns and parameter markers.

db2cli.ini keyword syntax:

MapDateCDefault = 0 | 1 | 2

Default setting:

The default C type representation for DATE data is SQL_C_TYPE_DATE.

Usage notes:

MapDateCDefault controls the C type that is used when SQL_C_DEFAULT is

specified for DATE columns and parameter markers. This keyword should be used

primarily with Microsoft applications, such as Microsoft Access, which assume

SQL_C_CHAR as the default C type for datetime values. Set MapDateCDefault as

follows:

v 0 - for the default SQL_C_TYPE_DATE C type representation: a struct containing

numeric members for year, month and day

v 1 - for an SQL_C_CHAR C type representation: ″2004-01-01″

v 2 - for an SQL_C_WCHAR C type representation: ″2004-01-01″ in UTF-16.

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT may

be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and

SQLGetData().

MapDateDescribe CLI/ODBC configuration keyword

Controls the SQL data type returned when DATE columns and parameter markers

are described.

db2cli.ini keyword syntax:

MapDateDescribe = 0 | 1 | 2

Default setting:

The default SQL data type for DATE data is returned: SQL_DATE for

ODBC 2.0 or SQL_TYPE_DATE for ODBC 3.0.

Usage notes:

To control the SQL data type that is returned when DATE columns and parameter

markers are described, set MapDateDescribe as follows:

v 0 - to return the default SQL data type: SQL_DATE for ODBC 2.0 or

SQL_TYPE_DATE for ODBC 3.0

v 1 - to return the SQL_CHAR SQL data type

v 2 - to return the SQL_WCHAR SQL data type

Only the following DB2 CLI functions are affected by setting MapDateDescribe:

v SQLColumns()

v SQLDescribeCol()

Chapter 2. CLI/ODBC configuration keywords 335

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

v SQLSpecialColumns()

MapDecimalFloatDescribe CLI/ODBC configuration keyword

Specifies the default C type and reported data type of DECFLOAT columns and

parameter markers.

db2cli.ini keyword syntax:

MapDecimalFloatDescribe = 0 | 1| 2| 3

Default setting:

0

Usage notes:

 MapDecimalFloatDescribe controls the default C type to be used for

columns and parameters with a data type of DECFLOAT. It affects the

behavior of CLI functions for which SQL_C_DEFAULT can be specified as

the C type of a column or parameter. Examples of such functions include

SQLBindParameter(), SQLBindCol(), and SQLGetData(),

MapDecimalFloatDescribe also controls the type that will be reported for

columns and parameters that have a data type of DECFLOAT. This affects

CLI functions that return information about parameters and columns.

Examples of such functions include SQLColAttribute() and

SQLDescribeParam().

Use this configuration keyword for applications that cannot handle decimal

float types or when you would rather always deal with decimal float types

as some other type.

Here are the allowed values:

 Table 142.

Value

DECFLOAT columns and

parameters are reported as being

this type

DECFLOAT columns and parameters use

this default C type

0 SQL_DECFLOAT

 SQL_C_CHAR

1 SQL_VARCHAR SQL_C_CHAR

2 SQL_WVARCHAR SQL_C_WCHAR

3 SQL_DOUBLE SQL_C_DOUBLE

MapGraphicDescribe CLI/ODBC configuration keyword

Controls the SQL data type returned when GRAPHIC, VARGRAPHIC, and

LONGVARGRAPHIC columns and parameter markers are described.

db2cli.ini keyword syntax:

MapGraphicDescribe = 0 | 1 | 2

Default setting:

The default SQL data types are returned: SQL_GRAPHIC for GRAPHIC

336 Call Level Interface Guide and Reference, Volume 2

columns, SQL_VARGRAPHIC for VARGRAPHIC columns, and

SQL_LONGVARGRAPHIC for LONG VARGRAPHIC columns.

Usage notes:

To control the SQL data type that is returned when GRAPHIC-based columns and

parameter markers are described, set MapGraphicDescribe as follows:

v 0 - to return the default SQL data types

v 1 - to return the CHAR-based SQL data types: SQL_CHAR for GRAPHIC

columns, SQL_VARCHAR for VARGRAPHIC columns, and

SQL_LONGVARCHAR for LONG VARGRAPHIC columns

v 2 - to return the WCHAR-based SQL data types: SQL_WCHAR for GRAPHIC

columns, SQL_WVARCHAR for VARGRAPHIC columns, and

SQL_WLONGVARCHAR for LONG VARGRAPHIC columns

Only the following DB2 CLI functions are affected by setting MapGraphicDescribe:

v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

v SQLSpecialColumns()

MapTimeCDefault CLI/ODBC configuration keyword

Specifies the default C type of TIME columns and parameter markers.

db2cli.ini keyword syntax:

MapTimeCDefault = 0 | 1 | 2

Default setting:

The default C type representation for TIME data is SQL_C_TYPE_TIME.

Usage notes:

MapTimeCDefault controls the C type that is used when SQL_C_DEFAULT is

specified for TIME columns and parameter markers. This keyword should be used

primarily with Microsoft applications, such as Microsoft Access, which assume

SQL_C_CHAR as the default C type for datetime values. Set MapTimeCDefault as

follows:

v 0 - for the default SQL_C_TYPE_TIME C type representation: a struct containing

numeric members for hour, minute, and second

v 1 - for an SQL_C_CHAR C type representation: ″12:34:56″

v 2 - for an SQL_C_WCHAR C type representation: ″12:34:56″ in UTF-16.

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT may

be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and

SQLGetData().

Note: MapTimeCDefault supersedes Patch2=24. If both MapTimeCDefault and

Patch2=24 are set, the MapTimeCDefault value takes precedence.

Chapter 2. CLI/ODBC configuration keywords 337

MapTimeDescribe CLI/ODBC configuration keyword

Controls the SQL data type returned when TIME columns and parameter markers

are described.

db2cli.ini keyword syntax:

MapTimeDescribe = 0 | 1 | 2

Default setting:

The default SQL data type for TIME data is returned: SQL_TIME for

ODBC 2.0 or SQL_TYPE_TIME for ODBC 3.0

Usage notes:

To control the SQL data type that is returned when TIME columns and parameter

markers are described, set MapTimeDescribe as follows:

v 0 - to return the default SQL data type: SQL_TIME for ODBC 2.0 or

SQL_TYPE_TIME for ODBC 3.0

v 1 - to return the SQL_CHAR SQL data type

v 2 - to return the SQL_WCHAR SQL data type

Only the following DB2 CLI functions are affected by setting MapTimeDescribe:

v SQLColumns()

v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

v SQLSpecialColumns()

MapTimestampCDefault CLI/ODBC configuration keyword

Specifies the default C type of TIMESTAMP columns and parameter markers.

db2cli.ini keyword syntax:

MapTimestampCDefault = 0 | 1 | 2

Default setting:

The default C type representation for TIMESTAMP data is

SQL_C_TYPE_TIMESTAMP.

Usage notes:

MapTimestampCDefault controls the C type that is used when SQL_C_DEFAULT

is specified for TIMESTAMP columns and parameter markers. This keyword

should be used primarily with Microsoft applications, such as Microsoft Access,

which assume SQL_C_CHAR as the default C type for datetime values. Set

MapTimestampCDefault as follows:

v 0 - for the default SQL_C_TYPE_TIMESTAMP C type representation: a struct

containing numeric members for year, month, day, hour, minute, second, and

fraction of a second

v 1 - for an SQL_C_CHAR C type representation: ″2004-01-01 12:34:56.123456″

v 2 - for an SQL_C_WCHAR C type representation: ″2004-01-01 12:34:56.123456″ in

UTF-16.

338 Call Level Interface Guide and Reference, Volume 2

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT may

be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and

SQLGetData().

MapTimestampDescribe CLI/ODBC configuration keyword

Controls the SQL data type returned when TIMESTAMP columns and parameter

markers are described.

db2cli.ini keyword syntax:

MapTimestampDescribe = 0 | 1 | 2

Default setting:

The default SQL data type for TIMESTAMP data is returned:

SQL_TIMESTAMP for ODBC 2.0 or SQL_TYPE_TIMESTAMP for ODBC

3.0.

Usage notes:

To control the SQL data type that is returned when TIMESTAMP columns and

parameter markers are described, set MapTimestampDescribe as follows:

v 0 - to return the default SQL data type: SQL_TIMESTAMP for ODBC 2.0 or

SQL_TYPE_TIMESTAMP for ODBC 3.0

v 1 - to return the SQL_CHAR SQL data type

v 2 - to return the SQL_WCHAR SQL data type

Only the following DB2 CLI functions are affected by setting

MapTimeStampDescribe:

v SQLColumns()

v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

v SQLSpecialColumns()

MapXMLCDefault CLI/ODBC configuration keyword

Controls the default C type representation used when SQL_C_DEFAULT is

specified for XML columns and parameter markers.

db2cli.ini keyword syntax:

MapXMLCDefault = 0 | 1 | 2 | 3

Default setting:

The default C type representation for XML data is SQL_C_BINARY.

Usage notes:

MapXMLCDefault controls the C type that is used when SQL_C_DEFAULT is

specified for XML columns and parameter markers. This keyword should be used

primarily with Microsoft applications, such as Microsoft Access, which might

assume SQL_C_WCHAR as the default C type for XML values. Set

MapXMLCDefault as follows:

Chapter 2. CLI/ODBC configuration keywords 339

v 0 - for the default SQL_C_BINARY C type representation

v 1 - for the SQL_C_CHAR C type representation; this can result in data loss as

the XML data is converted to the local application code page

v 2 - for the SQL_C_WCHAR C type representation

This keyword affects the behaviour of CLI functions where SQL_C_DEFAULT can

be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and

SQLGetData().

MapXMLDescribe CLI/ODBC configuration keyword

Controls the SQL data type returned when XML columns and parameter markers

are described.

db2cli.ini keyword syntax:

MapXMLDescribe = -370 | -350 | -152 | -99 | -98

Default setting:

The default SQL data type for XML data is returned: SQL_XML (-370)

Usage notes:

To control the SQL data type that is returned when XML columns and parameter

markers are described, set MapXMLDescribe to one of the following integer values:

v -370 to return the default SQL_XML SQL data type

v -350 to return the SQL_DBCLOB SQL data type

v -152 to return the SQL_SS_XML SQL data type

Note: The SQL_SS_XML value of -152 belongs to the reserved range of

Microsoft SQL Server and is not defined by IBM.

v -99 to return the SQL_BLOB SQL data type

v -98 to return the SQL_CLOB SQL data type

The data length for XML values mapped to LOB types is the maximum length for

the mapped data type.

When used in conjunction with the LongDataCompat keyword set to the value 1,

XML values mapped to LOB data types will be mapped to the corresponding

LONG data type as well.

Character types specified for MapXMLDescribe may result in data loss during data

conversion if the application code page does not support all of the characters in

the source data. Mapping XML values to character types, therefore, is only

recommended with caution.

This keyword is recommended to provide compatibility with applications that

access XML columns as CLOB or BLOB, or use Microsoft application development

technologies.

MaxLOBBlockSize CLI/ODBC configuration keyword

Specifies the maximum return block size for LOB or XML data.

db2cli.ini keyword syntax:

MaxLOBBlockSize = 0 | ... | 2147483647

340 Call Level Interface Guide and Reference, Volume 2

Default setting:

There is no limit to the data block size for LOB or XML data.

Equivalent connection or statement attribute:

SQL_ATTR_MAX_LOB_BLOCK_SIZE

Usage notes:

During data retrieval, the server will include all of the information for the

current row in its reply to the client even if the maximum block size has

been reached.

 If both MaxLOBBlockSize and the db2set registry variable

DB2_MAX_LOB_BLOCK_SIZE are specified, the value for

MaxLOBBlockSize will be used.

Mode CLI/ODBC configuration keyword

Sets the default connection mode.

db2cli.ini keyword syntax:

Mode = SHARE | EXCLUSIVE

Default setting:

SHARE

Not applicable when:

connecting to a host or iSeries server.

Usage notes:

Sets the CONNECT mode to either SHARE or EXCLUSIVE. If a mode is set by the

application at connect time, this value is ignored. The default is SHARE.

NotifyLevel CLI/ODBC configuration keyword

Sets the diagnostic level.

db2cli.ini keyword syntax:

NotifyLevel = 0 | 1 | 2 | 3 | 4

Default setting:

3

Usage notes:

This can be set in the [COMMON] section of the db2cli.ini file only.

 This is equivalent to the database manager parameter NOTIFYLEVEL.

OleDbReportIsLongForLongTypes CLI/ODBC configuration keyword

Makes OLE DB flag LONG data types with DBCOLUMNFLAGS_ISLONG.

db2cli.ini keyword syntax:

OleDbReportIsLongForLongTypes = 0 | 1

Equivalent connection attribute:

SQL_ATTR_REPORT_ISLONG_FOR_LONGTYPES_OLEDB

Default setting:

LONG types (LONG VARCHAR, LONG VARCHAR FOR BIT DATA,

LONG VARGRAPHIC and LONG VARGRAPHIC FOR BIT DATA) do not

Chapter 2. CLI/ODBC configuration keywords 341

have the DBCOLUMNFLAGS_ISLONG flag set, which might cause the

columns to be used in the WHERE clause.

Usage notes:

The OLE DB client cursor engine and the OLE DB .NET Data Provider

CommandBuilder object generate UPDATE and DELETE statements based

on column information provided by the IBM DB2 OLE DB Provider. If the

generated statement contains a LONG type in the WHERE clause, the

statement will fail because LONG types cannot be used in a search with an

equality operator. Setting the keyword OleDbReportIsLongForLongTypes to

1 will make the IBM DB2 OLE DB Provider report LONG types (LONG

VARCHAR, LONG VARCHAR FOR BIT DATA, LONG VARGRAPHIC and

LONG VARGRAPHIC FOR BIT DATA) with the

DBCOLUMNFLAGS_ISLONG flag set. This will prevent the long columns

from being used in the WHERE clause.

 The OleDbReportIsLongForLongTypes keyword is supported by the

following database servers:

v DB2 for z/OS

– version 6 with PTF UQ93891

– version 7 with PTF UQ93889

– version 8 with PTF UQ93890

– versions later than version 8, PTFs are not required
v DB2 Database for Linux, UNIX, and Windows

– version 8.2 (equivalent to Version 8.1, FixPak 7) and later

OleDbReturnCharAsWChar CLI/ODBC configuration keyword

Controls how the IBM DB2 OLE DB Provider describes CHAR, VARCHAR, LONG

VARCHAR, and CLOB data.

db2cli.ini keyword syntax:

OleDbReturnCharAsWChar = 0 | 1

Default setting:

The IBM DB2 OLE DB Provider describes CHAR, VARCHAR, LONG

VARCHAR, and CLOB data as DBTYPE_WSTR.

Usage notes:

The IBM DB2 OLE DB Provider describes CHAR, VARCHAR, LONG VARCHAR,

and CLOB data as DBTYPE_WSTR by default as of DB2 luw Version 8.1.2. The

CLI/ODBC configuration keyword OleDbReturnCharAsWChar allows you to

change this default to have the previously stated character data types reported as

DBTYPE_STR.

The available settings are:

v 0 - CHAR, VARCHAR, LONG VARCHAR, and CLOB data are described as

DBTYPE_STR, and the code page of data in ISequentialStream is the local code

page of the client

v 1 - CHAR, VARCHAR, LONG VARCHAR, and CLOB data are reported as

DBTYPE_WSTR, and the code page of data in ISequentialStream is UCS-2

342 Call Level Interface Guide and Reference, Volume 2

OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration keyword

Makes OLE DB’s IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) return

a row set sorted by the ORDINAL_POSITION column.

db2cli.ini keyword syntax:

OleDbSQLColumnsSortByOrdinal = 0 | 1

Equivalent connection attribute:

SQL_ATTR_SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB

Default setting:

IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) returns the row

set sorted by the columns TABLE_CATALOG, TABLE_SCHEMA,

TABLE_NAME, COLUMN_NAME.

Usage notes:

The Microsoft OLE DB specification requires that

IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) returns the row

set sorted by the columns TABLE_CATALOG, TABLE_SCHEMA,

TABLE_NAME, COLUMN_NAME. The IBM DB2 OLE DB Provider

conforms to the specification. However, applications that use the Microsoft

ODBC Bridge provider (MSDASQL) have been typically coded to get the

row set sorted by ORDINAL_POSITION. Setting the

OleDbSQLColumnsSortByOrdinal keyword to 1 will make the provider

return a row set sorted by ORDINAL_POSITION.

 The OleDbSQLColumnsSortByOrdinal keyword is supported by the

following database servers:

v DB2 for z/OS

– version 6 with PTF UQ93891

– version 7 with PTF UQ93889

– version 8 with PTF UQ93890

– versions later than version 8, PTFs are not required
v DB2 Database for Linux, UNIX, and Windows

– version 8.2 (equivalent to Version 8.1, FixPak 7) and later

OptimizeForNRows CLI/ODBC configuration keyword

Appends ’OPTIMIZE FOR n ROWS’ clause to every select statement.

db2cli.ini keyword syntax:

OptimizeForNRows = integer

Default setting:

The clause is not appended.

Equivalent statement attribute:

SQL_ATTR_OPTIMIZE_FOR_NROWS

Usage notes:

This option will append the ″OPTIMIZE FOR n ROWS″ clause to every select

statement, where n is an integer larger than 0. If set to 0 (the default) this clause

will not be appended.

Chapter 2. CLI/ODBC configuration keywords 343

PWD CLI/ODBC configuration keyword

Defines the default password.

db2cli.ini keyword syntax:

PWD = password

Default setting:

None

Usage notes:

This password value is used if a password is not provided by the application at

connect time.

It is stored as plain text in the db2cli.ini file and is therefore not secure.

PWDPlugin CLI/ODBC configuration keyword

Specifies the name of the userid-password plug-in library to be used for client side

authentication for file DSN or DSN-less connectivity.

db2cli.ini keyword syntax:

PWDPlugin = plugin name

Default setting:

By default, the value is null and the DB2-supplied userid-password plug-in

library is used.

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies the name of the userid-password plug-in library

to be used for client-side connection authentication. The plug-in is used

when the client is authenticated using SERVER or SERVER_ENCRYPT

authentication.

Patch1 CLI/ODBC configuration keyword

Specifies a work-around for known CLI/ODBC application problems.

db2cli.ini keyword syntax:

Patch1 = { 0 | 1 | 2 | 4 | 8 | 16 | ... }

Default setting:

Use no work-arounds.

Usage notes:

This keyword is used to specify a work-around for known problems with

ODBC applications. The value specified can be for none, one, or multiple

work-arounds. The patch values specified here are used in conjunction

with any Patch2 values that might also be set.

 Using the DB2 CLI/ODBC Settings notebook you can select one or more

patches to use. If you set the values in the db2cli.ini file itself and want

to use multiple patch values then simply add the values together to form

the keyword value. For example, if you want the patches 1, 4, and 8, then

specify Patch1=13.

v 0 = No work around (default)

344 Call Level Interface Guide and Reference, Volume 2

Table 143. Patch1 CLI/ODBC configuration keyword values

Value Description

4 Changes input timestamp data to date data

if the time and fraction part of the

timestamp are zero. For example, {ts

’YYYY-MM-DD 00:00:00’} is changed to {d

’YYYY-MM-DD’}. This value is typically

needed for older versions of Microsoft

Access.

8 Changes input timestamp data to time data

if the date part of the timestamp is either

1899-12-30 or 1900-01-01. For example, {ts

’1899-12-30 HH:MM:SS’} is changed to {t

’HH:MM:SS’}. This value is typically needed

for older versions of Microsoft Access.

64 Null-terminates output GRAPHIC strings.

This value is typically needed by Microsoft

Access in a double-byte (DBCS)

environment.

128 Disables the default performance

optimization behavior for the MSysConf

table associated with some Microsoft

applications.

Microsoft applications, such as Microsoft

Access, use a configuration table called

MSysConf. Once these applications

successfully connect to a database, they will

typically issue the following query: ″SELECT

Config, nValue FROM MSysConf″. Because

the MSysConf table does not exist in a DB2

database by default, this query fails with the

error ″SQL0204N ″MSysConf″ is an

undefined name.″. Microsoft applications

can handle this error and continue

processing, however, issuing the query

across the network to the DB2 server incurs

overhead.

To enhance performance, DB2 CLI assumes

that this query will always fail, so when it

detects that an application is trying to

execute this query, it automatically returns

an error with an SQLSTATE of S0002 (Table

not found). The query, therefore, is never

sent to the server. If, however, the user has

created the MSysConf configuration table in

the database and wants the application to

access it, this PATCH1 value can be set to

disable the performance optimization and

allow the query to be executed.

256 Service use only

512 Service use only

Chapter 2. CLI/ODBC configuration keywords 345

Table 143. Patch1 CLI/ODBC configuration keyword values (continued)

Value Description

1024 Returns SQL_SUCCESS_WITH_INFO

instead of SQL_NO_DATA_FOUND from

the SQLExecute() and SQLExecDirect()

functions if the executed UPDATE or

DELETE statement affected no rows. This

value might be needed by some Microsoft

Visual Basic applications.

4096 Prevents a COMMIT from being issued after

closing a cursor in autocommit mode.

8192 Returns an extra result set after invoking a

stored procedure. This extra result set has

one row and consists of the output values of

the stored procedure. This PATCH1 value

might be needed by some Powerbuilder

applications that require an extra result set.

32768 Forces the driver to make Microsoft Query

applications work with DB2 MVS™

synonyms.

65536 Deprecated

131072 Deprecated

262144 Deprecated

524288 Deprecated

1048576 Service use only

2097152 Service use only

Patch2 CLI/ODBC configuration keyword

Specifies a work-around for known CLI/ODBC application problems.

db2cli.ini keyword syntax:

Patch2 = ″patch value 1, patch value 2, patch value 3, ...″

Default setting:

Use no work-arounds

Usage notes:

This keyword is used to specify a work-around for known problems with

CLI/ODBC applications. The value specified can be for none, one, or

multiple work-arounds. The patch values specified here may be used in

conjunction with any Patch1 values that may also be set.

 When specifying multiple patches, the values are specified in a comma

delimited string (unlike the Patch1 option where the values are added

together and the sum is used).

v 0 = No work around (default)

To set Patch2 values 3, 4 and 8 you would specify:

Patch2="3, 4, 8"

 Table 144. Patch2 CLI/ODBC configuration keyword values

Value Description

1 Deprecated

346 Call Level Interface Guide and Reference, Volume 2

Table 144. Patch2 CLI/ODBC configuration keyword values (continued)

Value Description

3 Service use only

4 Deprecated

5 Deprecated

6 Forces the driver to return a message

indicating that scrollable cursors are not

supported. This setting is needed by some

applications (such as Visual Basic) that make

use of LOBs or that do not need or want

scrollable cursors to be used, even though

they have been explicitly requested by the

application.

7 Maps all GRAPHIC column data types to

the CHAR column data type. The precision

of a GRAPHIC column will also be doubled;

for example, GRAPHIC(20) will be reported

as CHAR(40).

8 Ignores catalog search arguments in schema

calls.

11 SQLGetInfo() reports that catalog names are

supported for Visual Basic stored

procedures.

12 Deprecated

13 Prevents keywords in the db2cli.ini

initialization file from being appended to the

output connection string.

14 Deprecated

15 Causes a period separator to be used instead

of the default locale’s decimal separator in

character output.

16 Deprecated

17 Deprecated

18 Attempts to replace literals with parameter

markers for inefficient applications that use

literals repeatedly. It is only applicable to

INSERT SQL statements with the VALUES

clause using only literals. Coding your

application properly to use parameter

markers is the best solution.

19 Removes parentheses from the ON clause of

an outer join, where the outer join is an

ODBC escape sequence and the server is

DB2 for MVS Version 5. DB2 for MVS

Version 5 does not currently support the

ODBC syntax where parentheses are

permitted in the ON clause of an outer join

clause. Setting this PATCH2 value allows the

outer join escape sequence to be used

against DB2 for MVS Version 5. This value

should only be set when the server is DB2

for MVS Version 5.

Chapter 2. CLI/ODBC configuration keywords 347

Table 144. Patch2 CLI/ODBC configuration keyword values (continued)

Value Description

20 Forces the driver to rewrite the BETWEEN

predicate when the server is DB2 for MVS.

DB2 for MVS does not currently support the

BETWEEN predicate with parameter

markers as both operands. Setting this

PATCH2 value causes (expression ?

BETWEEN ?) to be rewritten as (expression

>= ? and expression <= ?).

21 Deprecated

22 Causes SQLGetInfo() to report

SQL_OUTER_JOINS=NO and

SQL_OJ_CAPABILITIES=0. This prevents the

application from using outer joins where

they are not supported, thus ensuring that

the outer join queries do not fail.

23 Deprecated

24 Reports TIME data as SQL_CHAR data. This

patch value is used as a workaround for

Microsoft Access applications.

25 Removes trailing zeros in the CHAR

representation of DECIMAL columns; used

as a workaround for Microsoft Access

applications.

28 Deprecated

29 Removes leading zeroes in the string

representation of DECIMAL values x, where

1 > x > -1; used as a workaround for ADO

applications with some MDAC versions.

30 Disables stored procedure caching

optimization.

31 Deprecated

32 Deprecated

33 Returns the ISO version of timestamp data

when converted to CHAR, rather than the

ODBC version.

34 Deprecated

38 Turns statement caching off

42 Prevents the FOR UPDATE clause from

being used with keyset cursors. By default,

most applications expect keyset cursors to be

updatable, however, if this is not required,

then this PATCH2 value makes the cursor

read-only (but still scrollable and sensitive to

changes made by others).

348 Call Level Interface Guide and Reference, Volume 2

Table 144. Patch2 CLI/ODBC configuration keyword values (continued)

Value Description

50 Frees LOB locators when SQLFetch() is

executed, rather than when a COMMIT is

issued. This PATCH2 value frees the locators

that are used internally when applications

fetch LOB data without binding the LOB

columns with SQLBindCol() (or equivalent

descriptor APIs). Locators that are explicitly

returned to the application must still be

freed by the application. This PATCH2 value

can be used to avoid scenarios where an

application receives SQLCODE = -429 (no

more locators).

56 Allows client support for Early Close

Cursors for those servers that do not

support it as in the case of DB2 UDB for

OS/390 version 7 or earlier.

57 Allows calling a stored procedure that

returns a NULL output parameter value

without providing an output indicator

pointer. This is normally applicable to older

versions of Borland Delphi products.

58 DateTime values inserted into the database

that cause truncation errors can be

downgraded to a truncation warning using

this PATCH2 value.

61 When data is given to the client from an

SQL_CHAR there may be right padded

spaces. This patch value strips off right

padded single byte spaces, but not double

byte spaces. This behavior partially mimics

the Neon Shadow Driver behavior

66 Allows applications to retrieve the regional

setting that affects decimal separators in a

Windows environment. The regional setting

is normally ignored by default. This patch

value is ignored if PATCH2=15 or db2set

db2country/db2territory/db2codepage are

set. The only supported decimal separators

are the period and comma.

Port CLI/ODBC configuration keyword

Specifies the server system’s service name or port number, used with a file DSN or

in a DSN-less connection.

db2cli.ini keyword syntax:

Port = service name | port number

Default setting:

None

Only applicable when:

Protocol set to TCPIP

Chapter 2. CLI/ODBC configuration keywords 349

Usage notes:

Use this option in conjunction with the Hostname option to specify the required

attributes for a TCP/IP connection from this client machine to a server running

DB2. These two values are only considered when the Protocol option is set to

TCPIP.

Specify either the server system’s service name or its port number. The service

name must be available for lookup at the client machine if it is used.

ProgramName CLI/ODBC configuration keyword

Sets the default client application name to a user-defined name which is used to

identify the application at the server when monitoring.

db2cli.ini keyword syntax:

ProgramName = <string> | PID

Default setting:

No user-defined name is used. The application is identified by the name

DB2 assigns by default.

Equivalent connection attribute:

SQL_ATTR_INFO_PROGRAMNAME

Usage notes:

When monitoring a CLI application, it may be useful to identify the application by

a user-defined string, instead of by the default identifier that DB2 assigns.

ProgramName allows the user to specify the identifier as either a string up to 20

bytes in length or the string ″PID″ (without the quotation marks).

If ProgramName is set to ″PID″ for a CLI application, the application’s name will

consist of the prefix ″CLI″ along with the application’s process ID and the current

active connection handle, as follows: CLI<pid>:<connectionHandle#>. The ″PID″

setting is useful when monitoring application servers that run multiple

applications with numerous connections to the same database.

(When the ProgramName keyword is set to ″PID″ for other types of applications,

the ″CLI″ prefix is replaced with the following values corresponding to the type of

application: ″JDBC″ for JDBC applications, ″OLEDB″ for OLE DB applications, and

″ADONET″ for .NET applications.)

PromoteLONGVARtoLOB CLI/ODBC configuration keyword

Promotes LONGVARxxx data types to xLOB data types.

db2cli.ini keyword syntax:

PROMOTELONGVARTOLOB = 0 | 1

Default setting:

0

Usage notes:

 This option should only be used when a LONGVARxxxx value has the

potential to exceed 32K. The return type of the column is promoted to

xLOB to hold the larger data size.

350 Call Level Interface Guide and Reference, Volume 2

Protocol CLI/ODBC configuration keyword

Communications protocol used for File DSN or in a DSN-less connection.

db2cli.ini keyword syntax:

Protocol = TCPIP | TCPIP6 | TCPIP4 | IPC | LOCAL

Default setting:

none

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 TCP/IP is the only protocol supported when using a File DSN. Set the

option to the string TCPIP (without the slash).

When this option is set then the following options must also be set:

v Database;

v ServiceName; and

v Hostname.

IPC connectivity can be specified by setting Protocol to either IPC or

LOCAL.

When Protocol = IPC | LOCAL the Instance keyword must also be set.

QueryTimeoutInterval CLI/ODBC configuration keyword

Delay (in seconds) between checks for a query timeout.

db2cli.ini Keyword Syntax:

QueryTimeoutInterval = 0 | 5 | positive integer

Default Setting:

5 seconds

Usage Notes:

An application can use the SQLSetStmtAttr() function to set the

SQL_ATTR_QUERY_TIMEOUT statement attribute. This attribute indicates the

number of seconds to wait for an SQL statement or XQuery expression to complete

executing before attempting to cancel the execution and returning to the

application.

The QueryTimeoutInterval configuration keyword is used to indicate how long the

CLI driver should wait between checks to see if the query has completed.

For instance, suppose SQL_ATTR_QUERY_TIMEOUT is set to 25 seconds (timeout

after waiting for 25 seconds), and QueryTimeoutInterval is set to 10 seconds (check

the query every 10 seconds). The query will not time out until 30 seconds (the first

check AFTER the 25 second limit).

Note: DB2 CLI implements query timeout by starting a thread that periodically

queries the status of each executing query. The QueryTimeoutInterval value

specifies how long the query timeout thread waits between checks for expired

queries. Because this is an asynchronous operation to the queries being executed, it

is possible that a given query may not be timed out until

Chapter 2. CLI/ODBC configuration keywords 351

SQL_ATTR_QUERY_TIMEOUT + QueryTimeoutInterval seconds. In the example

above, the best-case timeout would be at 26 seconds, and the worst-case timeout

would be at 35 seconds.

There may be cases where the SQL_ATTR_QUERY_TIMEOUT is set to a value

which is too low, and the query should NOT be timed-out. If the application

cannot be modified (that is, a third party ODBC application), then the

QueryTimeoutInterval can be set to 0, and the CLI driver will ignore the

SQL_ATTR_QUERY_TIMEOUT setting, and therefore wait for SQL statements to

complete execution before returning to the application.

Note: If QueryTimeoutInterval is set to 0, any attempt by the application to set

SQL_ATTR_QUERY_TIMEOUT will result in SQLSTATE 01S02 (Option Value

Changed).

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

Alternatively, QueryTimeoutInterval can be set to a value that is larger than the

SQL_ATTR_QUERY_TIMEOUT setting, thus preventing timeouts from occurring at

the specified interval. For example, if the application sets a 15 second

SQL_ATTR_QUERY_TIMEOUT value, but the server requires at least 30 seconds to

execute the query, the QueryTimeoutInterval can be set to a value of 30 seconds or

so to prevent this query from timing out after 15 seconds.

ReadCommonSectionOnNullConnect CLI/ODBC configuration keyword

Allows a NULL connect to process the COMMON section of the db2cli.ini

initialization file.

db2cli.ini keyword syntax:

ReadCommonSectionOnNullConnect = 0 | 1

Default setting:

A NULL connect does not process the db2cli.ini initialization file.

Usage notes:

For use with DB2 CLI, DB2 JDBC Type 2 and DB2 .NET stored procedures,

specify 1 to allow stored procedures to read the COMMON section of the

db2cli.ini file, thus allowing stored procedures to use keywords listed in

that section.

 (This option is contained in the Common section of the initialization file

and therefore applies to all connections to DB2 databases.)

ReceiveTimeout CLI/ODBC configuration keyword

Specifies the time in seconds to wait for a reply from the server on an established

connection before terminating the attempt and generating a communication

timeout error.

db2cli.ini keyword syntax:

ReceiveTimeout = 0 | 1 |2 | ... | 32767

Default setting:

The client waits indefinitely for a reply from the server on an established

connection.

352 Call Level Interface Guide and Reference, Volume 2

Equivalent connection attribute:

SQL_ATTR_RECEIVE_TIMEOUT

Usage notes:

 This keyword has no effect during connection establishment and is only

supported for TCP/IP protocol.

Reopt CLI/ODBC configuration keyword

Enables query optimization or reoptimization of SQL statements that have special

registers, global variables, or parameter markers.

db2cli.ini keyword syntax:

Reopt = 2 | 3 | 4

Default setting:

No query optimization occurs at query execution time. The default

estimates chosen by the compiler are used for special registers, global

variables, or parameter markers.

Equivalent connection or statement attribute:

SQL_ATTR_REOPT

Usage notes:

 Optimization occurs by using the values available at query execution time

for the special registers, global variables, or parameter markers instead of

the default estimates that are chosen by the compiler. The valid values of

the keyword are:

v 2 = SQL_REOPT_NONE. This is the default. No query optimization

occurs at query execution time. The default estimates chosen by the

compiler are used for the special registers, global variables, or parameter

markers. The default NULLID package set is used to execute dynamic

SQL statements.

v 3 = SQL_REOPT_ONCE. Query optimization occurs once at query

execution time, when the query is executed for the first time. The

NULLIDR1 package set, which is bound with the REOPT ONCE bind

option, is used.

v 4 = SQL_REOPT_ALWAYS. Query optimization or reoptimization occurs

at query execution time every time the query is executed. The

NULLIDRA package set, which is bound with the REOPT ALWAYS bind

option, is used.

The NULLIDR1 and NULLIDRA are reserved package set names, and

when used, REOPT ONCE and REOPT ALWAYS are implied respectively.

These package sets have to be explicitly created with the following

commands:

db2 bind db2clipk.bnd collection NULLIDR1

db2 bind db2clipk.bnd collection NULLIDRA

If both the Reopt and CurrentPackageSet keywords are specified,

CurrentPackageSet takes precedence.

ReportPublicPrivileges CLI/ODBC configuration keyword

Reports PUBLIC privileges in SQLColumnPrivileges() and SQLTablePrivileges()

results.

Chapter 2. CLI/ODBC configuration keywords 353

db2cli.ini keyword syntax:

ReportPublicPrivileges = 0 | 1

Default setting:

PUBLIC privileges are not reported.

Usage notes:

This keyword specifies if privileges assigned to the PUBLIC group are to be

reported as if PUBLIC was a user in the SQLColumnPrivileges() and

SQLTablePrivileges() results.

ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword

Returns errors that were uncovered during DB2 CLI error recovery as warnings.

db2cli.ini keyword syntax:

ReportRetryErrorsAsWarnings = 0 | 1

Only applicable when:

RetryOnError keyword is set to 1.

Default setting:

Do not return errors uncovered during DB2 CLI error recovery to the

application.

Usage notes:

By default, when the DB2 CLI retry logic is able to recover successfully from a

non-fatal error, it masks that error from the application by returning

SQL_SUCCESS. Because application binding errors can be hidden this way, for

debugging purposes, you may want to set ReportRetryErrorsAsWarnings to 1. This

setting keeps the error recovery on, but forces DB2 CLI to return to the application,

any errors that were uncovered as warnings.

RetCatalogAsCurrServer CLI/ODBC configuration keyword

Specifies whether catalog functions return the CURRENT SERVER value or a null

value for the catalog columns.

db2cli.ini keyword syntax:

RetCatalogAsCurrServer= 0 | 1

Default setting:

If the target DBMS returns null for the catalog columns, the CURRENT

SERVER value will not be substituted.

Usage notes:

If the catalog functions for the target DBMS return a null value for the

catalog columns, setting RetCatalogAsCurrServer to 1 causes the DBMS to

return the CURRENT SERVER value instead.

v 0 = Catalog functions return the null value for the catalog columns

(default).

v 1 = Catalog functions return the CURRENT SERVER value, instead of

the null value, for the catalog columns.

For example, assume the catalog function SQLTables() returns a result set

where the values in the TABLE_CAT column are null values. Setting

354 Call Level Interface Guide and Reference, Volume 2

RetCatalogAsCurrServer to 1 causes the DBMS to return the CURRENT

SERVER value in the TABLE_CAT column.

RetOleDbConnStr CLI/ODBC configuration keyword

Specifies whether the Mode CLI/ODBC configuration keyword returns a numeric

value or string value.

db2cli.ini keyword syntax:

RetOleDbConnStr = 0 | 1

Default setting:

The value for the Mode CLI/ODBC configuration keyword is returned as a

string.

Usage notes:

 The Mode CLI/ODBC configuration keyword sets the CONNECT mode to

either SHARE or EXCLUSIVE. OLE DB expects the value for Mode to have

a numeric representation instead of a string representation.

RetOleDbConnStr toggles between returning a string and a numeric value.

The possible settings are as follows:

v 0 — the value returned by SQLDriverConnect() and

SQLBrowseConnect()for the Mode keyword is either SHARE or

EXCLUSIVE

v 1 — the value returned by SQLDriverConnect() and

SQLBrowseConnect()for the Mode keyword is either 3 (for SHARE) or 12

(for EXCLUSIVE)

For example, if you set RetOleDbConnStr=1 and call SQLDriverConnect()or

SQLBrowseConnect() with the following input connection string for a

shared connection:

DSN=SAMPLE;MODE=SHARE

then the output connection string will have the following format:

DSN=SAMPLE;UID=;PWD=;MODE=3

If you set RetOleDbConnStr=1 and call SQLDriverConnect()or

SQLBrowseConnect() with the following input connection string for an

exclusive connection:

DSN=SAMPLE;UID=NEWTON;PWD=SECRET;MODE=EXCLUSIVE

then the output connection string will have the following format:

DSN=SAMPLE;UID=NEWTON;PWD=SECRET;MODE=12

OLE DB applications that use the string representation for the value of the

Mode keyword returned by SQLDriverConnect()and SQLBrowseConnect()

will receive an error from OLE DB Component Services. OLE DB

Component Services returns an error because it expects the keyword Mode

to have numeric values. Setting RetOleDbConnStr to 1 avoids this

behavior, as the value for Mode will then be numeric.

RetryOnError CLI/ODBC configuration keyword

Turns on or off the DB2 CLI driver’s error recovery behavior.

db2cli.ini keyword syntax:

RetryOnError = 0 | 1

Chapter 2. CLI/ODBC configuration keywords 355

Default setting:

Allow the DB2 CLI driver to attempt error recovery on non-fatal errors.

Usage notes:

By default, DB2 CLI will attempt to recover from non-fatal errors, such as incorrect

binding of application parameters, by retrieving additional information on the

failing SQL statement and then executing the statement again. The additional

information retrieved includes input parameter information from the database

catalog tables. If DB2 CLI is able to recover successfully from the error, by default,

it does not report the error to the application. The CLI/ODBC configuration

keyword ReportRetryErrorsAsWarnings allows you to set whether error recovery

warnings are returned to the application or not.

Important: Once DB2 CLI has successfully completed the error recovery, the

application may behave differently, because DB2 CLI will use the catalog

information gathered during the recovery for subsequent executions of that

particular SQL statement, rather than the information provided in the original

SQLBindParameter() function calls. If you do not want this behavior, set

RetryOnError to 0, forcing DB2 CLI not to attempt recovery. You should, however,

modify the application to correctly bind statement parameters.

ReturnAliases CLI/ODBC configuration keyword

Controls whether the CLI schema APIs report aliases in the metadata results.

db2cli.ini keyword syntax:

ReturnAliases = 0 | 1

Default setting:

1: By default, aliases will be considered when qualifying rows for metadata

procedures.

Usage notes:

 This keyword specifies whether aliases (or synonyms) should be

considered when qualifying rows for metadata procedures. Not

considering aliases can provide significant performance benefits by avoided

costly joins with the base tables to determine the addition tables that

should qualify for a given query.

v 0 : Aliases will not be considered when qualifying rows for metadata

procedures (better performance.)

v 1 : Aliases will be considered when qualifying rows for metadata

procedures.

The following CLI APIs are affected by this keyword :

v SQLColumns()

v SQLColumnPrivileges()

v SQLTables()

v SQLTablePrivileges()

v SQLStatistics()

v SQLSpecialColumns()

v SQLForeignKeys()

v SQLPrimaryKeys()

356 Call Level Interface Guide and Reference, Volume 2

ReturnSynonymSchema CLI/ODBC configuration keyword

Controls whether CLI schema APIs report the schema name for DB2 for z/OS

synonyms in the TABLE_SCHEM column of the schema procedure result sets.

db2cli.ini keyword syntax:

ReturnSynonymSchema = 0 | 1

Default setting:

1: By default, the creator of the synonym will be returned in the

TABLE_SCHEM column.

Usage notes:

Valid settings:

v 0 : the TABLE_SCHEM column of the procedure result set will be NULL.

v 1 : the TABLE_SCHEM column of the procedure result set will contain

the creator of the synonym.

You cannot access a synonym on a DB2 for z/OS server using a name

qualified with a schema. For this reason, the meaning of the

TABLE_SCHEM column of a CLI schema API result set is different, with

respect to synonyms, when you are running against a DB2 for z/OS server.

This CLI keyword has no effect when you use CLI schema APIs against a

DB2 Database for Linux, UNIX, and Windows server.

The following CLI APIs are affected by this keyword :

v SQLColumns()

v SQLColumnPrivileges()

v SQLTables()

v SQLTablePrivileges()

v SQLStatistics()

v SQLSpecialColumns()

v SQLForeignKeys()

v SQLPrimaryKeys()

You must have the following program temporary fixes (PTFs) on the DB2

for z/OS database server to use this keyword:

 Table 145. DB2 for z/OS PTFs for ReturnSynonymSchema

DB2 for z/OS PTF or APAR numbers

Version 7 UK13643

Version 8 UK13644

Version 9

SQLOverrideFileName CLI/ODBC configuration keyword

Specifies the location of the override file, which lists CLI statement attribute

settings for particular SQL statements.

db2cli.ini keyword syntax:

SQLOverrideFileName = <absolute or relative path name>

Default setting:

No override file is used.

Chapter 2. CLI/ODBC configuration keywords 357

Usage notes:

The SQLOverrideFileName keyword specifies the location of the override file to be

read by the DB2 CLI driver. An override file contains values for CLI statement

attributes that apply to particular SQL statements. Any of the supported statement

attributes can be specified. The following is an example of an override file

containing attribute settings specific to two SQL statements:

[Common]

Stmts=2

[1]

StmtIn=SELECT * FROM Employee

StmtAttr=SQL_ATTR_BLOCK_FOR_NROWS=50;SQL_ATTR_OPTIMIZE_FOR_NROWS=1;

[2]

StmtIn=SELECT * FROM Sales

StmtAttr=SQL_ATTR_MAX_ROWS=25;

The number specified by ″Stmts″ in the ″[Common]″ section of the override file

equals the number of SQL statements contained in the override file.

SaveFile CLI/ODBC configuration keyword

Specifies the file name of a DSN file in which to save the attribute values of the

keywords used in making the present, successful connection.

db2cli.ini keyword syntax:

You can not set this keyword in the db2cli.ini file.

 You can specify the value of this keyword in the connection string in

SQLDriverConnect like this:

SaveFile = file name

SchemaList CLI/ODBC configuration keyword

Restricts schemas used to query table information.

db2cli.ini keyword syntax:

SchemaList = ″ ’schema1’, ’schema2’,... ’schemaN’ ″

Default setting:

None

Usage notes:

SchemaList is used to provide a more restrictive default, and therefore improve

performance, for those applications that list every table in the DBMS.

If there are a large number of tables defined in the database, a schema list can be

specified to reduce the time it takes for the application to query table information,

and reduce the number of tables listed by the application. Each schema name is

case-sensitive, must be delimited with single quotes, and separated by commas.

The entire string must also be enclosed in double quotes. For example:

 SchemaList="’USER1’,’USER2’,’USER3’"

358 Call Level Interface Guide and Reference, Volume 2

For DB2 for z/OS, CURRENT SQLID can also be included in this list, but without

the single quotes, for example:

 SchemaList="’USER1’,CURRENT SQLID,’USER3’"

The maximum length of the string is 256 characters.

This option can be used in conjunction with DBName and TableType to further

limit the number of tables for which information will be returned.

ServerMsgMask CLI/ODBC configuration keyword

Specifies when DB2 CLI should request the error message from the server.

db2cli.ini keyword syntax:

ServerMsgMask = 0 | 1 | -2| -1

Default setting:

DB2 CLI will check the local message files first to see if the message can be

retrieved. If no matching SQLCODE is found, DB2 CLI will request the

information from the server.

Equivalent connection attribute:

SQL_ATTR_SERVER_MSGTXT_MASK

Usage notes:

This keyword is used in conjunction with the “UseServerMsgSP

CLI/ODBC configuration keyword” on page 376. The keyword can be set

to:

v 0 (default) = SQL_ATTR_SERVER_MSGTXT_MASK_LOCAL_FIRST. DB2

CLI will check the local message files first to see if the message can be

retrieved. If no matching SQLCODE is found, DB2 CLI will request the

information from the server.

v 1 = SQL_ATTR_SERVER_MSGTXT_MASK_WARNINGS. DB2 CLI

always requests the message information from the server for warnings

but error messages are retrieved from the local message files.

v -2 = SQL_ATTR_SERVER_MSGTXT_MASK_ERRORS. DB2 CLI always

requests the message information from the server for errors but warning

messages are retrieved from the local message files.

v -1 = SQL_ATTR_SERVER_MSGTXT_MASK_ALL. DB2 CLI always

requests the message information from the server for both error and

warning messages.

ServiceName CLI/ODBC configuration keyword

The server system’s service name or port number, used with file DSN or in a

DSN-less connection.

db2cli.ini keyword syntax:

ServiceName = service name | port number

Default setting:

None

Only applicable when:

Protocol set to TCPIP

Usage notes:

Chapter 2. CLI/ODBC configuration keywords 359

Use this option in conjunction with the Hostname option to specify the required

attributes for a TCP/IP connection from this client machine to a server running

DB2. These two values are only considered when the PROTOCOL option is set to

TCPIP.

Specify either the server system’s service name or its port number. The service

name must be available for lookup at the client machine if it is used.

SkipTrace CLI/ODBC configuration keyword

Excludes CLI trace information from the DB2 trace.

db2cli.ini keyword syntax:

SkipTrace = 0 | 1

Default setting:

Do not skip the trace function.

Usage notes:

This keyword can improve performance by allowing the DB2 trace function to

bypass CLI applications. Therefore, if the DB2 trace facility db2trc is turned on and

this keyword is set to 1, the trace will not contain information from the execution

of the CLI application.

Turning SkipTrace on is recommended for production environments on the UNIX

platform where trace information is not required. Test environments may benefit,

however, from having trace output, so this keyword can be turned off (or left at its

Default setting) when detailed execution information is desired.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

StaticCapFile CLI/ODBC configuration keyword

Specifies the Capture File name and optionally the path where it will be saved.

db2cli.ini keyword syntax:

StaticCapFile = < Full file name >

Default setting:

None - you must specify a capture file.

Only applicable when:

StaticMode is set to Capture or Match

Usage notes:

This keyword is used to specify the Capture File name and optionally the directory

where it will be saved.

StaticLogFile CLI/ODBC configuration keyword

Specifies the Static Profiling Log File name and optionally the directory where it

will be saved.

db2cli.ini keyword syntax:

StaticLogFile = < Full file name >

360 Call Level Interface Guide and Reference, Volume 2

Default setting:

No Static Profiling Log is created. If a filename is specified without a

pathname then the current path will be used.

Only applicable when:

StaticMode is set to Capture or Match

Usage notes:

This keyword is used to specify the Static Profiling Log File name and optionally

the directory where it will be saved.

StaticMode CLI/ODBC configuration keyword

Specifies whether the CLI/ODBC application will capture SQL or use a static SQL

Package for this DSN.

db2cli.ini keyword syntax:

StaticMode = DISABLED | CAPTURE | MATCH

Default setting:

Disabled - SQL statements are not captured and no static SQL package is

used.

Usage notes:

This option allows you to specify how the SQL issued by the CLI/ODBC

application for this DSN will be processed:

v DISABLED = Static mode disabled. No special processing. The CLI/ODBC

statements will be executed as dynamic SQL with no change. This is the default.

v CAPTURE = Capture Mode. Execute the CLI/ODBC statements as dynamic

SQL. If the SQL statements are successful, they will be captured into a file

(known as the Capture File) to be bound by the DB2CAP command later.

v MATCH = Match mode. Execute the CLI/ODBC statements as static SQL

statements if a matching statement is found in the Capture Files specified in

StaticPackage. The Capture File must first be bound by the DB2CAP command.

StaticPackage CLI/ODBC configuration keyword

Specifies the package to be used with the static profiling feature.

db2cli.ini keyword syntax:

StaticPackage = collection_id.package_name

Default setting:

None - you must specify a package name.

Only applicable when:

STATICMODE is set to CAPTURE

Usage notes:

This keyword is used to specify the package to be used when the application runs

in Match Mode. You first need to use Capture Mode to create the Capture File.

Only the first 7 characters of the indicated package name will be used. A one-byte

suffix will be added to represent each isolation level, as follows:

Chapter 2. CLI/ODBC configuration keywords 361

v 0 for Uncommitted Read (UR)

v 1 for Cursor Stability (CS)

v 2 for Read Stability (RS)

v 3 for Repeatable Read (RR)

v 4 for No Commit (NC)

StreamGetData CLI/ODBC configuration keyword

Optimizes data output stream for SQLGetData() function.

db2cli.ini keyword syntax:

StreamGetData = 0 | 1

Default setting:

DB2 CLI buffers all the data on the client.

Equivalent connection or statement attribute:

SQL_ATTR_STREAM_GETDATA

Usage notes:

The StreamGetData keyword is ignored if Dynamic Data Format, also

known as progressive streaming, is not supported by the server. For

applications that do not need to buffer data and are querying data on a

server that supports Dynamic Data Format, specify 1 to indicate that data

buffering is not required. The DB2 CLI client will optimize the data output

stream.

 If StreamGetData is set to 1 and DB2 CLI cannot determine the number of

bytes still available to return in the output buffer, SQLGetData() returns

SQL_NO_TOTAL (-4) as the length when truncation occurs. Otherwise,

SQLGetData() returns the number of bytes still available.

StreamPutData CLI/ODBC configuration keyword

Improves performance for data passed through SQLPutData() function calls on one

statement handle, by writing data directly to the internal connection-level

communication buffer.

db2cli.ini keyword syntax:

StreamPutData = 0 | 1

Default setting:

Do not write data directly to the connection-level buffer; write to the

default statement-level buffer instead.

Usage notes:

By default, DB2 CLI writes data passed in through SQLPutData() function calls to

an internal statement-level buffer. On the subsequent SQLParamData() call, the

contents of the buffer are then written to an internal connection-level

communication buffer and sent to the server. If only one statement handle is used

to insert data into a target database on a particular connection at a given point in

time, then you can improve performance by setting StreamPutData=1. This causes

DB2 CLI to write the put data directly to the connection-level buffer. If, however,

multiple statements concurrently insert data into a target database on a particular

connection, then setting StreamPutData=1 may decrease performance and result in

unexpected application errors, as the statements in the shared connection-level

communication buffer will be prone to serialization.

362 Call Level Interface Guide and Reference, Volume 2

SysSchema CLI/ODBC Configuration Keyword

Sets an alternative schema to be searched in place of the SYSIBM schema.

db2cli.ini keyword syntax:

SysSchema = alternative schema

Default setting:

The default table qualifier name used when querying DB2 for z/OS is

SYSIBM.

Usage notes:

This option indicates an alternative schema, or table qualifier, to be

searched in place of the SYSIBM schema when the DB2 CLI and ODBC

Catalog Function calls are issued to obtain system catalog information from

DB2 for z/OS.

 Using this new schema name, the system administrator can define a set of

views, or a copies of the tables, consisting of a subset of the rows for

system catalog tables such as:

v SYSIBM.SYSCOLAUTH

v SYSIBM.SYSCOLUMNS

v SYSIBM.SYSDATATYPES

v SYSIBM.SYSFOREIGNKEYS

v SYSIBM.SYSINDEXES

v SYSIBM.SYSKEYS

v SYSIBM.SYSKEYCOLUSES

v SYSIBM.SYSPARMS

v SYSIBM.SYSRELS

v SYSIBM.SYSROUTINES

v SYSIBM.SYSTABAUTH

v SYSIBM.SYSTABCONST

v SYSIBM.SYSTABLES

v SYSIBM.SYSSYNONYMS

For example, if the set of views, or a copies tables, for the system catalog

tables is in the ACME schema, then the view (or copy of the table) for

SYSIBM.SYSTABLES is ACME.SYSTABLES; and SysSchema should be set

to ACME.

For applications that automatically query the system catalogs for all table

names, defining and using limited views of the system catalog tables

reduces the number of tables listed by the application. This can reduce the

time it takes for the application to query table information since a subset of

table names is returned.

Defining and using copies of the system catalog tables, with the same

indexes defined on the copy as those defined on the system table, can

reduce the time it takes for applications to query the database.

The SchemaList, TableType and DBName keywords can be used in

conjunction with the SysSchema keyword to further limit the number of

tables for which information is returned.

For more information about which system catalog tables can be used with

SysSchema, and about the function of SysSchema, refer to the documentation

for APAR PK05102 by visiting:

Chapter 2. CLI/ODBC configuration keywords 363

Support for IBM mainframes

and searching for “PK05102”.

TableType CLI/ODBC configuration keyword

Defines a default list of TABLETYPES returned when querying table information.

db2cli.ini keyword syntax:

TableType = ″ ’TABLE’ | ,’ALIAS’ | ,’VIEW’ | , ’INOPERATIVE

VIEW’ | , ’SYSTEM TABLE’ | ,’SYNONYM’ ″

Default setting:

No default list of TABLETYPES is defined.

Usage notes:

If there is a large number of tables defined in the database, a tabletype string can

be specified to reduce the time it takes for the application to query table

information, and reduce the number of tables listed by the application.

Any number of the values can be specified. Each type must be delimited with

single quotes, separated by commas, and in uppercase. The entire string must also

be enclosed in double quotes. For example:

 TableType="’TABLE’,’VIEW’"

This option can be used in conjunction with DBNAME and SCHEMALIST to

further limit the number of tables for which information will be returned.

TableType is used to provide a default for the DB2 CLI function that retrieves the

list of tables, views, aliases, and synonyms in the database. If the application does

not specify a table type on the function call, and this keyword is not used,

information about all table types is returned. If the application does supply a value

for the tabletype on the function call, then that argument value will override this

keyword value.

If TableType includes any value other than TABLE, then the DBName keyword

setting cannot be used to restrict information to a particular DB2 for z/OS

database.

TempDir CLI/ODBC configuration keyword

Defines the directory used for temporary files.

db2cli.ini keyword syntax:

TempDir = < full path name >

Default setting:

Use the system temporary directory specified by the TEMP or TMP

environment variables.

Usage notes:

When working with Large Objects (CLOBS, BLOBS, etc...), when data conversion

occurs, or when data is sent to the server in pieces, a temporary file is often

364 Call Level Interface Guide and Reference, Volume 2

created on the client machine to store the information. Using this option you can

specify a location for these temporary files. The system temporary directory will be

used if nothing is specified.

The keyword is placed in the data source specific section of the db2cli.ini file, and

has the following syntax:

v TempDir= F:\DB2TEMP

The path specified must already exist and the user executing the application must

have the appropriate authorities to write files to it. When the DB2 CLI Driver

attempts to create temporary files, an SQLSTATE of HY507 will be returned if the

path name is invalid, or if the temporary files cannot be created in the directory

specified.

Trace CLI/ODBC configuration keyword

Turns on the DB2 CLI/ODBC trace facility.

db2cli.ini keyword syntax:

Trace = 0 | 1

Default setting:

No trace information is captured.

Equivalent environment attribute:

SQL_ATTR_TRACE

Usage notes:

When this option is on (1), CLI/ODBC trace records are appended to the file

indicated by the TraceFileName configuration parameter or to files in the

subdirectory indicated by the TracePathName configuration parameter. Trace will

have no effect if neither TraceFileName or TracePathName is set.

The TraceRefreshInterval keyword sets the interval in seconds at which the Trace

keyword is read from the db2cli.ini file. This allows you to dynamically turn off

the CLI/ODBC trace within n seconds.

For example, to set up a CLI/ODBC trace file that is written to disk after each

trace entry:

 [COMMON]

 Trace=1

 TraceFileName=E:\TRACES\CLI\MONDAY.CLI

 TraceFlush=1

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2 databases.)

TraceComm CLI/ODBC configuration keyword

Specifies whether information about each network request is included in the trace

file.

db2cli.ini keyword syntax:

TraceComm = 0 | 1

Default setting:

0 - No network request information is captured.

Chapter 2. CLI/ODBC configuration keywords 365

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

When TraceComm is set on (1) then the following information about each network

request will be included in the trace file:

v which DB2 CLI functions are processed completely on the client and which DB2

CLI functions involve communication with the server

v the number of bytes sent and received in each communication with the server

v the time spent communicating data between the client and server

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceErrImmediate CLI/ODBC configuration keyword

Specifies whether diagnostic records are written to the CLI/ODBC trace when

records are generated.

db2cli.ini keyword syntax:

TraceErrImmediate = 0 | 1

Default setting:

Diagnostic records are only written to the trace file when

SQLGetDiagField() or SQLGetDiagRec() is called; or ″Unretrieved Error

Message″ is written to the trace file for handles which had diagnostic

records that were left unretreived.

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

Setting TraceErrImmediate=1 helps in determining when errors occur during

application execution by writing diagnostic records to the CLI/ODBC trace file at

the time the records are generated. This is especially useful for applications that do

not retrieve diagnostic information using SQLGetDiagField() and SQLGetDiagRec(),

because the diagnostic records that were generated on a handle will be lost if they

are not retrieved or written to the trace file before the next function is called on the

handle.

If TraceErrImmediate=0 (the default setting), then diagnostic records will only be

written to the trace file if an application calls SQLGetDiagField() or

SQLGetDiagRec() to retrieve diagnostic information. If the application does not

retrieve diagnostic information through function calls and this keyword is set to 0,

then the ″Unretrieved Error Message″ entry will be written to the trace file if a

diagnostic record exists, when a function is next called on the handle.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

366 Call Level Interface Guide and Reference, Volume 2

TraceFileName CLI/ODBC configuration keyword

Specifies a file to which all DB2 CLI/ODBC trace information is written.

db2cli.ini keyword syntax:

TraceFileName = < fully qualified file name >

Default setting:

None

Only applicable when:

the Trace option is turned on.

Usage notes:

If the file specified does not exist, then it will be created; otherwise, the new trace

information will be appended to the end of the file. However, the path the file is

expected in must exist.

If the filename given is invalid or if the file cannot be created or written to, no

trace will occur and no error message will be returned.

This option is only used when the Trace option is turned on. This will be done

automatically when you set this option in the CLI/ODBC Configuration utility.

The TracePathName option will be ignored if this option is set.

DB2 CLI trace should only be used for debugging purposes. It will slow down the

execution of the CLI/ODBC driver, and the trace information can grow quite large

if it is left on for extended periods of time.

The TraceFileName keyword option should not be used with multi-process or

multithreaded applications as the trace output for all threads or processes will be

written to the same log file, and the output for each thread or process will be

difficult to decipher. Furthermore, semaphores are used to control access to the

shared trace file which could change the behavior of multithreaded applications.

There is no default DB2 CLI trace output log file name.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2 databases.)

TraceFlush CLI/ODBC configuration keyword

Forces a write to disk after n CLI/ODBC trace entries.

db2cli.ini keyword syntax:

TraceFlush = 0 | positive integer

Default setting:

Do not write after every entry.

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

TraceFlush specifies how often trace information is written to the CLI trace file. By

default, TraceFlush is set to 0 and each DB2 CLI trace file is kept open until the

Chapter 2. CLI/ODBC configuration keywords 367

traced application or thread terminates normally. If the application terminates

abnormally, some trace information that was not written to the trace log file may

be lost.

Set this keyword to a positive integer to force the DB2 CLI driver to close and

re-open the appropriate trace file after the specified number of trace entries. The

smaller the value of the TraceFlush keyword, the greater the impact DB2 CLI

tracing has on the performance of the application. Setting TraceFlush=1 has the

most impact on performance, but will ensure that each entry is written to disk

before the application continues to the next statement.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceFlushOnError CLI/ODBC configuration keyword

Specifies whether all CLI/ODBC trace entries are written to disk when an error

occurs.

db2cli.ini keyword syntax:

TraceFlushOnError = 0 | 1

Default setting:

Do not write CLI/ODBC trace entries as soon as an error occurs.

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

Setting TraceFlushOnError=1 forces the DB2 CLI driver to close and re-open the

trace file each time an error is encountered. If TraceFlushOnError is left at its

default value of 0, then trace file will only be closed when the application

terminates normally or the interval specified by the TraceFlush keyword is reached.

If the application process were to terminate abnormally when

TraceFlushOnError=0, then valuable trace information may be lost. Setting

TraceFlushOnError=1 may impact performance, but will ensure that trace entries

associated with errors are written to disk.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceLocks CLI/ODBC configuration keyword

Only trace lock timeouts in the CLI/ODBC trace.

db2cli.ini keyword syntax:

TraceLocks = 0 | 1

Default setting:

Trace information is not limited to only lock timeouts.

Only applicable when:

the Trace option is turned on.

368 Call Level Interface Guide and Reference, Volume 2

Usage notes:

When TraceLocks is set to 1, lock timeouts will be recorded in the trace file.

This option is only used when the CLI/ODBC TRACE option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TracePIDList CLI/ODBC configuration keyword

Restricts the process IDs for which the CLI/ODBC trace will be enabled.

db2cli.ini keyword syntax:

TracePIDList = <no value specified> | <comma-delimited list of process

IDs>

Default setting:

All of the process IDs will be traced when the CLI/ODBC trace is run.

Usage notes:

 Use this keyword for applications that create many processes. Capturing

the CLI/ODBC trace for such applications can generate many trace files.

By using this keyword you can collect the trace of specific problematic

processes of applications.

If no value is specified for this keyword, all process IDs will be traced.

Otherwise, specify a comma-delimited list of process IDs which you want

to be traced when the CLI/ODBC trace runs.

The TraceRefreshInterval keyword must be set to some value before

initializing your application, otherwise, the TracePIDList keyword will not

take effect.

(This option is contained in the Common section of the initialization file

and therefore applies to all connections to DB2 databases.)

To use the TracePIDList keyword:

1. Ensure the Trace CLI/ODBC keyword is set to zero or is not specified

in the db2cli.ini file.

2. Add the TraceRefreshInterval CLI/ODBC keyword to the Common

section of the db2cli.ini file as follows:

[COMMON]

TraceRefreshInterval=<some positive integer>

3. Start your application.

4. Using an operating system command such as ps (on a UNIX and

Linux-based operating systems), determine the process IDs of the

processes that you want to collect the CLI/ODBC trace for.

5. Turn CLI/ODBC tracing on and add the process IDs identified to the

Common section of the db2cli.ini file by including the following

keywords:

[COMMON]

Trace=1

TracePathName=<fully-qualified subdirectory name>

TracePIDList=<comma-delimited list of process IDs>

Chapter 2. CLI/ODBC configuration keywords 369

CLI/ODBC traces containing information of the process IDs specified will

be located in the directory specified by the TracePathName keyword.. You

might also see extra empty files that can be ignored.

TracePIDTID CLI/ODBC configuration keyword

Captures the process ID and thread ID for each item being traced.

db2cli.ini keyword syntax:

TracePIDTID = 0 | 1

Default setting:

The process ID and thread ID for the trace entries are not captured.

Only applicable when:

the Trace option is turned on.

Usage notes:

When TracePIDTID is set to 1, the process ID and thread ID for each captured item

will be recorded in the trace file. This effect is helpful when the Trace keyword is

enabled and multiple applications are executing. This is because Trace writes trace

information for all executing applications to a single file. Enabling TracePIDTID

differentiates the recorded information by process and thread.

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TracePathName CLI/ODBC configuration keyword

Specifies the subdirectory to be used to store individual DB2 CLI/ODBC trace files.

db2cli.ini keyword syntax:

TracePathName = < fully qualified subdirectory name >

Default setting:

None

Only applicable when:

the Trace option is turned on.

Not applicable when:

the TraceFileName option is turned on.

Usage notes:

Each thread or process that uses the same DLL or shared library will have a

separate DB2 CLI/ODBC trace file created in the specified directory. A

concatenation of the application process ID and the thread sequence number is

automatically used to name trace files.

No trace will occur, and no error message will be returned, if the subdirectory

given is invalid or if it cannot be written to.

This option is only used when the Trace option is turned on. This will be done

automatically when you set this option in the CLI/ODBC Configuration utility.

370 Call Level Interface Guide and Reference, Volume 2

It will be ignored if the DB2 CLI/ODBC option TraceFileName is used.

DB2 CLI trace should only be used for debugging purposes. It will slow down the

execution of the CLI/ODBC driver, and the trace information can grow quite large

if it is left on for extended periods of time.

If both TraceFileName and TracePathName are specified, the TraceFileName

keyword takes precedence and TracePathName will be ignored.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceRefreshInterval CLI/ODBC configuration keyword

Sets the interval (in seconds) at which the Trace and TracePIDList keywords are

read from the Common section of the db2cli.ini file.

db2cli.ini keyword syntax:

TraceRefreshInterval = 0 | positive integer

Default setting:

The Trace and TracePIDList keywords will only be read from the db2cli.ini

file when the application is initialized.

Usage notes:

Setting this keyword before an application is initialized allows you to turn off

dynamically the CLI/ODBC trace within n seconds.

Note: Setting TraceRefreshInterval while the application is running will no effect.

For this keyword to take effect, it must be set before the application is initialized.

Only the Trace and TracePIDList keywords will be refreshed from the db2cli.ini file

if this keyword is set. No other CLI/ODBC configuration keywords will be re-read.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceStmtOnly CLI/ODBC configuration keyword

Only trace dynamic SQL statements in the CLI/ODBC trace.

db2cli.ini keyword syntax:

TraceStmtOnly = 0 | 1

Default setting:

Trace information is not limited to only dynamic SQL statements.

Only applicable when:

the Trace option is turned on.

Usage notes:

When TraceStmtOnly is set to 1, only dynamic SQL statements will be recorded in

the trace file.

This option is only used when the CLI/ODBC Trace option is turned on.

Chapter 2. CLI/ODBC configuration keywords 371

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceTime CLI/ODBC configuration keyword

Captures elapsed time counters in the trace file.

db2cli.ini keyword syntax:

TraceTime = 1 | 0

Default setting:

Elapsed time counters are included in the trace file.

Only applicable when:

the Trace option is turned on.

Usage notes:

When TraceTime is set to 1, elapsed time counters will be captured in the trace file.

For example:

SQLPrepare(hStmt=1:1, pszSqlStr="SELECT * FROM ORG", cbSqlStr=-3)

 –––> Time elapsed – +6.785751E+000 seconds (StmtOut="SELECT * FROM ORG")

SQLPrepare()

 <––– SQL_SUCCESS Time elapsed – +2.527400E–002 seconds

Turn TraceTime off, by setting it to 0, to improve performance or to generate

smaller trace files. For example:

SQLPrepare(hStmt=1:1, pszSqlStr="SELECT * FROM ORG", cbSqlStr=-3)

(StmtOut="SELECT * FROM ORG")

SQLPrepare()

 <––– SQL_SUCCESS

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceTimestamp CLI/ODBC configuration keyword

Specifies what type of timestamp information (if any) is recorded in the

CLI/ODBC trace.

db2cli.ini keyword syntax:

TraceTimestamp = 0 | 1 | 2 | 3

Default setting:

No timestamp information is written to the trace file.

Only applicable when:

the Trace option is turned on.

Usage notes:

Setting TraceTimeStamp to a value other than the default of 0 means the current

timestamp or absolute execution time is added to the beginning of each line of

trace information as it is being written to the DB2 CLI trace file. The following

settings indicate what type of timestamp information is captured in the trace file:

v 0 = no timestamp information

372 Call Level Interface Guide and Reference, Volume 2

v 1 = processor ticks and ISO timestamp (absolute execution time in seconds and

milliseconds, followed by a timestamp)

v 2 = processor ticks (absolute execution time in seconds and milliseconds)

v 3 = ISO timestamp

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

Trusted_Connection CLI/ODBC configuration keyword

Specifies whether a connection made with the current authenticated user is

allowed.

Syntax:

Trusted_Connection=Yes

Note: This keyword will have no effect if set in the db2cli.ini file. It should

instead be provided in the connection string to SQLDriverConnect().

Default setting:

DB2 CLI uses the user ID and password information provided in the

connection string to SQLDriverConnect(), not the current authenticated

user.

Usage notes:

 DB2 CLI applications that connect to a database will typically connect

using the function SQLDriverConnect(). One of the input arguments for

this function is the DriverCompletion value, which determines when a

dialog will be opened. The following are the values of DriverCompletion :

v SQL_DRIVER_PROMPT: A dialog is always initiated.

v SQL_DRIVER_COMPLETE: A dialog is only initiated if there is

insufficient information in the connection string.

v SQL_DRIVER_COMPLETE_REQUIRED: A dialog is only initiated if

there is insufficient information in the connection string. Only

mandatory information is requested. The user is prompted for required

information only.

v SQL_DRIVER_NOPROMPT: The user is not prompted for any

information. A connection is attempted with the information contained

in the connection string. If there is not enough information, SQL_ERROR

is returned.

Note: More details on DriverCompletion can be found in the documentation

for SQLDriverConnect().

Some applications, for example, those in a Kerberos environment, might

require that a user be able to connect to a DB2 server without providing a

user ID or password. If the application uses the

SQL_DRIVER_NO_PROMPT option on the SQLDriverConnect() call, the

connection will be attempted without the user authentication. This

keyword is then not required.

In the case where a third party application is involved and the prompt

level used by the application is something other than

SQL_DRIVER_NO_PROMPT, DB2 CLI will open a dialog to request the

missing information from the user. Setting Trusted_Connection to Yes, by

Chapter 2. CLI/ODBC configuration keywords 373

providing it to the input connection string for SQLDriverConnect()

(“Trusted_Connection=Yes”), causes DB2 CLI to ignore any user ID or

password string (including blank strings) from the connection string and

ignore the prompt level of the connection function. DB2 CLI will use the

current authenticated user to attempt the connection to the database. If the

connection attempt fails, the user will be prompted for the user ID and

password.

This keyword is used only in the connection string for SQLDriverConnect();

setting it in the db2cli.ini file will have no effect.

TxnIsolation CLI/ODBC configuration keyword

Sets the default isolation level.

db2cli.ini keyword syntax:

TxnIsolation = 1 | 2 | 4 | 8 | 32

Default setting:

Read Committed (Cursor Stability)

Only applicable when:

the default isolation level is used. This keyword will have no effect if the

application has specifically set the isolation level.

Equivalent statement attribute:

SQL_ATTR_TXN_ISOLATION

Usage notes:

Sets the isolation level to:

v 1 = SQL_TXN_READ_UNCOMMITTED - Read Uncommitted (Uncommitted

read)

v 2 = SQL_TXN_READ_COMMITTED (default) - Read Committed (Cursor

stability)

v 4 = SQL_TXN_REPEATABLE_READ - Repeatable Read (Read Stability)

v 8 = SQL_TXN_SERIALIZABLE - Serializable (Repeatable read)

v 32 = SQL_TXN_NOCOMMIT - (No Commit, DB2 Universal Database for

AS/400 only; this is similar to autocommit)

The words in parentheses are IBM’s terminology for the equivalent SQL92 isolation

levels. Note that no commit is not an SQL92 isolation level and is supported only

on DB2 Universal Database for AS/400.

This keyword is only applicable if the default isolation level is used. If the

application specifically sets the isolation level for a connection or statement handle,

then this keyword will have no effect on that handle.

UID CLI/ODBC configuration keyword

Defines a default user ID.

db2cli.ini keyword syntax:

UID = userid

Default setting:

None

374 Call Level Interface Guide and Reference, Volume 2

Usage notes:

The specified userid value is used if a userid is not provided by the application at

connect time.

Underscore CLI/ODBC configuration keyword

Specifies whether the underscore character ’_’ is treated as a wildcard.

db2cli.ini keyword syntax:

Underscore = 0 | 1

Default setting:

The underscore character matches any single character or no character.

Usage notes:

This keyword specifies if the underscore character ’_’ will be recognized as a

wildcard or only as the underscore character. The possible settings are as follows:

v 0 - The underscore character is treated only as the underscore character.

v 1 - The underscore character is treated as a wildcard that matches any single

character, including no character.

Setting Underscore to 0 can improve performance when there are database objects

with names that contain underscores.

This keyword applies only to the following catalog functions that accept search

patterns as arguments:

v SQLColumnPrivileges()

v SQLColumns()

v SQLProcedureColumns()

v SQLProcedures()

v SQLTablePrivileges()

v SQLTables()

Note that catalog functions may only accept search patterns on particular

arguments. Refer to the documentation of the specific function for details.

UseOldStpCall CLI/ODBC configuration keyword

Controls how cataloged procedures are invoked.

db2cli.ini keyword syntax:

UseOldStpCall = 0 | 1

Default setting:

Invokes procedures using the new CALL method where GRANT

EXECUTE must be granted on the procedure.

Usage notes:

Prior to DB2 UDB Version 8, the invoker of a procedure had to have EXECUTE

privilege on any package invoked from the procedure. Now, the invoker must have

EXECUTE privilege on the procedure and only the definer of the procedure has to

have EXECUTE privilege on any required packages.

Chapter 2. CLI/ODBC configuration keywords 375

This keyword controls which method is used to invoke the procedure. Setting

UseOldStpCall on causes the procedure to be invoked using the deprecated

sqleproc() API when the precompiler fails to resolve a procedure on a CALL

statement. Turning this keyword off will invoke procedures where GRANT

EXECUTE must be granted on the procedure.

UseServerMsgSP CLI/ODBC configuration keyword

Specifies whether the DB2 for z/OS DSNACCMG server stored procedure is used

to retrieve message text from DB2 for z/OS.

db2cli.ini keyword syntax:

UseServerMsgSP = 0 | 1

Default setting:

DB2 CLI does not use the server stored procedure to return messages, but

uses the local message files.

Equivalent connection attribute:

SQL_ATTR_SERVER_MSGTXT_SP

Usage notes:

Applications using this keyword should also set the “ServerMsgMask

CLI/ODBC configuration keyword” on page 359 to indicate when DB2 CLI

should call this procedure to retrieve the message information from the

server. If the “ServerMsgMask CLI/ODBC configuration keyword” on page

359 is not set, then the default is to check the local message files first. See

the “ServerMsgMask CLI/ODBC configuration keyword” on page 359 for

more details on the options available.

ServerMsgTextSP CLI/ODBC configuration keyword

Specifies which stored procedure is used to retrieve message text from DB2 for

z/OS.

db2cli.ini keyword syntax:

ServerMsgTextSP = <stored procedure name>

Default setting:

DB2 CLI does not use the server stored procedure to return messages, but

uses the local message files.

Equivalent connection attribute:

SQL_ATTR_SERVER_MSGTXT_SP

Usage notes:

Applications using this keyword should also set the “ServerMsgMask

CLI/ODBC configuration keyword” on page 359 to indicate when DB2 CLI

should call this procedure to retrieve the message information from the

server. If the “ServerMsgMask CLI/ODBC configuration keyword” on page

359 is not set, then the default is to check the local message files first. See

the “ServerMsgMask CLI/ODBC configuration keyword” on page 359 for

more details on the options available.

 The difference between ServerMsgTextSP and “UseServerMsgSP

CLI/ODBC configuration keyword” is that UseServerMsgSP can be turned

on and off to use the DSNACCMG procedure only, while ServerMsgTextSP

needs to have the procedure explicitly specified.

376 Call Level Interface Guide and Reference, Volume 2

WarningList CLI/ODBC configuration keyword

Specifies which errors to downgrade to warnings.

db2cli.ini keyword syntax:

WarningList = ″ ’xxxxx’, ’yyyyy’, ...″

Default setting:

Do not downgrade any SQLSTATEs.

Usage notes:

Any number of SQLSTATEs returned as errors can be downgraded to warnings.

Each must be delimited with single quotes, separated by commas, and in

uppercase. The entire string must also be enclosed in double quotes. For example:

 WarningList=" ’01S02’, ’HY090’ "

XMLDeclaration CLI/ODBC configuration keyword

Controls the generation of an XML declaration when XML data is implicitly

serialized to an application variable.

db2cli.ini keyword syntax:

XMLDeclaration = non-negative integer < 7 | 7

Default setting:

A BOM and an XML declaration containing the XML version and encoding

attribute are generated during implicit serialization.

Usage notes:

The XMLDeclaration keyword controls which elements of an XML declaration are

prepended to an application buffer when XML data is implicitly serialized to an

application buffer. This setting does not affect the result of the XMLSERIALIZE

function.

The following values represent components to be generated during implicit

serialization. Set this keyword by adding together the value of each component

required.

0 No declarations or byte order marks (BOMs) are added to the output

buffer.

1 A byte order mark (BOM) in the appropriate endianness is prepended to

the output buffer if the target encoding is UTF-16 or UTF-32. (Although a

UTF-8 BOM exists, the database server does not generate it, even if the

target encoding is UTF-8.)

2 A minimal XML declaration is generated, containing only the XML version.

4 An encoding attribute that identifies the target encoding is added to any

generated XML declaration. Therefore, this setting only has effect when the

setting of 2 is also included when computing the value of this keyword.

For example, if you wanted a BOM and minimal XML declaration (without an

encoding attribute) to be generated during implicit serialization, you would set

XMLDeclaration = 3, where 3 is the sum of 1 (the value to indicate generation of a

BOM) and 2 (the value to indicate generation of a minimal XML declaration).

Chapter 2. CLI/ODBC configuration keywords 377

To prevent any declarations or BOM from being generated, set XMLDeclaration as

follows: XMLDeclaration = 0.

378 Call Level Interface Guide and Reference, Volume 2

Chapter 3. Environment, connection, and statement attributes

in CLI applications

Environments, connections, and statements each have a defined set of attributes (or

options). All attributes can be queried by the application, but only some attributes

can be changed from their default values. By changing attribute values, the

application can change the behavior of DB2 CLI.

An environment handle has attributes which affect the behavior of DB2 CLI

functions under that environment. The application can specify the value of an

attribute by calling SQLSetEnvAttr() and can obtain the current attribute value by

calling SQLGetEnvAttr(). SQLSetEnvAttr() can only be called before any connection

handles have been allocated for the environment handle. For details on each

environment attribute, refer to the list of CLI environment attributes.

A connection handle has attributes which affect the behavior of DB2 CLI functions

under that connection. Of the attributes that can be changed:

v Some can be set any time once the connection handle is allocated.

v Some can be set only before the actual connection has been established.

v Some can be set any time after the connection has been established.

v Some can be set after the connection has been established, but only while there

are no outstanding transactions or open cursors.

The application can change the value of connection attributes by calling

SQLSetConnectAttr() and can obtain the current value of an attribute by calling

SQLGetConnectAttr(). An example of a connection attribute which can be set any

time after a handle is allocated is the auto-commit option

SQL_ATTR_AUTOCOMMIT. For details on each connection attribute, refer to the

list of CLI connection attributes.

A statement handle has attributes which affect the behavior of CLI functions

executed using that statement handle. Of the statement attributes that can be

changed:

v Some attributes can be set, but currently are limited to only one specific value.

v Some attributes can be set any time after the statement handle has been

allocated.

v Some attributes can only be set if there is no open cursor on that statement

handle.

The application can specify the value of any statement attribute that can be set by

calling SQLSetStmtAttr() and can obtain the current value of an attribute by

calling SQLGetStmtAttr(). For details on each statement attribute, refer to the list of

CLI statement attributes.

The SQLSetConnectAttr() function cannot be used to set statement attributes. This

was supported in versions of DB2 CLI prior to version 5.

Many applications just use the default attribute settings; however, there may be

situations where some of these defaults are not suitable for a particular user of the

application. Some default values can be changed by setting the CLI/ODBC

configuration keywords. DB2 CLI provides end users with two methods of setting

© Copyright IBM Corporation 1993, 2008 379

some configuration keywords. The first method is to specify the keyword and its

new default attribute value(s) in the connection string input to the

SQLDriverConnect() and SQLBrowseConnect() functions. The second method

involves the specification of the new default attribute value(s) in a DB2 CLI

initialization file using CLI/ODBC configuration keywords.

The DB2 CLI initialization file can be used to change default values for all DB2 CLI

applications on that workstation. This may be the end user’s only means of

changing the defaults if the application does not provide a means for the user to

provide default attribute values in the SQLDriverConnect() connection string.

Default attribute values that are specified on SQLDriverConnect() override the

values in the DB2 CLI initialization file for that particular connection.

The mechanisms for changing defaults are intended for end user tuning;

application developers must use the appropriate set-attribute function. If an

application does call a set-attribute or option function with a value different from

the initialization file or the connection string specification, then the initial default

value is overridden and the new value takes effect.

The diagram below shows the addition of the attribute functions to the basic

connect scenario.

380 Call Level Interface Guide and Reference, Volume 2

Environment attributes (CLI) list

Note: ODBC does not support setting driver-specific environment attributes using

SQLSetEnvAttr(). Only CLI applications can set the DB2 CLI-specific environment

attributes using this function.

SQL_ATTR_CONNECTION_POOLING

This attribute has been deprecated in DB2 Universal Database (DB2 luw)

Version 8.

SQL_ATTR_CONNECTTYPE

Some options can only
be changed after the connect

Optionally set
keyword values

Environment attributes can
only be set before a
connection is allocated

SQLAllocHandle
(Connection)

SQLAllocHandle
(Environment)

SQLGetStmtAttr
(optional)

SQLSetStmtAttr

SQLSetConnectOption

SQLAllocHandle
(Statement)

SQLDriverConnectSQLConnect

SQLGetConnectAttr

SQLGetEnvAttr

(optional)

(optional)

SQLSetConnectAttr

SQLSetEnvAttr

SQLSetConnectAttr

Figure 1. Setting and retrieving attributes (options)

Chapter 3. Setting CLI environment, connection, and statement attributes 381

Note: This attribute replaces SQL_CONNECTTYPE.

A 32-bit integer value that specifies whether this application is to operate

in a coordinated or uncoordinated distributed environment. . The possible

values are:

v SQL_CONCURRENT_TRANS: The application can have concurrent

multiple connections to any one database or to multiple databases. Each

connection has its own commit scope. No effort is made to enforce

coordination of transaction. If an application issues a commit using the

environment handle on SQLEndTran() and not all of the connections

commit successfully, the application is responsible for recovery. This is

the default.

v SQL_COORDINATED_TRANS: The application wishes to have commit

and rollbacks coordinated among multiple database connections. This

option setting corresponds to the specification of the Type 2 CONNECT

in embedded SQL. In contrast to the SQL_CONCURRENT_TRANS

setting described above, the application is permitted only one open

connection per database.

Note: This connection type results in the default for

SQL_ATTR_AUTOCOMMIT connection option to be

SQL_AUTOCOMMIT_OFF.

If changing this attribute from the default then it must be set before any

connections have been established on the environment handle.

It is recommended that the application set this attribute as an environment

attribute with a call to SQLSetEnvAttr(), if necessary, as soon as the

environment handle has been allocated. However, since ODBC applications

cannot access SQLSetEnvAttr(), they must set this attribute using

SQLSetConnectAttr() after each connection handle is allocated, but before

any connections have been established.

All connections on an environment handle must have the same

SQL_ATTR_CONNECTTYPE setting. An environment cannot have a

mixture of concurrent and coordinated connections. The type of the first

connection will determine the type of all subsequent connections.

SQLSetEnvAttr() will return an error if an application attempts to change

the connection type while there is an active connection.

The default connect type can also be set using the “ConnectType

CLI/ODBC configuration keyword” on page 308.

Note: This is an IBM defined extension.

SQL_ATTR_CP_MATCH

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_DIAGLEVEL

Description

A 32-bit integer value which represents the diagnostic level. This is

equivalent to the database manager parameter DIAGLEVEL.

Values

Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Usage notes

This attribute must be set before any connection handles have been

created.

382 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_DIAGPATH

Description

A pointer to a null-terminated character string containing the name

of the directory where diagnostic data is to be placed. This is

equivalent to the database manager parameter DIAGPATH.

Values

The default value is the db2dump directory on UNIX and Linux

operating systems, and the db2 directory on Windows operating

systems.

Usage notes

This attribute must be set before any connection handles have been

created.

SQL_ATTR_INFO_ACCTSTR

A pointer to a null-terminated character string used to identify the client

accounting string sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 200

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_APPLNAME

A pointer to a null-terminated character string used to identify the client

application name sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 32

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_USERID

A pointer to a null-terminated character string used to identify the client

user ID sent to the host database server when using DB2 Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 16

characters.

Chapter 3. Setting CLI environment, connection, and statement attributes 383

v This user-id is not to be confused with the authentication user-id. This

user-id is for identification purposes only and is not used for any

authorization.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_WRKSTNNAME

A pointer to a null-terminated character string used to identify the client

workstation name sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 18

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_MAXCONN

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_NOTIFY_LEVEL

Description

A 32-bit integer value which represents the notification level. This

is equivalent to the database manager parameter NOTIFYLEVEL.

Values

Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Usage notes

This attribute must be set before any connection handles have been

created.

SQL_ATTR_ODBC_VERSION

A 32-bit integer that determines whether certain functionality exhibits

ODBC 2.x (DB2 CLI v2) behavior or ODBC 3.0 (DB2 CLI v5) behavior.

 It is recommended that all DB2 CLI applications set this environment

attribute. ODBC applications must set this environment attribute before

calling any function that has an SQLHENV argument, or the call will

return SQLSTATE HY010 (Function sequence error.).

The following values are used to set the value of this attribute:

v SQL_OV_ODBC3: Causes the following ODBC 3.0 (DB2 CLI v5)

behavior:

– DB2 CLI returns and expects ODBC 3.0 (DB2 CLI v5) codes for date,

time, and timestamp.

– DB2 CLI returns ODBC 3.0 (DB2 CLI v5) SQLSTATE codes when

SQLError(), SQLGetDiagField(), or SQLGetDiagRec() are called.

– The CatalogName argument in a call to SQLTables() accepts a search

pattern.

384 Call Level Interface Guide and Reference, Volume 2

v SQL_OV_ODBC2 Causes the following ODBC 2.x (DB2 CLI v2)

behavior:

– DB2 CLI returns and expects ODBC 2.x (DB2 CLI v2) codes for date,

time, and timestamp.

– DB2 CLI returns ODBC 2.0 (DB2 CLI v2) SQLSTATE codes when

SQLError(), SQLGetDiagField(), or SQLGetDiagRec() are called.

– The CatalogName argument in a call to SQLTables() does not accept a

search pattern.

SQL_ATTR_OUTPUT_NTS

A 32-bit integer value which controls the use of null-termination in output

arguments. The possible values are:

v SQL_TRUE: DB2 CLI uses null termination to indicate the length of

output character strings (default).

This is the default.

v SQL_FALSE: DB2 CLI does not use null termination in output character

strings.

The CLI functions affected by this attribute are all functions called for the

environment (and for any connections and statements allocated under the

environment) that have character string parameters.

This attribute can only be set when there are no connection handles

allocated under this environment.

SQL_ATTR_PROCESSCTL

A 32-bit mask that sets process level attributes which affect all

environments and connections for the process. This attribute must be set

before the environment handle is allocated.

 The call to SQLSetEnvAttr() must have the EnvironmentHandle argument set

to SQL_NULL_HANDLE. The settings remain in effect for the life of the

process. Generally this attribute is only used for performance sensitive

applications, where large numbers of CLI function calls are being made.

Before setting any of these bits, ensure that the application, and any other

libraries that the application calls, comply with the restrictions listed.

The following values can be combined to form a bitmask:

v SQL_PROCESSCTL_NOTHREAD - This bit indicates that the application

does not use multiple threads, or if it does use multiple threads,

guarantees that all DB2 calls will be serialized by the application. If set,

DB2 CLI does not make any system calls to serialize calls to CLI, and

sets the DB2 context type to SQL_CTX_ORIGINAL.

v SQL_PROCESSCTL_NOFORK - This bit indicates that the application

will never fork a child process. By default, DB2 CLI does not check to

see if an application forks a child process. However, if the CheckForFork

CLI/ODBC configuration keyword is set, DB2 CLI checks the current

process id for each function call for all applications connecting to the

database for which the keyword is enabled. This attribute can be set so

that DB2 CLI does not check for forked processes for that application.

Note: This is an IBM defined extension.

SQL_ATTR_SYNC_POINT

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_TRACE

A pointer to a null-terminated character string used to turn on the DB2

Chapter 3. Setting CLI environment, connection, and statement attributes 385

CLI/ODBC trace facility. The string must include the keywords TRACE

and TRACEPATHNAME. For example:

"TRACE=1; TRACEPATHNAME=<dir>;"

SQL_ATTR_USE_2BYTES_OCTET_LENGTH

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA

Setting this attribute is equivalent to setting the connection attribute

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL to 0.

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA has been deprecated and

applications should now use the connection attribute

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL.

SQL_ATTR_USER_REGISTRY_NAME

This attribute is only used when authenticating a user on a server that is

using an identity mapping service. It is set to a user defined string that

names an identity mapping registry. The format of the name varies

depending on the identity mapping service. By providing this attribute you

tell the server that the user name provided can be found in this registry.

 After setting this attribute the value will be used on subsequent attempts

to establish a normal connection, establish a trusted connection, or switch

the user id on a trusted connection.

SQL_CONNECTTYPE

This Attribute has been replaced with SQL_ATTR_CONNECTTYPE.

SQL_MAXCONN

This Attribute has been replaced with SQL_ATTR_MAXCONN.

SQL_SYNC_POINT

This Attribute has been replaced with SQL_ATTR_SYNC_POINT.

Connection attributes (CLI) list

The following table indicates when each of the CLI connection attributes can be

set. A ″Yes″ in the ″After statements allocated″ column means that the connection

attribute can be set both before and after the statements are allocated.

 Table 146. When connection attributes can be set

Attribute

Before

connection

After

connection

After

statements

allocated

SQL_ATTR_ACCESS_MODE Yes Yes Yes

a

SQL_ATTR_ANSI_APP Yes No No

SQL_ATTR_APP_USES_LOB_LOCATOR Yes Yes Yesc

SQL_ATTR_APPEND_FOR_FETCH_ONLY Yes Yes No

SQL_ATTR_ASYNC_ENABLE Yes Yes Yesa

SQL_ATTR_AUTO_IPD (read-only) No No No

SQL_ATTR_AUTOCOMMIT Yes Yes Yes

b

SQL_ATTR_CONN_CONTEXT Yes No No

SQL_ATTR_CONNECT_NODE Yes No No

SQL_ATTR_CONNECTION_DEAD (read-only) No No No

SQL_ATTR_CONNECTTYPE Yes No No

SQL_ATTR_CURRENT_CATALOG (read-only) No No No

SQL_ATTR_CURRENT_IMPLICIT_XMLPARSE_OPTION Yes Yes Yes

SQL_ATTR_CURRENT_PACKAGE_PATH Yes Yes Yes

386 Call Level Interface Guide and Reference, Volume 2

Table 146. When connection attributes can be set (continued)

Attribute

Before

connection

After

connection

After

statements

allocated

SQL_ATTR_CURRENT_PACKAGE_SET Yes Yes

a No

*

SQL_ATTR_CURRENT_SCHEMA Yes Yes Yes

SQL_ATTR_DB2_APPLICATION_HANDLE (read-only) No No No

SQL_ATTR_DB2_APPLICATION_ID (read-only) No No No

SQL_ATTR_DB2_SQLERRP (read-only) No No No

SQL_ATTR_DB2EXPLAIN No Yes Yes

SQL_ATTR_DECFLOAT_ROUNDING_MODE Yes Yes Yes

SQL_ATTR_DESCRIBE_CALL Yes Yes Yesa

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL Yes Yes No

SQL_ATTR_ENLIST_IN_DTC No Yes Yes

SQL_ATTR_FREE_LOCATORS_ON_FETCH Yes Yes Yes

SQL_ATTR_INFO_ACCTSTR No Yes Yes

SQL_ATTR_INFO_APPLNAME No Yes Yes

SQL_ATTR_INFO_PROGRAMID No Yes Yes

a

SQL_ATTR_INFO_PROGRAMNAME Yes No No

SQL_ATTR_INFO_USERID No Yes Yes

SQL_ATTR_INFO_WRKSTNNAME No Yes Yes

SQL_ATTR_KEEP_DYNAMIC No Yes Yes

SQL_ATTR_LOB_CACHE_SIZE Yes Yes Yesc

SQL_ATTR_LOGIN_TIMEOUT Yes No No

SQL_ATTR_LONGDATA_COMPAT Yes Yes Yes

SQL_ATTR_MAX_LOB_BLOCK_SIZE Yes Yes Yesc

SQL_ATTR_MAPCHAR Yes Yes Yes

SQL_ATTR_PING_DB (read only) No No No

SQL_ATTR_QUIET_MODE Yes Yes Yes

SQL_ATTR_RECEIVE_TIMEOUT Yes Yes Yes

SQL_ATTR_REOPT No Yes Yesc

SQL_ATTR_REPORT_ISLONG_FOR_LONGTYPES_OLEDB Yes Yes Yes

SQL_ATTR_SERVER_MSGTXT_MASK Yes Yes Yes

SQL_ATTR_SERVER_MSGTXT_SP Yes Yes Yes

SQL_ATTR_SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB Yes Yes Yes

SQL_ATTR_STREAM_GETDATA Yes Yes Yesc

SQL_ATTR_TRUSTED_CONTEXT_PASSWORD No Yes Yes

SQL_ATTR_TRUSTED_CONTEXT_USERID No Yes Yes

SQL_ATTR_TXN_ISOLATION No Yes

b Yes

a

SQL_ATTR_USE_TRUSTED_CONTEXT Yes No No

SQL_ATTR_USER_REGISTRY_NAME Yes No No

SQL_ATTR_WCHARTYPE Yes Yes

b Yes

b

SQL_ATTR_XML_DECLARATION Yes Yes Yes

a

a Will only affect subsequently allocated statements.

b Attribute can be set only if there are no open transactions on the connection.

c Attribute can be set only if there are no open cursors on the connection. The attribute will affect all

statements.

* Setting this attribute after statements have been allocated will not result in an error, however, determining

which packages are used by which statements is ambiguous and unexpected behavior might occur. It is not

recommended that you set this attribute after statements have been allocated.

Attribute

ValuePtr contents

Chapter 3. Setting CLI environment, connection, and statement attributes 387

SQL_ATTR_ACCESS_MODE

A 32-bit integer value which can be either:

v SQL_MODE_READ_ONLY: the application is indicating that it will not

be performing any updates on data from this point on. Therefore, a less

restrictive isolation level and locking can be used on transactions:

uncommitted read (SQL_TXN_READ_UNCOMMITTED). DB2 CLI does

not ensure that requests to the database are read-only. If an update

request is issued, DB2 CLI will process it using the transaction isolation

level it has selected as a result of the SQL_MODE_READ_ONLY setting.

v SQL_MODE_READ_WRITE (default): the application is indicating that

it will be making updates on data from this point on. DB2 CLI will go

back to using the default transaction isolation level for this connection.

There must not be any outstanding transactions on this connection.

SQL_ATTR_ANSI_APP

A 32-bit unsigned integer that identifies an application as an ANSI or

Unicode application. This attribute has either of the following values:

v SQL_AA_TRUE (default): the application is an ANSI application. All

character data is passed to and from the application in the native

application (client) codepage using the ANSI version of the CLI/ODBC

functions.

v SQL_AA_FALSE: the application is a Unicode application. All character

data is passed to and from the application in Unicode when the Unicode

(W) versions of the CLI/ODBC functions are called.

SQL_ATTR_APP_USES_LOB_LOCATOR

A 32-bit unsigned integer that indicates if applications are using LOB

locators. This attribute has either of the following values:

v 1 (default): Indicates that applications are using LOB locators.

v 0: For applications that do not use LOB locators and are querying data

on a server that supports Dynamic Data Format, also known as

progressive streaming, specify 0 to indicate that LOB locators are not

used and allow the return of LOB data to be optimized.

This keyword is ignored for stored procedure result sets.

If the keyword is set to 0 and an application binds a LOB locator to a

result set using SQLBindCol(), an Invalid conversion error will be returned

by the SQLFetch() function.

Setting the “AppUsesLOBLocator CLI/ODBC configuration keyword” on

page 297 is an alternative method of specifying this behavior.

SQL_ATTR_APPEND_FOR_FETCH_ONLY

By default, DB2 CLI appends the ″FOR FETCH ONLY″ clause to read

SELECT statements when connected to DB2 for z/OS or DB2 Universal

Database for iSeries (DB2 for i5/OS) databases.

 This attribute allows an application to control at a connection level when

DB2 CLI appends the ″FOR FETCH ONLY″ clause. For example, an

application is binding the DB2 CLI packages using different bind

BLOCKING options (for example, BLOCKING UNAMBIG) and wants to

suppress the blocking in order to keep positioned on a given row.

To change the default DB2 CLI behavior, the keyword is set as follows:

v 0: DB2 CLI never appends the ″FOR FETCH ONLY″ clause to read

SELECT statements regardless of the server type it is connecting to.

388 Call Level Interface Guide and Reference, Volume 2

v 1: DB2 CLI always appends the ″FOR FETCH ONLY″ clause to read

SELECT statements regardless of the server type it is connecting to.

The attribute should be set either after the connection is allocated or

immediately after it is established and should be set once for the duration

of the execution of the application. Application can query the attribute

with SQLGetConnectAttr() after connection is established or after this

attribute is set.

Setting the “AppendForFetchOnly CLI/ODBC configuration keyword” on

page 298 is an alternative method of specifying this behavior.

SQL_ATTR_ASYNC_ENABLE

A 32-bit integer value that specifies whether a function called with a

statement on the specified connection is executed asynchronously:

v SQL_ASYNC_ENABLE_OFF (default) = Off

v SQL_ASYNC_ENABLE_ON = On

Setting SQL_ASYNC_ENABLE_ON enables asynchronous execution for all

statement handles allocated on this connection. An error is returned if

asynchronous execution is turned on while there is an active statement on

the connection.

This attribute can be set whether SQLGetInfo(), called with the InfoType

SQL_ASYNC_MODE, returns SQL_AM_CONNECTION or

SQL_AM_STATEMENT.

Once a function has been called asynchronously, only the original function,

SQLAllocHandle(), SQLCancel(), SQLGetDiagField(), or SQLGetDiagRec()

can be called on the statement or the connection associated with

StatementHandle, until the original function returns a code other than

SQL_STILL_EXECUTING. Any other function called on StatementHandle or

the connection associated with StatementHandle returns SQL_ERROR with

an SQLSTATE of HY010 (Function sequence error).

The following functions can be executed asynchronously:

SQLBulkOperations(), SQLColAttribute(), SQLColumnPrivileges(),

SQLColumns(), SQLDescribeCol(), SQLDescribeParam(), SQLExecDirect(),

SQLExecute(), SQLExtendedFetch(), SQLExtendedPrepare(), SQLFetch(),

SQLFetchScroll(), SQLForeignKeys(), SQLGetData(), SQLGetLength(),

SQLGetPosition(), SQLMoreResults(), SQLNumResultCols(), SQLParamData(),

SQLPrepare(), SQLPrimaryKeys(), SQLProcedureColumns(), SQLProcedures(),

SQLRowCount(), SQLSetPos(), SQLSpecialColumns(), SQLStatistics(),

SQLTablePrivileges(), SQLTables().

Note: Any Unicode equivalent of a function stated above can be called

asynchronously.

SQL_ATTR_AUTO_IPD

A read-only 32-bit unsigned integer value that specifies whether automatic

population of the IPD after a call to SQLPrepare() is supported:

v SQL_TRUE = Automatic population of the IPD after a call to

SQLPrepare() is supported by the server.

v SQL_FALSE = Automatic population of the IPD after a call to

SQLPrepare() is not supported by the server. Servers that do not support

prepared statements will not be able to populate the IPD automatically.

If SQL_TRUE is returned for the SQL_ATTR_AUTO_IPD connection

attribute, the statement attribute SQL_ATTR_ENABLE_AUTO_IPD can be

Chapter 3. Setting CLI environment, connection, and statement attributes 389

set to turn automatic population of the IPD on or off. If

SQL_ATTR_AUTO_IPD is SQL_FALSE, SQL_ATTR_ENABLE_AUTO_IPD

cannot be set to SQL_TRUE.

The default value of SQL_ATTR_ENABLE_AUTO_IPD is equal to the value

of SQL_ATTR_AUTO_IPD.

This connection attribute can be returned by SQLGetConnectAttr(), but

cannot be set by SQLSetConnectAttr().

SQL_ATTR_AUTOCOMMIT

A 32-bit unsigned integer value that specifies whether to use auto-commit

or manual commit mode:

v SQL_AUTOCOMMIT_OFF: the application must manually, explicitly

commit or rollback transactions with SQLEndTran() calls.

v SQL_AUTOCOMMIT_ON (default): DB2 CLI operates in auto-commit

mode by default. Each statement is implicitly committed. Each statement

that is not a query is committed immediately after it has been executed

or rolled back if failure occurred. Each query is committed immediately

after the associated cursor is closed.

Note: If this is a coordinated distributed unit of work connection, then

the default is SQL_AUTOCOMMIT_OFF

Since in many DB2 environments, the execution of the SQL statements and

the commit might be flowed separately to the database server, autocommit

can be expensive. It is recommended that the application developer take

this into consideration when selecting the auto-commit mode.

Note: Changing from manual commit to auto-commit mode will commit

any open transaction on the connection.

SQL_ATTR_CLIENT_LOB_BUFFERING

 Specifies whether LOB locators or the underlying LOB data is returned in a

result set for LOB columns that are not bound. By default, locators are

returned. If an application usually fetches unbound LOBs and then must

retrieve the underlying LOB data, the application’s performance can be

improved by retrieving the LOB data from the outset; this reduces the

number of synchronous waits and network flows. The possible values for

this attribute are:

v SQL_CLIENTLOB_USE_LOCATORS (default) - LOB locators are

returned

v SQL_CLIENTLOB_BUFFER_UNBOUND_LOBS - actual LOB data is

returned

SQL_ATTR_CONN_CONTEXT

Indicates which context the connection should use. An SQLPOINTER to

either:

v a valid context (allocated by the sqleBeginCtx() DB2 API) to set the

context

v a NULL pointer to reset the context

This attribute can only be used when the application is using the DB2

context APIs to manage multi-threaded applications. By default, DB2 CLI

manages contexts by allocating one context per connection handle, and

ensuring that any executing thread is attached to the correct context.

For more information about contexts, refer to the sqleBeginCtx() API.

390 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_CONNECT_NODE

A 32-bit integer that specifies the target logical partition of a DB2

Enterprise Server Edition database partition server that you want to

connect to. This setting overrides the value of the environment variable

DB2NODE. It can be set to:

v an integer between 0 and 999

v SQL_CONN_CATALOG_NODE

If this variable is not set, the target logical node defaults to the logical

node which is defined with port 0 on the machine.

There is also a corresponding keyword, the “ConnectNode CLI/ODBC

configuration keyword” on page 307.

SQL_ATTR_CONNECTION_DEAD

A read only 32-bit integer value that indicates whether or not the

connection is still active. DB2 CLI will return one of the following values:

v SQL_CD_FALSE - the connection is still active.

v SQL_CD_TRUE - an error has already happened and caused the

connection to the server to be terminated. The application should still

perform a disconnect to clean up any DB2 CLI resources.

This attribute is used mainly by the Microsoft ODBC Driver Manager 3.5x

before pooling the connection.

SQL_ATTR_CONNECTION_TIMEOUT

This connection attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute will result in an SQLSTATE of

HYC00 (Driver not capable).

SQL_ATTR_CONNECTTYPE

A 32-bit integer value that specifies whether this application is to operate

in a coordinated or uncoordinated distributed environment. The possible

values are:

v SQL_CONCURRENT_TRANS (default): The application can have

concurrent multiple connections to any one database or to multiple

databases. Each connection has its own commit scope. No effort is made

to enforce coordination of transactions. If an application issues a commit

using the environment handle on SQLEndTran() and not all of the

connections commit successfully, the application is responsible for

recovery.

v SQL_COORDINATED_TRANS: The application wishes to have commit

and rollbacks coordinated among multiple database connections. This

option setting corresponds to the specification of the Type 2 CONNECT

in embedded SQL. In contrast to the SQL_CONCURRENT_TRANS

setting described above, the application is permitted only one open

connection per database.

Note: This connection type results in the default for

SQL_ATTR_AUTOCOMMIT connection option to be

SQL_AUTOCOMMIT_OFF.

If changing this attribute from the default then it must be set before any

connections have been established on the environment handle.

It is recommended that the application set this attribute as an environment

attribute with a call to SQLSetEnvAttr(), if necessary, as soon as the

environment handle has been allocated. However, since ODBC applications

Chapter 3. Setting CLI environment, connection, and statement attributes 391

cannot access SQLSetEnvAttr(), they must set this attribute using

SQLSetConnectAttr() after each connection handle is allocated, but before

any connections have been established.

All connections on an environment handle must have the same

SQL_ATTR_CONNECTTYPE setting. An environment cannot have a

mixture of concurrent and coordinated connections. The type of the first

connection will determine the type of all subsequent connections.

SQLSetEnvAttr() will return an error if an application attempts to change

the connection type while there is an active connection.

The default connect type can also be set using the “ConnectType

CLI/ODBC configuration keyword” on page 308.

Note: This is an IBM defined extension.

SQL_ATTR_CURRENT_CATALOG

A null-terminated character string containing the name of the catalog used

by the data source. The catalog name is typically the same as the database

name.

 This connection attribute can be returned by SQLGetConnectAttr(), but

cannot be set by SQLSetConnectAttr(). Any attempt to set this attribute

will result in an SQLSTATE of HYC00 (Driver not capable).

SQL_ATTR_CURRENT_IMPLICIT_XMLPARSE_OPTION

A null-terminated character string that is the string constant used to set the

CURRENT IMPLICIT XMLPARSE OPTION special register. Setting this

attribute causes the SET CURRENT IMPLICIT XMLPARSE OPTION SQL

statement to be issued. If this attribute is set before a connection has been

established, the SET CURRENT IMPLICIT XMLPARSE OPTION SQL

statement will be issued when the connection is made.

SQL_ATTR_CURRENT_PACKAGE_PATH

A null-terminated character string of package qualifiers that the DB2

database server uses to try to resolve the package when multiple packages

have been configured. Setting this attribute causes the ″SET CURRENT

PACKAGE PATH = schema1, schema2, ...″ statement to be issued after every

connection to the database server.

 This attribute is best suited for use with ODBC static processing

applications, rather than CLI applications.

Note: This is an IBM defined extension.

SQL_ATTR_CURRENT_PACKAGE_SET

 A null-terminated character string that indicates the schema name

(collection identifier) that is used to select the package for subsequent SQL

statements. Setting this attribute causes the SET CURRENT PACKAGESET

SQL statement to be issued. If this attribute is set before a connection, the

SET CURRENT PACKAGESET SQL statement will be issued at connection

time.

CLI/ODBC applications issue dynamic SQL statements. Using this

connection attribute, you can control the privileges used to run these

statements:

v Choose a schema to use when running SQL statements from CLI/ODBC

applications.

392 Call Level Interface Guide and Reference, Volume 2

v Ensure the objects in the schema have the desired privileges and then

rebind accordingly. This typically means binding the CLI packages

(sqllib/bnd/db2cli.lst) using the COLLECTION <collid> option. Refer to

the BIND command for further details.

v Set the CURRENTPACKAGESET option to this schema.

The SQL statements from the CLI/ODBC applications will now run under

the specified schema and use the privileges defined there.

Setting the “CurrentPackageSet CLI/ODBC configuration keyword” on

page 311 is an alternative method of specifying the schema name.

The following package set names are reserved: NULLID, NULLIDR1,

NULLIDRA.

SQL_ATTR_REOPT and SQL_ATTR_CURRENT_PACKAGE_SET are

mutually exclusive, therefore, if one is set, the other is not allowed.

SQL_ATTR_CURRENT_SCHEMA

A null-terminated character string containing the name of the schema to be

used by DB2 CLI for the SQLColumns() call if the szSchemaName pointer is

set to null.

 To reset this option, specify this option with a zero length string or a null

pointer for the ValuePtr argument.

This option is useful when the application developer has coded a generic

call to SQLColumns() that does not restrict the result set by schema name,

but needs to constrain the result set at isolated places in the code.

This option can be set at any time and will be effective on the next

SQLColumns() call where the szSchemaName pointer is null.

Note: This is an IBM defined extension.

SQL_ATTR_DB2_APPLICATION_HANDLE

A user-defined character string that returns the application handle of the

connection. If the string is not large enough to contain the complete

application handle, it will be truncated.

 This connection attribute can be returned by SQLGetConnectAttr(), but

cannot be set by SQLSetConnectAttr().

SQL_ATTR_DB2_APPLICATION_ID

A user-defined character string that returns the application identifier of the

connection. If the string is not large enough to contain the complete

application identifier, it will be truncated.

 This connection attribute can be returned by SQLGetConnectAttr(), but

cannot be set by SQLSetConnectAttr().

SQL_ATTR_DB2_SQLERRP

An sqlpointer to a null-terminated string containing the sqlerrp field of the

sqlca.

 Begins with a three-letter identifier indicating the product, followed by five

digits indicating the version, release, and modification level of the product.

For example, SQL08010 means DB2 UDB Version 8 Release 1 Modification

level 0.

If SQLCODE indicates an error condition, then this field identifies the

module that returned the error.

This field is also used when a successful connection is completed.

Chapter 3. Setting CLI environment, connection, and statement attributes 393

Note: This is an IBM defined extension.

SQL_ATTR_DB2ESTIMATE

This attribute has been deprecated in DB2 UDB Version 8.

SQL_ATTR_DB2EXPLAIN

A 32-bit integer that specifies whether Explain snapshot, Explain mode

information, or both should be generated by the server. Permitted values

are:

v SQL_DB2EXPLAIN_OFF: Both the Explain Snapshot and the Explain

table option facilities are disabled (a SET CURRENT EXPLAIN

SNAPSHOT=NO and a SET CURRENT EXPLAIN MODE=NO are sent

to the server).

v SQL_DB2EXPLAIN_SNAPSHOT_ON: The Explain Snapshot facility is

enabled, and the Explain table option facility is disabled (a SET

CURRENT EXPLAIN SNAPSHOT=YES and a SET CURRENT EXPLAIN

MODE=NO are sent to the server).

v SQL_DB2EXPLAIN_MODE_ON: The Explain Snapshot facility is

disabled, and the Explain table option facility is enabled (a SET

CURRENT EXPLAIN SNAPSHOT=NO and a SET CURRENT EXPLAIN

MODE=YES are sent to the server).

v SQL_DB2EXPLAIN_SNAPSHOT_MODE_ON: Both the Explain Snapshot

and the Explain table option facilities are enabled (a SET CURRENT

EXPLAIN SNAPSHOT=YES and a SET CURRENT EXPLAIN

MODE=YES are sent to the server).

Before the explain information can be generated, the explain tables must be

created.

This statement is not under transaction control and is not affected by a

ROLLBACK. The new SQL_ATTR_DB2EXPLAIN setting is effective on the

next statement preparation for this connection.

The current authorization ID must have INSERT privilege for the Explain

tables.

The default value can also be set using the “DB2Explain CLI/ODBC

configuration keyword” on page 315.

Note: This is an IBM defined extension.

SQL_ATTR_DECFLOAT_ROUNDING_MODE

 The decimal float rounding mode determines what type of rounding will

be used if a value is put into a DECFLOAT variable or column but the

value has more digits than are allowed in the DECFLOAT data type. This

can occur when inserting, updating, selecting, converting from another

type, or as the result of a mathematical operation.

The value of SQL_ATTR_DECFLOAT_ROUNDING_MODE determines the

decimal float rounding mode that will be used for new connections unless

another mode is specified by a connection attribute for that connection. For

any given connection both DB2 CLI and DB2 will use the same decimal

float rounding mode for all action initiated as part of that connection.

When your applications are connecting to a DB2 Database for Linux,

UNIX, and Windows Version 9.5 server, you must set the decimal float

rounding mode on the database client to the same mode that is set on the

server. If you set the decimal float rounding mode on the client to a value

394 Call Level Interface Guide and Reference, Volume 2

that is different from the decimal float rounding mode that is set on the

database server, the database server will return SQL0713N on connection.

The settings correspond to these decimal float rounding modes:

v 0 = Half even (default)

v 1 = Half up

v 2 = Down

v 3 = Ceiling

v 4 = Floor

The different modes are:

Half even (default)

In this mode DB2 CLI and DB2 use the number that will fit in the

target variable and that is closest to the original value. If two

numbers are equally close, they use the one that is even. This

mode produces the smallest rounding errors over large amounts of

data.

Half up

In this mode DB2 CLI and DB2 use the number that will fit in the

target variable and that is closest to the original value. If two

numbers are equally close, they use the one that is greater than the

original value.

Down In this mode DB2 CLI and DB2 use the number that will fit in the

target variable and that is closest to the original value and for

which the absolute value is not greater than the absolute value of

the original value. You can also think of this as rounding toward

zero or as using ceiling for negative values and using floor for

positive values.

Ceiling

In this mode DB2 CLI and DB2 use the smallest number that will

fit in the target variable and that is greater than or equal to the

original value.

Floor In this mode DB2 CLI and DB2 use the largest number that will fit

in the target variable and that is less than or equal to the original

value.

SQL_ATTR_DESCRIBE_CALL

A 32-bit integer value that indicates when stored procedure arguments are

described. By default, DB2 CLI does not request input parameter describe

information when it prepares a CALL statement. If an application has

correctly bound parameters to a statement, then this describe information

is unnecessary and not requesting it improves performance. The option

values are:

v 1 = SQL_DESCRIBE_CALL_BEFORE.

v -1 = SQL_DESCRIBE_CALL_DEFAULT.

Setting this attribute can be done using the “DescribeCall CLI/ODBC

configuration keyword” on page 320. Refer to the keyword for usage

information and descriptions of the available options.

Note: This is an IBM defined extension.

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL

A null-terminated character string that controls the amount of information

Chapter 3. Setting CLI environment, connection, and statement attributes 395

the CLI driver requests on a prepare or describe request. By default, when

the server receives a describe request, it returns the information contained

in level 2 of Table 147 on page 397 for the result set columns. An

application, however, might not need all of this information or might need

additional information. Setting the

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL attribute to a level that suits the

needs of the client application might improve performance because the

describe data transferred between the client and server is limited to the

minimum amount that the application requires. If the

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL setting is set too low, it might

impact the functionality of the application (depending on the application’s

requirements). The DB2 CLI functions to retrieve the describe information

might not fail in this case, but the information returned might be

incomplete. Supported settings for

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL are:

v 0 - no describe information is returned to the client application

v 1 - describe information categorized in level 1 (see Table 147 on page

397) is returned to the client application

v 2 - (default) describe information categorized in level 2 (see Table 147 on

page 397) is returned to the client application

v 3 - describe information categorized in level 3 (see Table 147 on page

397) is returned to the client application

The following table lists the fields that form the describe information that

the server returns when it receives a prepare or describe request. These

fields are grouped into levels, and the

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL attribute controls which levels of

describe information the CLI driver requests.

Note:

1. Not all levels of describe information are supported by all DB2 servers.

All levels of describe information are supported on the following DB2

servers: DB2 on Linux, UNIX, and Windows Version 8 and later, DB2

for z/OS Version 8 and later, and DB2 for i5/OS Version 5 Release 3

and later. All other DB2 servers support only the 2 or 0 setting for

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL.

2. The default behavior will allow DB2 CLI to promote the level to 3 if the

application asks for describe information that was not initially retrieved

using the default level 2. This might result in two network flows to the

server. If an application uses this attribute to explicitly set a describe

level, then no promotion will occur. Therefore, if the attribute is used to

set the describe level to 2, then DB2 CLI will not promote to level 3

even if the application asks for extended information.

396 Call Level Interface Guide and Reference, Volume 2

Table 147. Levels of describe information

Level 1 Level 2 Level 3

SQL_DESC_COUNT

SQL_COLUMN_COUNT

SQL_DESC_TYPE

SQL_DESC_CONCISE_TYPE

SQL_COLUMN_LENGTH

SQL_DESC_OCTET_LENGTH

SQL_DESC_LENGTH

SQL_DESC_PRECISION

SQL_COLUMN_PRECISION

SQL_DESC_SCALE

SQL_COLUMN_SCALE

SQL_DESC_DISPLAY_SIZE

SQL_DESC_NULLABLE

SQL_COLUMN_NULLABLE

SQL_DESC_UNSIGNED

SQL_DESC_SEARCHABLE

SQL_DESC_LITERAL_SUFFIX

SQL_DESC_LITERAL_PREFIX

SQL_DESC_CASE_SENSITIVE

SQL_DESC_FIXED_PREC_SCALE

all fields of level 1 and:

SQL_DESC_NAME

SQL_DESC_LABEL

SQL_COLUMN_NAME

SQL_DESC_UNNAMED

SQL_DESC_TYPE_NAME

SQL_DESC_DISTINCT_TYPE

SQL_DESC_REFERENCE_TYPE

SQL_DESC_STRUCTURED_TYPE

SQL_DESC_USER_TYPE

SQL_DESC_LOCAL_TYPE_NAME

SQL_DESC_USER_DEFINED_

 TYPE_CODE

all fields of levels 1

and 2 and:

SQL_DESC_BASE_COLUMN_NAME

SQL_DESC_UPDATABLE

SQL_DESC_AUTO_UNIQUE_VALUE

SQL_DESC_SCHEMA_NAME

SQL_DESC_CATALOG_NAME

SQL_DESC_TABLE_NAME

SQL_DESC_BASE_TABLE_NAME

Setting the “DescribeOutputLevel CLI/ODBC configuration keyword” on

page 321 is an alternative method of specifying this behavior.

SQL_ATTR_ENLIST_IN_DTC

An SQLPOINTER which can be either of the following:

v non-null transaction pointer: The application is asking the DB2

CLI/ODBC driver to change the state of the connection from

non-distributed transaction state to distributed state. The connection will

be enlisted with the Distributed Transaction Coordinator (DTC).

v null: The application is asking the DB2 CLI/ODBC driver to change the

state of the connection from distributed transaction state to a

non-distributed transaction state.

This attribute is only used in a Microsoft Transaction Server (MTS)

environment to enlist or un-enlist a connection with MTS.

Each time this attribute is used with a non-null transaction pointer, the

previous transaction is assumed to be ended and a new transaction is

initiated. The application must call the ITransaction member function

Endtransaction before calling this API with a non-null pointer. Otherwise

the previous transaction will be aborted. The application can enlist

multiple connections with the same transaction pointer.

Note: This connection attribute is specified by MTS automatically for each

transaction and is not coded by the user application.

It is imperative for CLI/ODBC applications that there will be no

concurrent SQL statements executing on 2 different connections into the

same database that are enlisted in the same transaction.

SQL_ATTR_FREE_LOCATORS_ON_FETCH

A boolean attribute that specifies if LOB locators are freed when

SQLFetch() is executed, rather than when a COMMIT is issued. Setting this

attribute to 1 (true) frees the locators that are used internally when

applications fetch LOB data without binding the LOB columns with

SQLBindCol() (or equivalent descriptor APIs). Locators that are explicitly

returned to the application must still be freed by the application. This

Chapter 3. Setting CLI environment, connection, and statement attributes 397

attribute value can be used to avoid scenarios where an application

receives SQLCODE = -429 (no more locators). The default for this attribute

is 0 (false).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_ACCTSTR

A pointer to a null-terminated character string used to identify the client

accounting string sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 200

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.)

Note: This is an IBM defined extension.

SQL_ATTR_INFO_APPLNAME

A pointer to a null-terminated character string used to identify the client

application name sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 32

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_PROGRAMID

A user-defined character string, with a maximum length of 80 bytes, that

associates an application with a connection. Once this attribute is set, DB2

for z/OS Version 8 associates this identifier with any statements inserted

into the dynamic SQL statement cache.

 This attribute is only supported for CLI applications accessing DB2 for

z/OS Version 8.

Note: This is an IBM defined extension.

SQL_ATTR_INFO_PROGRAMNAME

A null-terminated user-defined character string, up to 20 bytes in length,

used to specify the name of the application running on the client.

 When this attribute is set before the connection to the server is established,

the value specified overrides the actual client application name and will be

the value that is displayed in the appl_name monitor element. When

398 Call Level Interface Guide and Reference, Volume 2

connecting to a DB2 for z/OS server, the first 12 characters of this setting

are used as the CORRELATION IDENTIFIER of the associated DB2 for

z/OS thread.

Note: This is an IBM defined extension.

SQL_ATTR_INFO_USERID

A pointer to a null-terminated character string used to identify the client

user ID sent to the host database server when using DB2 Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 16

characters.

v This user-id is not to be confused with the authentication user-id. This

user-id is for identification purposes only and is not used for any

authorization.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_WRKSTNNAME

A pointer to a null-terminated character string used to identify the client

workstation name sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 18

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_KEEP_DYNAMIC

A 32-bit unsigned integer value which specifies whether the

KEEPDYNAMIC option has been enabled. If enabled, the server will keep

dynamically prepared statements in a prepared state across transaction

boundaries.

v 0 - KEEPDYNAMIC functionality is not available; CLI packages were

bound with the KEEPDYNAMIC NO option

v 1 - KEEPDYNAMIC functionality is available; CLI packages were bound

with the KEEPDYNAMIC YES option

It is recommended that when this attribute is set, the

SQL_ATTR_CURRENT_PACKAGE_SET attribute also be set.

Note: This is an IBM defined extension.

Chapter 3. Setting CLI environment, connection, and statement attributes 399

SQL_ATTR_LOB_CACHE_SIZE

A 32-bit unsigned integer that specifies maximum cache size (in bytes) for

LOBs. By default, LOBs are not cached.

 See the “LOBCacheSize CLI/ODBC configuration keyword” on page 331

for further usage information.

SQL_ATTR_LOGIN_TIMEOUT

A 32-bit integer value corresponding to the number of seconds to wait for

a reply when trying to establish a connection to a server before terminating

the attempt and generating a communication timeout. Specify a positive

integer, up to 32 767. The default setting of 0 will allow the client to wait

indefinitely.

 Setting a connection timeout value can also be done using the

“ConnectTimeout CLI/ODBC configuration keyword” on page 308. Refer

to the keyword for usage information.

SQL_ATTR_LONGDATA_COMPAT

A 32-bit integer value indicating whether the character, double byte

character and binary large object data types should be reported

respectively as SQL_LONGVARCHAR, SQL_LONGVARGRAPHIC or

SQL_LONGBINARY, enabling existing applications to access large object

data types seamlessly. The option values are:

v SQL_LD_COMPAT_NO (default): The large object data types are

reported as their respective IBM-defined types (SQL_BLOB, SQL_CLOB,

SQL_DBCLOB).

v SQL_LD_COMPAT_YES: The IBM large object data types (SQL_BLOB,

SQL_CLOB and SQL_DBCLOB) are mapped to SQL_LONGVARBINARY,

SQL_LONGVARCHAR and SQL_LONGVARGRAPHIC;

SQLGetTypeInfo() returns one entry each for SQL_LONGVARBINARY

SQL_LONGVARCHAR, and SQL_LONGVARGRAPHIC.

Note: This is an IBM defined extension.

SQL_ATTR_MAPCHAR

A 32-bit integer value used to specify the default SQL type associated with

SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR. The option values

are:

v SQL_MAPCHAR_DEFAULT (default): return the default SQL type

representation

v SQL_MAPCHAR_WCHAR: return SQL_CHAR as SQL_WCHAR,

SQL_VARCHAR as SQL_WVARCHAR, and SQL_LONGVARCHAR as

SQL_WLONGVARCHAR

Only the following DB2 CLI functions are affected by setting this attribute:

v SQLColumns()

v SQLColAttribute()

v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

Setting the default SQL type associated with SQL_CHAR, SQL_VARCHAR,

SQL_LONGVARCHAR can also be done using the “MapCharToWChar

CLI/ODBC configuration keyword” on page 334.

400 Call Level Interface Guide and Reference, Volume 2

Note: This is an IBM defined extension.

SQL_ATTR_MAXCONN

This attribute has been deprecated in DB2 UDB Version 8.

SQL_ATTR_MAX_LOB_BLOCK_SIZE

A 32-bit unsigned integer that indicates the maximum size of LOB or XML

data block. Specify a positive integer, up to 2 147 483 647. The default

setting of 0 indicates that there is no limit to the data block size for LOB or

XML data.

 During data retrieval, the server will include all of the information for the

current row in its reply to the client even if the maximum block size has

been reached.

If both MaxLOBBlockSize and the db2set registry variable

DB2_MAX_LOB_BLOCK_SIZE are specified, the value for

MaxLOBBlockSize will be used.

Setting the “MaxLOBBlockSize CLI/ODBC configuration keyword” on

page 340 is an alternative method of specifying this behavior.

SQL_ATTR_METADATA_ID

This connection attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute will result in an SQLSTATE of

HYC00 (Driver not capable).

SQL_ATTR_ODBC_CURSORS

This connection attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute will result in an SQLSTATE of

HYC00 (Driver not capable).

SQL_ATTR_PACKET_SIZE

This connection attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute will result in an SQLSTATE of

HYC00 (Driver not capable).

SQL_ATTR_PING_DB

A 32-bit integer which is used with SQLGetConnectAttr() to get the ping

time in microseconds.

 If a connection has previously been established and has been dropped by

the database, a value of 0 is reported. If the connection has been closed by

the application, then an SQLSTATE of 08003 is reported. This connection

attribute can be returned by SQLGetConnectAttr(), but cannot be set by

SQLSetConnectAttr(). Any attempt to set this attribute will result in an

SQLSTATE of 7HYC00 (Driver not capable)

Note: This is an IBM defined extension.

SQL_ATTR_QUIET_MODE

A 32-bit platform specific window handle.

 If the application has never made a call to SQLSetConnectAttr() with this

option, then DB2 CLI would return a null parent window handle on

SQLGetConnectAttr() for this option and use a null parent window handle

to display dialogue boxes. For example, if the end user has asked for (via

an entry in the DB2 CLI initialization file) optimizer information to be

displayed, DB2 CLI would display the dialogue box containing this

information using a null window handle. (For some platforms, this means

the dialogue box would be centered in the middle of the screen.)

Chapter 3. Setting CLI environment, connection, and statement attributes 401

If ValuePtr is set to null , then DB2 CLI does not display any dialogue

boxes. In the above example where the end user has asked for the

optimizer estimates to be displayed, DB2 CLI would not display these

estimates because the application explicitly wants to suppress all such

dialogue boxes.

If ValuePtr is not null, then it should be the parent window handle of the

application. DB2 CLI uses this handle to display dialogue boxes. (For some

platforms, this means the dialogue box would be centered with respect to

the active window of the application.)

Note: This connection option cannot be used to suppress the

SQLDriverConnect() dialogue box (which can be suppressed by setting the

fDriverCompletion argument to SQL_DRIVER_NOPROMPT).

SQL_ATTR_RECEIVE_TIMEOUT

 A 32-bit integer value that is the number of seconds a client waits for a

reply from a server on an established connection before terminating the

attempt and generating a communication timeout error. The default value

of 0 indicates the client waits indefinitely for a reply. The receive timeout

has no effect during connection establishment; it is only supported for

TCP/IP, and is ignored for any other protocol. Supported values are

integers from 0 to 32767.

Note: This is an IBM defined extension.

SQL_ATTR_REOPT

 A 32-bit integer value that enables query optimization for SQL statements

that contain special registers or parameter markers. Optimization occurs by

using the values available at query execution time for special registers or

parameter markers, instead of the default estimates that are chosen by the

compiler. The valid values of the attribute are:

v 2 = SQL_REOPT_NONE (default): No query optimization occurs at

query execution time. The default estimates chosen by the compiler are

used for the special registers or parameter markers. The default NULLID

package set is used to execute dynamic SQL statements.

v 3 = SQL_REOPT_ONCE: Query optimization occurs once at query

execution time, when the query is executed for the first time. The

NULLIDR1 package set, which is bound with the REOPT ONCE bind

option, is used.

v 4 = SQL_REOPT_ALWAYS: Query optimization or reoptimization occurs

at query execution time every time the query is executed. The

NULLIDRA package set, which is bound with the REOPT ALWAYS bind

option, is used.

The NULLIDR1 and NULLIDRA are reserved package set names, and

when used, REOPT ONCE and REOPT ALWAYS are implied respectively.

These package sets have to be explicitly created with these commands:

db2 bind db2clipk.bnd collection NULLIDR1

db2 bind db2clipk.bnd collection NULLIDRA

SQL_ATTR_REOPT and SQL_ATTR_CURRENT_PACKAGE_SET are

mutually exclusive, therefore, if one is set, the other is not allowed.

Note: This is an IBM defined extension.

402 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_REPORT_ISLONG_FOR_LONGTYPES_OLEDB

A 32-bit integer value. The OLE DB client cursor engine and the OLE DB

.NET Data Provider CommandBuilder object generate UPDATE and

DELETE statements based on column information provided by the IBM

DB2 OLE DB Provider. If the generated statement contains a LONG type in

the WHERE clause, the statement will fail because LONG types cannot be

used in a search with an equality operator. The possible values are:

v 0 (default): LONG types (LONG VARCHAR, LONG VARCHAR FOR

BIT DATA, LONG VARGRAPHIC and LONG VARGRAPHIC FOR BIT

DATA) do not have the DBCOLUMNFLAGS_ISLONG flag set, which

might cause the columns to be used in the WHERE clause.

v 1: The IBM DB2 OLE DB Provider reports LONG types (LONG

VARCHAR, LONG VARCHAR FOR BIT DATA, LONG VARGRAPHIC

and LONG VARGRAPHIC FOR BIT DATA) with the

DBCOLUMNFLAGS_ISLONG flag set. This will prevent the long

columns from being used in the WHERE clause.

This attribute is supported by the following database servers:

v DB2 for z/OS

– version 6 with PTF UQ93891

– version 7 with PTF UQ93889

– version 8 with PTF UQ93890

– versions later than version 8, PTFs are not required
v DB2 Database for Linux, UNIX, and Windows

– version 8.2 (equivalent to Version 8.1, FixPak 7) and later

Note: This is an IBM defined extension.

SQL_ATTR_SERVER_MSGTXT_MASK

A 32-bit integer value used to indicate when DB2 CLI should request the

error message from the server. This attribute is used in conjunction with

the SQL_ATTR_SERVER_MSGTXT_SP attribute. The attribute can be set to:

v SQL_ATTR_SERVER_MSGTXT_MASK_LOCAL_FIRST (default): DB2

CLI will check the local message files first to see if the message can be

retrieved. If no matching SQLCODE is found, then DB2 CLI will request

the information from the server.

v SQL_ATTR_SERVER_MSGTXT_MASK_WARNINGS: DB2 CLI always

requests the message information from the server for warnings but error

messages are retrieved from the local message files.

v SQL_ATTR_SERVER_MSGTXT_MASK_ERRORS: DB2 CLI always

requests the message information from the server for errors but warning

messages are retrieved from the local message files.

v SQL_ATTR_SERVER_MSGTXT_MASK_ALL: DB2 CLI always requests

the message information from the server for both error and warning

messages.

Setting the “ServerMsgMask CLI/ODBC configuration keyword” on page

359 is an alternative method of specifying this behavior.

Note: This is an IBM defined extension.

SQL_ATTR_SERVER_MSGTXT_SP

A pointer to a character string used to identify a stored procedure that is

Chapter 3. Setting CLI environment, connection, and statement attributes 403

used for generating an error message based on an SQLCA. This can be

useful when retrieving error information from a server such as DB2 for

z/OS. The attribute can be set to:

v DSNACCMG: The default procedure on DB2 for z/OS that can be used

to retrieve the message text from the server.

v Any user-created stored procedure.

Applications using this attribute can also set the

SQL_ATTR_SERVER_MSGTXT_MASK attribute to indicate when DB2 CLI

should call this procedure to retrieve the message information from the

server. If the SQL_ATTR_SERVER_MSGTXT_MASK is not set, then the

default is to check the local message files first (see

SQL_ATTR_SERVER_MSGTXT_MASK_LOCAL_FIRST in

SQL_ATTR_SERVER_MSGTXT_MASK).

Setting the “UseServerMsgSP CLI/ODBC configuration keyword” on page

376 is an alternative method of specifying this behavior.

Note: This is an IBM defined extension.

SQL_ATTR_SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB

A 32–bit integer value. The Microsoft OLE DB specification requires that

IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) returns the row

set sorted by the columns TABLE_CATALOG, TABLE_SCHEMA,

TABLE_NAME, COLUMN_NAME. The IBM DB2 OLE DB Provider

conforms to the specification, however, applications that use the Microsoft

ODBC Bridge provider (MSDASQL) have been typically coded to get the

row set sorted by ORDINAL_POSITION. The possible values are:

v 0 (default): The IBM DB2 OLE DB Provider returns a row set sorted by

the columns TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,

COLUMN_NAME.

v 1: The IBM DB2 OLE DB Provider returns a row set sorted by

ORDINAL_POSITION.

This attribute is supported by the following database servers:

v DB2 for z/OS

– version 6 with PTF UQ93891

– version 7 with PTF UQ93889

– version 8 with PTF UQ93890

– versions later than version 8, PTFs are not required
v DB2 Database for Linux, UNIX, and Windows

– version 8.2 (equivalent to Version 8.1, FixPak 7) and later

Note: This is an IBM defined extension.

SQL_ATTR_STREAM_GETDATA

A 32-bit unsigned integer that indicates if the data output stream for the

SQLGetData() function will be optimized. The values are:

v 0 (default): DB2 CLI buffers all the data on the client.

v 1: For applications that do not need to buffer data and are querying data

on a server that supports Dynamic Data Format, also known as

progressive streaming, specify 1 to indicate that data buffering is not

required. The DB2 CLI client will optimize the data output stream.

This keyword is ignored if Dynamic Data Format is not supported by the

server.

404 Call Level Interface Guide and Reference, Volume 2

If StreamGetData is set to 1 and DB2 CLI cannot determine the number of

bytes still available to return in the output buffer, SQLGetData() returns

SQL_NO_TOTAL (-4) as the length when truncation occurs. Otherwise,

SQLGetData() returns the number of bytes still available.

Setting the “StreamGetData CLI/ODBC configuration keyword” on page

362 is an alternative method of specifying this behavior.

SQL_ATTR_SYNC_POINT

This attribute has been deprecated in DB2 UDB Version 8.

SQL_ATTR_TRACE

This connection attribute can be set by an application for the ODBC Driver

Manager. Any attempt to set this connection attribute for the DB2 CLI

Driver will result in an SQLSTATE of HYC00 (Driver not capable).

 Instead of using this connection attribute, the DB2 CLI trace facility can be

set using the “Trace CLI/ODBC configuration keyword” on page 365.

Alternatively, the environment attribute SQL_ATTR_TRACE can be used to

configure tracing features. Note that the environment attribute does not

use the same syntax as the ODBC Driver Manager’s connection attribute.

SQL_ATTR_TRACEFILE

This connection attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute will result in an SQLSTATE of

HYC00 (Driver not capable).

 Instead of using this attribute, the DB2 CLI trace file name is set using the

“TraceFileName CLI/ODBC configuration keyword” on page 367.

SQL_ATTR_TRANSLATE_LIB

This connection attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute on other platforms will result

in an SQLSTATE of HYC00 (Driver not capable).

SQL_ATTR_TRANSLATE_OPTION

This connection attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute on other platforms will result

in an SQLSTATE of HYC00 (Driver not capable).

SQL_ATTR_TRUSTED_CONTEXT_PASSWORD

A user defined string containing a password. Use this attribute if the

database server requires a password when switching users on a trusted

connection. Set this attribute after setting the attribute

SQL_ATTR_TRUSTED_CONTEXT_USERID and before executing any SQL

statements that access the database server. If

SQL_ATTR_TRUSTED_CONTEXT_USERID is not set before setting this

attribute, an error (CLI0198E) is returned.

SQL_ATTR_TRUSTED_CONTEXT_USERID

 A user defined string containing a user ID. Use this on existing trusted

connections to switch users. Do not use it when creating a trusted

connection.

After setting this attribute the user switch will occur the next time that you

execute an SQL statement that accesses the database server.

(SQLSetConnectAttr does not access the database server.) If the user switch

is successful the user ID in this attribute becomes the new user of the

connection. If the user switch fails the call that initiated the switch will

return an error indicating the reason for the failure.

Chapter 3. Setting CLI environment, connection, and statement attributes 405

The user ID must be a valid authorization ID on the database server unless

you are using an identity server, in which case you can use any user name

recognized by the identity server. (If you are using an identity server see

also SQL_ATTR_USER_REGISTRY_NAME.)

If you set this attribute while the connection handle is not yet connected to

a database or if the connection is not a trusted connection then an error

(CLI0197E) is returned.

SQL_ATTR_TXN_ISOLATION

A 32-bit bitmask that sets the transaction isolation level for the current

connection referenced by ConnectionHandle. The valid values for ValuePtr

can be determined at runtime by calling SQLGetInfo() with fInfoType set to

SQL_TXN_ISOLATION_OPTIONS. The following values are accepted by

DB2 CLI, but each server might only support a subset of these isolation

levels:

v SQL_TXN_READ_UNCOMMITTED - Dirty reads, non-repeatable reads,

and phantom reads are possible.

v SQL_TXN_READ_COMMITTED (default) - Dirty reads are not

possible. Non-repeatable reads and phantom reads are possible.

v SQL_TXN_REPEATABLE_READ - Dirty reads and reads that cannot be

repeated are not possible. Phantoms are possible.

v SQL_TXN_SERIALIZABLE - Transactions can be serialized. Dirty reads,

non-repeatable reads, and phantoms are not possible.

v SQL_TXN_NOCOMMIT - Any changes are effectively committed at the

end of a successful operation; no explicit commit or rollback is allowed.

This is analogous to autocommit. This is not an SQL92 isolation level,

but an IBM defined extension, supported only by DB2 UDB for AS/400.

In IBM terminology,

v SQL_TXN_READ_UNCOMMITTED is Uncommitted Read;

v SQL_TXN_READ_COMMITTED is Cursor Stability;

v SQL_TXN_REPEATABLE_READ is Read Stability;

v SQL_TXN_SERIALIZABLE is Repeatable Read.

This option cannot be specified while there is an open cursor on any

statement handle, or an outstanding transaction for this connection;

otherwise, SQL_ERROR is returned on the function call (SQLSTATE S1011).

This attribute (or corresponding keyword) is only applicable if the default

isolation level is used. If the application has specifically set the isolation

level then this attribute will have no effect.

Note: There is an IBM extension that permits the setting of transaction

isolation levels on a per statement handle basis. See the

SQL_ATTR_STMTTXN_ISOLATION statement attribute.

SQL_ATTR_USE_TRUSTED_CONTEXT

When connecting to a DB2 database server that supports trusted contexts,

set this attribute if you want the connection you are creating to be a

trusted connection. If this attribute is set to SQL_TRUE and the database

server determines that the connection can be trusted then the connection is

a trusted connection. If this attribute is not set, if it is set to SQL_FALSE, if

the database server does not support trusted contexts, or if the database

server determines that the connection cannot be trusted then a regular

connection is created instead and a warning (SQLSTATE 01679) is returned.

This value can only be specified before the connection is established either

for the first time or following a call to the SQLDisconnect() function.

406 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_USER_REGISTRY_NAME

 This attribute is only used when authenticating a user on a server that is

using an identity mapping service. It is set to a user defined string that

names an identity mapping registry. The format of the registry name varies

depending on the identity mapping service used. By providing this

attribute you tell the server that the user name provided can be found in

this registry.

After setting this attribute the value will be used on subsequent attempts

to establish a normal connection, establish a trusted connection, or switch

the user id on a trusted connection.

SQL_ATTR_WCHARTYPE

A 32-bit integer that specifies, in a double-byte environment, which

wchar_t (SQLDBCHAR) character format you want to use in your

application. This option provides you the flexibility to choose between

having your wchar_t data in multi-byte format or in wide-character format.

There two possible values for this option:

v SQL_WCHARTYPE_CONVERT: character codes are converted between

the graphic SQL data in the database and the application variable. This

allows your application to fully exploit the ANSI C mechanisms for

dealing with wide character strings (for example, L-literals, ’wc’ string

functions) without having to explicitly convert the data to multi-byte

format before communicating with the database. The disadvantage is

that the implicit conversions might have an impact on the runtime

performance of your application, and might increase memory

requirements. If you want WCHARTYPE CONVERT behavior then

define the C preprocessor macro SQL_WCHART_CONVERT at compile

time. This ensures that certain definitions in the DB2 header files use the

data type wchar_t instead of sqldbchar.

v SQL_WCHARTYPE_NOCONVERT (default): no implicit character code

conversion occurs between the application and the database. Data in the

application variable is sent to and received from the database as

unaltered DBCS characters. This allows the application to have improved

performance, but the disadvantage is that the application must either

refrain from using wide-character data in wchar_t (SQLDBCHAR)

application variables, or it must explicitly call the wcstombs() and

mbstowcs() ANSI C functions to convert the data to and from multi-byte

format when exchanging data with the database.

Note: This is an IBM defined extension.

SQL_ATTR_XML_DECLARATION

A 32-bit unsigned integer that specifies which elements of an XML

declaration are added to XML data when it is implicitly serialized. This

attribute does not affect the result of the XMLSERIALIZE function. Set this

attribute to the sum of each component required:

v 0: No declarations or byte order marks (BOMs) are added to the output

buffer.

v 1: A byte order mark (BOM) in the appropriate endianness is prepended

to the output buffer if the target encoding is UTF-16 or UTF-32.

(Although a UTF-8 BOM exists, DB2 does not generate it, even if the

target encoding is UTF-8.)

v 2: A minimal XML declaration is generated, containing only the XML

version.

Chapter 3. Setting CLI environment, connection, and statement attributes 407

v 4: An encoding attribute that identifies the target encoding is added to

any generated XML declaration. Therefore, this setting only has effect

when the setting of 2 is also included when computing the value of this

attribute.

Attempts to set any other value using SQLSetConnectAttr() or

SQLSetConnectOption() will result in a CLI0191E (SQLSTATE HY024) error,

and the value will remain unchanged.

 The default setting is 7, which indicates that a BOM and an XML

declaration containing the XML version and encoding attribute are

generated during implicit serialization.

This setting affects any statement handles allocated after the value is

changed. Existing statement handles retain their original values.

Statement attributes (CLI) list

The currently defined attributes and the version of DB2 CLI or ODBC in which

they were introduced are shown below; it is expected that more will be defined to

take advantage of different data sources.

SQL_ATTR_APP_PARAM_DESC

The handle to the APD for subsequent calls to SQLExecute() and

SQLExecDirect() on the statement handle. The initial value of this attribute

is the descriptor implicitly allocated when the statement was initially

allocated. If this attribute is set to SQL_NULL_DESC, an explicitly

allocated APD handle that was previously associated with the statement

handle is dissociated from it, and the statement handle reverts to the

implicitly allocated APD handle.

 This attribute cannot be set to a descriptor handle that was implicitly

allocated for another statement or to another descriptor handle that was

implicitly set on the same statement; implicitly allocated descriptor handles

cannot be associated with more than one statement or descriptor handle.

This attribute cannot be set at the connection level.

SQL_ATTR_APP_ROW_DESC

The handle to the ARD for subsequent fetches on the statement handle.

The initial value of this attribute is the descriptor implicitly allocated when

the statement was initially allocated. If this attribute is set to

SQL_NULL_DESC, an explicitly allocated ARD handle that was previously

associated with the statement handle is dissociated from it, and the

statement handle reverts to the implicitly allocated ARD handle.

 This attribute cannot be set to a descriptor handle that was implicitly

allocated for another statement or to another descriptor handle that was

implicitly set on the same statement; implicitly allocated descriptor handles

cannot be associated with more than one statement or descriptor handle.

This attribute cannot be set at the connection level.

SQL_ATTR_APP_USES_LOB_LOCATOR

A 32-bit unsigned integer that indicates if applications are using LOB

locators. This attribute has either of the following values:

v 1 (default): Indicates that applications are using LOB locators.

v 0: For applications that do not use LOB locators and are querying data

on a server that supports Dynamic Data Format, also known as

408 Call Level Interface Guide and Reference, Volume 2

progressive streaming, specify 0 to indicate that LOB locators are not

used and allow the return of LOB data to be optimized.

This keyword is ignored for stored procedure result sets.

If the keyword is set to 0 and an application binds a LOB locator to a

result set using SQLBindCol(), an Invalid conversion error will be returned

by the SQLFetch() function.

Setting the “AppUsesLOBLocator CLI/ODBC configuration keyword” on

page 297 is an alternative method of specifying this behavior.

SQL_ATTR_ASYNC_ENABLE

A 32-bit integer value that specifies whether a function called with the

specified statement is executed asynchronously:

v SQL_ASYNC_ENABLE_OFF = Off (the default)

v SQL_ASYNC_ENABLE_ON = On

Once a function has been called asynchronously, only the original function,

SQLAllocHandle(), SQLCancel(), SQLSetStmtAttr(), SQLGetDiagField(),

SQLGetDiagRec(), or SQLGetFunctions() can be called on the statement

handle, until the original function returns a code other than

SQL_STILL_EXECUTING. Any other function called on any other

statement handle under the same connection returns SQL_ERROR with an

SQLSTATE of HY010 (Function sequence error).

 Because DB2 CLI supports statement level asynchronous-execution, the

statement attribute SQL_ATTR_ASYNC_ENABLE can be set. Its initial

value is the same as the value of the connection level attribute with the

same name at the time the statement handle was allocated.

The following functions can be executed asynchronously:

SQLBulkOperations(), SQLColAttribute(), SQLColumnPrivileges(),

SQLColumns(), SQLDescribeCol(), SQLDescribeParam(), SQLExecDirect(),

SQLExecute(), SQLExtendedFetch(), SQLExtendedPrepare(), SQLFetch(),

SQLFetchScroll(), SQLForeignKeys(), SQLGetData(), SQLGetLength(),

SQLGetPosition(), SQLMoreResults(), SQLNumResultCols(), SQLParamData(),

SQLPrepare(), SQLPrimaryKeys(), SQLProcedureColumns(), SQLProcedures(),

SQLRowCount(), SQLSetPos(), SQLSpecialColumns(), SQLStatistics(),

SQLTablePrivileges(), SQLTables().

Note: Any Unicode equivalent of a function stated above can be called

asynchronously.

SQL_ATTR_BLOCK_FOR_NROWS

A 32-bit integer that specifies the desired block size, in rows, to be

returned by the server when fetching a result set. For large read-only result

sets consisting of one or more data blocks, a large block size can improve

performance by reducing the number of synchronous server block requests

made by the client. The default value is 0 which means the default block

size will be returned by the server.

SQL_ATTR_BLOCK_LOBS

A Boolean attribute that specifies if blocking of result sets returning LOB

data types is enabled. By default, this attribute is set to 0 (false), however,

when set to 1 (true) and when accessing a server that supports blocking of

result sets returning LOB data types, all of the LOB data associated with

rows that fit completely within a single query block are returned in a

single fetch request.

Chapter 3. Setting CLI environment, connection, and statement attributes 409

SQL_ATTR_CALL_RETURN

A read-only attribute to be retrieved after executing a stored procedure.

The value returned from this attribute is -1 if the stored procedure failed to

execute (for example, if the library containing the stored procedure

executable cannot be found). If the stored procedure executed successfully

but has a negative return code (for example, if data truncation occurred

when inserting data into a table), then SQL_ATTR_CALL_RETURN will

return the value that was set in the sqlerrd(1) field of the SQLCA when the

stored procedure was executed.

SQL_ATTR_CHAINING_BEGIN

A 32-bit integer which specifies that DB2 will chain together SQLExecute()

requests for a single prepared statement before sending the requests to the

server; this feature is referred to as CLI array input chaining. All

SQLExecute() requests associated with a prepared statement will not be

sent to the server until either the SQL_ATTR_CHAINING_END statement

attribute is set, or the available buffer space is consumed by rows that have

been chained. The size of this buffer is defined by the ASLHEAPSZ

database manager configuration parameter for local client applications, or

the RQRIOBLK database manager configuration parameter for

client/server configurations.

 This attribute can be used with the CLI/ODBC configuration keyword

ArrayInputChain to effect array input without needing to specify the array

size. Refer to the documentation for ArrayInputChain for more

information.

Note: The specific 32-bit integer value that is set with this attribute is not

significant to DB2 CLI. Simply setting this attribute to any 32-bit integer

value will enable the CLI array input chaining feature.

SQL_ATTR_CHAINING_END

A 32-bit integer which specifies that the CLI array input chaining behavior

enabled earlier, with the setting of the SQL_ATTR_CHAINING_BEGIN

statement attribute, ends. Setting SQL_ATTR_CHAINING_END causes all

chained SQLExecute() requests to be sent to the server. After this attribute

is set, SQLRowCount() can be called to determine the total row count for all

SQLExecute() statements that were chained between the

SQL_ATTR_CHAINING_BEGIN and SQL_ATTR_CHAINING_END pair.

Error diagnostic information for the chained statements becomes available

after the SQL_ATTR_CHAINING_END attribute is set.

 This attribute can be used with the DB2 CLI configuration keyword

ArrayInputChain to effect array input without needing to specify the array

size. Refer to the documentation for ArrayInputChain for more

information.

Note: The specific 32-bit integer value that is set with this attribute is not

significant to DB2 CLI. Simply setting this attribute to any 32-bit integer

value will disable the CLI array input chaining feature that was enabled

when SQL_ATTR_CHAINING_BEGIN was set.

SQL_ATTR_CLIENT_LOB_BUFFERING

Specifies whether LOB locators or the underlying LOB data is returned in a

result set for LOB columns that are not bound. By default, locators are

returned. If an application usually fetches unbound LOBs and then must

retrieve the underlying LOB data, the application’s performance can be

410 Call Level Interface Guide and Reference, Volume 2

improved by retrieving the LOB data from the outset; this reduces the

number of synchronous waits and network flows. The possible values for

this attribute are:

v SQL_CLIENTLOB_USE_LOCATORS (default) - LOB locators are

returned

v SQL_CLIENTLOB_BUFFER_UNBOUND_LOBS - actual LOB data is

returned

SQL_ATTR_CLOSE_BEHAVIOR

A 32-bit integer that specifies whether the DB2 server should attempt to

release read locks acquired during a cursor’s operation when the cursor is

closed. It can be set to either:

v SQL_CC_NO_RELEASE - read locks are not released. This is the

default.

v SQL_CC_RELEASE - read locks are released.

For cursors opened with isolation UR or CS, read locks are not held after a

cursor moves off a row. For cursors opened with isolation RS or RR,

SQL_ATTR_CLOSE_BEHAVIOR modifies some of those isolation levels,

and an RR cursor might experience nonrepeatable reads or phantom reads.

If a cursor that is originally RR or RS is reopened after being closed with

SQL_ATTR_CLOSE_BEHAVIOR then new read locks will be acquired.

This attribute can also be set at the connection level, however when set at

the connection level, it only affects cursor behavior for statement handles

that are opened after this attribute is set.

Refer to the SQLCloseCursor() function for more information.

SQL_ATTR_CLOSEOPEN

To reduce the time it takes to open and close cursors, DB2 will

automatically close an open cursor if a second cursor is opened using the

same handle. Network flow is therefore reduced when the close request is

chained with the open request and the two statements are combined into

one network request (instead of two).

v 0 = DB2 acts as a regular ODBC data source: Do not chain the close and

open statements, return an error if there is an open cursor. This is the

default.

v 1 = Chain the close and open statements.

Previous CLI applications will not benefit from this default because they

are designed to explicitly close the cursor. New applications, however, can

take advantage of this behavior by not closing the cursors explicitly, but by

allowing CLI to close the cursor on subsequent open requests.

SQL_ATTR_CONCURRENCY

A 32-bit integer value that specifies the cursor concurrency:

v SQL_CONCUR_READ_ONLY = Cursor is read-only. No updates are

allowed. Supported by forward-only, static and keyset cursors.

v SQL_CONCUR_LOCK = Cursor uses the lowest level of locking

sufficient to ensure that the row can be updated. Supported by

forward-only and keyset cursors.

v SQL_CONCUR_VALUES = Cursor uses optimistic concurrency control,

comparing values.

The default value for SQL_ATTR_CONCURRENCY is

SQL_CONCUR_READ_ONLY for static and forward-only cursors. The

default for a keyset cursor is SQL_CONCUR_VALUES.

Chapter 3. Setting CLI environment, connection, and statement attributes 411

This attribute cannot be specified for an open cursor.

If the SQL_ATTR_CURSOR_TYPE Attribute is changed to a type that does

not support the current value of SQL_ATTR_CONCURRENCY, the value of

SQL_ATTR_CONCURRENCY will be changed at execution time, and a

warning issued when SQLExecDirect() or SQLPrepare() is called.

If a SELECT FOR UPDATE statement is executed while the value of

SQL_ATTR_CONCURRENCY is set to SQL_CONCUR_READ_ONLY, an

error will be returned. If the value of SQL_ATTR_CONCURRENCY is

changed to a value that is supported for some value of

SQL_ATTR_CURSOR_TYPE, but not for the current value of

SQL_ATTR_CURSOR_TYPE, the value of SQL_ATTR_CURSOR_TYPE will

be changed at execution time, and SQLSTATE 01S02 (Option value

changed) is issued when SQLExecDirect() or SQLPrepare() is called.

If the specified concurrency is not supported by the data source, then DB2

CLI substitutes a different concurrency and returns SQLSTATE 01S02

(Option value changed). The order of substitution depends on the cursor

type:

v Forward-Only: SQL_CONCUR_LOCK is substituted for

SQL_CONCUR_ROWVER and SQL_CONCUR_VALUES

v Static: only SQL_CONCUR_READ_ONLY is valid

v Keyset: SQL_CONCUR_VALUES is substituted for

SQL_CONCUR_ROWVER

Note: The following value has also been defined by ODBC, but is not

supported by DB2 CLI

v SQL_CONCUR_ROWVER = Cursor uses optimistic concurrency control.

SQL_ATTR_CURSOR_HOLD

A 32-bit integer which specifies whether the cursor associated with this

StatementHandle is preserved in the same position as before the COMMIT

operation, and whether the application can fetch without executing the

statement again.

v SQL_CURSOR_HOLD_ON (this is the default)

v SQL_CURSOR_HOLD_OFF

The default value when an StatementHandle is first allocated is

SQL_CURSOR_HOLD_ON.

This option cannot be specified while there is an open cursor on this

StatementHandle.

The default cursor hold mode can also be set using the CURSORHOLD

DB2 CLI/ODBC configuration keyword.

Note: This option is an IBM extension.

SQL_ATTR_CURSOR_SCROLLABLE

A 32-bit integer that specifies the level of support that the application

requires. Setting this attribute affects subsequent calls to SQLExecute() and

SQLExecDirect(). The supported values are:

v SQL_NONSCROLLABLE = Scrollable cursors are not required on the

statement handle. If the application calls SQLFetchScroll() on this

handle, the only valid value of FetchOrientation() is SQL_FETCH_NEXT.

This is the default.

412 Call Level Interface Guide and Reference, Volume 2

v SQL_SCROLLABLE = Scrollable cursors are required on the statement

handle. When calling SQLFetchScroll(), the application can specify any

valid value of FetchOrientation, achieving cursor positioning in modes

other than the sequential mode.

SQL_ATTR_CURSOR_SENSITIVITY

A 32-bit integer that specifies whether cursors on the statement handle

make visible the changes made to a result set by another cursor. Setting

this attribute affects subsequent calls to SQLExecute() and

SQLExecDirect(). The supported values are:

v SQL_UNSPECIFIED = It is unspecified what the cursor type is and

whether cursors on the statement handle make visible the changes made

to a result set by another cursor. Cursors on the statement handle might

make visible none, some or all such changes. This is the default.

v SQL_INSENSITIVE = All cursors on the statement handle show the

result set without reflecting any changes made to it by any other cursor.

Insensitive cursors are read-only. This corresponds to a static cursor

which has a concurrency that is read-only.

v SQL_SENSITIVE = All cursors on the statement handle make visible all

changes made to a result by another cursor.

SQL_ATTR_CURSOR_TYPE

A 32-bit integer value that specifies the cursor type. The supported values

are:

v SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls forward.

This is the default.

v SQL_CURSOR_STATIC = The data in the result set is static.

v SQL_CURSOR_KEYSET_DRIVEN = DB2 CLI supports a pure keyset

cursor. The SQL_KEYSET_SIZE statement attribute is ignored. To limit

the size of the keyset the application must limit the size of the result set

by setting the SQL_ATTR_MAX_ROWS attribute to a value other than 0.

v SQL_CURSOR_DYNAMIC = A dynamic scrollable cursor detects all

changes (inserts, deletes and updates) to the result set, and make

insertions, deletions and updates to the result set. Dynamic cursors are

only supported when accessing servers which are DB2 for z/OS Version

8.1 and later.

This option cannot be specified for an open cursor.

If the specified cursor type is not supported by the data source, DB2 CLI

substitutes a different cursor type and returns SQLSTATE 01S02 (Option

value changed). For a mixed or dynamic cursor, DB2 CLI substitutes, in

order, a keyset-driven or static cursor.

SQL_ATTR_DB2_NOBINDOUT

A Boolean attribute that specifies when and where the client performs data

conversion and related tasks during a fetch operation. The default value of

this attribute is 0 (false) and should only be set to 1 (true) when connected

to a federated database.

SQL_ATTR_DEFERRED_PREPARE

Specifies whether the PREPARE request is deferred until the corresponding

execute request is issued.

v SQL_DEFERRED_PREPARE_OFF = Disable deferred prepare. The

PREPARE request will be executed the moment it is issued.

v SQL_DEFERRED_PREPARE_ON (default) = Enable deferred prepare.

Defer the execution of the PREPARE request until the corresponding

Chapter 3. Setting CLI environment, connection, and statement attributes 413

execute request is issued. The two requests are then combined into one

command/reply flow (instead of two) to minimize network flow and to

improve performance.

If the target DB2 database or the DDCS gateway does not support

deferred prepare, the client disables deferred prepare for that connection.

Note: When deferred prepare is enabled, the row and cost estimates

normally returned in the SQLERRD(3) and SQLERRD(4) of the SQLCA of a

PREPARE statement might become zeros. This might be of concern to users

who want to use these values to decide whether or not to continue the

SQL statement.

The default deferred prepare mode can also be set using the

DEFERREDPREPARE DB2 CLI/ODBC configuration keyword.

Note: This is an IBM defined extension.

SQL_ATTR_EARLYCLOSE

Specifies whether or not the temporary cursor on the server can be

automatically closed, without closing the cursor on the client, when the last

record is sent to the client.

v SQL_EARLYCLOSE_OFF = Do not close the temporary cursor on the

server early.

v SQL_EARLYCLOSE_ON = Close the temporary cursor on the server

early (default).

This saves the CLI/ODBC driver a network request by not issuing the

statement to explicitly close the cursor because it knows that it has

already been closed.

Having this option on will speed up applications that make use of many

small result sets.

The EARLYCLOSE feature is not used if either:

– The statement is disqualified for blocking.

– The cursor type is anything other than

SQL_CURSOR_FORWARD_ONLY.

Note: This is an IBM defined extension.

SQL_ATTR_ENABLE_AUTO_IPD

A 32-bit integer value that specifies whether automatic population of the

IPD is performed:

v SQL_TRUE = Turns on automatic population of the IPD after a call to

SQLPrepare().

v SQL_FALSE = Turns off automatic population of the IPD after a call to

SQLPrepare().

The default value of the statement attribute

SQL_ATTR_ENABLE_AUTO_IPD is equal to the value of the connection

attribute SQL_ATTR_AUTO_IPD.

If the connection attribute SQL_ATTR_ AUTO_IPD is SQL_FALSE, the

statement attribute SQL_ATTR_ENABLE_AUTO_IPD cannot be set to

SQL_TRUE.

SQL_ATTR_FETCH_BOOKMARK_PTR

A pointer that points to a binary bookmark value. When SQLFetchScroll()

is called with fFetchOrientation equal to SQL_FETCH_BOOKMARK, DB2

CLI picks up the bookmark value from this field. This field defaults to a

null pointer.

414 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_IMP_PARAM_DESC

The handle to the IPD. The value of this attribute is the descriptor

allocated when the statement was initially allocated. The application

cannot set this attribute.

 This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by

a call to SQLSetStmtAttr().

SQL_ATTR_IMP_ROW_DESC

The handle to the IRD. The value of this attribute is the descriptor

allocated when the statement was initially allocated. The application

cannot set this attribute.

 This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by

a call to SQLSetStmtAttr().

SQL_ATTR_INSERT_BUFFERING

This attribute enables buffering insert optimization of partitioned database

environments. The possible values are:

SQL_ATTR_INSERT_BUFFERING_OFF (default),

SQL_ATTR_INSERT_BUFFERING_ON, and

SQL_ATTR_INSERT_BUFFERING_IGD (duplicates are ignored).

SQL_ATTR_KEYSET_SIZE

DB2 CLI supports a pure keyset cursor, therefore the SQL_KEYSET_SIZE

statement attribute is ignored. To limit the size of the keyset the application

must limit the size of the result set by setting the SQL_ATTR_MAX_ROWS

attribute to a value other than 0.

SQL_ATTR_LOAD_INFO

A pointer to a structure of type db2LoadStruct. The db2LoadStruct

structure is used to specify all applicable LOAD options that should be

used during CLI LOAD. Note that this pointer and all of its embedded

pointers should be valid during every CLI function call from the time the

SQL_ATTR_USE_LOAD_API statement attribute is set to the time it is

turned off. For this reason, it is recommended that this pointer and its

embedded pointers point to dynamically allocated memory rather than

locally declared structures.

SQL_ATTR_LOAD_ROWS_COMMITTED_PTR

A pointer to an integer that represents the total number of rows processed.

This value equals the number of rows successfully loaded and committed

to the database, plus the number of skipped and rejected rows. The integer

is 32-bit on 32-bit platforms and 64-bit on 64-bit platforms.

SQL_ATTR_LOAD_ROWS_DELETED_PTR

A pointer to an integer that represents the number of duplicate rows

deleted. The integer is 32-bit on 32-bit platforms and 64-bit on 64-bit

platforms.

SQL_ATTR_LOAD_ROWS_LOADED_PTR

A pointer to an integer that represents the number of rows loaded into the

target table. The integer is 32-bit on 32-bit platforms and 64-bit on 64-bit

platforms.

SQL_ATTR_LOAD_ROWS_READ_PTR

A pointer to an integer that represents the number of rows read. The

integer is 32-bit on 32-bit platforms and 64-bit on 64-bit platforms.

Chapter 3. Setting CLI environment, connection, and statement attributes 415

SQL_ATTR_LOAD_ROWS_REJECTED_PTR

A pointer to an integer that represents the number of rows that could not

be loaded. The integer is 32-bit on 32-bit platforms and 64-bit on 64-bit

platforms.

SQL_ATTR_LOAD_ROWS_SKIPPED_PTR

A pointer to an integer that represents the number of rows skipped before

the CLI LOAD operation began. The integer is 32-bit on 32-bit platforms

and 64-bit on 64-bit platforms.

SQL_ATTR_LOB_CACHE_SIZE

A 32-bit unsigned integer that specifies maximum cache size (in bytes) for

LOBs. By default, LOBs are not cached.

 See the “LOBCacheSize CLI/ODBC configuration keyword” on page 331

for further usage information.

SQL_ATTR_MAX_LENGTH

A 32-bit integer value corresponding to the maximum amount of data that

can be retrieved from a single character or binary column.

Note: SQL_ATTR_MAX_LENGTH should not be used to truncate data.

The BufferLength argument of SQLBindCol() or SQLGetData() should be

used instead for truncating data.

If data is truncated because the value specified for

SQL_ATTR_MAX_LENGTH is less than the amount of data available, a

SQLGetData() call or fetch will return SQL_SUCCESS instead of returning

SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (Data Truncated). The

default value for SQL_ATTR_MAX_LENGTH is 0; 0 means that DB2 CLI

will attempt to return all available data for character or binary type data.

SQL_ATTR_MAX_LOB_BLOCK_SIZE

A 32-bit unsigned integer that indicates the maximum size of LOB or XML

data block. Specify a positive integer, up to 2 147 483 647. The default

setting of 0 indicates that there is no limit to the data block size for LOB or

XML data.

 During data retrieval, the server will include all of the information for the

current row in its reply to the client even if the maximum block size has

been reached.

If both MaxLOBBlockSize and the db2set registry variable

DB2_MAX_LOB_BLOCK_SIZE are specified, the value for

MaxLOBBlockSize will be used.

Setting the “MaxLOBBlockSize CLI/ODBC configuration keyword” on

page 340 is an alternative method of specifying this behavior.

SQL_ATTR_MAX_ROWS

A 32-bit integer value corresponding to the maximum number of rows to

return to the application from a query. The default value for

SQL_ATTR_MAX_ROWS is 0; 0 means all rows are returned.

SQL_ATTR_METADATA_ID

This statement attribute is defined by ODBC, but is not supported by DB2

CLI. Any attempt to set or get this attribute will result in an SQLSTATE of

HYC00 (Driver not capable).

SQL_ATTR_NOSCAN

A 32-bit integer value that specifies whether DB2 CLI will scan SQL strings

for escape clauses. The two permitted values are:

416 Call Level Interface Guide and Reference, Volume 2

v SQL_NOSCAN_OFF - SQL strings are scanned for escape clause

sequences. This is the default.

v SQL_NOSCAN_ON - SQL strings are not scanned for escape clauses.

Everything is sent directly to the server for processing.

This application can choose to turn off the scanning if it never uses vendor

escape sequences in the SQL strings that it sends. This will eliminate some

of the overhead processing associated with scanning.

SQL_ATTR_OPTIMIZE_FOR_NROWS

A 32-bit integer value. If it is set to an integer larger than 0, ″OPTIMIZE

FOR n ROWS″ clause will be appended to every select statement If set to 0

(the default) this clause will not be appended.

 The default value can also be set using the OPTIMIZEFORNROWS DB2

CLI/ODBC configuration keyword.

SQL_ATTR_OPTIMIZE_SQLCOLUMNS

This attribute has been deprecated.

SQL_ATTR_PARAM_BIND_OFFSET_PTR

A 32-bit integer * value that points to an offset added to pointers to change

binding of dynamic parameters. If this field is non-null, DB2 CLI

dereferences the pointer, adds the dereferenced value to each of the

deferred fields in the descriptor record (SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR),

and uses the resulting pointer values at execute time. It is set to null by

default.

 The bind offset is always added directly to the SQL_DESC_DATA_PTR,

SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR

fields. If the offset is changed to a different value, the new value is added

directly to the value in the descriptor field. The new offset is not added to

the field value plus any earlier offsets.

Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR

field in the APD header.

SQL_ATTR_PARAM_BIND_TYPE

A 32-bit integer value that indicates the binding orientation to be used for

dynamic parameters.

 This field is set to SQL_PARAMETER_BIND_BY_COLUMN (the default)

to select column-wise binding.

To select row-wise binding, this field is set to the length of the structure or

an instance of a buffer that will be bound to a set of dynamic parameters.

This length must include space for all of the bound parameters and any

padding of the structure or buffer to ensure that when the address of a

bound parameter is incremented with the specified length, the result will

point to the beginning of the same parameter in the next set of parameters.

When using the sizeof operator in ANSI C, this behavior is guaranteed.

Setting this statement attribute sets the SQL_DESC_ BIND_TYPE field in

the APD header.

SQL_ATTR_PARAM_OPERATION_PTR

A 16-bit unsigned integer * value that points to an array of 16-bit unsigned

integer values used to specify whether or not a parameter should be

ignored during execution of an SQL statement. Each value is set to either

SQL_PARAM_PROCEED (for the parameter to be executed) or

SQL_PARAM_IGNORE (for the parameter to be ignored).

Chapter 3. Setting CLI environment, connection, and statement attributes 417

A set of parameters can be ignored during processing by setting the status

value in the array pointed to by SQL_DESC_ARRAY_STATUS_PTR in the

APD to SQL_PARAM_IGNORE. A set of parameters is processed if its

status value is set to SQL_PARAM_PROCEED, or if no elements in the

array are set.

This statement attribute can be set to a null pointer, in which case DB2 CLI

does not return parameter status values. This attribute can be set at any

time, but the new value is not used until the next time SQLExecDirect() or

SQLExecute() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR

field in the APD.

SQL_ATTR_PARAM_STATUS_PTR

A 16-bit unsigned integer * value that points to an array of UWORD values

containing status information for each row of parameter values after a call

to SQLExecDirect() or SQLExecute(). This field is used only if

SQL_ATTR_PARAMSET_SIZE is greater than 1.

 The status values can contain the following values:

v SQL_PARAM_SUCCESS: The SQL statement was successfully executed

for this set of parameters.

v SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was

successfully executed for this set of parameters; however, warning

information is available in the diagnostics data structure.

v SQL_PARAM_ERROR: There was an error in processing this set of

parameters. Additional error information is available in the diagnostics

data structure.

v SQL_PARAM_UNUSED: This parameter set was unused, possibly due to

the fact that some previous parameter set caused an error that aborted

further processing.

v SQL_PARAM_DIAG_UNAVAILABLE: DB2 CLI treats arrays of

parameters as a monolithic unit and so does not generate this level of

error information.

This statement attribute can be set to a null pointer, in which case DB2 CLI

does not return parameter status values. This attribute can be set at any

time, but the new value is not used until the next time SQLFetch(),

SQLFetchScroll(), or SQLSetPos() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR

field in the IPD header.

SQL_ATTR_PARAMOPT_ATOMIC

This is a 32-bit integer value which determines, when SQLParamOptions()

has been used to specify multiple values for parameter markers, whether

the underlying processing should be done via ATOMIC or NOT-ATOMIC

Compound SQL. The possible values are:

v SQL_ATOMIC_YES - The underlying processing makes use of ATOMIC

Compound SQL. This is the default if the target database supports

ATOMIC compound SQL.

v SQL_ATOMIC_NO - The underlying processing makes use of

NON-ATOMIC Compound SQL.

Specifying SQL_ATOMIC_YES when connected to a server that does not

support ATOMIC compound SQL results in an error (SQLSTATE is S1C00).

SQL_ATTR_PARAMS_PROCESSED_PTR

A 32-bit unsigned integer * record field that points to a buffer in which to

418 Call Level Interface Guide and Reference, Volume 2

return the current row number. As each row of parameters is processed,

this is set to the number of that row. No row number will be returned if

this is a null pointer.

 Setting this statement attribute sets the

SQL_DESC_ROWS_PROCESSED_PTR field in the IPD header.

If the call to SQLExecDirect() or SQLExecute() that fills in the buffer

pointed to by this attribute does not return SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

SQL_ATTR_PARAMSET_SIZE

A 32-bit unsigned integer value that specifies the number of values for

each parameter. If SQL_ATTR_PARAMSET_SIZE is greater than 1,

SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and

SQL_DESC_OCTET_LENGTH_PTR of the APD point to arrays. The

cardinality of each array is equal to the value of this field.

 Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in

the APD header.

SQL_ATTR_PREFETCH

This attribute has been deprecated.

SQL_ATTR_QUERY_OPTIMIZATION_LEVEL

A 32-bit integer value that sets the query optimization level to be used on

the next call to SQLPrepare(), SQLExtendedPrepare(), or SQLExecDirect().

 Supported values to use are: -1 (default), 0, 1, 2, 3, 5, 7, and 9.

SQL_ATTR_QUERY_TIMEOUT

A 32-bit integer value that is the number of seconds to wait for an SQL

statement or XQuery expression to execute before aborting the execution

and returning to the application. This option can be set and used to

terminate long running queries. The default value of 0 means DB2 CLI will

wait indefinitely for the server to complete execution of the SQL statement.

DB2 CLI supports non-zero values for all platforms that support

multithreading.

 When using this attribute against a server which does not have native

interrupt support (such as DB2 for z/OS and OS/390, Version 7 and

earlier, and DB2 for i5/OS), the INTERRUPT_ENABLED option must be

set when cataloging the DCS database entry for the server.

When the INTERRUPT_ENABLED option is set and this attribute is set to

a non-zero value, the DB2 for i5/OS server drops the connection and rolls

back the unit of work. The application receives an SQL30081N error

indicating that the connection to the server has been terminated. In order

for the application to process additional database requests, the application

must establish a new connection with the database server.

SQL_ATTR_REOPT

A 32-bit integer value that enables query optimization for SQL statements

that contain special registers or parameter markers. Optimization occurs by

using the values available at query execution time for special registers or

parameter markers, instead of the default estimates that are chosen by the

compiler. The valid values of the attribute are:

v 2 = SQL_REOPT_NONE. This is the default. No query optimization

occurs at query execution time. The default estimates chosen by the

compiler are used for the special registers or parameter markers. The

default NULLID package set is used to execute dynamic SQL statements.

Chapter 3. Setting CLI environment, connection, and statement attributes 419

v 3 = SQL_REOPT_ONCE. Query optimization occurs once at query

execution time, when the query is executed for the first time. The

NULLIDR1 package set, which is bound with the REOPT ONCE bind

option, is used.

v 4 = SQL_REOPT_ALWAYS. Query optimization or reoptimization occurs

at query execution time every time the query is executed. The

NULLIDRA package set, which is bound with the REOPT ALWAYS bind

option, is used.

The NULLIDR1 and NULLIDRA are reserved package set names, and

when used, REOPT ONCE and REOPT ALWAYS are implied respectively.

These package sets have to be explicitly created with these commands:

db2 bind db2clipk.bnd collection NULLIDR1

db2 bind db2clipk.bnd collection NULLIDRA

SQL_ATTR_REOPT and SQL_ATTR_CURRENT_PACKAGE_SET are

mutually exclusive, therefore, if one is set, the other is not allowed.

SQL_ATTR_RETRIEVE_DATA

A 32-bit integer value:

v SQL_RD_ON = SQLFetchScroll() and in DB2 CLI v5 and later,

SQLFetch(), retrieve data after it positions the cursor to the specified

location. This is the default.

v SQL_RD_OFF = SQLFetchScroll() and in DB2 CLI v5 and later,

SQLFetch(), do not retrieve data after it positions the cursor.

By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an application can

verify if a row exists or retrieve a bookmark for the row without incurring

the overhead of retrieving rows.

SQL_ATTR_RETURN_USER_DEFINED_TYPES

A Boolean attribute that specifies whether user-defined type columns are

reported as the user-defined type or the underlying base type when

queried by functions such as SQLDescribeCol(). The default value is 0

(false), where columns are reported as the underlying base type.

SQL_ATTR_ROW_ARRAY_SIZE

A 32-bit integer value that specifies the number of rows in the rowset. This

is the number of rows returned by each call to SQLFetch() or

SQLFetchScroll(). The default value is 1.

 If the specified rowset size exceeds the maximum rowset size supported by

the data source, DB2 CLI substitutes that value and returns SQLSTATE

01S02 (Option value changed).

This option can be specified for an open cursor.

Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in

the ARD header.

SQL_ATTR_ROW_BIND_OFFSET_PTR

A 32-bit integer * value that points to an offset added to pointers to change

binding of column data. If this field is non-null, DB2 CLI dereferences the

pointer, adds the dereferenced value to each of the deferred fields in the

descriptor record (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR,

and SQL_DESC_OCTET_LENGTH_PTR), and uses the new pointer values

when binding. It is set to null by default.

 Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR

field in the ARD header.

420 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_ROW_BIND_TYPE

A 32-bit integer value that sets the binding orientation to be used when

SQLFetch() or SQLFetchScroll() is called on the associated statement.

Column-wise binding is selected by supplying the defined constant

SQL_BIND_BY_COLUMN in *ValuePtr. Row-wise binding is selected by

supplying a value in *ValuePtr specifying the length of a structure or an

instance of a buffer into which result columns will be bound.

 The length specified in *ValuePtr must include space for all of the bound

columns and any padding of the structure or buffer to ensure that when

the address of a bound column is incremented with the specified length,

the result will point to the beginning of the same column in the next row.

When using the sizeof operator with structures or unions in ANSI C, this

behavior is guaranteed.

Column-wise binding is the default binding orientation for SQLFetch() and

SQLFetchScroll().

Setting this statement attribute sets the SQL_DESC_BIND_TYPE field in

the ARD header.

SQL_ATTR_ROW_NUMBER

A 32-bit integer value that is the number of the current row in the entire

result set. If the number of the current row cannot be determined or there

is no current row, DB2 CLI returns 0.

 This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by

a call to SQLSetStmtAttr().

SQL_ATTR_ROW_OPERATION_PTR

A 16-bit unsigned integer * value that points to an array of UDWORD

values used to ignore a row during a bulk operation using SQLSetPos().

Each value is set to either SQL_ROW_PROCEED (for the row to be

included in the bulk operation) or SQL_ROW_IGNORE (for the row to be

excluded from the bulk operation).

 This statement attribute can be set to a null pointer, in which case DB2 CLI

does not return row status values. This attribute can be set at any time, but

the new value is not used until the next time SQLFetch(),

SQLFetchScroll(), or SQLSetPos() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR

field in the ARD.

SQL_ATTR_ROW_STATUS_PTR

A 16-bit unsigned integer * value that points to an array of UWORD values

containing row status values after a call to SQLFetch() or

SQLFetchScroll(). The array has as many elements as there are rows in the

rowset.

 This statement attribute can be set to a null pointer, in which case DB2 CLI

does not return row status values. This attribute can be set at any time, but

the new value is not used until the next time SQLFetch(),

SQLFetchScroll(), or SQLSetPos() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR

field in the IRD header.

SQL_ATTR_ROWS_FETCHED_PTR

A 32-bit unsigned integer * value that points to a buffer in which to return

the number of rows fetched after a call to SQLFetch() or SQLFetchScroll().

Chapter 3. Setting CLI environment, connection, and statement attributes 421

Setting this statement attribute sets the

SQL_DESC_ROWS_PROCESSED_PTR field in the IRD header.

This attribute is mapped by DB2 CLI to the RowCountPtr array in a call to

SQLExtendedFetch().

SQL_ROWSET_SIZE

DB2 CLI applications should now use SQLFetchScroll() rather than

SQLExtendedFetch(). Applications should also use the statement attribute

SQL_ATTR_ROW_ARRAY_SIZE to set the number of rows in the rowset.

 A 32-bit integer value that specifies the number of rows in the rowset. A

rowset is the array of rows returned by each call to SQLExtendedFetch().

The default value is 1, which is equivalent to making a single SQLFetch()

call. This option can be specified even when the cursor is open and

becomes effective on the next SQLExtendedFetch() call.

SQL_ATTR_SIMULATE_CURSOR (ODBC 2.0)

This statement attribute is not supported by DB2 CLI but is defined by

ODBC.

SQL_ATTR_STMTTXN_ISOLATION

See SQL_ATTR_TXN_ISOLATION.

SQL_ATTR_STREAM_GETDATA

A 32-bit unsigned integer that indicates if the data output stream for the

SQLGetData() function will be optimized. The values are:

v 0 (default): DB2 CLI buffers all the data on the client.

v 1: For applications that do not need to buffer data and are querying data

on a server that supports Dynamic Data Format, specify 1 to indicate

that data buffering is not required. The DB2 CLI client will optimize the

data output stream.

This keyword is ignored if Dynamic Data Format is not supported by the

server.

If StreamGetData is set to 1 and DB2 CLI cannot determine the number of

bytes still available to return in the output buffer, SQLGetData() returns

SQL_NO_TOTAL (-4) as the length when truncation occurs. Otherwise,

SQLGetData() returns the number of bytes still available.

Setting the “StreamGetData CLI/ODBC configuration keyword” on page

362 is an alternative method of specifying this behavior.

SQL_ATTR_TXN_ISOLATION

A 32-bit integer value that sets the transaction isolation level for the

current StatementHandle.

 This option cannot be set if there is an open cursor on this statement

handle (SQLSTATE 24000).

The value SQL_ATTR_STMTTXN_ISOLATION is synonymous with

SQL_ATTR_TXN_ISOLATION. However, since the ODBC Driver Manager

will reject the setting of SQL_ATTR_TXN_ISOLATION as a statement

option, ODBC applications that need to set translation isolation level on a

per statement basis must use the manifest constant

SQL_ATTR_STMTTXN_ISOLATION instead on the SQLSetStmtAttr() call.

The default transaction isolation level can also be set using the

TXNISOLATION DB2 CLI/ODBC configuration keyword.

422 Call Level Interface Guide and Reference, Volume 2

This attribute (or corresponding keyword) is only applicable if the default

isolation level is used for the statement handle. If the application has

specifically set the isolation level for the statement handle, then this

attribute will have no effect.

Note: It is an IBM extension to allow setting this option at the statement

level.

SQL_ATTR_USE_BOOKMARKS

A 32-bit integer value that specifies whether an application will use

bookmarks with a cursor:

v SQL_UB_OFF = Off (the default)

v SQL_UB_VARIABLE = An application will use bookmarks with a cursor,

and DB2 CLI will provide variable-length bookmarks if they are

supported.

To use bookmarks with a cursor, the application must specify this option

with the SQL_UB_VARIABLE value before opening the cursor.

SQL_ATTR_USE_LOAD_API

A 32-bit integer that indicates if the LOAD utility will replace the regular

CLI array insert for inserting data. The possible values are:

SQL_USE_LOAD_OFF

(Default) Use regular CLI array insert to insert data.

SQL_USE_LOAD_INSERT

Use the LOAD utility to append to existing data in the table.

SQL_USE_LOAD_REPLACE

Use the LOAD utility to replace existing data in the table.

SQL_USE_LOAD_RESTART

Resume a previously failed CLI LOAD operation. If the previous CLI

LOAD operation failed while rows were being inserted (that is, before

the SQL_ATTR_USE_LOAD_API statement attribute was set to

SQL_USE_LOAD_OFF), the CLI LOAD feature will remain active, and

subsequent rows will be inserted by the CLI LOAD utility. Otherwise,

if the operation failed while CLI LOAD was being turned off, regular

CLI array inserts will resume after the restarted load completes.

SQL_USE_LOAD_TERMINATE

Clean up and undo a previously failed CLI LOAD operation. After

setting the statement attribute to this value, regular CLI array inserts

will resume.

SQL_ATTR_XML_DECLARATION

A 32-bit unsigned integer that specifies which elements of an XML

declaration are added to XML data when it is implicitly serialized. This

attribute does not affect the result of the XMLSERIALIZE function.

 This attribute can only be specified on a statement handle that has no open

cursors associated with it. Attempting to update the value of this attribute

while there are open cursors on the statement handle will result in a

CLI0126E (SQLSTATE HY011) error, and the value remains unchanged.

Set this attribute to the sum of each component required:

0 No declarations or byte order marks (BOMs) are added to the output

buffer.

1 A byte order mark (BOM) in the appropriate endianness is prepended

Chapter 3. Setting CLI environment, connection, and statement attributes 423

to the output buffer if the target encoding is UTF-16 or UTF-32.

(Although a UTF-8 BOM exists, DB2 does not generate it, even if the

target encoding is UTF-8.)

2 A minimal XML declaration is generated, containing only the XML

version.

4 An encoding attribute that identifies the target encoding is added to

any generated XML declaration. Therefore, this setting only has effect

when the setting of 2 is also included when computing the value of

this attribute.

Attempts to set any other value using SQLSetStmtAttr() or

SQLSetStmtOption() will result in a CLI0191E (SQLSTATE HY024) error,

and the value will remain unchanged.

The default setting is 7, which indicates that a BOM and an XML

declaration containing the XML version and encoding attribute are

generated during implicit serialization.

This attribute can also be specified on a connection handle and affects any

statement handles allocated after the value is changed. Existing statement

handles retain their original values.

SQL_ATTR_XQUERY_STATEMENT

A 32-bit integer value that specifies whether the statement associated with

the current statement handle is an XQuery expression or an SQL statement

or query. This can be used by CLI applications that do not want to prefix

an XQuery expression with the ″XQUERY″ keyword. The supported values

are:

SQL_TRUE

The next statement executed on the current statement handle is

processed as an XQuery expression. If the server does not support

XQuery, setting this attribute to SQL_TRUE results in a warning,

CLI0005W (SQLSTATE 01S02), and the attribute’s value is unchanged.

SQL_FALSE (default)

The next statement executed on the current statement handle is

processed as an SQL statement.

This attribute takes effect on the next SQLPrepare() or SQLExecDirect()

function call.

424 Call Level Interface Guide and Reference, Volume 2

Chapter 4. Cursor positioning rules for SQLFetchScroll() (CLI)

The following sections describe the exact rules for each value of FetchOrientation.

These rules use the following notation:

FetchOrientation

Meaning

Before start

The block cursor is positioned before the start of the result set. If the first

row of the new rowset is before the start of the result set,

SQLFetchScroll() returns SQL_NO_DATA.

After end

The block cursor is positioned after the end of the result set. If the first row

of the new rowset is after the end of the result set, SQLFetchScroll()

returns SQL_NO_DATA.

CurrRowsetStart

The number of the first row in the current rowset.

LastResultRow

The number of the last row in the result set.

RowsetSize

The rowset size.

FetchOffset

The value of the FetchOffset argument.

BookmarkRow

The row corresponding to the bookmark specified by the

SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute.

SQL_FETCH_NEXT rules:

 Table 148. SQL_FETCH_NEXT rules:

Condition First row of new rowset

Before start 1

CurrRowsetStart + RowsetSize <= LastResultRow CurrRowsetStart + RowsetSize

CurrRowsetStart + RowsetSize > LastResultRow After end

After end After end

SQL_FETCH_PRIOR rules:

 Table 149. SQL_FETCH_PRIOR rules:

Condition First row of new rowset

Before start Before start

CurrRowsetStart = 1 Before start

1 < CurrRowsetStart <= RowsetSize 1

a

CurrRowsetStart > RowsetSize CurrRowsetStart - RowsetSize

After end AND LastResultRow < RowsetSize 1

a

After end AND LastResultRow >= RowsetSize LastResultRow - RowsetSize + 1

© Copyright IBM Corp. 1993, 2008 425

v a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result

set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_RELATIVE rules:

 Table 150. SQL_FETCH_RELATIVE rules:

Condition First row of new rowset

(Before start AND FetchOffset > 0) OR (After end

AND FetchOffset 0)

--

a

Before start AND FetchOffset <= 0 Before start

CurrRowsetStart = 1 AND FetchOffset < 0 Before start

CurrRowsetStart > 1 AND CurrRowsetStart +

FetchOffset <1 AND |FetchOffset| > RowsetSize

Before start

CurrRowsetStart > 1 AND CurrRowsetStart +

FetchOffset <1 AND |FetchOffset| <= RowsetSize

1

b

1 <= CurrRowsetStart + FetchOffset <=

LastResultRow

CurrRowsetStart + FetchOffset

CurrRowsetStart + FetchOffset > LastResultRow After end

After end AND FetchOffset >= 0 After end

v a SQLFetchScroll() returns the same rowset as if it was called with

FetchOrientation set to SQL_FETCH_ABSOLUTE. For more information, see the

SQL_FETCH_ABSOLUTE section.

v b SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result

set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_ABSOLUTE rules:

 Table 151. SQL_FETCH_ABSOLUTE rules:

Condition First row of new rowset

FetchOffset <0 AND |FetchOffset| <= LastResultRow LastResultRow + FetchOffset + 1

FetchOffset <0 AND |FetchOffset| > LastResultRow

AND |FetchOffset| > RowsetSize

Before start

FetchOffset <0 AND |FetchOffset| > LastResultRow

AND |FetchOffset| <= RowsetSize

1

a

FetchOffset = 0 Before start

1 <= FetchOffset <= LastResultRow FetchOffset

FetchOffset > LastResultRow After end

v a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result

set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_FIRST rules:

 Table 152. SQL_FETCH_FIRST rules:

Condition First row of new rowset

Any 1

426 Call Level Interface Guide and Reference, Volume 2

SQL_FETCH_LAST rules:

 Table 153. SQL_FETCH_LAST rules:

Condition First row of new rowset

RowsetSize = LastResultRow LastResultRow - RowsetSize + 1

RowsetSize > LastResultRow 1

SQL_FETCH_BOOKMARK rules:

 Table 154. SQL_FETCH_BOOKMARK rules:

Condition First row of new rowset

BookmarkRow + FetchOffset <1 Before start

1 <= BookmarkRow + FetchOffset <= LastResultRow BookmarkRow +FetchOffset

BookmarkRow + FetchOffset > LastResultRow After end

Chapter 4. SQLFetchScroll() cursor positioning rules 427

428 Call Level Interface Guide and Reference, Volume 2

Chapter 5. Extended scalar functions for CLI applications

The following functions are defined by ODBC using vendor escape clauses. Each

function can be called using the escape clause syntax, or calling the equivalent DB2

function.

These functions are presented in the following categories:

v String functions

v Numeric functions

v Date and time functions

v System functions

v Conversion function

The tables in the following sections indicates for which servers (and the earliest

versions) that the function can be accessed, when called from an application using

DB2 CLI.

All errors detected by the following functions, when connected to a DB2 Version 5

or later server, will return SQLSTATE 38552. The text portion of the message is of

the form SYSFUN:nn where nn is one of the following reason codes:

01 Numeric value out of range

02 Division by zero

03 Arithmetic overflow or underflow

04 Invalid date format

05 Invalid time format

06 Invalid timestamp format

07 Invalid character representation of a timestamp duration

08 Invalid interval type (must be one of 1, 2, 4, 8, 16, 32, 64, 128, 256)

09 String too long

10 Length or position in string function out of range

11 Invalid character representation of a floating point number

String functions

The string functions in this section are supported by DB2 CLI and defined by

ODBC using vendor escape clauses.

v Character string literals used as arguments to scalar functions must be bounded

by single quotes.

v Arguments denoted as string_exp can be the name of a column, a string literal,

or the result of another scalar function, where the underlying data type can be

represented as SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR, or

SQL_CLOB.

v Arguments denoted as start, length, code or count can be a numeric literal or the

result of another scalar function, where the underlying data type is integer based

(SQL_SMALLINT, SQL_INTEGER).

© Copyright IBM Corp. 1993, 2008 429

v The first character in the string is considered to be at position 1.

 Table 155. String scalar functions

String scalar function Description

Servers that

support the

function

ASCII(string_exp) Returns the ASCII code value of the leftmost character

of string_exp as an integer.

DB2 for

workstation

CHAR(code) Returns the character that has the ASCII code value

specified by code. The value of code should be between 0

and 255; otherwise, the return value is null.

DB2 for

workstation

CONCAT(string_exp1, string_exp2) Returns a character string that is the result of

concatenating string_exp2 to string_exp1.

DB2 for

workstation, MVS,

VM/VSE, AS/400

DIFFERENCE(string_exp1, string_exp2

)

Returns an integer value indicating the difference

between the values returned by the SOUNDEX function

for string_exp1 and string_exp2.

DB2 for

workstation,

AS/400

INSERT(string_exp1, start, length,

string_exp2)

Returns a character string where length number of

characters beginning at start has been replaced by

string_exp2 which contains length characters.

DB2 for

workstation, MVS,

VM/VSE, AS/400

LCASE(string_exp) Converts all uppercase characters in string_exp to

lowercase.

DB2 for

workstation, MVS,

VM/VSE

LEFT(string_exp,count) Returns the leftmost count of characters of string_exp. DB2 for

workstation, MVS,

VM/VSE, AS/400

LENGTH(string_exp) Returns the number of characters in string_exp,

excluding trailing blanks and the string termination

character.

Note: Trailing blanks are included for DB2 for

MVS/ESA.

DB2 for

workstation, MVS,

VM/VSE, AS/400

LOCATE(string_exp1, string_exp2 [

,start])

Returns the starting position of the first occurrence of

string_exp1 within string_exp2. The search for the first

occurrence of string_exp1 begins with first character

position in string_exp2 unless the optional argument,

start, is specified. If start is specified, the search begins

with the character position indicated by the value of

start. The first character position in string_exp2 is

indicated by the value 1. If string_exp1 is not found

within string_exp2, the value 0 is returned.

DB2 for

workstation, MVS,

AS/400

LTRIM(string_exp) Returns the characters of string_exp with the leading

blanks removed.

DB2 for

workstation, MVS,

AS/400

REPEAT(string_exp, count) Returns a character string composed of string_exp

repeated count times.

DB2 for

workstation, MVS,

VM/VSE, AS/400

REPLACE(string_exp1, string_exp2,

string_exp3)

Replaces all occurrences of string_exp2 in string_exp1

with string_exp3.

DB2 for

workstation, MVS,

RIGHT(string_exp, count) Returns the rightmost count of characters of string_exp. DB2 for

workstation, MVS,

VM/VSE, AS/400

RTRIM(string_exp) Returns the characters of string_exp with trailing blanks

removed.

DB2 for

workstation, MVS,

VM/VSE, AS/400

430 Call Level Interface Guide and Reference, Volume 2

Table 155. String scalar functions (continued)

String scalar function Description

Servers that

support the

function

SOUNDEX(string_exp1) Returns a four character code representing the sound of

string_exp1. Note that different data sources use different

algorithms to represent the sound of string_exp1.

DB2 for

workstation,

AS/400

SPACE(count) Returns a character string consisting of count spaces. DB2 for

workstation, MVS,

AS/400

SUBSTRING(string_exp, start, length) Returns a character string that is derived from string_exp

beginning at the character position specified by start for

length characters.

DB2 for

workstation, MVS,

VM/VSE, AS/400

UCASE(string_exp) Converts all lowercase characters in string_exp to

uppercase.

DB2 for

workstation, MVS,

VM/VSE, AS/400

Numeric functions

The numeric functions in this section are supported by DB2 CLI and defined by

ODBC using vendor escape clauses.

v Arguments denoted as numeric_exp can be the name of a column, the result of

another scalar function, or a numeric literal, where the underlying data type can

be either floating point based (SQL_NUMERIC, SQL_DECIMAL, SQL_FLOAT,

SQL_REAL, SQL_DOUBLE) or integer based (SQL_SMALLINT, SQL_INTEGER).

v Arguments denoted as double_exp can be the name of a column, the result of

another scalar functions, or a numeric literal where the underlying data type is

floating point based.

v Arguments denoted as integer_exp can be the name of a column, the result of

another scalar functions, or a numeric literal, where the underlying data type is

integer based.

 Table 156. Numeric scalar functions

Numeric scalar function Description

Servers that

support the

function

ABS(numeric_exp) Returns the absolute value of numeric_exp DB2 for

workstation, MVS,

AS/400

ACOS(double_exp) Returns the arccosine of double_exp as an angle,

expressed in radians.

DB2 for

workstation, MVS,

AS/400

ASIN(double_exp) Returns the arcsine of double_exp as an angle, expressed

in radians.

DB2 for

workstation, MVS,

AS/400

ATAN(double_exp) Returns the arctangent of double_exp as an angle,

expressed in radians.

DB2 for

workstation, MVS,

AS/400

ATAN2(double_exp1, double_exp2) Returns the arctangent of x and y coordinates specified

by double_exp1 and double_exp2, respectively, as an angle

expressed in radians.

DB2 for

workstation, MVS,

AS/400

Chapter 5. CLI extended scalar functions 431

Table 156. Numeric scalar functions (continued)

Numeric scalar function Description

Servers that

support the

function

CEILING(numeric_exp) Returns the smallest integer greater than or equal to

numeric_exp.

DB2 for

workstation, MVS,

AS/400

COS(double_exp) Returns the cosine of double_exp, where double_exp is an

angle expressed in radians.

DB2 for

workstation, MVS,

AS/400

COT(double_exp) Returns the cotangent of double_exp, where double_exp is

an angle expressed in radians.

DB2 for

workstation, MVS,

AS/400

DEGREES(numeric_exp) Returns the number of degrees converted from

numeric_exp radians.

DB2 for

workstation, MVS,

AS/400

EXP(double_exp) Returns the exponential value of double_exp. DB2 for

workstation, MVS,

AS/400

FLOOR(numeric_exp) Returns the largest integer less than or equal to

numeric_exp.

DB2 for

workstation, MVS,

AS/400

LOG(double_exp) Returns the natural logarithm of double_exp. DB2 for

workstation, MVS,

AS/400

LOG10(double_exp) Returns the base 10 logarithm of double_exp. DB2 for

workstation, MVS,

AS/400

MOD(integer_exp1, integer_exp2) Returns the remainder (modulus) of integer_exp1 divided

by integer_exp2.

DB2 for

workstation, MVS,

AS/400

PI() Returns the constant value of pi as a floating point

value.

DB2 for

workstation, MVS,

AS/400

POWER(numeric_exp, integer_exp) Returns the value of numeric_exp to the power of

integer_exp.

DB2 for

workstation, MVS,

AS/400

RADIANS(numeric_exp) Returns the number of radians converted from

numeric_exp degrees.

DB2 for

workstation, MVS,

AS/400

RAND([integer_exp]) Returns a random floating point value using integer_exp

as the optional seed value.

DB2 for

workstation, MVS,

AS/400

ROUND(numeric_exp, integer_exp.) Returns numeric_exp rounded to integer_exp places right

of the decimal point. If integer_exp is negative,

numeric_exp is rounded to | integer_exp | places to the

left of the decimal point.

DB2 for

workstation, MVS,

AS/400

SIGN(numeric_exp) Returns an indicator or the sign of numeric_exp. If

numeric_exp is less than zero, -1 is returned. If

numeric_exp equals zero, 0 is returned. If numeric_exp is

greater than zero, 1 is returned.

DB2 for

workstation, MVS,

AS/400

432 Call Level Interface Guide and Reference, Volume 2

Table 156. Numeric scalar functions (continued)

Numeric scalar function Description

Servers that

support the

function

SIN(double_exp) Returns the sine of double_exp, where double_exp is an

angle expressed in radians.

DB2 for

workstation, MVS,

AS/400

SQRT(double_exp) Returns the square root of double_exp. DB2 for

workstation, MVS,

AS/400

TAN(double_exp) Returns the tangent of double_exp, where double_exp is an

angle expressed in radians.

DB2 for

workstation, MVS,

AS/400

TRUNCATE(numeric_exp, integer_exp

)

Returns numeric_exp truncated to integer_exp places right

of the decimal point. If integer_exp is negative,

numeric_exp is truncated to | integer_exp | places to the

left of the decimal point.

DB2 for

workstation, MVS,

AS/400

Date and time functions

The date and time functions in this section are supported by DB2 CLI and defined

by ODBC using vendor escape clauses.

v Arguments denoted as timestamp_exp can be the name of a column, the result of

another scalar function, or a time, date, or timestamp literal.

v Arguments denoted as date_exp can be the name of a column, the result of

another scalar function, or a date or timestamp literal, where the underlying

data type can be character based, or date or timestamp based.

v Arguments denoted as time_exp can be the name of a column, the result of

another scalar function, or a time or timestamp literal, where the underlying

data types can be character based, or time or timestamp based.

 Table 157. Date and time scalar functions

Date and time scalar function Description

Servers that

support the

function

CURDATE() Returns the current date as a date value. DB2 for

workstation, MVS,

VM/VSE, AS/400

CURTIME() Returns the current local time as a time value. DB2 for

workstation, MVS,

VM/VSE, AS/400

DAYNAME(date_exp) Returns a character string containing the name of the

day (Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday) for the day portion of date_exp.

DB2 for

workstation

DAYOFMONTH (date_exp) Returns the day of the month in date_exp as an integer

value in the range of 1-31.

DB2 for

workstation, MVS,

VM/VSE, AS/400

DAYOFWEEK(date_exp) Returns the day of the week in date_exp as an integer

value in the range 1-7, where 1 represents Sunday.

DB2 for

workstation,

AS/400 (3.6)

Chapter 5. CLI extended scalar functions 433

Table 157. Date and time scalar functions (continued)

Date and time scalar function Description

Servers that

support the

function

DAYOFWEEK_ISO(date_exp) Returns the day of the week in date_exp as an integer

value in the range 1-7, where 1 represents Monday. Note

the difference between this function and the

DAYOFWEEK() function, where 1 represents Sunday.

DB2 for

workstation, MVS,

AS/400

DAYOFYEAR(date_exp) Returns the day of the year in date_exp as an integer

value in the range 1-366.

DB2 for

workstation,

AS/400

HOUR(time_exp) Returns the hour in time_exp as an integer value in the

range of 0-23.

DB2 for

workstation, MVS,

VM/VSE, AS/400

JULIAN_DAY(date_exp) Returns the number of days between date_exp and

January 1, 4712 B.C. (the start of the Julian date

calendar).

DB2 for

workstation,

AS/400

MINUTE(time_exp) Returns the minute in time_exp as integer value in the

range of 0-59.

DB2 for

workstation, MVS,

VM/VSE, AS/400

MONTH(date_exp) Returns the month in date_exp as an integer value in the

range of 1-12.

DB2 for

workstation, MVS,

VM/VSE, AS/400

MONTHNAME(date_exp) Returns a character string containing the name of month

(January, February, March, April, May, June, July,

August, September, October, November, December) for

the month portion of date_exp.

DB2 for

workstation

NOW() Returns the current date and time as a timestamp value. DB2 for

workstation, MVS,

VM/VSE, AS/400

QUARTER(date_exp) Returns the quarter in date_exp as an integer value in the

range of 1-4.

DB2 for

workstation,

AS/400

SECOND(time_exp) Returns the second in time_exp as an integer value in the

range of 0-59.

DB2 for

workstation, MVS,

VM/VSE, AS/400

SECONDS_SINCE_MIDNIGHT(

time_exp)

Returns the number of seconds in time_exp relative to

midnight as an integer value in the range of 0-86400. If

time_exp includes a fractional seconds component, the

fractional seconds component will be discarded.

DB2 for

workstation

434 Call Level Interface Guide and Reference, Volume 2

Table 157. Date and time scalar functions (continued)

Date and time scalar function Description

Servers that

support the

function

TIMESTAMPADD(interval,

integer_exp, timestamp_exp)

Returns the timestamp calculated by adding integer_exp

intervals of type interval to timestamp_exp. Valid values

of interval are:

v SQL_TSI_FRAC_SECOND

v SQL_TSI_SECOND

v SQL_TSI_MINUTE

v SQL_TSI_HOUR

v SQL_TSI_DAY

v SQL_TSI_WEEK

v SQL_TSI_MONTH

v SQL_TSI_QUARTER

v SQL_TSI_YEAR

where fractional seconds are expressed in billionths of a

second. If timestamp_exp specifies a time value and

interval specifies days, weeks, months, quarters, or years,

the date portion of timestamp_exp is set to the current

date before calculating the resulting timestamp. If

timestamp_exp is a date value and interval specifies

fractional seconds, seconds, minutes, or hours, the time

portion of timestamp_exp is set to 00:00:00.000000 before

calculating the resulting timestamp. An application

determines which intervals are supported by calling

SQLGetInfo() with the

SQL_TIMEDATE_ADD_INTERVALS option.

DB2 for

workstation

TIMESTAMPDIFF(interval,

timestamp_exp1, timestamp_exp2)

Returns the integer number of intervals of type interval

by which timestamp_exp2 is greater than timestamp_exp1.

Valid values of interval are:

v SQL_TSI_FRAC_SECOND

v SQL_TSI_SECOND

v SQL_TSI_MINUTE

v SQL_TSI_HOUR

v SQL_TSI_DAY

v SQL_TSI_WEEK

v SQL_TSI_MONTH

v SQL_TSI_QUARTER

v SQL_TSI_YEAR

where fractional seconds are expressed in billionths of a

second. If either timestamp expression is a time value

and interval specifies days, weeks, months, quarters, or

years, the date portion of that timestamp is set to the

current date before calculating the difference between

the timestamps. If either timestamp expression is a date

value and interval specifies fractional seconds, seconds,

minutes, or hours, the time portion of that timestamp is

set to 0 before calculating the difference between the

timestamps. An application determines which intervals

are supported by calling SQLGetInfo() with the

SQL_TIMEDATE_DIFF_INTERVALS option.

DB2 for

workstation

WEEK(date_exp) Returns the week of the year in date_exp as an integer

value in the range of 1-54.

DB2 for

workstation,

AS/400 (3.6)

Chapter 5. CLI extended scalar functions 435

Table 157. Date and time scalar functions (continued)

Date and time scalar function Description

Servers that

support the

function

WEEK_ISO(date_exp) Returns the week of the year in date_exp as an integer

value in the range of 1-53. Week 1 is defined as the first

week of the year to contain a Thursday. Therefore,

Week1 is equivalent to the first week that contains Jan 4,

since Monday is considered to be the first day of the

week.

Note that WEEK_ISO() differs from the current

definition of WEEK(), which returns a value up to 54.

For the WEEK() function, Week 1 is the week containing

the first Saturday. This is equivalent to the week

containing Jan. 1, even if the week contains only one

day.

DB2 for

workstation

YEAR(date_exp) Returns the year in date_exp as an integer value in the

range of 1-9999.

DB2 for

workstation, MVS,

VM/VSE, AS/400

For those functions that return a character string containing the name of the day of

week or the name of the month, these character strings will be National Language

Support enabled.

DAYOFWEEK_ISO() and WEEK_ISO() are automatically available in a database

created in DB2 Version 7 or later. If a database was created prior to Version 7, these

functions might not be available. To make DAYOFWEEK_ISO() and WEEK_ISO()

functions available in such a database, use the db2updb system command.

System functions

The system functions in this section are supported by DB2 CLI and defined by

ODBC using vendor escape clauses.

v Arguments denoted as exp can be the name of a column, the result of another

scalar function, or a literal.

v Arguments denoted as value can be a literal constant.

 Table 158. System scalar functions

System scalar function Description

Servers that

support the

function

DATABASE() Returns the name of the database corresponding to the

connection handle (hdbc). (The name of the database is

also available via SQLGetInfo() by specifying the

information type SQL_DATABASE_NAME.)

DB2 for

workstation, MVS,

VM/VSE, AS/400

IFNULL(exp, value) If exp is null, value is returned. If exp is not null, exp is

returned. The possible data type(s) of value must be

compatible with the data type of exp.

DB2 for

workstation, MVS,

VM/VSE, AS/400

USER() Returns the user’s authorization name. (The user’s

authorization name is also available via SQLGetInfo()

by specifying the information type SQL_USER_NAME.)

DB2 for

workstation, MVS,

VM/VSE, AS/400

436 Call Level Interface Guide and Reference, Volume 2

Conversion function

The conversion function is supported by DB2 CLI and defined by ODBC using

vendor escape clauses.

Each driver and data source determines which conversions are valid between the

possible data types. As the driver translates the ODBC syntax into native syntax it

will reject the conversions that are not supported by the data source, even if the

ODBC syntax is valid.

Use the function SQLGetInfo() with the appropriate convert function masks to

determine which conversions are supported by the data source.

 Table 159. Conversion Function

Conversion scalar function Description

Servers that

support the

function

CONVERT(expr_value, data_type) v data_type indicates the data type of the converted

representation of expr_value, and can be either

SQL_CHAR or SQL_DOUBLE.

v expr_value is the value to convert. It can be of various

types, depending on the conversions supported by the

driver and data source. Use the function

SQLGetInfo() with the appropriate convert function

masks to determine which conversions are supported

by the data source.

DB2 for

workstation

Chapter 5. CLI extended scalar functions 437

438 Call Level Interface Guide and Reference, Volume 2

Chapter 6. Descriptor values

Descriptor FieldIdentifier argument values (CLI)

The FieldIdentifier argument indicates the descriptor field to be set. A descriptor

contains the descriptor header, consisting of the header fields described in the next

section, and zero or more descriptor records, consisting of the record fields

described in the following section.

Header fields

Each descriptor has a header consisting of the following fields.

SQL_DESC_ALLOC_TYPE [All] This read-only SQLSMALLINT header field

specifies whether the descriptor was allocated automatically by DB2 CLI or

explicitly by the application. The application can obtain, but not modify, this field.

The field is set to SQL_DESC_ALLOC_AUTO if the descriptor was automatically

allocated. It is set to SQL_DESC_ALLOC_USER if the descriptor was explicitly

allocated by the application.

SQL_DESC_ARRAY_SIZE [Application descriptors] In ARDs, this

SQLUINTEGER header field specifies the number of rows in the rowset. This is the

number of rows to be returned by a call to SQLFetch(), SQLFetchScroll(), or

SQLSetPos(). The default value is 1. This field can also be set by calling

SQLSetStmtAttr() with the SQL_ATTR_ROW_ARRAY_SIZE attribute.

In APDs, this SQLUINTEGER header field specifies the number of values for each

parameter.

The default value of this field is 1. If SQL_DESC_ARRAY_SIZE is greater than 1,

SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and

SQL_DESC_OCTET_LENGTH_PTR of the APD or ARD point to arrays. The

cardinality of each array is equal to the value of this field.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the

SQL_ROWSET_SIZE attribute. This field in the APD can also be set by calling

SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE attribute.

SQL_DESC_ARRAY_STATUS_PTR [All] For each descriptor type, this

SQLUSMALLINT * header field points to an array of SQLUSMALLINT values.

This array is referred to as:

v row status array (IRD)

v parameter status array (IPD)

v row operation array (ARD)

v parameter operation array (APD)

In the IRD, this header field points to a row status array containing status values

after a call to SQLFetch(), SQLFetchScroll(), or SQLSetPos(). The array has as

many elements as there are rows in the rowset. The application must allocate an

array of SQLUSMALLINTs and set this field to point to the array. The field is set

to a null pointer by default. DB2 CLI will populate the array, unless the

SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer, in which case no

status values are generated and the array is not populated.

© Copyright IBM Corp. 1993, 2008 439

Note: Behavior is undefined if the application sets the elements of the row status

array pointed to by the SQL_DESC_ARRAY_STATUS_PTR field of the IRD. The

array is initially populated by a call to SQLFetch(), SQLFetchScroll(), or

SQLSetPos(). If the call did not return SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO, the contents of the array pointed to by this field are

undefined.

The elements in the array can contain the following values:

v SQL_ROW_SUCCESS: The row was successfully fetched and has not changed

since it was last fetched.

v SQL_ROW_SUCCESS_WITH_INFO: The row was successfully fetched and has

not changed since it was last fetched. However, a warning was returned about

the row.

v SQL_ROW_ERROR: An error occurred while fetching the row.

v SQL_ROW_UPDATED: The row was successfully fetched and has been updated

since it was last fetched. If the row is fetched again, its status is

SQL_ROW_SUCCESS.

v SQL_ROW_DELETED: The row has been deleted since it was last fetched.

v SQL_ROW_ADDED: The row was inserted by SQLSetPos(). If the row is fetched

again, its status is SQL_ROW_SUCCESS.

v SQL_ROW_NOROW: The rowset overlapped the end of the result set and no

row was returned that corresponded to this element of the row status array.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the

SQL_ATTR_ROW_STATUS_PTR attribute.

In the IPD, this header field points to a parameter status array containing status

information for each set of parameter values after a call to SQLExecute() or

SQLExecDirect(). If the call to SQLExecute() or SQLExecDirect() did not return

SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the array pointed

to by this field are undefined. The application must allocate an array of

SQLUSMALLINTs and set this field to point to the array. The driver will populate

the array, unless the SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer,

in which case no status values are generated and the array is not populated.

The elements in the array can contain the following values:

v SQL_PARAM_SUCCESS: The SQL statement was successfully executed for this

set of parameters.

v SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was successfully

executed for this set of parameters; however, warning information is available in

the diagnostics data structure.

v SQL_PARAM_ERROR: An error occurred in processing this set of parameters.

Additional error information is available in the diagnostics data structure.

v SQL_PARAM_UNUSED: This parameter set was unused, possibly due to the

fact that some previous parameter set caused an error that aborted further

processing.

v SQL_PARAM_DIAG_UNAVAILABLE: Diagnostic information is not available.

An example of this is when DB2 CLI treats arrays of parameters as a monolithic

unit and so does not generate this level of error information.

This field in the APD can also be set by calling SQLSetStmtAttr() with the

SQL_ATTR_PARAM_STATUS_PTR attribute.

440 Call Level Interface Guide and Reference, Volume 2

In the ARD, this header field points to a row operation array of values that can be

set by the application to indicate whether this row is to be ignored for SQLSetPos()

operations.

The elements in the array can contain the following values:

v SQL_ROW_PROCEED: The row is included in the bulk operation using

SQLSetPos(). (This setting does not guarantee that the operation will occur on

the row. If the row has the status SQL_ROW_ERROR in the IRD row status

array, DB2 CLI may not be able to perform the operation in the row.)

v SQL_ROW_IGNORE: The row is excluded from the bulk operation using

SQLSetPos().

If no elements of the array are set, all rows are included in the bulk operation. If

the value in the SQL_DESC_ARRAY_STATUS_PTR field of the ARD is a null

pointer, all rows are included in the bulk operation; the interpretation is the same

as if the pointer pointed to a valid array and all elements of the array were

SQL_ROW_PROCEED. If an element in the array is set to SQL_ROW_IGNORE, the

value in the row status array for the ignored row is not changed.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the

SQL_ATTR_ROW_OPERATION_PTR attribute.

In the APD, this header field points to a parameter operation array of values that

can be set by the application to indicate whether this set of parameters is to be

ignored when SQLExecute() or SQLExecDirect() is called. The elements in the

array can contain the following values:

v SQL_PARAM_PROCEED: The set of parameters is included in the SQLExecute()

or SQLExecDirect() call.

v SQL_PARAM_IGNORE: The set of parameters is excluded from the

SQLExecute() or SQLExecDirect() call.

If no elements of the array are set, all sets of parameters in the array are used in

the SQLExecute() or SQLExecDirect() calls. If the value in the

SQL_DESC_ARRAY_STATUS_PTR field of the APD is a null pointer, all sets of

parameters are used; the interpretation is the same as if the pointer pointed to a

valid array and all elements of the array were SQL_PARAM_PROCEED.

This field in the APD can also be set by calling SQLSetStmtAttr() with the

SQL_ATTR_PARAM_OPERATION_PTR attribute.

SQL_DESC_BIND_OFFSET_PTR [Application descriptors] This SQLINTEGER *

header field points to the bind offset. It is set to a null pointer by default. If this

field is not a null pointer, DB2 CLI dereferences the pointer and adds the

dereferenced value to each of the deferred fields that has a non-null value in the

descriptor record (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and

SQL_DESC_OCTET_LENGTH_PTR) at fetch time, and uses the new pointer values

when binding.

The bind offset is always added directly to the values in the

SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and

SQL_DESC_OCTET_LENGTH_PTR fields. If the offset is changed to a different

value, the new value is still added directly to the value in each descriptor field.

The new offset is not added to the field value plus any earlier offset.

Chapter 6. Descriptor values 441

This field is a deferred field: it is not used at the time it is set, but is used at a later

time by DB2 CLI to retrieve data.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the

SQL_ATTR_ROW_BIND_OFFSET_PTR attribute. This field in the ARD can also be

set by calling SQLSetStmtAttr() with the SQL_ATTR_PARAM_BIND_OFFSET_PTR

attribute.

SQL_DESC_BIND_TYPE [Application descriptors] This SQLINTEGER header

field sets the binding orientation to be used for either binding columns or

parameters.

In ARDs, this field specifies the binding orientation when SQLFetchScroll() is

called on the associated statement handle.

To select column-wise binding for columns, this field is set to

SQL_BIND_BY_COLUMN (the default).

This field in the ARD can also be set by calling SQLSetStmtAttr() with

SQL_ATTR_ROW_BIND_TYPE Attribute.

In APDs, this field specifies the binding orientation to be used for dynamic

parameters.

To select column-wise binding for parameters, this field is set to

SQL_BIND_BY_COLUMN (the default).

This field in the APD can also be set by calling SQLSetStmtAttr() with

SQL_ATTR_PARAM_BIND_TYPE Attribute.

SQL_DESC_COUNT [All] This SQLSMALLINT header field specifies the

one-based index of the highest-numbered record that contains data. When DB2 CLI

sets the data structure for the descriptor, it must also set the COUNT field to show

how many records are significant. When an application allocates an instance of this

data structure, it does not have to specify how many records to reserve room for.

As the application specifies the contents of the records, DB2 CLI takes any required

action to ensure that the descriptor handle refers to a data structure of adequate

size.

SQL_DESC_COUNT is not a count of all data columns that are bound (if the field

is in an ARD), or all parameters that are bound (in an APD), but the number of the

highest-numbered record. If a column or a parameter with a number that is less

than the number of the highest-numbered column is unbound (by calling

SQLBindCol() with the Target ValuePtr argument set to a null pointer, or

SQLBindParameter() with the Parameter ValuePtr argument set to a null pointer),

SQL_DESC_COUNT is not changed. If additional columns or parameters are

bound with numbers greater than the highest-numbered record that contains data,

DB2 CLI automatically increases the value in the SQL_DESC_COUNT field. If all

columns or parameters are unbound by calling SQLFreeStmt() with the

SQL_UNBIND option, SQL_DESC_COUNT is set to 0.

The value in SQL_DESC_COUNT can be set explicitly by an application by calling

SQLSetDescField(). If the value in SQL_DESC_COUNT is explicitly decreased, all

records with numbers greater than the new value in SQL_DESC_COUNT are

removed, unbinding the columns. If the value in SQL_DESC_COUNT is explicitly

set to 0, and the field is in an APD, all parameters are unbound. If the value in

442 Call Level Interface Guide and Reference, Volume 2

SQL_DESC_COUNT is explicitly set to 0, and the field is in an ARD, all data

buffers except a bound bookmark column are released.

The record count in this field of an ARD does not include a bound bookmark

column.

SQL_DESC_ROWS_PROCESSED_PTR [Implementation descriptors] In an IRD,

this SQLUINTEGER * header field points to a buffer containing the number of

rows fetched after a call to SQLFetch() or SQLFetchScroll(), or the number of rows

affected in a bulk operation performed by a call to SQLSetPos().

In an IPD, this SQLUINTEGER * header field points to a buffer containing the

number of the row as each row of parameters is processed. No row number will be

returned if this is a null pointer.

SQL_DESC_ROWS_PROCESSED_PTR is valid only after SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO has been returned after a call to SQLFetch() or

SQLFetchScroll() (for an IRD field) or SQLExecute() or SQLExecDirect() (for an

IPD field). If the return code is not one of the above, the location pointed to by

SQL_DESC_ROWS_PROCESSED_PTR is undefined. If the call that fills in the

buffer pointed to by this field did not return SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined, unless it

returns SQL_NO_DATA, in which case the value in the buffer is set to 0.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the

SQL_ATTR_ROWS_FETCHED_PTR attribute. This field in the ARD can also be set

by calling SQLSetStmtAttr() with the SQL_ATTR_PARAMS_PROCESSED_PTR

attribute.

The buffer pointed to by this field is allocated by the application. It is a deferred

output buffer that is set by DB2 CLI. It is set to a null pointer by default.

Record fields

Each descriptor contains one or more records consisting of fields that define either

column data or dynamic parameters, depending on the type of descriptor. Each

record is a complete definition of a single column or parameter.

SQL_DESC_AUTO_UNIQUE_VALUE [IRDs] This read-only SQLINTEGER record

field contains SQL_TRUE if the column is an auto-incrementing column, or

SQL_FALSE if the column is not an auto-incrementing column. This field is

read-only, but the underlying auto-incrementing column is not necessarily

read-only.

SQL_DESC_BASE_COLUMN_NAME [IRDs] This read-only SQLCHAR record

field contains the base column name for the result set column. If a base column

name does not exist (as in the case of columns that are expressions), then this

variable contains an empty string.

SQL_DESC_BASE_TABLE_NAME [IRDs] This read-only SQLCHAR record field

contains the base table name for the result set column. If a base table name cannot

be defined or is not applicable, then this variable contains an empty string.

SQL_DESC_CASE_SENSITIVE [Implementation descriptors] This read-only

SQLINTEGER record field contains SQL_TRUE if the column or parameter is

Chapter 6. Descriptor values 443

treated as case-sensitive for collations and comparisons, or SQL_FALSE if the

column is not treated as case-sensitive for collations and comparisons, or if it is a

non-character column.

SQL_DESC_CATALOG_NAME [IRDs] This read-only SQLCHAR record field

contains the catalog or qualifier name for the base table that contains the column.

The return value is driver-dependent if the column is an expression or if the

column is part of a view. If the data source does not support catalogs (or

qualifiers) or the catalog or qualifier name cannot be determined, this variable

contains an empty string.

SQL_DESC_CONCISE_TYPE [All] This SQLSMALLINT header field specifies the

concise data type for all data types.

The values in the SQL_DESC_CONCISE_TYPE and SQL_DESC_TYPE fields are

interdependent. Each time one of the fields is set, the other must also be set.

SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or

SQLBindParameter(), or SQLSetDescField(). SQL_DESC_TYPE can be set by a call

to SQLSetDescField() or SQLSetDescRec().

If SQL_DESC_CONCISE_TYPE is set to a concise data type, SQL_DESC_TYPE field

is set to the same value, and the SQL_DESC_DATETIME_INTERVAL_CODE field

is set to 0.

SQL_DESC_DATA_PTR [Application descriptors and IPDs] This SQLPOINTER

record field points to a variable that will contain the parameter value (for APDs) or

the column value (for ARDs). The descriptor record (and either the column or

parameter that it represents) is unbound if TargetValuePtr in a call to either

SQLBindCol() or SQLBindParameter() is a null pointer, or the

SQL_DESC_DATA_PTR field in a call to SQLSetDescField() or SQLSetDescRec() is

set to a null pointer. Other fields are not affected if the SQL_DESC_DATA_PTR

field is set to a null pointer. If the call to SQLFetch() or SQLFetchScroll() that fills

in the buffer pointed to by this field did not return SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

This field is a deferred field: it is not used at the time it is set, but is used at a later

time by DB2 CLI to retrieve data.

Whenever the SQL_DESC_DATA_PTR field is set, DB2 CLI checks that the value in

the SQL_DESC_TYPE field contains valid DB2 CLI or ODBC data types, and that

all other fields affecting the data types are consistent. Refer to the consistency

checks information for more detail.

SQL_DESC_DATETIME_INTERVAL_CODE [All] This SQLSMALLINT record

field contains the subcode for the specific datetime data type when the

SQL_DESC_TYPE field is SQL_DATETIME. This is true for both SQL and C data

types.

This field can be set to the following for datetime data types:

 Table 160. Datetime subcodes

Datetime types DATETIME_INTERVAL_CODE

SQL_TYPE_DATE/SQL_C_TYPE_DATE SQL_CODE_DATE

SQL_TYPE_TIME/SQL_C_TYPE_TIME SQL_CODE_TIME

444 Call Level Interface Guide and Reference, Volume 2

Table 160. Datetime subcodes (continued)

Datetime types DATETIME_INTERVAL_CODE

 SQL_TYPE_TIMESTAMP/

 SQL_C_TYPE_TIMESTAMP

SQL_CODE_TIMESTAMP

ODBC 3.0 defines other values (not listed here) for interval data types, which DB2

CLI does not support. If any other value is specified in a SQLSetDescRec() or

SQLSetDescField() call, an error will be generated indicating HY092 (Option type

out of range).

SQL_DESC_DATETIME_INTERVAL_PRECISION [All] ODBC 3.0 defines this

SQLINTEGER record field, however, DB2 CLI does not support interval data types.

The fixed value returned is 0. Any attempt to set this field will result in 01S02

(Option value changed).

SQL_DESC_DISPLAY_SIZE [IRDs] This read-only SQLINTEGER record field

contains the maximum number of characters required to display the data from the

column. The value in this field is not the same as the descriptor field

SQL_DESC_LENGTH because the LENGTH field is undefined for all numeric

types.

SQL_DESC_FIXED_PREC_SCALE [Implementation descriptors] This read-only

SQLSMALLINT record field is set to SQL_TRUE if the column is an exact numeric

column and has a fixed precision and non-zero scale, or SQL_FALSE if the column

is not an exact numeric column with a fixed precision and scale.

SQL_DESC_INDICATOR_PTR [Application descriptors] In ARDs, this

SQLINTEGER * record field points to the indicator variable. This variable contains

SQL_NULL_DATA if the column value is NULL. For APDs, the indicator variable

is set to SQL_NULL_DATA to specify NULL dynamic arguments. Otherwise, the

variable is zero (unless the values in SQL_DESC_INDICATOR_PTR and

SQL_DESC_OCTET_LENGTH_PTR are the same pointer).

If the SQL_DESC_INDICATOR_PTR field in an ARD is a null pointer, DB2 CLI is

prevented from returning information about whether the column is NULL or not.

If the column is NULL and INDICATOR_PTR is a null pointer, SQLSTATE 22002,

Indicator variable required but not supplied, is returned when DB2 CLI attempts to

populate the buffer after a call to SQLFetch() or SQLFetchScroll(). If the call to

SQLFetch() or SQLFetchScroll() did not return SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

The SQL_DESC_INDICATOR_PTR field determines whether the field pointed to by

SQL_DESC_OCTET_LENGTH_PTR is set. If the data value for a column is NULL,

DB2 CLI sets the indicator variable to SQL_NULL_DATA. The field pointed to by

SQL_DESC_OCTET_LENGTH_PTR is then not set. If a NULL value is not

encountered during the fetch, the buffer pointed to by

SQL_DESC_INDICATOR_PTR is set to zero, and the buffer pointed to by

SQL_DESC_OCTET_LENGTH_PTR is set to the length of the data.

If the INDICATOR_PTR field in an APD is a null pointer, the application cannot

use this descriptor record to specify NULL arguments.

Chapter 6. Descriptor values 445

This field is a deferred field: it is not used at the time it is set, but is used at a later

time by DB2 CLI to store data.

SQL_DESC_LABEL [IRDs] This read-only SQLCHAR record field contains the

column label or title. If the column does not have a label, this variable contains the

column name. If the column is unnamed and unlabeled, this variable contains an

empty string.

SQL_DESC_LENGTH [All] This SQLUINTEGER record field is either the

maximum or actual character length of a character string or a binary data type. It

is the maximum character length for a fixed-length data type, or the actual

character length for a variable-length data type. Its value always excludes the null

termination character that ends the character string. Note that this field is a count

of characters, not a count of bytes.

SQL_DESC_LITERAL_PREFIX [IRDs] This read-only SQLCHAR record field

contains the character or characters that DB2 CLI recognizes as a prefix for a literal

of this data type. This variable contains an empty string for a data type for which

a literal prefix is not applicable.

SQL_DESC_LITERAL_SUFFIX [IRDs] This read-only SQLCHAR record field

contains the character or characters that DB2 CLI recognizes as a suffix for a literal

of this data type. This variable contains an empty string for a data type for which

a literal suffix is not applicable.

SQL_DESC_LOCAL_TYPE_NAME [Implementation descriptors] This read-only

SQLCHAR record field contains any localized (native language) name for the data

type that may be different from the regular name of the data type. If there is no

localized name, then an empty string is returned. This field is for display purposes

only.

SQL_DESC_NAME [Implementation descriptors] This SQLCHAR record field in

a row descriptor contains the column alias, if it applies. If the column alias does

not apply, the column name is returned. In either case, the UNNAMED field is set

to SQL_NAMED. If there is no column name or a column alias, an empty string is

returned in the NAME field and the UNNAMED field is set to SQL_UNNAMED.

An application can set the SQL_DESC_NAME field of an IPD to a parameter name

or alias to specify stored procedure parameters by name. The SQL_DESC_NAME

field of an IRD is a read-only field; SQLSTATE HY091 (Invalid descriptor field

identifier) will be returned if an application attempts to set it.

In IPDs, this field is undefined if dynamic parameters are not supported. If named

parameters are supported and the version of DB2 CLI is capable of describing

parameters, then the parameter name is returned in this field.

The column name value can be affected by the environment attribute

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA set by SQLSetEnvAttr().

SQL_DESC_NULLABLE [Implementation descriptors] In IRDs, this read-only

SQLSMALLINT record field is SQL_NULLABLE if the column can have NULL

values; SQL_NO_NULLS if the column cannot have NULL values; or

SQL_NULLABLE_UNKNOWN if it is not known whether the column accepts

NULL values. This field pertains to the result set column, not the base column.

446 Call Level Interface Guide and Reference, Volume 2

In IPDs, this field is always set to SQL_NULLABLE, since dynamic parameters are

always nullable, and cannot be set by an application.

SQL_DESC_NUM_PREC_RADIX [All] This SQLINTEGER field contains a value

of 2 if the data type in the SQL_DESC_TYPE field is an approximate numeric data

type, because the SQL_DESC_PRECISION field contains the number of bits. This

field contains a value of 10 if the data type in the SQL_DESC_TYPE field is an

exact numeric data type, because the SQL_DESC_PRECISION field contains the

number of decimal digits. This field is set to 0 for all non-numeric data types.

SQL_DESC_OCTET_LENGTH [All] This SQLINTEGER record field contains the

length, in bytes, of a character string or binary data type. For fixed-length character

types, this is the actual length in bytes. For variable-length character or binary

types, this is the maximum length in bytes. This value always excludes space for

the null termination character for implementation descriptors and always includes

space for the null termination character for application descriptors. For application

data, this field contains the size of the buffer. For APDs, this field is defined only

for output or input/output parameters.

SQL_DESC_OCTET_LENGTH_PTR [Application descriptors] This SQLINTEGER

* record field points to a variable that will contain the total length in bytes of a

dynamic argument (for parameter descriptors) or of a bound column value (for

row descriptors).

For an APD, this value is ignored for all arguments except character string and

binary; if this field points to SQL_NTS, the dynamic argument must be

null-terminated. To indicate that a bound parameter will be a data-at-execute

parameter, an application sets this field in the appropriate record of the APD to a

variable that, at execute time, will contain the value SQL_DATA_AT_EXEC. If there

is more than one such field, SQL_DESC_DATA_PTR can be set to a value uniquely

identifying the parameter to help the application determine which parameter is

being requested.

If the OCTET_LENGTH_PTR field of an ARD is a null pointer, DB2 CLI does not

return length information for the column. If the

SQL_DESC_OCTET_LENGTH_PTR field of an APD is a null pointer, DB2 CLI

assumes that character strings and binary values are null terminated. (Binary

values should not be null terminated, but should be given a length, in order to

avoid truncation.)

If the call to SQLFetch() or SQLFetchScroll() that fills in the buffer pointed to by

this field did not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the

contents of the buffer are undefined.

This field is a deferred field: it is not used at the time it is set, but is used at a later

time by DB2 CLI to buffer data.

By default this is a pointer to a 4-byte value.

SQL_DESC_PARAMETER_TYPE [IPDs] This SQLSMALLINT record field is set to

SQL_PARAM_INPUT for an input parameter, SQL_PARAM_INPUT_OUTPUT for

an input/output parameter, or SQL_PARAM_OUTPUT for an output parameter.

Set to SQL_PARAM_INPUT by default.

For an IPD, the field is set to SQL_PARAM_INPUT by default if the IPD is not

automatically populated by DB2 CLI (the SQL_ATTR_ENABLE_AUTO_IPD

Chapter 6. Descriptor values 447

statement attribute is SQL_FALSE). An application should set this field in the IPD

for parameters that are not input parameters.

SQL_DESC_PRECISION [All] This SQLSMALLINT record field contains the

number of digits for an exact numeric type, the number of bits in the mantissa

(binary precision) for an approximate numeric type, or the numbers of digits in the

fractional seconds component for the SQL_TYPE_TIME or

SQL_TYPE_TIMESTAMP data types. This field is undefined for all other data

types.

SQL_DESC_SCALE [All] This SQLSMALLINT record field contains the defined

scale for DECIMAL and NUMERIC data types. The field is undefined for all other

data types.

SQL_DESC_SCHEMA_NAME [IRDs] This read-only SQLCHAR record field

contains the schema name of the base table that contains the column. For many

DBMS’s, this is the owner name. If the data source does not support schemas (or

owners) or the schema name cannot be determined, this variable contains an

empty string.

SQL_DESC_SEARCHABLE [IRDs] This read-only SQLSMALLINT record field is

set to one of the following values:

v SQL_PRED_NONE if the column cannot be used in a WHERE clause. (This is

the same as the SQL_UNSEARCHABLE value defined in ODBC 2.0.)

v SQL_PRED_CHAR if the column can be used in a WHERE clause, but only with

the LIKE predicate. (This is the same as the SQL_LIKE_ONLY value defined in

ODBC 2.0.)

v SQL_PRED_BASIC if the column can be used in a WHERE clause with all the

comparison operators except LIKE. (This is the same as the SQL_EXCEPT_LIKE

value defined in ODBC 2.0.)

v SQL_PRED_SEARCHABLE if the column can be used in a WHERE clause with

any comparison operator.

SQL_DESC_TABLE_NAME [IRDs] This read-only SQLCHAR record field

contains the name of the base table that contains this column.

SQL_DESC_TYPE [All] This SQLSMALLINT record field specifies the concise SQL

or C data type for all data types.

Note: ODBC 3.0 defines the SQL_INTERVAL data type which is not supported by

DB2 CLI. Any behavior associated with this data type is not present in DB2 CLI.

The values in the SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE fields are

interdependent. Each time one of the fields is set, the other must also be set.

SQL_DESC_TYPE can be set by a call to SQLSetDescField() or SQLSetDescRec().

SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or

SQLBindParameter(), or SQLSetDescField().

If SQL_DESC_TYPE is set to a concise data type, the SQL_DESC_CONCISE_TYPE

field is set to the same value, and the SQL_DESC_DATETIME_INTERVAL_CODE

field is set to 0.

When the SQL_DESC_TYPE field is set by a call to SQLSetDescField(), the

following fields are set to the following default values. The values of the remaining

fields of the same record are undefined:

448 Call Level Interface Guide and Reference, Volume 2

Table 161. Default values

SQL_DESC_TYPE Other fields Implicitly Set

 SQL_CHAR,

SQL_VARCHAR

SQL_DESC_LENGTH is set to 1. SQL_DESC_PRECISION is set to 0.

 SQL_DECIMAL,

SQL_NUMERIC

SQL_DESC_SCALE is set to 0. SQL_DESC_PRECISION is set to the

precision for the respective data type.

SQL_FLOAT SQL_DESC_PRECISION is set to the default precision for

SQL_FLOAT.

SQL_DATETIME SQL_DESC_CONCISE_TYPE and/or

SQL_DESC_DATETIME_INTERVAL_CODE may be set implicitly to

indicate a DATE SQL or C type.

SQL_INTERVAL This data type is not supported by DB2 CLI.

When an application calls SQLSetDescField() to set fields of a descriptor, rather

than calling SQLSetDescRec(), the application must first declare the data type. If

the values implicitly set are unacceptable, the application can then call

SQLSetDescField() to set the unacceptable value explicitly.

SQL_DESC_TYPE_NAME [Implementation descriptors] This read-only

SQLCHAR record field contains the data-source-dependent type name (for

example, CHAR, VARCHAR, and so on). If the data type name is unknown, this

variable contains an empty string.

SQL_DESC_UNNAMED [Implementation descriptors] This SQLSMALLINT

record field in a row descriptor is set to either SQL_NAMED or SQL_UNNAMED.

If the NAME field contains a column alias, or if the column alias does not apply,

the UNNAMED field is set to SQL_NAMED. If there is no column name or a

column alias, the UNNAMED field is set to SQL_UNNAMED.

An application can set the SQL_DESC_UNNAMED field of an IPD to

SQL_UNNAMED. SQLSTATE HY091 (Invalid descriptor field identifier) is returned

if an application attempts to set the SQL_DESC_UNNAMED field of an IPD to

SQL_NAMED. The SQL_DESC_UNNAMED field of an IRD is read-only;

SQLSTATE HY091 (Invalid descriptor field identifier) will be returned if an

application attempts to set it.

SQL_DESC_UNSIGNED [Implementation descriptors] This read-only

SQLSMALLINT record field is set to SQL_TRUE if the column type is unsigned or

non-numeric, or SQL_FALSE if the column type is signed.

SQL_DESC_UPDATABLE [IRDs] This read-only SQLSMALLINT record field is

set to one of the following values:

v SQL_ATTR_READ_ONLY if the result set column is read-only.

v SQL_ATTR_WRITE if the result set column is read-write.

v SQL_ATTR_READWRITE_UNKNOWN if it is not known whether the result set

column is updatable or not.

SQL_DESC_UPDATABLE describes the updatability of the column in the result set,

not the column in the base table. The updatability of the column in the base table

on which this result set column is based may be different than the value in this

field. Whether a column is updatable can be based on the data type, user

privileges, and the definition of the result set itself. If it is unclear whether a

column is updatable, SQL_UPDT_READWRITE_UNKNOWN should be returned.

Chapter 6. Descriptor values 449

SQL_DESC_USER_DEFINED_TYPE_CODE [IRDs] This read-only SQLINTEGER

returns information that describes the nature of a column’s data type. Four values

may be returned:

v SQL_TYPE_BASE: the column data type is a base data type, such as CHAR,

DATE, or DOUBLE).

v SQL_TYPE_DISTINCT: the column data type is a distinct user-defined type.

v SQL_TYPE_REFERENCE: the column data type is a reference user-defined type.

v SQL_TYPE_STRUCTURED: the column data type is a structured user-defined

type.

SQL_DESC_CARDINALITY [APD, IPD] This SQLLEN record field indicates the

maximum cardinality of the array value for the specified parameter marker. The

IPD value indicates the maximum cardinality that can be sent to the database for

an array value. The APD value indicates the maximum cardinality for an array

value which is how the application indicates the maximum amount of allocated

storage for output parameter array values for a CALL statement.

SQL_DESC_CARDINALITY_PTR [APD] This SQLLEN * record field points to a

variable that will contain the cardinality of a parameter when the statement is

executed. For input parameter markers, this is how the application provides the

actual cardinality of an array value. For output parameter markers, this is the

location where CLI will indicate the cardinality of the returned array value. Note

that for output parameters, this value indicates the cardinality of the array

returned by the stored procedure - not necessarily the cardinality written to the

application, since it’s possible for SQL_DESC_CARDINALITY(APD) to be less than

the actual cardinality returned from the procedure. This is a deferred field - it is

not used at the time it is set, but is used at a later time by DB2 CLI.

Descriptor header and record field initialization values (CLI)

The following tables list the initialization of each field for each type of descriptor,

with D indicating that the field is initialized with a default, and ND indicating that

the field is initialized without a default. If a number is shown, the default value of

the field is that number. The tables also indicate whether a field is read/write

(R/W) or read-only (R).

The initialization of header fields is as follows:

 Table 162. Initialization of header fields

Descriptor header field Type

Readable and

writable (R/W) or

read-only (R) Initialization value

SQL_DESC_ALLOC_TYPE SQLSMALLINT v ARD: R

v APD: R

v IRD: R

v IPD: R

v ARD: SQL_DESC_ALLOC_AUTO

for implicit or

SQL_DESC_ALLOC_USER for

explicit

v APD: SQL_DESC_ALLOC_AUTO

for implicit or

SQL_DESC_ALLOC_USER for

explicit

v IRD: SQL_DESC_ALLOC_AUTO

v IPD: SQL_DESC_ALLOC_AUTO

450 Call Level Interface Guide and Reference, Volume 2

Table 162. Initialization of header fields (continued)

Descriptor header field Type

Readable and

writable (R/W) or

read-only (R) Initialization value

SQL_DESC_ARRAY_SIZE SQLUINTEGER v ARD: R/W

v APD: R/W

v IRD: Unused

v IPD: Unused

v ARD:

a

v APD:

a

v IRD: Unused

v IPD: Unused

SQL_DESC_ARRAY_STATUS_PTR SQLUSMALLINT

*

v ARD: R/W

v APD: R/W

v IRD: R/W

v IPD: R/W

v ARD: Null ptr

v APD: Null ptr

v IRD: Null ptr

v IPD: Null ptr

SQL_DESC_BIND_OFFSET_PTR SQLINTEGER * v ARD: R/W

v APD: R/W

v IRD: Unused

v IPD: Unused

v ARD: Null ptr

v APD: Null ptr

v IRD: Unused

v IPD: Unused

SQL_DESC_BIND_TYPE SQLINTEGER v ARD: R/W

v APD: R/W

v IRD: Unused

v IPD: Unused

v ARD: SQL_BIND_BY_COLUMN

v APD: SQL_BIND_BY_COLUMN

v IRD: Unused

v IPD: Unused

SQL_DESC_COUNT SQLSMALLINT v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: 0

v APD: 0

v IRD: D

v IPD: 0

 SQL_DESC_ROWS_

 PROCESSED_PTR

SQLUINTEGER * v ARD: Unused

v APD: Unused

v IRD: R/W

v IPD: R/W

v ARD: Unused

v APD: Unused

v IRD: Null Ptr

v IPD: Null Ptr

a These fields are defined only when the IPD is automatically populated by

DB2 CLI. If the fields are not automatically populated then they are

undefined. If an application attempts to set these fields, SQLSTATE HY091

(Invalid descriptor field identifier.) will be returned.

The initialization of record fields is as follows:

 Table 163. Initialization of record fields

Descriptor record field Type

Readable and

writable (R/W) or

read-only (R) Initialization value

SQL_DESC_AUTO_UNIQUE_VALUE SQLINTEGER v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_BASE_COLUMN_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_BASE_TABLE_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

Chapter 6. Descriptor values 451

Table 163. Initialization of record fields (continued)

Descriptor record field Type

Readable and

writable (R/W) or

read-only (R) Initialization value

SQL_DESC_CASE_SENSITIVE SQLINTEGER v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: D

a

SQL_DESC_CATALOG_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_CONCISE_TYPE SQLSMALLINT v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: SQL_C_DEFAULT

v APD: SQL_C_DEFAULT

v IRD: D

v IPD: ND

SQL_DESC_DATA_PTR SQLPOINTER v ARD: R/W

v APD: R/W

v IRD: Unused

v IPD: Unused

v ARD: Null ptr

v APD: Null ptr

v IRD: Unused

v IPD: Unused

b

 SQL_DESC_DATETIME_

 INTERVAL_CODE

SQLSMALLINT v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

 SQL_DESC_DATETIME_

 INTERVAL_PRECISION

SQLINTEGER v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_DISPLAY_SIZE SQLINTEGER v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_FIXED_PREC_SCALE SQLSMALLINT v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: D

a

SQL_DESC_INDICATOR_PTR SQLINTEGER * v ARD: R/W

v APD: R/W

v IRD: Unused

v IPD: Unused

v ARD: Null ptr

v APD: Null ptr

v IRD: Unused

v IPD: Unused

SQL_DESC_LABEL SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_LENGTH SQLUINTEGER v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_LITERAL_PREFIX SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

452 Call Level Interface Guide and Reference, Volume 2

Table 163. Initialization of record fields (continued)

Descriptor record field Type

Readable and

writable (R/W) or

read-only (R) Initialization value

SQL_DESC_LITERAL_SUFFIX SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_LOCAL_TYPE_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: D

a

SQL_DESC_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_NULLABLE SQLSMALLINT v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R

v ARD: ND

v APD: ND

v IRD: N

v IPD: ND

SQL_DESC_NUM_PREC_RADIX SQLINTEGER v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_OCTET_LENGTH SQLINTEGER v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_OCTET_LENGTH_PTR SQLINTEGER * v ARD: R/W

v APD: R/W

v IRD: Unused

v IPD: Unused

v ARD: Null ptr

v APD: Null ptr

v IRD: Unused

v IPD: Unused

SQL_DESC_PARAMETER_TYPE SQLSMALLINT v ARD: Unused

v APD: Unused

v IPD: Unused

v IRD: R/W

v ARD: Unused

v APD: Unused

v IPD: Unused

v IRD: D=SQL_PARAM_INPUT

SQL_DESC_PRECISION SQLSMALLINT v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_SCALE SQLSMALLINT v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_SCHEMA_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_SEARCHABLE SQLSMALLINT v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

Chapter 6. Descriptor values 453

Table 163. Initialization of record fields (continued)

Descriptor record field Type

Readable and

writable (R/W) or

read-only (R) Initialization value

SQL_DESC_TABLE_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_TYPE SQLSMALLINT v ARD: R/W

v APD: R/W

v IRD: R

v IPD: R/W

v ARD: SQL_C_DEFAULT

v APD: SQL_C_DEFAULT

v IRD: D

v IPD: ND

SQL_DESC_TYPE_NAME SQLCHAR * v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: D

a

SQL_DESC_UNNAMED SQLSMALLINT v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R/W

v ARD: ND

v APD: ND

v IRD: D

v IPD: ND

SQL_DESC_UNSIGNED SQLSMALLINT v ARD: Unused

v APD: Unused

v IRD: R

v IPD: R

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: D

a

SQL_DESC_UPDATABLE SQLSMALLINT v ARD: Unused

v APD: Unused

v IRD: R

v IPD: Unused

v ARD: Unused

v APD: Unused

v IRD: D

v IPD: Unused

SQL_DESC_CARDINALITY SQLLEN v ARD: Unused

v APD: R/W

v IRD: Unused

v IPD: R/W

v ARD: Unused

v APD: D

v IRD: Unused

v IPD: D

SQL_DESC_CARDINALITY_PTR SQLLEN * v ARD: Unused

v APD: R/W

v IRD: Unused

v IPD: Unused

v ARD: Unused

v APD: D

v IRD: Unused

v IPD: Unused

a These fields are defined only when the IPD is automatically populated by

DB2 CLI. If the fields are not automatically populated then they are

undefined. If an application attempts to set these fields, SQLSTATE HY091

(Invalid descriptor field identifier.) will be returned.

b The SQL_DESC_DATA_PTR field in the IPD can be set to force a

consistency check. In a subsequent call to SQLGetDescField() or

SQLGetDescRec(), DB2 CLI is not required to return the value that

SQL_DESC_DATA_PTR was set to.

454 Call Level Interface Guide and Reference, Volume 2

Chapter 7. Header and record fields for the DiagIdentifier

argument (CLI)

Header fields

The following header fields can be included in the DiagIdentifier argument. The

only diagnostic header fields that are defined for a descriptor field are

SQL_DIAG_NUMBER and SQL_DIAG_RETURNCODE.

 Table 164. Header fields for DiagIdentifier arguments

Header fields Return type Description

 SQL_DIAG_CURSOR_ROW_

 COUNT

SQLINTEGER This field contains the count of rows in the

cursor. Its semantics depend upon the

SQLGetInfo() information types:

v

 SQL_DYNAMIC_CURSOR_

 ATTRIBUTES2

v

 SQL_FORWARD_ONLY_

 CURSOR_ATTRIBUTES2

v

 SQL_KEYSET_CURSOR_

 ATTRIBUTES2

v

 SQL_STATIC_CURSOR_

 ATTRIBUTES2

which indicate which row counts are

available for each cursor type (in the

SQL_CA2_CRC_EXACT and

SQL_CA2_CRC_APPROXIMATE bits).

The contents of this field are defined only for

statement handles and only after

SQLExecute(), SQLExecDirect(), or

SQLMoreResults() has been called. Calling

SQLGetDiagField() with a DiagIdentifier of

SQL_DIAG_CURSOR_ROW_COUNT on a

handle other than a statement handle will

return SQL_ERROR.

 SQL_DIAG_DYNAMIC_

 FUNCTION

CHAR * This is a string that describes the SQL

statement that the underlying function

executed (see Dynamic function fields for the

values that DB2 CLI supports). The contents

of this field are defined only for statement

handles, and only after a call to SQLExecute()

or SQLExecDirect(). The value of this field is

undefined before a call to SQLExecute() or

SQLExecDirect().

© Copyright IBM Corp. 1993, 2008 455

Table 164. Header fields for DiagIdentifier arguments (continued)

Header fields Return type Description

 SQL_DIAG_DYNAMIC_

 FUNCTION_CODE

SQLINTEGER This is a numeric code that describes the SQL

statement that was executed by the

underlying function (see Dynamic function

fields for the values that DB2 CLI supports).

The contents of this field are defined only for

statement handles, and only after a call to

SQLExecute() or SQLExecDirect(). The value

of this field is undefined before a call to

SQLExecute(), SQLExecDirect(), or

SQLMoreResults(). Calling SQLGetDiagField()

with a DiagIdentifier of

SQL_DIAG_DYNAMIC_FUNCTION_CODE

on a handle other than a statement handle

will return SQL_ERROR. The value of this

field is undefined before a call to

SQLExecute() or SQLExecDirect().

SQL_DIAG_NUMBER SQLINTEGER The number of status records that are

available for the specified handle.

 SQL_DIAG_RELATIVE_

 COST_ESTIMATE

SQLINTEGER If SQLPrepare() is invoked and successful,

contains a relative cost estimate of the

resources required to process the statement. If

deferred prepare is enabled, this field will

have the value of 0 until the statement is

executed.

SQL_DIAG_RETURNCODE RETCODE Return code returned by the last executed

function associated with the specified handle.

If no function has yet been called on the

Handle, SQL_SUCCESS will be returned for

SQL_DIAG_RETURNCODE.

SQL_DIAG_ROW_COUNT SQLINTEGER The number of rows affected by an insert,

delete, or update performed by SQLExecute(),

SQLExecDirect(), or SQLSetPos(). It is

defined after a cursor specification has been

executed. The contents of this field are

defined only for statement handles. The data

in this field is returned in the RowCountPtr

argument of SQLRowCount(). The data in this

field is reset after every function call, whereas

the row count returned by SQLRowCount()

remains the same until the statement is set

back to the prepared or allocated state.

Record fields

The following record fields can be included in the DiagIdentifier argument:

 Table 165. Record fields for DiagIdentifier arguments

Record fields Return type Descritpion

SQL_DIAG_CLASS_ORIGIN CHAR * A string that indicates the document that

defines the class and subclass portion of the

SQLSTATE value in this record.

DB2 CLI always returns an empty string for

SQL_DIAG_CLASS_ORIGIN.

456 Call Level Interface Guide and Reference, Volume 2

Table 165. Record fields for DiagIdentifier arguments (continued)

Record fields Return type Descritpion

SQL_DIAG_COLUMN_NUMBER SQLINTEGER If the SQL_DIAG_ROW_NUMBER field is a

valid row number in a rowset or set of

parameters, then this field contains the value

that represents the column number in the

result set. Result set column numbers always

start at 1; if this status record pertains to a

bookmark column, then the field can be zero.

It has the value

SQL_NO_COLUMN_NUMBER if the status

record is not associated with a column

number. If DB2 CLI cannot determine the

column number that this record is associated

with, this field has the value

SQL_COLUMN_NUMBER_UNKNOWN. The

contents of this field are defined only for

statement handles.

SQL_DIAG_CONNECTION_NAME CHAR * A string that indicates the name of the

connection that the diagnostic record relates

to.

DB2 CLI always returns an empty string for

SQL_DIAG_CONNECTION_NAME

SQL_DAIG_ERRMC CHAR * A string containing one or more message

tokens separated by X’FF’.

SQL_DIAG_MESSAGE_TEXT CHAR * An informational message on the error or

warning.

SQL_DIAG_NATIVE SQLINTEGER A driver/data-source-specific native error

code. If there is no native error code, the

driver returns 0.

SQL_DIAG_ROW_NUMBER SQLINTEGER This field contains the row number in the

rowset, or the parameter number in the set of

parameters, with which the status record is

associated. This field has the value

SQL_NO_ROW_NUMBER if this status

record is not associated with a row number.

If DB2 CLI cannot determine the row number

that this record is associated with, this field

has the value

SQL_ROW_NUMBER_UNKNOWN. The

contents of this field are defined only for

statement handles.

SQL_DIAG_SERVER_NAME CHAR * A string that indicates the server name that

the diagnostic record relates to. It is the same

as the value returned for a call to

SQLGetInfo() with the

SQL_DATA_SOURCE_NAME InfoType. For

diagnostic data structures associated with the

environment handle and for diagnostics that

do not relate to any server, this field is a

zero-length string.

SQL_DIAG_SQLSTATE CHAR * A five-character SQLSTATE diagnostic code.

Chapter 7. DiagIdentifier values 457

Table 165. Record fields for DiagIdentifier arguments (continued)

Record fields Return type Descritpion

SQL_DIAG_SUBCLASS_ORIGIN CHAR * A string with the same format and valid

values as SQL_DIAG_CLASS_ORIGIN, that

identifies the defining portion of the subclass

portion of the SQLSTATE code.

Values of the dynamic function fields

The table below describes the values of SQL_DIAG_DYNAMIC_FUNCTION and

SQL_DIAG_DYNAMIC_FUNCTION_CODE that apply to each type of SQL

statement executed by a call to SQLExecute() or SQLExecDirect(). This is the list

that DB2 CLI uses. ODBC also specifies other values.

 Table 166. Values of dynamic function fields

SQL statement executed

Value of SQL_DIAG_

DYNAMIC_FUNCTION

Value of SQL_DIAG_DYNAMIC_

FUNCTION_CODE

alter-table-statement ALTER TABLE SQL_DIAG_ALTER_TABLE

create-index-statement CREATE INDEX SQL_DIAG_CREATE_INDEX

create-table-statement CREATE TABLE SQL_DIAG_CREATE_TABLE

create-view-statement CREATE VIEW SQL_DIAG_CREATE_VIEW

cursor-specification SELECT CURSOR SQL_DIAG_SELECT_CURSOR

delete-statement-positioned DYNAMIC DELETE CURSOR

 SQL_DIAG_DYNAMIC_DELETE_

 CURSOR

delete-statement-searched DELETE WHERE SQL_DIAG_DELETE_WHERE

drop-index-statement DROP INDEX SQL_DIAG_DROP_INDEX

drop-table-statement DROP TABLE SQL_DIAG_DROP_TABLE

drop-view-statement DROP VIEW SQL_DIAG_DROP_VIEW

grant-statement GRANT SQL_DIAG_GRANT

insert-statement INSERT SQL_DIAG_INSERT

ODBC-procedure-extension CALL SQL_DIAG_PROCEDURE_CALL

revoke-statement REVOKE SQL_DIAG_REVOKE

update-statement-positioned DYNAMIC UPDATE CURSOR

 SQL_DIAG_DYNAMIC_UPDATE_

 CURSOR

update-statement-searched UPDATE WHERE SQL_DIAG_UPDATE_WHERE

merge-statement ″MERGE″ SQL_DIAG_MERGE

Unknown empty string

 SQL_DIAG_UNKNOWN_

 STATEMENT

458 Call Level Interface Guide and Reference, Volume 2

Chapter 8. CLI data type attributes

SQL symbolic and default data types for CLI applications

The table below lists each of the SQL data types used by CLI applications, with its

corresponding symbolic name, and the default C symbolic name.

SQL data type

This column contains the SQL data types as they would appear in an SQL

CREATE statement. The SQL data types are dependent on the DBMS.

Symbolic SQL data type

This column contains SQL symbolic names that are defined (in sqlcli.h)

as an integer value. These values are used by various functions to identify

the SQL data types listed in the first column.

Default C symbolic data type

This column contains C symbolic names, also defined as integer values.

These values are used in various function arguments to identify the C data

type. The symbolic names are used by various functions, such as

SQLBindParameter(), SQLGetData(), and SQLBindCol() to indicate the C

data types of the application variables. Instead of explicitly identifying C

data types when calling these functions, SQL_C_DEFAULT can be specified

instead, and DB2 CLI will assume a default C data type based on the SQL

data type of the parameter or column as shown by this table. For example,

the default C data type of SQL_DECIMAL is SQL_C_CHAR.

 It is recommended that applications do not use SQL_C_DEFAULT to define C

data types because it is less efficient for the CLI driver. Explicitly

indicating the C data type in the application is preferred since it yields

better performance than using SQL_C_DEFAULT.

 Table 167. SQL symbolic and default data types

SQL data type Symbolic SQL data type

Default symbolic C data

type

BIGINT SQL_BIGINT SQL_C_SBIGINT

BINARY SQL_BINARY SQL_C_BINARY

BLOB SQL_BLOB SQL_C_BINARY

BLOB LOCATOR

a SQL_BLOB_LOCATOR SQL_C_BLOB_LOCATOR

CHAR SQL_CHAR SQL_C_CHAR

CHAR SQL_TINYINT SQL_C_TINYINT

CHAR FOR BIT DATA

b SQL_BINARY SQL_C_BINARY

CHAR FOR BIT DATA SQL_BIT SQL_C_BINARY

CLOB SQL_CLOB SQL_C_CHAR

CLOB LOCATOR

a SQL_CLOB_LOCATOR SQL_C_CLOB_LOCATOR

DATE SQL_TYPE_DATE SQL_C_TYPE_DATE

DBCLOB SQL_DBCLOB SQL_C_DBCHAR

DBCLOB LOCATOR

a SQL_DBCLOB_LOCATOR SQL_C_DBCLOB_LOCATOR

DECIMAL SQL_DECIMAL SQL_C_CHAR

© Copyright IBM Corp. 1993, 2008 459

Table 167. SQL symbolic and default data types (continued)

SQL data type Symbolic SQL data type

Default symbolic C data

type

DECFLOAT(16) SQL_DECFLOAT SQL_C_CHAR

DECFLOAT(34) SQL_DECFLOAT SQL_C_CHAR

DOUBLE SQL_DOUBLE SQL_C_DOUBLE

FLOAT SQL_FLOAT SQL_C_DOUBLE

GRAPHIC SQL_GRAPHIC SQL_C_DBCHAR

INTEGER SQL_INTEGER SQL_C_LONG

LONG VARCHAR

b SQL_LONGVARCHAR SQL_C_CHAR

LONG VARCHAR FOR BIT

DATA

b

SQL_LONGVARBINARY SQL_C_BINARY

LONG VARGRAPHIC

b SQL_LONGVARGRAPHIC SQL_C_DBCHAR

LONG VARGRAPHIC

b SQL_WLONGVARCHAR SQL_C_DBCHAR

NUMERIC

c SQL_NUMERIC

c SQL_C_CHAR

REAL SQL_REAL SQL_C_FLOAT

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TYPE_TIME SQL_C_TYPE_TIME

TIMESTAMP SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP

VARBINARY SQL_VARBINARY SQL_C_BINARY

VARCHAR SQL_VARCHAR SQL_C_CHAR

VARCHAR FOR BIT DATA

b SQL_VARBINARY SQL_C_BINARY

VARGRAPHIC SQL_VARGRAPHIC SQL_C_DBCHAR

VARGRAPHIC SQL_WVARCHAR SQL_C_DBCHAR

WCHAR SQL_WCHAR SQL_C_WCHAR

XML SQL_XML SQL_C_BINARY

v a LOB locator types are not persistent SQL data types, (columns can not be defined with a

locator type, they are only used to describe parameter markers, or to represent a LOB

value).

v b LONG data types and FOR BIT DATA data types should be replaced by an appropriate

LOB types whenever possible.

v c NUMERIC is a synonym for DECIMAL on DB2 Version 9.1 for z/OS (DB2 for z/OS),

DB2 Server for VSE & VM and DB2 Database for Linux, UNIX, and Windows.

Note: The data types DATE, DECIMAL, DECFLOAT(16), DECFLOAT(34), NUMERIC,

TIME, and TIMESTAMP cannot be transferred to their default C buffer types without a

conversion.

C data types for CLI applications

The following table lists the generic type definitions for each symbolic C type that

is used in CLI applications.

C symbolic data type

This column contains C symbolic names, defined as integer values. These

values are used in various function arguments to identify the C data type

shown in the last column.

460 Call Level Interface Guide and Reference, Volume 2

C type

This column contains C defined types, defined in sqlcli.h using a C

typedef statement. The values in this column should be used to declare all

DB2 CLI related variables and arguments, in order to make the application

more portable. Refer to Table 170 on page 463 for a list of additional

symbolic data types used for function arguments.

Base C type

This column is shown for reference only. All variables and arguments

should be defined using the symbolic types in the previous column since

the base C type is platform dependent. Some of the values are C structures

that are described in Table 169 on page 462.

 Table 168. C data types

C symbolic data type C type Base C type

SQL_C_BINARY SQLCHAR unsigned char

SQL_C_BIT SQLCHAR unsigned char or char (Value 1 or 0)

SQL_C_BLOB_LOCATOR

a SQLINTEGER 32-bit integer

SQL_C_CLOB_LOCATOR

a SQLINTEGER 32-bit integer

SQL_C_CHAR SQLCHAR unsigned char

SQL_C_DBCHAR SQLDBCHAR wchar_t

SQL_C_DBCLOB_LOCATOR SQLINTEGER 32-bit integer

SQL_C_DECIMAL64 SQLDECIMAL64 see Table 169 on page 462

SQL_C_DECIMAL128 SQLDECIMAL128 see Table 169 on page 462

SQL_C_DOUBLE SQLDOUBLE double

SQL_C_FLOAT SQLREAL float

SQL_C_LONG SQLINTEGER 32-bit integer

SQL_C_NUMERIC

b SQL_NUMERIC_STRUCT see Table 169 on page 462

SQL_C_SBIGINT SQLBIGINT 64-bit integer

SQL_C_SHORT SQLSMALLINT 16-bit integer

SQL_C_TINYINT SQLSCHAR signed char (Range -128 to 127)

SQL_C_TYPE_DATE DATE_STRUCT see Table 169 on page 462

SQL_C_TYPE_TIME TIME_STRUCT see Table 169 on page 462

SQL_C_TYPE_TIMESTAMP TIMESTAMP_STRUCT see Table 169 on page 462

SQL_C_UBIGINT SQLUBIGINT unsigned 64-bit integer

SQL_C_ULONG SQLUINTEGER unsigned 32-bit integer

SQL_C_USHORT SQLUSMALLINT unsigned 16-bit integer

SQL_C_UTINYINT SQLUCHAR unsigned char

SQL_C_WCHAR SQLWCHAR wchar_t

v a LOB Locator Types.

v b Windows only.

Note: SQL file reference data types (used in embedded SQL) are not needed in DB2 CLI.

Chapter 8. CLI data type attributes 461

Table 169. C structures

C type Generic structure Windows structure

DATE_STRUCT

typedef struct DATE_STRUCT

 {

 SQLSMALLINT year;

 SQLUSMALLINT month;

 SQLUSMALLINT day;

 } DATE_STRUCT;

typedef struct tagDATE_STRUCT

 {

 SWORD year;

 UWORD month;

 UWORD day;

 } DATE_STRUCT;

TIME_STRUCT

typedef struct TIME_STRUCT

 {

 SQLUSMALLINT hour;

 SQLUSMALLINT minute;

 SQLUSMALLINT second;

 } TIME_STRUCT;

typedef struct tagTIME_STRUCT

 {

 UWORD hour;

 UWORD minute;

 UWORD second;

 } TIME_STRUCT;

TIMESTAMP_STRUCT

typedef struct TIMESTAMP_STRUCT

 {

 SQLUSMALLINT year;

 SQLUSMALLINT month;

 SQLUSMALLINT day;

 SQLUSMALLINT hour;

 SQLUSMALLINT minute;

 SQLUSMALLINT second;

 SQLINTEGER fraction;

 } TIMESTAMP_STRUCT;

typedef struct tagTIMESTAMP_STRUCT

 {

 SWORD year;

 UWORD month;

 UWORD day;

 UWORD hour;

 UWORD minute;

 UWORD second;

 UDWORD fraction;

 } TIMESTAMP_STRUCT;

SQLDECIMAL64 typedef struct tagSQLDECIMAL64

 {

 union {

 SQLDOUBLE dummy;

 SQLCHAR dec64

 [SQL_DECFLOAT16_

 COEFFICIENT_LEN];

 } udec64;

 } SQLDECIMAL64;

(No Windows structure. Only a generic

structure.)

SQLDECIMAL128 typedef struct tagSQLDECIMAL128

 {

 union {

 SQLDOUBLE dummy;

 SQLCHAR dec128

 [SQL_DECFLOAT34_

 COEFFICIENT_LEN];

 } udec128;

 } SQLDECIMAL128;

(No Windows structure. Only a generic

structure.)

SQL_NUMERIC_STRUCT (No generic structure. Only a

Windows structure.)

typedef struct tagSQL_NUMERIC_STRUCT

 {

 SQLCHAR precision;

 SQLCHAR scale;

 SQLCHAR sign;

a

 SQLCHAR

 val[SQL_MAX_NUMERIC_LEN];b c

 } SQL_NUMERIC_STRUCT;

462 Call Level Interface Guide and Reference, Volume 2

Table 169. C structures (continued)

C type Generic structure Windows structure

Refer to Table 170 for more information on the SQLUSMALLINT C data type.

v a Sign field: 1 = positive, 2 = negative

v b A number is stored in the val field of the SQL_NUMERIC_STRUCT structure as a scaled integer, in little endian

mode (the leftmost byte being the least-significant byte). For example, the number 10.001 base 10, with a scale of 4,

is scaled to an integer of 100010. Because this is 186AA in hexadecimal format, the value in

SQL_NUMERIC_STRUCT would be “AA 86 01 00 00 ... 00”, with the number of bytes defined by the

SQL_MAX_NUMERIC_LEN #define.

v c The precision and scale fields of the SQL_C_NUMERIC data type are never used for input from an application,

only for output from the driver to the application. When the driver writes a numeric value into the

SQL_NUMERIC_STRUCT, it will use its own default as the value for the precision field, and it will use the value

in the SQL_DESC_SCALE field of the application descriptor (which defaults to 0) for the scale field. An application

can provide its own values for precision and scale by setting the SQL_DESC_PRECISION and SQL_DESC_SCALE

fields of the application descriptor.

As well as the data types that map to SQL data types, there are also C symbolic

types used for other function arguments such as pointers and handles. Both the

generic and ODBC data types are shown below.

Note: There are two kinds of drivers that ship with the product: the DB2 CLI

driver, and the 64-bit ODBC driver. The 64-bit ODBC Driver handles the

differences with type definitions between various ODBC Managers.

 Table 170. C Data types and base C data types

Defined C type Base C type Typical usage

SQLPOINTER void * Pointer to storage for data and parameters.

SQLHANDLE 1. 1. void *

2. 32-bit integer

Handle used to reference all 4 types of handle

information.

1. 64-bit value for Windows 64-bit ODBC Driver

and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit

DB2 CLI Drivers

SQLHENV 1. 1. void *

2. 32-bit integer

Handle referencing environment information.

1. 64-bit value for Windows 64-bit ODBC Driver

and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit

DB2 CLI Drivers

SQLHDBC 1. 1. void *

2. 32-bit integer

Handle referencing database connection

information.

1. 64-bit value for Windows 64-bit ODBC Driver

and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit

DB2 CLI Drivers

SQLHSTMT 1. 1. void *

2. 32-bit integer

Handle referencing statement information.

1. 64-bit value for Windows 64-bit ODBC Driver

and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit

DB2 CLI Drivers

SQLUSMALLINT unsigned 16-bit

integer

Function input argument for unsigned short

integer values.

Chapter 8. CLI data type attributes 463

Table 170. C Data types and base C data types (continued)

Defined C type Base C type Typical usage

SQLUINTEGER unsigned 32-bit

integer

Function input argument for unsigned long

integer values.

SQLRETURN 16-bit integer Return code from DB2 CLI functions.

SQLULEN 1. unsigned 64-bit

integer

2. unsigned 32-bit

integer

1. Function input or output argument for

unsigned 64-bit integer values (Windows

64-bit ODBC driver).

2. Function input or output argument for

unsigned 32-bit integer values (all other

drivers).

SQLLEN 1. 64-bit integer

2. 32-bit integer

1. Function input or output argument for 64-bit

integer values (Windows 64-bit ODBC driver).

2. Function input or output argument for 32-bit

integer values (all other drivers).

SQLSETPOSIROW 1. 64-bit integer

2. 16-bit integer

1. Function input or output argument for 64-bit

integer values (Windows 64-bit ODBC driver).

2. Function input or output argument for 16-bit

integer values (all other drivers).

Data conversions supported in CLI

The table below shows which data type conversions are supported by DB2 CLI.

The first column contains the data type of the SQL data type. The remaining

columns represent the C data types. If the C data type columns contain:

D The conversion is supported and this is the default conversion for the SQL

data type.

X all IBM DBMSs support the conversion.

blank no IBM DBMS supports the conversion.

As an example, the table indicates that an SQLCHAR (or a C character) string can

be converted into an SQL_C_LONG (a signed long). In contrast, an SQLINTEGER

cannot be converted to an SQL_C_DBCHAR.

Refer to the tables of data type attributes (precision, scale, length, and display) for

more information on the data type formats.

464 Call Level Interface Guide and Reference, Volume 2

Table 171. Supported data conversions

 SQL

data type

 S

Q

L

_

C

_

C

H

A

R

 S

Q

L

_

C

_

W

C

H

A

R

 S

Q

L

_

C

_

D

B

C

H

A

R

 S

Q

L

_

C

_

B

I

T

 S

Q

L

_

C

_

T

I

N

Y

I

N

T

 S

Q

L

_

C

_

S

T

I

N

Y

I

N

T

 S

Q

L

_

C

_

U

T

I

N

Y

I

N

T

 S

Q

L

_

C

_

S

H

O

R

T

 S

Q

L

_

C

_

S

S

H

O

R

T

 S

Q

L

_

C

_

U

S

H

O

R

T

 S

Q

L

_

C

_

L

O

N

G

 S

Q

L

_

C

_

S

L

O

N

G

 S

Q

L

_

C

_

U

L

O

N

G

 S

Q

L

_

C

_

S

B

I

G

I

N

T

 S

Q

L

_

C

_

U

B

I

G

I

N

T

 S

Q

L

_

C

_

F

L

O

A

T

 S

Q

L

_

C

_

D

O

U

B

L

E

 S

Q

L

_

C

_

N

U

M

E

R

I

C

 S

Q

L

_

C

_

D

E

C

I

M

A

L

_

I

B

M

 S

Q

L

_

C

_

D

E

C

I

M

A

L

6

4

 S

Q

L

_

C

_

D

E

C

I

M

A

L

1

2

8

 S

Q

L

_

C

_

T

Y

P

E

_

D

A

T

E

 S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

 S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

S

T

A

M

P

 S

Q

L

_

C

_

D

A

T

A

L

I

N

K

 S

Q

L

_

C

_

B

I

N

A

R

Y

 S

Q

L

_

C

_

C

L

O

B

_

L

O

C

A

T

O

R

 S

Q

L

_

C

_

B

L

O

B

_

L

O

C

A

T

O

R

 S

Q

L

_

C

_

D

B

C

L

O

B

_

L

O

C

A

T

O

R

 SQL_CHAR D X X X X X X X X X X X X X X X X X X X X X X

 SQL_WCHAR4

 D X X X X X X X X X X X X X X X X X X X X X X

 SQL_

VARCHAR

 D X X X X X X X X X X X X X X X X X X X X X X

 SQL_

WVARCHAR4

 D X X X X X X X X X X X X X X X X X X X X X X

 SQL_

LONG

VARCHAR

 D X X X X X X X X X X X X X X X X X X X X X X

 SQL_

BINARY

 X X D

 SQL_

VARBINARY

 X X D

 SQL_

LONG

VARBINARY

 X X D

 SQL_

GRAPHIC

 X X D X X X X X X X X X

 SQL_

VARGRAPHIC

 X X D X X X X X X X X X

 SQL_

LONG

VARGRAPHIC

 X X D X X X X X X X X X

 SQL_CLOB D X X X

 SQL_BLOB X X D X

 SQL_DBCLOB X X D X X

 SQL_

CLOB_

LOCATOR

 D

 SQL_

BLOB_

LOCATOR

 D

 SQL_

DBCLOB_

LOCATOR

 D

Chapter 8. CLI data type attributes 465

Table 171. Supported data conversions (continued)

 SQL

data type

 S

Q

L

_

C

_

C

H

A

R

 S

Q

L

_

C

_

W

C

H

A

R

 S

Q

L

_

C

_

D

B

C

H

A

R

 S

Q

L

_

C

_

B

I

T

 S

Q

L

_

C

_

T

I

N

Y

I

N

T

 S

Q

L

_

C

_

S

T

I

N

Y

I

N

T

 S

Q

L

_

C

_

U

T

I

N

Y

I

N

T

 S

Q

L

_

C

_

S

H

O

R

T

 S

Q

L

_

C

_

S

S

H

O

R

T

 S

Q

L

_

C

_

U

S

H

O

R

T

 S

Q

L

_

C

_

L

O

N

G

 S

Q

L

_

C

_

S

L

O

N

G

 S

Q

L

_

C

_

U

L

O

N

G

 S

Q

L

_

C

_

S

B

I

G

I

N

T

 S

Q

L

_

C

_

U

B

I

G

I

N

T

 S

Q

L

_

C

_

F

L

O

A

T

 S

Q

L

_

C

_

D

O

U

B

L

E

 S

Q

L

_

C

_

N

U

M

E

R

I

C

 S

Q

L

_

C

_

D

E

C

I

M

A

L

_

I

B

M

 S

Q

L

_

C

_

D

E

C

I

M

A

L

6

4

 S

Q

L

_

C

_

D

E

C

I

M

A

L

1

2

8

 S

Q

L

_

C

_

T

Y

P

E

_

D

A

T

E

 S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

 S

Q

L

_

C

_

T

Y

P

E

_

T

I

M

E

S

T

A

M

P

 S

Q

L

_

C

_

D

A

T

A

L

I

N

K

 S

Q

L

_

C

_

B

I

N

A

R

Y

 S

Q

L

_

C

_

C

L

O

B

_

L

O

C

A

T

O

R

 S

Q

L

_

C

_

B

L

O

B

_

L

O

C

A

T

O

R

 S

Q

L

_

C

_

D

B

C

L

O

B

_

L

O

C

A

T

O

R

 SQL_NUMERIC D X X X X X X X X X X X X X X X X X X X X

 SQL_DECIMAL D X X X X X X X X X X X X X X X X X X X X

 SQL_DECFLOAT D X X X X X X X X X X X X X X X X X X

 SQL_INTEGER X X X X X X X X X D3

 D3

 X X X X X X X X X

 SQL_

SMALLINT

 X X X X X X D2

 D2

 X X X X X X X X X X X X

 SQL_FLOAT X X X X X X X X X X X X X X X D X X X X

 SQL_DOUBLE X X X X X X X X X X X X X X X D X X X X

 SQL_REAL X X X X X X X X X X X X X X D X X X X X

 SQL_BIGINT X X X X X X X X X X X X D X X X X X X X

 SQL_TINYINT X X X D1

 D1

 X X X X X X X X X X X X X X X

 SQL_BIT X X D

 SQL_

TYPE_DATE

 X X D X

 SQL_

TYPE_TIME

 X X D X

 SQL_

TYPE_

TIMESTAMP

 X X X X D

 SQL_XML X X X D

Note:

1. The C type SQL_C_TINYINT is treated by DB2 CLI as the type

SQL_C_STINYINT so either type can be considered to be the default.

2. The C type SQL_C_SHORT is treated by DB2 CLI as the type SQL_C_SSHORT

so either type can be considered to be the default.

3. The C type SQL_C_LONG is treated by DB2 CLI as the type SQL_C_SLONG so

either type can be considered to be the default.

4. This type is not supported in the DB2 database but other supported types can

be returned to the client as this type because of the setting of a configuration

keyword, such as MAPCharToWChar

466 Call Level Interface Guide and Reference, Volume 2

SQL to C data conversion in CLI

For a given SQL data type:

v the first column of the table lists the legal input values of the fCType argument

in SQLBindCol() and SQLGetData().

v the second column lists the outcomes of a test, often using the cbValueMax

argument specified in SQLBindCol() or SQLGetData(), which the driver performs

to determine if it can convert the data.

v the third and fourth columns list the values (for each outcome) of the rgbValue

and pcbValue arguments specified in the SQLBindCol() or SQLGetData() after the

driver has attempted to convert the data.

v the last column lists the SQLSTATE returned for each outcome by SQLFetch(),

SQLExtendedFetch(), SQLGetData() or SQLGetSubString().

The tables list the conversions defined by ODBC to be valid for a given SQL data

type.

If the fCType argument in SQLBindCol() or SQLGetData() contains a value not

shown in the table for a given SQL data type, SQLFetch(), or SQLGetData() returns

the SQLSTATE 07006 (Restricted data type attribute violation).

If the fCType argument contains a value shown in the table but which specifies a

conversion not supported by the driver, SQLFetch(), or SQLGetData() returns

SQLSTATE HYC00 (Driver not capable).

Though it is not shown in the tables, the pcbValue argument contains

SQL_NULL_DATA when the SQL data value is NULL. For an explanation of the

use of pcbValue when multiple calls are made to retrieve data, see SQLGetData().

When SQL data is converted to character C data, the character count returned in

pcbValue does not include the null termination byte. If rgbValue is a null pointer,

SQLBindCol() or SQLGetData() returns SQLSTATE HY009 (Invalid argument value).

In the following tables:

Length of data

the total length of the data after it has been converted to the specified C

data type (excluding the null termination byte if the data was converted to

a string). This is true even if data is truncated before it is returned to the

application.

Significant digits

the minus sign (if needed) and the digits to the left of the decimal point.

Display size

the total number of bytes needed to display data in the character format.

Converting character SQL data to C data

The character SQL data types are:

v SQL_CHAR

v SQL_VARCHAR

v SQL_LONGVARCHAR

v SQL_CLOB

Chapter 8. CLI data type attributes 467

Table 172. Converting character SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data <

cbValueMax

Data Length of

data

00000

Length of data >=

cbValueMax

Truncated

data

Length of

data

01004

SQL_C_BINARY Length of data <=

cbValueMax

Data Length of

data

00000

Length of data >

cbValueMax

Truncated

data

Length of

data

01004

 SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_FLOAT

SQL_C_TINYINT

SQL_C_BIT

SQL_C_UBIGINT

SQL_C_SBIGINT

SQL_C_NUMERIC

c

Data converted without

truncation

a

Data Size of the C

data type

 00000

Data converted with

truncation, but without loss

of significant digits

a

Data Size of the C

data type

01004

Conversion of data would

result in loss of significant

digitsa

Untouched Size of the C

data type

22003

Data is not a number

a Untouched Size of the C

data type

22005

SQL_C_DATE Data value is a valid date

a Data 6

b 00000

Data value is not a valid

date

a

Untouched 6

b 22007

SQL_C_TIME Data value is a valid time

a Data 6

b 00000

Data value is not a valid

time

a

Untouched 6

b 22007

SQL_C_TIMESTAMP Data value is a valid

timestamp

a

Data 16

b 00000

Data value is not a valid

timestamp

a

Untouched 16

b 22007

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of

rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

c SQL_C_NUMERIC is only supported on Windows platforms.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns

SQL_SUCCESS.

Converting graphic SQL data to C data

The graphic SQL data types are:

v SQL_GRAPHIC

v SQL_VARGRAPHIC

v SQL_LONGVARGRAPHIC

v SQL_DBCLOB

468 Call Level Interface Guide and Reference, Volume 2

Table 173. Converting GRAPHIC SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Number of double byte

characters * 2 <=

cbValueMax

Data Length of

data(octects)

00000

Number of double byte

characters * 2 >

cbValueMax

Truncated

data, to the

nearest even

byte that is

less than

cbValueMax.

Length of

data(octects)

01004

SQL_C_DBCHAR Number of double byte

characters * 2 <

cbValueMax

Data Length of

data(octects)

00000

Number of double byte

characters * 2 >=

cbValueMax

Truncated

data, to the

nearest even

byte that is

less than

cbValueMax.

Length of

data(octects)

01004

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function

returns SQL_SUCCESS.

When converting to floating point values, SQLSTATE 22003 will not be returned if non-significant digits

of the resulting value are lost.

Converting numeric SQL data to C data

The numeric SQL data types are:

v SQL_DECIMAL

v SQL_NUMERIC

v SQL_SMALLINT

v SQL_INTEGER

v SQL_BIGINT

v SQL_REAL

v SQL_FLOAT

v SQL_DOUBLE

 Table 174. Converting numeric SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of

data

00000

Number of significant

digits < cbValueMax

Truncated

data

Length of

data

01004

Number of significant

digits >= cbValueMax

Untouched Length of

data

22003

 SQL_C_SHORT

SQL_C_LONG

SQL_C_FLOAT

SQL_C_DOUBLE

SQL_C_TINYINT

SQL_C_BIT

SQL_C_UBIGINT

SQL_C_SBIGINT

SQL_C_NUMERIC

b

Data converted without

truncation

a

Data Size of the C

data type

00000

Data converted with

truncation, but without loss

of significant digits

a

Truncated

data

Size of the C

data type

01004

Conversion of data would

result in loss of significant

digits

a

Untouched Size of the C

data type

22003

Chapter 8. CLI data type attributes 469

Table 174. Converting numeric SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of

rgbValue is the size of the C data type.

b SQL_C_NUMERIC is only supported on Windows platforms.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns

SQL_SUCCESS.

Converting binary SQL data to C data

The binary SQL data types are:

v SQL_BINARY

v SQL_VARBINARY

v SQL_LONGVARBINARY

v SQL_BLOB

 Table 175. Converting binary SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR (Length of data) <

cbValueMax

Data Length of

data

N/A

(Length of data) >=

cbValueMax

Truncated

data

Length of

data

01004

SQL_C_BINARY Length of data <=

cbValueMax

Data Length of

data

N/A

Length of data >

cbValueMax

Truncated

data

Length of

data

01004

Converting XML SQL data to C data

The XML SQL data type is:

 SQL_XML

 Table 176. Converting XML SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data <

cbValueMax

Data Length of

data

00000

Length of data >=

cbValueMax

Truncated

data

Length of

data

01004

SQL_C_BINARY Length of data <=

cbValueMax

Data Length of

data

00000

Length of data >

cbValueMax

Truncated

data

Length of

data

01004

SQL_C_DBCHAR Number of double-byte

characters * 2 <

cbValueMax

Data Length of

data

00000

Number of double-byte

characters * 2 >=

cbValueMax

Truncated

data, to the

nearest even

byte that is

less than

cbValueMax

Length of

data

01004

470 Call Level Interface Guide and Reference, Volume 2

Table 176. Converting XML SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_WCHAR Number of double-byte

characters * 2 <

cbValueMax

Data Length of

data

00000

Number of double-byte

characters * 2 >=

cbValueMax

Truncated

data, to the

nearest even

byte that is

less than

cbValueMax

Length of

data

01004

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function

returns SQL_SUCCESS.

2. Length of data includes any XML declaration in the target encoding.

Converting date SQL data to C data

The date SQL data type is:

v SQL_DATE

 Table 177. Converting date SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 11 Data 10 00000

cbValueMax < 11 Untouched 10 22003

SQL_C_DATE None

a Data 6

b 00000

SQL_C_TIMESTAMP None

a Data

c 16

b 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of

rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

c The time fields of the TIMESTAMP_STRUCT structure are set to zero.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns

SQL_SUCCESS.

When the date SQL data type is converted to the character C data type, the

resulting string is in the ″yyyy-mm-dd” format.

Converting Time SQL Data to C Data

The time SQL data type is:

v SQL_TIME

 Table 178. Converting time SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 9 Data 8 00000

cbValueMax < 9 Untouched 8 22003

SQL_C_TIME None

a Data 6

b 00000

SQL_C_TIMESTAMP None

a Data

c 16

b 00000

Chapter 8. CLI data type attributes 471

Table 178. Converting time SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of

rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

c The date fields of the TIMESTAMP_STRUCT structure are set to the current system date of

the machine that the application is running, and the time fraction is set to zero.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns

SQL_SUCCESS.

When the time SQL data type is converted to the character C data type, the

resulting string is in the ″hh:mm:ss” format.

Converting timestamp SQL data to C data

The timestamp SQL data type is:

v SQL_TIMESTAMP

 Table 179. Converting timestamp SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of

data

00000

19 <= cbValueMax <=

Display size

Truncated

Data

b

Length of

data

01004

cbValueMax < 19 Untouched Length of

data

22003

SQL_C_DATE None

a Truncated

data

c

6

e 01004

SQL_C_TIME None

a Truncated

data

d

6

e 01004

SQL_C_TIMESTAMP None

a Data 16

e 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of

rgbValue is the size of the C data type.

b The fractional seconds of the timestamp are truncated.

c The time portion of the timestamp is deleted.

d The date portion of the timestamp is deleted.

e This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns

SQL_SUCCESS.

When the timestamp SQL data type is converted to the character C data type, the

resulting string is in the ″yyyy-mm-dd hh:mm:ss.ffffff” format (regardless of the

precision of the timestamp SQL data type). If an application requires the ISO

format, set the CLI/ODBC configuration keyword PATCH2=33.

472 Call Level Interface Guide and Reference, Volume 2

SQL to C data conversion examples

 Table 180. SQL to C data conversion examples

SQL data type

SQL data

value C data type

cbValue

max rgbValue

SQL

STATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0

a 00000

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0

a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0

a 00000

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0

a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 --- 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 00000

SQL_DECIMAL 1234.56 SQL_C_SHORT ignored 1234 01004

SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0

a 00000

SQL_DATE 1992-12-31 SQL_C_CHAR 10 --- 22003

SQL_DATE 1992-12-31 SQL_C_ TIMESTAMP ignored 1992,12,31, 0,0,0,0

b

00000

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_CHAR 23 1992-12-31

23:45:55.12\0

a

00000

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_CHAR 22 1992-12-31

23:45:55.1\0

a

01004

SQL_TIMESTAMP 1992-12-31

23:45:55.12

SQL_C_CHAR 18 --- 22003

Note:

a ″\0″ represents a null termination character.

b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT

structure.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns

SQL_SUCCESS.

C to SQL data conversion in CLI

For a given C data type:

v the first column of the table lists the legal input values of the fSqlType argument

in SQLBindParameter() or SQLSetParam().

v the second column lists the outcomes of a test, often using the length of the

parameter data as specified in the pcbValue argument in SQLBindParameter() or

SQLSetParam(), which the driver performs to determine if it can convert the

data.

v the third column lists the SQLSTATE returned for each outcome by

SQLExecDirect() or SQLExecute().

The tables list the conversions defined by ODBC to be valid for a given SQL data

type.

If the fSqlType argument in SQLBindParameter() or SQLSetParam() contains a value

not shown in the table for a given C data type, SQLSTATE 07006 is returned

(Restricted data type attribute violation).

If the fSqlType argument contains a value shown in the table but which specifies a

conversion not supported by the driver, SQLBindParameter() or SQLSetParam()

returns SQLSTATE HYC00 (Driver not capable).

Chapter 8. CLI data type attributes 473

If the rgbValue and pcbValue arguments specified in SQLBindParameter() or

SQLSetParam() are both null pointers, that function returns SQLSTATE HY009

(Invalid argument value).

Length of data

the total length of the data after it has been converted to the specified SQL

data type (excluding the null termination byte if the data was converted to

a string). This is true even if data is truncated before it is sent to the data

source.

Column length

the maximum number of bytes returned to the application when data is

transferred to its default C data type. For character data, the length does

not include the null termination byte.

Display size

the maximum number of bytes needed to display data in character form.

Significant digits

the minus sign (if needed) and the digits to the left of the decimal point.

Converting character C data to SQL data

The character C data type is:

v SQL_C_CHAR

 Table 181. Converting character C data to SQL data

fSQLType Test SQLSTATE

 SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Length of data <= Column length N/A

Length of data > Column length 22001

 SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_BIGINT

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Data converted without truncation N/A

Data converted with truncation, but without loss of significant digits 22001

Conversion of data would result in loss of significant digits 22003

Data value is not a numeric value 22005

 SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

(Length of data) < Column length N/A

(Length of data) >= Column length 22001

Data value is not a hexadecimal value 22005

SQL_DATE Data value is a valid date N/A

Data value is not a valid date 22007

SQL_TIME Data value is a valid time N/A

Data value is not a valid time 22007

SQL_TIMESTAMP Data value is a valid timestamp N/A

Data value is not a valid timestamp 22007

 SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

Length of data / 2 <= Column length N/A

Length of data / 2 < Column length 22001

SQL_XML Data can be implicitly parsed (several

SQLSTATES can be

returned)

Converting numeric C data to SQL data

The numeric C data types are:

v SQL_C_SHORT

v SQL_C_LONG

474 Call Level Interface Guide and Reference, Volume 2

v SQL_C_FLOAT

v SQL_C_DOUBLE

v SQL_C_TINYINT

v SQL_C_SBIGINT

v SQL_C_BIT

 Table 182. Converting numeric C data to SQL data

fSQLType Test SQLSTATE

 SQL_DECIMAL

SQL_NUMERIC

SQL_SMALLINT

SQL_INTEGER

SQL_BIGINT

SQL_REAL

SQL_FLOAT

SQL_DOUBLE

Data converted without truncation N/A

Data converted with truncation, but without loss of significant digits 22001

Conversion of data would result in loss of significant digits 22003

 SQL_CHAR

SQL_VARCHAR

Data converted without truncation. N/A

Conversion of data would result in loss of significant digits. 22003

Note: When converting to floating point values, SQLSTATE 22003 will not be returned if non-significant digits of the resulting value are lost.

Converting binary C data to SQL data

The binary C data type is:

v SQL_C_BINARY

 Table 183. Converting binary C data to SQL data

fSQLType Test SQLSTATE

 SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Length of data <= Column length N/A

Length of data > Column length 22001

 SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Length of data <= Column length N/A

Length of data > Column length 22001

SQL_XML Data can be implicitly parsed (several SQLSTATES

can be returned)

Converting DBCHAR C data to SQL data

The double byte C data type is:

v SQL_C_DBCHAR

 Table 184. Converting DBCHAR C data to SQL data

fSQLType Test SQLSTATE

 SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 22001

 SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 22001

SQL_XML Data can be implicitly parsed (several SQLSTATES

can be returned)

Converting date C data to SQL data

The date C data type is:

v SQL_C_DATE

Chapter 8. CLI data type attributes 475

Table 185. Converting date C data to SQL data

fSQLType Test SQLSTATE

 SQL_CHAR

SQL_VARCHAR

Column length >= 10 N/A

Column length < 10 22003

SQL_DATE Data value is a valid date N/A

Data value is not a valid date 22007

SQL_TIMESTAMP

a Data value is a valid date N/A

Data value is not a valid date 22007

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Note: a, the time component of TIMESTAMP is set to zero.

Converting time C data to SQL data

The time C data type is:

v SQL_C_TIME

 Table 186. Converting time C data to SQL data

fSQLType Test SQLSTATE

 SQL_CHAR

SQL_VARCHAR

Column length >= 8 N/A

Column length < 8 22003

SQL_TIME Data value is a valid time N/A

Data value is not a valid time 22007

SQL_TIMESTAMP

a Data value is a valid time N/A

Data value is not a valid time 22007

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Note: a The date component of TIMESTAMP is set to the system date of the machine at which the application is running.

Converting timestamp C data to SQL data

The timestamp C data type is:

v SQL_C_TIMESTAMP

 Table 187. Converting timestamp C data to SQL data

fSQLType Test SQLSTATE

SQL_CHAR SQL_VARCHAR Column length >= Display size N/A

19 <= Column length < Display size

a 22001

Column length < 19 22003

SQL_DATE Time fields are zero N/A

Time fields are non-zero 22008

Data value does not contain a valid date

b 22007

SQL_TIME Fractional seconds fields are zero N/A

Fractional seconds fields are non-zero 22008

Data value does not contain a valid time 22007

SQL_TIMESTAMP Data value is a valid timestamp N/A

Data value is not a valid timestamp 22007

Note:

a The fractional seconds of the timestamp are truncated.

b The timestamp_struct must reset the hour, minute, second, and fraction to 0, otherwise SQLSTATE 22008 will be returned.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

C to SQL data conversion examples

 Table 188. C to SQL data conversion examples

C data type C data value SQL data type Column length SQL data value SQL STATE

SQL_C_CHAR abcdef\0 SQL_CHAR 6 abcdef N/A

SQL_C_CHAR abcdef\0 SQL_CHAR 5 abcde 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 6 1234.56 N/A

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 5 1234.5 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 3 --- 22003

476 Call Level Interface Guide and Reference, Volume 2

Table 188. C to SQL data conversion examples (continued)

C data type C data value SQL data type Column length SQL data value SQL STATE

SQL_C_CHAR 4.46.32 SQL_TIME 6 4.46.32 N/A

SQL_C_CHAR 4-46-32 SQL_TIME 6

 not

applicable

22007

SQL_C_DOUBLE 123.45 SQL_CHAR 22

 1.23450000

000000e+02

N/A

SQL_C_FLOAT 1234.56 SQL_FLOAT

 not

applicable

1234.56 N/A

SQL_C_FLOAT 1234.56 SQL_INTEGER

 not

applicable

1234 22001

 SQL_C_

TIMESTAMP

 1992-12-31

23:45:55.

123456

SQL_DATE 6 1992-12-31 01004

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Data type attributes

Data type precision (CLI) table

The precision of a numeric column or parameter refers to the maximum number of

digits used by the data type of the column or parameter. The precision of a

non-numeric column or parameter generally refers to the maximum or the defined

number of characters of the column or parameter. The following table defines the

precision for each SQL data type.

 Table 189. Precision

fSqlType Precision

 SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The defined length of the column or parameter. For

example, the precision of a column defined as CHAR(10) is

10.

SQL_LONGVARCHAR The maximum length of the column or parameter.

a

 SQL_DECIMAL

SQL_DECFLOAT

SQL_NUMERIC

The defined maximum number of digits. For example, the

precision of a column defined as NUMERIC(10,3) is 10 and

the precision of a column defined as DECFLOAT(34) is 34.

SQL_SMALLINT

b 5

SQL_BIGINT 19

SQL_INTEGER

b 10

SQL_FLOAT

b 15

 SQL_REAL

b

 7

 SQL_DOUBLE

b

 15

 SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The defined length of the column or parameter. For

example, the precision of a column defined as CHAR(10)

FOR BIT DATA, is 10.

Chapter 8. CLI data type attributes 477

Table 189. Precision (continued)

fSqlType Precision

 SQL_LONGVARBINARY

The maximum length of the column or parameter.

 SQL_DATE

b

10 (the number of characters in the yyyy-mm-dd format).

SQL_TIME

b 8 (the number of characters in the hh:mm:ss format).

 SQL_TIMESTAMP

The number of characters in the ″yyy-mm-dd

hh:mm:ss[.fff[fff]]” format used by the TIMESTAMP data

type. For example, if a timestamp does not use seconds or

fractional seconds, the precision is 16 (the number of

characters in the ″yyyy-mm-dd hh:mm” format). If a

timestamp uses thousandths of a second, the precision is 23

(the number of characters in the ″yyyy-mm-dd

hh:mm:ss.fff” format).

 SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

The defined length of the column or parameter. For

example, the precision of a column defined as

GRAPHIC(10) is 10.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

 SQL_WCHAR

SQL_WVARCHAR

SQL_WLONGVARCHAR

The defined length of the column or parameter. For

example, the precision of a column defined as WCHAR(10)

is 10.

SQL_XML 0, unless the XML value is an argument to external

routines. For external routines, the precision is the defined

length, n, of an XML AS CLOB(n) argument.

Note:

a When defining the precision of a parameter of this data type with

SQLBindParameter() or SQLSetParam(), cbParamDef should be set to the total length

of the data, not the precision as defined in this table.

b The cbColDef argument of SQLBindParameter() is ignored for this data type.

Data type scale (CLI) table

The scale of a numeric column or parameter refers to the maximum number of

digits to the right of the decimal point. Note that, for approximate floating point

number columns or parameters, the scale is undefined, since the number of digits

to the right of the decimal place is not fixed. The following table defines the scale

for each SQL data type.

 Table 190. Scale

 fSqlType Scale

 SQL_CHAR

SQL_VARCHAR

SQL_LONGVARCHAR

SQL_CLOB

Not applicable.

478 Call Level Interface Guide and Reference, Volume 2

Table 190. Scale (continued)

 fSqlType Scale

 SQL_DECIMAL

SQL_NUMERIC

The defined number of digits to the right of the decimal

place. For example, the scale of a column defined as

NUMERIC(10, 3) is 3.

 SQL_SMALLINT

SQL_INTEGER

SQL_BIGINT

0

 SQL_REAL

SQL_FLOAT

SQL_DECFLOAT

SQL_DOUBLE

 Not applicable.

 SQL_BINARY

SQL_VARBINARY

SQL_LONGVARBINARY

SQL_BLOB

 Not applicable.

 SQL_DATE

SQL_TIME

 Not applicable.

 SQL_TIMESTAMP

The number of digits to the right of the decimal point in

the ″yyyy-mm-dd hh:mm:ss[fff[fff]]” format. For example, if

the TIMESTAMP data type uses the ″yyyy-mm-dd

hh:mm:ss.fff” format, the scale is 3.

 SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_LONGVARGRAPHIC

SQL_DBCLOB

 Not applicable.

 SQL_WCHAR

SQL_WVARCHAR

SQL_WLONGVARCHAR

 Not applicable.

 SQL_XML Not applicable.

Data type length (CLI) table

The length of a column is the maximum number of bytes returned to the

application when data is transferred to its default C data type. For character data,

the length does not include the null termination byte. Note that the length of a

column might be different than the number of bytes required to store the data on

the data source.

Chapter 8. CLI data type attributes 479

The following table defines the length for each SQL data type.

 Table 191. Length

 fSqlType Length

 SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The defined length of the column. For example, the length

of a column defined as CHAR(10) is 10.

 SQL_LONGVARCHAR The maximum length of the column.

 SQL_DECIMAL

SQL_NUMERIC

The maximum number of digits plus two. Since these data

types are returned as character strings, characters are

needed for the digits, a sign, and a decimal point. For

example, the length of a column defined as

NUMERIC(10,3) is 12.

SQL_DECFLOAT If the column is defined as DECFLOAT(16) then the length

is 8. If the column is defined as DECFLOAT(34) then the

length is 16.

 SQL_SMALLINT

2 (two bytes).

SQL_INTEGER

 4 (four bytes).

 SQL_BIGINT

8 (eight bytes).

 SQL_REAL 4 (four bytes).

 SQL_FLOAT 8 (eight bytes).

 SQL_DOUBLE 8 (eight bytes).

 SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The defined length of the column. For example, the length

of a column defined as CHAR(10) FOR BIT DATA is 10.

 SQL_LONGVARBINARY

The maximum length of the column.

 SQL_DATE

SQL_TIME

6 (the size of the DATE_STRUCT or TIME_STRUCT

structure).

 SQL_TIMESTAMP

16 (the size of the TIMESTAMP_STRUCT structure).

 SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

The defined length of the column times 2. For example, the

length of a column defined as GRAPHIC(10) is 20.

 SQL_LONGVARGRAPHIC

The maximum length of the column times 2.

480 Call Level Interface Guide and Reference, Volume 2

Table 191. Length (continued)

 fSqlType Length

 SQL_WCHAR

SQL_WVARCHAR

SQL_WLONGVARCHAR

The defined length of the column times 2. For example, the

length of a column defined as WCHAR(10) is 20.

 SQL_XML

0 (stored XML documents are limited to 2GB in size

however)

Data type display (CLI) table

The display size of a column is the maximum number of bytes needed to display

data in character form. The following table defines the display size for each SQL

data type.

 Table 192. Display size

fSqlType Display size

 SQL_CHAR

SQL_VARCHAR

SQL_CLOB

The defined length of the column. For example, the display

size of a column defined as CHAR(10) is 10.

 SQL_LONGVARCHAR

The maximum length of the column.

 SQL_DECIMAL

SQL_NUMERIC

The precision of the column plus two (a sign, precision

digits, and a decimal point). For example, the display size

of a column defined as NUMERIC(10,3) is 12.

SQL_DECFLOAT If the column is defined as DECFLOAT(16) then the display

length is 23. If the column is defined as DECFLOAT(34)

then the display length is 42.

SQL_SMALLINT 6 (a sign and 5 digits).

 SQL_INTEGER 11 (a sign and 10 digits).

 SQL_BIGINT 20 (a sign and 19 digits).

 SQL_REAL

13 (a sign, 7 digits, a decimal point, the letter E, a sign, and

2 digits).

 SQL_FLOAT

SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a sign,

and 3 digits).

 SQL_BINARY

SQL_VARBINARY

SQL_BLOB

The defined maximum length of the column times 2 (each

binary byte is represented by a 2 digit hexadecimal

number). For example, the display size of a column defined

as CHAR(10) FOR BIT DATA is 20.

 SQL_LONGVARBINARY

The maximum length of the column times 2.

 SQL_DATE

10 (a date in the format yyyy-mm-dd).

 SQL_TIME

8 (a time in the format hh:mm:ss).

Chapter 8. CLI data type attributes 481

Table 192. Display size (continued)

fSqlType Display size

 SQL_TIMESTAMP

19 (if the scale of the timestamp is 0) or 20 plus the scale of

the timestamp (if the scale is greater than 0). This is the

number of characters in the ″yyyy-mm-dd

hh:mm:ss[fff[fff]]” format. For example, the display size of a

column storing thousandths of a second is 23 (the number

of characters in ″yyyy-mm-dd hh:mm:ss.fff”).

 SQL_GRAPHIC

SQL_VARGRAPHIC

SQL_DBCLOB

Twice the defined length of the column or parameter. For

example, the display size of a column defined as

GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

 SQL_XML 0

482 Call Level Interface Guide and Reference, Volume 2

Part 2. Appendixes

© Copyright IBM Corp. 1993, 2008 483

484 Call Level Interface Guide and Reference, Volume 2

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2008 485

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 193. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-01 Yes

Administrative Routines and

Views

SC23-5843-01 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-01 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-01 Yes

Command Reference SC23-5846-01 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-01 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-01 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-01 Yes

Database Security Guide SC23-5850-01 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-01 Yes

Developing Embedded SQL

Applications

SC23-5852-01 Yes

Developing Java Applications SC23-5853-01 Yes

Developing Perl and PHP

Applications

SC23-5854-01 No

Developing User-defined Routines

(SQL and External)

SC23-5855-01 Yes

Getting Started with Database

Application Development

GC23-5856-01 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-01 Yes

Internationalization Guide SC23-5858-01 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-01 Yes

Net Search Extender

Administration and User’s Guide

SC23-8509-01 Yes

Partitioning and Clustering Guide SC23-5860-01 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-01 No

486 Call Level Interface Guide and Reference, Volume 2

Table 193. DB2 technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Servers

GC23-5864-01 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-01 Yes

SQL Reference, Volume 1 SC23-5861-01 Yes

SQL Reference, Volume 2 SC23-5862-01 Yes

System Monitor Guide and

Reference

SC23-5865-01 Yes

Troubleshooting Guide GI11-7857-01 No

Tuning Database Performance SC23-5867-01 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-01 Yes

Workload Manager Guide and

Reference

SC23-5870-01 Yes

pureXML Guide SC23-5871-01 Yes

XQuery Reference SC23-5872-01 No

 Table 194. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-01 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-01 Yes

DB2 Connect User’s Guide SC23-5841-01 Yes

 Table 195. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix A. Overview of the DB2 technical information 487

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 485.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

488 Call Level Interface Guide and Reference, Volume 2

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix A. Overview of the DB2 technical information 489

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. Non-Administrative and Non-Root

DB2 Information Centers always run in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to obtain and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

490 Call Level Interface Guide and Reference, Volume 2

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix A. Overview of the DB2 technical information 491

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

492 Call Level Interface Guide and Reference, Volume 2

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 493

494 Call Level Interface Guide and Reference, Volume 2

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2008 495

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

496 Call Level Interface Guide and Reference, Volume 2

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks or registered trademarks of the International

Business Machines Corporation in the United States, other countries, or both.

 pureXML OS/390

DB2 Connect DB2 Universal Database

Redbooks z/OS

AS/400 IBM

DB2 AIX

MVS/ESA MVS

OS/400 ibm.com

iSeries

The following terms are trademarks or registered trademarks of other companies

v Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel is a trademark of Intel Corporation or its subsidiaries in the United States

and other countries.

v Microsoft, and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 497

498 Call Level Interface Guide and Reference, Volume 2

Index

A
About this book

Call Level Interface Guide and Reference, Volume 1 vii

ACOS scalar function
in vendor escape clause 429

allocating
CLI handles

function 9

AllowGetDataColumnReaccess CLI/ODBC configuration

keyword 296

AltHostName CLI/ODBC keyword 296

AltPort CLI/ODBC keyword 296

AppendAPIName CLI/ODBC configuration keyword 297

AppendForFetchOnly CLI/ODBC configuration keyword 298

AppendRowColToErrorMessage CLI/ODBC configuration

keyword 298

AppUsesLobLocator CLI/ODBC configuration keyword 297

ArrayInputChain CLI/ODBC configuration keyword 299

ASCII scalar function
for vendor escape clauses 429

ASIN scalar function
for vendor escape clauses 429

AsyncEnable CLI/ODBC configuration keyword 300

ATAN scalar function
in vendor escape clauses 429

ATAN2 scalar function
in vendor escape clauses 429

attributes
connection 379

environment 379

querying and setting 379

statement 379

Authentication CLI/ODBC keyword 300

AutoCommit CLI/ODBC configuration keyword 301

B
BIDI CLI/ODBC keyword 301

BIGINT data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

BINARY data type
conversion to C 467

display size 481

length 479

precision 477

BINARYdata type
scale 478

binding
application variables

CLI function 101

array of columns
CLI function 101

columns
CLI function 12

file references to LOB column 18

file references to LOB parameters 21

binding (continued)
parameter markers

CLI function 24

BitData CLI/ODBC configuration keyword 302

BLOB data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

BlockForNRows CLI/ODBC configuration keyword 302

BlockLobs CLI/ODBC configuration keyword 303

books
printed

ordering 488

bulk operations CLI function 43

C
C language

data types 460

CEILING scalar function
for CLI applications 429

CHAR scalar function
for CLI applications 429

CHAR SQL data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

CheckForFork CLI/ODBC configuration keyword 304

CLI (call level interface)
configuration keywords 289

functions 3

by category 3

supported 160

Unicode 7

keywords 289

Unicode
functions 7

CLI applications
ABS scalar function 429

CLI function
cancel statement 48

CLI/ODBC keywords
AllowGetDataColumnReaccess 296

AltHostName 296

AltPort 296

AppendAPIName 297

AppendForFetchOnly 298

AppendRowColToErrorMessage 298

AppUsesLobLocator 297

ArrayInputChain 299

AsyncEnable 300

Authentication 300

AutoCommit 301

BIDI 301

BitData 302

BlockForNRows 302

BlockLobs 303

© Copyright IBM Corp. 1993, 2008 499

CLI/ODBC keywords (continued)
CheckForFork 304

ClientAcctStr 304

ClientApplName 305

ClientBuffersUnboundLOBS 305

ClientUserID 306

ClientWrkStnName 307

CLIPkg 303

ConnectNode 307

ConnectTimeout 308

ConnectType 308

CurrentFunctionPath 309

CurrentImplicitXMLParseOption 309

CurrentMaintainedTableTypesForOpt 310

CURRENTOPTIMIZATIONPROFILE 310

CurrentPackagePath 311

CurrentPackageSet 311

CurrentRefreshAge 312

CurrentSchema 313

CurrentSQLID 312

CursorHold 313

CursorTypes 314

Database 317

DateTimeStringFormat 318

DB2Degree 314

DB2Explain 315

DB2NETNamedParam 315

DB2Optimization 316

DBAlias 316

DBName 317

DecimalFloatRoundingMode 319

DeferredPrepare 320

DescribeCall 320

DescribeInputOnPrepare 321

DescribeOutputLevel 321

DescribeParam 323

DiagLevel 323

DiagPath 324

DisableKeysetCursor 324

DisableMultiThread 324

DisableUnicode 325

DSN 317

FileDSN 325

FloatPrecRadix 325

GetDataLobNoTotal 326

GranteeList 326

GrantorList 327

Graphic 327

Hostname 328

IgnoreWarnings 329

IgnoreWarnList 328

initialization file 293

Instance 329

Interrupt 329

KeepDynamic 330

KRBPlugin 330

listing by category 289

LoadXAInterceptor 332

LOBCacheSize 331

LOBFileThreshold 332

LOBMaxColumnSize 332

LockTimeout 333

LongDataCompat 333

MapBigintCDefault 334

MapCharToWChar 334

MapDateCDefault 335

MapDateDescribe 335

CLI/ODBC keywords (continued)
MapDecimalFloatDescribe 336

MapGraphicDescribe 336

MapTimeCDefault 337

MapTimeDescribe 338

MapTimestampCDefault 338

MapTimestampDescribe 339

MapXMLCDefault 339

MapXMLDescribe 340

MaxLOBBlockSize CLI/ODBC keyword 340

Mode 341

NotifyLevel 341

OleDbReportIsLongForLongTypes 341

OleDbReturnCharAsWChar 342

OleDbSQLColumnsSortByOrdinal 343

OptimizeForNRows 343

Patch1 344

Patch2 346

Port 349

ProgramName 350

PromoteLONGVARtoLOB 350

Protocol 351

PWD 344

PWDPlugin 344

QueryTimeoutInterval 351

ReadCommonSectionOnNullConnect 352

ReceiveTimeout 352

Reopt 353

ReportPublicPrivileges 354

ReportRetryErrorsAsWarnings 354

RetCatalogAsCurrServer 354

RetOleDbConnStr 355

RetryOnError 355

ReturnAliases 356

ReturnSynonymSchema 357

SaveFile 358

SchemaList 358

ServerMsgMask 359

ServerMsgTextSP 376

ServiceName 359

SkipTrace 360

SQLOverrideFileName 357

StaticCapFile 360

StaticLogFile 360

StaticMode 361

StaticPackage 361

StreamGetData 362

StreamPutData 362

SysSchema 363

TableType 364

TempDir 364

Trace 365

TraceComm 365

TraceErrImmediate 366

TraceFileName 367

TraceFlush 367

TraceFlushOnError 368

TraceLocks 368

TracePathName 370

TracePIDList 369

TracePIDTID 370

TraceRefreshInterval 371

TraceStmtOnly 371

TraceTime 372

TraceTimestamp 372

Trusted_Connection 373

TxnIsolation 374

500 Call Level Interface Guide and Reference, Volume 2

CLI/ODBC keywords (continued)
UID 374

Underscore 375

UseOldStpCall 375

UseServerMsgSP 376

WarningList 377

XMLDeclaration 377

ClientAcctStr CLI/ODBC configuration keyword 304

ClientApplName CLI/ODBC configuration keyword 305

ClientBuffersUnboundLOBS CLI/ODBC configuration

keyword 305

ClientUserID CLI/ODBC configuration keyword 306

ClientWrkStnName CLI/ODBC configuration keyword 307

CLIPkg CLI/ODBC configuration keyword 303

CLOBs (character large objects)
data type

conversion to C 467

display size 481

length 479

precision 477

scale 478

closing cursor CLI function 50

columns
CLI column attribute function 51

CONCAT scalar function
CLI 429

connecting
to data source CLI function 70, 85

connection handles
allocating 9

freeing 128

connections
attributes

changing 379

getting 133

list 386

setting 240

connection strings 379

switching in mixed applications 244

ConnectNode CLI/ODBC configuration keyword 307

ConnectTimeout CLI/ODBC configuration keyword 308

ConnectType CLI/ODBC configuration keyword 308

conversions
data types, in CLI 464

CONVERT scalar function 429

copying descriptors CLI function 72

COS scalar function
for CLI applications 429

COT scalar function
for CLI applications 429

CURDATE scalar function 429

CurrentFunctionPath CLI/ODBC configuration keyword 309

CurrentImplicitXMLParseOption CLI/ODBC configuration

keyword 309

CurrentMaintainedTableTypesForOpt CLI/ODBC

configuration keyword 310

CURRENTOPTIMIZATIONPROFILE configuration parameter

for CLI/ODBC applications 310

CurrentPackagePath CLI/ODBC configuration keyword 311

CurrentPackageSet CLI/ODBC configuration keyword 311

CurrentRefreshAge CLI/ODBC configuration keyword 312

CurrentSchema CLI/ODBC configuration keyword 313

CurrentSQLID CLI/ODBC configuration keyword 312

cursor name
getting, CLI function 135

setting, CLI function 246

CursorHold CLI/ODBC configuration keyword 313

cursors
CLI (call level interface)

closing 50

positioning rules for SQLFetchScroll 425

CursorTypes CLI/ODBC configuration keyword 314

CURTIME scalar function 429

D
data conversion

CLI applications
C to SQL data types 473

display sizes of SQL data types 481

lengths of SQL data types 479

precisions of SQL data types 477

scales of SQL data types 478

SQL to C data types 467

summary 464

summary of SQL data types 459

data sources
connecting to using CLI function

SQLBrowseConnect 37

SQLConnect 70

SQLDriverConnect 85

disconnecting using CLI function 83

data types
C

CLI applications 459, 460

conversion
CLI 464

SQL
CLI applications 459

Database CLI/ODBC configuration keyword 317

DATABASE scalar function 429

DATE SQL data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

DateTimeStringFormat CLI/ODBC configuration

keyword 318

DAYNAME scalar function
CLI applications 429

DAYOFMONTH scalar function 429

DAYOFWEEK scalar function
CLI applications 429

DAYOFWEEK_ISO scalar function
CLI applications 429

DAYOFYEAR scalar function
CLI applications 429

DB2 Information Center
languages 489

updating 490

versions 489

viewing in different languages 489

db2cli.ini file
attributes 379

description 293

DB2Degree CLI/ODBC configuration keyword 314

DB2Explain CLI/ODBC configuration keyword 315

DB2NETNamedParam CLI/ODBC configuration

keyword 315

DB2NODE environment variable
ConnectNode CLI/ODBC configuration keyword

impact 307

DB2Optimization CLI/ODBC configuration keyword 316

Index 501

DBAlias CLI/ODBC configuration keyword 316

DBCLOB SQL data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

DBName CLI/ODBC configuration keyword 317

DECIMAL data type
conversion

C/C++ 467

display size 481

length 479

precision 477

scale 478

DecimalFloatRoundingMode CLI/ODBC configuration

keyword 319

DeferredPrepare CLI/ODBC configuration keyword 320

DEGREES scalar function
CLI applications 429

deprecated functionality
CLI functions

SQLAllocConnect 8

SQLAllocEnv 8

SQLAllocStmt 11

SQLColAttributes 60

SQLError 93

SQLExtendedFetch 104

SQLFreeConnect 127

SQLFreeEnv 127

SQLGetConnectOption 135

SQLGetSQLCA 197

SQLGetStmtOption 200

SQLParamOptions 219

SQLSetColAttributes 240

SQLSetConnectOption 245

SQLSetParam 258

SQLSetStmtOption 270

SQLTransact 288

DescribeCall CLI/ODBC configuration keyword 320

DescribeInputOnPrepare CLI/ODBC configuration

keyword 321

DescribeOutputLevel CLI/ODBC configuration keyword 321

DescribeParam CLI/ODBC configuration keyword 323

descriptor handles
allocating 9

freeing 128

descriptors
copying

SQLCopyDesc function 72

FieldIdentifier argument values 439

values
getting from multiple fields 148

getting from single field 144

header fields 439, 450

record fields 439, 450

setting for multiple fields 253

setting for single field 249

DiagIdentifier argument 455

DiagLevel CLI/ODBC keyword 323

diagnostic information
diagnostic data structures

getting value from single field 151

getting values from multiple fields 156

DiagPath CLI/ODBC keyword 324

DIFFERENCE scalar function
CLI applications 429

DisableKeysetCursor CLI/ODBC configuration keyword 324

DisableMultiThread CLI/ODBC configuration keyword 324

DisableUnicode CLI/ODBC configuration keyword 325

disconnect from a data source CLI function 83

documentation
overview 485

PDF 485

printed 485

terms and conditions of use 492

DOUBLE data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

DSN CLI/ODBC keyword 317

E
environment attributes

changing 379

obtaining current 159

setting 256

environment handles
allocating 9

freeing 128

EXP scalar function
overview 429

F
fetching

next row CLI function 110

rowset CLI function 116

File DSN
database to connect 317

host name 328

IP address 328

protocol used 351

service name 359

FileDSN CLI/ODBC keyword 325

FLOAT SQL data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

FloatPrecRadix CLI/ODBC configuration keyword 325

FLOOR scalar function 429

foreign keys
columns, CLI function 122

freeing CLI handles
CLI function 128

statement handles 130

G
GetDataLobNoTotal CLI/ODBC configuration keyword 326

getting
attribute settings CLI function 133

column information CLI function 64

column privileges CLI function 60

connection attributes CLI function 37

cursor name CLI function 135

data function CLI function 137

data sources CLI function 75

502 Call Level Interface Guide and Reference, Volume 2

getting (continued)
data type information CLI function 203

diagnostic data field CLI function 151

environment attributes, CLI function 159

foreign key columns CLI function 122

index and statistics CLI function 275

information CLI function 162

LOB value length CLI function 192

multiple descriptor fields CLI function 148

multiple diagnostic fields CLI function 156

native SQL text CLI function 209

number parameters CLI function 211

number result columns CLI function 215

parameter data CLI function 216

parameter marker description CLI function 81

portion of LOB value CLI function 200

primary key columns CLI function 223

procedure name list CLI function 232

procedure parameters CLI function 226

row count CLI function 239

single descriptor field CLI function 144

special columns CLI function 271

statement attributes CLI function 197

string start position CLI function 194

supported functions, CLI function 160

table information CLI function 284

GranteeList CLI/ODBC configuration keyword 326

GrantorList CLI/ODBC configuration keyword 327

Graphic CLI/ODBC configuration keyword 327

GRAPHIC SQL data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

H
handles

freeing
SQLFreeHandle function 128

help
configuring language 489

SQL statements 488

Hostname CLI/ODBC configuration keyword 328

HOUR scalar function
CLI applications 429

I
IFNULL scalar function 429

IgnoreWarnings CLI/ODBC configuration keyword 329

IgnoreWarnList CLI/ODBC configuration keyword 328

IN DATABASE statement 317

indexes
getting information, CLI function 275

INI file
db2cli.ini 293

initializing
file 379

INSERT scalar function 429

Instance CLI/ODBC keyword 329

INTEGER SQL data type
conversion to C 467

display size 481

length 479

INTEGER SQL data type (continued)
precision 477

scale 478

Interrupt CLI/ODBC keyword 329

J
JULIAN_DAY scalar function

CLI applications 429

K
KeepDynamic CLI/ODBC configuration keyword

description 330

KRBPlugin
CLI/ODBC keyword 330

L
LCASE (Locale sensitive) scalar function

description 429

LEFT scalar function
description 429

length
SQL data types 479

LENGTH scalar function
CLI applications 429

LoadXAInterceptor CLI/ODBC configuration keyword 332

LOBCacheSize CLI/ODBC configuration keyword 331

LOBFileThreshold CLI/ODBC configuration keyword 332

LOBMaxColumnSize CLI/ODBC configuration keyword 332

LOCATE scalar function
listed 429

LockTimeout CLI/ODBC configuration keyword 333

LOG scalar function 429

LOG10 scalar function 429

LongDataCompat CLI/ODBC configuration keyword 333

LONGVARBINARY data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

LONGVARCHAR data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

LONGVARGRAPHIC data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

lowercase conversion scalar function 429

LTRIM scalar function
listed 429

M
MapBigintCDefault CLI/ODBC configuration keyword 334

MapCharToWChar CLI/ODBC configuration keyword 334

MapDateCDefault CLI/ODBC configuration keyword 335

MapDateDescribe CLI/ODBC configuration keyword 335

Index 503

MapDecimalFloatDescribe CLI/ODBC configuration

keyword 336

MapGraphicDescribe CLI/ODBC configuration keyword 336

MapTimeCDefault CLI/ODBC configuration keyword 337

MapTimeDescribe CLI/ODBC configuration keyword 338

MapTimestampCDefault CLI/ODBC configuration

keyword 338

MapTimestampDescribe CLI/ODBC configuration

keyword 339

MapXMLCDefault CLI/ODBC configuration keyword 339

MapXMLDescribe CLI/ODBC configuration keyword 340

MaxLOBBlockSize CLI/ODBC configuration keyword 340

midnight
seconds since scalar function 429

MINUTE scalar function
for CLI applications 429

MOD scalar function 429

Mode CLI/ODBC configuration keyword 341

MONTH scalar function 429

MONTHNAME scalar function 429

more result sets CLI function 207

N
native SQL text CLI function 209

notices 495

NotifyLevel CLI/ODBC keyword 341

NOW scalar function 429

NUMERIC SQL data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

O
OleDbReportIsLongForLongTypes CLI/ODBC configuration

keyword 341

OleDbReturnCharAsWChar CLI/ODBC configuration

keyword 342

OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration

keyword 343

OptimizeForNRows CLI/ODBC configuration keyword 343

options
connection 379

environment 379

querying and setting 379

statement 379

ordering DB2 books 488

P
parallelism

degree 314

parameter markers
descriptions

obtaining 81

number
obtaining 211

parameters
data value passing 236

input/output
obtaining information 226

Patch1 CLI/ODBC configuration keyword 344

Patch2 CLI/ODBC configuration keyword 346

PI scalar function
overview 429

port CLI/ODBC configuration keyword
description 349

POWER scalar function
description 429

precision
SQL data types 477

prepared SQL statements
CLI applications

extended 105

syntax 219

primary keys
columns

obtaining using CLI function 223

problem determination
information available 492

tutorials 492

procedures
names

obtaining list 232

ProgramName CLI/ODBC configuration keyword 350

PromoteLONGVARtoLOB CLI/ODBC configuration

keyword 350

Protocol CLI/ODBC configuration keyword 351

PWD CLI/ODBC configuration keyword 344

PWDPlugin CLI/ODBC keyword 344

Q
QUARTER scalar function 429

QueryTimeoutInterval CLI/ODBC configuration

keyword 351

R
RADIANS scalar function

in CLI applications 429

RAND scalar function
in CLI applications 429

ReadCommonSectionOnNullConnect CLI/ODBC configuration

keyword 352

REAL SQL data type
conversion

to C data type 467

display size 481

length 479

precision 477

scale 478

ReceiveTimeout CLI/ODBC configuration keyword 352

Reopt CLI/ODBC configuration keyword 353

REPEAT scalar function
list 429

REPLACE scalar function
list 429

ReportPublicPrivileges CLI/ODBC configuration

keyword 354

ReportRetryErrorsAsWarnings CLI/ODBC configuration

keyword 354

result columns
getting number of, CLI function 215

result sets
associating with handle, CLI function 213

CLI function 207

RetCatalogAsCurrServer CLI/ODBC configuration

keyword 354

504 Call Level Interface Guide and Reference, Volume 2

RetOleDbConnStr CLI/ODBC configuration keyword 355

RetryOnError CLI/ODBC configuration keyword 355

ReturnAliases CLI/ODBC configuration keyword 356

returning column attributes 51

ReturnSynonymSchema CLI/ODBC configuration

keyword 357

RIGHT scalar function
vendor escape clauses 429

ROUND scalar function
vendor escape clauses 429

row identifier columns
getting, CLI function 271

row sets
CLI functions

fetching 116

setting cursor position 258

rows
getting count, CLI function 239

RTRIM scalar function
vendor escape clauses 429

S
SaveFile CLI/ODBC keyword 358

scale
SQL data types 478

SchemaList CLI/ODBC configuration keyword 358

SECOND scalar function
in CLI applications 429

SECONDS_SINCE_MIDNIGHT scalar function 429

ServerMsgMask CLI/ODBC configuration keyword 359

ServerMsgTextSP CLI/ODBC configuration keyword 376

ServiceName CLI/ODBC configuration keyword 359

SET CURRENT SCHEMA statement 313

settings
connection attributes CLI function 240

cursor name CLI function 246

cursor position CLI function 258

environment attributes CLI function 256

multiple descriptor fields CLI function 253

single descriptor field CLI function 249

statement attributes CLI function 105, 265

SIGN scalar function
list 429

SIN scalar function
list 429

SkipTrace CLI/ODBC configuration keyword 360

SMALLINT data type
conversion to C/C++ 467

display size 481

length 479

precision 477

scale 478

SOUNDEX scalar function
in CLI applications 429

SPACE scalar function
list 429

SQL data types
display size 481

length 479

precision 477

scale 478

SQL statements
displaying help 488

SQL_ATTR_
ACCESS_MODE 386

ANSI_APP 386

SQL_ATTR_ (continued)
APP_PARAM_DESC 408

APP_ROW_DESC 408

APP_USES_LOB_LOCATOR 386, 408

AppUsesLOBLocator 297

APPEND_FOR_FETCH_ONLY 298, 386

ASYNC_ENABLE 386, 408

AsyncEnable 300

AUTO_IPD 386

AUTOCOMMIT 386

AutoCommit 301

BLOCK_FOR_NROWS 408

BLOCK_LOBS 408

BlockLobs 303

CALL_RETURN 408

CHAINING_BEGIN 408

CHAINING_END 408

CLIENT_LOB_BUFFERING 386, 408

CLOSE_BEHAVIOR 408

CLOSEOPEN 408

CONCURRENCY 408

CONN_CONTEXT 386

CONNECT_NODE 386

ConnectNode 307

CONNECTION_DEAD 386

CONNECTION_POOLING 381

CONNECTION_TIMEOUT 386

CONNECTTYPE 381, 386

ConnectType 308

CP_MATCH 381

CURRENT_CATALOG 386

CURRENT_IMPLICIT_XMLPARSE_OPTION 386

CURRENT_PACKAGE_PATH 386

CurrentPackagePath 311

CURRENT_PACKAGE_SET 386

CurrentPackageSet 311

CURRENT_SCHEMA 386

CURSOR_HOLD 408

CursorHold 313

CURSOR_SCROLLABLE 408

CURSOR_SENSITIVITY 408

CURSOR_TYPE 408

DB2_APPLICATION_HANDLE 386

DB2_APPLICATION_ID 386

DB2_NOBINDOUT 408

DB2_SQLERRP 386

DB2ESTIMATE 386

DB2EXPLAIN 386

DB2Explain 315

DECFLOAT_ROUNDING_MODE 386

DecimalFloatRoundingMode 319

DEFERRED_PREPARE 408

DeferredPrepare 320

DESCRIBE_CALL 386

DescribeCall 320

DESCRIBE_OUTPUT_LEVEL 321, 386

DIAGLEVEL 381

DIAGPATH 381

EARLYCLOSE 408

ENABLE_AUTO_IPD 408

ENLIST_IN_DTC 386

FETCH_BOOKMARK_PTR 408

FREE_LOCATORS_ON_FETCH 386

IMP_PARAM_DESC 408

IMP_ROW_DESC 408

INFO_ACCTSTR 381, 386

ClientAcctStr 304

Index 505

SQL_ATTR_ (continued)
INFO_APPLNAME 381, 386

ClientApplName 305

INFO_PROGRAMID 386

INFO_PROGRAMNAME 386

ProgramName 350

INFO_USERID 381, 386

ClientUserID 306

INFO_WRKSTNNAME 381, 386

ClientWrkStnName 307

INSERT_BUFFERING 408

KEEP_DYNAMIC 386

KeepDynamic 330

KEYSET_SIZE 408

LOAD_INFO 408

LOAD_ROWS_COMMITTED_PTR 408

LOAD_ROWS_DELETED_PTR 408

LOAD_ROWS_LOADED_PTR 408

LOAD_ROWS_READ_PTR 408

LOAD_ROWS_REJECTED_PTR 408

LOAD_ROWS_SKIPPED_PTR 408

LOB_CACHE_SIZE 386, 408

LOBCacheSize 331

LOGIN_TIMEOUT 386

ConnectTimeout 308

LONGDATA_COMPAT 386

LongDataCompat 333

MAPCHAR 386

MapCharToWChar 334

MAX_LENGTH 408

MAX_LOB_BLOCK_SIZE 386, 408

MaxLOBBlockSize 340

MAX_ROWS 408

MAXCONN 381, 386

METADATA_ID 386, 408

NOSCAN 408

NOTIFY_LEVEL 381

ODBC_CURSORS 386

ODBC_VERSION 381

OPTIMIZE_FOR_NROWS 408

OptimizeForNRows 343

OPTIMIZE_SQLCOLUMNS 408

OUTPUT_NTS 381

PACKET_SIZE 386

PARAM_BIND_OFFSET_PTR 408

PARAM_BIND_TYPE 408

PARAM_OPERATION_PTR 408

PARAM_STATUS_PTR 408

PARAMOPT_ATOMIC 408

PARAMS_PROCESSED_PTR 408

PARAMSET_SIZE 408

PING_DB 386

PREFETCH 408

PROCESSCTRL 381

CheckForFork 304

QUERY_OPTIMIZATION_LEVEL 408

QUERY_TIMEOUT 408

QueryTimeoutInterval 351

QUIET_MODE 386

RECEIVE_TIMEOUT 386

ReceiveTimeout 352

REOPT 386, 408

Reopt 353

REPORT_ISLONG_FOR_LONGTYPES_OLEDB 386

OleDbReportIsLongForLongTypes 341

RETRIEVE_DATA 408

RETURN_USER_DEFINED_TYPES 408

SQL_ATTR_ (continued)
ROW_ARRAY_SIZE 408

ROW_BIND_OFFSET_PTR 408

ROW_BIND_TYPE 408

ROW_NUMBER 408

ROW_OPERATION_PTR 408

ROW_STATUS_PTR 408

ROWS_FETCHED_PTR 408

ROWSET_SIZE 408

SERVER_MSGTXT_MASK 386

ServerMsgMask 359

SERVER_MSGTXT_SP 386

ServerMsgTextSP 376

UseServerMsgSP 376

SIMULATE_CURSOR 408

SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB 386

OleDbSQLColumnsSortByOrdinal 343

STMTTXN_ISOLATION 408

STREAM_GETDATA 386, 408

StreamGetData 362

SYNC_POINT 381, 386

TRACE 381, 386

Trace 365

TRACEFILE 386

TRANSLATE_LIB 386

TRANSLATE_OPTION 386

TRUSTED_CONTEXT_PASSWORD 386

TRUSTED_CONTEXT_USERID 386

TXN_ISOLATION 386, 408

TxnIsolation 374

USE_2BYTES_OCTET_LENGTH 381

USE_BOOKMARKS 408

USE_LIGHT_INPUT_SQLDA 381

USE_LIGHT_OUTPUT_SQLDA 381

USE_LOAD_API 408

USE_TRUSTED_CONTEXT 386

USER_REGISTRY_NAME 381, 386

WCHARTYPE 386

XML_DECLARATION 386, 408

XQUERY_STATEMENT 408

SQL_C_BINARY 473

SQL_C_BIT 473

SQL_C_CHAR 473

SQL_C_DATE 473

SQL_C_DBCHAR 473

SQL_C_DOUBLE 473

SQL_C_FLOAT 473

SQL_C_LONG 473

SQL_C_SHORT 473

SQL_C_TIME 473

SQL_C_TIMESTAMP 473

SQL_C_TINYINT 473

SQL_DESC_
ALLOC_TYPE 439

initialization value 450

ARRAY_SIZE 439

initialization value 450

ARRAY_STATUS_PTR 439

initialization value 450

AUTO_UNIQUE_VALUE 51, 439

initialization value 450

BASE_COLUMN_NAME 51, 439

initialization value 450

BASE_TABLE_NAME 51

initialization value 450

BIND_OFFSET_PTR 439

initialization value 450

506 Call Level Interface Guide and Reference, Volume 2

SQL_DESC_ (continued)
BIND_TYPE 439

initialization value 450

CASE_SENSITIVE 51, 439

initialization value 450

CATALOG_NAME 51, 439

initialization value 450

CONCISE_TYPE 51, 439

initialization value 450

COUNT 51

COUNT_ALL 439

DATA_PTR 439

initialization value 450

DATETIME_INTERVAL_ CODE 439

initialization value 450

DATETIME_INTERVAL_ PRECISION 439

initialization value 450

DISPLAY_SIZE 51, 439

initialization value 450

DISTINCT_TYPE 51

FIXED_PREC_SCALE 51, 439

initialization value 450

INDICATOR_PTR 439

initialization value 450

LABEL 51, 439

LENGTH 51, 439

initialization value 450

LITERAL_PREFIX 51, 439

initialization value 450

LITERAL_SUFFIX 51, 439

initialization value 450

LOCAL_TYPE_NAME 51, 439

initialization value 450

NAME 51, 439

initialization value 450

NULLABLE 51, 439

initialization value 450

NUM_PREC_RADIX 439

initialization value 450

NUM_PREX_RADIX 51

OCTET_LENGTH 51, 439

initialization value 450

OCTET_LENGTH_PTR 439

initialization value 450

PARAMETER_TYPE 439

initialization value 450

PRECISION 51, 439

initialization value 450

ROWS_PROCESSED_PTR 439

initialization value 450

SCALE 51, 439

initialization value 450

SCHEMA_NAME 51, 439

initialization value 450

SEARCHABLE 51, 439

initialization value 450

TABLE_NAME 51, 439

initialization value 450

TYPE 51, 439

initialization value 450

TYPE_NAME 51, 439

initialization value 450

UNNAMED 51, 439

initialization value 450

UNSIGNED 51, 439

initialization value 450

UPDATABLE 51, 439

SQL_DESC_ (continued)
initialization value 450

SQL_DIAG_
CLASS_ORIGIN 455

COLUMN_NUMBER 455

CONNECTION_NAME 455

CURSOR_ROW_COUNT 455

DYNAMIC_FUNCTION 455

DYNAMIC_FUNCTION_
CODE 455

MESSAGE_TEXT 455

NATIVE 455

NUMBER 455

RETURNCODE 455

ROW_COUNT 455

ROW_NUMBER 455

SERVER_NAME 455

SQLSTATE 455

SUBCLASS_ORIGIN 455

SQLAllocConnect
deprecated CLI function 8

SQLAllocEnv
deprecated CLI function 8

SQLAllocHandle CLI function 9

SQLAllocStmt
deprecated CLI function 11

SQLBindCol CLI function 12

SQLBindFileToCol CLI function 18

SQLBindFileToParam CLI function 21

SQLBindParameter CLI function 24

SQLBrowseConnect CLI function
syntax 37

Unicode version 7

SQLBrowseConnectW CLI function 7

SQLBulkOperations CLI function
syntax 43

SQLCancel CLI function 48

SQLCloseCursor CLI function 50

SQLColAttribute CLI function
syntax 51

Unicode version 7

SQLColAttributes CLI function
Unicode version 7

SQLColAttributes deprecated CLI function 60

SQLColAttributesW CLI function 7

SQLColAttributeW CLI function 7

SQLColumnPrivileges CLI function
syntax 60

Unicode version 7

SQLColumnPrivilegesW CLI function 7

SQLColumns CLI function
syntax 64

Unicode version 7

SQLColumnsW CLI function 7

SQLConnect CLI function
syntax 70

Unicode version 7

SQLConnectW CLI function 7

SQLCopyDesc CLI function 72

SQLDataSources CLI function
syntax 75

Unicode version 7

SQLDataSourcesW CLI function 7

SQLDescribeCol CLI function
syntax 78

Unicode version 7

SQLDescribeColW CLI function 7

Index 507

SQLDescribeParam CLI function 81

SQLDisconnect CLI function 83

SQLDriverConnect CLI function
default values 379

syntax 85

Trusted_connection CLI/ODBC configuration

keyword 373

Unicode version 7

SQLDriverConnectW CLI function 7

SQLEndTran CLI function 90

SQLError CLI function 7

SQLError deprecated CLI function 93

SQLErrorW CLI function 7

SQLExecDirect CLI function
syntax 94

Unicode version 7

SQLExecDirectW CLI function 7

SQLExecute CLI function
syntax 99

SQLExtendedBind CLI function 101

SQLExtendedFetch deprecated CLI function 104

SQLExtendedPrepare CLI function
syntax 105

Unicode version 7

SQLExtendedPrepareW CLI function 7

SQLFetch CLI function
syntax 110

SQLFetchScroll CLI function
cursor positioning rules 425

syntax 116

SQLForeignKeys CLI function
syntax 122

Unicode version 7

SQLForeignKeysW CLI function 7

SQLFreeConnect deprecated CLI function 127

SQLFreeEnv deprecated CLI function 127

SQLFreeHandle CLI function 128

SQLFreeStmt CLI function
syntax 130

SQLGetConnectAttr CLI function
syntax 133

Unicode version 7

SQLGetConnectAttrW CLI function 7

SQLGetConnectOption CLI function 7

SQLGetConnectOption deprecated CLI function 135

SQLGetConnectOptionW CLI function 7

SQLGetCursorName CLI function
syntax 135

Unicode version 7

SQLGetCursorNameW CLI function 7

SQLGetData CLI function
syntax 137

SQLGetDescField CLI function
syntax 144

Unicode version 7

SQLGetDescFieldW CLI function 7

SQLGetDescRec CLI function
syntax 148

Unicode version 7

SQLGetDescRecW CLI function 7

SQLGetDiagField CLI function
syntax 151

Unicode version 7

SQLGetDiagFieldW CLI function 7

SQLGetDiagRec CLI function
syntax 156

Unicode version 7

SQLGetDiagRecW CLI function 7

SQLGetEnvAttr CLI function 159

SQLGetFunctions CLI function 160

SQLGetInfo CLI function
syntax 162

Unicode version 7

SQLGetInfoW CLI function 7

SQLGetLength CLI function 192

SQLGetPosition CLI function 194

SQLGetSQLCA deprecated CLI function 197

SQLGetStmtAttr CLI function
syntax 197

Unicode version 7

SQLGetStmtAttrW CLI function 7

SQLGetStmtOption deprecated CLI function 200

SQLGetSubString CLI function 200

SQLGetTypeInfo CLI function 203

SQLMoreResults CLI function 207

SQLNativeSql CLI function
syntax 209

Unicode version 7

SQLNativeSqlW CLI function 7

SQLNextResult CLI function 213

SQLNumParams CLI function 211

SQLNumResultCols CLI function
syntax 215

SQLOverrideFileName CLI/ODBC configuration

keyword 357

SQLParamData CLI function 216

SQLParamOptions deprecated CLI function 219

SQLPrepare CLI function
syntax 219

Unicode version 7

SQLPrepareW CLI function 7

SQLPrimaryKeys CLI function
syntax 223

Unicode version 7

SQLPrimaryKeysW CLI function 7

SQLProcedureColumns CLI function
syntax 226

Unicode version 7

SQLProcedureColumnsW CLI function 7

SQLProcedures CLI function
syntax 232

Unicode version 7

SQLProceduresW CLI function 7

SQLPutData CLI function 236

SQLRowCount CLI function
syntax 239

SQLSetColAttributes deprecated CLI function 240

SQLSetConnectAttr CLI function
syntax 240

Unicode version 7

SQLSetConnectAttrW CLI function 7

SQLSetConnection CLI function 244

SQLSetConnectOption deprecated CLI function
syntax 245

Unicode version 7

SQLSetConnectOptionW CLI function 7

SQLSetCursorName CLI function
syntax 246

Unicode version 7

SQLSetCursorNameW CLI function 7

SQLSetDescField CLI function
syntax 249

Unicode version 7

SQLSetDescFieldW CLI function 7

508 Call Level Interface Guide and Reference, Volume 2

SQLSetDescRec CLI function 253

SQLSetEnvAttr CLI function 256

SQLSetParam deprecated CLI function 258

SQLSetPos CLI function 258

SQLSetStmtAttr CLI function
syntax 265

Unicode version 7

SQLSetStmtAttrW CLI function 7

SQLSetStmtOption deprecated CLI function 270

SQLSpecialColumns CLI function 271

Unicode version 7

SQLSpecialColumnsW CLI function 7

SQLStatistics CLI function 275

Unicode version 7

SQLStatisticsW CLI function 7

SQLTablePrivileges CLI function
syntax 280

Unicode version 7

SQLTablePrivilegesW CLI function 7

SQLTables CLI function
syntax 284

Unicode version 7

SQLTablesW CLI function 7

SQLTransact deprecated CLI function 288

SQRT scalar function
list 429

statement attributes
changing 379

getting 197

list 408

setting, CLI function 265

statement handles
allocating 9

freeing 128

StaticCapFile CLI/ODBC configuration keyword 360

StaticLogFile CLI/ODBC configuration keyword 360

StaticMode CLI/ODBC configuration keyword 361

StaticPackage CLI/ODBC configuration keyword 361

statistics CLI function 275

StreamGetData CLI/ODBC configuration keyword 362

StreamPutData CLI/ODBC configuration keyword 362

SUBSTRING scalar function 429

SysSchema CLI/ODBC configuration keyword 363

T
table privileges CLI function 280

tables
get table information, CLI function 284

TableType CLI/ODBC configuration keyword 364

TAN scalar function
list 429

targets
logical nodes 307

TempDir CLI/ODBC configuration keyword 364

terms and conditions
use of publications 492

TIME SQL data types
conversion to C 467

display size 481

length 479

precision 477

scale 478

TIMESTAMP data type
conversion to C 467

display size 481

length 479

TIMESTAMP data type (continued)
precision 477

scale 478

TIMESTAMPDIFF scalar function
overview 429

Trace CLI/ODBC configuration keyword 365

TraceComm CLI/ODBC configuration keyword 365

TraceErrImmediate CLI/ODBC configuration keyword 366

TraceFileName CLI/ODBC configuration keyword 367

TraceFlush CLI/ODBC configuration keyword 367

TraceFlushOnError CLI/ODBC configuration keyword 368

TraceLocks CLI/ODBC configuration keyword 368

TracePathName CLI/ODBC configuration keyword 370

TracePIDList CLI/ODBC configuration keyword 369

TracePIDTID CLI/ODBC configuration keyword 370

TraceRefreshInterval CLI/ODBC configuration keyword 371

TraceStmtOnly CLI/ODBC configuration keyword 371

TraceTime CLI/ODBC configuration keyword 372

TraceTimestamp CLI/ODBC configuration keyword 372

transactions
ending in CLI 90

troubleshooting
online information 492

tutorials 492

TRUNCATE or TRUNC scalar function
overview 429

Trusted_Connection CLI/ODBC configuration keyword 373

tutorials
problem determination 492

troubleshooting 492

Visual Explain 491

TxnIsolation CLI/ODBC configuration keyword 374

U
UCASE scalar function 429

UID CLI/ODBC configuration keyword 374

Underscore CLI/ODBC configuration keyword 375

Unicode (UCS-2)
CLI

functions 7

updates
DB2 Information Center 490

UseOldStpCall CLI/ODBC configuration keyword 375

USER scalar function 429

UseServerMsgSP CLI/ODBC configuration keyword 376

V
VARBINARY SQL data type

conversion to C 467

display size 481

length 479

precision 477

scale 478

VARCHAR data type
conversion to C 467

display size 481

length 479

precision 477

scale 478

VARGRAPHIC data type
conversion to C 467

display size 481

length 479

precision 477

Index 509

VARGRAPHIC data type (continued)
scale 478

Visual Explain
tutorial 491

W
WarningList CLI/ODBC configuration keyword 377

WCHAR SQL data type
display size 481

length 479

precision 477

scale 478

WEEK scalar function
description 429

WEEK_ISO scalar function
description 429

WLONGVARCHAR SQL data type
display size 481

length 479

precision 477

scale 478

WVARCHAR SQL data type
display size 481

length 479

precision 477

scale 478

X
XMLDeclaration CLI/ODBC configuration keyword 377

Y
YEAR scalar function

list 429

510 Call Level Interface Guide and Reference, Volume 2

����

Printed in USA

SC23-5845-01

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

Ca
ll

Le
ve

l I
nt

er
fa

ce

Gu

id
e

an
d

Re
fe

re
nc

e,

Vo

lu
m

e
2

�
�

�

	Contents
	About this book
	Part 1. CLI
	Chapter 1. CLI and ODBC function summary
	Unicode functions (CLI)
	SQLAllocConnect function (CLI) - Allocate connection handle
	SQLAllocEnv function (CLI) - Allocate environment handle
	SQLAllocHandle function (CLI) - Allocate handle
	SQLAllocStmt function (CLI) - Allocate a statement handle
	SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator
	SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column
	SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter
	SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator
	SQLBrowseConnect function (CLI) - Get required attributes to connect to data source
	SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows
	SQLCancel function (CLI) - Cancel statement
	SQLCloseCursor function (CLI) - Close cursor and discard pending results
	SQLColAttribute function (CLI) - Return a column attribute
	SQLColAttributes function (CLI) - Get column attributes
	SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a table
	SQLColumns function (CLI) - Get column information for a table
	SQLConnect function (CLI) - Connect to a data source
	SQLCopyDesc function (CLI) - Copy descriptor information between handles
	SQLDataSources function (CLI) - Get list of data sources
	SQLDescribeCol function (CLI) - Return a set of attributes for a column
	SQLDescribeParam function (CLI) - Return description of a parameter marker
	SQLDisconnect function (CLI) - Disconnect from a data source
	SQLDriverConnect function (CLI) - (Expanded) Connect to a data source
	SQLEndTran function (CLI) - End transactions of a connection or an Environment
	SQLError function (CLI) - Retrieve error information
	SQLExecDirect function (CLI) - Execute a statement directly
	SQLExecute function (CLI) - Execute a statement
	SQLExtendedBind function (CLI) - Bind an array of columns
	SQLExtendedFetch function (CLI) - Extended fetch (fetch array of rows)
	SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes
	SQLFetch function (CLI) - Fetch next row
	SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns
	SQLForeignKeys function (CLI) - Get the list of foreign key columns
	SQLFreeConnect function (CLI) - Free connection handle
	SQLFreeEnv function (CLI) - Free environment handle
	SQLFreeHandle function (CLI) - Free handle resources
	SQLFreeStmt function (CLI) - Free (or reset) a statement handle
	SQLGetConnectAttr function (CLI) - Get current attribute setting
	SQLGetConnectOption function (CLI) - Return current setting of a connect option
	SQLGetCursorName function (CLI) - Get cursor name
	SQLGetData function (CLI) - Get data from a column
	SQLGetDescField function (CLI) - Get single field settings of descriptor record
	SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record
	SQLGetDiagField function (CLI) - Get a field of diagnostic data
	SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record
	SQLGetEnvAttr function (CLI) - Retrieve current environment attribute value
	SQLGetFunctions function (CLI) - Get functions
	SQLGetInfo function (CLI) - Get general information
	SQLGetLength function (CLI) - Retrieve length of a string value
	SQLGetPosition function (CLI) - Return starting position of string
	SQLGetSQLCA function (CLI) - Get SQLCA data structure
	SQLGetStmtAttr function (CLI) - Get current setting of a statement attribute
	SQLGetStmtOption function (CLI) - Return current setting of a statement option
	SQLGetSubString function (CLI) - Retrieve portion of a string value
	SQLGetTypeInfo function (CLI) - Get data type information
	SQLMoreResults function (CLI) - Determine if there are more result sets
	SQLNativeSql function (CLI) - Get native SQL text
	SQLNumParams function (CLI) - Get number of parameters in a SQL statement
	SQLNextResult function (CLI) - Associate next result set with another statement handle
	SQLNumResultCols function (CLI) - Get number of result columns
	SQLParamData function (CLI) - Get next parameter for which a data value is needed
	SQLParamOptions function (CLI) - Specify an input array for a parameter
	SQLPrepare function (CLI) - Prepare a statement
	SQLPrimaryKeys function (CLI) - Get primary key columns of a table
	SQLProcedureColumns function (CLI) - Get input/output parameter information for a procedure
	SQLProcedures function (CLI) - Get list of procedure names
	SQLPutData function (CLI) - Passing data value for a parameter
	SQLRowCount function (CLI) - Get row count
	SQLSetColAttributes function (CLI) - Set column attributes
	SQLSetConnectAttr function (CLI) - Set connection attributes
	SQLSetConnection function (CLI) - Set connection handle
	SQLSetConnectOption function (CLI) - Set connection option
	SQLSetCursorName function (CLI) - Set cursor name
	SQLSetDescField function (CLI) - Set a single field of a descriptor record
	SQLSetDescRec function (CLI) - Set multiple descriptor fields for a column or parameter data
	SQLSetEnvAttr function (CLI) - Set environment attribute
	SQLSetParam function (CLI) - Bind a parameter marker to a buffer or LOB locator
	SQLSetPos function (CLI) - Set the cursor position in a rowset
	SQLSetStmtAttr function (CLI) - Set options related to a statement
	SQLSetStmtOption function (CLI) - Set statement option
	SQLSpecialColumns function (CLI) - Get special (row identifier) columns
	SQLStatistics function (CLI) - Get index and statistics information for a base table
	SQLTablePrivileges function (CLI) - Get privileges associated with a table
	SQLTables function (CLI) - Get table information
	SQLTransact function (CLI) - Transaction management

	Chapter 2. CLI/ODBC configuration keywords listing by category
	db2cli.ini initialization file
	AllowGetDataLOBReaccess CLI/ODBC configuration keyword
	AltHostName CLI/ODBC configuration keyword
	AltPort CLI/ODBC configuration keyword
	AppUsesLOBLocator CLI/ODBC configuration keyword
	AppendAPIName CLI/ODBC configuration keyword
	AppendForFetchOnly CLI/ODBC configuration keyword
	AppendRowColToErrorMessage CLI/ODBC configuration keyword
	ArrayInputChain CLI/ODBC configuration keyword
	AsyncEnable CLI/ODBC configuration keyword
	Authentication CLI/ODBC configuration keyword
	AutoCommit CLI/ODBC configuration keyword
	BIDI CLI/ODBC configuration keyword
	BitData CLI/ODBC configuration keyword
	BlockForNRows CLI/ODBC configuration keyword
	BlockLobs CLI/ODBC configuration keyword
	CLIPkg CLI/ODBC configuration keyword
	CheckForFork CLI/ODBC configuration keyword
	ClientAcctStr CLI/ODBC configuration keyword
	ClientApplName CLI/ODBC configuration keyword
	ClientBuffersUnboundLOBS CLI/ODBC configuration keyword
	ClientUserID CLI/ODBC configuration keyword
	ClientWrkStnName CLI/ODBC configuration keyword
	ConnectNode CLI/ODBC configuration keyword
	ConnectTimeout CLI/ODBC configuration keyword
	ConnectType CLI/ODBC configuration keyword
	CurrentFunctionPath CLI/ODBC configuration keyword
	CurrentImplicitXMLParseOption CLI/ODBC configuration keyword
	CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword
	CURRENTOPTIMIZATIONPROFILE CLI/ODBC configuration keyword
	CurrentPackagePath CLI/ODBC configuration keyword
	CurrentPackageSet CLI/ODBC configuration keyword
	CurrentRefreshAge CLI/ODBC configuration keyword
	CurrentSQLID CLI/ODBC configuration keyword
	CurrentSchema CLI/ODBC configuration keyword
	CursorHold CLI/ODBC configuration keyword
	CursorTypes CLI/ODBC configuration keyword
	DB2Degree CLI/ODBC configuration keyword
	DB2Explain CLI/ODBC configuration keyword
	DB2NETNamedParam CLI/ODBC configuration keyword
	DB2Optimization CLI/ODBC configuration keyword
	DBAlias CLI/ODBC configuration keyword
	DBName CLI/ODBC configuration keyword
	DSN CLI/ODBC configuration keyword
	Database CLI/ODBC configuration keyword
	DateTimeStringFormat CLI/ODBC configuration keyword
	DecimalFloatRoundingMode CLI/ODBC configuration keyword
	DeferredPrepare CLI/ODBC configuration keyword
	DescribeCall CLI/ODBC configuration keyword
	DescribeInputOnPrepare CLI/ODBC configuration keyword
	DescribeOutputLevel CLI/ODBC configuration keyword
	DescribeParam CLI/ODBC configuration keyword
	DiagLevel CLI/ODBC configuration keyword
	DiagPath CLI/ODBC configuration keyword
	DisableKeysetCursor CLI/ODBC configuration keyword
	DisableMultiThread CLI/ODBC configuration keyword
	DisableUnicode CLI/ODBC configuration keyword
	FileDSN CLI/ODBC configuration keyword
	FloatPrecRadix CLI/ODBC configuration keyword
	GetDataLobNoTotal CLI/ODBC configuration keyword
	GranteeList CLI/ODBC configuration keyword
	GrantorList CLI/ODBC configuration keyword
	Graphic CLI/ODBC configuration keyword
	Hostname CLI/ODBC configuration keyword
	IgnoreWarnList CLI/ODBC configuration keyword
	IgnoreWarnings CLI/ODBC configuration keyword
	Instance CLI/ODBC configuration keyword
	Interrupt CLI/ODBC configuration keyword
	KRBPlugin CLI/ODBC configuration keyword
	KeepDynamic CLI/ODBC configuration keyword
	LOBCacheSize CLI/ODBC configuration keyword
	LOBFileThreshold CLI/ODBC configuration keyword
	LOBMaxColumnSize CLI/ODBC configuration keyword
	LoadXAInterceptor CLI/ODBC configuration keyword
	LockTimeout CLI/ODBC configuration keyword
	LongDataCompat CLI/ODBC configuration keyword
	MapBigintCDefault CLI/ODBC configuration keyword
	MapCharToWChar CLI/ODBC configuration keyword
	MapDateCDefault CLI/ODBC configuration keyword
	MapDateDescribe CLI/ODBC configuration keyword
	MapDecimalFloatDescribe CLI/ODBC configuration keyword
	MapGraphicDescribe CLI/ODBC configuration keyword
	MapTimeCDefault CLI/ODBC configuration keyword
	MapTimeDescribe CLI/ODBC configuration keyword
	MapTimestampCDefault CLI/ODBC configuration keyword
	MapTimestampDescribe CLI/ODBC configuration keyword
	MapXMLCDefault CLI/ODBC configuration keyword
	MapXMLDescribe CLI/ODBC configuration keyword
	MaxLOBBlockSize CLI/ODBC configuration keyword
	Mode CLI/ODBC configuration keyword
	NotifyLevel CLI/ODBC configuration keyword
	OleDbReportIsLongForLongTypes CLI/ODBC configuration keyword
	OleDbReturnCharAsWChar CLI/ODBC configuration keyword
	OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration keyword
	OptimizeForNRows CLI/ODBC configuration keyword
	PWD CLI/ODBC configuration keyword
	PWDPlugin CLI/ODBC configuration keyword
	Patch1 CLI/ODBC configuration keyword
	Patch2 CLI/ODBC configuration keyword
	Port CLI/ODBC configuration keyword
	ProgramName CLI/ODBC configuration keyword
	PromoteLONGVARtoLOB CLI/ODBC configuration keyword
	Protocol CLI/ODBC configuration keyword
	QueryTimeoutInterval CLI/ODBC configuration keyword
	ReadCommonSectionOnNullConnect CLI/ODBC configuration keyword
	ReceiveTimeout CLI/ODBC configuration keyword
	Reopt CLI/ODBC configuration keyword
	ReportPublicPrivileges CLI/ODBC configuration keyword
	ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword
	RetCatalogAsCurrServer CLI/ODBC configuration keyword
	RetOleDbConnStr CLI/ODBC configuration keyword
	RetryOnError CLI/ODBC configuration keyword
	ReturnAliases CLI/ODBC configuration keyword
	ReturnSynonymSchema CLI/ODBC configuration keyword
	SQLOverrideFileName CLI/ODBC configuration keyword
	SaveFile CLI/ODBC configuration keyword
	SchemaList CLI/ODBC configuration keyword
	ServerMsgMask CLI/ODBC configuration keyword
	ServiceName CLI/ODBC configuration keyword
	SkipTrace CLI/ODBC configuration keyword
	StaticCapFile CLI/ODBC configuration keyword
	StaticLogFile CLI/ODBC configuration keyword
	StaticMode CLI/ODBC configuration keyword
	StaticPackage CLI/ODBC configuration keyword
	StreamGetData CLI/ODBC configuration keyword
	StreamPutData CLI/ODBC configuration keyword
	SysSchema CLI/ODBC Configuration Keyword
	TableType CLI/ODBC configuration keyword
	TempDir CLI/ODBC configuration keyword
	Trace CLI/ODBC configuration keyword
	TraceComm CLI/ODBC configuration keyword
	TraceErrImmediate CLI/ODBC configuration keyword
	TraceFileName CLI/ODBC configuration keyword
	TraceFlush CLI/ODBC configuration keyword
	TraceFlushOnError CLI/ODBC configuration keyword
	TraceLocks CLI/ODBC configuration keyword
	TracePIDList CLI/ODBC configuration keyword
	TracePIDTID CLI/ODBC configuration keyword
	TracePathName CLI/ODBC configuration keyword
	TraceRefreshInterval CLI/ODBC configuration keyword
	TraceStmtOnly CLI/ODBC configuration keyword
	TraceTime CLI/ODBC configuration keyword
	TraceTimestamp CLI/ODBC configuration keyword
	Trusted_Connection CLI/ODBC configuration keyword
	TxnIsolation CLI/ODBC configuration keyword
	UID CLI/ODBC configuration keyword
	Underscore CLI/ODBC configuration keyword
	UseOldStpCall CLI/ODBC configuration keyword
	UseServerMsgSP CLI/ODBC configuration keyword
	ServerMsgTextSP CLI/ODBC configuration keyword
	WarningList CLI/ODBC configuration keyword
	XMLDeclaration CLI/ODBC configuration keyword

	Chapter 3. Environment, connection, and statement attributes in CLI applications
	Environment attributes (CLI) list
	Connection attributes (CLI) list
	Statement attributes (CLI) list

	Chapter 4. Cursor positioning rules for SQLFetchScroll() (CLI)
	Chapter 5. Extended scalar functions for CLI applications
	Chapter 6. Descriptor values
	Descriptor FieldIdentifier argument values (CLI)
	Descriptor header and record field initialization values (CLI)

	Chapter 7. Header and record fields for the DiagIdentifier argument (CLI)
	Chapter 8. CLI data type attributes
	SQL symbolic and default data types for CLI applications
	C data types for CLI applications
	Data conversions supported in CLI
	SQL to C data conversion in CLI
	C to SQL data conversion in CLI
	Data type attributes
	Data type precision (CLI) table
	Data type scale (CLI) table
	Data type length (CLI) table
	Data type display (CLI) table

	Part 2. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

