
DB2 Version 9.5

for Linux, UNIX, and Windows

Call Level Interface Guide and Reference, Volume 1

SC23-5844-00

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Call Level Interface Guide and Reference, Volume 1

SC23-5844-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 231.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Part 1. Introduction to DB2 Call Level

Interface and ODBC 1

Chapter 1. Comparison of DB2 CLI and

Microsoft ODBC 3

Chapter 2. IBM Data Server CLI and

ODBC drivers 7

IBM Data Server Driver for ODBC and CLI overview 7

Obtaining the IBM Data Server Driver for ODBC

and CLI 8

Installing the IBM Data Server Driver for ODBC

and CLI 8

Configuring the IBM Data Server Driver for

ODBC and CLI 10

Connecting to databases with the IBM Data

Server Driver for ODBC and CLI 17

Running DB2 CLI and ODBC applications using

the IBM Data Server Driver for ODBC and CLI . 30

Deploying the IBM Data Server Driver for ODBC

and CLI with database applications 40

Setting up the unixODBC Driver Manager 42

Chapter 3. Initializing CLI applications 45

Initialization and termination in CLI overview . . . 46

Handles in CLI 47

Chapter 4. Data types and data

conversion in CLI applications 49

String handling in CLI applications 50

Large object usage in CLI applications 52

LOB locators in CLI applications 53

Direct file input and output for LOB handling in

CLI applications 55

LOB usage in ODBC applications 56

Long data for bulk inserts and updates in CLI

applications 56

User-defined type (UDT) usage in CLI applications 58

Distinct type usage in CLI applications 59

XML data handling in CLI applications - Overview 59

Changing of default XML type handling in CLI

applications 60

Chapter 5. Transaction processing in

CLI overview 61

Allocating statement handles in CLI applications . . 62

Issuing SQL statements in CLI applications 62

Parameter marker binding in CLI applications . . . 63

Binding parameter markers in CLI applications 65

Binding parameter markers in CLI applications

with column-wise array input 66

Binding parameter markers in CLI applications

with row-wise array input 66

Parameter diagnostic information in CLI

applications 67

Changing parameter bindings in CLI applications

with offsets 68

Specifying parameter values at execute time for

long data manipulation in CLI applications . . . 68

Commit modes in CLI applications 70

When to call the CLI SQLEndTran() function . . . 71

Preparing and executing SQL statements in CLI

applications 72

Deferred prepare in CLI applications 73

Executing compound SQL statements in CLI

applications 74

Cursors in CLI applications 75

Cursor considerations for CLI applications . . . 78

Result set terminology in CLI applications 80

Bookmarks in CLI applications 81

Rowset retrieval examples in CLI applications . . 82

Retrieving query results in CLI applications . . . 83

Column binding in CLI applications 85

Specifying the rowset returned from the result set 86

Retrieving data with scrollable cursors in a CLI

application 88

Retrieving data with bookmarks in a CLI

application 90

Result set retrieval into arrays in CLI applications 92

Data retrieval in pieces in CLI applications . . . 95

Fetching LOB data with LOB locators in CLI

applications 96

XML data retrieval in CLI applications 97

Inserting data 98

Inserting bulk data with bookmarks using

SQLBulkOperations() in CLI applications . . . 98

Importing data with the CLI LOAD utility in CLI

applications 98

XML column inserts and updates in CLI

applications 100

Updating and deleting data in CLI applications 101

Updating bulk data with bookmarks using

SQLBulkOperations() in CLI applications . . . 102

Deleting bulk data with bookmarks using

SQLBulkOperations() in CLI applications . . . 103

Calling stored procedures from CLI applications 103

DB2 CLI stored procedure commit behavior . . 105

Creating static SQL with CLI/ODBC/JDBC Static

Profiling 106

Capture file for CLI/ODBC/JDBC Static

Profiling 108

Considerations for mixing embedded SQL and

DB2 CLI 109

Freeing statement resources in CLI applications . . 110

Handle freeing in CLI applications 111

© Copyright IBM Corp. 1993, 2007 iii

Chapter 6. Terminating a CLI

application 113

Chapter 7. Descriptors in CLI

applications 115

Consistency checks for descriptors in CLI

applications 118

Descriptor allocation and freeing 119

Descriptor manipulation with descriptor handles in

CLI applications 121

Descriptor manipulation without using descriptor

handles in CLI applications 123

Chapter 8. Diagnostics in CLI

applications overview 125

CLI function return codes 125

SQLSTATES for DB2 CLI 126

Return codes for compound SQL in CLI

applications 127

CLI/ODBC/JDBC trace facility 128

CLI and JDBC trace files 133

Chapter 9. Catalog functions for

querying system catalog information

in CLI applications 149

Input arguments on catalog functions in CLI

applications 149

Chapter 10. Programming hints and

tips for CLI applications 153

Reduction of network flows with CLI array input

chaining 159

Chapter 11. Multisite updates (two

phase commit) in CLI applications . . 161

ConnectType CLI/ODBC configuration keyword 161

DB2 as transaction manager in CLI applications 162

Process-based XA-compliant Transaction Program

Monitor (XA TP) programming considerations for

CLI applications 164

Chapter 12. Asynchronous execution

of CLI functions 167

Executing functions asynchronously in CLI

applications 168

Chapter 13. Multithreaded CLI

applications 171

Application model for multithreaded CLI

applications 172

Mixed multithreaded CLI applications 173

Chapter 14. Unicode CLI applications 175

Unicode functions (CLI) 176

Unicode function calls to ODBC driver managers 177

Chapter 15. DB2 CLI bind files and

package names 179

Bind option limitations for CLI packages 181

Chapter 16. Building CLI applications 183

Building CLI applications on UNIX 183

AIX CLI application compile and link options 184

HP-UX CLI application compile and link

options 184

Linux CLI application compile and link options 186

Solaris CLI application compile and link options 186

Building CLI multi-connection applications on

UNIX 187

Building CLI applications on Windows 189

Windows CLI application compile and link

options 190

Building CLI multi-connection applications on

Windows 191

Building CLI applications with configuration files 193

Building CLI stored procedures with configuration

files 194

Chapter 17. Building CLI routines . . . 197

Building CLI routines on UNIX 197

AIX CLI routine compile and link options . . . 198

HP-UX CLI routine compile and link options 198

Linux CLI routine compile and link options . . 200

Solaris CLI routine compile and link options 201

Building CLI routines on Windows 202

Windows CLI routine compile and link options 202

Chapter 18. Vendor escape clauses in

CLI applications 205

Part 2. Setting up your application

development environment to run

DB2 CLI and ODBC applications . . 209

Chapter 19. Setting up the UNIX ODBC

environment 211

Sample build scripts and configurations for the

unixODBC Driver Manager 212

Chapter 20. Setting up the Windows

CLI environment 215

Selecting a different DB2 copy for your Windows

CLI application 216

Part 3. Appendixes 219

Appendix A. Overview of the DB2

technical information 221

DB2 technical library in hardcopy or PDF format 221

Ordering printed DB2 books 224

Displaying SQL state help from the command line

processor 224

iv Call Level Interface Guide and Reference, Volume 1

Accessing different versions of the DB2

Information Center 225

Displaying topics in your preferred language in the

DB2 Information Center 225

Updating the DB2 Information Center installed on

your computer or intranet server 226

DB2 tutorials 227

DB2 troubleshooting information 228

Terms and Conditions 228

Appendix B. Notices 231

Index 235

Contents v

vi Call Level Interface Guide and Reference, Volume 1

About this book

The Call Level Interface (CLI) Guide and Reference is in two volumes:

v Volume 1 describes how to use CLI to create database applications for DB2®

Database for Linux®, UNIX®, and Windows®.

v Volume 2 is a reference that describes CLI functions, keywords and

configuration.

© Copyright IBM Corp. 1993, 2007 vii

viii Call Level Interface Guide and Reference, Volume 1

Part 1. Introduction to DB2 Call Level Interface and ODBC

DB2 Call Level Interface (DB2 CLI) is IBM’s callable SQL interface to the DB2

family of database servers. It is a ’C’ and ’C++’ application programming interface

for relational database access that uses function calls to pass dynamic SQL

statements as function arguments. It is an alternative to embedded dynamic SQL,

but unlike embedded SQL, DB2 Call Level Interface does not require host variables

or a precompiler.

DB2 Call Level Interface is based on the Microsoft®** Open Database

Connectivity** (ODBC) specification, and the International Standard for SQL/CLI.

These specifications were chosen as the basis for the DB2 Call Level Interface in an

effort to follow industry standards and to provide a shorter learning curve for

those application programmers already familiar with either of these database

interfaces. In addition, some DB2 specific extensions have been added to help the

application programmer specifically exploit DB2 features.

The DB2 Call Level Interface driver also acts as an ODBC driver when loaded by

an ODBC driver manager. It conforms to ODBC 3.51.

DB2 Call Level Interface Background information

To understand DB2 Call Level Interface or any callable SQL interface, it is helpful

to understand what it is based on, and to compare it with existing interfaces.

The X/Open Company and the SQL Access Group jointly developed a specification

for a callable SQL interface referred to as the X/Open Call Level Interface. The goal of

this interface is to increase the portability of applications by enabling them to

become independent of any one database vendor’s programming interface. Most of

the X/Open Call Level Interface specification has been accepted as part of the ISO

Call Level Interface International Standard (ISO/IEC 9075-3:1995 SQL/CLI).

Microsoft developed a callable SQL interface called Open Database Connectivity

(ODBC) for Microsoft operating systems based on a preliminary draft of X/Open

CLI.

The ODBC specification also includes an operating environment where database

specific ODBC Drivers are dynamically loaded at run time by a driver manager

based on the data source (database name) provided on the connect request. The

application is linked directly to a single driver manager library rather than to each

DBMS’s library. The driver manager mediates the application’s function calls at run

time and ensures they are directed to the appropriate DBMS specific ODBC driver.

Since the ODBC driver manager only knows about the ODBC-specific functions,

DBMS-specific functions cannot be accessed in an ODBC environment.

DBMS-specific dynamic SQL statements are supported via a mechanism called an

escape clause.

ODBC is not limited to Microsoft operating systems; other implementations are

available on various platforms.

The DB2 Call Level Interface load library can be loaded as an ODBC driver by an

ODBC driver manager. For ODBC application development, you must obtain an

ODBC Software Development Kit. For the Windows platform, the ODBC SDK is

© Copyright IBM Corp. 1993, 2007 1

available as part of the Microsoft Data Access Components (MDAC) SDK, available

for download from http://www.microsoft.com/data/. For non-Windows

platforms, the ODBC SDK is provided by other vendors. When developing ODBC

applications that may connect to DB2 servers, use the Call Level Interface Guide

and Reference, Volume 1 and the Call Level Interface Guide and Reference, Volume

2 (for information on DB2 specific extensions and diagnostic information), in

conjunction with the ODBC Programmer’s Reference and SDK Guide available

from Microsoft.

Applications written directly to DB2 Call Level Interface link directly to the DB2

Call Level Interface load library. DB2 Call Level Interface includes support for

many ODBC and ISO SQL/CLI functions, as well as DB2 specific functions.

The following DB2 features are available to both ODBC and DB2 Call Level

Interface applications:

v double byte (graphic) data types

v stored procedures

v Distributed Unit of Work (DUOW), two phase commit

v compound SQL

v user defined types (UDT)

v user defined functions (UDF)

2 Call Level Interface Guide and Reference, Volume 1

Chapter 1. Comparison of DB2 CLI and Microsoft ODBC

This topic discusses the support provided by the DB2 ODBC driver, and how it

differs from DB2 CLI.

Figure 1 below compares DB2 CLI and the DB2 ODBC driver. The left side shows

an ODBC driver under the ODBC Driver Manager, and the right side illustrates

DB2 CLI, the callable interface designed for DB2 specific applications.

DB2 Client refers to all available DB2 Clients. DB2 refers to all DB2 Database for

Linux, UNIX, and Windows products.

 In an ODBC environment, the Driver Manager provides the interface to the

application. It also dynamically loads the necessary driver for the database server

that the application connects to. It is the driver that implements the ODBC

function set, with the exception of some extended functions implemented by the

Driver Manager. In this environment DB2 CLI conforms to ODBC 3.51.

For ODBC application development, you must obtain an ODBC Software

Development Kit. For the Windows platform, the ODBC SDK is available as part of

ODBC Driver Manager
Environment

DB2 CLI
Environment

Application

ODBC Driver Manager

other
ODBC
driver

A

DBMS
B

Gateway
B

DB2
Client

DB2
Server

DB2 Connect

DB2
Client

DB2
ODBC
driver

DB2 CLI
driver

Application

other
ODBC
driver

B

DB2 (MVS)
SQL/DS
SQL/400

Other DRDA
DBMS

DBMS
A

DB2
Server

DB2 Connect

Figure 1. DB2 CLI and ODBC.

© Copyright IBM Corp. 1993, 2007 3

the Microsoft Data Access Components (MDAC) SDK, available for download from

http://www.microsoft.com/data/. For non-Windows platforms, the ODBC SDK is

provided by other vendors.

In environments without an ODBC driver manager, DB2 CLI is a self sufficient

driver which supports a subset of the functions provided by the ODBC driver.

Table 1 summarizes the two levels of support, and the CLI and ODBC function

summary provides a complete list of ODBC functions and indicates if they are

supported.

 Table 1. DB2 CLI ODBC support

ODBC features DB2 ODBC Driver DB2 CLI

Core level functions All All

Level 1 functions All All

Level 2 functions All All, except for SQLDrivers()

Additional DB2 CLI functions All, functions can be accessed by

dynamically loading the DB2 CLI

library.

v SQLSetConnectAttr()

v SQLGetEnvAttr()

v SQLSetEnvAttr()

v SQLSetColAttributes()

v SQLGetSQLCA()

v SQLBindFileToCol()

v SQLBindFileToParam()

v SQLExtendedBind()

v SQLExtendedPrepare()

v SQLGetLength()

v SQLGetPosition()

v SQLGetSubString()

4 Call Level Interface Guide and Reference, Volume 1

Table 1. DB2 CLI ODBC support (continued)

ODBC features DB2 ODBC Driver DB2 CLI

SQL data types All the types listed for DB2 CLI. v SQL_BIGINT

v SQL_BINARY

v SQL_BIT

v SQL_BLOB

v SQL_BLOB_LOCATOR

v SQL_CHAR

v SQL_CLOB

v SQL_CLOB_LOCATOR

v SQL_DBCLOB

v SQL_DBCLOB_LOCATOR

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_LONG

v SQL_LONGVARBINARY

v SQL_LONGVARCHAR

v SQL_LONGVARGRAPHIC

v SQL_NUMERIC

v SQL_REAL

v SQL_SHORT

v SQL_SMALLINT

v SQL_TINYINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_WCHAR

C data types All the types listed for DB2 CLI. v SQL_C_BINARY

v SQL_C_BIT

v SQL_C_BLOB_LOCATOR

v SQL_C_CHAR

v SQL_C_CLOB_LOCATOR

v SQL_C_DATE

v SQL_C_DBCHAR

v SQL_C_DBCLOB_LOCATOR

v SQL_C_DOUBLE

v SQL_C_FLOAT

v SQL_C_LONG

v SQL_C_SHORT

v SQL_C_TIME

v SQL_C_TIMESTAMP

v SQL_C_TINYINT

v SQL_C_SBIGINT

v SQL_C_UBIGINT

v SQL_C_NUMERIC **

v SQL_C_WCHAR

** Only supported on Windows

platform

Chapter 1. CLI versus ODBC 5

Table 1. DB2 CLI ODBC support (continued)

ODBC features DB2 ODBC Driver DB2 CLI

Return codes All the codes listed for DB2 CLI. v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_STILL_EXECUTING

v SQL_NEED_DATA

v SQL_NO_DATA_FOUND

v SQL_ERROR

v SQL_INVALID_HANDLE

SQLSTATES Mapped to X/Open SQLSTATES with

additional IBM® SQLSTATES, with

the exception of the ODBC type

08S01.

Mapped to X/Open SQLSTATES with

additional IBM SQLSTATES

Multiple connections per application Supported Supported

Dynamic loading of driver Supported Not applicable

Isolation levels

The following table map IBM RDBMs isolation levels to ODBC transaction

isolation levels. The SQLGetInfo() function indicates which isolation levels are

available.

 Table 2. Isolation levels under ODBC

IBM isolation level ODBC isolation level

Cursor stability SQL_TXN_READ_COMMITTED

Repeatable read SQL_TXN_SERIALIZABLE_READ

Read stability SQL_TXN_REPEATABLE_READ

Uncommitted read SQL_TXN_READ_UNCOMMITTED

No commit (no equivalent in ODBC)

Note: SQLSetConnectAttr() and SQLSetStmtAttr() will return SQL_ERROR with an

SQLSTATE of HY009 if you try to set an unsupported isolation level.

Restriction

Mixing ODBC and DB2 CLI features and function calls in an application is not

supported on the Windows 64-bit operating system.

6 Call Level Interface Guide and Reference, Volume 1

Chapter 2. IBM Data Server CLI and ODBC drivers

In the IBM Data Server Client and the IBM Data Server Runtime Client there is a

driver for the DB2 CLI application programming interface (API) and the ODBC

API. This driver is commonly referred to throughout the DB2 Information Center

and DB2 books as the IBM Data Server CLI driver or the IBM Data Server

CLI/ODBC driver.

New with DB2 Version 9, there is also a separate CLI and ODBC driver called the

IBM Data Server Driver for ODBC and CLI. The IBM Data Server Driver for ODBC

and CLI provides runtime support for the DB2 CLI and ODBC APIs. However, this

driver is installed and configured separately, and supports a subset of the

functionality of the DB2 clients, such as connectivity, in addition to the CLI and

ODBC API support.

Information that applies to the CLI and ODBC driver that is part of the DB2 client

generally applies to the IBM Data Server Driver for ODBC and CLI too. However,

there are some restrictions and some functionality that is unique to the IBM Data

Server Driver for ODBC and CLI. Information that applies only to the IBM Data

Server Driver for ODBC and CLI will use the full title of the driver to distinguish

it from general information that applies to the ODBC and CLI driver that comes

with the DB2 clients.

v For more information about the IBM Data Server Driver for ODBC and CLI,

see: “IBM Data Server Driver for ODBC and CLI overview.”

IBM Data Server Driver for ODBC and CLI overview

The IBM Data Server Driver for ODBC and CLI provides runtime support for the

DB2 CLI application programming interface (API) and the ODBC API. Though the

IBM Data Server Client and IBM Data Server Runtime Client both support the DB2

CLI and ODBC APIs, this driver is not a part of either IBM Data Server Client or

IBM Data Server Runtime Client. It is available separately, installed separately, and

supports a subset of the functionality of the IBM Data Server Clients.

Advantages of the IBM Data Server Driver for ODBC and CLI

v The driver has a much smaller footprint than the IBM Data Server Client and

the IBM Data Server Runtime Client.

v You can have multiple installations of the driver on a single machine.

v You can install the driver on a machine that already has an IBM Data Server

Client installed.

v You can include the driver in your database application installation package, and

redistribute the driver with your applications. Under certain conditions, you can

redistribute the the driver with your database applications royalty-free.

v The driver can reside on an NFS mounted filesystem.

Functionality of the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI provides:

v runtime support for the DB2 CLI API;

v runtime support for the ODBC API;

© Copyright IBM Corp. 1993, 2007 7

v runtime support for the XA API;

v database connectivity;

v LDAP Database Directory support; and

v tracing, logging, and diagnostic support.
v See: “Restrictions of the IBM Data Server Driver for ODBC and CLI” on page 32.

Obtaining the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It is available to download from the

internet, and it is on the DB2 Version 9 install CD.

To obtain the IBM Data Server Driver for ODBC and CLI, you need:

v internet access, so you can download the driver; or

v a DB2 Version 9 installation CD.

You can obtain the IBM Data Server Driver for ODBC and CLI by doing either of

the following:

v Download the driver from: http://www.ibm.com/software/data/db2/ad.

or

v Copy the driver from the DB2 Version 9 install CD.

The driver is in a compressed file called “db2_driver_for_odbc_cli.zip” on

Windows operating systems, and “db2_driver_for_odbc_cli.tar.Z” on other

operating systems.

The compressed file is located on the CD at:

<CD top>\db2\<platform>\clidriver

where <platform> is one of:

aix

hpipf

hpux

linux

linux390

linux64

linuxamd64

linuxppc

sunos

Windows

Installing the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed separately.

To install the IBM Data Server Driver for ODBC and CLI, you need:

v to obtain the compressed file that contains the driver.

– See: “Obtaining the IBM Data Server Driver for ODBC and CLI.”

There is no installation program for the IBM Data Server Driver for ODBC and

CLI. You must install the driver manually:

1. Copy the compressed file that contains the driver onto the target machine from

the internet or a DB2 Version 9 installation CD.

2. Uncompress that file into your chosen install directory on the target machine.

8 Call Level Interface Guide and Reference, Volume 1

3. Optional: remove the compressed file.

If you are installing the IBM Data Server Driver for ODBC and CLI under the

following conditions:

v the operating systems on the target machine is AIX®; and

v the DB2 Version 9 CD is mounted on the target machine.

the steps you would follow are:

1. Create the directory $HOME/db2_cli_odbc_driver, where you will install the

driver.

2. Locate the compressed file that contains the driver on the install CD. In this

scenario, the file would be called db2_driver_for_odbc_cli.tar.Z.

3. Copy db2_driver_for_odbc_cli.tar.Z to the install directory,

$HOME/db2_cli_odbc_driver.

4. Uncompress db2_driver_for_odbc_cli.tar.Z:

cd $HOME/db2_cli_odbc_driver

uncompress db2_driver_for_odbc_cli.tar.Z

tar -xvf db2_driver_for_odbc_cli.tar

5. Delete db2_driver_for_odbc_cli.tar.Z.

Installing multiple copies of the IBM Data Server Driver for ODBC

and CLI on the same machine

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the Data Server Runtime Client. It must be installed separately. You can

install multiple copies of the IBM Data Server Driver for ODBC and CLI on the

same machine. You might want to do this if you have two database applications on

the same machine that require different versions of the driver.

To install multiple copies of the IBM Data Server Driver for ODBC and CLI on the

same machine, you need:

v to obtain the compressed file that contains the driver.

– See: “Obtaining the IBM Data Server Driver for ODBC and CLI” on page 8.

For each copy of the IBM Data Server Driver for ODBC and CLI that you are

installing:

1. create a unique target installation directory; and

2. follow the installation steps outlined in “Installing the IBM Data Server Driver

for ODBC and CLI” on page 8.

If you are installing two copies of the IBM Data Server Driver for ODBC and CLI

under the following conditions:

v

the operating systems on the target machine is AIX; and

v

the DB2 Version 9 CD is mounted on the target machine.

the steps you would follow are:

1. Create the two directories, $HOME/db2_cli_odbc_driver1 and

$HOME/db2_cli_odbc_driver2, where you will install the driver.

2. Locate the compressed file that contains the driver on the install CD. In this

scenario, the file would be called db2_driver_for_odbc_cli.tar.Z.

Chapter 2. IBM Data Server CLI and ODBC drivers 9

3. Copy db2_driver_for_odbc_cli.tar.Z to the install directories,

$HOME/db2_cli_odbc_driver1 and $HOME/db2_cli_odbc_driver2.

4. Uncompress db2_driver_for_odbc_cli.tar.Z in each directory:

cd $HOME/db2_cli_odbc_driver1

uncompress db2_driver_for_odbc_cli.tar.Z

tar -xvf db2_driver_for_odbc_cli.tar

cd $HOME/db2_cli_odbc_driver2

uncompress db2_driver_for_odbc_cli.tar.Z

tar -xvf db2_driver_for_odbc_cli.tar

5. Delete db2_driver_for_odbc_cli.tar.Z.

Installing the IBM Data Server Driver for ODBC and CLI on a

machine with an existing DB2 client

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed separately. You

can install one or more copies of the IBM Data Server Driver for ODBC and CLI on

a machine where an IBM Data Server Client or IBM Data Server Runtime Client is

already installed. You might want to do this if you have developed some ODBC or

CLI database applications with the IBM Data Server Client that you plan to deploy

with the IBM Data Server Driver for ODBC and CLI, because it enables you to test

the database applications with the driver on the same machine as your

development environment.

To install the IBM Data Server Driver for ODBC and CLI on the same machine as

an IBM Data Server Client or IBM Data Server Runtime Client, you need:

v to obtain the compressed file that contains the driver.

– See: “Obtaining the IBM Data Server Driver for ODBC and CLI” on page 8.

The procedure for installing one or more copies of the IBM Data Server Driver for

ODBC and CLI on a machine that already has an IBM Data Server Client or IBM

Data Server Runtime Client installed is the same as the procedure for installing the

driver on a machine that has no IBM Data Server Client installed.

See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8 and

“Installing multiple copies of the IBM Data Server Driver for ODBC and CLI on

the same machine” on page 9.

Configuring the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately. You must configure the IBM Data Server Driver for ODBC and CLI, and

the software components of your database application runtime environment in

order for your applications to use the driver successfully.

To configure the IBM Data Server Driver for ODBC and CLI and your application

environment for the driver, you need:

v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

To configure the IBM Data Server Driver for ODBC and CLI, and the runtime

environment of your IBM Data Server CLI and ODBC applications to use the

driver:

10 Call Level Interface Guide and Reference, Volume 1

1. Configure aspects of the driver’s behaviour such as data source name, user

name, performance options, and connection options by updating the

db2cli.ini initialization file.

v See: “db2cli.ini initialization file”

There is no support for the Command Line Processor (CLP) with the IBM Data

Server Driver for ODBC and CLI. For this reason, you can not update CLI

configuration using the CLP command “db2 update CLI cfg”; you must update

the db2cli.ini initialization file manually.

The db2cli.ini file can be specified to be installed in the same directory where

the clidriver is installed. On Windows operating systems db2cli.ini is located

in <install_dir>\clidriver, and in the <install_dir>\clidriver\cfg directory on

UNIX operating systems.

If you have multiple copies of the IBM Data Server Driver for ODBC and CLI

installed, each copy of the driver will have its own db2cli.ini file. Ensure you

make the additions to the db2cli.ini for the correct copy of the driver.

2. Configure application environment variables.

v See: “Configuring environment variables for the IBM Data Server Driver for

ODBC and CLI” on page 14
3. For applications participating in transactions managed by the Microsoft

Distributed Transaction Coordinator (DTC) only: you must register the driver

with the DTC.

v See: “Registering the IBM Data Server Driver for ODBC and CLI with the

Microsoft DTC” on page 16.
4. For ODBC applications using the Microsoft ODBC driver manager only: you

must register the driver with the Microsoft driver manager.

v See: “Registering the IBM Data Server Driver for ODBC and CLI with the

Microsoft ODBC driver manager” on page 17.

db2cli.ini initialization file

The db2cli.ini initialization file contains various keywords and values that can be

used to configure the behavior of DB2 CLI and the applications using it. The

keywords are associated with the database alias name, and affect all DB2 CLI and

ODBC applications that access the database.

By default, the location of the DB2 CLI/ODBC configuration keyword file is in the

sqllib directory on Window platforms, and in the sqllib/cfg directory of the

database instance running the CLI/ODBC applications on UNIX platforms. If the

ODBC Driver Manager is used to configure a User Data Source on the Windows

platform, a db2cli.ini might be created in:

v On the Windows XP and Windows 2003 operating systems, Documents and

Settings\All Users\Application Data\IBM\DB2\<Copy Name>

v On the Windows Vista operating system, ProgramData\IBM\DB2\<Copy

Name>

The environment variable DB2CLIINIPATH can also be used to override the default

and specify a different location for the file.

The configuration keywords enable you to:

v Configure general features such as data source name, user name, and password.

v Set options that will affect performance.

v Indicate query parameters such as wild card characters.

v Set patches or work-arounds for various ODBC applications.

Chapter 2. IBM Data Server CLI and ODBC drivers 11

v Set other, more specific features associated with the connection, such as code

pages and IBM GRAPHIC data types.

v Override default connection options specified by an application. For example, if

an application requests Unicode support from the CLI driver by setting the

SQL_ATTR_ANSI_APP connection attribute, then setting DisableUnicode=1 in

the db2cli.ini file will force the CLI driver not to provide the application with

Unicode support.

Note: If the CLI/ODBC configuration keywords set in the db2cli.ini file conflict

with keywords in the SQLDriverConnect() connection string, then the

SQLDriverConnect() keywords will take precedence.

The db2cli.ini initialization file is an ASCII file which stores values for the DB2 CLI

configuration options. A sample file is shipped to help you get started. While most

CLI/ODBC configuration keywords are set in the db2cli.ini initialization file, some

keywords are set by providing the keyword information in the connection string to

SQLDriverConnect() instead.

There is one section within the file for each database (data source) the user wishes

to configure. If needed, there is also a common section that affects all database

connections.

Only the keywords that apply to all database connections through the DB2

CLI/ODBC driver are included in the COMMON section. This includes the

following keywords:

v CheckForFork

v DisableMultiThread

v JDBCTrace

v JDBCTraceFlush

v JDBCTracePathName

v QueryTimeoutInterval

v ReadCommonSectionOnNullConnect

v Trace

v TraceComm

v TraceErrImmediate

v TraceFileName

v TraceFlush

v TraceFlushOnError

v TraceLocks

v TracePathName

v TracePIDList

v TracePIDTID

v TraceRefreshInterval

v TraceStmtOnly

v TraceTime

v TraceTimeStamp

All other keywords are to be placed in the database specific section, described

below.

12 Call Level Interface Guide and Reference, Volume 1

Note: Configuration keywords are valid in the COMMON section, however, they

will apply to all database connections.

The COMMON section of the db2cli.ini file begins with:

[COMMON]

Before setting a common keyword it is important to evaluate its impact on all DB2

CLI/ODBC connections from that client. A keyword such as TRACE, for instance,

will generate information on all DB2 CLI/ODBC applications connecting to DB2 on

that client, even if you are intending to troubleshoot only one of those applications.

Each database specific section always begins with the name of the data source

name (DSN) between square brackets:

[data source name]

This is called the section header.

The parameters are set by specifying a keyword with its associated keyword value

in the form:

KeywordName =keywordValue

v All the keywords and their associated values for each database must be located

below the database section header.

v If the database-specific section does not contain a DBAlias keyword, the data

source name is used as the database alias when the connection is established.

The keyword settings in each section apply only to the applicable database alias.

v The keywords are not case sensitive; however, their values can be if the values

are character based.

v If a database is not found in the .INI file, the default values for these keywords

are in effect.

v Comment lines are introduced by having a semicolon in the first position of a

new line.

v Blank lines are permitted.

v If duplicate entries for a keyword exist, the first entry is used (and no warning

is given).

The following is a sample .INI file with 2 database alias sections:

; This is a comment line.

[MYDB22]

AutoCommit=0

TableType="’TABLE’,’SYSTEM TABLE’"

; This is another comment line.

[MYDB2MVS]

CurrentSQLID=SAAID

TableType="’TABLE’"

SchemaList="’USER1’,CURRENT SQLID,’USER2’"

Although you can edit the db2cli.ini file manually on all platforms, it is

recommended that you use the Configuration Assistant if it is available on your

platform or the UPDATE CLI CONFIGURATION command. You must add a blank

line after the last entry if you manually edit the db2cli.ini file.

Chapter 2. IBM Data Server CLI and ODBC drivers 13

Configuring environment variables for the IBM Data Server Driver

for ODBC and CLI

The IBM IBM Data Server Driver for ODBC and CLI is not part of the IBM Data

Server Client or the IBM Data Server Runtime Client. It must be installed and

configured separately. To use the IBM Data Server Driver for ODBC and CLI, there

are two types of environment variables that you might have to set: environment

variables that have replaced some DB2 registry variables; and an environment

variable that tells your applications where to find the driver libraries.

To configure environment variables for the IBM Data Server Driver for ODBC and

CLI, you need:

v one or more copies of the driver installed.

– See:“Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

To configure environment variables for the IBM Data Server Driver for ODBC and

CLI:

1.

Optional: set any applicable DB2 environment variables corresponding to its

equivalent DB2 registry variables.

There is no support for the Command Line Processor (CLP) with the IBM Data

Server Driver for ODBC and CLI. For this reason, you can not configure DB2

registry variables using the db2set CLP command. Required DB2 registry

variables have been replaced with environment variables.

For a list of the environment variables that can be used instead of DB2 registry

variables, see: “Environment variables supported by the IBM DB2 Driver for

ODBC and CLI” on page 15.

2.

Required for AIX operating systems only: Set the local environment variable

DB2_CLI_DRIVER_INSTALL_PATH to the directory in which the driver is installed.

(If there are multiple copies of the IBM Data Server Driver for ODBC and CLI

installed, ensure DB2_CLI_DRIVER_INSTALL_PATH points to the intended copy of

the driver.) Only AIX requires that this variable be set. This variable is

supported, but not required, on all other operating systems.

For example,

export DB2_CLI_DRIVER_INSTALL_PATH=/home/db2inst1/db2clidriver/clidriver

where /home/db2inst1/db2clidriver is the install path where the clidriver is

installed

3.

Optional: set the environment variable LIBPATH (on AIX systems) or

LD_LIBRARY_PATH (on UNIX systems) to the directory in which the driver is

installed. (If there are multiple copies of the IBM Data Server Driver for ODBC

and CLI installed, ensure LIBPATH or LD_LIBRARY_PATH points to the intended

copy of the driver.)

This step is not necessary if your applications statically link to, or dynamically

load the driver’s library (db2cli.dll on Windows systems, or libdb2.a on

other systems) with the fully qualified name.

You are recommended to dynamically load the library using the fully qualified

library name. On Windows operating systems, you are recommended to use the

LoadLibraryEx method.

Restrictions

14 Call Level Interface Guide and Reference, Volume 1

If there are multiple versions of the IBM Data Server Driver for ODBC and CLI

installed on the same machine, or if there are other DB2 Version 9 products

installed on the same machine, setting environment variables (for example, setting

LIBPATH or LD_LIBRARY_PATH to point to the IBM Data Server Driver for ODBC and

CLI library) might break existing applications. When setting an environment

variable, ensure that it is appropriate for all applications running in the scope of

that environment.

Environment variables supported by the IBM DB2 Driver for ODBC and CLI:

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately.

The IBM Data Server Driver for ODBC and CLI does not support the command

line processor (CLP.) This means that the usual mechanism to set DB2 registry

variables, using the “db2set” CLP command, is not possible. Relevant DB2 registry

variables will be supported with the IBM Data Server Driver for ODBC and CLI as

environment variables instead.

The DB2 registry variables that will be supported by the IBM Data Server Driver

for ODBC and CLI as environment variables are:

 Table 3. DB2 registry variables supported as environment variables

Type of variable Variable name(s)

General variables

 DB2ACCOUNT

DB2BIDI

DB2CODEPAGE

DB2COUNTRY

DB2GRAPHICUNICODESERVER

DB2LOCALE

DB2TERRITORY

System environment variables

 DB2DOMAINLIST

Communications variables

 DB2_FORCE_NLS_CACHE

DB2SORCVBUF

DB2SOSNDBUF

DB2TCP_CLIENT_RCVTIMEOUT

Performance variables

 DB2_NO_FORK_CHECK

Miscellaneous variables

 DB2CLIINIPATH

DB2_ENABLE_LDAP

DB2LDAP_BASEDN

DB2LDAP_CLIENT_PROVIDER

DB2LDAPHOST

DB2LDAP_KEEP_CONNECTION

DB2LDAP_SEARCH_SCOPE

DB2NOEXITLIST

Diagnostic variables

 DB2_DIAGPATH

Chapter 2. IBM Data Server CLI and ODBC drivers 15

db2oreg1.exe overview

You can use the db2oreg1.exe utility to register the XA library of the IBM Data

Server Driver for ODBC and CLI with the Microsoft Distributed Transaction

Coordinator (DTC), and to register the driver with the Microsoft ODBC driver

manager. You need to use the db2oreg1.exe utility on Windows operating systems

only.

Conditions requiring that you run the db2oreg1.exe utility

You must run the db2oreg1.exe utility if:

v your applications that use the IBM Data Server Driver for ODBC and CLI will

be participating in distributed transactions managed by the DTC; or

v your applications that use the IBM Data Server Driver for ODBC and CLI will

be connecting to ODBC data sources.

When to run the db2oreg1.exe utility

If you use the db2oreg1.exe utility, you must run it when:

v you install the IBM Data Server Driver for ODBC and CLI; and

v you uninstall the IBM Data Server Driver for ODBC and CLI.

The db2oreg1.exe utility makes changes to the Windows registry when you run

it after installing the driver. If you uninstall the driver, you should run the utility

again to undo those changes.

How to run the db2oreg1.exe utility

v db2oreg1.exe is located in bin subdirectory where the IBM Data Server Driver

for ODBC and CLI is installed.

v To list the parameters the db2oreg1.exe utility takes, and how to use them, run

the utility with the “-h” option.

Registering the IBM Data Server Driver for ODBC and CLI with

the Microsoft DTC

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately. To use the IBM Data Server Driver for ODBC and CLI with database

applications that participate in transactions managed by the Microsoft Distributed

Transaction Coordinator (DTC), you must register the driver with the DTC. Here is

a link to the Microsoft article outlining the details of this security requirement:

Registry Entries Are Required for XA Transaction Support

To register the IBM Data Server Driver for ODBC and CLI with the DTC, you

need:

v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

Restrictions

You only need to register the IBM Data Server Driver for ODBC and CLI with the

DTC if your applications that use the driver are participating in transactions

managed by the DTC.

To register the IBM Data Server Driver for ODBC and CLI with the DTC, do the

following for each copy of the driver that is installed:

16 Call Level Interface Guide and Reference, Volume 1

v run the db2oreg1.exe utility.

– See: “db2oreg1.exe overview” on page 16.
The db2oreg1.exe utility makes changes to the Windows registry when you run

it after installing the driver. If you uninstall the driver, you should run the utility

again to undo those changes.

Registering the IBM Data Server Driver for ODBC and CLI with

the Microsoft ODBC driver manager

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately. For ODBC applications to use the IBM Data Server Driver for ODBC

and CLI with the Microsoft ODBC driver manager, you must register the driver

with the driver manager.

To register the IBM Data Server Driver for ODBC and CLI with the Microsoft

ODBC driver manager, you need:

v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

Restrictions

The Microsoft ODBC driver manager is the only ODBC driver manager with which

you must register the IBM Data Server Driver for ODBC and CLI. The other ODBC

driver managers do not require this.

To register the IBM Data Server Driver for ODBC and CLI with the Microsoft

driver manager, do the following for each copy of the driver that is installed:

v run the db2iodbc.exe utility.

– See: “db2oreg1.exe overview” on page 16.
The db2oreg1.exe utility makes changes to the Windows registry when you run

it after installing the driver. If you uninstall the driver, you should run the utility

again to undo those changes.

Connecting to databases with the IBM Data Server Driver for

ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately. The IBM Data Server Driver for ODBC and CLI does not create a local

database directory. This means that when you use this driver, you must make

connectivity information available to your applications in other ways.

To connect to databases with the IBM Data Server Driver for ODBC and CLI, you

need:

v database(s) to which to connect; and

v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

There are five ways to specify connectivity information so that your CLI and

ODBC database applications can use the IBM Data Server Driver for ODBC and

CLI to connect to a database. To configure connectivity for a database when using

the IBM Data Server Driver for ODBC and CLI, do one of:

Chapter 2. IBM Data Server CLI and ODBC drivers 17

1. Specify the database connectivity information in the connection string

parameter to SQLDriverConnect.

v See: “SQLDriverConnect function (CLI) - (Expanded) Connect to a data

source” on page 21.

or

1. For CLI applications only: put the database connectivity information in the DB2

CLI configuration file.

v See: “db2cli.ini initialization file” on page 11.
There is no support for the Command Line Processor (CLP) with the IBM Data

Server Driver for ODBC and CLI. For this reason, you can not update CLI

configuration using the CLP command “db2 update CLI cfg”; you must update

the db2cli.ini initialization file manually.

The db2cli.ini file can be specified to be installed in the same directory where

the clidriver is installed. On Windows operating systems db2cli.ini is located

in <install_dir>\clidriver, and in the <install_dir>\clidriver\cfg directory on

UNIX operating systems.

If you have multiple copies of the IBM Data Server Driver for ODBC and CLI

installed, each copy of the driver will have its own db2cli.ini file. Ensure you

make the additions to the db2cli.ini for the correct copy of the driver.

or

1. For ODBC applications only: register the database as an ODBC data source

with the ODBC driver manager.

v See: “Registering ODBC data sources for applications using the IBM Data

Server Driver for ODBC and CLI” on page 19

or

1. Use the FileDSN CLI/ODBC keyword to identify a file DSN that contains the

database connectivity information.

v See: “FileDSN CLI/ODBC configuration keyword” on page 28.
A file DSN is a file that contains database connectivity information. You can

create a file DSN by using the Save File CLI/ODBC keyword. On Microsoft

Windows you can use the Microsoft ODBC driver manager to create a file DSN.

or

1. For local database servers only: use the PROTOCOL and DB2INSTANCE CLI/ODBC

keywords to identify the local database:

v Set the PROTOCOL CLI/ODBC keyword to the value “Local”; and

v Set the DB2INSTANCE CLI/ODBC keyword to the instance name of the local

database server on which the database is located.
v See: “Protocol CLI/ODBC configuration keyword” on page 29.

Here is a list of CLI/ODBC keywords that work with file DSN or DSN-less

connections:

v “AltHostName CLI/ODBC configuration keyword” on page 26;

v “AltPort CLI/ODBC configuration keyword” on page 26;

v “Authentication CLI/ODBC configuration keyword” on page 27;

v “BIDI CLI/ODBC configuration keyword” on page 27;

v “FileDSN CLI/ODBC configuration keyword” on page 28;

v “Instance CLI/ODBC configuration keyword” on page 28;

18 Call Level Interface Guide and Reference, Volume 1

v “Interrupt CLI/ODBC configuration keyword” on page 28;

v “KRBPlugin CLI/ODBC configuration keyword” on page 29;

v “Protocol CLI/ODBC configuration keyword” on page 29;

v “PWDPlugin CLI/ODBC configuration keyword” on page 29;

v “SaveFile CLI/ODBC configuration keyword” on page 30;

For the following examples, consider a database with the following properties:

v the database or subsystem is called db1 on the server;

v the server is located at 11.22.33.444;

v the access port is 56789; and

v the transfer protocol is TCPIP.

To make a connection to the database in a CLI application, you could do one of the

following:

1. Call SQLConnect with a connection string that contains:

v “Database=db1; Protocol=tcpip; Hostname=11.22.33.444;

 Servicename=56789;”

or

1. Add the following to db2cli.ini:

v

[db1]

Database=db1

Protocol=tcpip

Hostname=11.22.33.444

Servicename=56789

To make a connection to the database in an ODBC application:

1. Register the database as an ODBC data source called odbc_db1 with the driver

manager; and

2. call SQLConnect with a connection string that contains:

v “Database=odbc_db1;”

Registering ODBC data sources for applications using the IBM

Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately. Before an ODBC database application can use the IBM Data Server

Driver for ODBC and CLI to connect to a database, you must: 1) register the

database as an ODBC data source with the ODBC driver manager; and 2) identify

the IBM Data Server Driver for ODBC and CLI as the ODBC driver for the data

source.

To register a database as an ODBC data source and associate the IBM Data Server

Driver for ODBC and CLI with it, you need:

v databases to which your ODBC applications are going to connect;

v an ODBC driver manager installed; and

v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

Chapter 2. IBM Data Server CLI and ODBC drivers 19

The procedure for registering a database as an ODBC data source and associating

the IBM Data Server Driver for ODBC and CLI with it depends on which driver

manager you are using.

v For the Microsoft ODBC driver manager:

1. Register the IBM Data Server Driver for ODBC and CLI with the Microsoft

ODBC driver manager using the db2oreg1.exe utility.

– See: “Registering the IBM Data Server Driver for ODBC and CLI with the

Microsoft ODBC driver manager” on page 17.
2. Register the database as an ODBC data source.

– See: Chapter 20, “Setting up the Windows CLI environment,” on page 215.
v For open source ODBC driver managers:

1. Identify the database as an ODBC data source by adding database

information to the odbc.ini file.

– See: Chapter 19, “Setting up the UNIX ODBC environment,” on page 211.
2. Associate the IBM Data Server Driver for ODBC and CLI with the data

source by adding the fully qualified driver library file in the section of the

odbc.ini file for the database.

The name of the IBM Data Server Driver for ODBC and CLI library file is

db2app.dll on Windows platorms, and db2app.lib on other platforms. The driver

library file is located in the “lib” subdirectory of the directory in which you

installed the driver.

If you have multiple copies of the IBM Data Server Driver for ODBC and CLI

installed, ensure the intended copy is identified in the odbc.ini file.

If you are registering ODBC data sources with an open source driver manager

under the following conditions:

v the operating system on the target machine is a AIX;

v there are two copies of the IBM Data Server Driver for ODBC and CLI installed

at

– $HOME/db2_cli_odbc_driver1 and

– $HOME/db2_cli_odbc_driver2

v there are two ODBC database applications:

1. ODBCapp_A

– connects to two data sources, db1 and db2; and

– is intended to use the copy of the driver installed at $HOME/
db2_cli_odbc_driver1.

2. ODBCapp_B

– connects to the data source db3; and

– is intended to use the copy of the driver installed at $HOME/
db2_cli_odbc_driver2.

add the following the entries in the odbc.ini file:

v

[db1]

Driver=$HOME/db2_cli_odbc_driver1/lib/libdb2.a

Description=First ODBC data source for ODBCapp1,

 using the first copy of the IBM Data Server Driver for ODBC and CLI

[db2]

Driver=$HOME/db2_cli_odbc_driver1/lib/libdb.a

20 Call Level Interface Guide and Reference, Volume 1

Description=Second ODBC data source for ODBCapp1,

 using the first copy of the IBM Data Server Driver for ODBC and CLI

[db3]

Driver=$HOME/db2_cli_odbc_driver2/lib/libdb2.a

Description=First ODBC data source for ODBCapp2,

 using the second copy of the IBM Data Server Driver for ODBC and CLI

Using security plugins with the IBM Data Server Driver for ODBC

and CLI

A security plug-in is a dynamicaly-loadable library that provides authentication

security services.

Using security plug-ins with the IBM Data Server Driver for ODBC and CLI is no

different from using security plug-ins with an IBM Data Server Client or IBM Data

Server Runtime Client.

When you read about using security plug-ins throughout the DB2 Information

Center and DB2 books, consider the IBM Data Server Driver for ODBC and CLI

like an IBM Data Server Client. Details about using security plug-ins with IBM

Data Server Clients apply to using security plug-ins with the IBM Data Server

Driver for ODBC and CLI too.

SQLDriverConnect function (CLI) - (Expanded) Connect to a data

source

Purpose

 Specification: DB2 CLI 2.1 ODBC 1.0

SQLDriverConnect() is an alternative to SQLConnect(). Both functions establish a

connection to the target database, but SQLDriverConnect() supports additional

connection parameters and the ability to prompt the user for connection

information.

Use SQLDriverConnect() when the data source requires parameters other than the 3

input arguments supported by SQLConnect() (data source name, user ID and

password), or when you want to use DB2 CLI’s graphical user interface to prompt

the user for mandatory connection information.

Once a connection is established, the completed connection string is returned.

Applications can store this string for future connection requests.

Syntax

Generic

SQLRETURN SQLDriverConnect (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLHWND WindowHandle, /* hwnd */

 SQLCHAR *InConnectionString, /* szConnStrIn */

 SQLSMALLINT InConnectionStringLength, /* cbConnStrIn */

 SQLCHAR *OutConnectionString, /* szConnStrOut */

 SQLSMALLINT OutConnectionStringCapacity, /* cbConnStrOutMax */

 SQLSMALLINT *OutConnectionStringLengthPtr, /* pcbConnStrOut */

 SQLUSMALLINT DriverCompletion); /* fDriverCompletion */

Chapter 2. IBM Data Server CLI and ODBC drivers 21

Function arguments

 Table 4. SQLDriverConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLHWND WindowHandle input Window handle. On the Windows platform, this is

the parent Windows handle. Currently the window

handle is only supported on Windows.

If a NULL is passed, then no dialog will be

presented.

SQLCHAR * InConnectionString input A full, partial or empty (null pointer) connection

string (see syntax and description below).

SQLSMALLINT InConnectionStringLength input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store InConnectionString.

SQLCHAR * OutConnectionString output Pointer to buffer for the completed connection string.

If the connection was established successfully, this

buffer will contain the completed connection string.

Applications should allocate at least

SQL_MAX_OPTION_STRING_LENGTH bytes for

this buffer.

SQLSMALLINT

 OutConnectionString

Capacity

input Number of SQLCHAR elements (or SQLWCHAR

elements for the Unicode variant of this function)

needed to store OutConnectionString.

SQLCHAR *

 OutConnectionString

LengthPtr

output Pointer to the number of SQLCHAR elements (or

SQLWCHAR elements for the Unicode variant of this

function), excluding the null-termination character,

available to return in the OutConnectionString buffer.

If the value of *OutConnectionStringLengthPtr is

greater than or equal to OutConnectionStringCapacity,

the completed connection string in

OutConnectionString is truncated to

OutConnectionStringCapacity - 1 SQLCHAR or

SQLWCHAR elements.

SQLUSMALLINT DriverCompletion input Indicates when DB2 CLI should prompt the user for

more information.

Possible values:

v SQL_DRIVER_PROMPT

v SQL_DRIVER_COMPLETE

v SQL_DRIVER_COMPLETE_REQUIRED

v SQL_DRIVER_NOPROMPT

Usage

InConnectionString Argument

A request connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

22 Call Level Interface Guide and Reference, Volume 1

attribute ::= attribute-keyword=attribute-value

| DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | NEWPWD

| driver-defined-attribute-keyword

attribute-value ::= character-string

driver-defined-attribute-keyword ::= identifier

where

v character-string has zero or more SQLCHAR or SQLWCHAR elements

v identifier has one or more SQLCHAR or SQLWCHAR elements

v attribute-keyword is case insensitive

v attribute-value may be case sensitive

v the value of the DSN keyword does not consist solely of blanks

v NEWPWD is used as part of a change password request. The application can

either specify the new string to use, for example, NEWPWD=anewpass; or

specify NEWPWD=; and rely on a dialog box generated by the DB2 CLI driver

to prompt for the new password

Because of connection string and initialization file grammar, keywords and

attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because

of the grammar in the system information, keywords and data source names

cannot contain the backslash (\) character. For DB2 CLI Version 2, braces are

required around the DRIVER keyword.

If any keywords are repeated in the browse request connection string, DB2 CLI

uses the value associated with the first occurrence of the keyword. If the DSN and

DRIVER keywords are included in the same browse request connection string,

DB2 CLI uses whichever keyword appears first.

OutConnectionString Argument

The result connection string is a list of connection attributes. A connection attribute

consists of an attribute keyword and a corresponding attribute value. The browse

result connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= [*]attribute-keyword=attribute-value

attribute-keyword ::= ODBC-attribute-keyword

| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}:[localized-identifier]

driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?

(The braces are literal; they are returned by DB2 CLI.)

attribute-value-list ::= character-string [:localized-character

string] | character-string [:localized-character string], attribute-value-list

where

v character-string and localized-character string have zero or more SQLCHAR or

SQLWCHAR elements

v identifier and localized-identifier have one or more SQLCHAR or SQLWCHAR

elements; attribute-keyword is case insensitive

Chapter 2. IBM Data Server CLI and ODBC drivers 23

v attribute-value may be case sensitive

Because of connection string and initialization file grammar, keywords, localized

identifiers, and attribute values that contain the characters []{}(),;?*=!@ should be

avoided. Because of the grammar in the system information, keywords and data

source names cannot contain the backslash (\) character.

The connection string is used to pass one or more values needed to complete a

connection. The contents of the connection string and the value of DriverCompletion

will determine if DB2 CLI needs to establish a dialog with the user.

��

�

 ;

Connection string syntax

=

attribute

��

Connection string syntax

 DSN

UID

PWD

NEWPWD

DB2 CLI-defined-keyword

Each keyword above has an attribute that is equal to the following:

DSN Data source name. The name or alias-name of the database. Required if

DriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier).

PWD The password corresponding to the authorization name. If there is no

password for the user ID, an empty value is specified (PWD=;).

NEWPWD

New password used as part of a change password request. The application

can either specify the new string to use, for example,

NEWPWD=anewpass; or specify NEWPWD=; and rely on a dialog box

generated by the DB2 CLI driver to prompt for the new password (set the

DriverCompletion argument to anything other than

SQL_DRIVER_NOPROMPT).

Any one of the CLI keywords can be specified on the connection string. If any

keywords are repeated in the connection string, the value associated with the first

occurrence of the keyword is used.

If any keywords exists in the CLI initialization file, the keywords and their

respective values are used to augment the information passed to DB2 CLI in the

connection string. If the information in the CLI initialization file contradicts

information in the connection string, the values in connection string take

precedence.

If the end user Cancels a dialog box presented, SQL_NO_DATA_FOUND is

returned.

The following values of DriverCompletion determines when a dialog will be opened:

24 Call Level Interface Guide and Reference, Volume 1

SQL_DRIVER_PROMPT:

A dialog is always initiated. The information from the connection string

and the CLI initialization file are used as initial values, to be supplemented

by data input via the dialog box.

SQL_DRIVER_COMPLETE:

A dialog is only initiated if there is insufficient information in the

connection string. The information from the connection string is used as

initial values, to be supplemented by data entered via the dialog box.

SQL_DRIVER_COMPLETE_REQUIRED:

A dialog is only initiated if there is insufficient information in the

connection string. The information from the connection string is used as

initial values. Only mandatory information is requested. The user is

prompted for required information only.

SQL_DRIVER_NOPROMPT:

The user is not prompted for any information. A connection is attempted

with the information contained in the connection string. If there is not

enough information, SQL_ERROR is returned.

Once a connection is established, the complete connection string is returned.

Applications that need to set up multiple connections to the same database for a

given user ID should store this output connection string. This string can then be

used as the input connection string value on future SQLDriverConnect() calls.

Unicode equivalent: This function can also be used with the Unicode character

set. The corresponding Unicode function is SQLDriverConnectW(). Refer to

“Unicode functions (CLI)” on page 176 for information on ANSI to Unicode

function mappings.

Return codes

v SQL_SUCCESS

v SQL_SUCCESS_WITH_INFO

v SQL_NO_DATA_FOUND

v SQL_INVALID_HANDLE

v SQL_ERROR

Diagnostics

All of the diagnostics generated by SQLConnect() can be returned here as well. The

following table shows the additional diagnostics that can be returned.

 Table 5. SQLDriverConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer szConnstrOut was not large enough to hold the entire

connection string. The argument *OutConnectionStringLengthPtr

contains the actual length of the connection string available for

return. (Function returns SQL_SUCCESS_WITH_INFO)

01S00 Invalid connection string

attribute.

An invalid keyword or attribute value was specified in the input

connection string, but the connection to the data source was

successful anyway because one of the following occurred:

v The unrecognized keyword was ignored.

v The invalid attribute value was ignored, the default value was

used instead.

(Function returns SQL_SUCCESS_WITH_INFO)

Chapter 2. IBM Data Server CLI and ODBC drivers 25

Table 5. SQLDriverConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error.

Dialog Failed

The information specified in the connection string was insufficient

for making a connect request, but the dialog was prohibited by

setting fCompletion to SQL_DRIVER_NOPROMPT.

The attempt to display the dialog failed.

HY090 Invalid string or buffer length. The value specified for InConnectionStringLength was less than 0,

but not equal to SQL_NTS.

The value specified for OutConnectionStringCapacity was less than

0.

HY110 Invalid driver completion. The value specified for the argument fCompletion was not equal to

one of the valid values.

Restrictions

None.

Example

 rc = SQLDriverConnect(hdbc,

 (SQLHWND)sqlHWND,

 InConnectionString,

 InConnectionStringLength,

 OutConnectionString,

 OutConnectionStringCapacity,

 StrLength2,

 DriveCompletion);

CLI/ODBC keywords for file DSN or DSN-less connections

AltHostName CLI/ODBC configuration keyword:

Specifies the alternate host name to be used if the primary server specified by

HOSTNAME cannot be contacted (Client Reroute.)

 db2cli.ini keyword syntax:

AltHostName = fully qualified alternate host name | IP address of node

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies a fully qualified host name or the IP address of

the node where the alternate server for the database resides.

 If the primary server returns alternate server information, it will override

this AltHostName setting. However, this keyword is read only. That means

the db2cli.ini will not be updated with the alternate server information

received from the primary server.

AltPort CLI/ODBC configuration keyword:

Specifies the alternate port to be used if the primary server specified by HOSTNAME

and PORT cannot be contacted (Client Reroute.)

 db2cli.ini keyword syntax:

AltPort = port number

26 Call Level Interface Guide and Reference, Volume 1

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies the port number of the alternate server of the

database manager instance where the alternate server for the database

resides.

 If the primary server returns alternate server information, it will override

this AltPort setting. However, this keyword is read only. That means the

db2cli.ini will not be updated with the alternate server information

received from the primary server.

Authentication CLI/ODBC configuration keyword:

Specifies the type of authentication to be used with file DSN or DSN-less

connectivity.

 db2cli.ini keyword syntax:

Authentication = SERVER | SERVER_ENCRYPT | DATA_ENCRYPT |

KERBEROS | GSSPLUGIN

Default setting:

SERVER

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this option, you must also set the following options:

v Database;

v Protocol.

If Protocol=IPC, you need to set the following too:

v Instance.

If Protocol=TCPIP, you need to set the following too:

v Port; and

v Hostname.

If Kerberos is specified, then the KRBPlugin may also be optionaly

specified. If KRBPlugin is not specified, the default plugin IBMkrb5 will be

used.

BIDI CLI/ODBC configuration keyword:

Specifies the BIDI codepage when we are connected to a DB2 for z/OS®.

 db2cli.ini keyword syntax:

BIDI = codepage

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this option, you must also set the following options:

v Database

v Protocol=TCPIP

v Hostname

Chapter 2. IBM Data Server CLI and ODBC drivers 27

v Port

FileDSN CLI/ODBC configuration keyword:

Specifies a DSN file from which a connection string will be built for the data

source.

 db2cli.ini keyword syntax:

You can not set this keyword in the db2cli.ini file.

 You can specify the value of this keyword in the connection string in

SQLDriverConnect like this:

FileDSN = file name

Instance CLI/ODBC configuration keyword:

Specifies the instance name for a local IPC connection for file DSN or DSN-less

connectivity.

 db2cli.ini keyword syntax:

Instance = instance name

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this keyword, you must also set the following options:

v Database

v Protocol=IPC

Interrupt CLI/ODBC configuration keyword:

Sets the interrupt processing mode.

 db2cli.ini keyword syntax:

Interrupt = 0 | 1 | 2

Default setting:

1

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 When you set this option, you must also set the following options:

v Database

v Protocol=IPC

The keyword values have the following meaning:

0 Disables interrupt processing (SQLCancel calls will not interrupt

the processing.)

1 Interrupts are supported (default.) In this mode, if the server

supports an interrupt, an interrupt will be sent. Otherwise the

connection is dropped.

 The settings for INTERRUPT_ENABLED (a DB2 Connect gateway

setting) and the DB2 registry variable

DB2CONNECT_DISCONNECT_ON_INTERRUPT will take precedence over the

Interrupt keyword setting of 1.

28 Call Level Interface Guide and Reference, Volume 1

2 Interrupt drops the connection regardless of server’s interrupt

capabilities (SQLCancel will drop the connection.)

KRBPlugin CLI/ODBC configuration keyword:

Specifies the name of the Kerberos plug-in library to be used for client side

authentication for file DSN or DSN-less connectivity.

 db2cli.ini keyword syntax:

KRBPlugin = plugin name

Default setting:

By default, the value is null on UNIX operating systems, and IBMkrb5 on

Windows operating systems.

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies the name of the Kerberos plug-in library to be

used for client-side connection authentication. The plug-in is used when

the client is authenticated using KERBEROS authentication.

Protocol CLI/ODBC configuration keyword:

Communications protocol used for File DSN or in a DSN-less connection.

 db2cli.ini keyword syntax:

Protocol = TCPIP | TCPIP6 | TCPIP4 | IPC | LOCAL

Default setting:

none

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 TCP/IP is the only protocol supported when using a File DSN. Set the

option to the string TCPIP (without the slash).

 When this option is set then the following options must also be set:

v Database;

v ServiceName; and

v Hostname.

IPC connectivity can be specified by setting Protocol to either IPC or

LOCAL.

 When Protocol = IPC | LOCAL the Instance keyword must also be set.

PWDPlugin CLI/ODBC configuration keyword:

Specifies the name of the userid-password plug-in library to be used for client side

authentication for file DSN or DSN-less connectivity.

 db2cli.ini keyword syntax:

PWDPlugin = plugin name

Default setting:

By default, the value is null and the DB2-supplied userid-password plug-in

library is used.

Chapter 2. IBM Data Server CLI and ODBC drivers 29

Usage notes:

This can be set in the [Data Source] section of the db2cli.ini file for the

given data source, or in a connection string.

 This parameter specifies the name of the userid-password plug-in library

to be used for client-side connection authentication. The plug-in is used

when the client is authenticated using SERVER or SERVER_ENCRYPT

authentication.

SaveFile CLI/ODBC configuration keyword:

Specifies the file name of a DSN file in which to save the attribute values of the

keywords used in making the present, successful connection.

 db2cli.ini keyword syntax:

You can not set this keyword in the db2cli.ini file.

 You can specify the value of this keyword in the connection string in

SQLDriverConnect like this:

SaveFile = file name

Running DB2 CLI and ODBC applications using the IBM Data

Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately; and it provides a subset of the functionality of either IBM Data Server

client. The IBM Data Server Driver for ODBC and CLI provides runtime support

for: the DB2 CLI application programming interface (API), the ODBC API, the XA

API; and connecting to databases.

To run database applications with the IBM Data Server Driver for ODBC and CLI,

you need:

v one or more copies of the driver installed.

– See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.
v to have configured the application environment for the driver.

– See: “Configuring the IBM Data Server Driver for ODBC and CLI” on page

10.

When writing applications for, or migrating applications to using the IBM Data

Server Driver for ODBC and CLI:

v Ensure your applications use only the DB2 CLI, ODBC and XA API functions

that are supported by the driver.

– See:

- “DB2 CLI and ODBC API support in the IBM Data Server Driver for ODBC

and CLI” on page 31

- “XA API support in the IBM Data Server Driver for ODBC and CLI” on

page 31
v Ensure your applications are not attempting to make use of IBM Data Server

Client or IBM Data Server Runtime Client functionality that is restricted in the

driver.

– See: “Restrictions of the IBM Data Server Driver for ODBC and CLI” on page

32
v

30 Call Level Interface Guide and Reference, Volume 1

Use the 32-bit version of the driver with 32-bit database applications, and use

the 64-bit version of the driver with 64-bit database applications.

v Understand the available tracing, logging, and diagnostic support provided by

the driver for investigating problems.

– See: “Diagnostic support in the IBM Data Server Driver for ODBC and CLI”

on page 33

DB2 CLI and ODBC API support in the IBM Data Server Driver for

ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately; and it provides a subset of the functionality of either IBM Data Server

client.

The IBM Data Server Driver for ODBC and CLI supports the ANSI and (where

they exist) the Unicode versions of the following ODBC and DB2 CLI functions:

SQLAllocConnect SQLExtendedPrepare SQLNumParams

SQLAllocEnv SQLFetch SQLNumResultCols

SQLAllocHandle SQLFetchScroll SQLParamData

SQLAllocStmt SQLForeignKeys SQLParamOptions

SQLBindCol SQLFreeConnect SQLPrepare

SQLBindFileToCol SQLFreeEnv SQLPrimaryKeys

SQLBindFileToParam SQLFreeHandle SQLProcedureColumns

SQLBindParameter SQLFreeStmt SQLProcedures

SQLBrowseConnect SQLGetConnectAttr SQLPutData

SQLBuildDataLink SQLGetConnectOption SQLRowCount

SQLBulkOperations SQLGetCursorName SQLSetColAttributes

SQLCancel SQLGetData SQLSetConnectAttr

SQLCloseCursor SQLGetDataLinkAttr SQLSetConnectOption

SQLColAttribute SQLGetDescField SQLSetConnection

SQLColAttributes SQLGetDescRec SQLSetCursorName

SQLColumnPrivileges SQLGetDiagField SQLSetDescField

SQLColumns SQLGetDiagRec SQLSetDescRec

SQLConnect SQLGetEnvAttr SQLSetEnvAttr

SQLCopyDesc SQLGetFunctions SQLSetParam

SQLDataSources SQLGetInfo SQLSetPos

SQLDescribeCol SQLGetLength SQLSetScrollOptions

SQLDescribeParam SQLGetPosition SQLSetStmtAttr

SQLDisconnect SQLGetSQLCA SQLSetStmtOption

SQLDriverConnect SQLGetStmtAttr SQLSpecialColumns

SQLEndTran SQLGetStmtOption SQLStatistics

SQLError SQLGetSubString SQLTablePrivileges

SQLExecDirect SQLGetTypeInfo SQLTables

SQLExecute SQLMoreResults SQLTransact

SQLExtendedBind SQLNativeSql

SQLExtendedFetch SQLNextResult

XA API support in the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately; and it provides a subset of the functionality of either IBM Data Server

client.

The IBM Data Server Driver for ODBC and CLI supports the following XA API

functions:

v

Chapter 2. IBM Data Server CLI and ODBC drivers 31

xa_open

xa_close

xa_start

xa_end

xa_prepare

xa_commit

xa_rollback

xa_forget

xa_recover

LDAP support in the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately; and it provides a subset of the functionality of either IBM Data Server

client.

The IBM Data Server Driver for ODBC and CLI supports the LDAP Database

Directory support with one restriction:

v the LDAP cache can not be saved to disk; it is an in-memory cache only. The

DB2LDAPCACHE registry variable is ignored.

The steps for configuring the database application environment to enable LDAP

when using the IBM Data Server Driver for ODBC and CLI are the same as for

other scenarios, except that the DB2LDAPCACHE registry variable is ignored.

Restrictions of the IBM Data Server Driver for ODBC and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately; and it provides a subset of the functionality of either IBM Data Server

client.

The IBM Data Server Driver for ODBC and CLI provides runtime support for:

v the DB2 CLI application programming interface (API);

v the ODBC API;

v the XA API; and

v connecting to databases.

Functionality not supported by the IBM Data Server Driver for ODBC

and CLI

v CLI and ODBC application development;

v the Command Line Processor (CLP);

v administrative APIs;

v installation program.

– You must install the driver manually.

- See: “Installing the IBM Data Server Driver for ODBC and CLI” on page 8.
– You must configure the driver manually.

- See: “Configuring the IBM Data Server Driver for ODBC and CLI” on page

10.

32 Call Level Interface Guide and Reference, Volume 1

Functionality supported with restrictions by the IBM Data Server Driver

for ODBC and CLI

v Messages will be reported only in English.

v There is no local database directory.

– LDAP is supported, but the LDAP cache is not saved to disk.

- See: “LDAP support in the IBM Data Server Driver for ODBC and CLI” on

page 32.
v Not all diagnostic utilities are available.

– See: “Diagnostic support in the IBM Data Server Driver for ODBC and CLI.”

Diagnostic support in the IBM Data Server Driver for ODBC and

CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately; and it provides a subset of the functionality of either IBM Data Server

client.

The following tracing, logging, and diagnostic utilities are provided with the IBM

Data Server Driver for ODBC and CLI:

CLI trace

The method for using CLI trace with the IBM Data Server Driver for

ODBC and CLI is the same as the method for using CLI trace with an IBM

Data Server client.

DB2 trace

To turn on DB2 trace when you are using the IBM Data Server Driver for

ODBC and CLI, you must invoke the db2trc utility from the “adm”

subdirectory of the install directory of the driver.

 For example, if you installed the driver at $HOME/db2_cli_odbc_driver, you

must be in the $HOME/db2_cli_odbc_driver/adm directory when you invoke

db2trc.

 The IBM Data Server Driver for ODBC and CLI can be installed on a

Network File System (NFS). If the driver is installed on a read-only NFS,

the environment variable DB2_DIAGPATH must be set to allow DB2 trace

to work.

db2diag.log

 When you are using the IBM Data Server Driver for ODBC and CLI, the

db2diag.log file will be located in the “db2dump” subdirectory of the driver

install directory On UNIX and Linux operating systems, and in the “db2”

subdirectory of the driver install directory on Windows operating systems.

db2support

 The DB2 command line processor is not available with the IBM Data

Server Driver for ODBC and CLI, so the CLP db2support utility is not

available. However, an executable version of db2support will be available

with the driver.

 This executable version of db2support will collect the following

information:

v db2level output;

v environment variables; and

Chapter 2. IBM Data Server CLI and ODBC drivers 33

v a listing of the contents of the IBM Data Server Driver for ODBC and

CLI install directory.

You must invoke db2support from the “adm” subdirectory of the driver

install directory.

 For example, if you installed the driver at $HOME/db2_cli_odbc_driver, you

must be in the $HOME/db2_cli_odbc_driver/clidriver/adm directory when

you invoke db2support.

Setting diagnostic options

The IBM Data Server Driver for ODBC and CLI does not support the command

line processor (CLP.) This means that the usual mechanism to set DB2 registry

variables, using the db2set command, is not possible. However, the functionality of

registry variables related to diagnostics is supported through CLI/ODBC

keywords:

v “DiagLevel CLI/ODBC configuration keyword”

v “NotifyLevel CLI/ODBC configuration keyword” on page 35

v “DiagPath CLI/ODBC configuration keyword” on page 35

and attributes for SQLSetEnvAttr and SQSGetEnvAttr:

v SQL_ATTR_DIAGLEVEL

v SQL_ATTR_NOTIFY_LEVEL

v SQL_ATTR_DIAGPATH
v See: “Environment attributes (CLI) list” on page 35.

and environment variables:

v DB2_DIAGPATH
v See: “Environment variables supported by the IBM DB2 Driver for ODBC and

CLI” on page 15.

The CLI/ODBC keyword DiagPath, the attribute SQL_ATTR_DIAGPATH, and the

environment variable DB2_DIAGPATH all have the same purpose: to specify

where diagnostic output is located. There is one situation, however, where

DB2_DIAGPATH must be used:

v The IBM Data Server Driver for ODBC and CLI can be installed on a Network

File System (NFS). If the driver is installed on a read-only NFS, the environment

variable DB2_DIAGPATH must be set to allow DB2 trace to work.

Otherwise, the CLI/ODBC keyword DiagPath, the attribute

SQL_ATTR_DIAGPATH, and the environment variable DB2_DIAGPATH all have

the same effect.

DiagLevel CLI/ODBC configuration keyword:

Sets the diagnostic level.

 db2cli.ini keyword syntax:

DiagLevel = 0 | 1 | 2 | 3 | 4

Default setting:

3

34 Call Level Interface Guide and Reference, Volume 1

Usage notes:

This can be set in the [COMMON] section of the db2cli.ini file only.

 This is applicable only at Environment Handle allocation time for an entire

process.

 This is equivalent to the database manager parameter DIAGLEVEL.

NotifyLevel CLI/ODBC configuration keyword:

Sets the diagnostic level.

 db2cli.ini keyword syntax:

NotifyLevel = 0 | 1 | 2 | 3 | 4

Default setting:

3

Usage notes:

This can be set in the [COMMON] section of the db2cli.ini file only.

 This is equivalent to the database manager parameter NOTIFYLEVEL.

DiagPath CLI/ODBC configuration keyword:

Sets the path of the db2diag.log file.

 db2cli.ini keyword syntax:

DiagPath = existing directory

Default setting:

The default value is the db2dump directory on UNIX and Linux operating

systems, and the db2 directory on Windows operating systems.

Usage notes:

 This can be set in the [COMMON] section of the db2cli.ini file only.

 This is equivalent to the database manager parameter DIAGPATH.

Environment attributes (CLI) list:

Note: ODBC does not support setting driver-specific environment attributes using

SQLSetEnvAttr(). Only CLI applications can set the DB2 CLI-specific environment

attributes using this function.

SQL_ATTR_CONNECTION_POOLING

This attribute has been deprecated in DB2 Universal Database (DB2 luw)

Version 8.

SQL_ATTR_CONNECTTYPE

Note: This attribute replaces SQL_CONNECTTYPE.

A 32-bit integer value that specifies whether this application is to operate

in a coordinated or uncoordinated distributed environment. . The possible

values are:

v SQL_CONCURRENT_TRANS: The application can have concurrent

multiple connections to any one database or to multiple databases. Each

connection has its own commit scope. No effort is made to enforce

coordination of transaction. If an application issues a commit using the

Chapter 2. IBM Data Server CLI and ODBC drivers 35

environment handle on SQLEndTran() and not all of the connections

commit successfully, the application is responsible for recovery. This is

the default.

v SQL_COORDINATED_TRANS: The application wishes to have commit

and rollbacks coordinated among multiple database connections. This

option setting corresponds to the specification of the Type 2 CONNECT

in embedded SQL. In contrast to the SQL_CONCURRENT_TRANS

setting described above, the application is permitted only one open

connection per database.

Note: This connection type results in the default for

SQL_ATTR_AUTOCOMMIT connection option to be

SQL_AUTOCOMMIT_OFF.

If changing this attribute from the default then it must be set before any

connections have been established on the environment handle.

 It is recommended that the application set this attribute as an environment

attribute with a call to SQLSetEnvAttr(), if necessary, as soon as the

environment handle has been allocated. However, since ODBC applications

cannot access SQLSetEnvAttr(), they must set this attribute using

SQLSetConnectAttr() after each connection handle is allocated, but before

any connections have been established.

 All connections on an environment handle must have the same

SQL_ATTR_CONNECTTYPE setting. An environment cannot have a

mixture of concurrent and coordinated connections. The type of the first

connection will determine the type of all subsequent connections.

SQLSetEnvAttr() will return an error if an application attempts to change

the connection type while there is an active connection.

 The default connect type can also be set using the “ConnectType

CLI/ODBC configuration keyword” on page 161.

Note: This is an IBM defined extension.

SQL_ATTR_CP_MATCH

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_DIAGLEVEL

Description

A 32-bit integer value which represents the diagnostic level. This is

equivalent to the database manager parameter DIAGLEVEL.

Values

Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Usage notes

This attribute must be set before any connection handles have been

created.

SQL_ATTR_DIAGPATH

Description

A pointer to a null-terminated character string containing the name

of the directory where diagnostic data is to be placed. This is

equivalent to the database manager parameter DIAGPATH.

36 Call Level Interface Guide and Reference, Volume 1

Values

The default value is the db2dump directory on UNIX and Linux

operating systems, and the db2 directory on Windows operating

systems.

Usage notes

This attribute must be set before any connection handles have been

created.

SQL_ATTR_INFO_ACCTSTR

A pointer to a null-terminated character string used to identify the client

accounting string sent to the host database server when using DB2

Connect™.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390® servers support up to a length of 200

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_APPLNAME

A pointer to a null-terminated character string used to identify the client

application name sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 32

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_USERID

A pointer to a null-terminated character string used to identify the client

user ID sent to the host database server when using DB2 Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 16

characters.

v This user-id is not to be confused with the authentication user-id. This

user-id is for identification purposes only and is not used for any

authorization.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Chapter 2. IBM Data Server CLI and ODBC drivers 37

Note: This is an IBM defined extension.

SQL_ATTR_INFO_WRKSTNNAME

A pointer to a null-terminated character string used to identify the client

workstation name sent to the host database server when using DB2

Connect.

 Please note:

v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.

v DB2 for z/OS and OS/390 servers support up to a length of 18

characters.

v To ensure that the data is converted correctly when transmitted to a host

system, use only the characters A to Z, 0 to 9, and the underscore (_) or

period (.).

Note: This is an IBM defined extension.

SQL_ATTR_MAXCONN

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_NOTIFY_LEVEL

Description

A 32-bit integer value which represents the notification level. This

is equivalent to the database manager parameter NOTIFYLEVEL.

Values

Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Usage notes

This attribute must be set before any connection handles have been

created.

SQL_ATTR_ODBC_VERSION

A 32-bit integer that determines whether certain functionality exhibits

ODBC 2.x (DB2 CLI v2) behavior or ODBC 3.0 (DB2 CLI v5) behavior.

 It is recommended that all DB2 CLI applications set this environment

attribute. ODBC applications must set this environment attribute before

calling any function that has an SQLHENV argument, or the call will

return SQLSTATE HY010 (Function sequence error.).

 The following values are used to set the value of this attribute:

v SQL_OV_ODBC3: Causes the following ODBC 3.0 (DB2 CLI v5)

behavior:

– DB2 CLI returns and expects ODBC 3.0 (DB2 CLI v5) codes for date,

time, and timestamp.

– DB2 CLI returns ODBC 3.0 (DB2 CLI v5) SQLSTATE codes when

SQLError(), SQLGetDiagField(), or SQLGetDiagRec() are called.

– The CatalogName argument in a call to SQLTables() accepts a search

pattern.
v SQL_OV_ODBC2 Causes the following ODBC 2.x (DB2 CLI v2)

behavior:

– DB2 CLI returns and expects ODBC 2.x (DB2 CLI v2) codes for date,

time, and timestamp.

– DB2 CLI returns ODBC 2.0 (DB2 CLI v2) SQLSTATE codes when

SQLError(), SQLGetDiagField(), or SQLGetDiagRec() are called.

– The CatalogName argument in a call to SQLTables() does not accept a

search pattern.

38 Call Level Interface Guide and Reference, Volume 1

SQL_ATTR_OUTPUT_NTS

A 32-bit integer value which controls the use of null-termination in output

arguments. The possible values are:

v SQL_TRUE: DB2 CLI uses null termination to indicate the length of

output character strings (default).

This is the default.

v SQL_FALSE: DB2 CLI does not use null termination in output character

strings.

The CLI functions affected by this attribute are all functions called for the

environment (and for any connections and statements allocated under the

environment) that have character string parameters.

 This attribute can only be set when there are no connection handles

allocated under this environment.

SQL_ATTR_PROCESSCTL

A 32-bit mask that sets process level attributes which affect all

environments and connections for the process. This attribute must be set

before the environment handle is allocated.

 The call to SQLSetEnvAttr() must have the EnvironmentHandle argument set

to SQL_NULL_HANDLE. The settings remain in effect for the life of the

process. Generally this attribute is only used for performance sensitive

applications, where large numbers of CLI function calls are being made.

Before setting any of these bits, ensure that the application, and any other

libraries that the application calls, comply with the restrictions listed.

 The following values can be combined to form a bitmask:

v SQL_PROCESSCTL_NOTHREAD - This bit indicates that the application

does not use multiple threads, or if it does use multiple threads,

guarantees that all DB2 calls will be serialized by the application. If set,

DB2 CLI does not make any system calls to serialize calls to CLI, and

sets the DB2 context type to SQL_CTX_ORIGINAL.

v SQL_PROCESSCTL_NOFORK - This bit indicates that the application

will never fork a child process. By default, DB2 CLI does not check to

see if an application forks a child process. However, if the CheckForFork

CLI/ODBC configuration keyword is set, DB2 CLI checks the current

process id for each function call for all applications connecting to the

database for which the keyword is enabled. This attribute can be set so

that DB2 CLI does not check for forked processes for that application.

Note: This is an IBM defined extension.

SQL_ATTR_SYNC_POINT

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_TRACE

A pointer to a null-terminated character string used to turn on the DB2

CLI/ODBC trace facility. The string must include the keywords TRACE

and TRACEPATHNAME. For example:

"TRACE=1; TRACEPATHNAME=<dir>;"

SQL_ATTR_USE_2BYTES_OCTET_LENGTH

This attribute has been deprecated in DB2 luw Version 8.

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA

Setting this attribute is equivalent to setting the connection attribute

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL to 0.

Chapter 2. IBM Data Server CLI and ODBC drivers 39

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA has been deprecated and

applications should now use the connection attribute

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL.

SQL_ATTR_USER_REGISTRY_NAME

This attribute is only used when authenticating a user on a server that is

using an identity mapping service. It is set to a user defined string that

names an identity mapping registry. The format of the name varies

depending on the identity mapping service. By providing this attribute you

tell the server that the user name provided can be found in this registry.

 After setting this attribute the value will be used on subsequent attempts

to establish a normal connection, establish a trusted connection, or switch

the user id on a trusted connection.

SQL_CONNECTTYPE

This Attribute has been replaced with SQL_ATTR_CONNECTTYPE.

SQL_MAXCONN

This Attribute has been replaced with SQL_ATTR_MAXCONN.

SQL_SYNC_POINT

This Attribute has been replaced with SQL_ATTR_SYNC_POINT.

Deploying the IBM Data Server Driver for ODBC and CLI with

database applications

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately. You can simplify the deployment of your DB2 CLI and ODBC database

applications by creating an install program. You can deploy the IBM Data Server

Driver for ODBC and CLI with your DB2 CLI and ODBC database applications by

obtaining the compressed file that contains the driver and following the installation

and configuration steps required for the driver into your install program.

To deploy the IBM Data Server Driver for ODBC and CLI with your applications

you will need:

v a mechanism for deploying the applications, such as an install program;

v to obtain the compressed file that contains the driver; See: “Obtaining the IBM

Data Server Driver for ODBC and CLI” on page 8

v a redistribution license. See: “License requirements for the IBM Data Server

Driver for ODBC and CLI” on page 41.

Restrictions

Under the terms of the redistribution licence, only some of the IBM Data Server

Driver for ODBC and CLI files can be redistributed. Which files may be

redistributed is listed in the file redist.txt. This file can be found in the

compressed file that contains the driver, called db2_driver_for_odbc_cli.zip on

the Windows platforms and db2_driver_for_odbc_cli.tar.Z on all other

platforms.

To incorporate the IBM Data Server Driver for ODBC and CLI into your install

program, you must do the following:

1. Copy the driver files into your install program. See the restrictions above about

which driver files can be redistributed.

40 Call Level Interface Guide and Reference, Volume 1

2. Set the install program to install the driver on the target machine. See:

“Installing the IBM Data Server Driver for ODBC and CLI” on page 8.

3. Set the install program to configure the environment on the target machine.

See: “Configuring the IBM Data Server Driver for ODBC and CLI” on page 10.

License requirements for the IBM Data Server Driver for ODBC

and CLI

The IBM Data Server Driver for ODBC and CLI is not part of the IBM Data Server

Client or the IBM Data Server Runtime Client. It must be installed and configured

separately.

You can download and install the IBM Data Server Driver for ODBC and CLI and

use it with your ODBC and CLI applications without a special license. However,

you need a redistribution license to redistribute the driver with your applications.

Under the terms of the redistribution licence, only some of the IBM Data Server

Driver for ODBC and CLI files can be redistributed. Which files may be

redistributed is listed in the file redist.txt. This file can be found in the

compressed file that contains the driver, called db2_driver_for_odbc_cli.zip on

the Windows platform and db2_driver_for_odbc_cli.tar.Z on all other platforms.

For more information about where to find this file, see: “Obtaining the IBM Data

Server Driver for ODBC and CLI” on page 8

The IBM Data Server ODBC and CLI Driver can be used to connect only to a

properly licensed:

v DB2 for Linux, UNIX and Windows server;

v DB2 Connect server;

v WebSphere® Federation server;

v Cloudscape™ Server;

v Informix® Database Server;

v DB2 for OS/390 and z/OS server (see below);

v DB2 for iSeries™ server (see below); and

v DB2 for VM/VSE server (see below).

The IBM Data Server ODBC and CLI Driver can be used to connect to DB2 for

OS/390 and z/OS, DB2 for iSeries and DB2 for VM/VSE servers only if:

v a connection is established through a properly licensed DB2 Connect server; or

v directly to the server if and only if a properly formatted authentic license key

file db2con.lkf is present. The file db2con.lkf is distributed as part of the DB2

Connect products, so the only way to obtain this license key file is to purchase

one of the following DB2 Connect products:

– DB2 Connect Personal Edition;

– DB2 Connect Enterprise Edition;

– DB2 Connect Application Server Edition;

– DB2 Connect Unlimited Edition for zSeries;

– DB2 Connect Unlimited Edition for iSeries;

No other product will provide this file or the license rights afforded by the

presence of this file. Tampering with or unauthorized distribution of this file will

constitute a breach of the license agreement.

Chapter 2. IBM Data Server CLI and ODBC drivers 41

Setting up the unixODBC Driver Manager

An ODBC driver manager is not supplied on UNIX platforms as part of the

operating system.

Using ODBC on UNIX systems requires a separate commercial or open source

ODBC driver manager. The unixODBC Driver Manager is an open source ODBC

driver manager supported for DB2 ODBC applications on all supported DB2 UNIX

platforms. This topic describes how to set up the unixODBC Driver Manager.

Please also refer to the unixODBC web site (http://www.unixodbc.com), as well as

the README files within the unixODBC distribution package for more

information.

Support statement

If you experience problems with the combination of the unixODBC Driver

Manager and the DB2 ODBC driver after they have been properly installed and

configured, you can contact DB2 Service (http://www.ibm.com/software/data/
db2/udb/support) for assistance in diagnosing the problem. If the source of the

problem lies with the unixODBC Driver Manager, then you can:

v Purchase a service contract for technical support from Easysoft, a commercial

sponsor of unixODBC (http://www.easysoft.com).

v Participate in any open source support channels at http://www.unixodbc.com.

To set up the unixODBC Driver Manager for use with DB2 CLI and ODBC

applications:

1. Download the latest unixODBC source code from: http://www.unixodbc.com.

2. Untar the source files:

gzip -d unixODBC-2.2.11.tar.gz

tar xf unixODBC-2.2.11.tar

3. For AIX only: configure the C compiler to be thread-enabled:

export CC=xlc_r

export CCC=xlC_r

4. To compile a 64-bit version of the driver manager using the xlc_r compilers, set

the environment variables OBJECT_MODE and CFLAGS:

export OBJECT_MODE=64

export CFLAGS=-q64 -DBUILD_REAL_64_BIT_MODE

5. Install the driver manager in either your home directory or the default

/usr/local prefix:

v (Home directory) Issue the following command in the directory where you

untarred the source files:

./configure --prefix=$HOME -DBUILD_REAL_64_BIT_MODE --enable-gui=no

 --enable-drivers=no

v (/usr/local as root) Issue the following command:

./configure --enable-gui=no --enable-drivers=no

6. Optional: Examine all configuration options by issuing the following command:

./configure --help

7. Build and install the driver manager:

make

make install

Libraries will be copied to the [prefix]/lib directory, and executables will be

copied to the [prefix]/bin directory.

42 Call Level Interface Guide and Reference, Volume 1

http://www.unixodbc.com/
http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html
http://www.easysoft.com/
http://www.unixodbc.com/
http://www.unixodbc.com/

8. Build the application and ensure it is linked to the unixODBC Driver Manager

by including the -L[prefix]/lib -lodbc option in the compile and link

command.

9. Specify the paths for at least the user INI file (odbc.ini) or the system INI file

(odbcinst.ini), and set the ODBCHOME environment variable to the directory

where the system INI file was created.

Important: Provide absolute paths when specifying the paths of the user and

system INI files. Do not use relative paths or environment variables.

Chapter 2. IBM Data Server CLI and ODBC drivers 43

44 Call Level Interface Guide and Reference, Volume 1

Chapter 3. Initializing CLI applications

Initializing CLI applications is part of the larger task of programming with CLI.

The task of initializing CLI applications involves allocating environment and

connection handles and then connecting to the data source.

To initialize the application:

1. Allocate an environment handle by calling SQLAllocHandle() with a HandleType

of SQL_HANDLE_ENV and an InputHandle of SQL_NULL_HANDLE. For

example:

SQLAllocHandle (SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

Use the allocated environment handle, returned in the *OutputHandlePtr

argument (henv in the example above), for all subsequent calls that require an

environment handle.

2. Optional: Set environment attributes for your application by calling

SQLSetEnvAttr() with the desired environment attribute for each attribute you

want set.

Important: If you plan to run your application as an ODBC application, you

must set the SQL_ATTR_ODBC_VERSION environment attribute using

SQLSetEnvAttr(). Setting this attribute for applications that are strictly DB2 CLI

applications is recommended but not required.

3. Allocate a connection handle by calling SQLAllocHandle() with a HandleType of

SQL_HANDLE_DBC using the environment handle returned from Step 1 as the

InputHandle argument. For example:

SQLAllocHandle (SQL_HANDLE_DBC, henv, &hdbc);

Use the allocated connection handle, returned in the *OutputHandlePtr

argument (hdbc in the example above), for all subsequent calls that require a

connection handle.

4. Optional: Set connection attributes for your application by calling

SQLSetConnectAttr() with the desired connection attribute for each attribute

you want set.

5. Connect to a data source by calling one of following functions with the

connection handle you allocated in Step 3 for each data source you want to

connect to:

v SQLConnect(): basic database connection method. For example:

SQLConnect (hdbc, server, SQL_NTS, user, SQL_NTS, password, SQL_NTS);

where SQL_NTS is a special string length value that indicates the referenced

string is null-terminated.

v SQLDriverConnect(): extended connect function that allows additional

connect options and offers Graphical User Interface support. For example:

char * connStr = "DSN=SAMPLE;UID=;PWD=;";

SQLDriverConnect (hdbc, (SQLHWND)NULL, connStr, SQL_NTS,

 NULL, 0, NULL, SQL_DRIVER_NOPROMPT);

v SQLBrowseConnect(): least common connection method that iteratively

returns the attributes and attribute values for connecting to a data source.

For example:

© Copyright IBM Corp. 1993, 2007 45

char * connInStr = "DSN=SAMPLE;UID=;PWD=;";

char outStr[512];

SQLBrowseConnect (hdbc, connInStr, SQL_NTS, outStr,

 512, &strLen2Ptr);

Now that your application has been initialized, you can proceed to processing

transactions.

Initialization and termination in CLI overview

Figure 2 on page 47 shows the function call sequences for both the initialization

and termination tasks. The transaction processing task in the middle of the

diagram is shown in Chapter 5, “Transaction processing in CLI overview,” on page

61.

The initialization task consists of the allocation and initialization of environment

and connection handles. An environment handle must be allocated before a

connection handle can be created. Once a connection handle is created, the

application can then establish a connection. When a connection exists, the

application can proceed to the transaction processing task. An application then

passes the appropriate handle when it calls other DB2 CLI functions.

The termination task consists of disconnecting from the data source and freeing

those handles that were allocated during the initialization phase. The connection

handle should be freed before freeing the environment handle.

46 Call Level Interface Guide and Reference, Volume 1

Handles in CLI

A CLI handle is a variable that refers to a data object allocated and managed by

DB2 CLI. Using handles relieves the application from having to allocate and

manage global variables or data structures, such as the SQLDA.

There are four types of handles in CLI:

Environment handle

An environment handle refers to a data object that holds information about

the global state of the application, such as attributes or valid connections.

An environment handle must be allocated before a connection handle can

be allocated.

Connection handle

A connection handle refers to a data object that holds information

associated with a connection to a particular data source (database).

Examples of such information include valid statement and descriptor

handles on a connection, transaction status, and diagnostic information.

 An application can be connected to several data sources at the same time,

and can establish several distinct connections to the same data source. A

Allocate Environment

Connect

Free Connection

Disconnect

Free Environment

SQLAllocHandle()

SQLConnect()
or

SQLDriverConnect()

SQLAllocHandle()

SQLFreeHandle()

SQLDisconnect()

Allocate Connection

Initialization}

} Termination

Transaction
Processing

SQLFreeHandle()

Figure 2. Conceptual view of initialization and termination tasks

Chapter 3. Initializing CLI applications 47

separate connection handle must be allocated for each concurrent

connection. A connection handle must be allocated before a statement or

descriptor handle can be allocated.

 Connection handles ensure that multithreaded applications which use one

connection per thread are thread-safe, because separate data structures are

allocated and maintained by DB2 CLI for each connection.

Note: There is a limit of 512 active connections per environment handle.

Statement handle

A statement handle refers to a data object that is used to track the

execution of a single SQL statement. It provides access to statement

information such as error messages, the associated cursor name, and status

information for SQL statement processing. A statement handle must be

allocated before an SQL statement can be issued.

 When a statement handle is allocated, DB2 CLI automatically allocates four

descriptors and assigns the handles for these descriptors to the

SQL_ATTR_APP_ROW_DESC, SQL_ATTR_APP_PARAM_DESC,

SQL_ATTR_IMP_ROW_DESC, and SQL_ATTR_IMP_PARAM_DESC

statement attributes. Application descriptors can be explicitly allocated by

allocating descriptor handles.

 The number of statement handles available to a CLI application depends

on the number of large packages the application has defined and is limited

by overall system resources (usually stack size). By default, there are 3

small and 3 large packages. Each small package allows a maximum of 64

statement handles per connection, and each large package allows a

maximum of 384 statement handles per connection. The number of

available statement handles by default is therefore (3 * 64) + (3 * 384) =

1344.

 To get more than the default 1344 statement handles, increase the number

of large packages by setting the value of the CLI/ODBC configuration

keyword CLIPkg to a value up to 30. CLIPkg indicates the number of large

packages that will be generated. If you set CLIPkg to the maximum value

of 30, then the maximum number of statement handles that is available

becomes (3 * 64) + (30 * 384) = 11 712.

 An HY014 SQLSTATE may be returned on the call to SQLPrepare(),

SQLExecute(), or SQLExecDirect() if this limit is exceeded.

 It is recommended that you only allocate as many large packages as your

application needs to run, as packages take up space in the database.

Descriptor handle

A descriptor handle refers to a data object that contains information about

the columns in a result set and dynamic parameters in an SQL statement.

On operating systems that support multiple threads, applications can use the same

environment, connection, statement, or descriptor handle on different threads. DB2

CLI provides thread safe access for all handles and function calls. The application

itself might experience unpredictable behavior if the threads it creates do not

co-ordinate their use of DB2 CLI resources.

48 Call Level Interface Guide and Reference, Volume 1

Chapter 4. Data types and data conversion in CLI applications

When writing a DB2 CLI application it is necessary to work with both SQL data

types and C data types. This is unavoidable because the DBMS uses SQL data

types, while the application uses C data types. The application, therefore, must

match C data types to SQL data types when calling DB2 CLI functions to transfer

data between the DBMS and the application.

To facilitate this, DB2 CLI provides symbolic names for the various data types, and

manages the transfer of data between the DBMS and the application. It also

performs data conversion (from a C character string to an SQL INTEGER type, for

example) if required. DB2 CLI needs to know both the source and target data type.

This requires the application to identify both data types using symbolic names.

Data type conversion can occur under one of two conditions:

v The application specified a C type that is not the default C type for the SQL

type.

v The application specified an SQL type that does not match the base column SQL

type at the server, and there was no describe information available to the DB2

CLI driver.

Example of how to use data types

Because the data source contains SQL data types and the CLI application works

with C data types, the data to be retrieved needs to be handled with the correct

data types. The following example shows how SQL and C data types are used by

an application to retrieve data from the source into application variables. The

example is taken from the tut_read.c sample program and examines how data is

retrieved from the DEPTNUMB column of the ORG table in the sample database.

v The DEPTNUMB column of the ORG table is declared as the SQL data type

SMALLINT.

v The application variable which will hold the retrieved data is declared using C

types. Since the DEPTNUMB column is of SQL type SMALLINT, the application

variable needs to be declared using the C type SQLSMALLINT, which is

equivalent to the SQL type SMALLINT.

 struct

 { SQLINTEGER ind;

 SQLSMALLINT val;

 } deptnumb; /* variable to be bound to the DEPTNUMB column */

SQLSMALLINT represents the base C type of short int.

v The application binds the application variable to the symbolic C data type of

SQL_C_SHORT:

 sqlrc = SQLBindCol(hstmt, 1, SQL_C_SHORT, &deptnumb.val, 0,

 &deptnumb.ind);

The data types are now consistent, because the result data type SQL_C_SHORT

represents the C type SQLSMALLINT.

© Copyright IBM Corp. 1993, 2007 49

Data conversion

DB2 CLI manages the transfer and any required conversion of data between the

application and the DBMS. Before the data transfer actually takes place, either the

source, the target or both data types are indicated when calling

SQLBindParameter(), SQLBindCol() or SQLGetData(). These functions use the

symbolic type names to identify the data types involved.

For example, to bind a parameter marker that corresponds to an SQL data type of

DECIMAL(5,3), to an application’s C buffer type of double, the appropriate

SQLBindParameter() call would look like:

 SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT, SQL_C_DOUBLE,

 SQL_DECIMAL, 5, 3, double_ptr, 0, NULL);

The functions mentioned in the previous paragraph can be used to convert data

from the default to other data types, but not all data conversions are supported or

make sense.

The rules that specify limits on precision and scale, as well as truncation and

rounding rules for type conversions apply in DB2 CLI, with the following

exception: truncation of values to the right of the decimal point for numeric values

may return a truncation warning, whereas truncation to the left of the decimal

point returns an error. In cases of error, the application should call

SQLGetDiagRec() to obtain the SQLSTATE and additional information on the

failure. When moving and converting floating point data values between the

application and DB2 CLI, no correspondence is guaranteed to be exact as the

values may change in precision and scale.

String handling in CLI applications

The following conventions deal with the various aspects of string arguments in

DB2 CLI functions.

Length of string arguments

Input strings can have an associated length argument which indicates either the

exact length of the string (not including the null terminator), the special value

SQL_NTS to indicate a null-terminated string, or SQL_NULL_DATA to pass a

NULL value. If the length is set to SQL_NTS, DB2 CLI will determine the length of

the string by locating the null terminator.

Output strings have two associated length arguments: an input length argument to

specify the length of the allocated output buffer, and an output length argument to

return the actual length of the string returned by DB2 CLI. The returned length

value is the total length of the string available for return, regardless of whether it

fits in the buffer or not.

For SQL column data, if the output is a null value, SQL_NULL_DATA is returned

in the length argument and the output buffer is untouched. The descriptor field

SQL_DESC_INDICATOR_PTR is set to SQL_NULL_DATA if the column value is a

null value. For more information, including which other fields are set, see the

descriptor FieldIdentifier argument values.

If a function is called with a null pointer for an output length argument, DB2 CLI

will not return a length. When the output data is a NULL value, DB2 CLI cannot

indicate that the value is NULL. If it is possible that a column in a result set can

50 Call Level Interface Guide and Reference, Volume 1

contain a NULL value, a valid pointer to the output length argument must always

be provided. It is highly recommended that a valid output length argument always

be used.

Performance hint

If the length argument (StrLen_or_IndPtr) and the output buffer (TargetValuePtr) are

contiguous in memory, DB2 CLI can return both values more efficiently, improving

application performance. For example, if the following structure is defined:

 struct

 { SQLINTEGER pcbValue;

 SQLCHAR rgbValue [BUFFER_SIZE];

 } buffer;

and &buffer.pcbValue and buffer.rgbValue is passed to SQLBindCol(), DB2 CLI

would update both values in one operation.

Null-termination of strings

By default, every character string that DB2 CLI returns is terminated with a null

terminator (hex 00), except for strings returned from graphic and DBCLOB data

types into SQL_C_CHAR application variables. Graphic and DBCLOB data types

that are retrieved into SQL_C_DBCHAR application variables are null terminated

with a double byte null terminator. Also, string data retrieved into

SQL_C_WCHAR are terminated with the Unicode null terminator 0x0000. This

requires that all buffers allocate enough space for the maximum number of bytes

expected, plus the null terminator.

It is also possible to use SQLSetEnvAttr() and set an environment attribute to

disable null termination of variable length output (character string) data. In this

case, the application allocates a buffer exactly as long as the longest string it

expects. The application must provide a valid pointer to storage for the output

length argument so that DB2 CLI can indicate the actual length of data returned;

otherwise, the application will not have any means to determine this. The DB2 CLI

default is to always write the null terminator.

It is possible, using the Patch1 CLI/ODBC configuration keyword, to force DB2

CLI to null terminate graphic and DBCLOB strings.

String truncation

If an output string does not fit into a buffer, DB2 CLI will truncate the string to the

size of the buffer, and write the null terminator. If truncation occurs, the function

will return SQL_SUCCESS_WITH_INFO and an SQLSTATE of 01004 indicating

truncation. The application can then compare the buffer length to the output length

to determine which string was truncated.

For example, if SQLFetch() returns SQL_SUCCESS_WITH_INFO, and an

SQLSTATE of 01004, it means at least one of the buffers bound to a column is too

small to hold the data. For each buffer that is bound to a column, the application

can compare the buffer length with the output length and determine which column

was truncated. You can also call SQLGetDiagField() to find out which column

failed.

Chapter 4. Data types 51

Interpretation of strings

Normally, DB2 CLI interprets string arguments in a case-sensitive manner and

does not trim any spaces from the values. The one exception is the cursor name

input argument on the SQLSetCursorName() function: if the cursor name is not

delimited (enclosed by double quotes) the leading and trailing blanks are removed

and case is ignored.

Blank padding of strings

DB2 UDB Version 8.1.4 and later do not pad strings with blanks to fit the column

size, as was the behavior in releases of DB2 UDB from Version 8.1 through to

Version 8.1.4. With DB2 UDB Version 8.1.4 and later, a string may have a length

which differs from the length defined for the CHAR column if code page

conversion occurred. For releases of DB2 UDB before Version 8.1.4, strings would

be padded with blanks to fill the column size; these blanks would be returned as

part of the string data when the string was fetched from the CHAR column.

Large object usage in CLI applications

The term large object and the generic acronym LOB are used to refer to any type of

large object. There are three LOB data types: Binary Large Object (BLOB),

Character Large Object (CLOB), and Double-Byte Character Large Object

(DBCLOB). These LOB data types are represented symbolically as SQL_BLOB,

SQL_CLOB, SQL_DBCLOB respectively. The LOB symbolic constants can be

specified or returned on any of the DB2 CLI functions that take in or return an

SQL data type argument (such as SQLBindParameter(), SQLDescribeCol()).

LOB locators versus file input and output

By default row data is returned with LOB locators. For example, if a CLI

application does not provide an output buffer, the DB2 Client will request a LOB

locator on behalf of the application for each LOB column in the result set.

However, if the application binds a buffer of adequate size to a LOB column, the

LOB value will be returned in the buffer.

When a CLI application calls the function SQLGetData() to retrieve the LOB data, it

will, by default, make one request to the server, and will store the entire LOB in

memory provided BufferLength is large enough. If BufferLength is not large enough

to hold the entire LOB value, it will be retrieved piecewise.

Since LOB values can be very large, transfer of data using the piecewise sequential

method provided by SQLGetData() and SQLPutData() can be quite time consuming.

Applications dealing with such data will often do so in random access segments

using LOB locators or via direct file input and output.

To determine if any of the LOB functions are supported for the current server, call

SQLGetFunctions() with the appropriate function name argument value, or

SQLGetTypeInfo() with the particular LOB data type.

Figure 3 on page 53 shows the retrieval of a character LOB (CLOB).

v The left hand side shows a locator being used to extract a character string from

the CLOB, without having to transfer the entire CLOB to an application buffer.

A LOB locator is fetched, which is then used as an input parameter to search the

CLOB for a substring, the substring is then retrieved.

52 Call Level Interface Guide and Reference, Volume 1

v The right hand side shows how the CLOB can be fetched directly into a file.

The file is first bound to the CLOB column, and when the row is fetched, the

entire CLOB value is transferred directly to a file.

LOB locators in CLI applications

There are many cases where an application needs to select a large object value and

operate on pieces of it, but does not need or want the entire value to be transferred

from the database server into application memory. In these cases, the application

can reference an individual LOB value via a large object locator (LOB locator).

A LOB locator is a token value, defined as type SQLINTEGER, that allows for

efficient random access of a large object. When a LOB locator is used, the server

performs the query and instead of placing the value of the LOB column in the

result set, it updates the LOB locator with an integer that corresponds to the value

of the LOB. When the application later requests the result, the application then

passes the locator to the server and the server returns the LOB result.

A LOB locator is not stored in the database. It refers to a LOB value during a

transaction, and does not persist beyond the transaction in which it was created. It

is a simple token value created to reference a single large object value, and not a

SQLFreeHandle
(Statement)

If statement is not executed again.

SQLBindCol SQLBindFileToCol

SQLExecuteSQLExecute

CLOB

CLOB

SQLFetch SQLFetch

SQLPrepare

SQLAllocHandle
(Statement)

SQLGetPosition

SQLGetSubString

SQLExecDirect
"FREE LOCATOR"

SQLGetLength

locator

locator

locator , buffer buffer

locator

locator

"string",

Figure 3. Fetching CLOB data

Chapter 4. Data types 53

column in a row. There is no operation that could be performed on a locator that

would have an effect on the original LOB value stored in the row.

Each of the three LOB locator types has its own C data type

(SQL_C_BLOB_LOCATOR, SQL_C_CLOB_LOCATOR,

SQL_C_DBCLOB_LOCATOR). These types are used to enable transfer of LOB

locator values to and from the database server.

Locators are implicitly allocated by:

v Fetching a bound LOB column to the appropriate C locator type.

v Calling SQLGetSubString() and specifying that the substring be retrieved as a

locator.

v Calling SQLGetData() on an unbound LOB column and specifying the

appropriate C locator type. The C locator type must match the LOB column type

or an error will occur.

In a CLI application, for a statement that retrieves LOB data, by default the row

data is returned with LOB locators to reference the LOB values. In cases where a

buffer of an adequate size has been bound to a LOB column, the LOB value will be

returned in the buffer and not as a LOB locator.

Differences between regular data types and LOB locators

LOB locators can in general be treated as any other data type, but there are some

important differences:

v Locators are generated at the server when a row is fetched and a LOB locator C

data type is specified on SQLBindCol(), or when SQLGetSubString() is called to

define a locator on a portion of another LOB. Only the locator is transferred to

the application.

v The value of the locator is only valid within the current transaction. You cannot

store a locator value and use it beyond the current transaction, even if the cursor

used to fetch the LOB locator has the WITH HOLD attribute.

v A locator can also be freed before the end of the transaction with the FREE

LOCATOR statement.

v Once a locator is received, the application can use SQLGetSubString(), to either

receive a portion of the LOB value, or to generate another locator representing

the sub-string. The locator value can also be used as input for a parameter

marker (using SQLBindParameter()).

A LOB locator is not a pointer to a database position, but rather it is a reference

to a LOB value: a snapshot of that LOB value. There is no association between

the current position of the cursor and the row from which the LOB value was

extracted. This means that even after the cursor has moved to a different row,

the LOB locator (and thus the value that it represents) can still be referenced.

v SQLGetPosition() and SQLGetLength() can be used with SQLGetSubString() to

define the sub-string.

For a given LOB column in the result set, the binding can be to a:

v storage buffer for holding the entire LOB data value,

v LOB locator, or

v LOB file reference (using SQLBindFileToCol()).

54 Call Level Interface Guide and Reference, Volume 1

Examples of using LOB locators

LOB locators also provide an efficient method of moving data from one column of

a table in a database to another column (of the same or different table) without

having to pull the data first into application memory and then sending it back to

the server. The following INSERT statement inserts a LOB value that is a

concatenation of 2 LOB values as represented by their locators:

INSERT INTO lobtable values (CAST ? AS CLOB(4k) || CAST ? AS CLOB(5k))

CLI applications may also obtain LOB values in pieces using the following

VALUES statement:

VALUES (SUBSTR(:locator, :offset, :length))

Direct file input and output for LOB handling in CLI

applications

As an alternative to using LOB locators, if an application requires the entire LOB

column value, it can request direct file input and output for LOBs. Database

queries, updates, and inserts may involve transfer of single LOB column values

into and from files. The two DB2 CLI LOB file access functions are:

SQLBindFileToCol()

Binds (associates) a LOB column in a result set with a file name.

 Example:

 SQLUINTEGER fileOption = SQL_FILE_OVERWRITE;

 SQLINTEGER fileInd = 0;

 SQLSMALLINT fileNameLength = 14;

 /* ... */

 SQLCHAR fileName[14] = "";

 /* ... */

 rc = SQLBindFileToCol(hstmt, 1, fileName, &fileNameLength,

 &fileOption, 14, NULL, &fileInd);

SQLBindFileToParam()

Binds (associates) a LOB parameter marker with a file name.

 Example:

 SQLUINTEGER fileOption = SQL_FILE_OVERWRITE;

 SQLINTEGER fileInd = 0;

 SQLSMALLINT fileNameLength = 14;

 /* ... */

 SQLCHAR fileName[14] = "";

 /* ... */

 rc = SQLBindFileToParam(hstmt, 3, SQL_BLOB, fileName,

 &fileNameLength, &fileOption, 14, &fileInd);

The file name is either the complete path name of the file (which is recommended),

or a relative file name. If a relative file name is provided, it is appended to the

current path (of the operating environment) of the client process. On execute or

fetch, data transfer to and from the file would take place, in a similar way to that

of bound application variables. A file options argument associated with these 2

functions indicates how the files are to be handled at time of transfer.

Use of SQLBindFileToParam() is more efficient than the sequential input of data

segments using SQLPutData(), since SQLPutData() essentially puts the input

segments into a temporary file and then uses the SQLBindFileToParam() technique

Chapter 4. Data types 55

to send the LOB data value to the server. Applications should take advantage of

SQLBindFileToParam() instead of using SQLPutData().

Note: DB2 CLI uses a temporary file when inserting LOB data in pieces. If the

data originates in a file, the use of a temporary file can be avoided by using

SQLBindFileToParam(). Call SQLGetFunctions() to query if support is provided for

SQLBindFileToParam(), since SQLBindFileToParam() is not supported against

servers that do not support LOBs.

LOB usage in ODBC applications

Existing ODBC-compliant applications use SQL_LONGVARCHAR and

SQL_LONGVARBINARY instead of the DB2 BLOB and CLOB data types. You can

still access LOB columns from these ODBC-compliant applications by setting the

LongDataCompat configuration keyword in the initialization file, or setting the

SQL_ATTR_LONGDATA_COMPAT connection attribute using

SQLSetConnectAttr(). Once this is done, DB2 CLI will map the ODBC long data

types to the DB2 LOB data types. The LOBMaxColumnSize configuration keyword

allows you to override the default COLUMN_SIZE for LOB data types.

When this mapping is in effect:

v SQLGetTypeInfo() will return CLOB, BLOB and DBCLOB characteristics when

called with SQL_LONGVARCHAR, SQL_LONGVARBINARY or

SQL_LONGVARGRAPHIC.

v The following functions will return SQL_LONGVARCHAR,

SQL_LONGVARBINARY or SQL_LONGVARGRAPHIC when describing CLOB,

BLOB or DBCLOB data types:

– SQLColumns()

– SQLSpecialColumns()

– SQLDescribeCol()

– SQLColAttribute()

– SQLProcedureColumns()

v LONG VARCHAR and LONG VARCHAR FOR BIT DATA will continue to be

described as SQL_LONGVARCHAR and SQL_LONGVARBINARY.

The default setting for SQL_ATTR_LONGDATA_COMPAT is

SQL_LD_COMPAT_NO; that is, mapping is not in effect.

With mapping in effect, ODBC applications can retrieve and input LOB data by

using the SQLGetData(), SQLPutData() and related functions.

Long data for bulk inserts and updates in CLI applications

Long data can be provided for bulk inserts and updates performed by calls to

SQLBulkOperations().

1. When an application binds the data using SQLBindCol(), the application places

an application-defined value, such as the column number, in the *TargetValuePtr

buffer for data-at-execution columns. The value can be used later to identify the

column.

The application places the result of the SQL_LEN_DATA_AT_EXEC(length)

macro in the *StrLen_or_IndPtr buffer. If the SQL data type of the column is

SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a long, data

source-specific data type and CLI returns ″Y″ for the

56 Call Level Interface Guide and Reference, Volume 1

SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo(), length is the

number of bytes of data to be sent for the parameter; otherwise, it must be a

non-negative value and is ignored.

2. When SQLBulkOperations() is called, if there are data-at-execution columns, the

function returns SQL_NEED_DATA and proceeds to the next event in the

sequence, described in the next item. (If there are no data-at-execution columns,

the process is complete.)

3. The application calls SQLParamData() to retrieve the address of the

*TargetValuePtr buffer for the first data-at-execution column to be processed.

SQLParamData() returns SQL_NEED_DATA. The application retrieves the

application-defined value from the *TargetValuePtr buffer.

Note: Although data-at-execution parameters are similar to data-at-execution

columns, the value returned by SQLParamData() is different for each.

Data-at-execution columns are columns in a rowset for which data will be sent

with SQLPutData() when a row is updated or inserted with

SQLBulkOperations(). They are bound with SQLBindCol(). The value returned

by SQLParamData() is the address of the row in the *TargetValuePtr buffer that is

being processed.

4. The application calls SQLPutData() one or more times to send data for the

column. More than one call is needed if all the data value cannot be returned

in the *TargetValuePtr buffer specified in SQLPutData(); note that multiple calls

to SQLPutData() for the same column are allowed only when sending character

C data to a column with a character, binary, or data source-specific data type or

when sending binary C data to a column with a character, binary, or data

source-specific data type.

5. The application calls SQLParamData() again to signal that all data has been sent

for the column.

v If there are more data-at-execution columns, SQLParamData() returns

SQL_NEED_DATA and the address of the TargetValuePtr buffer for the next

data-at-execution column to be processed. The application repeats steps 4

and 5 above.

v If there are no more data-at-execution columns, the process is complete. If

the statement was executed successfully, SQLParamData() returns

SQL_SUCCESS or SQL_SUCCESS_WITH_INFO; if the execution failed, it

returns SQL_ERROR. At this point, SQLParamData() can return any

SQLSTATE that can be returned by SQLBulkOperations().

If the operation is canceled, or an error occurs in SQLParamData() or SQLPutData(),

after SQLBulkOperations() returns SQL_NEED_DATA, and before data is sent for

all data-at-execution columns, the application can call only SQLCancel(),

SQLGetDiagField(), SQLGetDiagRec(), SQLGetFunctions(), SQLParamData(), or

SQLPutData() for the statement or the connection associated with the statement. If

it calls any other function for the statement or the connection associated with the

statement, the function returns SQL_ERROR and SQLSTATE HY010 (Function

sequence error).

If the application calls SQLCancel() while CLI still needs data for data-at-execution

columns, CLI cancels the operation. The application can then call

SQLBulkOperations() again; canceling does not affect the cursor state or the current

cursor position.

Chapter 4. Data types 57

User-defined type (UDT) usage in CLI applications

User-defined types (UDTs) are database types defined by the user to provide

structure or strong typing not available with conventional SQL types. There are

three varieties of UDT: distinct types, structured types, and reference types.

A CLI application may want to determine whether a given database column is a

UDT, and if so, the variety of UDT. The descriptor field

SQL_DESC_USER_DEFINED_TYPE_CODE may be used to obtain this information.

When SQL_DESC_USER_DEFINED_TYPE_CODE is retrieved using

SQLColAttribute() or directly from the IPD using SQLGetDescField(), it will have

one of the following numeric values:

 SQL_TYPE_BASE (this is a regular SQL type, not a UDT)

 SQL_TYPE_DISTINCT (this value indicates that the column

 is a distinct type)

 SQL_TYPE_STRUCTURED (this value indicates that the column

 is a structured type)

 SQL_TYPE_REFERENCE (this value indicates that the column

 is a reference type)

Additionally, the following descriptor fields may be used to obtain the type names:

v SQL_DESC_REFERENCE_TYPE contains the name of the reference type, or an

empty string if the column is not a reference type.

v SQL_DESC_STRUCTURED_TYPE contains the name of the structured type, or

an empty string if the column is not a structured type.

v SQL_DESC_USER_TYPE or SQL_DESC_DISTINCT_TYPE contains the name of

the distinct type, or an empty string if the column is not a distinct type.

The descriptor fields listed above return the schema as part of the name. If the

schema is less than 8 letters, it is padded with blanks.

The connection attribute SQL_ATTR_TRANSFORM_GROUP allows an application

to set the transform group, and is an alternative to the SQL statement SET

CURRENT DEFAULT TRANSFORM GROUP.

A CLI application may not wish to repeatedly obtain the value of the

SQL_DESC_USER_DEFINED_TYPE_CODE descriptor field to determine if columns

contain UDTs. For this reason, there is an attribute called

SQL_ATTR_RETURN_USER_DEFINED_TYPES at both the connection and the

statement handle level. When set to SQL_TRUE using SQLSetConnectAttr(), CLI

returns SQL_DESC_USER_DEFINED_TYPE where you would normally find SQL

types in results from calls to SQLColAttribute(), SQLDescribeCol() and

SQLGetDescField(). This allows the application to check for this special type, and

then do special processing for UDTs. The default value for this attribute is

SQL_FALSE.

When the SQL_ATTR_RETURN_USER_DEFINED_TYPES attribute is set to

SQL_TRUE, the descriptor field SQL_DESC_TYPE will no longer return the ″base″

SQL type of the UDT, that is, the SQL type that the UDT is based on or transforms

to. For this reason, the descriptor field SQL_DESC_BASE_TYPE will always return

the base type of UDTs, and the SQL type of normal columns. This field simplifies

modules of a program that do not deal specifically with UDTs that would

otherwise have to change the connection attribute.

Note that SQLBindParameter() will not allow you to bind a parameter of the type

SQL_USER_DEFINED_TYPE. You must still bind parameters using the base SQL

58 Call Level Interface Guide and Reference, Volume 1

type, which you can obtain using the descriptor field SQL_DESC_BASE_TYPE. For

example, here is the SQLBindParameter() call used when binding to a column with

a distinct type based on SQL_VARCHAR:

 sqlrc = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR,

 SQL_VARCHAR, 30, 0, &c2, 30, NULL);

Distinct type usage in CLI applications

In addition to SQL data types (referred to as base SQL data types), new distinct

types can be defined by the user. This variety of user defined types (UDTs) shares

its internal representation with an existing type, but is considered to be a separate

and incompatible type for most operations. Distinct types are created using the

CREATE DISTINCT TYPE SQL statement.

Distinct types help provide the strong typing control needed in object oriented

programming by ensuring that only those functions and operators explicitly

defined on a distinct type can be applied to its instances. Applications continue to

work with C data types for application variables, and only need to consider the

distinct types when constructing SQL statements.

This means:

v All SQL to C data type conversion rules that apply to the built-in type apply to

distinct types.

v Distinct types will have the same default C Type as the built-in type.

v SQLDescribeCol() will return the built-in type information. The user defined

type name can be obtained by calling SQLColAttribute() with the input

descriptor type set to SQL_DESC_DISTINCT_TYPE.

v SQL predicates that involve parameter markers must be explicitly cast to the

distinct type. This is required since the application can only deal with the

built-in types, so before any operation can be performed using the parameter, it

must be cast from the C built-in type to the distinct type; otherwise an error will

occur when the statement is prepared.

XML data handling in CLI applications - Overview

DB2 CLI applications can retrieve and store XML data using the SQL_XML data

type. This data type corresponds to the native XML data type of the DB2 database,

which is used to define columns that store well-formed XML documents. The

SQL_XML type can be bound to the following C types: SQL_C_BINARY,

SQL_C_CHAR, SQL_C_WCHAR, and SQL_C_DBCHAR. Using the default

SQL_C_BINARY type, however, instead of character types, is recommended to

avoid possible data loss or corruption resulting from code page conversion when

character types are used.

To store XML data in an XML column, bind a binary (SQL_C_BINARY) or

character (SQL_C_CHAR, SQL_C_WCHAR, or SQL_C_DBCHAR) buffer that

contains the XML value to the SQL_XML SQL type and execute the INSERT or

UPDATE SQL statements. To retrieve XML data from the database, bind the result

set to a binary (SQL_C_BINARY) or character (SQL_C_CHAR, SQL_C_WCHAR, or

SQL_C_DBCHAR) type. Character types should be used with caution because of

encoding issues.

When an XML value is retrieved into an application data buffer, the DB2 server

performs an implicit serialization on the XML value to convert it from its stored

Chapter 4. Data types 59

hierarchical form to the serialized string form. For character typed buffers, the

XML value is implicitly serialized to the application character code page associated

with the character type.

By default, an XML declaration is included in the output serialized string. This

default behavior can be changed by setting the SQL_ATTR_XML_DECLARATION

statement or connection attribute, or by setting the XMLDeclaration CLI/ODBC

configuration keyword in the db2cli.ini file.

XQuery expressions and SQL/XML functions can be issued and executed in DB2

CLI applications. SQL/XML functions are issued and executed like any other SQL

statements. XQuery expressions must either be prepended with the case-insensitive

keyword ″XQUERY″, or the SQL_ATTR_XQUERY_STATEMENT statement attribute

must be set for the statement handle associated with the XQuery expression.

Changing of default XML type handling in CLI applications

DB2 CLI supports CLI/ODBC configuration keywords that provide compatibility

for applications that do not expect the default types returned when describing or

specifying SQL_C_DEFAULT for XML columns and parameter markers. Older CLI

and ODBC applications might not recognize or expect the default SQL_XML type

when describing XML columns or parameters. Some CLI or ODBC applications

might also expect a default type other than SQL_C_BINARY for XML columns and

parameter markers. To provide compatibility for these types of applications, DB2

CLI supports the MapXMLDescribe and MapXMLCDefault keywords.

MapXMLDescribe specifies which SQL data type is returned when XML columns

or parameter markers are described.

MapXMLCDefault specifies the C type that is used when SQL_C_DEFAULT is

specified for XML columns and parameter markers in DB2 CLI functions.

60 Call Level Interface Guide and Reference, Volume 1

Chapter 5. Transaction processing in CLI overview

Figure 4 shows the typical order of function calls in the transaction processing task

of a DB2 CLI application. Not all functions or possible paths are shown.

The transaction processing task contains five steps:

v Allocating statement handle(s)

Commit or Rollback Free Statement

Statement not executed again

Receive Query Results Update Data Other

(SELECT, VALUES)
(UPDATE, DELETE,
INSERT)

(ALTER, CREATE, DROP,
GRANT, REVOKE, SET)

SQLEndTran() SQLFreeHandle()
(Statement)

SQLFetch()

SQLGetData()

SQLRowCount() (no functions required)

SQLBindCol()

SQLColAttribute()
or

SQLDescribeCol()

SQLNumResultCols()

Prepare a Statement

SQLPrepare()
SQLBindParameter()

Directly Execute
a Statement

SQLBindParameter()
SQLExecDirect()

Allocate a Statement

SQLAllocHandle()

Execute a Statement

SQLExecute()

Figure 4. Transaction processing

© Copyright IBM Corp. 1993, 2007 61

v Preparing and executing SQL statements

v Processing results

v Committing or Rolling Back

v (Optional) Freeing statement handle(s) if the statement is unlikely to be executed

again.

Allocating statement handles in CLI applications

To issue an SQL statement in a CLI application, you need to allocate a statement

handle. A statement handle tracks the execution of a single SQL statement and is

associated with a connection handle. Allocating statement handles is part of the

larger task of processing transactions.

Before you begin allocating statement handles, you must allocate an environment

handle and a connection handle. This is part of the task of initializing your CLI

application.

To allocate a statement handle:

1. Call SQLAllocHandle() with a HandleType of SQL_HANDLE_STMT. For

example:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmt);

2. Optional: To set attributes for this statement, call SQLSetStmtAttr() for each

desired attribute option.

After allocating environment, connection, and statement handles, you can now

prepare, issue, or execute SQL statements.

Issuing SQL statements in CLI applications

SQL statements are passed to DB2 CLI functions as SQLCHAR string variables.

The variable can consist of one or more SQL statements, with or without parameter

markers, depending on the type of processing you want. This topic describes the

various ways SQL statements can be issued in DB2 CLI applications.

Before you issue an SQL statement, ensure you have allocated a statement handle.

Perform either of the following steps to issue SQL statements:

v To issue a single SQL statement, either initialize an SQLCHAR variable with the

SQL statement and pass this variable to the CLI function, or directly pass a

string argument cast to an SQLCHAR * to the function. For example:

SQLCHAR * stmt = (SQLCHAR *) "SELECT deptname, location FROM org";

/* ... */

SQLExecDirect (hstmt, stmt, SQL_NTS);

or

SQLExecDirect (hstmt, (SQLCHAR *) "SELECT deptname, location FROM org",

 SQL_NTS);

v To issue multiple SQL statements on the same statement handle, either initialize

an array of SQLCHAR elements, where each element represents an individual

SQL statement, or initialize a single SQLCHAR variable that contains the

multiple statements delimited by a ″;″ character. For example:

62 Call Level Interface Guide and Reference, Volume 1

SQLCHAR * multiple_stmts[] = {

 (SQLCHAR *) "SELECT deptname, location FROM org",

 (SQLCHAR *) "SELECT id, name FROM staff WHERE years > 5",

 (SQLCHAR *) "INSERT INTO org VALUES (99,’Hudson’,20,’Western’,’Seattle’)"

};

or

SQLCHAR * multiple_stmts =

 "SELECT deptname, location FROM org;

 SELECT id, name FROM staff WHERE years > 5;

 INSERT INTO org VALUES (99, ’Hudson’, 20, ’Western’, ’Seattle’)";

Note: When a list of SQL statements is specified, only one statement is executed

at a time, starting with the first statement in the list. Each subsequent statement

is executed in the order it appears. (To execute subsequent statements, you must

call SQLMoreResults().)

v To issue SQL statements with parameter markers, see “Binding parameter

markers in CLI applications” on page 65.

v To capture and convert SQL statements dynamically executed with DB2 CLI

(dynamic SQL) to static SQL, see “Creating static SQL with CLI/ODBC/JDBC

Static Profiling” on page 106.

Parameter marker binding in CLI applications

Parameter markers are represented by the ‘?’ character and indicate the position in

the SQL statement where the contents of application variables are to be substituted

when the statement is executed. (A parameter marker is used where a host variable

would be used in static embedded SQL.) This value can be obtained from:

v An application variable.

SQLBindParameter() is used to bind the application storage area to the parameter

marker.

v A LOB value from the database server (by specifying a LOB locator).

SQLBindParameter() is used to bind a LOB locator to the parameter marker. The

LOB value itself is supplied by the database server, so only the LOB locator is

transferred between the database server and the application.

v A file within the application’s environment containing a LOB value.

SQLBindFileToParam() is used to bind a file to a LOB parameter marker. When

SQLExecDirect() is executed, DB2 CLI will transfer the contents of the file

directly to the database server.

An application cannot place parameter markers in the following locations:

v In a SELECT list

v As both expressions in a comparison-predicate

v As both operands of a binary operator

v As both the first and second operands of a BETWEEN operation

v As both the first and third operands of a BETWEEN operation

v As both the expression and the first value of an IN operation

v As the operand of a unary + or – operation

v As the argument of a SET FUNCTION reference

Parameter markers are referenced sequentially, from left to right, starting at 1.

SQLNumParams() can be used to determine the number of parameters in a statement.

Chapter 5. Processing transactions 63

The application must bind an application variable to each parameter marker in the

SQL statement before it executes that statement. Binding is carried out by calling

the SQLBindParameter() function with a number of arguments to indicate:

v the ordinal position of the parameter,

v the SQL type of the parameter,

v the type of parameter (input, output, or inout),

v the C data type of the variable,

v a pointer to the application variable,

v the length of the variable.

The bound application variable and its associated length are called deferred input

arguments because only the pointers are passed when the parameter is bound; no

data is read from the variable until the statement is executed. Deferred arguments

allow the application to modify the contents of the bound parameter variables, and

re-execute the statement with the new values.

Information about each parameter remains in effect until:

v it is overridden by the application

v the application unbinds the parameter by calling SQLFreeStmt() with the

SQL_RESET_PARAMS Option

v the application drops the statement handle by calling SQLFreeHandle() with a

HandleType of SQL_HANDLE_STMT or SQLFreeStmt() with the SQL_DROP

Option.

Information for each parameter remains in effect until overridden, or until the

application unbinds the parameter or drops the statement handle. If the application

executes the SQL statement repeatedly without changing the parameter binding,

then DB2 CLI uses the same pointers to locate the data on each execution. The

application can also change the parameter binding to a different set of deferred

variables by calling SQLBindParameter() again for one or more parameters and

specifying different application variables. The application must not deallocate or

discard variables used for deferred input fields between the time it binds the fields

to parameter markers and the time DB2 CLI accesses them at execution time.

Doing so can result in DB2 CLI reading garbage data, or accessing invalid memory

resulting in an application trap.

It is possible to bind the parameter to a variable of a different type from that

required by the SQL statement. The application must indicate the C data type of

the source, and the SQL type of the parameter marker, and DB2 CLI will convert

the contents of the variable to match the SQL data type specified. For example, the

SQL statement may require an integer value, but your application has a string

representation of an integer. The string can be bound to the parameter, and DB2

CLI will convert the string to the corresponding integer value when you execute

the statement.

By default, DB2 CLI does not verify the type of the parameter marker. If the

application indicates an incorrect type for the parameter marker, it could cause:

v an extra conversion by the DBMS

v an error at the DBMS which forces DB2 CLI to describe the statement being

executed and re-execute it, resulting in extra network traffic

v an error returned to the application if the statement cannot be described, or the

statement cannot be re-executed successfully.

64 Call Level Interface Guide and Reference, Volume 1

Information about the parameter markers can be accessed using descriptors. If you

enable automatic population of the implementation parameter descriptor (IPD)

then information about the parameter markers will be collected. The statement

attribute SQL_ATTR_ENABLE_AUTO_IPD must be set to SQL_TRUE for this to

work.

If the parameter marker is part of a predicate on a query and is associated with a

User Defined Type, then the parameter marker must be cast to the built-in type in

the predicate portion of the statement; otherwise, an error will occur.

After the SQL statement has been executed, and the results processed, the

application may wish to reuse the statement handle to execute a different SQL

statement. If the parameter marker specifications are different (number of

parameters, length or type) then SQLFreeStmt() should be called with

SQL_RESET_PARAMS to reset or clear the parameter bindings.

Binding parameter markers in CLI applications

This topic describes how to bind parameter markers to application variables before

executing SQL statements. Parameter markers in SQL statements can be bound to

single values or to arrays of values. Binding each parameter marker individually

requires a network flow to the server for each set of values. Using arrays, however,

allows several sets of parameter values to be bound and sent at once to the server.

Before you bind parameter markers, ensure you have initialized your application.

To bind parameter markers, perform either of the following steps:

v To bind parameter markers one at a time to application variables, call

SQLBindParameter() for each application variable you want to bind. Ensure you

specify the correct parameter type: SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT. The following

example shows how two parameter markers are bound with two application

variables:

SQLCHAR *stmt =

 (SQLCHAR *)"DELETE FROM org WHERE deptnumb = ? AND division = ? ";

SQLSMALLINT parameter1 = 0;

char parameter2[20];

/* bind parameter1 to the statement */

cliRC = SQLBindParameter(hstmt,

 1,

 SQL_PARAM_INPUT,

 SQL_C_SHORT,

 SQL_SMALLINT,

 0,

 0,

 ¶meter1,

 0,

 NULL);

/* bind parameter2 to the statement */

cliRC = SQLBindParameter(hstmt,

 2,

 SQL_PARAM_INPUT,

 SQL_C_CHAR,

 SQL_VARCHAR,

 20,

 0,

 parameter2,

 20,

 NULL);

Chapter 5. Processing transactions 65

v To bind at once many values to parameter markers, perform either of the

following tasks which use arrays of values:

– binding parameter markers with column-wise array inputbinding parameter

markers with column-wise array input

– binding parameter markers with row-wise array inputbinding parameter

markers with row-wise array input

Binding parameter markers in CLI applications with

column-wise array input

To process an SQL statement that will be repeated with different values, you can

use column-wise array input to achieve bulk inserts, deletes, or updates. This

results in fewer network flows to the server because SQLExecute() does not have to

be called repeatedly on the same SQL statement for each value. Column-wise array

input allows arrays of storage locations to be bound to parameter markers. A

different array is bound to each parameter.

Before binding parameter markers with column-wise binding, ensure that you have

initialized your CLI application.

For character and binary input data, the application uses the maximum input

buffer size argument (BufferLength) of the SQLBindParameter() call to indicate to

DB2 CLI the location of values in the input array. For other input data types, the

length of each element in the array is assumed to be the size of the C data type. To

bind parameter markers using column-wise array input:

1. Specify the size of the arrays (the number rows to be inserted) by calling

SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE statement attribute.

2. Initialize and populate an array for each parameter marker to be bound.

Note: Each array must contain at least SQL_ATTR_PARAMSET_SIZE elements,

otherwise, memory access violations may occur.

3. Optional: Indicate that column-wise binding is to be used by setting the

SQL_ATTR_BIND_TYPE statement attribute to

SQL_PARAMETER_BIND_BY_COLUMN (this is the default setting).

4. Bind each parameter marker to its corresponding array of input values by

calling SQLBindParameter() for each parameter marker.

Binding parameter markers in CLI applications with row-wise

array input

To process an SQL statement that will be repeated with different values, you can

use row-wise array input to achieve bulk inserts, deletes, or updates. This results

in fewer network flows to the server because SQLExecute() does not have to be

called repeatedly on the same SQL statement for each value. Row-wise array input

allows an array of structures to be bound to parameters.

Before binding parameter markers with row-wise binding, ensure that you have

initialized your CLI application.

To bind parameter markers using row-wise array input:

1. Initialize and populate an array of structures that contains two elements for

each parameter: the first element contains the length/indicator buffer, and the

second element holds the value itself. The size of the array corresponds to the

number of values to be applied to each parameter. For example, the following

array contains the length and value for three parameters:

66 Call Level Interface Guide and Reference, Volume 1

struct { SQLINTEGER La; SQLINTEGER A; /* Information for parameter A */

 SQLINTEGER Lb; SQLCHAR B[4]; /* Information for parameter B */

 SQLINTEGER Lc; SQLCHAR C[11]; /* Information for parameter C */

 } R[n];

2. Indicate that row-wise binding is to by used by setting the

SQL_ATTR_PARAM_BIND_TYPE statement attribute to the length of the struct

created in the previous step, using SQLSetStmtAttr().

3. Set the statement attribute SQL_ATTR_PARAMSET_SIZE to the number of

rows of the array, using SQLSetStmtAttr().

4. Bind each parameter to the first row of the array created in step 1 using

SQLBindParameter(). For example,

 /* Parameter A */

 rc = SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_LONG,

 SQL_INTEGER, 5, 0, &R[0].A, 0, &R.La);

 /* Parameter B */

 rc = SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

 10, 0, R[0].B, 10, &R.Lb);

 /* Parameter C */

 rc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR,

 3, 0, R[0].C, 3, &R.Lc);

Parameter diagnostic information in CLI applications

A parameter status array is an array of one or more SQLSMALLINTs allocated by a

CLI application. Each element in the array corresponds to an element in the input

(or output) parameter array. If specified, the DB2 CLI driver updates the parameter

status array with information about the processing status of each set of parameters

included in an SQLExecute() or SQLExecDirect() call.

DB2 CLI updates the elements in the parameter status array with the following

values:

v SQL_PARAM_SUCCESS: The SQL statement was successfully executed for this

set of parameters.

v SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was successfully

executed for this set of parameters, however, warning information is available in

the diagnostics data structure.

v SQL_PARAM_ERROR: An error occurred in processing this set of parameters.

Additional error information is available in the diagnostics data structure.

v SQL_PARAM_UNUSED: This parameter set was unused, possibly because a

previous parameter set caused an error that aborted further processing.

v SQL_PARAM_DIAG_UNAVAILABLE: Diagnostic information is not available,

possibly because an error was detected before the parameter set was even used

(for example, an SQL statement syntax error).

A CLI application must call the SQLSetStmtAttr() function to set the

SQL_ATTR_PARAM_STATUS_PTR attribute before DB2 CLI will update the

parameter status array. Alternatively, the application can call the

SQLSetDescField() function to set the SQL_DESC_ARRAY_STATUS_PTR field in

the IPD descriptor to point to the parameter status array.

The statement attribute SQL_ATTR_PARAMS_PROCESSED, or the corresponding

IPD descriptor header field SQL_DESC_ROWS_PROCESSED_PTR, can be used to

return the number of sets of parameters that have been processed.

Chapter 5. Processing transactions 67

Once the application has determined what parameters had errors, it can use the

statement attribute SQL_ATTR_PARAM_OPERATION_PTR, or the corresponding

APD descriptor header field SQL_DESC_ARRAY_STATUS_PTR, (both of which

point to an array of values) to control which sets of parameters are ignored in a

second call to SQLExecute() or SQLExecDirect().

Changing parameter bindings in CLI applications with offsets

When an application needs to change parameter bindings it can call

SQLBindParameter() a second time. This will change the bound parameter buffer

address and the corresponding length/indicator buffer address used. Instead of

multiple calls to SQLBindParameter(), however, DB2 CLI also supports parameter

binding offsets. Rather than re-binding each time, an offset can be used to specify

new buffer and length/indicator addresses which will be used in a subsequent call

to SQLExecute() or SQLExecDirect().

Before changing your parameter bindings, ensure that your application has been

initialized.

To change parameter bindings by using offsets:

1. Call SQLBindParameter() as you had been to bind the parameters.

The first set of bound parameter buffer addresses and the corresponding

length/indicator buffer addresses will act as a template. The application will

then move this template to different memory locations using the offset.

2. Call SQLExecute() or SQLExecDirect() as you had been to execute the

statement.

The values stored in the bound addresses will be used.

3. Initialize a variable to hold the memory offset value.

The statement attribute SQL_ATTR_PARAM_BIND_OFFSET_PTR points to the

address of an SQLINTEGER buffer where the offset will be stored. This address

must remain valid until the cursor is closed.

This extra level of indirection enables the use of a single memory variable to

store the offset for multiple sets of parameter buffers on different statement

handles. The application need only set this one memory variable and all of the

offsets will be changed.

4. Store an offset value (number of bytes) in the memory location pointed to by

the statement attribute set in the previous step.

The offset value is always added to the memory location of the originally

bound values. This sum must point to a valid memory address.

5. Call SQLExecute() or SQLExecDirect() again. CLI will add the offset specified

above to the locations used in the original call to SQLBindParameter() to

determine where the parameters to be used are stored in memory.

6. Repeat steps 4 and 5 above as required.

Specifying parameter values at execute time for long data

manipulation in CLI applications

When manipulating long data, it may not be feasible for the application to load the

entire parameter data value into storage at the time the statement is executed, or

when the data is fetched from the database. A method has been provided to allow

the application to handle the data in a piecemeal fashion. The technique of sending

long data in pieces is called specifying parameter values at execute time. It can also be

used to specify values for fixed size non-character data types such as integers.

68 Call Level Interface Guide and Reference, Volume 1

Before specifying parameter values at execute time, ensure you have initialized

your CLI application.

While the data-at-execution flow is in progress, the only DB2 CLI functions the

application can call are:

v SQLParamData() and SQLPutData() as given in the sequence below.

v The SQLCancel() function which is used to cancel the flow and force an exit

from the loops described below without executing the SQL statement.

v The SQLGetDiagRec() function.

A data-at-execute parameter is a bound parameter for which a value is prompted

at execution time instead of stored in memory before SQLExecute() or

SQLExecDirect() is called. To indicate such a parameter on an SQLBindParameter()

call:

1. Set the input data length pointer to point to a variable that, at execute time,

will contain the value SQL_DATA_AT_EXEC. For example:

 /* dtlob.c */

 /* ... */

 SQLINTEGER blobInd ;

 /* ... */

 blobInd = SQL_DATA_AT_EXEC;

 sqlrc = SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,

 SQL_BLOB, BUFSIZ, 0, (SQLPOINTER)inputParam,

 BUFSIZ, &blobInd);

2. If there is more than one data-at-execute parameter, set each input data pointer

argument to some value that it will recognize as uniquely identifying the field

in question.

3. If there are any data-at-execute parameters when the application calls

SQLExecDirect() or SQLExecute(), the call returns with SQL_NEED_DATA to

prompt the application to supply values for these parameters. The application

responds with the subsequent steps.

4. Call SQLParamData() to conceptually advance to the first such parameter.

SQLParamData() returns SQL_NEED_DATA and provides the contents of the

input data pointer argument specified on the associated SQLBindParameter()call

to help identify the information required.

5. Pass the actual data for the parameter by calling SQLPutData(). Long data can

be sent in pieces by calling SQLPutData() repeatedly.

6. Call SQLParamData() again after providing the entire data for this

data-at-execute parameter.

7. If more data-at-execute parameters exist, SQLParamData() again returns

SQL_NEED_DATA and the application repeats steps 4 and 5 above.

For example:

 /* dtlob.c */

 /* ... */

 else

 { sqlrc = SQLParamData(hstmt, (SQLPOINTER *) &valuePtr);

 /* ... */

 while (sqlrc == SQL_NEED_DATA)

 { /*

 if more than 1 parms used DATA_AT_EXEC then valuePtr would

 have to be checked to determine which param needed data

 */

 while (feof(pFile) == 0)

 { n = fread(buffer, sizeof(char), BUFSIZ, pFile);

 sqlrc = SQLPutData(hstmt, buffer, n);

Chapter 5. Processing transactions 69

STMT_HANDLE_CHECK(hstmt, sqlrc);

 fileSize = fileSize + n;

 if (fileSize > 102400u)

 { /* BLOB column defined as 100K MAX */

 /* ... */

 break;

 }

 }

 /* ... */

 sqlrc = SQLParamData(hstmt, (SQLPOINTER *) &valuePtr);

 /* ... */

 }

 }

When all data-at-execute parameters have been assigned values, SQLParamData()

completes execution of the SQL statement and returns a return value and

diagnostics as the original SQLExecDirect() or SQLExecute() would have produced.

Commit modes in CLI applications

A transaction is a recoverable unit of work, or a group of SQL statements that can

be treated as one atomic operation. This means that all the operations within the

group are guaranteed to be completed (committed) or undone (rolled back), as if

they were a single operation. When the transaction spans multiple connections, it

is referred to as a distributed unit of work (DUOW).

Transactions are started implicitly with the first access to the database using

SQLPrepare(), SQLExecDirect(), SQLGetTypeInfo(), or any function that returns a

result set, such as catalog functions. At this point a transaction has begun, even if

the call failed.

DB2 CLI supports two commit modes:

auto-commit

In auto-commit mode, every SQL statement is a complete transaction,

which is automatically committed. For a non-query statement, the commit

is issued at the end of statement execution. For a query statement, the

commit is issued after the cursor has been closed. The default commit

mode is auto-commit (except when participating in a coordinated

transaction).

manual-commit

In manual-commit mode, the transaction ends when you use SQLEndTran()

to either rollback or commit the transaction. This means that any

statements executed (on the same connection) between the start of a

transaction and the call to SQLEndTran() are treated as a single transaction.

If DB2 CLI is in manual-commit mode, a new transaction will be implicity

started if the application is not already in a transaction and an SQL

statement that can be contained within a transaction is executed.

An application can switch between manual-commit and auto-commit modes by

calling SQLSetConnectAttr(). Auto-commit can be useful for query-only

applications, because the commits can be chained to the SQL execution request

sent to the server. Another benefit of auto-commit is improved concurrency since

locks are removed as soon as possible. Applications that need to perform updates

to the database should turn off auto-commit as soon as the database connection

has been established and should not wait until the disconnect before committing or

rolling back the transaction.

70 Call Level Interface Guide and Reference, Volume 1

The following are examples of how to set auto-commit on and off:

v Setting auto-commit on:

 /* ... */

 /* set AUTOCOMMIT on */

 sqlrc = SQLSetConnectAttr(hdbc,

 SQL_ATTR_AUTOCOMMIT,

 (SQLPOINTER)SQL_AUTOCOMMIT_ON, SQL_NTS) ;

 /* continue with SQL statement execution */

v Setting auto-commit off:

 /* ... */

 /* set AUTOCOMMIT OFF */

 sqlrc = SQLSetConnectAttr(hdbc,

 SQL_ATTR_AUTOCOMMIT,

 (SQLPOINTER)SQL_AUTOCOMMIT_OFF, SQL_NTS) ;

 /* ... */

 /* execute the statement */

 /* ... */

 sqlrc = SQLExecDirect(hstmt, stmt, SQL_NTS) ;

 /* ... */

 sqlrc = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);

 DBC_HANDLE_CHECK(hdbc, sqlrc);

 /* ... */

When multiple connections exist to the same or different databases, each

connection has its own transaction. Special care must be taken to call SQLEndTran()

with the correct connection handle to ensure that only the intended connection and

related transaction is affected. It is also possible to rollback or commit all the

connections by specifying a valid environment handle, and a NULL connection

handle on the SQLEndTran() call. Unlike distributed unit of work connections, there

is no coordination between the transactions on each connection in this case.

When to call the CLI SQLEndTran() function

In auto-commit mode, a commit is issued implicitly at the end of each statement

execution or when a cursor is closed.

In manual-commit mode, SQLEndTran() must be called before calling

SQLDisconnect(). If a Distributed Unit of Work is involved, additional rules may

apply.

Consider the following when deciding where in the application to end a

transaction:

v Each connection cannot have more than one current transaction at any given

time, so keep dependent statements within the same unit of work. Note that

statements must always be kept on the same connection under which they were

allocated.

v Various resources may be held while the current transaction on a connection is

running. Ending the transaction will release the resources for use by other

applications.

Chapter 5. Processing transactions 71

v Once a transaction has successfully been committed or rolled back, it is fully

recoverable from the system logs. Open transactions are not recoverable.

Effects of calling SQLEndTran()

When a transaction ends:

v All locks on DBMS objects are released, except those that are associated with a

held cursor.

v Prepared statements are preserved from one transaction to the next. Once a

statement has been prepared on a specific statement handle, it does not need to

be prepared again even after a commit or rollback, provided the statement

continues to be associated with the same statement handle.

v Cursor names, bound parameters, and column bindings are maintained from

one transaction to the next.

v By default, cursors are preserved after a commit (but not a rollback). All cursors

are by default defined with the WITH HOLD clause, except when the CLI

application is running in a Distributed Unit of Work environment.

Preparing and executing SQL statements in CLI applications

Once you have allocated a statement handle, you can then perform operations

using SQL statements or XQuery expressions. An SQL statement or XQuery

expression must be prepared before it can be executed, and DB2 CLI offers two

ways of preparing and executing: perform the prepare and execute operations in

separate steps, and combine the prepare and execute operations into one step.

Before preparing and executing your SQL statement or XQuery expression, ensure

you have allocated a statement handle for it.

v To prepare and execute an SQL statement or XQuery expression in separate

steps:

1. Prepare the SQL statement or XQuery expression by calling SQLPrepare()

and passing the statement or expression as the StatementText argument.

Note: XQuery expressions must be prefixed with the case-insensitive

″XQUERY″ keyword, unless the statement attribute

SQL_ATTR_XQUERY_STATEMENT has been set to SQL_TRUE for this

statement handle.

2. Call SQLBindParameter() to bind any parameter markers you may have in

the SQL statement.

Note: For XQuery expressions, you cannot specify parameter markers in the

expression itself. You can, however, use the XMLQUERY function to bind

parameter markers to XQuery variables. The values of the bound parameter

markers will then be passed to the XQuery expression specified in

XMLQUERY for execution.

3. Execute the prepared statement by calling SQLExecute().

Use this method when:

– The same SQL statement or XQuery expression will be executed repeatedly

(usually with different parameter values). This avoids having to prepare the

same statement or expression more than once. The subsequent executions

make use of the access plans already generated by the prepare, thus

increasing driver efficiency and delivering better application performance.

72 Call Level Interface Guide and Reference, Volume 1

– The application requires information about the parameters or columns in the

result set prior to statement execution.
v To prepare and execute an SQL statement or XQuery expression in one step:

1. Call SQLBindParameter() to bind any parameter markers you may have in

the SQL statement.

Note: For XQuery expressions, you cannot specify parameter markers in the

expression itself. You can, however, use the XMLQUERY function to bind

parameter markers to XQuery variables. The values of the bound parameter

markers will then be passed to the XQuery expression specified in

XMLQUERY for execution.

2. Prepare and execute the statement or expression by calling SQLExecDirect()

with the SQL statement or XQuery expression as the StatementText argument.

Note: XQuery expressions must be prefixed with the case-insensitive

″XQUERY″ keyword, unless the statement attribute

SQL_ATTR_XQUERY_STATEMENT has been set to SQL_TRUE for this

statement handle.

3. Optional: If a list of SQL statements are to be executed, call

SQLMoreResults() to advance to the next SQL statement.

Use this method of preparing and executing in one step when:

– The statement or expression will be executed only once. This avoids having to

call two functions to execute the statement or expression.

– The application does not require information about the columns in the result

set before the statement is executed.

Deferred prepare in CLI applications

Deferred prepare is the name of the CLI feature that seeks to minimise

communication with the server by sending both the prepare and execute requests

for SQL statements in the same network flow. The default value for this property

can be overridden using the CLI/ODBC configuration keyword DeferredPrepare.

This property can be set on a per-statement handle basis by calling

SQLSetStmtAttr() to change the SQL_ATTR_DEFEFERRED_PREPARE statement

attribute.

When deferred prepare is on, the prepare request is not sent to the server until the

corresponding execute request is issued. The two requests are then combined into

one command/reply flow (instead of two) to minimize network flow and to

improve performance. Because of this behavior, any errors that would typically be

generated by SQLPrepare() will appear at execute time, and SQLPrepare() will

always return SQL_SUCCESS. Deferred prepare is of greatest benefit when the

application generates queries where the answer set is very small, and the overhead

of separate requests and replies is not spread across multiple blocks of query data.

Note: Even if deferred prepare is enabled, operations that require a statement to be

prepared prior to the operation’s execution will force the prepare request to be sent

to the server before the execute. Describe operations resulting from calls to

SQLDescribeParam() or SQLDescribeCol() are examples of when deferred prepare

will be overridden, because describe information is only available after the

statement has been prepared.

Chapter 5. Processing transactions 73

Executing compound SQL statements in CLI applications

Compound SQL allows multiple SQL statements to be grouped into a single

executable block. This block of statements, together with any input parameter

values, can then be executed in a single continuous stream, reducing the execution

time and network traffic.

v Compound SQL does not guarantee the order in which the substatements are

executed, therefore there must not be any dependencies among the

substatements.

v Compound SQL statements cannot be nested.

v The BEGIN COMPOUND and END COMPOUND statements must be executed

with the same statement handle.

v The value specified in the STOP AFTER FIRST ? STATEMENTS clause of the

BEGIN COMPOUND SQL statement must be of type SQL_INTEGER, and you

can only bind an application buffer of type SQL_C_INTEGER or

SQL_C_SMALLINT for this value.

v Each substatement must have its own statement handle.

v All statement handles must belong to the same connection and have the same

isolation level.

v Atomic array input is not supported within a BEGIN COMPOUND and END

COMPOUND block of SQL statements. Atomic array input refers to the behavior

where all inserts will be undone if any single insert fails.

v All statement handles must remain allocated until the END COMPOUND

statement is executed.

v SQLEndTran() cannot be called for the same connection or any connect requests

between BEGIN COMPOUND and END COMPOUND.

v Only the following functions may be called using the statement handles

allocated for the compound substatements:

– SQLAllocHandle()

– SQLBindParameter()

– SQLBindFileToParam()

– SQLExecute()

– SQLParamData()

– SQLPrepare()

– SQLPutData()

To execute compound SQL statements in CLI applications:

1. Allocate a parent statement handle. For example:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtparent);

2. Allocate statement handles for each of the compound substatements. For

example:

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtsub1);

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtsub2);

SQLAllocHandle (SQL_HANDLE_STMT, hdbc, &hstmtsub3);

3. Prepare the substatements. For example:

SQLPrepare (hstmtsub1, stmt1, SQL_NTS);

SQLPrepare (hstmtsub2, stmt2, SQL_NTS);

SQLPrepare (hstmtsub3, stmt3, SQL_NTS);

4. Execute the BEGIN COMPOUND statement using the parent statement handle.

For example:

74 Call Level Interface Guide and Reference, Volume 1

SQLExecDirect (hstmtparent, (SQLCHAR *) "BEGIN COMPOUND NOT ATOMIC STATIC",

 SQL_NTS);

5. If this is an atomic compound SQL operation, execute the substatements using

the SQLExecute() function only. For example:

SQLExecute (hstmtsub1);

SQLExecute (hstmtsub2);

SQLExecute (hstmtsub3);

Note: All statements to be executed inside an atomic compound block must

first be prepared. Attempts to use the SQLExecDirect() function within an

atomic compound block will result in errors.

6. Execute the END COMPOUND statement using the parent statement handle.

For example:

SQLExecDirect (hstmtparent, (SQLCHAR *) "END COMPOUND NOT ATOMIC STATIC",

 SQL_NTS);

7. Optional: If you used an input parameter value array, call SQLRowCount() with

the parent statement handle to retrieve the aggregate number of rows affected

by all elements of the input array. For example:

SQLRowCount (hstmtparent, &numRows);

8. Free the handles of the substatements. For example:

SQLFreeHandle (SQL_HANDLE_STMT, hstmtsub1);

SQLFreeHandle (SQL_HANDLE_STMT, hstmtsub2);

SQLFreeHandle (SQL_HANDLE_STMT, hstmtsub3);

9. Free the parent statement handle when you have finished using it. For

example:

SQLFreeHandle (SQL_HANDLE_STMT, hstmtparent);

If the application is not operating in auto-commit mode and the COMMIT option

is not specified, the sub-statements will not be committed. If the application is

operating in auto-commit mode, however, then the sub-statements will be

committed at END COMPOUND, even if the COMMIT option is not specified.

Cursors in CLI applications

A CLI application uses a cursor to retrieve rows from a result set. A cursor is a

moveable pointer to a row in the result table of an active query statement. With

the introduction of the DB2 UDB Version 8 client, the support for an updatable

scrollable cursor has been moved from the client to the server. This means that an

application using the DB2 UDB client, Version 8 or higher, that requires updatable

scrollable cursor needs to ensure that the server supports updatable scrollable

cursors. DB2 UDB servers on Linux, UNIX and Windows, Version 8 and above,

and DB2 for z/OS servers Version 7 and above support this feature. To access a

scrollable cursor in a three-tier environment on DB2 for z/OS or DB2 for OS/390

Version 7 and above, the gateway must be running DB2 UDB Version 8 or above.

A cursor is opened when a dynamic SQL SELECT statement is successfully

executed by SQLExecute() or SQLExecDirect(). There is typically a one-to-one

correlation between application cursor operations and the operations performed by

the DB2 CLI driver with the cursor. Immediately after the successful execution, the

cursor is positioned before the first row of the result set, and FETCH operations

through calls to SQLFetch(), SQLFetchScroll(), or SQLExtendedFetch() will

advance the cursor one row at a time through the result set. When the cursor has

reached the end of the result set, the next fetch operation will return SQLCODE

+100. From the perspective of the CLI application, SQLFetch() returns

SQL_NO_DATA_FOUND when the end of the result set is reached.

Chapter 5. Processing transactions 75

Types of cursors

There are two types of cursors supported by DB2 CLI:

non-scrollable

Forward-only non-scrollable cursors are the default cursor type used by the

DB2 CLI driver. This cursor type is unidirectional and requires the least

amount of overhead processing.

scrollable

There are three types of scrollable cursors supported by DB2 CLI:

static This is a read-only cursor. Once it is created, no rows can be added

or removed, and no values in any rows will change. The cursor is

not affected by other applications accessing the same data. The

isolation level of the statement used to create the cursor determines

how the rows of the cursor are locked, if at all.

keyset-driven

Unlike a static scrollable cursor, a keyset-driven scrollable cursor

can detect and make changes to the underlying data. Keyset

cursors are based on row keys. When a keyset-driven cursor is first

opened, it stores the keys in a keyset for the life of the entire result

set. The keyset is used to determine the order and set of rows that

are included in the cursor. As the cursor scrolls through the result

set, it uses the keys in this keyset to retrieve the most recent values

in the database, which are not necessarily the values that existed

when the cursor was first opened. For this reason, changes are not

reflected until the application scrolls to the row.

 There are various types of changes to the underlying data that a

keyset-driven cursor might or might not reflect:

v Changed values in existing rows. The cursor will reflect these

types of changes. Because the cursor fetches a row from the

database each time it is required, keyset-driven cursors always

detect changes made by themselves and other cursors.

v Deleted rows. The cursor will reflect these types of changes. If a

selected row in the rowset is deleted after the keyset is

generated, it will appear as a ″hole″ in the cursor. When the

cursor goes to fetch the row again from the database, it will

realize that the row is no longer there.

v Added rows. The cursor will not reflect these types of changes.

The set of rows is determined once, when the cursor is first

opened. To see the inserted rows, the application must re-execute

the query.

Note: DB2 CLI currently only supports keyset-driven cursors if the

server supports them. The DB2 UDB Version 8 server now

supports updatable scrollable cursors. This means that if

applications require keyset cursor functionality and currently

access DB2 for OS/390 Version 6 or DB2 for Unix and Windows

Version 7 and earlier, the clients should not be migrated to DB2

UDB Version 8 or higher. The servers can be migrated to Version 8

or above.

dynamic

Dynamic scrollable cursors can detect all changes (inserts, deletes,

76 Call Level Interface Guide and Reference, Volume 1

and updates) to the result set, and make insertions, deletions and

updates to the result set. Unlike keyset-driven cursors, dynamic

cursors:

v detect rows inserted by other cursors

v omit deleted rows from the result set (keyset-driven cursors

recognize deleted rows as ″holes″ in the result set)

Currently, dynamic scrollable cursors are only supported in DB2

CLI when accessing servers that are DB2 for z/OS Version 8.1 and

later.

Cursor attributes

The table below lists the default attributes for cursors in DB2 CLI.

 Table 6. Default attributes for cursors in CLI

Cursor type Cursor

sensitivity

Cursor

updatable

Cursor

concurrency

Cursor

scrollable

forward-onlya unspecified non-updatable read-only

concurrency

non-scrollable

static insensitive non-updatable read-only

concurrency

scrollable

keyset-driven sensitive updatable values

concurrency

scrollable

dynamicb sensitive updatable values

concurrency

scrollable

v a Forward-only is the default behavior for a scrollable cursor without the FOR UPDATE

clause. Specifying FOR UPDATE on a forward-only cursor creates an updatable, lock

concurrency, non-scrollable cursor.

v b Values concurrency is the default behavior, however, DB2 on Linux, UNIX and

Windows will also support lock concurrency, which will result with pessimistic locking.

Update of keyset-driven cursors

A keyset-driven cursor is an updatable cursor. The CLI driver appends the FOR

UPDATE clause to the query, except when the query is issued as a SELECT ... FOR

READ ONLY query, or if the FOR UPDATE clause already exists. The default

keyset-driven cursor is a values concurrency cursor. A values concurrency cursor

results in optimistic locking, where locks are not held until an update or delete is

attempted. If lock concurrency has been explicitly asked for, then pessimistic

locking will be used and locks will be held as soon as the row is read. This level of

locking is only supported against DB2 on Linux, UNIX and Windows servers.

When an update or delete is attempted, the database server compares the previous

values the application retrieved to the current values in the underlying table. If the

values match, then the update or delete succeeds. If the values do not match, then

the operation fails. If failure occurs, the application should query the values again

and re-issue the update or delete if it is still applicable.

An application can update a keyset-driven cursor in two ways:

v Issue an UPDATE WHERE CURRENT OF <cursor name> or DELETE WHERE CURRENT OF

<cursor name> using SQLPrepare() with SQLExecute() or SQLExecDirect()

v Use SQLSetPos() or SQLBulkOperations() to update, delete, or add a row to the

result set.

Chapter 5. Processing transactions 77

Note: Rows added to a result set via SQLSetPos() or SQLBulkOperations() are

inserted into the table on the server, but are not added to the server’s result set.

Therefore, these rows are not updatable nor are they sensitive to changes made

by other transactions. The inserted rows will appear, however, to be part of the

result set, since they are cached on the client. Any triggers that apply to the

inserted rows will appear to the application as if they have not been applied. To

make the inserted rows updatable, sensitive, and to see the result of applicable

triggers, the application must issue the query again to regenerate the result set.

Cursor considerations for CLI applications

Which cursor type to use

The first decision to make is between a forward-only cursor and a scrollable cursor.

A forward-only cursor incurs less overhead than a scrollable cursor, and scrollable

cursors have the potential for decreased concurrency. If your application does not

need the additional features of a scrollable cursor, then you should use a

non-scrollable cursor.

If a scrollable cursor is required then you have to decide between a static cursor, a

keyset-driven cursor, or a dynamic cursor. A static cursor involves the least

overhead. If the application does not need the additional features of a

keyset-driven or dynamic cursor then a static cursor should be used.

Note: Currently, dynamic cursors are only supported when accessing servers that

are DB2 for z/OS Version 8.1 and later.

If the application needs to detect changes to the underlying data or needs to add,

update, or delete data from the cursor, then the application must use either a

keyset-driven or dynamic cursor. To perform updates and deletions on rows in a

dynamic scrollable cursor’s result set, the UPDATE or DELETE statement must

include all the columns of at least one unique key in the base table. This can be the

primary key or any other unique key. Because dynamic cursors incur more

overhead and might have less concurrency than keyset-driven cursors, only choose

dynamic cursors if the application needs to detect both changes made and rows

inserted by other cursors.

If an application requests a scrollable cursor that can detect changes without

specifying a particular cursor type, then DB2 CLI will assume that a dynamic

cursor is not needed and provide a keyset-driven cursor. This behavior avoids the

increased overhead and reduced concurrency that is incurred with dynamic

cursors.

To determine the attributes of the types of cursors supported by the driver and

DBMS, the application should call SQLGetInfo() with an InfoType of:

v SQL_DYNAMIC_CURSOR_ATTRIBUTES1

v SQL_DYNAMIC_CURSOR_ATTRIBUTES2

v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1

v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2

v SQL_KEYSET_CURSOR_ATTRIBUTES1

v SQL_KEYSET_CURSOR_ATTRIBUTES2

v SQL_STATIC_CURSOR_ATTRIBUTES1

v SQL_STATIC_CURSOR_ATTRIBUTES2

78 Call Level Interface Guide and Reference, Volume 1

Unit of work considerations

A cursor can be closed either explicitly or implicitly. An application can explicitly

close a cursor by calling SQLCloseCursor(). Any further attempts to manipulate the

cursor will result in error, unless the cursor is opened again. The implicit closure of

a cursor depends on a several factors including how the cursor was declared and

whether or not a COMMIT or ROLLBACK occurs.

By default, the DB2 CLI driver declares all cursors as WITH HOLD. This means

that any open cursor will persist across COMMITs, thereby requiring the

application to explicitly close each cursor. Be aware, however, that if a cursor is

closed in autocommit mode, then any other open cursors that are not defined with

the WITH HOLD option will be closed and all remaining open cursors will become

unpositioned. (This means that no positioned updates or deletes can be performed

without issuing another fetch.) There are two ways to change whether a cursor is

declared WITH HOLD:

v Set the statement attribute SQL_ATTR_CURSOR_HOLD to

SQL_CURSOR_HOLD_ON (default) or SQL_CURSOR_HOLD_OFF. This setting

only affects cursors opened on the statement handle after this value has been set.

It will not affect cursors already open.

v Set the CLI/ODBC configuration keyword CursorHold to change the default

DB2 CLI driver behavior. Setting CursorHold=1 preserves the default behavior

of cursors declared as WITH HOLD, and CursorHold=0 results in cursors being

closed when each transaction is committed. You can override this keyword by

setting the SQL_ATTR_CURSOR_HOLD statement attribute described above.

Note: A ROLLBACK will close all cursors, including those declared WITH HOLD.

Troubleshooting for applications created before scrollable cursor

support

Because scrollable cursor support is a newer feature, some CLI/ODBC applications

that were working with previous releases of DB2 for OS/390 or DB2 for Linux,

UNIX and Windows might encounter behavioral or performance changes. This

occurs because before scrollable cursors were supported, applications that

requested a scrollable cursor would receive a forward-only cursor. To restore an

application’s previous behavior before scrollable cursor support, set the following

configuration keywords in the db2cli.ini file:

 Table 7. Configuration keyword values restoring application behavior before scrollable cursor

support

Configuration keyword

setting

Description

Patch2=6 Returns a message that scrollable cursors (keyset-driven,

dynamic and static) are not supported. CLI automatically

downgrades any request for a scrollable cursor to a

forward-only cursor.

DisableKeysetCursor=1 Disables keyset-driven scrollable cursors. This can be used

to force the CLI driver to give the application a static

cursor when a keyset-driven or dynamic cursor is

requested.

Chapter 5. Processing transactions 79

Result set terminology in CLI applications

The following terms describe result handling:

result set

The complete set of rows that satisfy the SQL SELECT statement. This is

the set from which fetches retrieve rows to populate the rowset.

rowset

The subset of rows from the result set that is returned after each fetch. The

application indicates the size of the rowset before the first fetch of data,

and can modify the size before each subsequent fetch. Each call to

SQLFetch(), SQLFetchScroll(), or SQLExtendedFetch() populates the rowset

with the appropriate rows from the result set.

bookmark

It is possible to store a reference to a specific row in the result set called a

bookmark. Once stored, the application can continue to move through the

result set, then return to the bookmarked row to generate a rowset. You

can also use a bookmark to perform updates and deletions with

SQLBulkOperations().

keyset A set of key values used to identify the set and order of rows that are

included in a keyset-driven cursor. The keyset is created when a

keyset-driven cursor is first opened. As the cursor scrolls through the result

set, it uses the keys in the keyset to retrieve the current data values for

each row.

The following figure demonstrates the relationship between the terms described

above:

80 Call Level Interface Guide and Reference, Volume 1

bookmark 2

bookmark 1

key 1row 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

KEYSETRESULT SET

key 2

key 3ROWSET size = 3

key 4

key 5

key 6

.

.

.

.

.

.

key 7

key 8

key 9

key 10

key 11

key 12

key 13

key 14

key 15

key 16

Rows added after
the keyset-driven
cursor was opened
become part of the
result set.

all rows that satisfy
the SELECT
statement

Bookmarks in CLI applications

When scrollable cursors are used, you can save a reference to any row in the result

set using a bookmark. The application can then use that bookmark as a relative

position to retrieve a rowset of information, or to update or delete a row when

using keyset cursors. You can retrieve a rowset starting from the bookmarked row,

or specify a positive or negative offset.

Once you have positioned the cursor to a row in a rowset using SQLSetPos(), you

can obtain the bookmark value starting from column 0 using SQLGetData(). In

most cases you will not want to bind column 0 and retrieve the bookmark value

for every row, but use SQLGetData() to retrieve the bookmark value for the specific

row you require.

A bookmark is only valid within the result set in which it was created. The

bookmark value will be different if you select the same row from the same result

set in two different cursors.

The only valid comparison is a byte-by-byte comparison between two bookmark

values obtained from the same result set. If they are the same then they both point

to the same row. Any other mathematical calculations or comparisons between

bookmarks will not provide any useful information. This includes comparing

bookmark values within a result set, and between result sets.

Chapter 5. Processing transactions 81

Rowset retrieval examples in CLI applications

Partial rowset example

When working with rowsets, you should verify what portion of the result set

returned contains meaningful data. The application cannot assume that the entire

rowset will contain data. It must check the row status array after each rowset is

created to determine the number of rows returned, because there are instances

where the rowset will not contain a complete set of rows. For instance, consider

the case where the rowset size is set to 10, and SQLFetchScroll() is called using

SQL_FETCH_ABSOLUTE and FetchOffset is set to -3. This will attempt to return 10

rows starting 3 rows from the end of the result set. Only the first three rows of the

rowset will contain meaningful data, however, and the application must ignore the

rest of the rows.

Fetch orientations example

The following figure demonstrates a number of calls to SQLFetchScroll() using

various FetchOrientation values. The result set includes all of the rows (from 1 to n),

and the rowset size is 3. The order of the calls is indicated on the left, and the

FetchOrientation values are indicated on the right.

} Result Set

} Rowset
(FetchOffset = -3)

}}Valid rows

Invalid rows

n
n-1
n-2

row 1
2

3

Figure 5. Partial rowset example

82 Call Level Interface Guide and Reference, Volume 1

Retrieving query results in CLI applications

Retrieving query results is part of the larger task of processing transactions in CLI

applications. Retrieving query results involves binding application variables to

columns of a result set and then fetching the rows of data into the application

variables. A typical query is the SELECT statement.

Before you retrieve results, ensure you have initialized your application and

prepared and executed the necessary SQL statements.

To retrieve each row of the result set:

1. Optional: Determine the structure of the result set, number of columns, and

column types and lengths by calling SQLNumResultCols() and

SQLDescribeCol().

Note: Performing this step can reduce performance if done before the query

has been executed, because it forces CLI to describe the query’s columns.

Information about the result set’s columns is available after successful

execution, and describing the result set does not incur any additional overhead

if the describe is performed after successful execution.

2. Bind an application variable to each column of the result set, by calling

SQLBindCol(), ensuring that the variable type matches the column type. For

example:

 struct

 {

 SQLINTEGER ind;

 SQLSMALLINT val;

 }

n
n-1

n-2

row 1
2

3

n-1

2.

3.

4.

5.

1.

SQL_FETCH_FIRST

SQL_FETCH_NEXT

SQL_FETCH_RELATIVE

SQL_FETCH_ABSOLUTE

SQL_FETCH_LAST

(FetchOffset = -1)

(FetchOffset = 11)

Figure 6. Example of retrieving rowsets

Chapter 5. Processing transactions 83

deptnumb; /* variable to be bound to the DEPTNUMB column */

 struct

 {

 SQLINTEGER ind;

 SQLCHAR val[15];

 }

 location; /* variable to be bound to the LOCATION column */

 /* ... */

 /* bind column 1 to variable */

 cliRC = SQLBindCol(hstmt, 1, SQL_C_SHORT, &deptnumb.val, 0,

 &deptnumb.ind);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 /* bind column 2 to variable */

 cliRC = SQLBindCol(hstmt, 2, SQL_C_CHAR, location.val, 15,

 &location.ind);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

The application can use the information obtained in step 1 to determine an

appropriate C data type for the application variable and to allocate the

maximum storage the column value could occupy. The columns are bound to

deferred output arguments, which means the data is written to these storage

locations when it is fetched.

Important: Do not de-allocate or discard variables used for deferred output

arguments between the time the application binds them to columns of the

result set and the time DB2 CLI writes to these arguments.

3. Repeatedly fetch the row of data from the result set by calling SQLFetch() until

SQL_NO_DATA_FOUND is returned. For example:

 /* fetch each row and display */

 cliRC = SQLFetch(hstmt);

 if (cliRC == SQL_NO_DATA_FOUND)

 {

 printf("\n Data not found.\n");

 }

 while (cliRC != SQL_NO_DATA_FOUND)

 {

 printf(" %-8d %-14.14s \n", deptnumb.val, location.val);

 /* fetch next row */

 cliRC = SQLFetch(hstmt);

 }

SQLFetchScroll() can also be used to fetch multiple rows of the result set into

an array.

If data conversion was required for the data types specified on the call to

SQLBindCol(), the conversion will occur when SQLFetch() is called.

4. Optional: Retrieve columns that were not previously bound by calling

SQLGetData() after each successful fetch. You can retrieve all unbound columns

this way. For example:

 /* fetch each row and display */

 cliRC = SQLFetch(hstmt);

 if (cliRC == SQL_NO_DATA_FOUND)

 {

 printf("\n Data not found.\n");

 }

 while (cliRC != SQL_NO_DATA_FOUND)

 {

84 Call Level Interface Guide and Reference, Volume 1

/* use SQLGetData() to get the results */

 /* get data from column 1 */

 cliRC = SQLGetData(hstmt,

 1,

 SQL_C_SHORT,

 &deptnumb.val,

 0,

 &deptnumb.ind);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 /* get data from column 2 */

 cliRC = SQLGetData(hstmt,

 2,

 SQL_C_CHAR,

 location.val,

 15,

 &location.ind);

 /* display the data */

 printf(" %-8d %-14.14s \n", deptnumb.val, location.val);

 /* fetch the next row */

 cliRC = SQLFetch(hstmt);

 }

Note: Applications perform better if columns are bound, rather than having

them retrieved as unbound columns using SQLGetData(). However, an

application may be constrained in the amount of long data it can retrieve and

handle at one time. If this is a concern, then SQLGetData() may be the better

choice.

Column binding in CLI applications

Columns may be bound to:

v Application storage

SQLBindCol() is used to bind application storage to the column. Data will be

transferred from the server to the application at fetch time. Length of the

available data to return is also set.

v LOB locators

SQLBindCol() is used to bind LOB locators to the column. Only the LOB locator

(4 bytes) will be transferred from the server to the application at fetch time.

If a CLI application does not provide an output buffer for a LOB column using

the function SQLBindCol() the DB2 Client will, by default, request a LOB locator

on behalf of the application for each LOB column in the result sets.

Once an application receives a locator it can be used in SQLGetSubString(),

SQLGetPosition(), SQLGetLength(), or as the value of a parameter marker in

another SQL statement. SQLGetSubString() can either return another locator, or

the data itself. All locators remain valid until the end of the transaction in which

they were created (even when the cursor moves to another row), or until it is

freed using the FREE LOCATOR statement.

v Lob file references

SQLBindFileToCol() is used to bind a file to a LOB or XML column. DB2 CLI

will write the data directly to a file, and update the StringLength and

IndicatorValue buffers specified on SQLBindFileToCol().

If the data value for the column is NULL and SQLBindFileToCol() was used,

then IndicatorValue will be set to SQL_NULL_DATA and StringLength to 0.

Chapter 5. Processing transactions 85

The number of columns in a result set can be determined by calling

SQLNumResultCols() or by calling SQLColAttribute() with the DescType argument

set to SQL_COLUMN_COUNT.

The application can query the attributes (such as data type and length) of the

column by first calling SQLDescribeCol() or SQLColAttribute(). This information

can then be used to allocate a storage location of the correct data type and length,

to indicate data conversion to another data type, or in the case of LOB data types,

optionally return a locator.

An application can choose not to bind every column, or even not to bind any

columns. Data in any of the columns can also be retrieved using SQLGetData()

after the bound columns have been fetched for the current row. It is usually more

efficient to bind application variables or file references to result sets than to use

SQLGetData(). When the data is in a LOB column, LOB functions are preferable to

SQLGetData() . Use SQLGetData() when the data value is large variable-length data

that:

v must be received in pieces, or

v may not need to be retrieved.

Instead of multiple calls to SQLBindCol(), DB2 CLI also supports column binding

offsets. Rather than re-binding each time, an offset can be used to specify new

buffer and length/indicator addresses which will be used in a subsequent call to

SQLFetch() or SQLFetchScroll(). This can only be used with row wise binding, but

will work whether the application retrieves a single row or multiple rows at a

time.

When binding any variable length column, DB2 CLI will be able to write

StrLen_or_IndPtr and TargetValuePtr in one operation if they are allocated

contiguously. For example:

 struct { SQLINTEGER StrLen_or_IndPtr;

 SQLCHAR TargetValuePtr[MAX_BUFFER];

 } column;

The most recent bind column function call determines the type of binding that is in

effect.

Specifying the rowset returned from the result set

Before you begin to retrieve data, you need to establish the rowset that will be

returned. This topic describes the steps associated with setting up the rowset.

Before specifying the rowset, ensure that you have initialized your CLI application.

DB2 CLI allows an application to specify a rowset for a non-scrollable or scrollable

cursor that spans more than one row at a time. To effectively work with a rowset,

an application should perform the following:

1. Specify the size of the rowset returned from calls to SQLFetch() or

SQLFetchScroll() by setting the statement attribute

SQL_ATTR_ROW_ARRAY_SIZE to the number of rows in the rowset. The

default number of rows is 1. For example, to declare a rowset size of 35 rows,

issue the following call:

86 Call Level Interface Guide and Reference, Volume 1

#define ROWSET_SIZE 35

 /* ... */

 rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

 (SQLPOINTER) ROWSET_SIZE,

 0);

2. Set up a variable that will store the number of rows returned. Declare a

variable of type SQLUINTEGER and set the

SQL_ATTR_ROWS_FETCHED_PTR statement attribute to point to this variable.

In the following example, rowsFetchedNb will hold the number of rows returned

in the rowset after each call to SQLFetchScroll():

 /* ... */

 SQLUINTEGER rowsFetchedNb;

 /* ... */

 rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROWS_FETCHED_PTR,

 &rowsFetchedNb,

 0);

3. Set up the row status array. Declare an array of type SQLUSMALLINT with the

same number of rows as the size of the rowset (as determined in Step 1). Then

specify the address of this array with the statement attribute

SQL_ATTR_ROW_STATUS_PTR. For example:

 /* ... */

 SQLUSMALLINT row_status[ROWSET_SIZE];

 /* ... */

 /* Set a pointer to the array to use for the row status */

 rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_STATUS_PTR,

 (SQLPOINTER) row_status,

 0);

The row status array provides additional information about each row in the

rowset. After each call to SQLFetch() or SQLFetchScroll(), the array is updated.

If the call to SQLFetch() or SQLFetchScroll() does not return SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO, then the contents of the row status array are

undefined. Otherwise, any of the row status array values will be returned (refer

to the row status array section of the SQLFetchScroll() documentation for a

complete list of values).

4. Position the rowset within the result set, indicating the position you want the

rowset to begin. Specify this position by calling SQLFetch(), or

SQLFetchScroll() with FetchOrientation and FetchOffset values. For example, the

following call generates a rowset starting on the 11th row in the result set:

 SQLFetchScroll(hstmt, /* Statement handle */

 SQL_FETCH_ABSOLUTE, /* FetchOrientation value */

 11); /* Offset value */

Scroll bar operations of a screen-based application can be mapped directly to

the positioning of a rowset. By setting the rowset size to the number of lines

displayed on the screen, the application can map the movement of the scroll

bar to calls to SQLFetchScroll().

Note: If the application can buffer data in the display and regenerate the result

set to see updates, then use a forward-only cursor instead. This yields better

performance for small result sets.

Chapter 5. Processing transactions 87

Rowset retrieved FetchOrientation value Scroll bar

First rowset SQL_FETCH_FIRST Home: Scroll bar at

the top

Last rowset SQL_FETCH_LAST End: Scroll bar at the

bottom

Next rowset SQL_FETCH_NEXT (same as calling

SQLFetch())

Page Down

Previous rowset SQL_FETCH_PRIOR Page Up

Rowset starting on

next row

SQL_FETCH_RELATIVE with FetchOffset set

to 1

Line Down

Rowset starting on

previous row

SQL_FETCH_RELATIVE with FetchOffset set

to -1

Line Up

Rowset starting on a

specific row

SQL_FETCH_ABSOLUTE with FetchOffset

set to an offset from the start (a positive

value) or the end (a negative value) of the

result set

Application generated

Rowset starting on a

previously

bookmarked row

SQL_FETCH_BOOKMARK with FetchOffset

set to a positive or negative offset from the

bookmarked row

Application generated

5. Check the rows fetched pointer after each rowset is created to determine the

number of rows returned. Check the row status array for the status of each

row, because there are instances where the rowset will not contain a complete

set of rows. The application cannot assume that the entire rowset will contain

data.

For instance, consider the case where the rowset size is set to 10, and

SQLFetchScroll() is called using SQL_FETCH_ABSOLUTE and FetchOffset is

set to -3. This will attempt to return 10 rows starting 3 rows from the end of

the result set. Only the first three rows of the rowset will contain meaningful

data, however, and the application must ignore the rest of the rows.

Retrieving data with scrollable cursors in a CLI application

Scrollable cursors allow you to move throughout a result set. You can make use of

this feature when retrieving data. This topic describes how to use scrollable cursors

to retrieve data.

Before you retrieve data using scrollable cursors, ensure that you have initialized

your CLI application.

To use scrollable cursors to retrieve data:

 1. Specify the size of the rowset returned by setting the statement attribute

SQL_ATTR_ROW_ARRAY_SIZE to the number of rows in the rowset. The

default number of rows is 1. For example, to declare a rowset size of 35 rows,

issue the following call:

 #define ROWSET_SIZE 35

 /* ... */

 rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROW_ARRAY_SIZE,

 (SQLPOINTER) ROWSET_SIZE,

 0);

88 Call Level Interface Guide and Reference, Volume 1

2. Specify the type of scrollable cursor to use. Using SQLSetStmtAttr(), set the

SQL_ATTR_CURSOR_TYPE statement attribute to SQL_CURSOR_STATIC for

a static read-only cursor or to SQL_CURSOR_KEYSET_DRIVEN for a

keyset-driven cursor. For example:

 sqlrc = SQLSetStmtAttr (hstmt,

 SQL_ATTR_CURSOR_TYPE,

 (SQLPOINTER) SQL_CURSOR_STATIC,

 0);

If the type of cursor is not set, the default forward-only non-scrollable cursor

will be used.

 3. Set up a variable that will store the number of rows returned. Declare a

variable of type SQLUINTEGER and set the

SQL_ATTR_ROWS_FETCHED_PTR statement attribute to point to this

variable. In the following example, rowsFetchedNb will hold the number of

rows returned in the rowset after each call to SQLFetchScroll():

 /* ... */

 SQLUINTEGER rowsFetchedNb;

 /* ... */

 rc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_ROWS_FETCHED_PTR,

 &rowsFetchedNb,

 0);

 4. Set up the row status array. Declare an array of type SQLUSMALLINT with

the same number of rows as the size of the rowset (as determined in Step 1).

Then specify the address of this array with the statement attribute

SQL_ATTR_ROW_STATUS_PTR. For example:

 /* ... */

 SQLUSMALLINT row_status[ROWSET_SIZE];

 /* ... */

 /* Set a pointer to the array to use for the row status */

 rc = SQLSetStmtAttr(

 hstmt,

 SQL_ATTR_ROW_STATUS_PTR,

 (SQLPOINTER) row_status,

 0);

The row status array provides additional information about each row in the

rowset. After each call to SQLFetchScroll(), the array is updated. If the call to

SQLFetchScroll() does not return SQL_SUCCESS or

SQL_SUCCESS_WITH_INFO, then the contents of the row status array are

undefined. Otherwise, any of the row status array values will be returned

(refer to the row status array section of the SQLFetchScroll() documentation

for a complete list of values).

 5. Optional: If you want to use bookmarks with the scrollable cursor, set the

SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE.

For example:

 sqlrc = SQLSetStmtAttr (hstmt,

 SQL_ATTR_USE_BOOKMARKS,

 (SQLPOINTER) SQL_UB_VARIABLE,

 0);

 6. Issue an SQL SELECT statement.

 7. Execute the SQL SELECT statement.

 8. Bind the result set using either column-wise or row-wise binding.

 9. Fetch a rowset of rows from the result set. o

Chapter 5. Processing transactions 89

a. Call SQLFetchScroll() to fetch a rowset of data from the result set.

Position the rowset within the result set indicating the position you want

the rowset to begin. Specify this position by calling SQLFetchScroll() with

FetchOrientation and FetchOffset values. For example, the following call

generates a rowset starting on the 11th row in the result set:

 SQLFetchScroll(hstmt, /* Statement handle */

 SQL_FETCH_ABSOLUTE, /* FetchOrientation value */

 11); /* Offset value */

b. Check the row status array after each rowset is created to determine the

number of rows returned, because there are instances where the rowset

will not contain a complete set of rows. The application cannot assume

that the entire rowset will contain data.

For instance, consider the case where the rowset size is set to 10, and

SQLFetchScroll() is called using SQL_FETCH_ABSOLUTE and FetchOffset

is set to -3. This will attempt to return 10 rows starting 3 rows from the

end of the result set. Only the first three rows of the rowset will contain

meaningful data, however, and the application must ignore the rest of the

rows.

c. Display or manipulate the data in the rows returned.
10. Close the cursor by calling SQLCloseCursor() or free the statement handle by

calling SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT.

Freeing the statement handles is not required every time retrieval has finished.

The statement handles can be freed at a later time, when the application is

freeing other handles.

Retrieving data with bookmarks in a CLI application

Bookmarks, available only when scrollable cursors are used, allow you to save a

reference to any row in a result set. You can take advantage of this feature when

retrieving data. This topic describes how to retrieve data using bookmarks.

Before you retrieve data with bookmarks, ensure that you have initialized your

CLI application. The steps explained here should be performed in addition to those

described in ″Retrieving Data with Scrollable Cursors in a CLI Application″.

To use bookmarks with scrollable cursors to retrieve data:

1. Indicate that bookmarks will be used (if not already done so) by setting the

SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE. For

example:

 sqlrc = SQLSetStmtAttr (hstmt,

 SQL_ATTR_USE_BOOKMARKS,

 (SQLPOINTER) SQL_UB_VARIABLE,

 0);

2. Get the bookmark value from the desired row in the rowset after executing the

SELECT statement and retrieving the rowset using SQLFetchScroll(). Do this by

calling SQLSetPos() to position the cursor within the rowset. Then call

SQLGetData() to retrieve the bookmark value. For example:

 sqlrc = SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 15);

 /* ... */

 sqlrc = SQLSetPos(hstmt, 3, SQL_POSITION, SQL_LOCK_NO_CHANGE);

 /* ... */

 sqlrc = SQLGetData(hstmt, 0, SQL_C_LONG, bookmark.val, 4,

 &bookmark.ind);

In most cases, you will not want to bind column 0 and retrieve the bookmark

value for every row, but use SQLGetData() to retrieve the bookmark value for

the specific row you require.

90 Call Level Interface Guide and Reference, Volume 1

3. Store the bookmark location for the next call to SQLFetchScroll(). Set the

SQL_ATTR_FETCH_BOOKMARK statement attribute to the variable that

contains the bookmark value. For example, continuing from the example above,

bookmark.val stores the bookmark value, so call SQLSetStmtAttr() as follows:

 sqlrc = SQLSetStmtAttr(hstmt,

 SQL_ATTR_FETCH_BOOKMARK_PTR,

 (SQLPOINTER) bookmark.val,

 0);

4. Retrieve a rowset based on the bookmark. Once the bookmark value is stored,

the application can continue to use SQLFetchScroll() to retrieve data from the

result set. The application can then move throughout the result set, but still

retrieve a rowset based on the location of the bookmarked row at any point

before the cursor is closed.

The following call to SQLFetchScroll() retrieves a rowset starting from the

bookmarked row:

 sqlrc = SQLFetchScroll(hstmt, SQL_FETCH_BOOKMARK, 0);

The value 0 specifies the offset. You would specify -3 to begin the rowset 3

rows before the bookmarked row, or specify 4 to begin 4 rows after. For

example, the following call from retrieves a rowset 4 rows after the

bookmarked row:

 sqlrc = SQLFetchScroll(hstmt, SQL_FETCH_BOOKMARK, 4);

Note that the variable used to store the bookmark value is not specified in the

SQLFetchScroll() call. It was set in the previous step using the statement

attribute SQL_ATTR_FETCH_BOOKMARK_PTR.

Retrieving bulk data with bookmarks using SQLBulkOperations()

in CLI applications

You can retrieve, or fetch, bulk data using bookmarks and the DB2 CLI

SQLBulkOperations() function.

Before fetching bulk data using bookmarks and SQLBulkOperations(), ensure you

have initialized your CLI application.

Bookmarks in DB2 CLI do not persist across cursor close operations. This means

that an application cannot use bookmarks that it has stored from a previous cursor.

Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks

before updating with bookmarks.

To perform bulk fetches using bookmarks with SQLBulkOperations():

1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().

2. Execute a query that returns a result set.

3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to fetch by calling SQLSetStmtAttr().

4. Call SQLBindCol() to bind the data you want to fetch.

The data is bound to an array with a size equal to the value of

SQL_ATTR_ROW_ARRAY_SIZE.

5. Call SQLBindCol() to bind column 0, the bookmark column.

6. Copy the bookmarks for rows you want to fetch into the array bound to

column 0.

Chapter 5. Processing transactions 91

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR

statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE,

or the SQL_ATTR_ROW_STATUS_PTR statement attribute should be a null

pointer.

7. Fetch the data by calling SQLBulkOperations() with an Operation argument of

SQL_FETCH_BY_BOOKMARK.

If the application has set the SQL_ATTR_ROW_STATUS_PTR statement

attribute, then it can inspect this array to see the result of the operation.

Result set retrieval into arrays in CLI applications

One of the most common tasks performed by an application is to issue a query

statement, and then fetch each row of the result set into application variables that

have been bound using SQLBindCol(). If the application requires that each column

or each row of the result set be stored in an array, each fetch must be followed by

either a data copy operation or a new set of SQLBindCol() calls to assign new

storage areas for the next fetch.

Alternatively, applications can eliminate the overhead of extra data copies or extra

SQLBindCol() calls by retrieving multiple rows of data (called a rowset) at one time

into an array.

Note: A third method of reducing overhead, which can be used on its own or with

arrays, is to specify a binding offset. Rather than re-binding each time, an offset

can be used to specify new buffer and length/indicator addresses which will be

used in a subsequent call to SQLFetch() or SQLFetchScroll(). This can only be

used with row offset binding.

When retrieving a result set into an array, SQLBindCol() is also used to assign

storage for application array variables. By default, the binding of rows is in

column-wise fashion: this is similar to using SQLBindParameter() to bind arrays of

input parameter values. Figure 7 is a logical view of column-wise binding.

 The application can also do row-wise binding which associates an entire row of the

result set with a structure. In this case the rowset is retrieved into an array of

structures, each of which holds the data in one row and the associated length

Result Set

Fetch Scroll, Column-Wise Binding

Column:
A
B
C

Data Type:
INTEGER
CHAR(3)

CHAR(10)

Column A

SQLCHAR B[n][4]
SQLINTEGER Lb[n]

SQLCHAR C[n][11]
SQLINTEGER Lc[n]

SQLINTEGER A[n]
SQLINTEGER La[n]

Column B Column C
Data Data DataLength Length Length

AbcdeXYZ10

10 4 3 5XYZ Abcde

}1

2

3

...

A CB

n

...

1

2

3

...

n

... ...

1

2

3

...

n

... ...

1

2

3

...

n

... ...

Figure 7. Column-wise binding

92 Call Level Interface Guide and Reference, Volume 1

fields. Figure 8 gives a pictorial view of row-wise binding.

Retrieving array data in CLI applications using column-wise

binding

When retrieving data, you may want to retrieve more than one row at a time and

store the data in an array. Instead of fetching and copying each row of data into an

array, or binding to new storage areas, you can retrieve multiple rows of data at

once using column-wise binding. Column-wise binding is the default row-binding

method whereby each data value and its length is stored in an array.

Before using column-wise binding to retrieve data into arrays, ensure you have

initialized your CLI application.

To retrieve data using column-wise binding:

1. Allocate an array of the appropriate data type for each column data value. This

array will hold the retrieved data value.

2. Allocate an array of SQLINTEGER for each column. Each array will store the

length of each column’s data value.

3. Specify that column-wise array retrieval will be used by setting the

SQL_ATTR_ROW_BIND_TYPE statement attribute to

SQL_BIND_BY_COLUMN using SQLSetStmtAttr().

4. Specify the number of rows that will be retrieved by setting the

SQL_ATTR_ROW_ARRAY_SIZE statement attribute using SQLSetStmtAttr().

When the value of the SQL_ATTR_ROW_ARRAY_SIZE attribute is greater than

1, DB2 CLI treats the deferred output data pointer and length pointer as

pointers to arrays of data and length rather than to one single element of data

and length of a result set column.

5. Prepare and execute the SQL statement used to retrieve the data.

6. Bind each array to its column by calling SQLBindCol() for each column.

7. Retrieve the data by calling SQLFetch() or SQLFetchScroll().

When returning data, DB2 CLI uses the maximum buffer size argument

(BufferLength) of SQLBindCol() to determine where to store successive rows of

data in the array. The number of bytes available for return for each element is

stored in the deferred length array. If the number of rows in the result set is

Result Set
Fetch Scroll, Row-Wise Binding

Column:
A
B
C

Data Type:
INTEGER
CHAR(3)

CHAR(10)

Column A

SQLCHAR B[4];SQLINTEGER Lb;
SQLCHAR C[11];

} buffer[n];
SQLINTEGER Lc;

SQLINTEGER A;struct { SQLINTEGER La;

Column B Column C

AbcdeXYZ10

104 3 5XYZ Abcde

}
1

2

3

...

n

1

2

3

...
n

A CB

...

......

Figure 8. Row-wise binding

Chapter 5. Processing transactions 93

greater than the SQL_ATTR_ROW_ARRAY_SIZE attribute value, multiple calls

to SQLFetchScroll() are required to retrieve all the rows.

Retrieving array data in CLI applications using row-wise binding

When retrieving data, you may want to retrieve more than one row at a time and

store the data in an array. Instead of fetching and copying each row of data into an

array, or binding to new storage areas, you can retrieve multiple rows of data

using row-wise binding. Row-wise binding associates an entire row of the result

set with a structure. The rowset is retrieved into an array of structures, each of

which holds the data in one row and the associated length fields.

Before using row-wise binding to retrieve data into arrays, ensure you have

initialized your CLI application.

To retrieve data using row-wise binding:

1. Allocate an array of structures of size equal to the number of rows to be

retrieved, where each element of the structure is composed of each row’s data

value and each data value’s length.

For example, if each row of the result set consisted of Column A of type

INTEGER, Column B of type CHAR(3), and Column C of type CHAR(10), then

you would allocate the following structure, where n represents the number of

rows in the result set:

struct { SQLINTEGER La; SQLINTEGER A;

 SQLINTEGER Lb; SQLCHAR B[4];

 SQLINTEGER Lc; SQLCHAR C[11];

 } buffer[n];

2. Specify that row-wise array retrieval will be used by setting the

SQL_ATTR_ROW_BIND_TYPE statement attribute, using SQLSetStmtAttr() to

the size of the structure to which the result columns will be bound.

3. Specify the number of rows that will be retrieved by setting the

SQL_ATTR_ROW_ARRAY_SIZE statement attribute using SQLSetStmtAttr().

4. Prepare and execute the SQL statement used to retrieve the data.

5. Bind each structure to the row by calling SQLBindCol() for each column of the

row.

DB2 CLI treats the deferred output data pointer of SQLBindCol() as the address

of the data field for the column in the first element of the array of structures.

The deferred output length pointer is treated as the address of the associated

length field of the column.

6. Retrieve the data by calling SQLFetchScroll().

When returning data, DB2 CLI uses the structure size provided with the

SQL_ATTR_ROW_BIND_TYPE statement attribute to determine where to store

successive rows in the array of structures.

Changing column bindings in a CLI application with column

binding offsets

When an application needs to change bindings (for a subsequent fetch, for

example) it can call SQLBindCol() a second time. This will change the buffer

address and length/indicator pointer used. Instead of multiple calls to

SQLBindCol(), DB2 CLI supports column binding offsets. Rather than re-binding

each time, an offset can be used to specify new buffer and length/indicator

addresses which will be used in a subsequent call to SQLFetch() or

SQLFetchScroll().

94 Call Level Interface Guide and Reference, Volume 1

Before using column binding offsets to change result set bindings, ensure you have

initialized your CLI application.

This method can only be used with row-wise binding, but will work whether the

application retrieves a single row or multiple rows at a time.

To change result set bindings using column binding offsets:

1. Call SQLBindCol() as usual to bind the result set. The first set of bound data

buffer and length/indicator buffer addresses will act as a template. The

application will then move this template to different memory locations using

the offset.

2. Call SQLFetch() or SQLFetchScroll() as usual to fetch the data. The data

returned will be stored in the locations bound above.

3. Set up a variable to hold the memory offset value.

The statement attribute SQL_ATTR_ROW_BIND_OFFSET_PTR points to the

address of an SQLINTEGER buffer where the offset will be stored. This address

must remain valid until the cursor is closed.

This extra level of indirection enables the use of a single memory variable to

store the offset for multiple sets of bindings on different statement handles. The

application need only set this one memory variable and all of the offsets will be

changed.

4. Store an offset value (number of bytes) in the memory location pointed to by

the statement attribute set in the previous step.

The offset value is always added to the memory location of the originally

bound values. This sum must point to a valid memory address with sufficient

space to hold the next set of data.

5. Call SQLFetch() or SQLFetchScroll() again. CLI will add the offset specified

above to the locations used in the original call to SQLBindCol(). This will

determine where in memory to store the results.

6. Repeat steps 4 and 5 above as required.

Data retrieval in pieces in CLI applications

Typically, an application might choose to allocate the maximum memory the

column value could occupy and bind it via SQLBindCol(), based on information

about a column in the result set (obtained via a call to SQLDescribeCol(), for

example, or prior knowledge). However, in the case of character and binary data,

the column can be arbitrarily long. If the length of the column value exceeds the

length of the buffer the application can allocate or afford to allocate, a feature of

SQLGetData() lets the application use repeated calls to obtain in sequence the value

of a single column in more manageable pieces.

A call to SQLGetData() (which is called after SQLFetch()) returns

SQL_SUCCESS_WITH_INFO (with SQLSTATE 01004) to indicate more data exists

for this column. SQLGetData() is called repeatedly to get the remaining pieces of

data until it returns SQL_SUCCESS, signifying that the entire data has been

retrieved for this column.

For example:

 /* dtlob.c */

 /* ... */

 sqlrc = SQLGetData(hstmt, 1, SQL_C_BINARY, (SQLPOINTER) buffer,

 BUFSIZ, &bufInd);

 /* ... */

 while(sqlrc == SQL_SUCCESS_WITH_INFO || sqlrc == SQL_SUCCESS)

Chapter 5. Processing transactions 95

{ if (bufInd > BUFSIZ) /* full buffer */

 { fwrite(buffer, sizeof(char), BUFSIZ, pFile);

 }

 else /* partial buffer on last GetData */

 { fwrite(buffer, sizeof(char), bufInd, pFile);

 }

 sqlrc = SQLGetData(hstmt, 1, SQL_C_BINARY, (SQLPOINTER)buffer,

 BUFSIZ, &bufInd);

 /* ... */

 }

The function SQLGetSubString() can also be used to retrieve a specific portion of a

large object value. For other alternative methods to retrieve long data, refer to the

documentation on large object usage.

Fetching LOB data with LOB locators in CLI applications

The following are typical steps for fetching LOB data using a LOB locator. The

examples shown in each step illustrate how using a locator to retrieve CLOB data

allows a character string to be extracted from the CLOB, without having to transfer

the entire CLOB to an application buffer. The LOB locator is fetched and then used

as an input parameter to search the CLOB for a substring. This substring is then

retrieved.

Before fetching LOB data with LOB locators, ensure you have initialized your CLI

application.

To fetch LOB data using LOB locators:

1. Retrieve a LOB locator into an application variable using the SQLBindCol() or

SQLGetData() functions. For example:

 SQLINTEGER clobLoc ;

 SQLINTEGER pcbValue ;

 /* ... */

 sqlrc = SQLBindCol(hstmtClobFetch, 1, SQL_C_CLOB_LOCATOR,

 &clobLoc, 0, &pcbValue);

2. Fetch the locator using SQLFetch():

 sqlrc = SQLFetch(hstmtClobFetch);

3. Call SQLGetLength() to get the length of a string that is represented by a LOB

locator. For example:

 sqlrc = SQLGetLength(hstmtLocUse, SQL_C_CLOB_LOCATOR,

 clobLoc, &clobLen, &ind) ;

4. Call SQLGetPosition() to get the position of a search string within a source

string where the source string is represented by a LOB locator. The search

string can also be represented by a LOB locator. For example:

 sqlrc = SQLGetPosition(hstmtLocUse,

 SQL_C_CLOB_LOCATOR,

 clobLoc,

 0,

 (SQLCHAR *) "Interests",

 strlen("Interests"),

 1,

 &clobPiecePos,

 &ind) ;

5. Call SQLGetSubString() to retrieve the substring. For example:

 sqlrc = SQLGetSubString(hstmtLocUse,

 SQL_C_CLOB_LOCATOR,

 clobLoc,

96 Call Level Interface Guide and Reference, Volume 1

clobPiecePos,

 clobLen - clobPiecePos,

 SQL_C_CHAR,

 buffer,

 clobLen - clobPiecePos + 1,

 &clobPieceLen,

 &ind) ;

6. Free the locator. All LOB locators are implicitly freed when a transaction ends.

The locator can be explicitly freed before the end of a transaction by executing

the FREE LOCATOR statement.

Although this statement cannot be prepared dynamically, DB2 CLI will accept it

as a valid statement on SQLPrepare() and SQLExecDirect(). The application

uses SQLBindParameter() with the SQL data type argument set to the

appropriate SQL and C symbolic data types. For example,

 sqlrc = SQLSetParam(hstmtLocFree,

 1,

 SQL_C_CLOB_LOCATOR,

 SQL_CLOB_LOCATOR,

 0,

 0,

 &clobLoc,

 NULL) ;

 /* ... */

 sqlrc = SQLExecDirect(hstmtLocFree, stmtLocFree, SQL_NTS) ;

XML data retrieval in CLI applications

When you select data from XML columns in a table, the output data is in the

serialized string format.

For XML data, when you use SQLBindCol() to bind columns in a query result set to

application variables, you can specify the data type of the application variables as

SQL_C_BINARY, SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR. When

retrieving a result set from an XML column, it is recommended that you bind your

application variable to the SQL_C_BINARY type. Binding to character types can

result in possible data loss resulting from code page conversion. Data loss can

occur when characters in the source code page cannot be represented in the target

code page. Binding your variable to the SQL_C_BINARY C type avoids these

issues.

XML data is returned to the application as internally encoded data. DB2 CLI

determines the encoding of the data as follows:

v If the C type is SQL_C_BINARY, DB2 CLI returns the data in the UTF-8

encoding scheme.

v If the C type is SQL_C_CHAR or SQL_C_DBCHAR, DB2 CLI returns the data in

the application code page encoding scheme.

v If the C type is SQL_C_WCHAR, DB2 CLI returns the data in the UCS-2

encoding scheme.

The database server performs an implicit serialization of the data before returning

it to the application. You can explicitly serialize the XML data to a specific data

type by calling the XMLSERIALIZE function. Implicit serialization is

recommended, however, because explicitly serializing to character types with

XMLSERIALIZE can introduce encoding issues.

The following example shows how to retrieve XML data from an XML column into

a binary application variable.

Chapter 5. Processing transactions 97

char xmlBuffer[10240];

// xmlBuffer is used to hold the retrieved XML document

integer length;

// Assume a table named dept has been created with the following statement:

// CREATE TABLE dept (id CHAR(8), deptdoc XML)

length = sizeof (xmlBuffer);

SQLExecute (hStmt, "SELECT deptdoc FROM dept WHERE id=’001’", SQL_NTS);

SQLBindCol (hStmt, 1, SQL_C_BINARY, xmlBuffer, &length, NULL);

SQLFetch (hStmt);

SQLCloseCursor (hStmt);

// xmlBuffer now contains a valid XML document encoded in UTF-8

Inserting data

Inserting bulk data with bookmarks using

SQLBulkOperations() in CLI applications

You can insert data in bulk with bookmarks using SQLBulkOperations().

Before inserting bulk data with SQLBulkOperations(), ensure you have initialized

your CLI application.

Bookmarks in DB2 CLI do not persist across cursor close operations. This means

that an application cannot use bookmarks that it has stored from a previous cursor.

Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks

before updating with bookmarks.

To perform a bulk data insert using SQLBulkOperations():

1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().

2. Execute a query that returns a result set.

3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to insert using SQLSetStmtAttr().

4. Call SQLBindCol() to bind the data you want to insert.

The data is bound to an array with a size equal to the value of

SQL_ATTR_ROW_ARRAY_SIZE, set in the previous step.

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR

statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE

or SQL_ATTR_ROW_STATUS_PTR should be a null pointer.

5. Insert the data by calling SQLBulkOperations() with SQL_ADD as the Operation

argument.

CLI will update the bound column 0 buffers with the bookmark values for the

newly inserted rows. For this to occur, the application must have set the

SQL_ATTR_USE_BOOKMARKS statement attribute to SQL_UB_VARIABLE

before executing the statement.

Note: If SQLBulkOperations() is called with an Operation argument of

SQL_ADD on a cursor that contains duplicate columns, an error is returned.

Importing data with the CLI LOAD utility in CLI applications

The CLI LOAD functionality provides an interface to the IBM DB2 LOAD utility

from CLI. This functionality allows you to insert data in CLI using LOAD instead

98 Call Level Interface Guide and Reference, Volume 1

of array insert. This option can yield significant performance benefits when large

amounts of data need to be inserted. Because this interface invokes LOAD, the

same consideration given for using LOAD should also be taken into account when

using the CLI LOAD interface.

Before importing data with the CLI LOAD utility, ensure you have initialized your

CLI application.

v Unlike the IBM DB2 LOAD utility, the CLI LOAD utility does not load data

directly from an input file. Instead, if desired, the application should retrieve the

data from the input file and insert it into the appropriate application parameters

that correspond to the parameter markers in the prepared statement.

v If the prepared SQL statement for inserting data contains a SELECT clause,

parameter markers are not supported.

v The prepared SQL statement for inserting data must include parameter markers

for all columns in the target table, unless a fullselect is used instead of the

VALUES clause in the INSERT statement.

v The insertion of data is non-atomic because the load utility precludes atomicity.

LOAD might not be able to successfully insert all the rows passed to it. For

example, if a unique key constraint is violated by a row being inserted, LOAD

will not insert this row but will continue loading the remaining rows.

v A COMMIT will be issued by LOAD. Therefore, if the insertion of the data

completes successfully, the LOAD and any other statements within the

transaction cannot be rolled back.

v The error reporting for the CLI LOAD interface differs from that of array insert.

Non-severe errors or warnings, such as errors with specific rows, will only

appear in the LOAD message file.

To import data using the CLI LOAD utility:

1. Specify the statement attribute SQL_ATTR_USE_LOAD_API in

SQLSetStmtAttr() with one of the following supported values:

SQL_USE_LOAD_INSERT

Use the LOAD utility to append to existing data in the table.

SQL_USE_LOAD_REPLACE

Use the LOAD utility to replace existing data in the table.
For example, the following call indicates that the CLI LOAD utility will be used

to add to the existing data in the table:

SQLSetStmtAttr (hStmt, SQL_ATTR_USE_LOAD_API,

 (SQLPOINTER) SQL_USE_LOAD_INSERT, 0);

Note: When SQL_USE_LOAD_INSERT or SQL_USE_LOAD_REPLACE is set,

no other CLI functions except for the following can be called until

SQL_USE_LOAD_OFF is set (see Step 3 below):

v SQLBindParameter()

v SQLExecute()

v SQLExtendedBind()

v SQLParamOptions()

v SQLSetStmtAttr()
2. Create a structure of type db2LoadStruct and specify the desired load options

through this structure. Set the SQL_ATTR_LOAD_INFO statement attribute to a

pointer to this structure.

Chapter 5. Processing transactions 99

3. Issue SQLExecute() on the prepared SQL statement for the data to be inserted.

The INSERT SQL statement can be a fullselect which allows data to be loaded

from a table using the SELECT statement. With a single execution of the

INSERT statement, all of the data from the SELECT is loaded. The following

example shows how a fullselect statement loads data from one table into

another:

SQLPrepare (hStmt,

 (SQLCHAR *) "INSERT INTO tableB SELECT * FROM tableA",

 SQL_NTS);

SQLExecute (hStmt);

4. Call SQLSetStmtAttr() with SQL_USE_LOAD_OFF. This ends the processing of

data using the LOAD utility. Subsequently, regular CLI array insert will be in

effect until SQL_ATTR_USE_LOAD_API is set again (see Step 1).

5. Optional: Query the results of the completed CLI LOAD operation by calling

SQLGetStmtAttr() with any of the following statement attributes:

v SQL_ATTR_LOAD_ROWS_COMMITTED_PTR: A pointer to an integer that

represents the total number of rows processed. This value equals the number

of rows successfully loaded and committed to the database, plus the number

of skipped and rejected rows.

v SQL_ATTR_LOAD_ROWS_DELETED_PTR: A pointer to an integer that

represents the number of duplicate rows deleted.

v SQL_ATTR_LOAD_ROWS_LOADED_PTR: A pointer to an integer that

represents the number of rows loaded into the target table.

v SQL_ATTR_LOAD_ROWS_READ_PTR: A pointer to an integer that

represents the number of rows read.

v SQL_ATTR_LOAD_ROWS_REJECTED_PTR: A pointer to an integer that

represents the number of rows that could not be loaded.

v SQL_ATTR_LOAD_ROWS_SKIPPED_PTR: A pointer to an integer that

represents the number of rows skipped before the CLI LOAD operation

began.

XML column inserts and updates in CLI applications

When you update or insert data into XML columns of a table, the input data must

be in the serialized string format.

For XML data, when you use SQLBindParameter() to bind parameter markers to

input data buffers, you can specify the data type of the input data buffer as

SQL_C_BINARY, SQL_C_CHAR, SQL_C_DBCHAR or SQL_C_WCHAR.

When you bind a data buffer that contains XML data as SQL_C_BINARY, DB2 CLI

processes the XML data as internally encoded data. This is the preferred method

because it avoids the overhead and potential data loss of character conversion

when character types are used.

Important: If the XML data is encoded in an encoding scheme and CCSID other

than the application code page encoding scheme, you need to include internal

encoding in the data and bind the data as SQL_C_BINARY to avoid character

conversion.

When you bind a data buffer that contains XML data as SQL_C_CHAR,

SQL_C_DBCHAR or SQL_C_WCHAR, DB2 CLI processes the XML data as

externally encoded data. DB2 CLI determines the encoding of the data as follows:

v If the C type is SQL_C_WCHAR, DB2 CLI assumes that the data is encoded as

UCS-2.

100 Call Level Interface Guide and Reference, Volume 1

v If the C type is SQL_C_CHAR or SQL_C_DBCHAR, DB2 CLI assumes that the

data is encoded in the application code page encoding scheme.

If you want the database server to implicitly parse the data before storing it in an

XML column, the parameter marker data type in SQLBindParameter() should be

specified as SQL_XML.

Implicit parsing is recommended, because explicit parsing of a character type with

XMLPARSE can introduce encoding issues.

The following example shows how to update XML data in an XML column using

the recommended SQL_C_BINARY type.

char xmlBuffer[10240];

integer length;

// Assume a table named dept has been created with the following statement:

// CREATE TABLE dept (id CHAR(8), deptdoc XML)

// xmlBuffer contains an internally encoded XML document that is to replace

// the existing XML document

length = strlen (xmlBuffer);

SQLPrepare (hStmt, "UPDATE dept SET deptdoc = ? WHERE id = ’001’", SQL_NTS);

SQLBindParameter (hStmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_XML, 0, 0,

 xmlBuffer, 10240, &length);

SQLExecute (hStmt);

Updating and deleting data in CLI applications

Updating and deleting data is part of the larger task of processing transactions in

CLI. There are two types of update and delete operations available in CLI

programming: simple and positioned. A simple update or delete operation only

requires that you issue and execute the UPDATE or DELETE SQL statements as

you would any other SQL statement. You could, in this case, use SQLRowCount() to

obtain the number of rows affected by the SQL statement. Positioned updates and

deletes involve modifying the data of a result set. A positioned update is the

update of a column of a result set, and a positioned delete is when a row of a

result set is deleted. Positioned update and delete operations require cursors to be

used. This document describes how to perform positioned update and delete

operations by first getting the name of the cursor associated with the result set,

and then issuing and executing the UPDATE or DELETE on a second statement

handle using the retrieved cursor name.

Before you perform a positioned update or delete operation, ensure that you have

initialized your CLI application.

To perform a positioned update or delete operation:

1. Generate the result set that the update or delete will be performed on by

issuing and executing the SELECT SQL statement.

2. Call SQLGetCursorName() to get the name of the cursor, using the same

statement handle as the handle that executed the SELECT statement. This

cursor name will be needed in the UPDATE or DELETE statement.

When a statement handle is allocated, a cursor name is automatically

generated. You can define your own cursor name using SQLSetCursorName(),

but it is recommended that you use the name that is generated by default

because all error messages will reference the generated name, not the name

defined using SQLSetCursorName().

Chapter 5. Processing transactions 101

3. Allocate a second statement handle that will be used to execute the positioned

update or delete.

To update a row that has been fetched, the application uses two statement

handles, one for the fetch and one for the update. You cannot reuse the fetch

statement handle to execute the positioned update or delete, because it is still

in use when the positioned update or delete is executing.

4. Fetch data from the result set by calling SQLFetch() or SQLFetchScroll().

5. Issue the UPDATE or DELETE SQL statement with the WHERE CURRENT of

clause and specify the cursor name obtained in step 2. For example:

 sprintf((char *)stmtPositionedUpdate,

 "UPDATE org SET location = ’Toronto’ WHERE CURRENT of %s",

 cursorName);

6. Position the cursor on the row of the data fetched and execute the positioned

update or delete statement.

Updating bulk data with bookmarks using

SQLBulkOperations() in CLI applications

You can update data in bulk with bookmarks using SQLBulkOperations().

Before updating data in bulk, ensure you have initialized your CLI application.

Bookmarks in DB2 CLI do not persist across cursor close operations. This means

that an application cannot use bookmarks that it has stored from a previous cursor.

Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks

before updating with bookmarks.

To update data in bulk:

1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().

2. Execute a query that returns a result set.

3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to update using SQLSetStmtAttr().

4. Call SQLBindCol() to bind the data you want to update.

The data is bound to an array with a size equal to the value of

SQL_ATTR_ROW_ARRAY_SIZE, set in the previous step.

5. Bind the bookmark column to column 0 by calling SQLBindCol().

6. Copy the bookmarks for rows that you want to update into the array bound to

column 0.

7. Update the data in the bound buffers.

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR

statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE

or SQL_ATTR_ROW_STATUS_PTR should be a null pointer.

8. Update the data by calling SQLBulkOperations() with an Operation argument of

SQL_UPDATE_BY_BOOKMARK.

Note: If the application has set the SQL_ATTR_ROW_STATUS_PTR statement

attribute, then it can inspect this array to see the result of the operation.

9. Optional: Verify that the update has occurred by calling SQLBulkOperations()

with an Operation argument of SQL_FETCH_BY_BOOKMARK. This will fetch

the data into the bound application buffers.

102 Call Level Interface Guide and Reference, Volume 1

If data has been updated, CLI changes the value in the row status array for the

appropriate rows to SQL_ROW_UPDATED.

Note: If SQLBulkOperations() is called with an Operation argument of

SQL_UPDATE_BY_BOOKMARK on a cursor that contains duplicate columns,

an error is returned.

Deleting bulk data with bookmarks using

SQLBulkOperations() in CLI applications

You can use SQLBulkOperations() and bookmarks to delete data in bulk.

Before deleting data in bulk, ensure you have initialized your CLI application.

Bookmarks in DB2 CLI do not persist across cursor close operations. This means

that an application cannot use bookmarks that it has stored from a previous cursor.

Instead, it has to call SQLFetch() or SQLFetchScroll() to retrieve the bookmarks

before updating by bookmarks.

To perform bulk deletions using bookmarks and SQLBulkOperations():

1. Set the SQL_ATTR_USE_BOOKMARKS statement attribute to

SQL_UB_VARIABLE using SQLSetStmtAttr().

2. Execute a query that returns a result set.

3. Set the SQL_ATTR_ROW_ARRAY_SIZE statement attribute to the number of

rows you want to delete.

4. Bind the bookmark column to column 0 by calling SQLBindCol().

5. Copy the bookmarks for the rows you want to delete into the array bound to

column 0.

Note: The size of the array pointed to by the SQL_ATTR_ROW_STATUS_PTR

statement attribute should either be equal to SQL_ATTR_ROW_ARRAY_SIZE,

or the SQL_ATTR_ROW_STATUS_PTR statement attribute should be a null

pointer.

6. Perform the deletion by calling SQLBulkOperations() with an Operation

argument of SQL_DELETE_BY_BOOKMARK.

If the application has set the SQL_ATTR_ROW_STATUS_PTR statement

attribute, then it can inspect this array to see the result of the operation.

Calling stored procedures from CLI applications

CLI applications invoke stored procedures by executing the CALL procedure SQL

statement. This topic describes how to call stored procedures from CLI

applications.

Before calling a stored procedure, ensure that you have initialized your CLI

application.

If the stored procedure being called is uncataloged, ensure that it does not call any

of the CLI schema functions. Calling CLI schema functions from uncataloged

stored procedures is not supported.

The CLI schema functions are: SQLColumns(), SQLColumnPrivileges(),

SQLForeignKeys(), SQLPrimaryKeys(), SQLProcedureColumns(), SQLProcedures(),

SQLSpecialColumns(), SQLStatistics(), SQLTables(), and SQLTablePrivileges().

Chapter 5. Processing transactions 103

To call a stored procedure:

1. Declare application host variables corresponding to each of the IN, INOUT, and

OUT parameters of the stored procedure. Ensure the application variable data

types and lengths match the data types and lengths of the arguments in the

stored procedure signature. DB2 CLI supports calling stored procedures with

all SQL types as parameter markers.

2. Initialize the IN, INOUT, and OUT parameter application variables.

3. Issue the CALL SQL statement. For example:

 SQLCHAR *stmt = (SQLCHAR *)"CALL OUT_LANGUAGE (?)";

For optimal performance, applications should use parameter markers for stored

procedure arguments in the CALL procedure string and then bind the host

variables to those parameter markers. If inbound stored procedure arguments

must be specified as string literals rather than parameter markers, however,

include the ODBC call escape clause delimiters { } in the CALL procedure

statement. For example:

 SQLCHAR *stmt = (SQLCHAR *)"{CALL IN_PARAM (123, ’Hello World!’)}";

When string literals and the ODBC escape clause are used in a CALL procedure

statement, the string literals can only be specified as IN mode stored procedure

arguments. INOUT and OUT mode stored procedure arguments must still be

specified using parameter markers.

4. Optional: Prepare the CALL statement by calling SQLPrepare().

5. Bind each parameter of the CALL procedure statement by calling

SQLBindParameter().

Note: Ensure each parameter is bound correctly (to SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT), otherwise

unexpected results could occur when the CALL procedure statement is

executed. This would happen, for example, if an input parameter was

incorrectly bound with an InputOutputType of SQL_PARAM_OUTPUT.

6. Execute the CALL procedure statement using SQLExecDirect(), or if the CALL

procedure statement was prepared in step 4, SQLExecute().

Note: If an application or thread that has invoked a stored procedure is

terminated before the stored procedure completes, execution of the stored

procedure will also be terminated. It is important that a stored procedure

contain logic to ensure that the database is in both a consistent and desirable

state if the stored procedure is terminated prematurely.

7. Check the return code of SQLExecDirect() or SQLExecute() when the function

has returned to determine if any errors occurred during execution of either the

CALL procedure statement or the stored procedure. If the return code is

SQL_SUCCESS_WITH_INFO or SQL_ERROR, use the CLI diagnostic functions

SQLGetDiagRec() and SQLGetDiagField() to determine why the error occurred.

If a stored procedure has executed successfully, any variables bound as OUT

parameters may contain data that the stored procedure has passed back to the

CLI application. If applicable, the stored procedure may also return one or

more result sets through non-scrollable cursors. CLI applications should process

stored procedure result sets as they would process result sets generated by

executing SELECT statements.

Note: If a CLI application is unsure of the number or type of parameters in a

result set returned by a stored procedure, the SQLNumResultCols(),

104 Call Level Interface Guide and Reference, Volume 1

SQLDescribeCol(), and SQLColAttribute() functions can be called (in this

order) on the result set to determine this information.

Once you have executed the CALL statement, you can retrieve result sets from the

stored procedure if applicable.

Note:

The numeric month and day parts of a DATETYPE data type value will appear to

be reversed in procedure result sets that are returned to DB2 CLI applications if

the values are not returned in ISO format. For example, this can happen if a local

format is used instead. To ensure that DATETYPE data type value information is

correctly intepreted by a client application, the procedures should be bound to the

database with a locale-independent DATETIME format such as ISO. For example:

v

db2set DB2_SQLROUTINE_PREPOPTS=“DATETIME ISO”

Note:

DB2 CLI packages are automatically bound to databases when the databases are

created or migrated.

DB2 CLI stored procedure commit behavior

The commit behavior of SQL statements, both in a DB2 CLI client application and

in the called stored procedure running on a DB2 server, depends on the commit

combinations applied in the application and the stored procedure.

The possible combinations and the resulting commit behavior are described in the

following table.

 Table 8. DB2 CLI Stored procedure commit behavior

CLI client Stored

procedure

Commit behavior

autocommit on autocommit on All successfully executed SQL statements in the stored procedure are committed,

even if other SQL statements in the stored procedure fail and an error or

warning SQLCODE is returned to the CALL statement.

autocommit on autocommit off If the stored procedure returns an SQLCODE >= 0, all successfully executed SQL

statements in the stored procedure are committed. Otherwise, all SQL statements

in the stored procedure are rolled back.

autocommit on manual commit All successfully executed SQL statements in the stored procedure that are

manually committed will not be rolled back, even if an error SQLCODE is

returned to the CALL statement.

Note: If the stored procedure returns an SQLCODE >= 0, any successfully

executed SQL statements in the stored procedure that occur after the last manual

commit will be committed; otherwise, they will be rolled back to the manual

commit point.

autocommit off autocommit on All successfully executed SQL statements in the stored procedure are committed

and will not be rolled back, even if an error SQLCODE is returned to the CALL

statement. In addition, all uncommitted and successfully executed SQL

statements in the CLI client application up to and including the CALL statement

are committed.

Note: Exercise caution when using this commit combination in a multi-SQL

statement client-side transaction, because the transaction cannot be fully rolled

back after the CALL statement has been issued.

Chapter 5. Processing transactions 105

Table 8. DB2 CLI Stored procedure commit behavior (continued)

CLI client Stored

procedure

Commit behavior

autocommit off autocommit off If the stored procedure returns an SQLCODE >= 0, all successfully executed SQL

statements in the stored procedure will be committed when the transaction that

includes the CALL statement is committed. Otherwise, all SQL statements in the

stored procedure will be rolled back when the transaction that includes the

CALL statement is rolled back.

autocommit off manual commit All successfully executed SQL statements in the stored procedure that are

manually committed will not be rolled back, even if an error SQLCODE is

returned to the CALL statement. In addition, all uncommitted and successfully

executed SQL statements in the CLI client application up to the CALL statement

are committed.

Note: If the stored procedure returns an SQLCODE >= 0, any successfully

executed SQL statements within the stored procedure that occur after the last

manual commit will be committed; otherwise, they will be rolled back to the

manual commit point.

Note: Exercise caution when using this commit combination in a multi-SQL

statement client-side transaction, because the transaction cannot be fully rolled

back after the CALL statement has been issued.

Creating static SQL with CLI/ODBC/JDBC Static Profiling

The CLI/ODBC/JDBC Static Profiling feature enables an application’s end users to

replace the use of dynamic SQL with static SQL, potentially resulting in runtime

performance improvement and better security from the package-based

authorization mechanism.

v When executing an application with pre-bound static SQL statements, dynamic

registers that control the dynamic statement behavior will have no effect on the

statements that are converted to static.

v If an application issues DDL (data definition language) statements for objects

that are referenced in subsequent DML (data manipulation language) statements,

you will find all of these statements in the capture file. The CLI/ODBC/JDBC

Static Profiling Bind Tool, db2cap, will attempt to bind them. The bind attempt

will be successful with DBMSs that support the VALIDATE(RUN) bind option,

but it will fail with ones that do not. In this case, the application should not use

Static Profiling.

v The database administrator (DBA) may edit the capture file to add, change, or

remove SQL statements, based on application-specific requirements.

Before running the application during the profiling session, ensure that the

following conditions have been noted:

v An SQL statement must have successfully executed (generated a positive

SQLCODE) for it to be captured in a profiling session. In a statement matching

session, unmatched dynamic statements will continue to execute as dynamic

CLI/ODBC/JDBC calls.

v An SQL statement must be identical character-by-character to the one that was

captured and bound to be a valid candidate for statement matching. Spaces are

significant: for example, ″COL = 1″ is considered different than ″COL=1″. Use

parameter markers in place of literals to improve match hits.

Be aware that there are times when not all dynamic CLI/ODBC calls can be

captured and grouped into a static package. Possible reasons are:

106 Call Level Interface Guide and Reference, Volume 1

v The application does not regularly free environment handles. During a capture

session, statements captured under a particular environment handle are only

written to the capture file or files when that environment handle is freed.

v The application has complex control flows that make it difficult to cover all

runtime conditions in a single application run.

v The application executes SET statements to change register variables. These

statements are not recorded. Note that there is a limited capability in match

mode to detect dynamic SET SQLID and SET SCHEMA statements, and suspend

executing static statements accordingly. However, for other SET statements,

subsequent SQL statements which depend on the register variables being set

may not behave properly.

v The application issues DML (Data Manipulation Language) statements.

Depending on application complexities and the nature of these statements,

either: (1) they may not be matched, or (2) they may not execute properly at

runtime.

Since dynamic and static SQL are quite different, the DBA should always verify the

behaviour of the application in static match mode before making it available to end

users. Furthermore, while static SQL may offer improved runtime performance

over dynamic SQL, this is not necessarily true for all statements. If testing shows

that static execution decreases performance for a particular statement, the DBA can

force that statement to be dynamically executed by removing the statement from

the capture file. In addition, static SQL, unlike dynamic SQL, may require

occasional rebinding of packages to maintain performance, particularly if the

database objects referred to in the packages frequently change. If CLI/ODBC/JDBC

Static Profiling does not fit the type of application you are running, there are other

programming methods which allow you to obtain the benefits of static SQL, such

as embedded SQL and stored procedures.

To create static SQL statements from existing dynamic SQL statements, perform the

following steps:

1. Profile the application by capturing all the dynamic SQL statements issued by

the application. This process is known as running the application in static

capture mode. To turn on static capture mode, set the following CLI/ODBC

configuration keywords for the CLI/ODBC/JDBC data source in the db2cli.ini

configuration file, before running the application:

v StaticMode = CAPTURE

v StaticPackage = qualified package name

v StaticCapFile = capture file name

For example:

[DSN1]

StaticMode = CAPTURE

StaticPackage = MySchema.MyPkg

StaticCapFile = E:\Shared\MyApp.cpt

 Attention: For the StaticPackage keyword, ensure that you specify a schema

name (MySchema in the sample above). If a schema is not specified, the name

you provide will be considered to be the container name instead of the package

name, and the package name will be blank.

The resulting static profile takes the form of a text-based capture file, containing

information about the SQL statements captured.

The above example file yields the following results: Data Source Name 1

(DSN1) is set to capture mode; the package will be named MySchema.MyPkg; and

the capture file, MyApp.cpt, will be saved in the E:\Shared\ directory. Until the

Chapter 5. Processing transactions 107

StaticMode keyword is changed to a value other than CAPTURE, such as

DISABLED which is used to turn off static capture mode, each subsequent run of

this application will capture SQL statements and append them to the capture

file MyApp.cpt. Only unique SQL statements will be captured however, as

duplicate executions are ignored.

2. Optional: Set the CLI/ODBC configuration keyword StaticLogFile to generate a

CLI/ODBC/JDBC Static Profiling log file. It contains useful information to

determine the state of the statement capturing process.

3. Run the application. Unique SQL statements will now be captured in the

capture file. Duplicate statements are ignored.

4. Disable static capture mode by setting the CLI/ODBC configuration keyword

StaticMode to DISABLED, or remove the keywords set in the first step from the

db2cli.ini file.

5. Issue the db2cap command from the Command Line Processor. The db2cap

utility will generate a static package based on the capture file. If the db2cap

utility does not return a message indicating successful completion, then a

statement in the capture file could not be statically bound. The DBA should

remove the failing statement from the capture file and run the db2cap utility

again.

6. Distribute a copy of the capture file, processed with db2cap to each end user of

the application. If all users reside on the same client platform, an alternative is

to place a read-only copy of this capture file in a network directory accessible

to all users.

7. Enable your application for dynamic-to-static SQL statement mapping, known

as static match mode. Do this by setting the following configuration keywords:

v StaticMode = MATCH

v StaticCapFile = capture file name

For example:

[DSN1]

StaticMode = MATCH

StaticCapFile = E:\Shared\MyApp.cpt

8. Optional: Set the CLI/ODBC configuration keyword StaticLogFile keyword to

log useful information such as how many statements were matched (therefore

statically executed) and how many statements were unmatched (therefore

dynamically executed) during a match session. The DBA should use this

information to verify that static profiling in match mode is yielding an

acceptable match ratio before making static profiling available to end users.

9. Run the application.

Capture file for CLI/ODBC/JDBC Static Profiling

The capture file generated during static profiling is a text file. It contains the text of

SQL statements and other associated information obtained in static capture mode.

As well, it keeps track of a number of configurable bind options; some already

contain specific values obtained from the capture run, and some are left blank, in

which case the precompiler will use default values during package binding. Before

binding the package(s), the DBA may want to examine the capture file and make

necessary changes to these bind options using a text editor.

To help you understand how to edit SQL statements, here is the description of the

fields in a statement:

108 Call Level Interface Guide and Reference, Volume 1

Field Description

SQLID If present, indicates the SCHEMA or SQLID when the

statement was captured is different from the default

QUALIFIER of the package(s).

SECTNO Section number of the static package that the statement was

bound to.

ISOLATION Isolation level for the statement. It determines which one of

the five possible package the statement belongs to.

STMTTEXT Statement string

STMTTYPE There are 3 possible values:

v SELECT_CURSOR_WITHHOLD: SELECT statement

using a withhold cursor

v SELECT_CURSOR_NOHOLD: SELECT statement using a

nohold cursor

v OTHER: non-SELECT statements

CURSOR Cursor name declared for the SELECT statement

INVARnn Description of the n-th input variable

The 7 comma-separated fields refer to:

1. SQL data type

2. Length of the data. For decimal or floating point types,

this is the precision.

3. For decimal or floating point types only, this is the

scale.

4. TRUE if the character data is a for-bit-data type;

otherwise FALSE.

5. TRUE if the variable is nullable; otherwise FALSE.

6. Column name

7. SQL_NAMED if this variable refers to a real column

name; SQL_UNNAMED if the variable is a

system-generate name.

OUTVARn Description of the n-th output variable for the SELECT

statement. The comma-separated fields follow the same

convention as in INVARs.

Considerations for mixing embedded SQL and DB2 CLI

It is possible, and sometimes desirable, to use DB2 CLI in conjunction with

embedded static SQL in an application. Consider the scenario where the

application developer wishes to take advantage of the ease of use provided by the

DB2 CLI catalog functions and maximize the portion of the application’s

processing where performance is critical. In order to mix the use of DB2 CLI and

embedded SQL, the application must comply with the following rules:

v All connection management and transaction management must be performed

completely using either DB2 CLI or embedded SQL - never a mixture of the two.

Two options are available to the application:

– it performs all connects and commits/rollbacks using DB2 CLI calls, and then

calls functions written using embedded SQL;

– or it performs all connects and commits/rollbacks using embedded SQL, and

then calls functions that use DB2 CLI APIs, notably, a null connection.

Chapter 5. Processing transactions 109

v Query statement processing cannot straddle DB2 CLI and embedded SQL

interfaces for the same statement. For example, the application cannot open a

cursor using embedded SQL, and then call the DB2 CLI SQLFetch() function to

retrieve row data.

Since DB2 CLI permits multiple connections, the SQLSetConnection() function

must be called prior to executing any embedded SQL. This allows the application

to explicitly specify the connection under which the embedded SQL processing is

performed.

If the DB2 CLI application is multithreaded and also makes embedded SQL calls or

DB2 API calls, then each thread must have a DB2 context.

Freeing statement resources in CLI applications

After a transaction has completed, end the processing for each statement handle by

freeing the resources associated with it.

There are four main tasks that are involved with freeing resources for a statement

handle:

v close the open cursor

v unbind the column bindings

v unbind the parameter bindings

v free the statement handle

There are two ways you can free statement resources: using SQLFreeHandle() or

SQLFreeStmt().

Before you can free statement resources, you must have initialized your CLI

application and allocated a statement handle.

To free statement resources with SQLFreeHandle(), call SQLFreeHandle() with a

HandleType of SQL_HANDLE_STMT and the handle you want to free. This will

close any open cursor associated with this statement handle, unbind column and

parameter bindings, and free the statement handle. This invalidates the statement

handle. You do not need to explicitly carry out each of the four tasks listed above.

To free statement resources with SQLFreeStmt(), you need to call SQLFreeStmt() for

each task (depending on how the application was implemented, all of these tasks

may not be necessary):

v To close the open cursor, call SQLCloseCursor(), or call SQLFreeStmt() with the

SQL_CLOSE Option and statement handle as arguments. This closes the cursor

and discards any pending results.

v To unbind column bindings, call SQLFreeStmt() with an Option of SQL_UNBIND

and the statement handle. This unbinds all columns for this statement handle

except the bookmark column.

v To unbind parameter bindings, call SQLFreeStmt() with an Option of

SQL_RESET_PARAMS and the statement handle. This releases all parameter

bindings for this statement handle.

v To free the statement handle, call SQLFreeStmt() with an Option of SQL_DROP

and the statement handle to be freed. This invalidates this statement handle.

110 Call Level Interface Guide and Reference, Volume 1

Note: Although this option is still supported, we recommend that you use

SQLFreeHandle() in your DB2 CLI applications so that they conform to the latest

standards.

Handle freeing in CLI applications

Environment handle

Prior to calling SQLFreeHandle() with a HandleType of SQL_HANDLE_ENV, an

application must call SQLFreeHandle() with a HandleType of SQL_HANDLE_DBC

for all connections allocated under the environment. Otherwise, the call to

SQLFreeHandle() returns SQL_ERROR and the environment remains valid, as well

as any connection associated with that environment.

Connection handle

If a connection is open on the handle, an application must call SQLDisconnect() for

the connection prior to calling SQLFreeHandle() with a HandleType of

SQL_HANDLE_DBC. Otherwise, the call to SQLFreeHandle() returns SQL_ERROR

and the connection remains valid.

Statement handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT frees all

resources that were allocated by a call to SQLAllocHandle() with a HandleType of

SQL_HANDLE_STMT. When an application calls SQLFreeHandle() to free a

statement that has pending results, the pending results are discarded. When an

application frees a statement handle, DB2 CLI frees all the automatically generated

descriptors associated with that handle.

Note that SQLDisconnect() automatically drops any statements and descriptors

open on the connection.

Descriptor Handle

A call to SQLFreeHandle() with a HandleType of SQL_HANDLE_DESC frees the

descriptor handle in Handle. The call to SQLFreeHandle() does not release any

memory allocated by the application that may be referenced by the deferred fields

(SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and

SQL_DESC_OCTET_LENGTH_PTR) of any descriptor record of Handle. When an

explicitly allocated descriptor handle is freed, all statements that the freed handle

had been associated with revert to their automatically allocated descriptor handle.

Note that SQLDisconnect() automatically drops any statements and descriptors

open on the connection. When an application frees a statement handle, DB2 CLI

frees all the automatically generated descriptors associated with that handle.

Chapter 5. Processing transactions 111

112 Call Level Interface Guide and Reference, Volume 1

Chapter 6. Terminating a CLI application

After you have initialized your CLI application and processed transactions, you

must terminate the application to properly disconnect from the data source and

free resources.

Before terminating your application, you should have initialized your CLI

application and completed processing of all transactions.

To terminate a CLI application:

1. Disconnect from the data source by calling SQLDisconnect().

2. Free the connection handle by calling SQLFreeHandle() with a HandleType

argument of SQL_HANDLE_DBC.

If multiple database connections exist, repeat steps 1 - 2 until all connections

are closed and connection handles freed.

3. Free the environment handle by calling SQLFreeHandle() with a HandleType

argument of SQL_HANDLE_ENV.

© Copyright IBM Corp. 1993, 2007 113

114 Call Level Interface Guide and Reference, Volume 1

Chapter 7. Descriptors in CLI applications

DB2 CLI stores information (data types, size, pointers, and so on) about columns in

a result set, and parameters in an SQL statement. The bindings of application

buffers to columns and parameters must also be stored. Descriptors are a logical

view of this information, and provide a way for applications to query and update

this information.

Many CLI functions make use of descriptors, but the application itself does not

need to manipulate them directly.

For instance:

v When an application binds column data using SQLBindCol(), descriptor fields

are set that completely describe the binding.

v A number of statement attributes correspond to the header fields of a descriptor.

In this case you can achieve the same effect calling SQLSetStmtAttr() as calling

the corresponding function SQLSetDescField() that sets the values in the

descriptor directly.

Although no database operations require direct access to descriptors, there are

situations where working directly with the descriptors will be more efficient or

result in simpler code. For instance, a descriptor that describes a row fetched from

a table can then be used to describe a row inserted back into the table.

There are four types of descriptors:

Application Parameter Descriptor (APD)

Describes the application buffers (pointers, data types, scale, precision,

length, maximum buffer length, and so on) that are bound to parameters in

an SQL statement. If the parameters are part of a CALL statement they

may be input, output, or both. This information is described using the

application’s C data types.

Application Row Descriptor (ARD)

Describes the application buffers bound to the columns. The application

may specify different data types from those in the implementation row

descriptor (IRD) to achieve data conversion of column data. This descriptor

reflects any data conversion that the application may specify.

Implementation Parameter Descriptor (IPD)

Describes the parameters in the SQL statement (SQL type, size, precision,

and so on).

v If the parameter is used as input, this describes the SQL data that the

database server will receive after DB2 CLI has performed any required

conversion.

v If the parameter is used as output, this describes the SQL data before

DB2 CLI performs any required conversion to the application’s C data

types.

Implementation Row Descriptor (IRD)

Describes the row of data from the result set before DB2 CLI performs any

required data conversion to the application’s C data types.

© Copyright IBM Corp. 1993, 2007 115

The only difference between the four types of descriptors described above is how

they are used. One of the benefits of descriptors is that a single descriptor can be

used to serve multiple purposes. For instance, a row descriptor in one statement

can be used as a parameter descriptor in another statement.

As soon as a descriptor exists, it is either an application descriptor or an

implementation descriptor. This is the case even if the descriptor has not yet been

used in a database operation. If the descriptor is allocated by the application using

SQLAllocHandle() then it is an application descriptor.

Values stored in a descriptor

Each descriptor contains both header fields and record fields. These fields together

completely describe the column or parameter.

Header fields

Each header field occurs once in each descriptor. Changing one of these fields

affects all columns or parameters.

Many of the following header fields correspond to a statement attribute. Setting

the header field of the descriptor using SQLSetDescField() is the same as setting

the corresponding statement attribute using SQLSetStmtAttr(). The same holds

true for retrieving the information using SQLGetDescField() or SQLGetStmtAttr().

If your application does not already have a descriptor handle allocated then it is

more efficient to use the statement attribute calls instead of allocating the

descriptor handle, and then using the descriptor calls.

The following is a list of the header fields:

 SQL_DESC_ALLOC_TYPE

 SQL_DESC_BIND_TYPEa

 SQL_DESC_ARRAY_SIZEa

 SQL_DESC_COUNT

 SQL_DESC_ARRAY_STATUS_PTRa

 SQL_DESC_ROWS_PROCESSED_PTRa

 SQL_DESC_BIND_OFFSET_PTRa

Note:

a This header field corresponds to a statement attribute.

The descriptor header field SQL_DESC_COUNT is the one-based index of the

highest-numbered descriptor record that contains information (and not a count of

the number of columns or parameters). DB2 CLI automatically updates this field

(and the physical size of the descriptor) as columns or parameters are bound and

unbound. The initial value of SQL_DESC_COUNT is 0 when a descriptor is first

allocated.

Descriptor records

Zero or more descriptor records are contained in a single descriptor. As new

columns or parameters are bound, new descriptor records are added to the

descriptor. When a column or parameter is unbound, the descriptor record is

removed.

116 Call Level Interface Guide and Reference, Volume 1

The following is a list of the fields in a descriptor record. They describe a column

or parameter, and occur once in each descriptor record.

 SQL_DESC_AUTO_UNIQUE_VALUE

 SQL_DESC_LOCAL_TYPE_NAME

 SQL_DESC_BASE_COLUMN_NAME

 SQL_DESC_NAME

 SQL_DESC_BASE_TABLE_NAME

 SQL_DESC_NULLABLE

 SQL_DESC_CASE_SENSITIVE

 SQL_DESC_OCTET_LENGTH

 SQL_DESC_CATALOG_NAME

 SQL_DESC_OCTET_LENGTH_PTR

 SQL_DESC_CONCISE_TYPE

 SQL_DESC_PARAMETER_TYPE

 SQL_DESC_DATA_PTR

 SQL_DESC_PRECISION

 SQL_DESC_DATETIME_INTERVAL_CODE

 SQL_DESC_SCALE

 SQL_DESC_DATETIME_INTERVAL_PRECISION

 SQL_DESC_SCHEMA_NAME

 SQL_DESC_DISPLAY_SIZE

 SQL_DESC_SEARCHABLE

 SQL_DESC_FIXED_PREC_SCALE

 SQL_DESC_TABLE_NAME

 SQL_DESC_INDICATOR_PTR

 SQL_DESC_TYPE

 SQL_DESC_LABEL

 SQL_DESC_TYPE_NAME

 SQL_DESC_LENGTH

 SQL_DESC_UNNAMED

 SQL_DESC_LITERAL_PREFIX

 SQL_DESC_UNSIGNED

 SQL_DESC_LITERAL_SUFFIX

 SQL_DESC_UPDATABLE

 SQL_DESC_CARDINALITY

 SQL_DESC_CARDINALITY_PTR

Deferred fields

Deferred fields are created when the descriptor header or a descriptor record is

created. The addresses of the defined variables are stored but not used until a later

point in the application. The application must not deallocate or discard these

variables between the time it associates them with the fields and the time CLI

reads or writes them.

The following table lists the deferred fields and the meaning or a null pointer

where applicable:

Chapter 7. Descriptors 117

Table 9. Deferred fields

Field Meaning of Null value

SQL_DESC_DATA_PTR The record is unbound.

SQL_DESC_INDICATOR_PTR (none)

SQL_DESC_OCTET_LENGTH_PTR (ARD

and APD only)

v ARD: The length information for that

column is not returned.

v APD: If the parameter is a character string,

the driver assumes that string is

null-terminated. For output parameters, a

null value in this field prevents the driver

from returning length information. (If the

SQL_DESC_TYPE field does not indicate a

character-string parameter, the

SQL_DESC_OCTET_LENGTH_PTR field is

ignored.)

SQL_DESC_ARRAY_STATUS_PTR (multirow

fetch only)

A multirow fetch failed to return this

component of the per-row diagnostic

information.

SQL_DESC_ROWS_PROCESSED_PTR

(multirow fetch only)

(none)

SQL_DESC_CARDINALITY_PTR (none)

Bound descriptor records

The SQL_DESC_DATA_PTR field in each descriptor record points to a variable that

contains the parameter value (for APDs) or the column value (for ARDs). This is a

deferred field that defaults to null. Once the column or parameter is bound it

points to the parameter or column value. At this point the descriptor record is said

to be bound.

Application Parameter Descriptors (APD)

Each bound record constitutes a bound parameter. The application must

bind a parameter for each input and output parameter marker in the SQL

statement before the statement is executed.

Application Row Descriptors (ARD)

Each bound record relates to a bound column.

Consistency checks for descriptors in CLI applications

A consistency check is performed automatically whenever an application sets the

SQL_DESC_DATA_PTR field of the APD or ARD. The check ensures that various

fields are consistent with each other, and that appropriate data types have been

specified. Calling SQLSetDescRec() always prompts a consistency check. If any of

the fields is inconsistent with other fields, SQLSetDescRec() will return SQLSTATE

HY021, Inconsistent descriptor information.

To force a consistency check of IPD fields, the application can set the

SQL_DESC_DATA_PTR field of the IPD. This setting is only used to force the

consistency check. The value is not stored and cannot be retrieved by a call to

SQLGetDescField() or SQLGetDescRec().

A consistency check cannot be performed on an IRD.

118 Call Level Interface Guide and Reference, Volume 1

Application descriptors

Whenever an application sets the SQL_DESC_DATA_PTR field of an APD, ARD, or

IPD, DB2 CLI checks that the value of the SQL_DESC_TYPE field and the values

applicable to that SQL_DESC_TYPE field are valid and consistent. This check is

always performed when SQLBindParameter() or SQLBindCol() is called, or when

SQLSetDescRec() is called for an APD, ARD, or IPD. This consistency check

includes the following checks on application descriptor fields:

v The SQL_DESC_TYPE field must be one of the valid C or SQL types. The

SQL_DESC_CONCISE_TYPE field must be one of the valid C or SQL types.

v If the SQL_DESC_TYPE field indicates a numeric type, the

SQL_DESC_PRECISION and SQL_DESC_SCALE fields are verified to be valid.

v If the SQL_DESC_CONCISE_TYPE field is a time data type the

SQL_DESC_PRECISION field is verified to be a valid seconds precision.

The SQL_DESC_DATA_PTR field of an IPD is not normally set; however, an

application can do so to force a consistency check of IPD fields. A consistency

check cannot be performed on an IRD. The value that the SQL_DESC_DATA_PTR

field of the IPD is set to is not actually stored, and cannot be retrieved by a call to

SQLGetDescField() or SQLGetDescRec(); the setting is made only to force the

consistency check.

Descriptor allocation and freeing

Descriptors are allocated in one of two ways:

Implicitly allocated descriptors

When a statement handle is allocated, a set of four descriptors are

implicitly allocated. When the statement handle is freed, all implicitly

allocated descriptors on that handle are freed as well.

 To obtain handles to these implicitly allocated descriptors an application

can call SQLGetStmtAttr(), passing the statement handle and an Attribute

value of:

v SQL_ATTR_APP_PARAM_DESC (APD)

v SQL_ATTR_APP_ROW_DESC (ARD)

v SQL_ATTR_IMP_PARAM_DESC (IPD)

v SQL_ATTR_IMP_ROW_DESC (IRD)

For example, the following gives access to the statement’s implicitly

allocated implementation parameter descriptor:

 /* dbuse. c */

 /* ... */

 sqlrc = SQLGetStmtAttr (hstmt,

 SQL_ATTR_IMP_PARAM_DESC,

 &hIPD,

 SQL_IS_POINTER,

 NULL);

Note: The descriptors whose handles are obtained in this manner will still

be freed when the statement for which they were allocated is freed.

Explicitly allocated descriptors

An application can explicitly allocate application descriptors. It is not

possible, however, to allocate implementation descriptors.

 An application descriptor can be explicitly allocated any time the

application is connected to the database. To explicitly allocate the

Chapter 7. Descriptors 119

application descriptor, call SQLAllocHandle() with a HandleType of

SQL_HANDLE_DESC. For example, the following call explicitly allocates

an application row descriptor:

 rc = SQLAllocHandle(SQL_HANDLE_DESC, hdbc, &hARD) ;

To use an explicitly allocated application descriptor instead of a statement’s

implicitly allocated descriptor, call SQLSetStmtAttr(), and pass the

statement handle, the descriptor handle, and an Attribute value of either:

v SQL_ATTR_APP_PARAM_DESC (APD), or

v SQL_ATTR_APP_ROW_DESC (ARD)

When there are explicitly and implicitly allocated descriptors, the explicitly

specified one is used. An explicitly allocated descriptor can be associated

with more than one statement.

Field initialization

When an application row descriptor is allocated, its fields are initialized to the

values listed in the descriptor header and record field initialization values

documentation. The SQL_DESC_TYPE field is set to SQL_DEFAULT which

provides for a standard treatment of database data for presentation to the

application. The application may specify different treatment of the data by setting

fields of the descriptor record.

The initial value of the SQL_DESC_ARRAY_SIZE header field is 1. To enable

multirow fetch, the application can set this value in an ARD to the number of rows

in a rowset.

There are no default values for the fields of an IRD. The fields are set when there

is a prepared or executed statement.

The following fields of an IPD are undefined until a call to SQLPrepare()

automatically populates them:

v SQL_DESC_CASE_SENSITIVE

v SQL_DESC_FIXED_PREC_SCALE

v SQL_DESC_TYPE_NAME

v SQL_DESC_DESC_UNSIGNED

v SQL_DESC_LOCAL_TYPE_NAME

Automatic population of the IPD

There are times when the application will need to discover information about the

parameters of a prepared SQL statement. A good example is when a dynamically

generated query is prepared; the application will not know anything about the

parameters in advance. If the application enables automatic population of the IPD,

by setting the SQL_ATTR_ENABLE_AUTO_IPD statement attribute to SQL_TRUE

(using SQLSetStmtAttr()), then the fields of the IPD are automatically populated to

describe the parameter. This includes the data type, precision, scale, and so on (the

same information that SQLDescribeParam() returns). The application can use this

information to determine if data conversion is required, and which application

buffer is the most appropriate to bind the parameter to.

Automatic population of the IPD involves some overhead. If it is not necessary for

this information to be automatically gathered by the CLI driver then the

SQL_ATTR_ENABLE_AUTO_IPD statement attribute should be set to SQL_FALSE.

120 Call Level Interface Guide and Reference, Volume 1

When automatic population of the IPD is active, each call to SQLPrepare() causes

the fields of the IPD to be updated. The resulting descriptor information can be

retrieved by calling the following functions:

v SQLGetDescField()

v SQLGetDescRec()

v SQLDescribeParam()

Freeing of descriptors

Explicitly allocated descriptors

When an explicitly allocated descriptor is freed, all statement handles to

which the freed descriptor applied automatically revert to the original

descriptors implicitly allocated for them.

 Explicitly allocated descriptors can be freed in one of two ways:

v by calling SQLFreeHandle()with a HandleType of SQL_HANDLE_DESC

v by freeing the connection handle that the descriptor is associated with

Implicitly allocated descriptors

An implicitly allocated descriptor can be freed in one of the following

ways:

v by calling SQLDisconnect() which drops any statements or descriptors

open on the connection

v by calling SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT

to free the statement handle and all of the implicitly allocated

descriptors associated with the statement

An implicitly allocated descriptor cannot be freed by calling

SQLFreeHandle() with a HandleType of SQL_HANDLE_DESC.

Descriptor manipulation with descriptor handles in CLI applications

Descriptors can be manipulated using descriptor handles or with DB2 CLI

functions that do not use descriptor handles. This topic describes accessing

descriptors through descriptor handles. The handle of an explicitly allocated

descriptor is returned in the OutputHandlePtr argument when the application calls

SQLAllocHandle() to allocate the descriptor. The handle of an implicitly allocated

descriptor is obtained by calling SQLGetStmtAttr() with either

SQL_ATTR_IMP_PARAM_DESC or SQL_ATTR_IMP_ROW_DESC.

Retrieval of descriptor field values

The DB2 CLI function SQLGetDescField() can be used to obtain a single field of a

descriptor record. SQLGetDescRec() retrieves the settings of multiple descriptor

fields that affect the data type and storage of column or parameter data.

Setting of descriptor field values

Two methods are available for setting descriptor fields: one field at a time or

multiple fields at once.

Setting of individual fields

Some fields of a descriptor are read-only, but others can be set using the function

SQLSetDescField(). Refer to the list of header and record fields in the descriptor

FieldIdentifier values documentation.

Chapter 7. Descriptors 121

Record and header fields are set differently using SQLSetDescField() as follows:

Header fields

The call to SQLSetDescField() passes the header field to be set and a

record number of 0. The record number is ignored since there is only one

header field per descriptor. In this case the record number of 0 does not

indicate the bookmark field.

Record fields

The call to SQLSetDescField() passes the record field to be set and a record

number of 1 or higher, or 0 to indicate the bookmark field.

The application must follow the sequence of setting descriptor fields described in

the SQLSetDescField() documentation when setting individual fields of a

descriptor. Setting some fields will cause DB2 CLI to automatically set other fields.

A consistency check will take place after the application follows the defined steps.

This will ensure that the values in the descriptor fields are consistent.

If a function call that would set a descriptor fails, the content of the descriptor

fields are undefined after the failed function call.

Setting of multiple fields

A predefined set of descriptor fields can be set with one call rather than setting

individual fields one at a time. SQLSetDescRec() sets the following fields for a

single column or parameter:

v SQL_DESC_TYPE

v SQL_DESC_OCTET_LENGTH

v SQL_DESC_PRECISION

v SQL_DESC_SCALE

v SQL_DESC_DATA_PTR

v SQL_DESC_OCTET_LENGTH_PTR

v SQL_DESC_INDICATOR_PTR

(SQL_DESC_DATETIME_INTERVAL_CODE is also defined by ODBC but is not

supported by DB2 CLI.)

For example, all of the descriptor fields listed above are set with the following call:

 /* dbuse.c */

 /* ... */

 rc = SQLSetDescRec(hARD, 1, type, 0,

 length, 0, 0, &id_no, &datalen, NULL);

Copying of descriptors

One benefit of descriptors is the fact that a single descriptor can be used for

multiple purposes. For instance, an ARD on one statement handle can be used as

an APD on another statement handle.

There will be other instances, however, where the application will want to make a

copy of the original descriptor, then modify certain fields. In this case

SQLCopyDesc() is used to overwrite the fields of an existing descriptor with the

values from another descriptor. Only fields that are defined for both the source and

target descriptors are copied (with the exception of the SQL_DESC_ALLOC_TYPE

field which cannot be changed).

122 Call Level Interface Guide and Reference, Volume 1

Fields can be copied from any type of descriptor, but can only be copied to an

application descriptor (APD or ARD) or an IPD. Fields cannot be copied to an IRD.

The descriptor’s allocation type will not be changed by the copy procedure (again,

the SQL_DESC_ALLOC_TYPE field cannot be changed).

Descriptor manipulation without using descriptor handles in CLI

applications

Many CLI functions make use of descriptors, but the application itself does not

need to manipulate them directly. Instead, the application can use a different

function which will set or retrieve one or more fields of a descriptor as well as

perform other functions. This category of CLI functions is called concise functions.

SQLBindCol() is an example of a concise function that manipulates descriptor

fields.

In addition to manipulating multiple fields, concise functions are called without

explicitly specifying the descriptor handle. The application does not even need to

retrieve the descriptor handle to use a concise function.

The following types of concise functions exist:

v The functions SQLBindCol() and SQLBindParameter() bind a column or

parameter by setting the descriptor fields that correspond to their arguments.

These functions also perform other tasks unrelated to descriptors.

If required, an application can also use the descriptor calls directly to modify

individual details of a binding. In this case the descriptor handle must be

retrieved, and the functions SQLSetDescField() or SQLSetDescRec() are called to

modify the binding.

v The following functions always retrieve values in descriptor fields:

– SQLColAttribute()

– SQLDescribeCol()

– SQLDescribeParam()

– SQLNumParams()

– SQLNumResultCols()

v The functions SQLSetDescRec() and SQLGetDescRec() set or get the multiple

descriptor fields that affect the data type and storage of column or parameter

data. A single call to SQLSetDescRec() can be used to change the values used in

the binding of a column or parameter.

v The functions SQLSetStmtAttr() and SQLGetStmtAttr() modify or return

descriptor fields in some cases, depending on which statement attribute is

specified. Refer to the ″Values Stored in a Descriptor″ section of the descriptors

documentation for more information.

Chapter 7. Descriptors 123

124 Call Level Interface Guide and Reference, Volume 1

Chapter 8. Diagnostics in CLI applications overview

Diagnostics refers to dealing with warning or error conditions generated within an

application. There are two levels of diagnostics returned when calling DB2 CLI

functions:

v return codes

v detailed diagnostics (SQLSTATEs, messages, SQLCA)

Each CLI function returns the function return code as a basic diagnostic. Both

SQLGetDiagRec() and SQLGetDiagField() provide more detailed diagnostic

information. If the diagnostic originates at the DBMS, the SQLGetSQLCA() function

provides access to the SQLCA. This arrangement lets applications handle the basic

flow control based on return codes, and use the SQLSTATES along with the

SQLCA to determine the specific causes of failure and to perform specific error

handling.

Both SQLGetDiagRec() and SQLGetDiagField() return three pieces of information:

v SQLSTATE

v Native error: if the diagnostic is detected by the data source, this is the

SQLCODE; otherwise, this is set to -99999.

v Message text: this is the message text associated with the SQLSTATE.

SQLGetSQLCA() returns the SQLCA for access to specific fields, but should only be

used when SQLGetDiagRec() or SQLGetDiagField() cannot provide the desired

information.

CLI function return codes

The following table lists all possible return codes for DB2 CLI functions.

 Table 10. DB2 CLI Function return codes

Return code Explanation

SQL_SUCCESS The function completed successfully, no additional

SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully with a warning

or other information. Call SQLGetDiagRec() or

SQLGetDiagField() to receive the SQLSTATE and any

other informational messages or warnings. The

SQLSTATE will have a class of ’01’.

SQL_STILL_EXECUTING The function is running asynchronously and has not

yet completed. The DB2 CLI driver has returned

control to the application after calling the function,

but the function has not yet finished executing.

SQL_NO_DATA_FOUND The function returned successfully, but no relevant

data was found. When this is returned after the

execution of an SQL statement, additional information

may be available and can be obtained by calling

SQLGetDiagRec() or SQLGetDiagField().

© Copyright IBM Corp. 1993, 2007 125

Table 10. DB2 CLI Function return codes (continued)

Return code Explanation

SQL_NEED_DATA The application tried to execute an SQL statement but

DB2 CLI lacks parameter data that the application had

indicated would be passed at execute time.

SQL_ERROR The function failed. Call SQLGetDiagRec() or

SQLGetDiagField() to receive the SQLSTATE and any

other error information.

SQL_INVALID_HANDLE The function failed due to an invalid input handle

(environment, connection or statement handle). This is

a programming error. No further information is

available.

The following code segment from tut_read.c shows how a function return code,

SQL_NO_DATA_FOUND, can be used to control when data retrieval should stop:

 while (cliRC != SQL_NO_DATA_FOUND)

 {

 printf("

 /* fetch next row */

 cliRC = SQLFetch(hstmt);

 STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

 }

SQLSTATES for DB2 CLI

SQLSTATEs are alphanumeric strings of 5 characters (bytes) with a format of

ccsss, where cc indicates class and sss indicates subclass. Any SQLSTATE that has

a class of:

v ’01’, is a warning.

v ’HY’, is generated by the DB2 CLI or ODBC driver.

v ’IM’, is generated by the ODBC driver manager.

Note: Versions of DB2 CLI before Version 5 returned SQLSTATEs with a class of

’S1’ rather than ’HY’. To force the CLI driver to return ’S1’ SQLSTATEs, the

application should set the environment attribute SQL_ATTR_ODBC_VERSION to

the value SQL_OV_ODBC2.

DB2 CLI SQLSTATEs include both additional IBM defined SQLSTATEs that are

returned by the database server, and DB2 CLI defined SQLSTATEs for conditions

that are not defined in the ODBC version 3 and ISO SQL/CLI specifications. This

allows for the maximum amount of diagnostic information to be returned. When

running applications in an ODBC environment, it is also possible to receive ODBC

defined SQLSTATEs.

Follow these guidelines for using SQLSTATEs within your application:

v Always check the function return code before calling SQLGetDiagRec() to

determine if diagnostic information is available.

v Use the SQLSTATEs rather than the native error code.

v To increase your application’s portability, only build dependencies on the subset

of DB2 CLI SQLSTATEs that are defined by the ODBC version 3 and ISO

SQL/CLI specifications, and return the additional ones as information only. A

dependency in an application is a logic flow decision based on specific

SQLSTATEs.

126 Call Level Interface Guide and Reference, Volume 1

Note: It may be useful to build dependencies on the class (the first 2 characters)

of the SQLSTATEs.

v For maximum diagnostic information, return the text message along with the

SQLSTATE (if applicable, the text message will also include the IBM defined

SQLSTATE). It is also useful for the application to print out the name of the

function that returned the error.

v Ensure that the string allocated for the SQLSTATE includes space for the null

termination character returned by DB2 CLI.

The following code segment from utilcli.c shows how diagnostic information,

such as SQLSTATEs, can be retrieved and displayed:

void HandleDiagnosticsPrint(SQLSMALLINT htype, /* handle type identifier */

 SQLHANDLE hndl /* handle */)

{

 SQLCHAR message[SQL_MAX_MESSAGE_LENGTH + 1];

 SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];

 SQLINTEGER sqlcode;

 SQLSMALLINT length, i;

 i = 1;

 /* get multiple field settings of diagnostic record */

 while (SQLGetDiagRec(htype,

 hndl,

 i,

 sqlstate,

 &sqlcode,

 message,

 SQL_MAX_MESSAGE_LENGTH + 1,

 &length) == SQL_SUCCESS)

 {

 printf("\n SQLSTATE =

 printf(" Native Error Code =

 printf("

 i++;

 }

 printf("-------------------------\n");

}

You can use the CLI/ODBC trace facility to gain a better understanding of how

your application calls DB2, including any errors that may occur.

Return codes for compound SQL in CLI applications

Return codes are generated on the call to SQLExecute() or SQLExecDirect() for the

END COMPOUND statement. The following lists the return codes for ATOMIC

and NOT ATOMIC compound statements:

ATOMIC

v SQL_SUCCESS: all substatements have executed without any warnings or errors.

v SQL_SUCCESS_WITH_INFO: all substatements executed successfully with one

or more warnings. Call SQLGetDiagRec() or SQLGetDiagField() to retrieve

additional information on the error or warning. The handle used by

SQLGetDiagRec() or SQLGetDiagField() must be the same one used to process

the BEGIN COMPOUND and END COMPOUND statements.

Chapter 8. Diagnostics overview 127

v SQL_NO_DATA_FOUND: BEGIN COMPOUND and END COMPOUND

statements executed without any substatements, or none of the substatements

affected any rows.

v SQL_ERROR: one or more substatements failed and all substatements were

rolled back.

NOT ATOMIC

v SQL_SUCCESS: all substatements executed without any errors.

v SQL_SUCCESS_WITH_INFO: the COMPOUND statement executed with one or

more warnings returned by one or more substatements. Call SQLGetDiagRec() or

SQLGetDiagField() to retrieve additional information on the error or warning.

The handle used by SQLGetDiagRec() or SQLGetDiagField() must be the same

one used to process the BEGIN COMPOUND and END COMPOUND

statements.

v SQL_NO_DATA_FOUND: the BEGIN COMPOUND and END COMPOUND

statements executed without any substatements, or none of the substatements

affected any rows.

v SQL_ERROR: the COMPOUND statement failed. At least one substatement

returned an error. Examine the SQLCA to determine which statements failed.

CLI/ODBC/JDBC trace facility

This topic discusses the following subjects:

v DB2 CLI and DB2 JDBC trace configuration

v DB2 CLI trace options and the db2cli.ini file

v DB2 JDBC trace options and the db2cli.ini file

v DB2 CLI driver trace versus ODBC driver manager trace

v DB2 CLI driver, DB2 JDBC Type 2 Driver, and DB2 traces

v DB2 CLI and DB2 JDBC traces and CLI or Java stored procedures

The DB2 CLI and the DB2 JDBC Type 2 Driver for Linux, UNIX, and Windows

offer comprehensive tracing facilities. By default, these facilities are disabled and

use no additional computing resources. When enabled, the trace facilities generate

one or more text log files whenever an application accesses the appropriate driver

(DB2 CLI or DB2 JDBC Type 2 Driver). These log files provide detailed information

about:

v the order in which CLI or JDBC functions were called by the application

v the contents of input and output parameters passed to and received from CLI or

JDBC functions

v the return codes and any error or warning messages generated by CLI or JDBC

functions

Note: This trace facility does not apply to the DB2 Universal JDBC Driver.

DB2 CLI and DB2 JDBC trace file analysis can benefit application developers in a

number of ways. First, subtle program logic and parameter initialization errors are

often evident in the traces. Second, DB2 CLI and DB2 JDBC traces might suggest

ways of better tuning an application or the databases it accesses. For example, if a

DB2 CLI trace shows a table being queried many times on a particular set of

attributes, an index corresponding to those attributes might be created on the table

128 Call Level Interface Guide and Reference, Volume 1

to improve application performance. Finally, analysis of DB2 CLI and DB2 JDBC

trace files can help application developers understand how a third party

application or interface is behaving.

DB2 CLI and DB2 JDBC trace configuration

The configuration parameters for both DB2 CLI and DB2 JDBC traces facilities are

read from the DB2 CLI configuration file db2cli.ini. By default, this file is located in

the \sqllib path on the Windows platform and the /sqllib/cfg path on UNIX

platforms. You can override the default path by setting the DB2CLIINIPATH

environment variable. On the Windows platform, an additional db2cli.ini file can

be found in the user’s profile (or home) directory if there are any user-defined data

sources defined using the ODBC Driver Manager. This db2cli.ini file will override

the default file.

To view the current db2cli.ini trace configuration parameters from the command

line processor, issue the following command:

db2 GET CLI CFG FOR SECTION COMMON

There are three ways to modify the db2cli.ini file to configure the DB2 CLI and

DB2 JDBC trace facilities:

v use the DB2 Configuration Assistant if it is available

v manually edit the db2cli.ini file using a text editor

v issue the UPDATE CLI CFG command from the command line processor

For example, the following command issued from the command line processor

updates the db2cli.ini file and enables the JDBC tracing facility:

db2 UPDATE CLI CFG FOR SECTION COMMON USING jdbctrace 1

Note:

1. Typically the DB2 CLI and DB2 JDBC trace configuration options are only read

from the db2cli.ini configuration file at the time an application is initialized.

However, a special db2cli.ini trace option, TraceRefreshInterval, can be used to

indicate an interval at which specific DB2 CLI trace options are reread from the

db2cli.ini file.

2. The DB2 CLI tracing facility can also be configured programmatically by setting

the SQL_ATTR_TRACE environment attribute. This setting will override the

settings contained in the db2cli.ini file.

Important: Disable the DB2 CLI and DB2 JDBC trace facilities when they are not

needed. Unnecessary tracing can reduce application performance and generate

unwanted trace log files. DB2 does not delete any generated trace files and will

append new trace information to any existing trace files.

DB2 CLI Trace options and the db2cli.ini file

When an application using the DB2 CLI driver begins execution, the driver checks

for trace facility options in the [COMMON] section of the db2cli.ini file. These

trace options are specific trace keywords that are set to certain values in the

db2cli.ini file under the [COMMON] section.

Note: Because DB2 CLI trace keywords appear in the [COMMON] section of the

db2cli.ini file, their values apply to all database connections through the DB2 CLI

driver.

Chapter 8. Diagnostics overview 129

The DB2 CLI trace keywords that can be defined are:

v Trace

v TraceComm

v TraceErrImmediate

v TraceFileName

v TraceFlush

v TraceFlushOnError

v TraceLocks

v TracePathName

v TracePIDList

v TracePIDTID

v TraceRefreshInterval

v TraceStmtOnly

v TraceTime

v TraceTimeStamp

Note: DB2 CLI trace keywords are only read from the db2cli.ini file once at

application initialization time unless the TraceRefreshInterval keyword is set. If this

keyword is set, the Trace and TracePIDList keywords are reread from the db2cli.ini

file at the specified interval and applied, as appropriate, to the currently executing

application.

An example db2cli.ini file trace configuration using these DB2 CLI keywords and

values is:

[COMMON]

trace=1

TraceFileName=\temp\clitrace.txt

TraceFlush=1

Note:

1. CLI trace keywords are NOT case sensitive. However, path and file name

keyword values might be case-sensitive on some operating systems (such as

UNIX).

2. If either a DB2 CLI trace keyword or its associated value in the db2cli.ini file is

invalid, the DB2 CLI trace facility will ignore it and use the default value for

that trace keyword instead.

DB2 JDBC Trace options and the db2cli.ini file

When an application using the DB2 JDBC Type 2 Driver begins execution, the

driver also checks for trace facility options in the db2cli.ini file. As with the DB2

CLI trace options, DB2 JDBC trace options are specified as keyword/value pairs

located under the [COMMON] section of the db2cli.ini file.

Note: Because DB2 JDBC trace keywords appear in the [COMMON] section of the

db2cli.ini file, their values apply to all database connections through the DB2 JDBC

Type 2 Driver.

The DB2 JDBC trace keywords that can be defined are:

v JDBCTrace

v JDBCTracePathName

v JDBCTraceFlush

130 Call Level Interface Guide and Reference, Volume 1

JDBCTrace = 0 | 1

The JDBCTrace keyword controls whether or not other DB2 JDBC tracing

keywords have any effect on program execution. Setting JDBCTrace to its

default value of 0 disables the DB2 JDBC trace facility. Setting JDBCTrace

to 1 enables it.

 By itself, the JDBCTrace keyword has little effect and produces no trace

output unless the JDBCTracePathName keyword is also specified.

JDBCTracePathName = <fully_qualified_trace_path_name>

The value of JDBCTracePathName is the fully qualified path of the

directory to which all DB2 JDBC trace information is written. The DB2

JDBC trace facility attempts to generate a new trace log file each time a

JDBC application is executed using the DB2 JDBC Type 2 Driver. If the

application is multithreaded, a separate trace log file will be generated for

each thread. A concatenation of the application process ID, the thread

sequence number, and a thread-identifying string are automatically used to

name trace log files. There is no default path name to which DB2 JDBC

trace output log files are written.

JDBCTraceFlush = 0 | 1

The JDBCTraceFlush keyword specifies how often trace information is

written to the DB2 JDBC trace log file. By default, JDBCTraceFlush is set to

0 and each DB2 JDBC trace log file is kept open until the traced application

or thread terminates normally. If the application terminates abnormally,

some trace information that was not written to the trace log file might be

lost.

 To ensure the integrity and completeness of the trace information written

to the DB2 JDBC trace log file, the JDBCTraceFlush keyword can be set to

1. After each trace entry has been written to the trace log file, the DB2

JDBC driver closes the file and then reopens it, appending new trace

entries to the end of the file. This guarantees that no trace information will

be lost.

Note: Each DB2 JDBC log file close and reopen operation incurs significant

input/output overhead and can reduce application performance considerably.

An example db2cli.ini file trace configuration using these DB2 JDBC keywords and

values is:

[COMMON]

jdbctrace=1

JdbcTracePathName=\temp\jdbctrace\

JDBCTraceFlush=1

Note:

1. JDBC trace keywords are NOT case sensitive. However, path and file name

keyword values might be case-sensitive on some operating systems (such as

UNIX).

2. If either a DB2 JDBC trace keyword or its associated value in the db2cli.ini file

is invalid, the DB2 JDBC trace facility will ignore it and use the default value

for that trace keyword instead.

3. Enabling DB2 JDBC tracing does not enable DB2 CLI tracing. The DB2 JDBC

Type 2 Driver depends on the DB2 CLI driver to access the database.

Consequently, Java™ developers might also want to enable DB2 CLI tracing for

additional information on how their applications interact with the database

through the various software layers. DB2 JDBC and DB2 CLI trace options are

Chapter 8. Diagnostics overview 131

independent of each other and can be specified together in any order under the

[COMMON] section of the db2cli.ini file.

DB2 CLI Driver trace versus ODBC driver manager trace

It is important to understand the difference between an ODBC driver manager

trace and a DB2 CLI driver trace. An ODBC driver manager trace shows the ODBC

function calls made by an ODBC application to the ODBC driver manager. In

contrast, a DB2 CLI driver trace shows the function calls made by the ODBC

driver manager to the DB2 CLI driver on behalf of the application.

An ODBC driver manager might forward some function calls directly from the

application to the DB2 CLI driver. However, the ODBC driver manager might also

delay or avoid forwarding some function calls to the driver. The ODBC driver

manager might also modify application function arguments or map application

functions to other functions before forwarding the call on to the DB2 CLI driver.

Reasons for application function call intervention by the ODBC driver manager

include:

v Applications written using ODBC 2.0 functions that have been deprecated in

ODBC 3.0 will have the old functions mapped to new functions.

v ODBC 2.0 function arguments deprecated in ODBC 3.0 will be mapped to

equivalent ODBC 3.0 arguments.

v The Microsoft cursor library will map calls such as SQLExtendedFetch() to

multiple calls to SQLFetch() and other supporting functions to achieve the same

end result.

v ODBC driver manager connection pooling will usually defer SQLDisconnect()

requests (or avoid them altogether if the connection gets reused).

For these and other reasons, application developers might find an ODBC driver

manager trace to be a useful complement to the DB2 CLI driver trace.

For more information on capturing and interpreting ODBC driver manager traces,

refer to the ODBC driver manager documentation. On the Windows platforms,

refer to the Microsoft ODBC 3.0 Software Development Kit and Programmer’s

Reference, also available online at: http://www.msdn.microsoft.com/.

DB2 CLI Driver, DB2 JDBC Type 2 Driver, and DB2 traces

Internally, the DB2 JDBC Type 2 Driver makes use of the DB2 CLI driver for

database access. For example, the Java getConnection() method is internally

mapped by the DB2 JDBC Type 2 Driver to the DB2 CLI SQLConnect() function. As

a result, Java developers might find a DB2 CLI trace to be a useful complement to

the DB2 JDBC trace.

The DB2 CLI driver makes use of many internal and DB2 specific functions to do

its work. These internal and DB2 specific function calls are logged in the DB2 trace.

Application developers will not find DB2 traces useful, as they are only meant to

assist IBM Service in problem determination and resolution.

DB2 CLI and DB2 JDBC traces and CLI or Java stored

procedures

On all workstation platforms, the DB2 CLI and DB2 JDBC trace facilities can be

used to trace DB2 CLI and DB2 JDBC stored procedures.

132 Call Level Interface Guide and Reference, Volume 1

Most of the DB2 CLI and DB2 JDBC trace information and instructions given in

earlier sections is generic and applies to both applications and stored procedures

equally. However, unlike applications which are clients of a database server (and

typically execute on a machine separate from the database server), stored

procedures execute at the database server. Therefore, the following additional steps

must be taken when tracing DB2 CLI or DB2 JDBC stored procedures:

v Ensure the trace keyword options are specified in the db2cli.ini file located at the

DB2 server.

v If the TraceRefreshInterval keyword is not set to a positive, non-zero value,

ensure all keywords are configured correctly prior to database startup time (that

is, when the db2start command is issued). Changing trace settings while the

database server is running can cause unpredictable results. For example, if the

TracePathName is changed while the server is running, then the next time a

stored procedure is executed, some trace files might be written to the new path,

while others are written to the original path. To ensure consistency, restart the

server any time a trace keyword other than Trace or TracePIDList is modified.

CLI and JDBC trace files

Applications that access the DB2 CLI and DB2 JDBC drivers can make use of the

DB2 CLI and DB2 JDBC trace facilities. These utilities record all function calls

made by the DB2 CLI or DB2 JDBC drivers to a log file which is useful for

problem determination. This topic discusses how to access and interpret these log

files generated by the tracing facilities:

v CLI and JDBC trace file location

v CLI trace file interpretation

v JDBC trace file interpretation

CLI and JDBC trace file location

If the TraceFileName keyword was used in the db2cli.ini file to specify a fully

qualified file name, then the DB2 CLI trace log file will be in the location specified.

If a relative file name was specified for the DB2 CLI trace log file name, the

location of that file will depend on what the operating system considers to be the

current path of the application.

Note: If the user executing the application does not have sufficient authority to

write to the trace log file in the specified path, no file will be generated and no

warning or error is given.

If either or both of the TracePathName and JDBCTracePathName keywords were

used in the db2cli.ini file to specify fully qualified directories, then the DB2 CLI

and DB2 JDBC trace log files will be in the location specified. If a relative directory

name was specified for either or both trace directories, the operating system will

determine its location based on what it considers to be the current path of the

application.

Note: If the user executing the application does not have sufficient authority to

write trace files in the specified path, no file will be generated and no warning or

error is given. If the specified trace path does not exist, it will not be created.

The DB2 CLI and DB2 JDBC trace facilities automatically use the application’s

process ID and thread sequence number to name the trace log files when the

TracePathName and JDBCTracePathName keywords have been set. For example, a

Chapter 8. Diagnostics overview 133

DB2 CLI trace of an application with three threads might generate the following

DB2 CLI trace log files: 100390.0, 100390.1, 100390.2.

Similarly, a DB2 JDBC trace of a Java application with two threads might generate

the following JDBC trace log files: 7960main.trc, 7960Thread-1.trc.

Note: If the trace directory contains both old and new trace log files, file date and

time stamp information can be used to locate the most recent trace files.

If no DB2 CLI or DB2 JDBC trace output files appear to have been created:

v Verify that the trace configuration keywords are set correctly in the db2cli.ini

file. Issuing the db2 GET CLI CFG FOR SECTION COMMON command from the

command line processor is a quick way to do this.

v Ensure the application is restarted after updating the db2cli.ini file. Specifically,

the DB2 CLI and DB2 JDBC trace facilities are initialized during application

startup. Once initialized, the DB2 JDBC trace facility cannot be reconfigured. The

DB2 CLI trace facility can be reconfigured at run time but only if the

TraceRefreshInterval keyword was appropriately specified prior to application

startup.

Note: Only the Trace and TracePIDList DB2 CLI keywords can be reconfigured

at run time. Changes made to other DB2 CLI keywords, including TraceRefreshInterval,

have no effect without an application restart.

v If the TraceRefreshInterval keyword was specified prior to application startup,

and if the Trace keyword was initially set to 0, ensure that enough time has

elapsed for the DB2 CLI trace facility to reread the Trace keyword value.

v If either or both the TracePathName and JDBCTracePathName keywords are

used to specify trace directories, ensure those directories exist prior to starting

the application.

v Ensure the application has write access to the specified trace log file or trace

directory.

v Check the DB2CLIINIPATH environment variable. If set, the DB2 CLI and DB2

JDBC trace facilities expect the db2cli.ini file to be at the location specified by

this variable.

v If the application uses ODBC to interface with the DB2 CLI driver, verify that

one of the SQLConnect(), SQLDriverConnect() or SQLBrowseConnect() functions

have been successfully called. No entries will be written to the DB2 CLI trace

log files until a database connection has successfully been made.

CLI trace file interpretation

DB2 CLI traces always begin with a header that identifies the process ID and

thread ID of the application that generated the trace, the time the trace began, and

product specific information such as the local DB2 build level and DB2 CLI driver

version. For example:

1 [Process: 1227, Thread: 1024]

2 [Date, Time: 01-27-2002 13:46:07.535211]

3 [Product: QDB2/LINUX 7.1.0]

4 [Level Identifier: 02010105]

5 [CLI Driver Version: 07.01.0000]

6 [Informational Tokens: "DB2 v7.1.0","n000510",""]

Note: Trace examples used in this section have line numbers added to the left

hand side of the trace. These line numbers have been added to aid the discussion

and will not appear in an actual DB2 CLI trace.

134 Call Level Interface Guide and Reference, Volume 1

Immediately following the trace header, there are usually a number of trace entries

related to environment and connection handle allocation and initialization. For

example:

7 SQLAllocEnv(phEnv=&bffff684)

8 –––> Time elapsed - +9.200000E-004 seconds

9 SQLAllocEnv(phEnv=0:1)

10 <––– SQL_SUCCESS Time elapsed - +7.500000E-004 seconds

11 SQLAllocConnect(hEnv=0:1, phDbc=&bffff680)

12 –––> Time elapsed - +2.334000E-003 seconds

13 SQLAllocConnect(phDbc=0:1)

14 <––– SQL_SUCCESS Time elapsed - +5.280000E-004 seconds

15 SQLSetConnectOption(hDbc=0:1, fOption=SQL_ATTR_AUTOCOMMIT, vParam=0)

16 –––> Time elapsed - +2.301000E-003 seconds

17 SQLSetConnectOption()

18 <––– SQL_SUCCESS Time elapsed - +3.150000E-004 seconds

19 SQLConnect(hDbc=0:1, szDSN="SAMPLE", cbDSN=-3, szUID="", cbUID=-3,

 szAuthStr="", cbAuthStr=-3)

20 –––> Time elapsed - +7.000000E-005 seconds

21 (DBMS NAME="DB2/LINUX", Version="07.01.0000", Fixpack="0x22010105")

22 SQLConnect()

23 <––– SQL_SUCCESS Time elapsed - +5.209880E-001 seconds

24 (DSN=""SAMPLE"")

25 (UID=" ")

26 (PWD="*")

In the above trace example, notice that there are two entries for each DB2 CLI

function call (for example, lines 19-21 and 22-26 for the SQLConnect() function call).

This is always the case in DB2 CLI traces. The first entry shows the input

parameter values passed to the function call while the second entry shows the

function output parameter values and return code returned to the application.

The above trace example shows that the SQLAllocEnv() function successfully

allocated an environment handle (phEnv=0:1) at line 9. That handle was then

passed to the SQLAllocConnect() function which successfully allocated a database

connection handle (phDbc=0:1) as of line 13. Next, the SQLSetConnectOption()

function was used to set the phDbc=0:1 connection’s SQL_ATTR_AUTOCOMMIT

attribute to SQL_AUTOCOMMIT_OFF (vParam=0) at line 15. Finally,

SQLConnect() was called to connect to the target database (SAMPLE) at line 19.

Included in the input trace entry of the SQLConnect() function on line 21 is the

build and FixPak level of the target database server. Other information that might

also appear in this trace entry includes input connection string keywords and the

code pages of the client and server. For example, suppose the following

information also appeared in the SQLConnect() trace entry:

(Application Codepage=819, Database Codepage=819,

 Char Send/Recv Codepage=819, Graphic Send/Recv Codepage=819,

 Application Char Codepage=819, Application Graphic Codepage=819)

This would mean the application and the database server were using the same

code page (819).

Chapter 8. Diagnostics overview 135

The return trace entry of the SQLConnect() function also contains important

connection information (lines 24-26 in the above example trace). Additional

information that might be displayed in the return entry includes any PATCH1 or

PATCH2 keyword values that apply to the connection. For example, if

PATCH2=27,28 was specified in the db2cli.ini file under the COMMON section, the

following line should also appear in the SQLConnect() return entry:

(PATCH2="27,28")

Following the environment and connection related trace entries are the statement

related trace entries. For example:

27 SQLAllocStmt(hDbc=0:1, phStmt=&bffff684)

28 –––> Time elapsed - +1.868000E-003 seconds

29 SQLAllocStmt(phStmt=1:1)

30 <––– SQL_SUCCESS Time elapsed - +6.890000E-004 seconds

31 SQLExecDirect(hStmt=1:1, pszSqlStr="CREATE TABLE GREETING (MSG

 VARCHAR(10))", cbSqlStr=-3)

32 –––> Time elapsed - +2.863000E-003 seconds

33 (StmtOut="CREATE TABLE GREETING (MSG VARCHAR(10))")

34 SQLExecDirect()

35 <––– SQL_SUCCESS Time elapsed - +2.387800E-002 seconds

In the above trace example, the database connection handle (phDbc=0:1) was

used to allocate a statement handle (phStmt=1:1) at line 29. An unprepared SQL

statement was then executed on that statement handle at line 31. If the

TraceComm=1 keyword had been set in the db2cli.ini file, the SQLExecDirect()

function call trace entries would have shown additional client-server

communication information as follows:

SQLExecDirect(hStmt=1:1, pszSqlStr="CREATE TABLE GREETING (MSG

 VARCHAR(10))", cbSqlStr=-3)

 –––> Time elapsed - +2.876000E-003 seconds

(StmtOut="CREATE TABLE GREETING (MSG VARCHAR(10))")

 sqlccsend(ulBytes - 232)

 sqlccsend(Handle - 1084869448)

 sqlccsend() - rc - 0, time elapsed - +1.150000E-004

 sqlccrecv()

 sqlccrecv(ulBytes - 163) - rc - 0, time elapsed - +2.243800E-002

SQLExecDirect()

 <––– SQL_SUCCESS Time elapsed - +2.384900E-002 seconds

Notice the additional sqlccsend() and sqlccrecv() function call information in this

trace entry. The sqlccsend() call information reveals how much data was sent from

the client to the server, how long the transmission took, and the success of that

transmission (0 = SQL_SUCCESS). The sqlccrecv() call information then reveals

how long the client waited for a response from the server and the amount of data

included in the response.

Often, multiple statement handles will appear in the DB2 CLI trace. By paying

close attention to the statement handle identifier, one can easily follow the

execution path of a statement handle independent of all other statement handles

appearing in the trace.

Statement execution paths appearing in the DB2 CLI trace are usually more

complicated than the example shown above. For example:

136 Call Level Interface Guide and Reference, Volume 1

36 SQLAllocStmt(hDbc=0:1, phStmt=&bffff684)

37 –––> Time elapsed - +1.532000E-003 seconds

38 SQLAllocStmt(phStmt=1:2)

39 <––– SQL_SUCCESS Time elapsed - +6.820000E-004 seconds

40 SQLPrepare(hStmt=1:2, pszSqlStr="INSERT INTO GREETING VALUES (?)",

 cbSqlStr=-3)

41 –––> Time elapsed - +2.733000E-003 seconds

42 (StmtOut="INSERT INTO GREETING VALUES (?)")

43 SQLPrepare()

44 <––– SQL_SUCCESS Time elapsed - +9.150000E-004 seconds

45 SQLBindParameter(hStmt=1:2, iPar=1, fParamType=SQL_PARAM_INPUT,

 fCType=SQL_C_CHAR, fSQLType=SQL_CHAR, cbColDef=14,

 ibScale=0, rgbValue=&080eca70, cbValueMax=15,

 pcbValue=&080eca4c)

46 –––> Time elapsed - +4.091000E-003 seconds

47 SQLBindParameter()

48 <––– SQL_SUCCESS Time elapsed - +6.780000E-004 seconds

49 SQLExecute(hStmt=1:2)

50 –––> Time elapsed - +1.337000E-003 seconds

51 (iPar=1, fCType=SQL_C_CHAR, rgbValue="Hello World!!!", pcbValue=14,

 piIndicatorPtr=14)

52 SQLExecute()

53 <––– SQL_ERROR Time elapsed - +5.951000E-003 seconds

In the above trace example, the database connection handle (phDbc=0:1) was

used to allocate a second statement handle (phStmt=1:2) at line 38. An SQL

statement with one parameter marker was then prepared on that statement handle

at line 40. Next, an input parameter (iPar=1) of the appropriate SQL type (

SQL_CHAR) was bound to the parameter marker at line 45. Finally, the statement

was executed at line 49. Notice that both the contents and length of the input

parameter (rgbValue=″Hello World!!!″, pcbValue=14) are displayed in the trace on

line 51.

The SQLExecute() function fails at line 52. If the application calls a diagnostic DB2

CLI function like SQLError() to diagnose the cause of the failure, then that cause

will appear in the trace. For example:

54 SQLError(hEnv=0:1, hDbc=0:1, hStmt=1:2, pszSqlState=&bffff680,

 pfNativeError=&bfffee78, pszErrorMsg=&bffff280,

 cbErrorMsgMax=1024, pcbErrorMsg=&bfffee76)

55 –––> Time elapsed - +1.512000E-003 seconds

56 SQLError(pszSqlState="22001", pfNativeError=-302, pszErrorMsg="[IBM][CLI

 Driver][DB2/LINUX] SQL0302N The value of a host variable in the EXECUTE

 or OPEN statement is too large for its corresponding use.

 SQLSTATE=22001", pcbErrorMsg=157)

57 <––– SQL_SUCCESS Time elapsed - +8.060000E-004 seconds

The error message returned at line 56 contains the DB2 native error code that was

generated (SQL0302N), the sqlstate that corresponds to that code (

SQLSTATE=22001) and a brief description of the error. In this example, the source

of the error is evident: on line 49, the application is trying to insert a string with 14

characters into a column defined as VARCHAR(10) on line 31.

If the application does not respond to a DB2 CLI function warning or error return

code by calling a diagnostic function like SQLError(), the warning or error message

Chapter 8. Diagnostics overview 137

should still be written to the DB2 CLI trace. However, the location of that message

in the trace may not be close to where the error actually occurred. Furthermore, the

trace will indicate that the error or warning message was not retrieved by the

application. For example, if not retrieved, the error message in the above example

might not appear until a later, seemingly unrelated DB2 CLI function call as

follows:

SQLDisconnect(hDbc=0:1)

 –––> Time elapsed - +1.501000E-003 seconds

 sqlccsend(ulBytes - 72)

 sqlccsend(Handle - 1084869448)

 sqlccsend() - rc - 0, time elapsed - +1.080000E-004

 sqlccrecv()

 sqlccrecv(ulBytes - 27) - rc - 0, time elapsed - +1.717950E-001

(Unretrieved error message="SQL0302N The value of a host variable in the

 EXECUTE or OPEN statement is too large for its corresponding use.

 SQLSTATE=22001")

SQLDisconnect()

 <––– SQL_SUCCESS Time elapsed - +1.734130E-001 seconds

The final part of a DB2 CLI trace should show the application releasing the

database connection and environment handles that it allocated earlier in the trace.

For example:

58 SQLTransact(hEnv=0:1, hDbc=0:1, fType=SQL_ROLLBACK)

59 –––> Time elapsed - +6.085000E-003 seconds

60 (ROLLBACK=0)

61 SQLTransact()

 <––– SQL_SUCCESS Time elapsed - +2.220750E-001 seconds

62 SQLDisconnect(hDbc=0:1)

63 –––> Time elapsed - +1.511000E-003 seconds

64 SQLDisconnect()

65 <––– SQL_SUCCESS Time elapsed - +1.531340E-001 seconds

66 SQLFreeConnect(hDbc=0:1)

67 –––> Time elapsed - +2.389000E-003 seconds

68 SQLFreeConnect()

69 <––– SQL_SUCCESS Time elapsed - +3.140000E-004 seconds

70 SQLFreeEnv(hEnv=0:1)

71 –––> Time elapsed - +1.129000E-003 seconds

72 SQLFreeEnv()

73 <––– SQL_SUCCESS Time elapsed - +2.870000E-004 seconds

JDBC trace file interpretation

DB2 JDBC traces always begin with a header that lists important system

information such as key environment variable settings, the SDK for Java or JRE

level, the DB2 JDBC driver level, and the DB2 build level. For example:

1 ==

2 | Trace beginning on 2002-1-28 7:21:0.19

3 ==

4 System Properties:

5 ------------------

6 user.language = en

7 java.home = c:\Program Files\SQLLIB\java\jdk\bin\..

8 java.vendor.url.bug =

9 awt.toolkit = sun.awt.windows.WToolkit

138 Call Level Interface Guide and Reference, Volume 1

10 file.encoding.pkg = sun.io

11 java.version = 1.1.8

12 file.separator = \

13 line.separator =

14 user.region = US

15 file.encoding = Cp1252

16 java.compiler = ibmjitc

17 java.vendor = IBM Corporation

18 user.timezone = EST

19 user.name = db2user

20 os.arch = x86

21 java.fullversion = JDK 1.1.8 IBM build n118p-19991124 (JIT ibmjitc

 V3.5-IBMJDK1.1-19991124)

22 os.name = Windows NT

23 java.vendor.url = http://www.ibm.com/

24 user.dir = c:\Program Files\SQLLIB\samples\java

25 java.class.path =

 .:C:\Program Files\SQLLIB\lib;C:\Program Files\SQLLIB\java;

 C:\Program Files\SQLLIB\java\jdk\bin\

26 java.class.version = 45.3

27 os.version = 5.0

28 path.separator = ;

29 user.home = C:\home\db2user

30 --

Note: Trace examples used in this section have line numbers added to the left

hand side of the trace. These line numbers have been added to aid the discussion

and will not appear in an actual DB2 JDBC trace.

Immediately following the trace header, one usually finds a number of trace entries

related to initialization of the JDBC environment and database connection

establishment. For example:

31 jdbc.app.DB2Driver –> DB2Driver() (2002-1-28 7:21:0.29)

32 | Loaded db2jdbc from java.library.path

33 jdbc.app.DB2Driver <– DB2Driver() [Time Elapsed = 0.01]

34 DB2Driver - connect(jdbc:db2:sample)

35 jdbc.app.DB2ConnectionTrace –> connect(sample, info, db2driver, 0, false)

 (2002-1-28 7:21:0.59)

36 | 10: connectionHandle = 1

37 jdbc.app.DB2ConnectionTrace <– connect() [Time Elapsed = 0.16]

38 jdbc.app.DB2ConnectionTrace –> DB2Connection (2002-1-28 7:21:0.219)

39 | source = sample

40 | Connection handle = 1

41 jdbc.app.DB2ConnectionTrace <– DB2Connection

In the above trace example, a request to load the DB2 JDBC driver was made on

line 31. This request returned successfully as reported on line 33.

The DB2 JDBC trace facility uses specific Java classes to capture the trace

information. In the above trace example, one of those trace classes,

DB2ConnectionTrace, has generated two trace entries numbered 35-37 and 38-41.

Line 35 shows the connect() method being invoked and the input parameters to

that method call. Line 37 shows that the connect() method call has returned

successfully while line 36 shows the output parameter of that call (Connection

handle = 1).

Following the connection related entries, one usually finds statement related entries

in the JDBC trace. For example:

Chapter 8. Diagnostics overview 139

42 jdbc.app.DB2ConnectionTrace –> createStatement() (2002-1-28 7:21:0.219)

43 | Connection handle = 1

44 | jdbc.app.DB2StatementTrace –> DB2Statement(con, 1003, 1007)

 (2002-1-28 7:21:0.229)

45 | jdbc.app.DB2StatementTrace <– DB2Statement() [Time Elapsed = 0.0]

46 | jdbc.app.DB2StatementTrace –> DB2Statement (2002-1-28 7:21:0.229)

47 | | Statement handle = 1:1

48 | jdbc.app.DB2StatementTrace <– DB2Statement

49 jdbc.app.DB2ConnectionTrace <– createStatement - Time Elapsed = 0.01

50 jdbc.app.DB2StatementTrace –> executeQuery(SELECT * FROM EMPLOYEE WHERE

 empno = 000010) (2002-1-28 7:21:0.269)

51 | Statement handle = 1:1

52 | jdbc.app.DB2StatementTrace –> execute2(SELECT * FROM EMPLOYEE WHERE

 empno = 000010) (2002-1-28 7:21:0.269)

52 | | jdbc.DB2Exception –> DB2Exception() (2002-1-28 7:21:0.729)

53 | | | 10: SQLError = [IBM][CLI Driver][DB2/NT] SQL0401N The data types of

 the operands for the operation "=" are not compatible.

 SQLSTATE=42818

54 | | | SQLState = 42818

55 | | | SQLNativeCode = -401

56 | | | LineNumber = 0

57 | | | SQLerrmc = =

58 | | jdbc.DB2Exception <– DB2Exception() [Time Elapsed = 0.0]

59 | jdbc.app.DB2StatementTrace <– executeQuery - Time Elapsed = 0.0

On line 42 and 43, the DB2ConnectionTrace class reported that the JDBC

createStatement() method had been called with connection handle 1. Within that

method, the internal method DB2Statement() was called as reported by another

DB2 JDBC trace facility class, DB2StatementTrace. Notice that this internal method

call appears ’nested’ in the trace entry. Lines 47-49 show that the methods returned

successfully and that statement handle 1:1 was allocated.

On line 50, an SQL query method call is made on statement 1:1, but the call

generates an exception at line 52. The error message is reported on line 53 and

contains the DB2 native error code that was generated (SQL0401N), the sqlstate

that corresponds to that code (SQLSTATE=42818) and a brief description of the

error. In this example, the error results because the EMPLOYEE.EMPNO column is

defined as CHAR(6) and not an integer value as assumed in the query.

Trace CLI/ODBC configuration keyword

Turns on the DB2 CLI/ODBC trace facility.

db2cli.ini keyword syntax:

Trace = 0 | 1

Default setting:

No trace information is captured.

Equivalent environment attribute:

SQL_ATTR_TRACE

Usage notes:

When this option is on (1), CLI/ODBC trace records are appended to the file

indicated by the TraceFileName configuration parameter or to files in the

subdirectory indicated by the TracePathName configuration parameter. Trace will

have no effect if neither TraceFileName or TracePathName is set.

140 Call Level Interface Guide and Reference, Volume 1

The TraceRefreshInterval keyword sets the interval in seconds at which the Trace

keyword is read from the db2cli.ini file. This allows you to dynamically turn off

the CLI/ODBC trace within n seconds.

For example, to set up a CLI/ODBC trace file that is written to disk after each

trace entry:

 [COMMON]

 Trace=1

 TraceFileName=E:\TRACES\CLI\MONDAY.CLI

 TraceFlush=1

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2 databases.)

TraceComm CLI/ODBC configuration keyword

Specifies whether information about each network request is included in the trace

file.

db2cli.ini keyword syntax:

TraceComm = 0 | 1

Default setting:

0 - No network request information is captured.

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

When TraceComm is set on (1) then the following information about each network

request will be included in the trace file:

v which DB2 CLI functions are processed completely on the client and which DB2

CLI functions involve communication with the server

v the number of bytes sent and received in each communication with the server

v the time spent communicating data between the client and server

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceErrImmediate CLI/ODBC configuration keyword

Specifies whether diagnostic records are written to the CLI/ODBC trace when

records are generated.

db2cli.ini keyword syntax:

TraceErrImmediate = 0 | 1

Default setting:

Diagnostic records are only written to the trace file when

SQLGetDiagField() or SQLGetDiagRec() is called; or ″Unretrieved Error

Message″ is written to the trace file for handles which had diagnostic

records that were left unretreived.

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

Chapter 8. Diagnostics overview 141

Setting TraceErrImmediate=1 helps in determining when errors occur during

application execution by writing diagnostic records to the CLI/ODBC trace file at

the time the records are generated. This is especially useful for applications that do

not retrieve diagnostic information using SQLGetDiagField() and SQLGetDiagRec(),

because the diagnostic records that were generated on a handle will be lost if they

are not retrieved or written to the trace file before the next function is called on the

handle.

If TraceErrImmediate=0 (the default setting), then diagnostic records will only be

written to the trace file if an application calls SQLGetDiagField() or

SQLGetDiagRec() to retrieve diagnostic information. If the application does not

retrieve diagnostic information through function calls and this keyword is set to 0,

then the ″Unretrieved Error Message″ entry will be written to the trace file if a

diagnostic record exists, when a function is next called on the handle.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceFileName CLI/ODBC configuration keyword

Specifies a file to which all DB2 CLI/ODBC trace information is written.

db2cli.ini keyword syntax:

TraceFileName = < fully qualified file name >

Default setting:

None

Only applicable when:

the Trace option is turned on.

Usage notes:

If the file specified does not exist, then it will be created; otherwise, the new trace

information will be appended to the end of the file. However, the path the file is

expected in must exist.

If the filename given is invalid or if the file cannot be created or written to, no

trace will occur and no error message will be returned.

This option is only used when the Trace option is turned on. This will be done

automatically when you set this option in the CLI/ODBC Configuration utility.

The TracePathName option will be ignored if this option is set.

DB2 CLI trace should only be used for debugging purposes. It will slow down the

execution of the CLI/ODBC driver, and the trace information can grow quite large

if it is left on for extended periods of time.

The TraceFileName keyword option should not be used with multi-process or

multithreaded applications as the trace output for all threads or processes will be

written to the same log file, and the output for each thread or process will be

difficult to decipher. Furthermore, semaphores are used to control access to the

shared trace file which could change the behavior of multithreaded applications.

There is no default DB2 CLI trace output log file name.

142 Call Level Interface Guide and Reference, Volume 1

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2 databases.)

TraceFlush CLI/ODBC configuration keyword

Forces a write to disk after n CLI/ODBC trace entries.

db2cli.ini keyword syntax:

TraceFlush = 0 | positive integer

Default setting:

Do not write after every entry.

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

TraceFlush specifies how often trace information is written to the CLI trace file. By

default, TraceFlush is set to 0 and each DB2 CLI trace file is kept open until the

traced application or thread terminates normally. If the application terminates

abnormally, some trace information that was not written to the trace log file may

be lost.

Set this keyword to a positive integer to force the DB2 CLI driver to close and

re-open the appropriate trace file after the specified number of trace entries. The

smaller the value of the TraceFlush keyword, the greater the impact DB2 CLI

tracing has on the performance of the application. Setting TraceFlush=1 has the

most impact on performance, but will ensure that each entry is written to disk

before the application continues to the next statement.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceFlushOnError CLI/ODBC configuration keyword

Specifies whether all CLI/ODBC trace entries are written to disk when an error

occurs.

db2cli.ini keyword syntax:

TraceFlushOnError = 0 | 1

Default setting:

Do not write CLI/ODBC trace entries as soon as an error occurs.

Only applicable when:

the CLI/ODBC Trace option is turned on.

Usage notes:

Setting TraceFlushOnError=1 forces the DB2 CLI driver to close and re-open the

trace file each time an error is encountered. If TraceFlushOnError is left at its

default value of 0, then trace file will only be closed when the application

terminates normally or the interval specified by the TraceFlush keyword is reached.

If the application process were to terminate abnormally when

TraceFlushOnError=0, then valuable trace information may be lost. Setting

TraceFlushOnError=1 may impact performance, but will ensure that trace entries

associated with errors are written to disk.

Chapter 8. Diagnostics overview 143

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceLocks CLI/ODBC configuration keyword

Only trace lock timeouts in the CLI/ODBC trace.

db2cli.ini keyword syntax:

TraceLocks = 0 | 1

Default setting:

Trace information is not limited to only lock timeouts.

Only applicable when:

the Trace option is turned on.

Usage notes:

When TraceLocks is set to 1, lock timeouts will be recorded in the trace file.

This option is only used when the CLI/ODBC TRACE option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TracePathName CLI/ODBC configuration keyword

Specifies the subdirectory to be used to store individual DB2 CLI/ODBC trace files.

db2cli.ini keyword syntax:

TracePathName = < fully qualified subdirectory name >

Default setting:

None

Only applicable when:

the Trace option is turned on.

Not applicable when:

the TraceFileName option is turned on.

Usage notes:

Each thread or process that uses the same DLL or shared library will have a

separate DB2 CLI/ODBC trace file created in the specified directory. A

concatenation of the application process ID and the thread sequence number is

automatically used to name trace files.

No trace will occur, and no error message will be returned, if the subdirectory

given is invalid or if it cannot be written to.

This option is only used when the Trace option is turned on. This will be done

automatically when you set this option in the CLI/ODBC Configuration utility.

It will be ignored if the DB2 CLI/ODBC option TraceFileName is used.

DB2 CLI trace should only be used for debugging purposes. It will slow down the

execution of the CLI/ODBC driver, and the trace information can grow quite large

if it is left on for extended periods of time.

144 Call Level Interface Guide and Reference, Volume 1

If both TraceFileName and TracePathName are specified, the TraceFileName

keyword takes precedence and TracePathName will be ignored.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TracePIDList CLI/ODBC configuration keyword

Restricts the process IDs for which the CLI/ODBC trace will be enabled.

db2cli.ini keyword syntax:

TracePIDList = <no value specified> | <comma-delimited list of process

IDs>

Default setting:

All of the process IDs will be traced when the CLI/ODBC trace is run.

Usage notes:

 Use this keyword for applications that create many processes. Capturing

the CLI/ODBC trace for such applications can generate many trace files.

By using this keyword you can collect the trace of specific problematic

processes of applications.

 If no value is specified for this keyword, all process IDs will be traced.

Otherwise, specify a comma-delimited list of process IDs which you want

to be traced when the CLI/ODBC trace runs.

 The TraceRefreshInterval keyword must be set to some value before

initializing your application, otherwise, the TracePIDList keyword will not

take effect.

 (This option is contained in the Common section of the initialization file

and therefore applies to all connections to DB2 databases.)

 To use the TracePIDList keyword:

1. Ensure the Trace CLI/ODBC keyword is set to zero or is not specified

in the db2cli.ini file.

2. Add the TraceRefreshInterval CLI/ODBC keyword to the Common

section of the db2cli.ini file as follows:

[COMMON]

TraceRefreshInterval=<some positive integer>

3. Start your application.

4. Using an operating system command such as ps (on a UNIX and

Linux-based operating systems), determine the process IDs of the

processes that you want to collect the CLI/ODBC trace for.

5. Turn CLI/ODBC tracing on and add the process IDs identified to the

Common section of the db2cli.ini file by including the following

keywords:

[COMMON]

Trace=1

TracePathName=<fully-qualified subdirectory name>

TracePIDList=<comma-delimited list of process IDs>

CLI/ODBC traces containing information of the process IDs specified will

be located in the directory specified by the TracePathName keyword.. You

might also see extra empty files that can be ignored.

TracePIDTID CLI/ODBC configuration keyword

Captures the process ID and thread ID for each item being traced.

Chapter 8. Diagnostics overview 145

db2cli.ini keyword syntax:

TracePIDTID = 0 | 1

Default setting:

The process ID and thread ID for the trace entries are not captured.

Only applicable when:

the Trace option is turned on.

Usage notes:

When TracePIDTID is set to 1, the process ID and thread ID for each captured item

will be recorded in the trace file. This effect is helpful when the Trace keyword is

enabled and multiple applications are executing. This is because Trace writes trace

information for all executing applications to a single file. Enabling TracePIDTID

differentiates the recorded information by process and thread.

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceRefreshInterval CLI/ODBC configuration keyword

Sets the interval (in seconds) at which the Trace and TracePIDList keywords are

read from the Common section of the db2cli.ini file.

db2cli.ini keyword syntax:

TraceRefreshInterval = 0 | positive integer

Default setting:

The Trace and TracePIDList keywords will only be read from the db2cli.ini

file when the application is initialized.

Usage notes:

Setting this keyword before an application is initialized allows you to turn off

dynamically the CLI/ODBC trace within n seconds.

Note: Setting TraceRefreshInterval while the application is running will no effect.

For this keyword to take effect, it must be set before the application is initialized.

Only the Trace and TracePIDList keywords will be refreshed from the db2cli.ini file

if this keyword is set. No other CLI/ODBC configuration keywords will be re-read.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceStmtOnly CLI/ODBC configuration keyword

Only trace dynamic SQL statements in the CLI/ODBC trace.

db2cli.ini keyword syntax:

TraceStmtOnly = 0 | 1

Default setting:

Trace information is not limited to only dynamic SQL statements.

Only applicable when:

the Trace option is turned on.

146 Call Level Interface Guide and Reference, Volume 1

Usage notes:

When TraceStmtOnly is set to 1, only dynamic SQL statements will be recorded in

the trace file.

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceTime CLI/ODBC configuration keyword

Captures elapsed time counters in the trace file.

db2cli.ini keyword syntax:

TraceTime = 1 | 0

Default setting:

Elapsed time counters are included in the trace file.

Only applicable when:

the Trace option is turned on.

Usage notes:

When TraceTime is set to 1, elapsed time counters will be captured in the trace file.

For example:

SQLPrepare(hStmt=1:1, pszSqlStr="SELECT * FROM ORG", cbSqlStr=-3)

 –––> Time elapsed – +6.785751E+000 seconds (StmtOut="SELECT * FROM ORG")

SQLPrepare()

 <––– SQL_SUCCESS Time elapsed – +2.527400E–002 seconds

Turn TraceTime off, by setting it to 0, to improve performance or to generate

smaller trace files. For example:

SQLPrepare(hStmt=1:1, pszSqlStr="SELECT * FROM ORG", cbSqlStr=-3)

(StmtOut="SELECT * FROM ORG")

SQLPrepare()

 <––– SQL_SUCCESS

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

TraceTimestamp CLI/ODBC configuration keyword

Specifies what type of timestamp information (if any) is recorded in the

CLI/ODBC trace.

db2cli.ini keyword syntax:

TraceTimestamp = 0 | 1 | 2 | 3

Default setting:

No timestamp information is written to the trace file.

Only applicable when:

the Trace option is turned on.

Usage notes:

Chapter 8. Diagnostics overview 147

Setting TraceTimeStamp to a value other than the default of 0 means the current

timestamp or absolute execution time is added to the beginning of each line of

trace information as it is being written to the DB2 CLI trace file. The following

settings indicate what type of timestamp information is captured in the trace file:

v 0 = no timestamp information

v 1 = processor ticks and ISO timestamp (absolute execution time in seconds and

milliseconds, followed by a timestamp)

v 2 = processor ticks (absolute execution time in seconds and milliseconds)

v 3 = ISO timestamp

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and

therefore applies to all connections to DB2.)

148 Call Level Interface Guide and Reference, Volume 1

Chapter 9. Catalog functions for querying system catalog

information in CLI applications

One of the first tasks an application often performs is to display a list of tables

from which one or more are selected by the user. Although the application can

issue its own queries against the database system catalog to get catalog

information for such a DB2 command, it is best that the application calls the DB2

CLI catalog functions instead. These catalog functions, also called schema

functions, provide a generic interface to issue queries and return consistent result

sets across the DB2 family of servers. This allows the application to avoid

server-specific and release-specific catalog queries.

The catalog functions operate by returning to the application a result set through a

statement handle. Calling these functions is conceptually equivalent to using

SQLExecDirect() to execute a select against the system catalog tables. After calling

these functions, the application can fetch individual rows of the result set as it

would process column data from an ordinary SQLFetch(). The DB2 CLI catalog

functions are:

v SQLColumnPrivileges()

v SQLColumns()

v SQLForeignKeys()

v SQLGetTypeInfo()

v SQLPrimaryKeys()

v SQLProcedureColumns()

v SQLProcedures()

v SQLSpecialColumns()

v SQLStatistics()

v SQLTablePrivileges()

v SQLTables()

The result sets returned by these functions are defined in the descriptions for each

catalog function. The columns are defined in a specified order. In future releases,

other columns may be added to the end of each defined result set, therefore

applications should be written in a way that would not be affected by such

changes.

Some of the catalog functions result in execution of fairly complex queries, and for

this reason should only be called when needed. It is recommended that the

application save the information returned rather than making repeated calls to get

the same information.

Input arguments on catalog functions in CLI applications

All of the catalog functions have CatalogName and SchemaName (and their

associated lengths) on their input argument list. Other input arguments may also

include TableName, ProcedureName, or ColumnName (and their associated lengths).

These input arguments are used to either identify or constrain the amount of

information to be returned.

© Copyright IBM Corp. 1993, 2007 149

Input arguments to catalog functions may be treated as ordinary arguments or

pattern value arguments. An ordinary argument is treated as a literal, and the case

of letters is significant. These arguments limit the scope of the query by identifying

the object of interest. An error results if the application passes a null pointer for the

argument.

Some catalog functions accept pattern values on some of their input arguments.

For example, SQLColumnPrivileges() treats SchemaName and TableName as ordinary

arguments and ColumnName as a pattern value. Refer to the ″Function Arguments″

section of the specific catalog function to see if a particular input argument accepts

pattern values.

Inputs treated as pattern values are used to constrain the size of the result set by

including only matching rows as though the underlying query’s WHERE clause

contained a LIKE predicate. If the application passes a null pointer for a pattern

value input, the argument is not used to restrict the result set (that is, there is no

corresponding LIKE in the WHERE clause). If a catalog function has more than one

pattern value input argument, they are treated as though the LIKE predicates of

the WHERE clauses in the underlying query were joined by AND; a row appears

in this result set only if it meets all the conditions of the LIKE predicates.

Each pattern value argument can contain:

v The underscore (_) character which stands for any single character.

v The percent (%) character which stands for any sequence of zero or more

characters. Note that providing a pattern value containing a single % is

equivalent to passing a null pointer for that argument.

v Characters with no special meaning which stand for themselves. The case of a

letter is significant.

These argument values are used on conceptual LIKE predicate(s) in the WHERE

clause. To treat the metadata characters (_, %) as themselves, an escape character

must immediately precede the _ or %. The escape character itself can be specified

as part of the pattern by including it twice in succession. An application can

determine the escape character by calling SQLGetInfo() with

SQL_SEARCH_PATTERN_ESCAPE.

For example, the following calls would retrieve all the tables that start with ’ST’:

 /* tbinfo.c */

 /* ... */

 struct

 { SQLINTEGER ind ;

 SQLCHAR val[129] ;

 } tbQualifier, tbSchema, tbName, tbType;

 struct

 { SQLINTEGER ind ;

 SQLCHAR val[255] ;

 } tbRemarks;

 SQLCHAR tbSchemaPattern[] = "

 SQLCHAR tbNamePattern[] = "ST /* all the tables starting with ST */

 /* ... */

 sqlrc = SQLTables(hstmt, NULL, 0,

 tbSchemaPattern, SQL_NTS,

 tbNamePattern, SQL_NTS,

 NULL, 0);

 /* ... */

150 Call Level Interface Guide and Reference, Volume 1

/* bind columns to variables */

 sqlrc = SQLBindCol(hstmt, 1, SQL_C_CHAR, tbQualifier.val, 129,

 &tbQualifier.ind) ;

 STMT_HANDLE_CHECK(hstmt, sqlrc);

 sqlrc = SQLBindCol(hstmt, 2, SQL_C_CHAR, tbSchema.val, 129,

 &tbSchema.ind) ;

 STMT_HANDLE_CHECK(hstmt, sqlrc);

 sqlrc = SQLBindCol(hstmt, 3, SQL_C_CHAR, tbName.val, 129,

 &tbName.ind) ;

 STMT_HANDLE_CHECK(hstmt, sqlrc);

 sqlrc = SQLBindCol(hstmt, 4, SQL_C_CHAR, tbType.val, 129,

 &tbType.ind) ;

 STMT_HANDLE_CHECK(hstmt, sqlrc);

 sqlrc = SQLBindCol(hstmt, 5, SQL_C_CHAR, tbRemarks.val, 255,

 &tbRemarks.ind) ;

 STMT_HANDLE_CHECK(hstmt, sqlrc);

 /* ... */

 sqlrc = SQLFetch(hstmt);

 /* ... */

 while (sqlrc != SQL_NO_DATA_FOUND)

 { /* ... */

 sqlrc = SQLFetch(hstmt);

 /* ... */

 }

Chapter 9. Querying system catalogs 151

152 Call Level Interface Guide and Reference, Volume 1

Chapter 10. Programming hints and tips for CLI applications

This topic discusses the following subjects:

v KEEPDYNAMIC support

v Common connection attributes

v Common statement attributes

v Reusing statement handles

v Binding and SQLGetData()

v Limiting use of catalog functions

v Column names of function generated result sets

v DB2 CLI-specific functions loaded from ODBC applications

v Global dynamic statement caching

v Data insertion and retrieval optimization

v Large object data optimization

v Case sensitivity of object identifiers

v SQLDriverConnect() versus SQLConnect()

v Turning off statement scanning

v Holding cursors across rollbacks

v Preparing compound SQL sub-statements

v User-defined types casting

v Deferred prepare to reduce network flow

KEEPDYNAMIC behavior refers to the server’s ability to keep a dynamic

statement in a prepared state, even after a commit has been performed. This

behavior eliminates the need for the client to prepare the statement again, the next

time the statement is executed. Some DB2 CLI/ODBC applications on the client

might improve their performance by taking advantage of the KEEPDYNAMIC

behavior on servers that are DB2 for z/OS and OS/390 Version 7 and later.

Complete the following steps to enable KEEPDYNAMIC behavior:

1. Enable the dynamic statement cache on the DB2 for z/OS and OS/390 server

(refer to the DB2 for z/OS and OS/390 server documentation).

2. Bind the db2clipk.bnd file on your DB2 Database for Linux, UNIX, and

Windows client with the KEEPDYNAMIC and COLLECTION options. The

following example shows how to bind db2clipk.bnd, creating a collection

named KEEPDYNC:

v db2 connect to database_name user userid using password

v db2 bind db2clipk.bnd SQLERROR CONTINUE BLOCKING ALL

KEEPDYNAMIC YES COLLECTION KEEPDYNC GRANT PUBLIC

v db2 connect reset
3. Inform the client that the KEEPDYNAMIC bind option is enabled for your

collection by performing either of the following:

v Set the following CLI/ODBC configuration keywords in the db2cli.ini file:

KeepDynamic = 1, CurrentPackageSet = collection name created in Step 2.

For example:

[dbname]

KeepDynamic=1

CurrentPackageSet=KEEPDYNC

© Copyright IBM Corp. 1993, 2007 153

v Set the SQL_ATTR_KEEPDYNAMIC and

SQL_ATTR_CURRENT_PACKAGE_SET connection attributes in the DB2

CLI/ODBC application. For example:

SQLSetConnectAttr(hDbc,

 SQL_ATTR_KEEP_DYNAMIC,

 (SQLPOINTER) 1,

 SQL_IS_UINTEGER);

SQLSetConnectAttr(hDbc,

 SQL_ATTR_CURRENT_PACKAGE_SET,

 (SQLPOINTER) "KEEPDYNC",

 SQL_NTS);

Refer to the DB2 for OS/390 and z/OS documentation for further information on

KEEPDYNAMIC behavior and configuration.

Common connection attributes

The following connection attributes might need to be set by DB2 CLI applications:

v SQL_ATTR_AUTOCOMMIT - Generally this attribute should be set to

SQL_AUTOCOMMIT_OFF, since each commit request can generate extra

network flow. Only leave SQL_AUTOCOMMIT_ON on if specifically needed.

Note: The default is SQL_AUTOCOMMIT_ON.

v SQL_ATTR_TXN_ISOLATION - This connection attribute determines the

isolation level at which the connection or statement will operate. The isolation

level determines the level of concurrency possible, and the level of locking

required to execute the statement. Applications need to choose an isolation level

that maximizes concurrency, yet ensures data consistency.

Common statement attributes

The following statement attributes might need to be set by DB2 CLI applications:

v SQL_ATTR_MAX_ROWS - Setting this attribute limits the number of rows

returned to the application from query operations. This can be used to avoid

overwhelming an application with a very large result set generated

inadvertently, which is especially useful for applications on clients with limited

memory resources.

Setting SQL_ATTR_MAX_ROWS while connected to DB2 for z/OS and OS/390

Version 7 and later will add “OPTIMIZE FOR n ROWS” and “FETCH FIRST n

ROWS ONLY” clauses to the statement. For versions of DB2 for OS/390 prior to

Version 7 and any DBMS that does not support the “FETCH FIRST n ROWS

ONLY” clause, the full result set is still generated at the server using the

“OPTIMIZE FOR n ROWS” clause, however DB2 CLI will count the rows on the

client and only fetch up to SQL_ATTR_MAX_ROWS rows.

v SQL_ATTR_CURSOR_HOLD - This statement attribute determines if the cursor

for this statement will be declared by DB2 CLI using the WITH HOLD clause.

Resources associated with statement handles can be better utilized by the server

if the statements that do not require cursor-hold behavior have this attribute set

to SQL_CURSOR_HOLD_OFF. The efficiency gains obtained by the proper use

of this attribute are considerable on OS/390 and z/OS.

Note: Many ODBC applications expect a default behavior where the cursor

position is maintained after a commit.

v SQL_ATTR_TXN_ISOLATION - DB2 CLI allows the isolation level to be set at

the statement level, however, it is recommended that the isolation level be set at

154 Call Level Interface Guide and Reference, Volume 1

the connection level. The isolation level determines the level of concurrency

possible, and the level of locking required to execute the statement.

Resources associated with statement handles can be better utilized by DB2 CLI if

statements are set to the required isolation level, rather than leaving all

statements at the default isolation level. This should only be attempted with a

thorough understanding of the locking and isolation levels of the connected

DBMS.

Applications should use the minimum isolation level possible to maximize

concurrency.

Reusing statement handles

Each time a CLI application declares a statement handle, the DB2 CLI driver

allocates and then initializes an underlying data structure for that handle. To

increase performance, CLI applications can reuse statement handles with different

statements, thereby avoiding the costs associated with statement handle allocation

and initialization.

Note: Before reusing statement handles, memory buffers and other resources used

by the previous statement might need to be released by calling the SQLFreeStmt()

function. Also, statement attributes previously set on a statement handle (for

example, SQL_ATTR_PARAMSET_SIZE) need to be explicitly reset, otherwise they

might be inherited by all future statements using the statement handle.

Binding and SQLGetData()

Generally it is more efficient to bind application variables or file references to

result sets than to use SQLGetData(). When the data is in a LOB column, LOB

functions are preferable to SQLGetData() (see Large object data optimization for

more information). Use SQLGetData() when the data value is large variable-length

data that:

v must be received in pieces, or

v might not need to be retrieved.

Limiting use of catalog functions

Catalog functions, such as SQLTables(), force the DB2 CLI driver to query the

DBMS catalog tables for information. The queries issued are complex and the

DBMS catalog tables can be very large. In general, try to limit the number of times

the catalog functions are called, and limit the number of rows returned.

The number of catalog function calls can be reduced by calling the function once,

and having the application store (cache) the data.

The number of rows returned can be limited by specifying a:

v Schema name or pattern for all catalog functions

v Table name or pattern for all catalog functions other than SQLTables()

v Column name or pattern for catalog functions that return detailed column

information.

Remember that although an application might be developed and tested against a

data source with hundreds of tables, it might be run against a database with

thousands of tables. Consider this likelihood when developing applications.

Chapter 10. Programming hints and tips 155

Close any open cursors (call SQLCloseCursor() or SQLFreeStmt() with SQL_CLOSE

Option) for statement handles used for catalog queries to release any locks against

the catalog tables. Outstanding locks on the catalog tables can prevent CREATE,

DROP or ALTER statements from executing.

Column names of function generated result sets

The column names of the result sets generated by catalog and information

functions might change as the ODBC and CLI standards evolve. The position of the

columns, however, will not change.

Any application dependency should be based on the column position (iCol

parameter used in SQLBindCol(), SQLGetData(), and SQLDescribeCol()) and not the

name.

DB2 CLI-specific functions loaded from ODBC applications

The ODBC Driver Manager maintains its own set of statement handles which it

maps to the CLI statement handles on each call. When a DB2 CLI function is called

directly, it must be passed to the CLI driver statement handle, as the CLI driver

does not have access to the ODBC mapping.

Call SQLGetInfo() with the SQL_DRIVER_HSTMT option to obtain the DB2 CLI

statement handle (HSTMT). The DB2 CLI functions can then be called directly

from the shared library or DLL, passing the HSTMT argument where required.

Global dynamic statement caching

DB2 servers at version 5 or later for UNIX or Windows have a global dynamic

statement cache. This cache is used to store the most popular access plans for

prepared dynamic SQL statements.

Before each statement is prepared, the server automatically searches this cache to

see if an access plan has already been created for this exact SQL statement (by this

application or any other application or client). If so, the server does not need to

generate a new access plan, but will use the one in the cache instead. There is now

no need for the application to cache connections at the client unless connecting to a

server that does not have a global dynamic statement cache.

Data insertion and retrieval optimization

The methods that describe using arrays to bind parameters and retrieve data use

compound SQL to optimize network flow. Use these methods as much as possible.

Large object data optimization

Use LOB data types and the supporting functions for long strings whenever

possible. Unlike LONG VARCHAR, LONG VARBINARY, and LONG

VARGRAPHIC types, LOB data values can use LOB locators and functions such as

SQLGetPosition() and SQLGetSubString() to manipulate large data values at the

server.

LOB values can also be fetched directly to a file, and LOB parameter values can be

read directly from a file. This saves the overhead of the application transferring

data via application buffers.

156 Call Level Interface Guide and Reference, Volume 1

Case sensitivity of object identifiers

All database object identifiers, such as table names, view names and column names

are stored in the catalog tables in uppercase unless the identifier is delimited. If an

identifier is created using a delimited name, the exact case of the name is stored in

the catalog tables.

When an identifier is referenced within an SQL statement, it is treated as case

insensitive unless it is delimited.

For example, if the following two tables are created,

 CREATE TABLE MyTable (id INTEGER)

 CREATE TABLE "YourTable" (id INTEGER)

two tables will exist, MYTABLE and YourTable

Both of the following statements are equivalent:

 SELECT * FROM MyTable (id INTEGER)

 SELECT * FROM MYTABLE (id INTEGER)

The second statement below will fail with TABLE NOT FOUND since there is no table

named YOURTABLE:

 SELECT * FROM "YourTable" (id INTEGER) // executes without error

 SELECT * FROM YourTable (id INTEGER) // error, table not found

All DB2 CLI catalog function arguments treat the names of objects as case sensitive,

that is, as if each name was delimited.

SQLDriverConnect() versus SQLConnect()

Using SQLDriverConnect() allows the application to rely on the dialog box

provided by DB2 CLI to prompt the user for the connection information.

If an application uses its own dialog boxes to query the connect information, the

user should be able to specify additional connect options in the connection string.

The string should also be stored and used as a default on subsequent connections.

Turning off statement scanning

DB2 CLI by default, scans each SQL statement searching for vendor escape clause

sequences.

If the application does not generate SQL statements that contain vendor escape

clause sequences, then the SQL_ATTR_NOSCAN statement attribute should be set

to SQL_NOSCAN_ON at the connection level so that DB2 CLI does not perform a

scan for vendor escape clauses.

Holding cursors across rollbacks

Applications that need to deal with complex transaction management issues might

benefit from establishing multiple concurrent connections to the same database.

Each connection in DB2 CLI has its own transaction scope, so any actions

performed on one connection do not affect the transactions of other connections.

For example, all open cursors within a transaction get closed if a problem causes

the transaction to be rolled back. An application can use multiple connections to

Chapter 10. Programming hints and tips 157

the same database to separate statements with open cursors; since the cursors are

in separate transactions, a rollback on one statement does not affect the cursors of

the other statements.

However, using multiple connections might mean bringing some data across to the

client on one connection, and then sending it back to the server on the other

connection. For example:

v Suppose in connection #1 you are accessing large object columns and have

created LOB locators that map to portions of large object values.

v If in connection #2, you want to use (for example to insert) the portion of the

LOB values represented by the LOB locators, you would have to move the LOB

values in connection #1 first to the application, and then pass them to the tables

that you are working with in connection #2. This is because connection #2 does

not know anything about the LOB locators in connection #1.

v If you only had one connection, then you could just use the LOB locators

directly. However, you would lose the LOB locators as soon as you rolled back

your transaction.

Note: When multiple connections to a single database are used by an application,

the application must be careful to synchronize access to database objects or it

might experience various lock contention issues, as database locks are not shared

between transactions. Updates by one connection can easily force other connections

into a lock-wait state until the first connection releases the lock (through a

COMMIT or ROLLBACK).

Preparing compound SQL sub-statements

In order to maximize efficiency of the compound statement, sub-statements should

be prepared before the BEGIN COMPOUND statement, and then executed within

the compound statement.

This also simplifies error handling since prepare errors can be handled outside of

the compound statement.

User-defined types and casting

If a parameter marker is used in a predicate of a query statement, and the

parameter is a user defined type, the statement must use a CAST function to cast

either the parameter marker or the UDT.

For example, suppose the following type and table is defined:

 CREATE DISTINCT TYPE CNUM AS INTEGER WITH COMPARISONS

 CREATE TABLE CUSTOMER (

 Cust_Num CNUM NOT NULL,

 First_Name CHAR(30) NOT NULL,

 Last_Name CHAR(30) NOT NULL,

 Phone_Num CHAR(20) WITH DEFAULT,

 PRIMARY KEY (Cust_Num))

Suppose also that the following SQL statement was then issued:

 SELECT first_name, last_name, phone_num from customer

 WHERE cust_num = ?

This statement would fail because the parameter marker cannot be of type CNUM

and thus the comparison fails due to incompatible types.

158 Call Level Interface Guide and Reference, Volume 1

Casting the column to integer (its base SQL type), allows the comparison to work

since a parameter can be provided for type integer:

 SELECT first_name, last_name, phone_num from customer

 where cast(cust_num as integer) = ?

Alternatively the parameter marker can be cast to INTEGER and the server can

then apply the INTEGER to CNUM conversion:

 SELECT first_name, last_name, phone_num FROM customer

 where cust_num = cast(? as integer)

Deferred prepare to reduce network flow

In DB2 CLI, deferred prepare is on by default. The PREPARE request is not sent to

the server until the corresponding execute request is issued. The two requests are

then combined into one command/reply flow (instead of two) to minimize

network flow and to improve performance. This is of greatest benefit when an

application generates queries with very small answer sets, because the overhead of

requests and replies flowing over the network represents a large percentage of the

processing time. In an environment where a DB2 Connect or DDCS gateway is

used, there is a greater opportunity for cost reduction because four request and

reply combinations are reduced to two.

Note: Functions such as SQLDescribeParam(), SQLDescribeCol(), SQLNumParams(),

and SQLNumResultCols() require that the statement has been prepared. If the

statement has not already been prepared, these functions trigger an immediate

PREPARE request to the server, and the benefit of deferred prepare does not

appear.

Reduction of network flows with CLI array input chaining

CLI array input chaining is a feature that, when enabled, causes requests for the

execution of prepared statements to be held and queued at the client until the

chain is ended. Once the chain has been ended, all of the chained SQLExecute()

requests at the client are then sent to the server in a single network flow.

The following sequence of events (presented as pseudocode) is an example of how

CLI array input chaining can reduce the number of network flows to the server:

SQLPrepare (statement1)

SQLExecute (statement1)

SQLExecute (statement1)

/* the two execution requests for statement1 are sent to the server in

two network flows */

SQLPrepare (statement2)

/* enable chaining */

SQLSetStmtAttr (statement2, SQL_ATTR_CHAINGING_BEGIN)

SQLExecute (statement2)

SQLExecute (statement2)

SQLExecute (statement2)

/* end chaining */

SQLSetStmtAttr (statement2, SQL_ATTR_CHAINING_END)

/* the three execution requests for statement2 are sent to the server

in a single network flow, instead of three separate flows */

Chapter 10. Programming hints and tips 159

If SQL_ERROR or SQL_SUCCESS_WITH_INFO is returned when setting

SQL_ATTR_CHAINING_END, then at least one statement in the chain of

statements returned SQL_ERROR or SQL_SUCCESS_WITH_INFO when it was

executed. Use the CLI diagnostic functions SQLGetDiagRec() and

SQLGetDiagField() to retrieve information about what has caused the error or

warning.

160 Call Level Interface Guide and Reference, Volume 1

Chapter 11. Multisite updates (two phase commit) in CLI

applications

A typical transaction scenario portrays an application which interacts with only

one database server in a transaction. Even though concurrent connections allow for

concurrent transactions, the different transactions are not coordinated.

With multisite updates, the two phase commit (2PC) protocol, and coordinated

distributed transactions, an application is able to update data in multiple remote

database servers with guaranteed integrity.

Note: Multisite update is also known as Distributed Unit of Work (DUOW).

A typical banking transaction is a good example of a multisite update. Consider

the transfer of money from one account to another in a different database server. In

such a transaction it is critical that the updates that implement the debit operation

on one account do not get committed unless the updates required to process the

credit to the other account are committed as well. Multisite update considerations

apply when data representing these accounts is managed by two different database

servers

Some multisite updates involve the use of a transaction manager (TM) to

coordinate two-phase commit among multiple databases. DB2 CLI applications can

be written to use various transaction managers:

v DB2 as transaction manager

v Process-based XA-compliant transaction program monitor

v Host and AS/400® database servers

Note: There is no specific DB2 CLI/ODBC client configuration required when

connecting to a host or iSeries database server, although the machine running

DB2 Connect might require certain configuration settings to enable running

multisite update mode against the host.

ConnectType CLI/ODBC configuration keyword

Controls whether the application is to operate in a remote or distributed unit of

work.

db2cli.ini keyword syntax:

ConnectType = 1 | 2

Default setting:

Remote unit of work.

Equivalent environment or connection attribute:

SQL_ATTR_CONNECTTYPE

Usage notes:

This option allows you to specify the default connect type. The options are:

v 1 = Remote unit of work. Multiple concurrent connections, each with its

own commit scope. The concurrent transactions are not coordinated.

This is the default.

© Copyright IBM Corp. 1993, 2007 161

v 2= Distributed unit of work. Coordinated connections where multiple

databases participate under the same distributed unit of work.

The first connection determines the connect type for all other connections

that are allocated under the same environment handle.

 This keyword takes precedence over the environment or connection

attribute.

DB2 as transaction manager in CLI applications

Configuration of DB2 as transaction manager

DB2 CLI/ODBC applications can use DB2 itself as the Transaction Manager (DB2

TM) to coordinate distributed transactions against all IBM database servers.

The DB2 Transaction Manager must be set up according to the information in the

DB2 transaction manager configuration documentation.

To use DB2 as the transaction manager in CLI/ODBC applications, the following

configurations must be applied:

v The SQL_ATTR_CONNECTTYPE environment attribute must be set. This

attribute controls whether the application is to operate in a coordinated or

uncoordinated distributed environment. Commits or rollbacks among multiple

database connections are coordinated in a coordinated distributed environment.

The two possible values for this attribute are:

– SQL_CONCURRENT_TRANS - supports single database per transaction

semantics. Multiple concurrent connections to the same database and to

different databases are permitted. Each connection has its own commit scope.

No effort is made to enforce coordination of transactions. This is the default

and corresponds to a Type 1 CONNECT in embedded SQL.

– SQL_COORDINATED_TRANS - supports multiple databases per transaction

semantics. A coordinated transaction is one in which commits or rollbacks

among multiple database connections are coordinated. Setting

SQL_ATTR_CONNECTTYPE to this value corresponds to Type 2 CONNECT

in embedded SQL.

It is recommended that the application set this environment attribute with a call

to SQLSetEnvAttr(), if necessary, as soon as the environment handle has been

allocated. However, since ODBC applications cannot access SQLSetEnvAttr(),

they must set this using SQLSetConnectAttr() after each connection handle is

allocated, but before any connections have been established.

All connections on an environment handle must have the same

SQL_ATTR_CONNECTTYPE setting. An environment cannot have a mixture of

concurrent and coordinated connections. The type of the first connection will

determine the type of all subsequent connections. SQLSetEnvAttr() will return

an error if an application attempts to change the connect type while there is an

active connection.

v If SQL_ATTR_CONNECTTYPE is set to SQL_COORDINATED_TRANS as

described above, two-phase commit is used to commit the work done by each

database in a multiple database transaction. This requires the use of a

Transaction Manager to coordinate two-phase commits amongst the databases

that support this protocol. Multiple readers and multiple updaters are allowed

within a transaction.

v The function SQLEndTran() must be used in a multisite update environment

when DB2 is acting as the transaction manager.

162 Call Level Interface Guide and Reference, Volume 1

Application flows in concurrent and coordinated transactions

Figure 9 shows the logical flow of an application executing statements on two

SQL_CONCURRENT_TRANS connections (’A’ and ’B’), and indicates the scope of

the transactions.

Figure 10 on page 164 shows the same statements being executed on two

SQL_COORDINATED_TRANS connections (’A’ and ’B’), and the scope of a

coordinated distributed transaction.

Transaction

Transaction

Transaction Transaction

Allocate Connect "A"
Connect "A"

Allocate Statement "A1"
Allocate Statement "A2"

Allocate Connect "B"
Connect "B"

Allocate Statement "B1"
Allocate Statement "B2"

Execute Statement "A1"
Execute Statement "A2"

Commit "A"

Execute Statement "B2"
Execute Statement "B1"

Commit "B"

Execute Statement "A1"

Execute Statement "A2"
Commit "A"

Execute Statement "B2"

Execute Statement "B2"

Execute Statement "B1"
Commit "B"

Initialize two connections.
Two statement handles
per connection.

Figure 9. Multiple connections with concurrent transactions

Chapter 11. Multisite updates (two phase commit) 163

Restrictions

Mixing embedded SQL and CLI/ODBC calls in a multisite update environment is

supported, but all the same restrictions of writing mixed applications are imposed.

Process-based XA-compliant Transaction Program Monitor (XA TP)

programming considerations for CLI applications

Process-based XA TPs, such as CICS® and Encina®, start up one application server

per process. In each application-server process, the connections are already

established using the XA API (xa_open). This section describes the environment

configurations and considerations for running DB2 CLI/ODBC applications under

this environment.

Configuration

The XA Transaction Manager must be set up according to the configuration

considerations for XA transaction managers.

Figure 10. Multiple connections with coordinated transactions

164 Call Level Interface Guide and Reference, Volume 1

Note: Setting the CLI/ODBC configuration keywords for connections is no longer

required when in an XA Transactional processing environment.

Programming considerations

DB2 CLI/ODBC applications written for this environment must complete the

following steps:

v The application must first call SQLConnect() or SQLDriverConnect() to associate

the TM-opened connections with the CLI/ODBC connection handle. The data

source name must be specified. User ID and Password are optional.

v The application must call the XA TM to do a commit or rollback. As a result,

since the CLI/ODBC driver does not know that the transaction has ended, the

application should do the following before exiting:

– Drop all CLI/ODBC statement handles.

– Free up the connection handle by calling SQLDisconnect() and

SQLFreeHandle(). The actual database connection will not be disconnected

until the XA TM performs an xa_close.

Restrictions

Mixing embedded SQL and CLI/ODBC calls in a multisite update environment is

supported, but all the same restrictions of writing mixed applications are imposed.

Chapter 11. Multisite updates (two phase commit) 165

166 Call Level Interface Guide and Reference, Volume 1

Chapter 12. Asynchronous execution of CLI functions

DB2 CLI can run a subset of CLI functions asynchronously. For these functions, the

DB2 CLI driver returns control to the application after calling the function but

before that function has finished executing.

Asynchronous execution is possible for those functions that normally send a

request to the server and then wait for a response. The functions return

SQL_STILL_EXECUTING each time they are called until they are finished running,

at which point they return a different value (for example, SQL_SUCCESS). Rather

than waiting for a response, a function executing asynchronously returns control to

the application. The application can then perform other tasks and poll the function

until a return code other than SQL_STILL_EXECUTING is returned. Refer to the

SQL_ATTR_ASYNC_ENABLE connection or statement attribute for a list of

functions that can be executed asynchronously.

In order for an application to run CLI functions asynchronously, the application

must include the following:

1. A call to the function SQLGetInfo() with the SQL_ASYNC_MODE option to

ensure support for asynchronous calls.

2. A call to SQLSetConnectAttr() or SQLSetStmtAttr() with the

SQL_ATTR_ASYNC_ENABLE attribute to enable asynchronous calls once it has

been established that there is support for asynchronous calls.

3. A call to a function that supports asynchronous execution and polling of the

asynchronous function. When the application calls a function that can be run

asynchronously, one of two things can happen:

v If the function will not benefit from being run asynchronously, DB2 CLI can

decide to run it synchronously and return the normal return code (other than

SQL_STILL_EXECUTING). In this case the application runs as it would if the

asynchronous mode had not been enabled.

v DB2 CLI will perform some minimal processing (such as checking the

arguments for errors), then pass the statement on to the server. Once this

quick processing is complete a return code of SQL_STILL_EXECUTING is

returned to the application.

Functions that can be called during asynchronous execution

Once a function has been called asynchronously, only the original function,

SQLAllocHandle(), SQLCancel(), SQLGetDiagField(), or SQLGetDiagRec() can be

called on the statement or the connection associated with StatementHandle, until the

original function returns a code other than SQL_STILL_EXECUTING. Any other

function called on StatementHandle or the connection associated with

StatementHandle returns SQL_ERROR with an SQLSTATE of HY010 (Function

sequence error.).

Diagnostic information while a function is running

asynchronously

SQLGetDiagField() returns the following values when it is called on a statement

handle that has an asynchronous function executing:

© Copyright IBM Corp. 1993, 2007 167

v The values of SQL_DIAG_CURSOR_ROW_COUNT,

SQL_DIAG_DYNAMIC_FUNCTION,

SQL_DIAG_DYNAMIC_FUNCTION_CODE, and SQL_DIAG_ROW_COUNT

header fields are undefined.

v SQL_DIAG_NUMBER header field returns 0.

v SQL_DIAG_RETURN_CODE header field returns SQL_STILL_EXECUTING.

v All record fields return SQL_NO_DATA.

SQLGetDiagRec() always returns SQL_NO_DATA when it is called on a statement

handle that has an asynchronous function executing.

Cancelling the asynchronous function call

The application can issue a request to cancel any function that is running

asynchronously by calling SQLCancel(). A function that has already finished

executing cannot be cancelled.

The return code from the SQLCancel() call indicates whether the cancel request

was received, not whether the execution of the asynchronous function was

stopped.

The only way to tell if the function was canceled is to call it again, using the

original arguments.

v If the cancel was successful, the function will return SQL_ERROR and an

SQLSTATE of HY008 (Operation was cancelled.).

v If the cancel was not successful, the function will return a value other than

SQL_ERROR with an SQLSSTATE of HY008. For example, the function might

return SQL_STILL_EXECUTING.

Executing functions asynchronously in CLI applications

Executing functions asynchronously in CLI applications is part of the larger task of

programming with CLI. The task of enabling asynchronous functions and working

with those functions involves ensuring that asynchronous execution is supported,

initializing the application for asynchronous execution, and working with the

functions to take advantage of asynchronous execution.

Before you begin setting up your CLI application for asynchronous execution, you

must allocate an environment handle and a connection handle. This is part of the

task of initializing your CLI application.

An application can have at most 1 active function running in asynchronous mode

on any one connection. If asynchronous mode is enabled at the connection level,

all statements already allocated, as well as future statement handles allocated on

the connection will be enabled for asynchronous execution.

1. Call SQLGetInfo() with InfoType SQL_ASYNC_MODE to ensure that functions

can be called asynchronously. For example:

 /* See what type of Asynchronous support is available. */

 rc = SQLGetInfo(hdbc, /* Connection handle */

 SQL_ASYNC_MODE, /* Query the support available */

 &ubuffer, /* Store the result in this variable */

 4,

 &outlen);

The call to the SQLGetInfo() function will return one of the following values:

168 Call Level Interface Guide and Reference, Volume 1

v SQL_AM_STATEMENT: asynchronous execution can be turned on or off at a

statement level.

v SQL_AM_CONNECTION: asynchronous execution can be turned on or off at

a connection level.

v SQL_AM_NONE: asynchronous execution is not supported. Your application

cannot be set up for asynchronous execution. This will be returned for one of

two reasons:

– The datasource itself does not support asynchronous execution.

– The DB2 CLI/ODBC configuration keyword ASYNCENABLE has been

specifically set to disable asynchronous execution.
2. Set the SQL_ATTR_ASYNC_ENABLE attribute using SQLSetStmtAttr() or

SQLSetConnectAttr() to enable your application for asynchronous execution if

the return value from SQLGetInfo() is either SQL_AM_STATEMENT or

SQL_AM_CONNECTION.

v If the return value is SQL_AM_STATEMENT, set

SQL_ATTR_ASYNC_ENABLE to SQL_ASYNC_ENABLE_ON using

SQLSetStmtAttr(). For example:

 /* Set statement level asynchronous execution on */

 rc = SQLSetStmtAttr(hstmt, /* Statement handle */

 SQL_ATTR_ASYNC_ENABLE,

 (SQLPOINTER) SQL_ASYNC_ENABLE_ON,

 0);

v If the return value is SQL_AM_CONNECTION, set the

SQL_ATTR_ASYNC_ENABLE to SQL_ASYNC_ENABLE_ON using

SQLSetConnectAttr(). For example:

 /* Set connection level asynchronous execution on */

 rc = SQLSetConnectAttr(hstmt, /* Connection handle */

 SQL_ATTR_ASYNC_ENABLE,

 (SQLPOINTER) SQL_ASYNC_ENABLE_ON,

 0);

3. Call a function that supports asynchronous execution and poll the

asynchronous function. Refer to the SQL_ATTR_ASYNC_ENABLE connection

or statement attribute for a list of functions that can be executed

asynchronously.

The application determines whether the function has completed by calling it

repeatedly with the same arguments it used to call the function the first time. A

return code of SQL_STILL_EXECUTING indicates it is not yet finished, any

other value indicates it has completed. The value other than

SQL_STILL_EXECUTING is the same return code it would have returned if it

had executed synchronously.

The following example demonstrates a common while loop that takes both

possible outcomes into account:

while ((rc = SQLExecDirect(hstmt, sqlstmt, SQL_NTS)) == SQL_STILL_EXECUTING)

{

 /* Other processing can be performed here, between each call to

 * see if SQLExecDirect() has finished running asynchronously.

 * This section will never run if CLI runs the function

 * synchronously.

 */

}

/* The application continues at this point when SQLExecDirect() */

/* has finished running. */

Chapter 12. Asynchronous execution of CLI functions 169

170 Call Level Interface Guide and Reference, Volume 1

Chapter 13. Multithreaded CLI applications

DB2 CLI supports concurrent execution of threads on the following platforms:

v AIX

v HP-UX

v Linux

v Solaris

v Windows

On any other platform that supports threads, DB2 CLI is guaranteed to be thread

safe by serializing all threaded access to the database. In other words, applications

or stored procedures that use DB2 CLI can be invoked multiple times and at the

same time.

Note: If you are writing applications that use DB2 CLI calls and either embedded

SQL or DB2 API calls, see the documentation for multithreaded mixed applications.

Concurrent execution means that two threads can run independently of each other

(on a multi-processor machine they may run simultaneously). For example, an

application could implement a database-to-database copy in the following way:

v One thread connects to database A and uses SQLExecute() and SQLFetch() calls

to read data from one connection into a shared application buffer.

v The other thread connects to database B and concurrently reads from the shared

buffer and inserts the data into database B.

In contrast, if DB2 CLI serializes all function calls, only one thread may be

executing a DB2 CLI function at a time. All other threads would have to wait until

the current thread is done before it would get a chance to execute.

When to use multiple threads

The most common reason to create another thread in a DB2 CLI application is so a

thread other than the one executing can be used to call SQLCancel() (to cancel a

long running query for example).

Most GUI-based applications use threads in order to ensure that user interaction

can be handled on a higher priority thread than other application tasks. The

application can simply delegate one thread to run all DB2 CLI functions (with the

exception of SQLCancel()). In this case there are no thread-related application

design issues since only one thread will be accessing the data buffers that are used

to interact with DB2 CLI.

Applications that use multiple connections, and are executing statements that may

take some time to execute, should consider executing DB2 CLI functions on

multiple threads to improve throughput. Such an application should follow

standard practices for writing any multi-threaded application, most notably, those

concerned with sharing data buffers.

Programming tips

Any resource allocated by DB2 CLI is guaranteed to be thread-safe. This is

accomplished by using either a shared global or connection specific semaphore. At

© Copyright IBM Corp. 1993, 2007 171

any one time, only one thread can be executing a DB2 CLI function that accepts an

environment handle as input. All other functions that accept a connection handle

(or a statement or descriptor allocated on that connection handle) will be serialized

on the connection handle.

This means that once a thread starts executing a function with a connection handle,

or child of a connection handle, any other thread will block and wait for the

executing thread to return. The one exception to this is SQLCancel(), which must

be able to cancel a statement currently executing on another thread. For this

reason, the most natural design is to map one thread per connection, plus one

thread to handle SQLCancel() requests. Each thread can then execute

independently of the others.

If an object is shared across threads, application timing issues may arise. For

example, if a thread is using a handle in one thread, and another thread frees that

handle between function calls, the next attempt to use that handle would result in

a return code of SQL_INVALID_HANDLE.

Note:

1. Thread safety for handles only applies for DB2 CLI applications. ODBC

applications may trap since the handle in this case is a pointer and the pointer

may no longer be valid if another thread has freed it. For this reason, it is best

when writing an ODBC application to follow the application model for

multithreaded CLI applications.

2. There may be platform or compiler specific link options required for

multi-threaded applications. Refer to your compiler documentation for further

details.

Application model for multithreaded CLI applications

The following model of a typical multithreaded CLI application is intended as an

example:

v Designate a master thread which allocates:

– m ″child″ threads

– n connection handles
v Each task that requires a connection is executed by one of the child threads, and

is given one of the n connections by the master thread.

v Each connection is marked as in use by the master thread until the child thread

returns it to the master thread.

v Any SQLCancel() request is handled by the master thread.

This model allows the master thread to have more threads than connections if the

threads are also used to perform non-SQL related tasks, or more connections than

threads if the application wants to maintain a pool of active connections to various

databases, but limit the number of active tasks.

Note: A multithreaded DB2 CLI stored procedure can only connect to the database

where the stored procedure is currently executing.

Most importantly, this ensures that two threads are not trying to use the same

connection handle at any one time. Although DB2 CLI controls access to its

resources, the application resources such as bound columns and parameter buffers

are not controlled by DB2 CLI, and the application must guarantee that a pointer

172 Call Level Interface Guide and Reference, Volume 1

to a buffer is not being used by two threads at any one time. Any deferred

arguments must remain valid until the column or parameter has been unbound.

If it is necessary for two threads to share a data buffer, the application must

implement some form of synchronization mechanism. For example, in the

database-to-database copy scenario where one thread connects to database A and

reads data from one connection into a shared application buffer while the other

thread connects to database B and concurrently reads from the shared buffer and

inserts data into database B, the use of the shared buffer must be synchronized by

the application.

Application deadlocks

The application must be aware of the possibility of creating deadlock situations

with shared resources in the database and the application.

DB2 can detect deadlocks at the server and rollback one or more transactions to

resolve them. An application may still deadlock if:

v two threads are connected to the same database, and

v one thread is holding an application resource ’A’ and is waiting for a database

resource ’B’, and

v the other thread has a lock on the database resource ’B’ while waiting for the

application resource ’A’.

In this case the DB2 server is only going to see a lock, not a deadlock, and unless

the database LockTimeout configuration keyword is set, the application will wait

forever.

The model suggested above avoids this problem by not sharing application

resources between threads once a thread starts executing on a connection.

Mixed multithreaded CLI applications

It is possible for a multi-threaded application to mix CLI calls with DB2 API calls

and embedded SQL. The type of the call executed earliest in the application

determines the best way to organize the application:

DB2 CLI Calls first

The DB2 CLI driver automatically calls the DB2 context APIs to allocate and

manage contexts for the application. This means that any application that calls

SQLAllocEnv() before calling any other DB2 API or embedded SQL will be

initialized with the context type set to SQL_CTX_MULTI_MANUAL.

In this case the application should allow DB2 CLI to allocate and manage all

contexts. Use DB2 CLI to allocate all connection handles and to perform all

connections. Call the SQLSetConnect() function in each thread prior to calling any

embedded SQL. DB2 APIs can be called after any DB2 CLI function has been

called in the same thread.

DB2 API or embedded SQL calls first

The DB2 CLI driver does not automatically call the DB2 context APIs if the

application calls any DB2 API or embedded SQL functions before a CLI function.

Chapter 13. Multithreaded CLI applications 173

This means that any thread that calls a DB2 API or embedded SQL function must

be attached to a context, otherwise the call will fail with an SQLCODE of

SQL1445N. This can be done by calling the DB2 API sqleAttachToCtx() which will

explicitly attach the thread to a context, or by calling any DB2 CLI function

(SQLSetConnection() for example). In this case, the application must explicitly

manage all contexts.

Use the context APIs to allocate and attach to contexts prior to calling DB2 CLI

functions (SQLAllocEnv() will use the existing context as the default context). Use

the SQL_ATTR_CONN_CONTEXT connection attribute to explicitly set the context

that each DB2 CLI connection should use.

Note: It is recommended that you do not use the default application stack size, but

instead increase the stack size to at least 256 000. DB2 requires a minimum

application stack size of 256 000 when calling a DB2 function. You must ensure

therefore, that you allocate a total stack size that is large enough for both your

application and the minimum requirements for a DB2 function call.

174 Call Level Interface Guide and Reference, Volume 1

Chapter 14. Unicode CLI applications

There are two main areas of support for DB2 CLI Unicode applications:

v The addition of a set of functions that accept Unicode string arguments in place

of ANSI string arguments.

v The addition of new C and SQL data types to describe Unicode data.

To be considered a Unicode application, the application must connect to the

database using either SQLConnectW() or SQLDriverConnectW(). This will ensure that

CLI will consider Unicode the preferred method of communication between itself

and the database.

ODBC adds types to the set of C and SQL types that already exist to accommodate

Unicode, and CLI uses these additional types accordingly. The new C type,

SQL_C_WCHAR, indicates that the C buffer contains Unicode data. The DB2

CLI/ODBC driver considers all Unicode data exchanged with the application to be

UCS-2 in native-endian format. The new SQL types, SQL_WCHAR,

SQL_WVARCHAR, and SQL_WLONGVARCHAR, indicate that a particular

column or parameter marker contains Unicode data. For DB2 Unicode databases,

graphic columns are described using the new types. Conversion is allowed

between SQL_C_WCHAR and SQL_CHAR, SQL_VARCHAR,

SQL_LONGVARCHAR and SQL_CLOB, as well as with the graphic data types.

Note: UCS-2 is a fixed-length character encoding scheme that uses 2 bytes to

represent each character. When referring to the number of characters in a UCS-2

encoded string, the count is simply the number of SQLWCHAR elements needed

to store the string.

Obsolete CLI/ODBC keyword values

Before Unicode applications were supported, applications that were written to

work with single-byte character data could be made to work with double-byte

graphic data by a series of DB2 CLI configuration keywords, such as Graphic=1,2

or 3, Patch2=7. These workarounds presented graphic data as character data, and

also affected the reported length of the data. These keywords are no longer

required for Unicode applications, and should not be used due to the risk of

potential side effects. If it is not known if a particular application is a Unicode

application, try without any of the keywords that affect the handling of graphic

data.

Literals in unicode databases

In non-Unicode databases, data in LONG VARGRAPHIC and LONG VARCHAR

columns cannot be compared. Data in GRAPHIC/VARGRAPHIC and

CHAR/VARCHAR columns can only be compared, or assigned to each other,

using explicit cast functions since no implicit code page conversion is supported.

This includes GRAPHIC/VARGRAPHIC and CHAR/VARCHAR literals where a

GRAPHIC/VARGRAPHIC literal is differentiated from a CHAR/VARCHAR literal

by a G prefix. For Unicode databases, casting between GRAPHIC/VARGRAPHIC

and CHAR/VARCHAR literals is not required. Also, a G prefix is not required in

front of a GRAPHIC/VARGRAPHIC literal. Provided at least one of the arguments

is a literal, implicit conversions occur. This allows literals with or without the G

© Copyright IBM Corp. 1993, 2007 175

prefix to be used within statements that use either SQLPrepareW() or

SQLExecDirect(). Literals for LONG VARGRAPHICs still must have a G prefix.

Unicode functions (CLI)

DB2 CLI Unicode functions accept Unicode string arguments in place of ANSI

string arguments. The Unicode string arguments must be in UCS-2 encoding

(native-endian format). ODBC API functions have suffixes to indicate the format of

their string arguments: those that accept Unicode end in W, and those that accept

ANSI have no suffix (ODBC adds equivalent functions with names that end in A,

but these are not offered by DB2 CLI). The following is a list of functions available

in DB2 CLI which have both ANSI and Unicode versions:

SQLBrowseConnect SQLForeignKeys SQLPrimaryKeys

SQLColAttribute SQLGetConnectAttr SQLProcedureColumns

SQLColAttributes SQLGetConnectOption SQLProcedures

SQLColumnPrivileges SQLGetCursorName SQLSetConnectAttr

SQLColumns SQLGetDescField SQLSetConnectOption

SQLConnect SQLGetDescRec SQLSetCursorName

SQLDataSources SQLGetDiagField SQLSetDescField

SQLDescribeCol SQLGetDiagRec SQLSetStmtAttr

SQLDriverConnect SQLGetInfo SQLSpecialColumns

SQLError SQLGetStmtAttr SQLStatistics

SQLExecDirect SQLNativeSQL SQLTablePrivileges

SQLExtendedPrepare SQLPrepare SQLTables

Unicode functions that have arguments which are always the length of strings

interpret these arguments as the number of SQLWCHAR elements needed to store

the string. For functions that return length information for server data, the display

size and precision are again described in terms of the number of SQLWCHAR

elements used to store them. When the length (transfer size of the data) could refer

to string or non-string data, it is interpreted as the number of bytes needed to store

the data.

For example, SQLGetInfoW() will still take the length as the number of bytes, but

SQLExecDirectW() will use the number of SQLWCHAR elements. Consider a single

character from the UTF-16 extended character set (UTF-16 is an extended character

set of UCS-2; Microsoft Windows 2000 and Microsoft Windows XP use UTF-16).

Microsoft Windows 2000 will use two SQL_C_WCHAR elements, which is

equivalent to 4 bytes, to store this single character. The character therefore has a

display size of 1, a string length of 2 (when using SQL_C_WCHAR), and a byte

count of 4. CLI will return data from result sets in either Unicode or ANSI,

depending on the application’s binding. If an application binds to SQL_C_CHAR,

the driver will convert SQL_WCHAR data to SQL_CHAR. An ODBC driver

manager, if used, maps SQL_C_WCHAR to SQL_C_CHAR for ANSI drivers but

does no mapping for Unicode drivers.

ANSI to Unicode function mappings

The syntax for a DB2 CLI Unicode function is the same as the syntax for its

corresponding ANSI function, except that SQLCHAR parameters are defined as

SQLWCHAR. Character buffers defined as SQLPOINTER in the ANSI syntax can

be defined as either SQLCHAR or SQLWCHAR in the Unicode function. Refer to

the ANSI version of the CLI Unicode functions for ANSI syntax details.

176 Call Level Interface Guide and Reference, Volume 1

Unicode function calls to ODBC driver managers

ODBC-compliant applications can access a DB2 database through the DB2

CLI/ODBC driver in one of two ways: linking to the DB2 CLI/ODBC driver

library or linking to the ODBC driver manager library. This topic discusses CLI

applications that link to the ODBC driver manager library.

v Direct access - An application links to the DB2 CLI/ODBC driver library and

makes calls to exported CLI/ODBC functions. Unicode applications accessing

the DB2 CLI/ODBC driver directly should access and perform transactions

against the database using the CLI Unicode functions, and use SQLWCHAR

buffers with the understanding that all Unicode data is UCS-2. To identify itself

as a Unicode application, the application must connect to the database using

either SQLConnectW() or SQLDriverConnectW().

v Indirect access - An application links to an ODBC driver manager library and

makes calls to standard ODBC functions. The ODBC driver manager then loads

the DB2 CLI/ODBC driver and calls exported ODBC functions on behalf of the

application. The data passed to the DB2 CLI/ODBC driver from the application

might be converted by the ODBC driver manager. An application identifies itself

to an ODBC driver manager as a Unicode application by calling SQLConnectW()

or SQLDriverConnectW().

When connecting to a data source, the ODBC driver manager checks to see if the

requested driver exports the SQLConnectW() function. If the function is supported,

the ODBC driver is considered a Unicode driver, and all subsequent calls in the

application to ODBC functions are routed to the functions’ Unicode equivalents

(identified by the ’W’ suffix; for example, SQLConnectW()) by the ODBC driver

manager. If the application calls Unicode functions, no string conversion is

necessary, and the ODBC driver manager calls the Unicode functions directly. If the

application calls ANSI functions, the ODBC driver manager converts all ANSI

strings to Unicode strings prior to calling the equivalent Unicode function.

If an application calls Unicode functions, but the driver does not export

SQLConnectW(), then the ODBC driver manager routes any Unicode function calls

to their ANSI equivalents. All Unicode strings are converted by the ODBC driver

manager to ANSI strings in the application’s code page before calling the

equivalent ANSI function. This might result in data loss if the application uses

Unicode characters which cannot be converted to the application’s code page.

Various ODBC driver managers use different encoding schemes for Unicode

strings, depending on the operating system:

 Table 11. Unicode string encoding schemes by operating system

Driver manager

Operating system

Microsoft Windows Linux and UNIX

Microsoft ODBC Driver

Manager

UTF-16* not applicable

unixODBC Driver Manager UCS-2 UCS-2

DataDirect Connect for

ODBC Driver Manager

UTF-16* UTF-8

* UTF-16 is a superset of UCS-2 and therefore is compatible

Chapter 14. Applications 177

DataDirect Connect for ODBC Driver Manager UNIX restrictions

Complications arise when using the DB2 CLI/ODBC driver with the DataDirect

Connect for ODBC Driver Manager in the UNIX environment because of the use of

UTF-8 character encoding by the driver manager. UTF-8 is a variable length

character encoding scheme using anywhere from 1 to 6 bytes to store characters.

UTF-8 and UCS-2 are not inherently compatible, and passing UTF-8 data to the

DB2 CLI/ODBC driver (which expects UCS-2) might result in application errors,

data corruption, or application exceptions.

To avoid this problem, the DataDirect Connect for ODBC Driver Manager 4.2

Service Pack 2 recognizes a DB2 CLI/ODBC driver and not use the Unicode

functions, effectively treating the DB2 CLI/ODBC driver as an ANSI-only driver.

Before release 4.2 Service Pack 2, the DataDirect Connect for ODBC Driver

Manager had to be linked with the _36 version of the DB2 CLI/ODBC driver

which does not export the SQLConnectW() function.

178 Call Level Interface Guide and Reference, Volume 1

Chapter 15. DB2 CLI bind files and package names

DB2 CLI packages are automatically bound to databases when the databases are

created or migrated. If a user has intentionally dropped a package, then you must

rebind db2cli.lst.

Rebind db2cli.lst by issuing the following command:

UNIX

db2 bind <BNDPATH>/@db2cli.lst blocking all grant public

Windows

db2 bind "%DB2PATH%\bnd\@db2cli.lst" blocking all grant public

The db2cli.lst file contains the names of the required bind files for DB2 CLI to

connect to DB2 servers on Linux, UNIX, and Windows (db2clipk.bnd and

db2clist.bnd).

For host and iSeries servers use one of ddcsvm.lst, ddcsmvs.lst, ddcsvse.lst, or

ddcs400.lst bind list files.

Warnings that are generated when binding DB2 CLI packages (such as db2clist.bnd

or db2cli.lst) to workstation or host servers are expected. This is because DB2 uses

generic bind files, but the bind file packages for DB2 CLI packages contain sections

that apply to specific platforms. Therefore, DB2 might generate warnings during

the binding against a server, when it encounters a platform-specific section that

does not apply to the server.

The following is an example of a warning that can be ignored which might occur

when binding a DB2 CLI package (such as db2clist.bnd or db2cli.lst) to a

workstation server:

LINE MESSAGES FOR db2clist.bnd

------ --

 235 SQL0440N No authorized routine named "POSSTR" of type

 "FUNCTION" having compatible arguments was found.

 SQLSTATE=42884

© Copyright IBM Corp. 1993, 2007 179

Table 12. DB2 CLI Bind files and package names

Bind file name Package name

Needed by DB2

servers on

Linux, UNIX,

and Windows

Needed by host

servers Description

db2clipk.bnd SYSSHxyy Yes Yes dynamic

placeholders -

small package

WITH HOLD

SYSSNxyy Yes Yes dynamic

placeholders -

small Package

NOT WITH

HOLD

SYSLHxyy Yes Yes dynamic

placeholders -

large package

WITH HOLD

SYSLNxyy Yes Yes dynamic

placeholders -

large package

NOT WITH

HOLD

db2clist.bnd SYSSTAT Yes Yes common static

CLI functions

db2schema.bnd SQLL9vyy Yes No catalog function

support

Note:

v ’S’ represents a small package and ’L’ represents a large package

v ’H’ represents WITH HOLD, and ’N’ represents NOT WITH HOLD.

v ’v’ represents the DB2 server version: for example, E=Version 8, F=Version 9

v ’x’ is the isolation level: 0=NC, 1=UR, 2=CS, 3=RS, 4=RR

v ’yy’ is the package iteration 00 through FF

v ’zz’ is unique for each platform

For example, for the dynamic packages:

v SYSSN100 A small package (65 sections) where all cursor declarations are for non-held

cursors. Bound with isolation level UR. This is the first iteration of that package.

v SYSLH401 A large package (385 sections) where all cursor declarations are for held

cursors. Bound with isolation level RS. This is the second iteration of that package.

Previous versions of DB2 servers do not need all of the bind files and will therefore return

errors at bind time. Use the bind option SQLERROR(CONTINUE) so that the same

package can be bound on all platforms and errors will be ignored for any statements not

supported there.

db2schema.bnd bind file

The db2schema.bnd bind file is automatically bound when the database is created

or migrated on DB2 servers on Linux, UNIX, and Windows, and exists only on

these types of servers. This bind file is located at the server and should be bound

manually (from the server), if the package was intentionally dropped by a user or

if an SQL1088W (+1088) warning is received after database creation or migration.

180 Call Level Interface Guide and Reference, Volume 1

Only the most recent version of this package is needed.

If the package is missing, it must be rebound locally on the server. Do not bind

this package against remote servers (for example, against a host database). The

bind file is found in the sqllib/bnd directory of the instance home directory, and is

rebound with the following command:

bind db2schema.bnd blocking all grant public

If an SQL1088W warning was received after database creation or migration, and

the db2schema.bnd package is missing, increase the APPLHEAPSZ database

configuration parameter to 128 or greater, and attempt to rebind. No errors should

be reported during binding.

Bind option limitations for CLI packages

Some bind options might not take effect when binding DB2 CLI packages with any

of the following list files: db2cli.lst, ddcsmvs.lst, ddcs400.lst, ddcsvm.lst, or

ddcsvse.lst. Because DB2 CLI packages are used by DB2 CLI, ODBC, JDBC, OLE

DB, .NET, and ADO applications, any changes made to the DB2 CLI packages

affect all applications of these types. Only a subset of bind options are therefore

supported by default when binding DB2 CLI packages. The supported options are:

ACTION, COLLECTION, CLIPKG, OWNER, and REPLVER. All other bind options

that impact CLI packages are ignored.

To create DB2 CLI packages with bind options that are not supported by default,

specify the COLLECTION bind option with a collection ID that is different from

the default collection ID, NULLID. Any bind options specified are then accepted.

For example, to create DB2 CLI packages with the KEEPDYNAMIC YES bind

option, which is not supported by default, issue the following command:

db2 bind @db2cli.lst collection newcolid keepdynamic yes

In order for CLI/ODBC applications to access the DB2 CLI packages created in the

new collection, set the CurrentPackageSet CLI/ODBC keyword in the db2cli.ini

initialization file to the new collection ID.

To overwrite DB2 CLI packages that already exist under a particular collection ID,

perform either of the following actions:

v Drop the existing CLI package before issuing the bind command for this

collection ID.

v Specify the ACTION REPLACE bind option when issuing the bind command.

Chapter 15. Bind files and package names 181

182 Call Level Interface Guide and Reference, Volume 1

Chapter 16. Building CLI applications

Building CLI applications on UNIX

DB2 provides build scripts for compiling and linking CLI programs. These are

located in the sqllib/samples/cli directory, along with sample programs that can

be built with these files. The script file bldapp contains the commands to build a

DB2 CLI application. It takes up to four parameters, represented inside the script

file by the variables $1, $2, $3, and $4. The parameter, $1, specifies the name of

your source file. This is the only required parameter, and the only one needed for

CLI applications that do not contain embedded SQL. Building embedded SQL

programs requires a connection to the database so three optional parameters are

also provided: the second parameter, $2, specifies the name of the database to

which you want to connect; the third parameter, $3, specifies the user ID for the

database, and $4 specifies the password. If the program contains embedded SQL,

indicated by the .sqc extension, then the embprep script is called to precompile the

program, producing a program file with a .c extension.

The following examples show you how to build and run CLI applications. To build

the sample program tbinfo from the source file tbinfo.c, enter:

 bldapp tbinfo

The result is an executable file, tbinfo. You can run the executable file by entering

the executable name:

 tbinfo

v Building and Running Embedded SQL Applications There are three ways to

build the embedded SQL application, dbusemx, from the source file dbusemx.sqc:

1. If connecting to the sample database on the same instance, enter:

 bldapp dbusemx

2. If connecting to another database on the same instance, also enter the

database name:

 bldapp dbusemx database

3. If connecting to a database on another instance, also enter the user ID and

password of the database instance:

 bldapp dbusemx database userid password

The result is an executable file, dbusemx.

v There are three ways to run this embedded SQL application:

1. If accessing the sample database on the same instance, simply enter the

executable name:

 dbusemx

2. If accessing another database on the same instance, enter the executable

name and the database name:

 dbusemx database

3. If accessing a database on another instance, enter the executable name,

database name, and user ID and password of the database instance:

 dbusemx database userid password

© Copyright IBM Corp. 1993, 2007 183

AIX CLI application compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI applications with the AIX IBM C compiler. They are demonstrated in the

sqllib/samples/cli/bldapp build script.

 Compile and link options for bldapp

Compile options:

xlc The IBM C compiler.

$EXTRA_CFLAG

Contains the value ″-q64″ for 64-bit environments; otherwise, contains no value.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link steps.

Link options:

xlc Use the compiler as a front end for the linker.

$EXTRA_CFLAG

Contains the value ″-q64″ for 64-bit environments; otherwise, contains no value.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o

Include the utility object file for error checking.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For example:

$HOME/sqllib/$LIB. If you do not specify the -L option, the compiler assumes the

following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

HP-UX CLI application compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI applications with the HP-UX C compiler. They are demonstrated in the

sqllib/samples/cli/bldapp build script.

 Compile and link options for bldapp

184 Call Level Interface Guide and Reference, Volume 1

Compile options:

cc Use the C compiler.

$EXTRA_CFLAG

If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the

value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX

platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.

For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W

Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N

Must be used to generate 32-bit code for HP-UX on PA-RISC.

-Ae Enables HP ANSI extended mode.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

cc Use the compiler as a front end for the linker.

$EXTRA_CFLAG

If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the

value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX

platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.

For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W

Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N

Must be used to generate 32-bit code for HP-UX on PA-RISC.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o

Include the utility object file for error checking.

$EXTRA_LFLAG

Specify the runtime path. If set, for 32-bit it contains the value

-Wl,+b$HOME/sqllib/lib32, and for 64-bit: -Wl,+b$HOME/sqllib/lib64. If not set, it

contains no value.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For 32-bit:

$HOME/sqllib/lib32; for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

Chapter 16. Building CLI applications 185

Linux CLI application compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI applications with the GNU/Linux gcc compiler. They are demonstrated in the

sqllib/samples/cli/bldapp build script.

 Compile and link options for bldapp

Compile options:

gcc The C compiler.

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

gcc Use the compiler as a front end for the linker.

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o

Include the utility object file for error checking.

$EXTRA_LFLAG

For 32-bit it contains the value ″-Wl,-rpath,$DB2PATH/lib32″, and for 64-bit it

contains the value ″-Wl,-rpath,$DB2PATH/lib64″.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Solaris CLI application compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI applications with the Solaris C compiler. They are demonstrated in the

sqllib/samples/cli/bldapp build script.

 Compile and link options for bldapp

186 Call Level Interface Guide and Reference, Volume 1

Compile options:

cc Use the C compiler.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-c Perform compile only; no link. This script has separate compile and link steps.

Link options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-mt Link in multi-thread support to prevent problems calling fopen.

Note: If POSIX threads are used, DB2 applications also have to link with

-lpthread, whether or not they are threaded.

-o $1 Specify the executable program.

$1.o Include the program object file.

utilcli.o

Include the utility object file for error checking.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

$EXTRA_LFLAG

Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains

the value ″-R$DB2PATH/lib32″, and for 64-bit it contains the value

″-R$DB2PATH/lib64″.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Building CLI multi-connection applications on UNIX

DB2 provides build scripts for compiling and linking CLI programs. These are

located in the sqllib/samples/cli directory, along with sample programs that can

be built with these files.

The build file, bldmc, contains the commands to build a DB2 multi-connection

program, requiring two databases. The compile and link options are the same as

those used in bldapp.

The first parameter, $1, specifies the name of your source file. The second

parameter, $2, specifies the name of the first database to which you want to

connect. The third parameter, $3, specifies the second database to which you want

to connect. These are all required parameters.

Note: The makefile hardcodes default values of ″sample″ and ″sample2″ for the

database names ($2 and $3, respectively) so if you are using the makefile, and

Chapter 16. Building CLI applications 187

accept these defaults, you only have to specify the program name (the $1

parameter). If you are using the bldmc script, you must specify all three

parameters.

Optional parameters are not required for a local connection, but are required for

connecting to a server from a remote client. These are: $4 and $5 to specify the

user ID and password, respectively, for the first database; and $6 and $7 to specify

the user ID and password, respectively, for the second database.

For the multi-connection sample program, dbmconx, you require two databases. If

the sample database is not yet created, you can create it by entering db2sampl on

the command line. The second database, here called sample2, can be created with

one of the following commands:

v If creating the database locally:

 db2 create db sample2

v If creating the database remotely:

 db2 attach to <node_name>

 db2 create db sample2

 db2 detach

 db2 catalog db sample2 as sample2 at node <node_name>

where <node_name> is the database partition where the database resides.

v Multi-connection also requires that the TCP/IP listener is running. To ensure it

is, do the following:

1. Set the environment variable DB2COMM to TCP/IP as follows:

 db2set DB2COMM=TCPIP

2. Update the database manager configuration file with the TCP/IP service

name as specified in the services file:

 db2 update dbm cfg using SVCENAME <TCP/IP service name>

Each instance has a TCP/IP service name listed in the services file. Ask your

system administrator if you cannot locate it or do not have the file

permission to read the services file. On UNIX and Linux systems, the

services file is located in: /etc/services

3. Stop and restart the database manager in order for these changes to take

effect:

 db2stop

 db2start

The dbmconx program consists of five files:

dbmconx.c

Main source file for connecting to both databases.

dbmconx1.sqc

Source file for creating a package bound to the first database.

dbmconx1.h

Header file for dbmconx1.sqc included in dbmconx.sqc for accessing

the SQL statements for creating and dropping a table to be bound to

the first database.

dbmconx2.sqc

Source file for creating a package bound to the second database.

188 Call Level Interface Guide and Reference, Volume 1

dbmconx2.h

Header file for dbmconx2.sqc included in dbmconx.sqc for accessing

the SQL statements for creating and dropping a table to be bound to

the second database.
v To build the multi-connection sample program, dbmconx, enter:

 bldmc dbmconx sample sample2

The result is an executable file, dbmconx.

v To run the executable file, enter the executable name:

 dbmconx

The program demonstrates a two-phase commit to two databases.

Building CLI applications on Windows

DB2 provides batch files for compiling and linking CLI programs. These are

located in the sqllib\samples\cli directory, along with sample programs that can

be built with these files.

The batch file bldapp.bat contains the commands to build a DB2 CLI program. It

takes up to four parameters, represented inside the batch file by the variables %1,

%2, %3, and %4.

The parameter, %1, specifies the name of your source file. This is the only required

parameter, and the only one needed for CLI programs that do not contain

embedded SQL. Building embedded SQL programs requires a connection to the

database so three optional parameters are also provided: the second parameter, %2,

specifies the name of the database to which you want to connect; the third

parameter, %3, specifies the user ID for the database, and %4 specifies the password.

If the program contains embedded SQL, indicated by the .sqc or .sqx extension,

then the embprep.bat batch file is called to precompile the program, producing a

program file with either a .c or a .cxx extension, respectively.

The following examples show you how to build and run CLI applications.

To build the sample program tbinfo from the source file tbinfo.c, enter:

 bldapp tbinfo

The result is an executable file tbinfo. You can run the executable file by entering

the executable name:

 tbinfo

Building and running embedded SQL applications

There are three ways to build the embedded SQL application, dbusemx, from the

source file dbusemx.sqc:

1. If connecting to the sample database on the same instance, enter:

 bldapp dbusemx

2. If connecting to another database on the same instance, also enter the database

name:

 bldapp dbusemx database

Chapter 16. Building CLI applications 189

3. If connecting to a database on another instance, also enter the user ID and

password of the database instance:

 bldapp dbusemx database userid password

The result is an executable file, dbusemx.

There are three ways to run this embedded SQL application:

a. If accessing the sample database on the same instance, simply enter the

executable name:

 dbusemx

b. If accessing another database on the same instance, enter the executable

name and the database name:

 dbusemx database

c. If accessing a database on another instance, enter the executable name,

database name, and user ID and password of the database instance:

 dbusemx database userid password

Windows CLI application compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI applications with the Microsoft Visual C++ compiler. They are demonstrated in

the sqllib\samples\cli\bldapp.bat batch file.

 Compile and link options for bldapp

Compile options:

%BLDCOMP%

Variable for the compiler. The default is cl, the Microsoft Visual C++ compiler. It

can be also set to icl, the Intel™ C++ Compiler for 32-bit and 64-bit applications,

or ecl, the Intel C++ Compiler for Itanium 64-bit applications.

-Zi Enable debugging information.

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link.

-W2 Set warning level.

-DWIN32

Compiler option necessary for Windows operating systems.

190 Call Level Interface Guide and Reference, Volume 1

Link options:

link Use the linker.

-debug Include debugging information.

-out:%1.exe

Specify the executable.

%1.obj Include the object file.

utilcli.obj

Include the utility object file for error checking.

db2api.lib

Link with the DB2 API library.

/delayload:db2app.dll

Used to ensure that db2app.dll is not loaded until the first call to a DB2 API. This

is required when using the db2SelectDB2Copy API.

db2ApiInstall.lib

Library to statically link in your application if you need to select a particular DB2

copy that is installed on the computer using the db2SelectDB2Copy API. Note: to

use this functionality, you need to either dynamically load db2app.dll or use the

/delayload:db2app.dll option of your compiler and call the db2SelectDB2Copy

API prior to running any other DB2 API’s.

Refer to your compiler documentation for additional compiler options.

Building CLI multi-connection applications on Windows

DB2 provides batch files for compiling and linking CLI programs. These are

located in the sqllib\samples\cli directory, along with sample programs that can

be built with these files.

The batch file, bldmc.bat, contains the commands to build a DB2 multi-connection

program requiring two databases. The compile and link options are the same as

those used in bldapp.bat.

The first parameter, %1, specifies the name of your source file. The second

parameter, %2, specifies the name of the first database to which you want to

connect. The third parameter, %3, specifies the second database to which you want

to connect. These are all required parameters.

Note: The makefile hardcodes default values of ″sample″ and ″sample2″ for the

database names (%2 and %3, respectively) so if you are using the makefile, and

accept these defaults, you only have to specify the program name (the %1

parameter). If you are using the bldmc.bat file, you must specify all three

parameters.

Optional parameters are not required for a local connection, but are required for

connecting to a server from a remote client. These are: %4 and %5 to specify the

user ID and password, respectively, for the first database; and %6 and %7 to specify

the user ID and password, respectively, for the second database.

For the multi-connection sample program, dbmconx, you require two databases. If

the sample database is not yet created, you can create it by entering db2sampl on

the command line. The second database, here called sample2, can be created with

one of the following commands:

Chapter 16. Building CLI applications 191

v If creating the database locally:

 db2 create db sample2

v If creating the database remotely:

 db2 attach to <node_name>

 db2 create db sample2

 db2 detach

 db2 catalog db sample2 as sample2 at node <node_name>

where <node_name> is the database partition where the database resides.

v Multi-connection also requires that the TCP/IP listener is running. To ensure it

is, do the following:

1. Set the environment variable DB2COMM to TCP/IP as follows:

 db2set DB2COMM=TCPIP

2. Update the database manager configuration file with the TCP/IP service

name as specified in the services file:

 db2 update dbm cfg using SVCENAME <TCP/IP service name>

Each instance has a TCP/IP service name listed in the services file. Ask your

system administrator if you cannot locate it or do not have the file

permission to read the services file.

3. Stop and restart the database manager in order for these changes to take

effect:

 db2stop

 db2start

The dbmconx program consists of five files:

dbmconx.c

Main source file for connecting to both databases.

dbmconx1.sqc

Source file for creating a package bound to the first database.

dbmconx1.h

Header file for dbmconx1.sqc included in dbmconx.sqc for accessing the

SQL statements for creating and dropping a table to be bound to the

first database.

dbmconx2.sqc

Source file for creating a package bound to the second database.

dbmconx2.h

Header file for dbmconx2.sqc included in dbmconx.sqc for accessing the

SQL statements for creating and dropping a table to be bound to the

second database.
v To build the multi-connection sample program, dbmconx, enter:

 bldmc dbmconx sample sample2

The result is an executable file, dbmconx.

v To run the executable file, enter the executable name:

 dbmconx

The program demonstrates a two-phase commit to two databases.

192 Call Level Interface Guide and Reference, Volume 1

Building CLI applications with configuration files

The configuration file, cli.icc, in sqllib/samples/cli allows you to build DB2

CLI programs.

To use the configuration file to build the DB2 CLI sample program tbinfo from the

source file tbinfo.c, do the following:

1. Set the CLI environment variable:

 export CLI=tbinfo

2. If you have a cli.ics file in your working directory, produced by building a

different program with the cli.icc file, delete the cli.ics file with this

command:

 rm cli.ics

An existing cli.ics file produced for the same program you are going to build

again does not have to be deleted.

3. Compile the sample program by entering:

 vacbld cli.icc

Note: The vacbld command is provided by VisualAge® C++.

The result is an executable file, tbinfo. You can run the program by entering

the executable name:

 tbinfo

Building and running embedded SQL applications

You use the configuration file after the program is precompiled with the embprep

file. The embprep file precompiles the source file and binds the program to the

database. You use the cli.icc configuration file to compile the precompiled file.

There are three ways to precompile the embedded SQL application, dbusemx, from

the source file dbusemx.sqc:

v If connecting to the sample database on the same instance, enter:

 embprep dbusemx

v If connecting to another database on the same instance, also enter the database

name:

 embprep dbusemx database

v If connecting to a database on another instance, also enter the user ID and

password of the database instance:

 embprep dbusemx database userid password

The result is a precompiled C file, dbusemx.c.

After it is precompiled, the C file can be compiled with the cli.icc file as follows:

1. Set the CLI environment variable to the program name by entering:

 export CLI=dbusemx

2. If you have a cli.ics file in your working directory, produced by building a

different program with the cli.icc or cliapi.icc file, delete the cli.ics file

with this command:

 rm cli.ics

Chapter 16. Building CLI applications 193

An existing cli.ics file produced for the same program you are going to build

again does not have to be deleted.

3. Compile the sample program by entering:

 vacbld cli.icc

There are three ways to run this embedded SQL application:

v If accessing the sample database on the same instance, simply enter the

executable name:

 dbusemx

v If accessing another database on the same instance, enter the executable name

and the database name:

 dbusemx database

v If accessing a database on another instance, enter the executable name, database

name, and user ID and password of the database instance:

 dbusemx database userid password

Building CLI stored procedures with configuration files

The configuration file, clis.icc, in sqllib/samples/cli, allows you to build DB2

CLI stored procedures.

To use the configuration file to build the DB2 CLI stored procedure spserver from

the source file spserver.c, do the following:

1. Set the CLIS environment variable to the program name by entering:

 export CLIS=spserver

2. If you have a clis.ics file in your working directory, produced by building a

different program with the clis.icc file, delete the clis.ics file with this

command:

 rm clis.ics

An existing clis.ics file produced for the same program you are going to

build again does not have to be deleted.

3. Compile the sample program by entering:

 vacbld clis.icc

Note: The vacbld command is provided by VisualAge C++.

4. The stored procedure is copied to the server in the path sqllib/function

Next, catalog the stored procedures by running the spcreate.db2 script on the

server. First, connect to the database with the user ID and password of the

instance where the database is located:

 db2 connect to sample userid password

If the stored procedures were previously cataloged, you can drop them with

this command:

 db2 -td@ -vf spdrop.db2

Then catalog them with this command:

 db2 -td@ -vf spcreate.db2

Then, stop and restart the database to allow the new shared library to be

recognized. If necessary, set the file mode for the shared library so the DB2

instance can access it.

194 Call Level Interface Guide and Reference, Volume 1

Once you build the stored procedure spserver, you can build the CLI client

application spclient that calls the stored procedure. You can build spclient by

using the configuration file, cli.icc.

To call the stored procedure, run the sample client application by entering:

spclient database userid password

where

database

Is the name of the database to which you want to connect. The name

could be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password

Is a valid password.
The client application accesses the shared library, spserver, and executes a

number of stored procedure functions on the server database. The output is

returned to the client application.

Chapter 16. Building CLI applications 195

196 Call Level Interface Guide and Reference, Volume 1

Chapter 17. Building CLI routines

Building CLI routines on UNIX

DB2 provides build scripts for compiling and linking CLI programs. These are

located in the sqllib/samples/cli directory, along with sample programs that can

be built with these files. The script file bldrtn contains the commands to build DB2

CLI routines (stored procedures and user-defined functions). bldrtn creates a

shared library on the server. It takes a parameter for the source file name,

represented inside the script file by the variable $1.

To build the sample program spserver from the source file spserver.c:

1. Enter the build script name and program name:

 bldrtn spserver

The script file copies the shared library to the sqllib/function directory.

2. Next, catalog the routines by running the spcat script on the server:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling spdrop.db2, then catalogs them by calling

spcreate.db2, and finally disconnects from the database. You can also call the

spdrop.db2 and spcreate.db2 scripts individually.

3. Then, unless this is the first time the shared library was built, stop and restart

the database to allow the new version of the shared library to be recognized. If

necessary, set the file mode for the shared library so the DB2 instance can

access it.

Once you build the shared library, spserver, you can build the CLI client

application, spclient, that calls the routines within the shared library.

The client application can be built like any other CLI client application by using

the script file, bldapp.

To access the shared library, run the sample client application by entering:

spclient database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its alias, or another database name.

userid Is a valid user ID.

password

Is a valid password.

The client application accesses the shared library, spserver, and executes the

routines on the server database. The output is returned to the client application.

© Copyright IBM Corp. 1993, 2007 197

AIX CLI routine compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI routines (stored procedures and user-defined functions) with the AIX IBM C

compiler. They are demonstrated in the sqllib/samples/cli/bldrtn build script.

 Compile and link options for bldrtn

Compile options:

xlc_r Use the multi-threaded version of the IBM C compiler, needed as the routines

may run in the same process as other routines (THREADSAFE) or in the engine

itself (NOT FENCED).

$EXTRA_CFLAG

Contains the value ″-q64″ for 64-bit environments; otherwise, contains no value.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

xlc_r Use the multi-threaded version of the compiler as a front end for the linker.

$EXTRA_CFLAG

Contains the value ″-q64″ for 64-bit environments; otherwise, contains no value.

-qmkshrobj

Create the shared library.

-o $1 Specify the executable program.

$1.o Specify the object file.

utilcli.o

Include the utility object file for error checking.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For example:

$HOME/sqllib/$LIB. If you do not specify the -L option, the compiler assumes the

following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

-bE:$.exp

Specify an export file. The export file contains a list of routines.

Refer to your compiler documentation for additional compiler options.

HP-UX CLI routine compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI routines with the HP-UX C compiler. They are demonstrated in the

sqllib/samples/cli/bldrtn build script.

 Compile and link options for bldrtn

198 Call Level Interface Guide and Reference, Volume 1

Compile options:

cc The C compiler.

$EXTRA_CFLAG

If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the

value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX

platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.

For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W

Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N

Must be used to generate 32-bit code for HP-UX on PA-RISC.

+u1 Allow unaligned data access. Use only if your application uses unaligned data.

+z Generate position-independent code.

-Ae Enables HP ANSI extended mode.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include

-D_POSIX_C_SOURCE=199506L

POSIX thread library option that ensures _REENTRANT is defined, needed as the

routines may run in the same process as other routines (THREADSAFE) or in the

engine itself (NOT FENCED).

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

ld Use the linker to link.

-b Create a shared library rather than a normal executable.

-o $1 Specify the executable.

$1.o Specify the object file.

utilcli.o

Link in the error-checking utility object file.

$EXTRA_LFLAG

Specify the runtime path. If set, for 32-bit it contains the value

+b$HOME/sqllib/lib32, and for 64-bit: +b$HOME/sqllib/lib64. If not set, it contains

no value.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For 32-bit:

$HOME/sqllib/lib32; for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

-lpthread

Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

Chapter 17. Building CLI routines 199

Linux CLI routine compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI routines with the GNU/Linux gcc compiler. They are demonstrated in the

sqllib/samples/cli/bldrtn build script.

 Compile and link options for bldrtn

Compile options:

gcc The C compiler.

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-fpic Allows position independent code.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

-D_REENTRANT

Defines _REENTRANT, needed as the routines may run in the same process as

other routines (THREADSAFE) or in the engine itself (NOT FENCED).

Link options:

gcc Use the compiler as a front end for the linker.

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o

Include the utility object file for error-checking.

-shared

Generate a shared library.

$EXTRA_LFLAG

Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains

the value ″-Wl,-rpath,$DB2PATH/lib32″. For 64-bit it contains the value

″-Wl,-rpath,$DB2PATH/lib64″.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

-lpthread

Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

200 Call Level Interface Guide and Reference, Volume 1

Solaris CLI routine compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI routines with the Solaris C compiler. They are demonstrated in the

sqllib/samples/cli/bldrtn build script.

 Compile and link options for bldrtn

Compile options:

cc The C compiler.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-mt Allow multi-threaded support, needed as the routines may run in the same

process as other routines (THREADSAFE) or in the engine itself (NOT FENCED).

-DUSE_UI_THREADS

Allows Sun’s ″UNIX International″ threads APIs.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-mt Allow multi-threaded support, needed as the routines may run in the same

process as other routines (THREADSAFE) or in the engine itself (NOT FENCED).

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

utilcli.o

Include the utility object file for error-checking.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

$EXTRA_LFLAG

Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains

the value ″-R$DB2PATH/lib32″, and for 64-bit it contains the value

″-R$DB2PATH/lib64″.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Chapter 17. Building CLI routines 201

Building CLI routines on Windows

DB2 provides batch files for compiling and linking CLI programs. These are

located in the sqllib\samples\cli directory, along with sample programs that can

be built with these files. The batch file bldrtn.bat contains the commands to build

CLI routines (stored procedures and user-defined functions). bldrtn.bat creates a

DLL on the server. It takes one parameter, represented inside the batch file by the

variable %1, which specifies the name of your source file. The batch file uses the

source file name for the DLL name.

To build the spserver DLL from the source file spserver.c:

1. Enter the batch file name and program name:

 bldrtn spserver

The batch file uses the module definition file spserver.def, contained in the

same directory as the CLI sample programs, to build the DLL. The batch file

then copies the DLL, spserver.dll, to the server in the path sqllib\function.

2. Next, catalog the routines by running the spcat script on the server:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling spdrop.db2, then catalogs them by calling

spcreate.db2, and finally disconnects from the database. You can also call the

spdrop.db2 and spcreate.db2 scripts individually.

3. Then, unless this is the first time the shared library was built, stop and restart

the database to allow the new version of the shared library to be recognized. If

necessary, set the file mode for the shared library so the DB2 instance can

access it.

Once you build the DLL spserver, you can build the CLI client application

spclient that calls the routines within it.

You can build spclient by using the script file, bldapp.

To call the routines, run the sample client application by entering:

spclient database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its alias, or another database name.

userid Is a valid user ID.

password

Is a valid password.

The client application accesses the DLL, spserver, which executes the routines on

the server database. The output is returned to the client application.

Windows CLI routine compile and link options

The compile and link options in this topic are recommended by DB2 for building

CLI routines with the Microsoft Visual C++ compiler. They are demonstrated in the

sqllib\samples\cli\bldrtn.bat batch file.

202 Call Level Interface Guide and Reference, Volume 1

Compile and link options for bldrtn

Compile options:

%BLDCOMP%

Variable for the compiler. The default is cl, the Microsoft Visual C++ compiler. It

can be also set to icl, the Intel C++ Compiler for 32-bit and 64-bit applications, or

ecl, the Intel C++ Compiler for Itanium 64-bit applications.

-Zi Enable debugging information

-Od Disable optimizations. It is easier to use a debugger with optimization off.

-c Perform compile only; no link. The batch file has separate compile and link steps.

-W2 Set warning level.

-DWIN32

Compiler option necessary for Windows operating systems.

-MD Link using MSVCRT.LIB

Link options:

link Use the 32-bit linker.

-debug Include debugging information.

-out:%1.dll

Build a .DLL file.

%1.obj Include the object file.

utilcli.obj

Include the utility object file for error-checking.

db2api.lib

Link with the DB2 API library.

-def:%1.def

Use the module definition file.

/delayload:db2app.dll

Used to ensure that db2app.dll is not loaded until the first call to a DB2 API. This

is required when using the db2SelectDB2Copy API.

db2ApiInstall.lib

Library to statically link in your application if you need to select a particular DB2

copy that is installed on the computer using the db2SelectDB2Copy API. Note: to

use this functionality, you need to either dynamically load db2app.dll or use the

/delayload:db2app.dll option of your compiler and call the db2SelectDB2Copy

API prior to running any other DB2 API’s.

Refer to your compiler documentation for additional compiler options.

Chapter 17. Building CLI routines 203

204 Call Level Interface Guide and Reference, Volume 1

Chapter 18. Vendor escape clauses in CLI applications

The X/Open SQL CAE specification defined an escape clause as: “a syntactic

mechanism for vendor-specific SQL extensions to be implemented in the

framework of standardized SQL”. Both DB2 CLI and ODBC support vendor escape

clauses as defined by X/Open.

Currently, escape clauses are used extensively by ODBC to define SQL extensions.

DB2 CLI translates the ODBC extensions into the correct DB2 syntax. The

SQLNativeSql() function can be used to display the resulting syntax.

If an application is only going to access DB2 data sources, then there is no reason

to use the escape clauses. If an application is going to access other data sources

that offer the same support through a different syntax, then the escape clauses

increase the portability of the application.

DB2 CLI used both the standard and shorthand syntax for escape clauses. The

standard syntax has been deprecated (although DB2 CLI still supports it). An

escape clause using the standard syntax took the form:

 --(*vendor(vendor-identifier),

 product(product-identifier) extended SQL text*)--

Applications should now only use the shorthand syntax, as described below, to

remain current with the latest ODBC standards.

Shorthand escape clause syntax

The format of an escape clause definition is:

 { extended SQL text }

to define the following SQL extensions:

v Extended date, time, timestamp data

v Outer join

v LIKE predicate

v Stored procedure call

v Extended scalar functions

– Numeric functions

– String functions

– System functions

ODBC date, time, timestamp data

The ODBC escape clauses for date, time, and timestamp data are:

 {d ’value’}

 {t ’value’}

 {ts ’value’}

v d indicates value is a date in the yyyy-mm-dd format,

v t indicates value is a time in the hh:mm:ss format

v ts indicates value is a timestamp in the yyyy-mm-dd hh:mm:ss[.f...] format.

© Copyright IBM Corp. 1993, 2007 205

For example, the following statement can be used to issue a query against the

EMPLOYEE table:

 SELECT * FROM EMPLOYEE WHERE HIREDATE={d ’1994-03-29’}

DB2 CLI will translate the above statement to a DB2 format. SQLNativeSql() can be

used to return the translated statement.

The ODBC escape clauses for date, time, and timestamp literals can be used in

input parameters with a C data type of SQL_C_CHAR.

ODBC outer join

The ODBC escape clause for outer join is:

 {oj outer-join}

where outer join is

 table-name {LEFT | RIGHT | FULL} OUTER JOIN

 {table-name | outer-join}

 ON search-condition

For example, DB2 CLI will translate the following statement:

 SELECT * FROM {oj T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3}

 WHERE T1.C2>20

to IBM’s format, which corresponds to the SQL92 outer join syntax:

 SELECT * FROM T1 LEFT OUTER JOIN T2 ON T1.C1=T2.C3 WHERE T1.C2>20

Note: Not all DB2 servers support outer join. To determine if the current server

supports outer joins, call SQLGetInfo() with the

SQL_SQL92_RELATIONAL_JOIN_OPERATORS and SQL_OJ_CAPABILITIES

options.

LIKE predicate

In a SQL LIKE predicate, the metacharacter % matches zero or more of any

character, and the metacharacter _ matches any one character. The SQL ESCAPE

clause allows the definition of patterns intended to match values that contain the

actual percent and underscore characters by preceding them with an escape

character. The escape clause ODBC uses to define the LIKE predicate escape

character is:

{escape ’escape-character’}

where escape-character is any character supported by the DB2 rules governing the

use of the SQL ESCAPE clause.

As an example of how to use an ″escape″ ODBC escape clause, suppose you had a

table Customers with the columns Name and Growth. The Growth column

contains data having the metacharacter ’%’. The following statement would select

all of the values from Name that have values in Growth only between 10% and

19%, excluding 100% and above:

SELECT Name FROM Customers WHERE Growth LIKE ’1_\%’{escape ’\’}

Applications that are not concerned about portability across different vendor

DBMS products should pass an SQL ESCAPE clause directly to the data source. To

determine when LIKE predicate escape characters are supported by a particular

206 Call Level Interface Guide and Reference, Volume 1

DB2 data source, an application should call SQLGetInfo() with the

SQL_LIKE_ESCAPE_CLAUSE information type.

Stored procedure call

The ODBC escape clause for calling a stored procedure is:

 {[?=]call procedure-name[([parameter][,[parameter]]...)]}

where:

v [?=] indicates the optional parameter marker for the return value

v procedure-name specifies the name of a procedure stored at the data source

v parameter specifies a procedure parameter.

A procedure may have zero or more parameters.

ODBC specifies the optional parameter ?= to represent the procedure’s return

value, which if present, will be stored in the location specified by the first

parameter marker as defined via SQLBindParameter(). DB2 CLI will return the

return code as the procedure’s return value if ?= is present in the escape clause. If

?= is not present, and if the stored procedure return code is not SQL_SUCCESS,

then the application can retrieve diagnostics, including the SQLCODE, using the

SQLGetDiagRec() and SQLGetDiagField() functions. DB2 CLI supports literals as

procedure arguments, however vendor escape clauses must be used. For example,

the following statement would not succeed: CALL storedproc (’aaaa’, 1), but this

statement would: {CALL storedproc (’aaaa’, 1)}. If a parameter is an output

parameter, it must be a parameter marker.

For example, DB2 CLI will translate the following statement:

 {CALL NETB94(?,?,?)}

To an internal CALL statement format:

 CALL NEBT94(?, ?, ?)

ODBC scalar functions

Scalar functions such as string length, substring, or trim can be used on columns of

a result set and on columns that restrict rows of a result set. The ODBC escape

clause for scalar functions is:

 {fn scalar-function}

Where, scalar-function can be any function listed in the list of extended scalar

functions.

For example, DB2 CLI will translate the following statement:

 SELECT {fn CONCAT(FIRSTNAME,LASTNAME)} FROM EMPLOYEE

to:

 SELECT FIRSTNAME CONCAT LASTNAME FROM EMPLOYEE

SQLNativeSql() can be called to obtain the translated SQL statement.

To determine which scalar functions are supported by the current server referenced

by a specific connection handle, call SQLGetInfo() with the options:

Chapter 18. Vendor escape clauses 207

SQL_NUMERIC_FUNCTIONS, SQL_STRING_FUNCTIONS,

SQL_SYSTEM_FUNCTIONS, and SQL_TIMEDATE_FUNCTIONS.

208 Call Level Interface Guide and Reference, Volume 1

Part 2. Setting up your application development environment

to run DB2 CLI and ODBC applications

You can run DB2 CLI and ODBC applications against a DB2 database server using

the IBM Data Server Client, the IBM Data Server Runtime Client, or the IBM Data

Server Driver for ODBC and CLI. However, to compile DB2 CLI or ODBC

applications, you need the IBM Data Server Client.

Before you set up your CLI environment, ensure you have set up the application

development environment.

In order for a DB2 CLI application to successfully access a DB2 database:

1. Ensure the DB2 CLI/ODBC driver was installed during the DB2 client install.

2. For the IBM Data Server Client and Runtime Client only: If the database is

being accessed from a remote client, catalog the database and hostname of the

machine the databse is on.

On the Windows platform, you can use the CLI/ODBC Settings GUI to catalog

the DB2 database.

3. Optional: Explicitly bind the DB2 CLI/ODBC bind files to the database with

the command:

 db2 bind ~/sqllib/bnd/@db2cli.lst blocking all sqlerror continue \

 messages cli.msg grant public

On the Windows platform, you can use the CLI/ODBC Settings GUI to bind

the DB2 CLI/ODBC bind files to the database.

4. Optional: Change the DB2 CLI/ODBC configuration keywords by editing the

db2cli.ini file, located in the sqllib directory on Windows, and in the

sqllib/cfg directory on UNIX platforms.

On the Windows platform, you can use the CLI/ODBC Settings GUI to set the

DB2 CLI/ODBC configuration keywords.

Once you have completed the above steps, proceed to setting up your Windows

CLI environment, or setting up your UNIX ODBC environment if you are running

ODBC applications on UNIX.

© Copyright IBM Corp. 1993, 2007 209

210 Call Level Interface Guide and Reference, Volume 1

Chapter 19. Setting up the UNIX ODBC environment

This topic explains how to set up UNIX client access to DB2 for ODBC

applications. (If your application is a DB2 CLI application, your CLI environmental

setup will be complete once the task in the Prerequisites section is performed.)

Before setting up the UNIX ODBC environment, ensure you have set up the CLI

environment.

For ODBC applications on UNIX that need to access a DB2 database, follow the

steps described below.

1. Ensure that an ODBC driver manager is installed and that each user that will

use ODBC has access to it. DB2 does not install an ODBC driver manager, so

you must use the ODBC driver manager that was supplied with your ODBC

client application or ODBC SDK in order to access DB2 data using that

application.

2. Set up .odbc.ini, the end-user’s data source configuration. Each user ID has a

separate copy of this file in their home directory. Note that the file starts with a

dot. Although necessary files are usually updated automatically by the tools on

most platforms, users of ODBC on UNIX platforms will have to edit them

manually.

Using an ASCII editor, update the file to reflect the appropriate data source

configuration information. To register a DB2 database as an ODBC data source

there must be one stanza (section) for each DB2 database.

The .odbc.ini file must contain the following lines (examples refer to

configuration of the SAMPLE database data source):

v in the [ODBC Data Source] stanza:

 SAMPLE=IBM DB2 ODBC DRIVER

which indicates that there is a data source called SAMPLE that uses the IBM

DB2 ODBC DRIVER;

v in the [SAMPLE] stanza:

on AIX, for example,

 [SAMPLE]

 Driver=/u/thisuser/sqllib/lib/libdb2.a

 Description=Sample DB2 ODBC Database

on the Solaris operating system, for example,

 [SAMPLE]

 Driver=/u/thisuser/sqllib/lib/libdb2.so

 Description=Sample DB2 ODBC Database

which indicates that the SAMPLE database is part of the DB2 instance

located in the directory /u/thisuser.

With the introduction of the 64-bit development environment, there have

been a number of inconsistencies among vendors regarding the interpretation

of the sizes of certain parameters. For example, the 64-bit Microsoft ODBC

Driver Manager treats SQLHANDLE and SQLLEN as both 64-bits in length,

whereas Data Direct Connect and open source ODBC driver managers treat

SQLHANDLE as 64-bit, but SQLLEN as 32-bit. The developer must therefore

pay careful attention to which version of the DB2 driver is required. Specify

the appropriate DB2 driver in the data source stanza, according to the

following information:

© Copyright IBM Corp. 1993, 2007 211

Table 13. DB2 driver for CLI and ODBC applications

Type of application DB2 driver to specify

32-bit CLI libdb2.*

32-bit ODBC Driver Manager libdb2.*

64-bit CLI libdb2.*

64-bit ODBC Driver Manager libdb2o.* (db2o.o for AIX)

Note: The file extension of the DB2 driver to specify depends on the

operating system. The extensions are as follows:

– .a - AIX

– .so - Linux, Solaris, HP-IPF

– .sl - HP-PA
3. Ensure that the application execution environment has reference to the ODBC

driver manager by including libodbc.a (for AIX) or libodbc.so (for UNIX) in

the LIBPATH (for AIX) or LD_LIBRARY_PATH (for UNIX) environment

variables.

4. Enable a system-wide .odbc.ini file to be used by setting the ODBCINI

environment variable to the fully qualified pathname of the .ini file. Some

ODBC driver managers support this feature which allows for centralized

control. The following examples show how to set ODBCINI:

in the C shell,

 setenv ODBCINI /opt/odbc/system_odbc.ini

in the Bourne or Korn shell,

 ODBCINI=/opt/odbc/system_odbc.ini;export ODBCINI

5. Once the .odbc.ini file is set up, you can run your ODBC application and

access DB2 databases. Refer to the documentation that comes with your ODBC

application for additional help and information.

Sample build scripts and configurations for the unixODBC Driver

Manager

The unixODBC Driver Manager is an open source ODBC driver manager for use

on UNIX platforms. This driver manager is supported for ODBC applications on

supported DB2 platforms. This topic presents some examples of possible build

scripts and configurations you might want to use when using the unixODBC

Driver Manager.

Support statement

If you experience problems with the combination of the unixODBC Driver

Manager and the DB2 ODBC driver after they have been properly installed and

configured, you can contact DB2 Service (http://www.ibm.com/software/data/
db2/udb/support) for assistance in diagnosing the problem. If the source of the

problem lies with the unixODBC Driver Manager, then you can:

v Purchase a service contract for technical support from Easysoft, a commercial

sponsor of unixODBC (http://www.easysoft.com).

v Participate in any open source support channels at http://www.unixodbc.com.

212 Call Level Interface Guide and Reference, Volume 1

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html
http://www.easysoft.com/
http://www.unixodbc.com/

Sample build scripts

The following are sample build scripts for setting up your environment to use the

unixODBC Driver Manager.

AIX

#! /bin/sh

echo "Unzipping and extracting"

gzip -d unixODBC-2.2.11.tar.gz

tar xf unixODBC-2.2.11.tar

cd unixODBC-2.2.11

#Comment this out if not AIX

export CC=xlc_r

export CCC=xlC_r

echo "Configuring, compiling and installing"

configure --prefix=$HOME --enable-gui=no --enable-drivers=no

make

make install

echo "Setting ini env vars."

export ODBCHOME=~/etc

export ODBCINI=~/odbc.ini

#Comment this out if not AIX

echo "Extracting unixODBC libraries"

cd ~/lib

ar -x libodbc.a

ar -x libodbcinst.a

ar -x libodbccr.a

echo "\n***Still need to set up your ini files"

UNIX (non-AIX)

#! /bin/sh

echo "Unzipping and extracting"

gzip -d unixODBC-2.2.11.tar.gz

tar xf unixODBC-2.2.11.tar

cd unixODBC-2.2.11

echo "Configuring, compiling and installing"

configure --prefix=$HOME --enable-gui=no --enable-drivers=no

make

make install

echo "Setting ini env vars."

export ODBCHOME=~/etc

export ODBCINI=~/odbc.ini

echo "\n***Still need to set up your ini files"

Sample INI file configurations

The following are sample user and system INI files for using the unixODBC Driver

Manager.

Chapter 19. Setting up the UNIX ODBC environment 213

User INI file (odbc.ini)

[DEFAULT]

Driver = DB2

[SAMPLE]

DESCRIPTION = Connection to DB2

DRIVER = DB2

System INI file (odbcinst.ini)

[DEFAULT]

Description = Default Driver

Driver = /u/db2inst1/sqllib/lib/db2.o

fileusage=1

dontdlclose=1

[DB2]

Description = DB2 Driver

Driver = /u/db2inst1/sqllib/lib/db2.o

fileusage=1

dontdlclose=1

[ODBC]

Trace = yes

Tracefile = /u/user/trc.log

This system INI file has the ODBC trace enabled, with the trace log file set to

trc.log.

Note: If you encounter problems when closing the driver manager (such as during

SQLDisconnect()), set the value dontdlclose=1 in the odbcinst.ini file, as shown

in the example above.

214 Call Level Interface Guide and Reference, Volume 1

Chapter 20. Setting up the Windows CLI environment

This task tells you how to perform Windows client access to DB2 using CLI or

ODBC.

Before setting up the Windows CLI environment, ensure that the CLI environment

has been set up.

When using the Configuration Assistant on Windows 64-bit platforms, ODBC Data

Sources can be configured only for 64-bit applications. ODBC Data Sources for

32-bit applications need to be configured using the Microsoft 32-bit ODBC Data

Source Administrator (32-bit odbcad32.exe) that is included with the Windows

64-bit operating system.

Before DB2 CLI and ODBC applications can successfully access a DB2 database

from a Windows client, perform the following steps on the client system:

1. Verify that the Microsoft ODBC Driver Manager and the DB2 CLI/ODBC

driver are installed. On Windows operating systems they are both installed

with DB2 unless the ODBC component is manually unselected during the

install. DB2 will not overwrite a newer version of the Microsoft ODBC Driver

Manager if one is found. To verify that they both exist on the machine:

a. Start the Microsoft ODBC Data Sources icon in the Control Panel, or run the

odbcad32.exe command from the command line.

b. Click on the ″Drivers″ tab.

c. Verify that IBM DB2 ODBC DRIVER - <DB2 Copy Name> is shown in the list.

<DB2 Copy name> is the DB2 copy name that you want to use.

If either the Microsoft ODBC Driver Manager or the IBM DB2 CLI/ODBC

driver is not installed, then rerun the DB2 install and select the ODBC

component on Windows operating systems.

Note: The latest version of the Microsoft ODBC Driver Manager is included as

part of the Microsoft Data Access Components (MDAC) and is available for

download from http://www.microsoft.com/data/.

2. Register the DB2 database with the ODBC driver manager as a data source. On

Windows operating systems you can make the data source available to all users

of the system (a system data source), or only the current user (a user data

source). Use either of these methods to add the data source:

v Using the Configuration Assistant:

a. Select the DB2 database alias that you want to add as a data source.

b. Click on the ″Properties″ push button. The Database Properties window

opens.

c. Select the ″Register this database for ODBC″ check box.

d. Use the radio buttons to add the data source as either a user, system, or

file data source.
v Using the Microsoft ODBC Administration tool, which you can access from

the icon in the Control Panel or by running odbcad32.exe from the command

line:

a. The list of user data sources appears by default. If you want to add a

system data source click on the ″System DSN″ button, or the ″System

DSN″ tab (depending on the platform).

© Copyright IBM Corp. 1993, 2007 215

b. Click on the ″Add″ push button.

c. Double-click on the IBM DB2 ODBC DRIVER - <DB2 Copy name> in the

list. <DB2 Copy name> is the DB2 copy name that you want to use.

d. Select the DB2 database to add and click on OK.
v Use the CATALOG command to register the DB2 database with the ODBC

driver manager as a data source:

 CATALOG [user | system] ODBC DATA SOURCE

Using this command, an administrator could create a command line

processor script to register the required databases. This script could then be

run on all machines that require access to DB2 databases through ODBC.
3. Optional: Configure the DB2 CLI/ODBC driver using the Configuration

Assistant:

a. Select the DB2 database alias you want to configure.

b. Click on the ″Properties″ push button. The Database Properties window

opens.

c. Click on the ″Settings″ push button. The CLI/ODBC Settings window

opens.

d. Click on the ″Advanced″ push button. You can set the configuration

keywords in the window that opens. These keywords are associated with

the database alias name, and affect all DB2 CLI/ODBC applications that

access the database.
4. If you have installed ODBC access (as described above), you can now access

DB2 data using ODBC applications.

Selecting a different DB2 copy for your Windows CLI application

By default, DB2 CLI applications running on Windows systems make use of the

default DB2 copy. However, applications can use any DB2 copy that is installed on

the system.

Ensure your Windows DB2 CLI environment is set up.

Procedure

The following are different methods that allow DB2 CLI applications to

successfully access a different DB2 copy on the Windows platform.

v Using the DB2 command window from the Start -> Programs -> IBM DB2 ->

<DB2 Copy Name> -> Command Line Tools -> DB2 Command Window: the

command window is already set up with the correct environment variables for

the particular DB2 copy chosen.

v Using db2envar.bat from a command window:

1. Open a command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy that

you want the application to use:

<DB2 Copy install dir>\bin\db2envar.bat

3. Run the DB2 CLI application from the same command window.

This will set up all the environment variables for the selected DB2 copy in the

command window where the db2envar.bat was run. Once the command

window has been closed and a new one opened, the DB2 CLI application will

run against the default DB2 Copy unless the db2envar.bat for another DB2 copy

is run again.

216 Call Level Interface Guide and Reference, Volume 1

v Using the db2SelectDB2Copy API: For applications that are dynamically linked,

you can call this API prior to loading any DB2 DLLs within your application

process. This API sets up the required environment for your application to use

the DB2 copy that you want to use. The /delayload linking option can be used

to delay the loading of any DB2 DLL. For example, if your DB2 CLI application

links db2api.lib, then you must use the /delayload option of your linker to

delay the load db2app.dll:

cl -Zi -MDd -Tp App.C /link /DELAY:nobind /DELAYLOAD:db2app.dll

 advapi32.lib psapi.lib db2api.lib delayimp.lib

To use the API, you will need to include db2ApiInstall.h, which will force your

application to statically link in db2ApiInstall.lib.

v Using LoadLibraryEx: Instead of using LoadLibrary, you can call LoadLibraryEx

with the LOAD_WITH_ALTERED_SEARCH_PATH parameter to load the

db2app.dll that corresponds to the version of the DB2 copy you want to use. For

example:

HMODULE hLib = LoadLibraryEx("c:\\sqllib\\bin\\db2app.dll",

 NULL, LOAD_WITH_ALTERED_SEARCH_PATH);

Chapter 20. Setting up the Windows CLI environment 217

218 Call Level Interface Guide and Reference, Volume 1

Part 3. Appendixes

© Copyright IBM Corp. 1993, 2007 219

220 Call Level Interface Guide and Reference, Volume 1

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2007 221

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 14. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-00 Yes

Administrative Routines and

Views

SC23-5843-00 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-00 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-00 Yes

Command Reference SC23-5846-00 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-00 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-00 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-00 Yes

Database Security Guide SC23-5850-00 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-00 Yes

Developing Embedded SQL

Applications

SC23-5852-00 Yes

Developing Java Applications SC23-5853-00 Yes

Developing Perl and PHP

Applications

SC23-5854-00 No

Developing User-defined Routines

(SQL and External)

SC23-5855-00 Yes

Getting Started with Database

Application Development

GC23-5856-00 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-00 Yes

Internationalization Guide SC23-5858-00 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-00 Yes

Net Search Extender

Administration and User’s Guide

Note: The content of this

document is not included in

the DB2 Information Center

SC23-8509-00 Yes

Partitioning and Clustering Guide SC23-5860-00 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-00 No

Quick Beginnings for DB2

Servers

GC23-5864-00 Yes

222 Call Level Interface Guide and Reference, Volume 1

Table 14. DB2 technical information (continued)

Name Form Number Available in print

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-00 Yes

SQL Reference, Volume 1 SC23-5861-00 Yes

SQL Reference, Volume 2 SC23-5862-00 Yes

System Monitor Guide and

Reference

SC23-5865-00 Yes

Text Search Guide SC23-5866-00 Yes

Troubleshooting Guide GI11-7857-00 No

Tuning Database Performance SC23-5867-00 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-00 Yes

Workload Manager Guide and

Reference

SC23-5870-00 Yes

pureXML Guide SC23-5871-00 Yes

XQuery Reference SC23-5872-00 No

 Table 15. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-00 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-00 Yes

DB2 Connect User’s Guide SC23-5841-00 Yes

 Table 16. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix A. Overview of the DB2 technical information 223

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 221.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

224 Call Level Interface Guide and Reference, Volume 1

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix A. Overview of the DB2 technical information 225

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can download and

install updates that IBM might make available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to download and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to download the

packages. However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

226 Call Level Interface Guide and Reference, Volume 1

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix A. Overview of the DB2 technical information 227

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

228 Call Level Interface Guide and Reference, Volume 1

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 229

230 Call Level Interface Guide and Reference, Volume 1

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2007 231

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

232 Call Level Interface Guide and Reference, Volume 1

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9.5 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon®, Intel SpeedStep®, Itanium® and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 233

http://www.ibm.com/legal/copytrade.shtml

234 Call Level Interface Guide and Reference, Volume 1

Index

Special characters
(percent)

in input to catalog functions 149

in LIKE predicates 149

(underscore)
in input to catalog functions 149

in LIKE predicates 149

A
About this book

Call Level Interface Guide and Reference, Volume 1 vii

allocating
CLI handles

transaction processing 62

AltHostName CLI/ODBC keyword 26

AltPort CLI/ODBC keyword 26

APD (application parameter descriptor) 115

application parameter descriptor (APD) 115

application row descriptor (ARD) 115

ARD (application row descriptor) 115

array input
column-wise 66

row-wise 66

array output 92

asynchronous
executing CLI functions 168

overview 167

Authentication CLI/ODBC keyword 27

B
BIDI CLI/ODBC keyword 27

binary large objects (BLOBs)
CLI Applications 52

bind files
and package names 179

binding
application variables 63, 95

columns 95

CLI applications 85

limitations for CLI packages 181

parameter markers 63

column-wise 66

row-wise 66

BLOBs (binary large objects)
CLI applications 52

bookmarks in CLI
deleting bulk data with 103

description 81

inserting bulk data with 98

result set terminology 80

building CLI applications
UNIX 183

multi-connection 187

Windows 189

multi-connection 191

with configuration files 193

building CLI routines
UNIX 197

building CLI routines (continued)
Windows 202

with configuration files 194

bulk data
deleting, in CLI 103

inserting, in CLI 98

C
capture file 108

case sensitivity
cursor name arguments 50

catalog functions 149

catalogs
querying 149

character strings
interpreting 50

length 50

CICS (Customer Information Control System)
running applications on 164

CLI (call level interface)
AIX

application compile options 184

routine compile options 198

applications
issuing SQL 62

terminating 113

array input chaining 159

binding parameter markers 65

bookmarks
deleting bulk data 103

inserting bulk data 98

retrieving bulk data 91

retrieving data 90

updating bulk data 102

building applications
multi-connection, UNIX 187

multi-connection, Windows 191

UNIX 183

Windows 189

with configuration files 193

building routines
UNIX 197

Windows 202

with configuration files 194

bulk data
deleting 103

inserting 98

retrieving 91

updating 102

compound SQL 74

return codes 127

cursors 75

selection 78

deferred prepare 73

deleting data 101

descriptors 115

consistency checks 118

diagnostics overview 125

drivers 7

registering XA library with DTC 16

© Copyright IBM Corp. 1993, 2007 235

CLI (call level interface) (continued)
environmental setup 209

executing SQL 72

functions
Unicode 176

handles
description 47

freeing 111

HP-UX
application compile options 184

routine compile options 198

IBM Data Server Driver for ODBC and CLI
configuring 10, 14, 16, 17

connecting to databases 17

deploying with applications 40

installing 8, 9, 10

LDAP support 32

license requirements 41

obtaining 8

overview 7

problem determination and investigation 33

restrictions 32

running database applications 30

supported CLI and ODBC functions 31

supported XA functions 31

IBM DB2 Driver for ODBC and CLI
DB2 registry variables 15

environment variables 15

initializing 45

introduction 1

issuing SQL 62

Linux
application compile options 186

routine compile options 200

LOB locators 53

long data 56

multithreaded applications
model 172

performance improvement
array input chaining 159

preparing SQL 72

retrieving array data
column-wise binding 93

row-wise binding 94

retrieving data with bookmarks 90

retrieving query results 83

Solaris operating system
application compile options 186

routine compile options 201

SQL/XML functions 59

static profiling 106

stored procedures
calling 103

commit behavior 105

trace facility 128

trace files 133

Unicode
applications 175

functions 176

ODBC driver managers 177

updating data 101

Windows
application compile options 190

routine compile options 203

XML data 59

changing default type 60

inserts 100

CLI (call level interface) (continued)
XML data (continued)

retrieval 97

updates 100

XQuery expressions 59

CLI applications
XML data 59

CLI functions
executing asynchronously 168

overview of asynchronous execution 167

CLI/ODBC keywords
AltHostName 26

AltPort 26

Authentication 27

BIDI 27

ConnectType 161

DiagLevel 34

DiagPath 35

FileDSN 28

initialization file 11

Instance 28

Interrupt 28

KRBPlugin 29

MapXMLCDefault 60

MapXMLDescribe 60

NotifyLevel 35

Protocol 29

PWDPlugin 29

SaveFile 30

Trace 140

TraceComm 141

TraceErrImmediate 141

TraceFileName 142

TraceFlush 143

TraceFlushOnError 143

TraceLocks 144

TracePathName 144

TracePIDList 145

TracePIDTID 146

TraceRefreshInterval 146

TraceStmtOnly 146

TraceTime 147

TraceTimestamp 147

CLI/ODBC/JDBC
static profiling

capture file 108

creating static SQL 106

trace
facility 128

files 133

CLOBs (character large objects)
data type

CLI applications 52

column binding offsets 95

column-wise binding 93

columns
binding, in CLI 85

commit
behavior

in CLI stored procedures 105

transactions 70

compile options
AIX

CLI applications 184

CLI routines 198

HP-UX
CLI applications 184

236 Call Level Interface Guide and Reference, Volume 1

compile options (continued)
HP-UX (continued)

CLI routines 198

Linux
CLI applications 186

CLI routines 200

Solaris operating system
CLI applications 186

CLI routines 201

Windows
CLI applications 190

CLI routines 203

compound SQL
CLI

executing in 74

return codes 127

concise descriptor functions 123

connecting
to data source CLI function 21

connections
multiple 153

ConnectType CLI/ODBC configuration keyword 161

coordinated transactions
distributed 161

establishing 162

copying
descriptors

in CLI applications 121

core level functions 1

cursors
CLI (call level interface)

bookmarks 81

considerations 75

selection 78

dynamic scrollable 75

holding across rollbacks 153

scrollable
retrieving data with in CLI 88

Customer Information Control System (CICS)
running applications on 164

D
data conversion

data types 49

description 49

data retrieval
in pieces, CLI 95

data sources
connecting to

CLI function 21

DB2
as transaction manager 162

DB2 copies
CLI/ODBC applications 216

DB2 Information Center
updating 226

versions 225

viewing in different languages 225

DB2_DIAGPATH
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

required for DB2 trace 33

DB2_ENABLE_LDAP
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2_FORCE_NLS_CACHE
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2_NO_FORK_CHECK
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2ACCOUNT
as environment variable

with DB2 IBM Data Server Driver for ODBC and

CLI 15

DB2BIDI
as environment variable

with IBM DB2 Driver for ODBC and CLI 15

db2cli.ini file
description 11

DB2CLIINIPATH
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2CODEPAGE
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2COUNTRY
as environment variable

with IBM DB2 Driver for ODBC and CLI 15

DB2DOMAINLIST
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2GRAPHICUNICODESERVER
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2LDAP_BASEDN
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2LDAP_KEEP_CONNECTION
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2LDAP_SEARCH_SCOPE
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2LDAPHOST
as environment variable

with IBM DB2 Driver for ODBC and CLI 15

DB2LOCALE
as environment variable

with IBM DB2 Driver for ODBC and CLI 15

DB2NOEXITLIST
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

db2oreg1.exe 16

DB2SORCVBUF
as environment variable

with IBM DB2 Driver for ODBC and CLI 15

DB2SOSNDBUF
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2TCP_CLIENT_RCVTIMEOUT
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DB2TERRITORY
as environment variable

with IBM Data Server Driver for ODBC and CLI 15

DBCLOB data type
description 52

deferred arguments 63

deferred prepare
in CLI applications 73

Index 237

deleting
bulk data in CLI 103

data in CLI 101

descriptor handles 115

descriptors 115

allocating 119

concise functions 123

consistency checks 118

copying 121

freeing 119

header fields 115

records 115

types 115

DiagLevel CLI/ODBC keyword 34

diagnostics 125

DiagPath CLI/ODBC keyword 35

distinct types
description 59

distributed transactions 161

distributed unit of work 161

CICS 164

DB2 as transaction manager 162

description 161

Encina 164

processor based transaction manager 164

documentation
PDF or printed 221

terms and conditions of use 228

documentation overview 221

drivers
CLI 3, 7

manager 3

ODBC 3, 7

DTC
registering XA library with

db2oreg1.exe 16

E
embedded SQL

mixing with DB2 CLI 109

Encina
environmental configuration 164

ESCAPE clauses
vendor 205

examples
distinct types

CLI applications 59

executing
SQL in CLI 72

F
fetching

LOB data in CLI 96

File DSN
protocol used 29

file input/output for LOB data in CLI 55

FileDSN CLI/ODBC keyword 28

freeing CLI handles
in CLI application 111

freeing statement resources in CLI 110

H
handles

descriptor 115

freeing 111

types 47

help
displaying 225

for SQL statements 224

I
IBM Data Server Driver for ODBC and CLI

CLI trace 33

configuring 10

environment variables 14

Microsoft DTC 16

Microsoft ODBC driver manager 17

registering ODBC data sources 19

connecting to databases 17

Data Server trace 33

db2diag.log 33

db2support 33

deploying with applications 40

installing 8

multiple copies 9

with an existing client 10

LDAP support 32

license requirements 41

obtaining 8

overview 7

problem determination and investigation 33

registering ODBC data sources 19

restrictions 32

running applications 30

security plugins 21

supported DB2 CLI and ODBC functions 31

supported XA functions 31

IBM DB2 Driver for ODBC and CLI
DB2 registry variables

supported as environment variables 15

environment variables 15

implementation parameter descriptor (IPD) 115

implementation row descriptor (IRD) 115

importing
data

with the CLI LOAD utility 99

Information Center
updating 226

versions 225

viewing in different languages 225

INI file
db2cli.ini 11

initializing
CLI applications 45

task 46

inserting data
XML

CLI applications 100

Instance CLI/ODBC keyword 28

Interrupt CLI/ODBC keyword 28

INVALID_HANDLE 125

IPD (implementation parameter descriptor) 115

IRD (implementation row descriptor) 115

isolation levels
ODBC 3

issuing SQL in CLI 62

238 Call Level Interface Guide and Reference, Volume 1

K
keysets

CLI applications result sets 80

KRBPlugin CLI/ODBC keyword
description 29

L
large objects (LOBs)

fetching with locators in CLI 96

file input and output in CLI 55

in CLI applications 52

in ODBC applications 56

LongDataCompat CLI/ODBC configuration keyword 56

LDAP (Lightweight Directory Access Protocol)
IBM Data Server Driver for ODBC and CLI 32

license policies
IBM Data Server Driver for ODBC and CLI 41

load utility
callable from CLI 99

LOB locators 53, 96

LOBs (large objects)
fetching with locators in CLI 96

file input and output in CLI 55

in CLI applications 52

in ODBC applications 56

LongDataCompat CLI/ODBC keyword 56

long data
inserts and updates, in CLI 56

retrieving data in pieces 69

sending data in pieces 69

LongDataCompat CLI/ODBC configuration keyword 56

M
metadata

characters 149

Microsoft DTC
configuring

IBM Data Server Driver for ODBC and CLI 16

Microsoft ODBC 3

Microsoft ODBC driver manager
configuring

IBM Data Server Driver for ODBC and CLI 17

mixing DB2 APIs and DB2 CLI
multithreaded 173

mixing embedded SQL and DB2 CLI 109

multithreaded 173

multi-threaded applications 171

CLI model 172

multisite updates
CLI applications 161

N
native error code 126

notices 231

NotifyLevel CLI/ODBC keyword 35

null-terminated
strings in CLI applications 50

O
ODBC (open database connectivity)

and DB2 CLI 1, 3

ODBC (open database connectivity) (continued)
core level functions 1

driver managers
unixODBC 42, 212

drivers 7

registering XA library with DTC 16

IBM Data Server Driver for ODBC and CLI
configuring 10, 14, 16, 17

connecting to databases 17

DB2 registry variables 15

deploying with applications 40

installing 8, 9, 10

LDAP support 32

license requirements 41

obtaining 8

overview 7

problem determination and investigation 33

registering ODBC data sources 19

restrictions 32

running database applications 30

supported CLI and ODBC functions 31

supported XA functions 31

IBM DB2 Driver for ODBC and CLI
environment variables 15

isolation levels 3

registering ODBC data sources
IBM Data Server Driver for ODBC and CLI 19

setting up UNIX environment 211

vendor escape clauses 205

offsets
binding columns 95

changing parameter bindings 68

ordering DB2 books 224

P
package names

and binding 179

packages
and bind option limitations 181

parameter markers
binding

column-wise array input, in CLI 66

in CLI applications 63, 65

row-wise array input, in CLI 66

changing bindings 68

parameters
diagnostics, in CLI 67

status array (CLI) 67

parsing
explicit

CLI applications 100

implicit
CLI applications 100

pattern values 149

performance
CLI array input chaining 159

prepared SQL statements
in CLI applications

creating 72

printed books
ordering 224

problem determination
online information 228

tutorials 228

process-based transaction manager 164

Protocol CLI/ODBC configuration keyword 29

Index 239

PWDPlugin CLI/ODBC keyword 29

Q
queries

system catalog information 149

R
reentrance 171

result sets
specifying rowset returned from, in CLI 86

terminology, CLI 80

retrieving data
array

column-wise binding 93

row-wise binding 94

bulk, with bookmarks in CLI 91

CLI 92

in pieces, CLI 95

with bookmarks in CLI 90

with scrollable cursors, in CLI 88

XML
CLI applications 97

retrieving query results
CLI 83

retrieving row sets
CLI examples 82

return codes
CLI

compound SQL 127

functions 125

rollback
transactions 70

row sets
description 80

retrieval examples, in CLI 82

specifying, in CLI 86

row-wise binding 92, 94

S
SaveFile CLI/ODBC keyword 30

search conditions
in input to catalog functions 149

security
plug-ins

IBM Data Server Driver for ODBC and CLI 21

serialization
explicit

CLI applications 97

implicit
CLI applications 59, 97

settings
CLI environment

run-time support 209

Windows 215

SQL (Structured Query Language)
parameter markers 63

SQL Access Group 1

SQL statements
displaying help 224

SQL_ATTR_
CONNECTION_POOLING 35

CONNECTTYPE 35, 162

ConnectType 161

SQL_ATTR_ (continued)
CP_MATCH 35

DIAGLEVEL 35

DIAGPATH 35

INFO_ACCTSTR 35

INFO_APPLNAME 35

INFO_USERID 35

INFO_WRKSTNNAME 35

LONGDATA_COMPAT 56

MAXCONN 35

NOTIFY_LEVEL 35

ODBC_VERSION 35

OUTPUT_NTS 35

PROCESSCTRL 35

SYNC_POINT 35

TRACE 35

Trace 140

USE_2BYTES_OCTET_LENGTH 35

USE_LIGHT_INPUT_SQLDA 35

USE_LIGHT_OUTPUT_SQLDA 35

USER_REGISTRY_NAME 35

SQL_CONCURRENT_TRANS 162

SQL_COORDINATED_TRANS 162

SQL_ERROR 125

SQL_NEED_DATA 125

SQL_NO_DATA_FOUND 125

SQL_NTS 50

SQL_ONEPHASE 162

SQL_STILL_EXECUTING 125

SQL_SUCCESS 125

SQL_SUCCESS_WITH_INFO 125

SQL_TWOPHASE 162

SQLAllocStmt
deprecated CLI function 61

SQLBindCol CLI function 61

SQLBindParameter function 63

SQLBrowseConnect CLI function
Unicode version 176

SQLBrowseConnectW CLI function 176

SQLBulkOperations CLI function
deleting bulk data 103

inserting bulk data 98

retrieving bulk data 91

updating bulk data 102

SQLColAttribute CLI function
Unicode version 176

SQLColAttributes CLI function
overview 61

Unicode version 176

SQLColAttributesW CLI function 176

SQLColAttributeW CLI function 176

SQLColumnPrivileges CLI function
Unicode version 176

SQLColumnPrivilegesW CLI function 176

SQLColumns CLI function
Unicode version 176

SQLColumnsW CLI function 176

SQLConnect CLI function
Unicode version 176

SQLConnectW CLI function 176

SQLDataSources CLI function
overview 61

Unicode version 176

SQLDataSourcesW CLI function 176

SQLDescribeCol CLI function
overview 61

Unicode version 176

240 Call Level Interface Guide and Reference, Volume 1

SQLDescribeColW CLI function 176

SQLDriverConnect CLI function
syntax 21

Unicode version 176

SQLDriverConnectW CLI function 176

SQLEndTran CLI function 71

SQLError CLI function 176

SQLErrorW CLI function 176

SQLExecDirect CLI function
overview 61

Unicode version 176

SQLExecDirectW CLI function 176

SQLExecute CLI function
overview 61

SQLExtendedPrepare CLI function
Unicode version 176

SQLExtendedPrepareW CLI function 176

SQLFetch CLI function
overview 61

SQLForeignKeys CLI function
Unicode version 176

SQLForeignKeysW CLI function 176

SQLFreeStmt CLI function
overview 61

SQLGetConnectAttr CLI function
Unicode version 176

SQLGetConnectAttrW CLI function 176

SQLGetConnectOption CLI function 176

SQLGetConnectOptionW CLI function 176

SQLGetCursorName CLI function
Unicode version 176

SQLGetCursorNameW CLI function 176

SQLGetData CLI function
overview 61

SQLGetDescField CLI function
Unicode version 176

SQLGetDescFieldW CLI function 176

SQLGetDescRec CLI function
Unicode version 176

SQLGetDescRecW CLI function 176

SQLGetDiagField CLI function
Unicode version 176

SQLGetDiagFieldW CLI function 176

SQLGetDiagRec CLI function
Unicode version 176

SQLGetDiagRecW CLI function 176

SQLGetInfo CLI function
Unicode version 176

SQLGetInfoW CLI function 176

SQLGetStmtAttr CLI function
Unicode version 176

SQLGetStmtAttrW CLI function 176

SQLNativeSql CLI function
Unicode version 176

SQLNativeSqlW CLI function 176

SQLNumResultCols CLI function
overview 61

SQLPrepare CLI function
overview 61

Unicode version 176

SQLPrepareW CLI function 176

SQLPrimaryKeys CLI function
Unicode version 176

SQLPrimaryKeysW CLI function 176

SQLProcedureColumns CLI function
Unicode version 176

SQLProcedureColumnsW CLI function 176

SQLProcedures CLI function
Unicode version 176

SQLProceduresW CLI function 176

SQLRowCount CLI function
overview 61

SQLSetConnectAttr CLI function
Unicode version 176

SQLSetConnectAttrW CLI function 176

SQLSetConnectOption deprecated CLI function
Unicode version 176

SQLSetConnectOptionW CLI function 176

SQLSetCursorName CLI function
Unicode version 176

SQLSetCursorNameW CLI function 176

SQLSetDescField CLI function
Unicode version 176

SQLSetDescFieldW CLI function 176

SQLSetParam deprecated CLI function 61

SQLSetStmtAttr CLI function
Unicode version 176

SQLSetStmtAttrW CLI function 176

SQLSpecialColumns CLI function
Unicode version 176

SQLSpecialColumnsW CLI function 176

SQLSTATE
format 126

SQLStatistics CLI function
Unicode version 176

SQLStatisticsW CLI function 176

SQLTablePrivileges CLI function
Unicode version 176

SQLTablePrivilegesW CLI function 176

SQLTables CLI function
Unicode version 176

SQLTablesW CLI function 176

statement handles
allocating 62

statements
freeing resources, in CLI 110

stored procedures
calling

CLI applications 103

ODBC escape clause 205

strings
input arguments 50

length in CLI applications 50

system catalogs
querying 149

T
termination

CLI application 113

task 46

terms and conditions
use of publications 228

threads
multithreaded, in CLI 171

Trace CLI/ODBC configuration keyword 140

TraceComm CLI/ODBC configuration keyword 141

TraceErrImmediate CLI/ODBC configuration keyword 141

TraceFileName CLI/ODBC configuration keyword 142

TraceFlush CLI/ODBC configuration keyword 143

TraceFlushOnError CLI/ODBC configuration keyword 143

TraceLocks CLI/ODBC configuration keyword 144

TracePathName CLI/ODBC configuration keyword 144

TracePIDList CLI/ODBC configuration keyword 145

Index 241

TracePIDTID CLI/ODBC configuration keyword 146

TraceRefreshInterval CLI/ODBC configuration keyword 146

traces
CLI/ODBC/JDBC 128

TraceStmtOnly CLI/ODBC configuration keyword 146

TraceTime CLI/ODBC configuration keyword 147

TraceTimestamp CLI/ODBC configuration keyword 147

transaction managers
CLI applications

configuration 162

programming considerations 164

transactions
commit or rollback 70

ending in CLI 71

troubleshooting
online information 228

tutorials 228

truncation
output strings 50

tutorials
troubleshooting and problem determination 228

Visual Explain 227

two-phase commit
CLI 161

U
UDTs (user-defined types)

description 59

in CLI 58

Unicode (UCS-2)
CLI

applications 175

functions 176

ODBC driver managers 177

units of work (UOW)
distributed 70

UNIX
setting up ODBC environment 211

unixODBC driver manager
build scripts 212

configurations 212

setting up 42

updates
bulk data, with bookmarks in CLI 102

data in CLI 101

DB2 Information Center 226

Information Center 226

user-defined types (UDTs)
in CLI 58

V
vendor escape clauses 205

Visual Explain
tutorial 227

W
Windows operating systems

CLI environment 215

setting up CLI environment 215

X
X/Open CAE 126

X/Open Company 1

X/Open SQL CLI 1

XA
IBM Data Server Driver for ODBC and CLI 31

registering XA library with DTC 16

XML
data type

CLI applications 59

parsing
CLI applications 100

serialization
CLI applications 59, 97

XML data
CLI applications 59

inserting 100

retrieval 97

updating 100

XML data retrieval
CLI applications 97

242 Call Level Interface Guide and Reference, Volume 1

����

Printed in USA

SC23-5844-00

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

Ca
ll

Le
ve

l I
nt

er
fa

ce

Gu

id
e

an
d

Re
fe

re
nc

e,

Vo

lu
m

e
1

�
�

�

	Contents
	About this book
	Part 1. Introduction to DB2 Call Level Interface and ODBC
	Chapter 1. Comparison of DB2 CLI and Microsoft ODBC
	Chapter 2. IBM Data Server CLI and ODBC drivers
	IBM Data Server Driver for ODBC and CLI overview
	Obtaining the IBM Data Server Driver for ODBC and CLI
	Installing the IBM Data Server Driver for ODBC and CLI
	Installing multiple copies of the IBM Data Server Driver for ODBC and CLI on the same machine
	Installing the IBM Data Server Driver for ODBC and CLI on a machine with an existing DB2 client

	Configuring the IBM Data Server Driver for ODBC and CLI
	db2cli.ini initialization file
	Configuring environment variables for the IBM Data Server Driver for ODBC and CLI
	db2oreg1.exe overview
	Registering the IBM Data Server Driver for ODBC and CLI with the Microsoft DTC
	Registering the IBM Data Server Driver for ODBC and CLI with the Microsoft ODBC driver manager

	Connecting to databases with the IBM Data Server Driver for ODBC and CLI
	Registering ODBC data sources for applications using the IBM Data Server Driver for ODBC and CLI
	Using security plugins with the IBM Data Server Driver for ODBC and CLI
	SQLDriverConnect function (CLI) - (Expanded) Connect to a data source
	CLI/ODBC keywords for file DSN or DSN-less connections

	Running DB2 CLI and ODBC applications using the IBM Data Server Driver for ODBC and CLI
	DB2 CLI and ODBC API support in the IBM Data Server Driver for ODBC and CLI
	XA API support in the IBM Data Server Driver for ODBC and CLI
	LDAP support in the IBM Data Server Driver for ODBC and CLI
	Restrictions of the IBM Data Server Driver for ODBC and CLI
	Diagnostic support in the IBM Data Server Driver for ODBC and CLI

	Deploying the IBM Data Server Driver for ODBC and CLI with database applications
	License requirements for the IBM Data Server Driver for ODBC and CLI

	Setting up the unixODBC Driver Manager

	Chapter 3. Initializing CLI applications
	Initialization and termination in CLI overview
	Handles in CLI

	Chapter 4. Data types and data conversion in CLI applications
	String handling in CLI applications
	Large object usage in CLI applications
	LOB locators in CLI applications
	Direct file input and output for LOB handling in CLI applications
	LOB usage in ODBC applications

	Long data for bulk inserts and updates in CLI applications
	User-defined type (UDT) usage in CLI applications
	Distinct type usage in CLI applications

	XML data handling in CLI applications - Overview
	Changing of default XML type handling in CLI applications

	Chapter 5. Transaction processing in CLI overview
	Allocating statement handles in CLI applications
	Issuing SQL statements in CLI applications
	Parameter marker binding in CLI applications
	Binding parameter markers in CLI applications
	Binding parameter markers in CLI applications with column-wise array input
	Binding parameter markers in CLI applications with row-wise array input
	Parameter diagnostic information in CLI applications
	Changing parameter bindings in CLI applications with offsets
	Specifying parameter values at execute time for long data manipulation in CLI applications

	Commit modes in CLI applications
	When to call the CLI SQLEndTran() function
	Preparing and executing SQL statements in CLI applications
	Deferred prepare in CLI applications
	Executing compound SQL statements in CLI applications

	Cursors in CLI applications
	Cursor considerations for CLI applications

	Result set terminology in CLI applications
	Bookmarks in CLI applications
	Rowset retrieval examples in CLI applications

	Retrieving query results in CLI applications
	Column binding in CLI applications
	Specifying the rowset returned from the result set
	Retrieving data with scrollable cursors in a CLI application
	Retrieving data with bookmarks in a CLI application
	Retrieving bulk data with bookmarks using SQLBulkOperations() in CLI applications

	Result set retrieval into arrays in CLI applications
	Retrieving array data in CLI applications using column-wise binding
	Retrieving array data in CLI applications using row-wise binding
	Changing column bindings in a CLI application with column binding offsets

	Data retrieval in pieces in CLI applications
	Fetching LOB data with LOB locators in CLI applications
	XML data retrieval in CLI applications

	Inserting data
	Inserting bulk data with bookmarks using SQLBulkOperations() in CLI applications
	Importing data with the CLI LOAD utility in CLI applications
	XML column inserts and updates in CLI applications

	Updating and deleting data in CLI applications
	Updating bulk data with bookmarks using SQLBulkOperations() in CLI applications
	Deleting bulk data with bookmarks using SQLBulkOperations() in CLI applications

	Calling stored procedures from CLI applications
	DB2 CLI stored procedure commit behavior

	Creating static SQL with CLI/ODBC/JDBC Static Profiling
	Capture file for CLI/ODBC/JDBC Static Profiling
	Considerations for mixing embedded SQL and DB2 CLI

	Freeing statement resources in CLI applications
	Handle freeing in CLI applications

	Chapter 6. Terminating a CLI application
	Chapter 7. Descriptors in CLI applications
	Consistency checks for descriptors in CLI applications
	Descriptor allocation and freeing
	Descriptor manipulation with descriptor handles in CLI applications
	Descriptor manipulation without using descriptor handles in CLI applications

	Chapter 8. Diagnostics in CLI applications overview
	CLI function return codes
	SQLSTATES for DB2 CLI
	Return codes for compound SQL in CLI applications
	CLI/ODBC/JDBC trace facility
	CLI and JDBC trace files
	Trace CLI/ODBC configuration keyword
	TraceComm CLI/ODBC configuration keyword
	TraceErrImmediate CLI/ODBC configuration keyword
	TraceFileName CLI/ODBC configuration keyword
	TraceFlush CLI/ODBC configuration keyword
	TraceFlushOnError CLI/ODBC configuration keyword
	TraceLocks CLI/ODBC configuration keyword
	TracePathName CLI/ODBC configuration keyword
	TracePIDList CLI/ODBC configuration keyword
	TracePIDTID CLI/ODBC configuration keyword
	TraceRefreshInterval CLI/ODBC configuration keyword
	TraceStmtOnly CLI/ODBC configuration keyword
	TraceTime CLI/ODBC configuration keyword
	TraceTimestamp CLI/ODBC configuration keyword

	Chapter 9. Catalog functions for querying system catalog information in CLI applications
	Input arguments on catalog functions in CLI applications

	Chapter 10. Programming hints and tips for CLI applications
	Reduction of network flows with CLI array input chaining

	Chapter 11. Multisite updates (two phase commit) in CLI applications
	ConnectType CLI/ODBC configuration keyword
	DB2 as transaction manager in CLI applications
	Process-based XA-compliant Transaction Program Monitor (XA TP) programming considerations for CLI applications

	Chapter 12. Asynchronous execution of CLI functions
	Executing functions asynchronously in CLI applications

	Chapter 13. Multithreaded CLI applications
	Application model for multithreaded CLI applications
	Mixed multithreaded CLI applications

	Chapter 14. Unicode CLI applications
	Unicode functions (CLI)
	Unicode function calls to ODBC driver managers

	Chapter 15. DB2 CLI bind files and package names
	Bind option limitations for CLI packages

	Chapter 16. Building CLI applications
	Building CLI applications on UNIX
	AIX CLI application compile and link options
	HP-UX CLI application compile and link options
	Linux CLI application compile and link options
	Solaris CLI application compile and link options
	Building CLI multi-connection applications on UNIX

	Building CLI applications on Windows
	Windows CLI application compile and link options
	Building CLI multi-connection applications on Windows

	Building CLI applications with configuration files
	Building CLI stored procedures with configuration files

	Chapter 17. Building CLI routines
	Building CLI routines on UNIX
	AIX CLI routine compile and link options
	HP-UX CLI routine compile and link options
	Linux CLI routine compile and link options
	Solaris CLI routine compile and link options

	Building CLI routines on Windows
	Windows CLI routine compile and link options

	Chapter 18. Vendor escape clauses in CLI applications
	Part 2. Setting up your application development environment to run DB2 CLI and ODBC applications
	Chapter 19. Setting up the UNIX ODBC environment
	Sample build scripts and configurations for the unixODBC Driver Manager

	Chapter 20. Setting up the Windows CLI environment
	Selecting a different DB2 copy for your Windows CLI application

	Part 3. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

