
DB2 Version 9.5

for Linux, UNIX, and Windows

Data Recovery and High Availability Guide and Reference

SC23-5848-00

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Data Recovery and High Availability Guide and Reference

SC23-5848-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 321.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Part 1. High availability 1

Chapter 1. High availability strategies . . 3

High availability through redundancy 3

High availability though failover 4

High availability through clustering 4

Database logging 5

Circular logging 5

Archive logging 6

Log control files 7

Chapter 2. High availability with IBM

Data Server 9

Automatic client reroute roadmap 9

DB2 fault monitor facilities for Linux and UNIX . . 9

High Availability Disaster Recovery (HADR) . . . 10

DB2 High Availability (HA) Feature 11

High availability through log shipping 12

Log mirroring 13

High availability through suspended I/O and online

split mirror support 14

Chapter 3. Configuring for high

availability 17

Automatic client reroute description and setup . . 17

Configuring automatic client reroute retry

behavior using registry variables 19

Using client connection timeout with automatic

client reroute 19

Configuring automatic client reroute for client

connection distributor technology 20

Identifying an alternate server for automatic

client reroute 21

Client reroute setup when using IBM Data Server

Driver for JDBC and SQLJ 21

Automatic client reroute limitations 21

DB2 fault monitor registry file 24

Configuring DB2 fault monitor using the db2fm

command 25

Configuring DB2 fault monitor using db2fmc and

system commands 26

Initializing high availability disaster recovery

(HADR) 27

Configuring automatic client reroute and High

Availability Disaster Recovery (HADR) 29

Index logging and high availability disaster

recovery (HADR) 29

Database configuration for high availability

disaster recovery (HADR) 31

Log archiving configuration for DB2 High

Availability Disaster Recovery (HADR) 36

High availability disaster recovery (HADR)

performance 36

Cluster managers and high availability disaster

recovery (HADR) 38

Initializing a Standby database 39

Configuring DB2 High Availability Disaster

Recovery (HADR) synchronization mode . . . 40

High availability disaster recovery (HADR)

support 43

Scheduling maintenance for high availability . . . 47

Collecting automated maintenance policy

information using

SYSPROC.AUTOMAINT_GET_POLICY or

SYSPROC.AUTOMAINT_GET_POLICYFILE . . 48

Configuring an automated maintenance policy

using SYSPROC.AUTOMAINT_SET_POLICY or

SYSPROC.AUTOMAINT_SET_POLICYFILE . . 49

Configuring database logging options 50

Configuration parameters for database logging 51

Reducing logging with the NOT LOGGED

INITIALLY parameter 58

Blocking transactions when the log directory is

full 59

Log file management through log archiving . . 60

Configuring database logging without file system

caching 62

Configuring a Clustered environment for high

availability 63

Cluster manager integration with the DB2 High

Availability (HA) Feature 63

Installing and upgrading the SA MP Base

Component with the DB2 installer 64

Configuring a cluster automatically with the DB2

High Availability (HA) Feature 77

Configuring a database clustered environment

using DB2 High Availability Instance

Configuration Utility (db2haicu) 79

DB2 cluster manager API 89

Supported cluster management software 89

Synchronizing clocks in a partitioned database

environment 107

Client/server timestamp conversion 107

Chapter 4. Administering and

maintaining a highly available

solution 109

Log file management 109

On demand log archive 111

Log archiving using db2tapemgr 111

Automating log file archiving and retrieval with

user exit programs 113

Log file allocation and removal 116

Including log files with a backup image . . . 118

Preventing the accidental loss of log files . . . 119

© Copyright IBM Corp. 2001, 2007 iii

Minimizing the impact of maintenance on

availability 120

Stopping DB2 High Availability Disaster

Recovery (HADR) 120

Database activation and deactivation in a DB2

High Availability Disaster Recovery (HADR)

environment 122

Performing a rolling upgrade in a DB2 High

Availability Disaster Recovery (HADR)

environment 122

Using a split mirror to clone a database . . . 123

Synchronizing the primary and standby databases 124

DB2 High Availability Disaster Recovery

(HADR) replicated operations 125

DB2 High Availability Disaster Recovery

(HADR) non-replicated operations 126

DB2 High Availability Disaster Recovery

(HADR) standby database states 127

Determining the HADR standby database state

using the GET SNAPSHOT command 130

DB2 High Availability Disaster Recovery (HADR)

management 131

DB2 High Availability Disaster Recovery

(HADR) commands 131

Chapter 5. Detecting and responding

to system outages in a high

availability solution 135

Administration notification log 135

Detecting an unplanned outage 136

Monitoring high availability disaster recovery

(HADR) 136

Responding to an unplanned outage 137

Automatic client reroute examples 138

Performing an HADR failover operation . . . 140

Switching database roles in high availability

disaster recovery (HADR) 142

Reintegrating a database after a takeover operation 143

Part 2. Data recovery 145

Chapter 6. Developing a backup and

recovery strategy 147

Deciding how often to back up 149

Storage considerations for recovery 151

Keeping related data together 151

Backup and restore operations between different

operating systems and hardware platforms . . . 152

Chapter 7. Recovery history file . . . 153

Recovery history file entry status 154

Viewing recovery history file entries using the

DB_HISTORY administrative view 156

Pruning the recovery history file 158

Automating recovery history file pruning 159

Protecting recovery history file entries from being

pruned 160

Chapter 8. Managing recovery objects 163

Deleting database recovery objects using the

PRUNE HISTORY command or the db2Prune API . 163

Automating database recovery object management 164

Protecting recovery objects from being deleted . . 164

Managing snapshot backup objects 165

Chapter 9. Monitoring the progress of

backup, restore and recovery

operations 167

Table space states 168

Chapter 10. Backup overview 169

Using backup 171

Performing a snapshot backup 173

Using a split mirror as a backup image 174

Backing up to tape 175

Backing up to named pipes 177

Backing up partitioned databases 177

Backing up partitioned tables using IBM Tivoli

Space Manager Hierarchical Storage

Management 178

Enabling automatic backup 179

Automatic database backup 180

Optimizing backup performance 180

Privileges, authorities, and authorization required

to use backup 181

Compatibility of online backup and other utilities 182

Backup examples 183

Chapter 11. Recover overview 185

Recovering data 185

Recovering data using db2adutl 186

Recovering a dropped table 191

Crash recovery 193

Recovering damaged table spaces 194

Recovering table spaces in recoverable databases 195

Recovering table spaces in non-recoverable

databases 195

Reducing the impact of media failure 196

Reducing the impact of transaction failure . . . 198

Recovering from transaction failures in a

partitioned database environment 198

Recovering from the failure of a database

partition server 201

Recovering indoubt transactions on mainframe

or midrange servers 201

Disaster recovery 203

Version recovery 204

Rollforward recovery 205

Incremental backup and recovery 207

Restoring from incremental backup images . . 209

Limitations to automatic incremental restore . . 211

Optimizing recovery performance 212

Privileges, authorities, and authorization required

to use recover 213

Chapter 12. Restore overview 215

Using restore 215

Restoring from a snapshot backup image . . . 216

Restoring to an existing database 217

iv Data Recovery and High Availability Guide and Reference

Restoring to a new database 218

Using incremental restore in a test and

production environment 219

Performing a redirected restore operation 220

Redefine table space containers by restoring a

database using an automatically generated

script 221

Performing a redirected restore using an

automatically generated script 224

Database rebuild 225

Rebuild and table space containers 229

Rebuild and temporary table spaces 229

Choosing a target image for database rebuild 230

Rebuilding selected table spaces 233

Rebuild and incremental backup images . . . 234

Rebuilding partitioned databases 235

Restrictions for database rebuild 236

Optimizing restore performance 236

Privileges, authorities, and authorization required

to use restore 237

Restore examples 237

Redirected Restore sessions - CLP examples . . 237

Rebuild sessions - CLP examples 239

Chapter 13. Rollforward overview . . . 249

Using rollforward 250

Rolling forward changes in a table space . . . 252

Authorization required for rollforward 255

Rollforward sessions - CLP examples 256

Chapter 14. Data recovery with IBM

Tivoli Storage Manager (TSM) 261

Configuring a Tivoli Storage Manager client . . . 261

Considerations for using Tivoli Storage Manager 262

Chapter 15. DB2 Advanced Copy

Services (ACS) 263

Enabling DB2 Advanced Copy Services (ACS) . . 263

Installing DB2 Advanced Copy Services (ACS) 264

Activating DB2 Advanced Copy Services (ACS) 264

Configuring DB2 Advanced Copy Services

(ACS) 265

DB2 Advanced Copy Services (ACS) API 266

DB2 Advanced Copy Services (ACS) API

functions 266

DB2 Advanced Copy Services (ACS) API data

structures 292

DB2 Advanced Copy Services (ACS) API return

codes 305

DB2 Advanced Copy Services (ACS) supported

operating systems and hardware 307

Part 3. Appendixes 309

Appendix A. Overview of the DB2

technical information 311

DB2 technical library in hardcopy or PDF format 311

Ordering printed DB2 books 314

Displaying SQL state help from the command line

processor 314

Accessing different versions of the DB2

Information Center 315

Displaying topics in your preferred language in the

DB2 Information Center 315

Updating the DB2 Information Center installed on

your computer or intranet server 316

DB2 tutorials 317

DB2 troubleshooting information 318

Terms and Conditions 318

Appendix B. Notices 321

Index 325

Contents v

vi Data Recovery and High Availability Guide and Reference

About this book

The Data Recovery and High Availability Guide and Reference describes how to

keep your DB2® Database for Linux®, UNIX®, and Windows® database solutions

highly available, and how to keep your data from being lost.

The Data Recovery and High Availability Guide and Reference is in two parts:

v Part 1, High availability, describes strategies and DB2 database features and

functionality that help keep your database solutions highly available.

v Part 2, Data recovery, describes how to use DB2 backup and restore functionality

to keep your data from being lost.

© Copyright IBM Corp. 2001, 2007 vii

viii Data Recovery and High Availability Guide and Reference

Part 1. High availability

The availability of a database solution is a measure of how successful user

applications are at performing their required database tasks. If user applications

cannot connect to the database, or if their transactions fail because of errors or time

out because of load on the system, the database solution is not very available. If

user applications are successfully connecting to the database and performing their

work, the database solution is highly available.

Designing a highly available database solution, or increasing the availability of an

existing solution requires an understanding of the needs of the applications

accessing the database. To get the greatest benefit from the expense of additional

storage space, faster processors, or more software licenses, focus on making your

database solution as available as required to the most important applications for

your business at the time when those applications need it most.

Unplanned outages

 Unexpected system failures that could affect the availability of your

database solution to users include: power interruption; network outage;

hardware failure; operating system or other software errors; and complete

system failure in the event of a disaster. If such a failure occurs at a time

when users expect to be able to do work with the database, a highly

available database solution must do the following:

v Shield user applications from the failure, so the user applications are not

aware of the failure. For example, DB2 Data Server can reroute database

client connections to alternate database servers if a database server fails.

v Respond to the failure to contain its effect. For example, if a failure

occurs on one machine in a cluster, the cluster manager can remove that

machine from the cluster so that no further transactions are routed to be

processed on the failed machine.

v Recover from the failure to return the system to normal operations. For

example, if standby database takes over database operations for a failed

primary database, the failed database might restart, recover, and take

over once again as the primary database.

These three tasks must be accomplished with a minimum effect on the

availability of the solution to user applications.

Planned outage

 In a highly available database solution, the impact of maintenance

activities on the availability of the database to user applications must be

minimized as well.

 For example, if the database solution serves a traditional store front that is

open for business between the hours of 9am to 5pm, then maintenance

activities can occur offline, outside of those business hours without

affecting the availability of the database for user applications. If the

database solution serves an online banking business that is expected to be

available for customers to access through the Internet 24 hours per day,

then maintenance activities must be run online, or scheduled for off-peak

activity periods to have minimal impact on the availability of the database

to the customers.

© Copyright IBM Corp. 2001, 2007 1

When you are making business decisions and design choices about the availability

of your database solution, you must weigh the following two factors:

v The cost to your business of the database being unavailable to customers

v The cost of implementing a certain degree of availability

For example, consider an Internet-based business that makes a certain amount of

revenue, X, every hour the database solution is serving customers. A high

availability strategy that saves 10 hours of downtime per year will earn the

business 10X extra revenue per year. If the cost of implementing this high

availability strategy is less than the expected extra revenue, it would be worth

implementing.

2 Data Recovery and High Availability Guide and Reference

Chapter 1. High availability strategies

It does not matter to a user why his or her database request failed. Whether a

transaction timed out because of bad performance, or a component of the solution

failed, or an administrator has taken the database offline to perform maintenance,

the result is the same to the user: the database is unavailable to process requests.

Strategies for improving the availability of your database solution include:

Redundancy

having secondary copies of each component of your solution that can take

over workload in the event of failure.

System monitoring

collecting statistics about the components of your solution to facilitate

workload balancing or detecting that components have failed.

Load balancing

transferring some workload from an overloaded component of your

solution to another component of your solution that has a lighter load.

Failover

transferring all workload from a failed component of your solution to a

secondary component.

Maximizing performance

reducing the chance that transactions take a very long time to complete or

time out.

Minimizing the impact of maintenance

scheduling automated maintenance activities and manual maintenance

activities so as to impact user applications as little as possible.

High availability through redundancy

If any one element or component of your database solution fails, from the power

supply or cable connecting your network, to the operating system or application

software, the end result is the same: your database solution is not available to user

applications. An important strategy for maintaining high availability is having

redundant systems so that if one component fails, a secondary or backup copy of

that component can take over for the failed component, enabling the database to

remain available to user applications.

Redundancy is common in system design:

v Uninterrupted or backup power supplies

v Running multiple network fibers between each component

v Bonding or load balancing of network cards

v Using multiple hard drives in a redundant array

v Using clusters of CPUs

If any one of these components of the system is not redundant, that component

could be a single point of failure for the whole system.

You can create redundancy at the database level, by having two databases: a

primary database that normally processes all or most of the application workload;

© Copyright IBM Corp. 2001, 2007 3

and a secondary database that can take over the workload if the primary database

fails. In a DB2 High Availability Disaster Recover (HADR) environment, this

secondary database is called the standby database.

High availability though failover

Failover is the transfer of workload from a primary system to a secondary system

in the event of a failure on the primary system. When workload has been

transferred like this, the secondary system is said to have taken over the workload

of the failed primary system.

Example 1

 In a clustered environment, if one machine in the cluster fails, cluster

managing software can move processes that were running on the machine

that failed to another machine in the cluster.

Example 2

 In a database solution with multiple IBM® Data Servers, if one database

becomes unavailable, the database manager can reroute database

applications that were connected to the database server that is no longer

available to a secondary database server.

 The two most common failover strategies on the market are known as idle standby

and mutual takeover:

Idle Standby

 In this configuration, a primary system processes all the workload while a

secondary or standby system is idle, or in standby mode, ready to take

over the workload if there is a failure on the primary system.

Mutual Takeover

 In this configuration, there are multiple systems, and each system is the

designated secondary for another system. When a system fails, the overall

performance is negatively affected because the secondary for the system

that failed must continue to process its own workload as well as the

workload of the failed system.

High availability through clustering

A cluster is a group of connected machines that work together as a single system.

When one machine in a cluster fails, cluster managing software transfers the

workload of the failed machine onto other machines.

Heartbeat monitoring

 To detect a failure on one machine in the cluster, failover software can use

heartbeat monitoring or keepalive packets between machines to confirm

availability. Heartbeat monitoring involves system services that maintain

constant communication between all the machines in a cluster. If a

heartbeat is not detected, failover to a backup machine starts.

IP address takeover

 When there is a failure on one machine in the cluster, cluster managers can

transfer workload from one machine to another by transferring the IP

address from one machine to another. This is called IP address takeover, or

4 Data Recovery and High Availability Guide and Reference

IP takeover. This transfer is invisible to client applications, which continue

to use the original IP address, unaware that the physical machine to which

that IP address maps has changed.

 The DB2 High Availability (HA) Feature enables integration between IBM Data

Server and cluster managing software.

Database logging

All databases have logs associated with them. These logs keep records of database

changes. If a database needs to be restored to a point beyond the last full, offline

backup, logs are required to roll the data forward to the point of failure. Database

logging is an important part of your highly available database solution design

because database logs make it possible to recover from a failure, and they make it

possible to synchronize primary and secondary databases.

IBM Data Server supports two types of logging: circular and archive. Each provides

a different level of recovery capability:

v “Circular logging”

v “Archive logging” on page 6

The advantage of choosing archive logging is that rollforward recovery can use

both archived logs and active logs to restore a database either to the end of the

logs, or to a specific point in time. The archived log files can be used to recover

changes made after the backup was taken. This is different from circular logging

where you can only recover to the time of the backup, and all changes made after

that are lost.

Circular logging

Circular logging is the default behavior when a new database is created. (The

logarchmeth1 and logarchmeth2 database configuration parameters are set to OFF.)

With this type of logging, only full, offline backups of the database are allowed.

The database must be offline (inaccessible to users) when a full backup is taken.

As the name suggests, circular logging uses a “ring” of online logs to provide

recovery from transaction failures and system crashes. The logs are used and

retained only to the point of ensuring the integrity of current transactions. Circular

logging does not allow you to roll a database forward through transactions

performed after the last full backup operation. All changes occurring since the last

backup operation are lost. Since this type of restore operation recovers your data to

the specific point in time at which a full backup was taken, it is called version

recovery.

Chapter 1. High availability strategies 5

Active logs are used during crash recovery to prevent a failure (system power or

application error) from leaving a database in an inconsistent state. Active logs are

located in the database log path directory.

Archive logging

Archive logging is used specifically for rollforward recovery. Archived logs are logs

that were active but are no longer required for crash recovery. Use the logarchmeth1

database configuration parameter to enable archive logging.

 Taking online backups is only supported if the database is configured for archive

logging. During an online backup operation, all activities against the database are

logged. When an online backup image is restored, the logs must be rolled forward

at least to the point in time at which the backup operation completed. For this to

happen, the logs must have been archived and made available when the database

is restored. After an online backup is complete, the DB2 database manager forces

DB2 server

Database Log Path

Transaction

Active Log Files

Circular Logs

Active

Log File

Figure 1. Circular Logging

TIME

Units of work Units of work

update update

Logs are used between backups to track the changes to the databases.

BACKUP
database

n archived logs
1 active log

n archived logs
1 active log

Figure 2. Active and Archived Database Logs in Rollforward Recovery. There can be more than one active log in the

case of a long-running transaction.

6 Data Recovery and High Availability Guide and Reference

the currently active log to be closed, and as a result, it will be archived. This

ensures that your online backup has a complete set of archived logs available for

recovery.

The following database configuration parameters allow you to change where

archived logs are stored: The newlogpath parameter, and the logarchmeth1 and

logarchmeth2 parameters. Changing the newlogpath parameter also affects where

active logs are stored.

To determine which log extents in the database log path directory are archived logs,

check the value of the loghead database configuration parameter. This parameter

indicates the lowest numbered log that is active. Those logs with sequence

numbers less than loghead are archived logs and can be moved. You can check the

value of this parameter by using the Control Center; or, by using the command

line processor and the GET DATABASE CONFIGURATION command to view the

″First active log file″. For more information about this configuration parameter, see

the Performance Guide book.

Log control files

When a database restarts after a failure, the database manager applies transaction

information stored in log files to return the database to a consistent state. To

determine which records from the log files need to be applied to the database, the

database manager uses information recorded in a log control file.

Redundancy for database resilience

The database manager maintains two copies of the log control file,

SQLOGCTL.LFH.1 and SQLOGCTL.LFH.2, so that if one copy is damaged, the

database manager can still use the other copy.

Performance considerations

Applying the transaction information contained in the log control files contributes

to the overhead of restarting a database after a failure. You can configure the

frequency at which the database manager writes transaction to disk in order to

reduce the number of log records that need to be processed during crash recovery

using the “softmax - Recovery range and soft checkpoint interval configuration

parameter” in Data Servers, Databases, and Database Objects Guide.

Chapter 1. High availability strategies 7

8 Data Recovery and High Availability Guide and Reference

Chapter 2. High availability with IBM Data Server

IBM Data Server contains functionality that supports many high availability

strategies.

Automatic client reroute roadmap

Automatic client reroute is an IBM Data Server feature that redirects client

applications from a failed server to an alternate server so the applications can

continue their work with minimal interruption. Automatic client reroute can be

accomplished only if an alternate server has been specified prior to the failure.

Table 1 lists the relevant topics in each category.

 Table 1. Roadmap to automatic client reroute information

Category Related topics

General information v “Automatic client reroute limitations” on page 21

v “Automatic client reroute description and setup” on page 17

v “Automatic client reroute description and setup (DB2 Connect)”

in Quick Beginnings for DB2 Connect Servers

Configuration v “Identifying an alternate server for automatic client reroute” on

page 21

v “Configuring automatic client reroute retry behavior using

registry variables” on page 19

v “Client reroute setup when using IBM Data Server Driver for

JDBC and SQLJ” on page 21

Examples v “Automatic client reroute examples” on page 138

Interaction with other

DB2 features

v “Configuring automatic client reroute and High Availability

Disaster Recovery (HADR)” on page 29

v “Using client connection timeout with automatic client reroute”

on page 19

v “IBM Data Server Driver for JDBC and SQLJ client reroute

support” in Developing Java Applications

Troubleshooting v “Configuring automatic client reroute for client connection

distributor technology” on page 20

DB2 fault monitor facilities for Linux and UNIX

Available on UNIX based systems only, DB2 fault monitor facilities keep DB2 Data

Server databases up and running by monitoring DB2 database manager instances,

and restarting any instance that exits prematurely.

The Fault Monitor Coordinator (FMC) is the process of the Fault Monitor Facility

that is started at the UNIX boot sequence. The init daemon starts the FMC and will

restart it if it terminates abnormally. The FMC starts one fault monitor for each

DB2 instance. Each fault monitor runs as a daemon process and has the same user

privileges as the DB2 instance.

© Copyright IBM Corp. 2001, 2007 9

Once a fault monitor is started, it will be monitored to make sure it does not exit

prematurely. If a fault monitor fails, it will be restarted by the FMC. Each fault

monitor will, in turn, be responsible for monitoring one DB2 instance. If the DB2

instance exits prematurely, the fault monitor will restart it. The fault monitor will

only become inactive if the db2stop command is issued. If a DB2 instance is shut

down in any other way, the fault monitor will start it up again.

DB2 fault monitor restrictions

If you are using a high availability clustering product such as HACMP™, MSCS, or

IBM Tivoli® System Automation for Multiplatforms, the fault monitor facility must

be turned off since the instance startup and shut down is controlled by the

clustering product.

Differences between the DB2 fault monitor and the DB2 health

monitor

The health monitor and the fault monitor are tools that work on a single database

instance. The health monitor uses health indicators to evaluate the health of specific

aspects of database manager performance or database performance. A health

indicator measures the health of some aspect of a specific class of database objects,

such as a table space. Health indicators can be evaluated against specific criteria to

determine the health of that class of database object. In addition, health indicators

can generate alerts to notify you when an indicator exceeds a threshold or

indicates a database object is in a non-normal state.

By comparison, the fault monitor is solely responsible for keeping the instance it is

monitoring up and running. If the DB2 instance it is monitoring terminates

unexpectedly, the fault monitor restarts the instance. The fault monitor is not

available on Windows.

High Availability Disaster Recovery (HADR)

The DB2 Data Server High Availability Disaster Recovery (HADR) feature is a

database replication feature that provides a high availability solution for both

partial and complete site failures. HADR protects against data loss by replicating

data changes from a source database, called the primary, to a target database,

called the standby.

HADR might be your best option if most or all of your database requires

protection, or if you perform DDL operations that must be automatically replicated

on the standby database.

Applications can only access the current primary database. Updates to the standby

database occur by rolling forward log data that is generated on the primary

database and shipped to the standby database.

A partial site failure can be caused by a hardware, network, or software (DB2

database system or operating system) failure. Without HADR, a partial site failure

requires restarting the database management system (DBMS) server that contains

the database. The length of time it takes to restart the database and the server

where it resides is unpredictable. It can take several minutes before the database is

brought back to a consistent state and made available. With HADR, the standby

database can take over in seconds. Further, you can redirect the clients that were

using the original primary database to the standby database (new primary

database) by using automatic client reroute or retry logic in the application.

10 Data Recovery and High Availability Guide and Reference

A complete site failure can occur when a disaster, such as a fire, causes the entire

site to be destroyed. Because HADR uses TCP/IP for communication between the

primary and standby databases, they can be situated in different locations. For

example, your primary database might be located at your head office in one city,

while your standby database is located at your sales office in another city. If a

disaster occurs at the primary site, data availability is maintained by having the

remote standby database take over as the primary database with full DB2

functionality. After a takeover operation occurs, you can bring the original primary

database back up and return it to its primary database status; this is known as

failback.

With HADR, you can choose the level of protection you want from potential loss

of data by specifying one of three synchronization modes: synchronous, near

synchronous, or asynchronous.

After the failed original primary server is repaired, it can rejoin the HADR pair as

a standby database if the two copies of the database can be made consistent. After

the original primary database is reintegrated into the HADR pair as the standby

database, you can switch the roles of the databases to enable the original primary

database to once again be the primary database.

HADR is only one of several replication solutions offered in the DB2 product

family. WebSphere® Information Integrator and the DB2 database system include

SQL replication and Q replication solutions that can also be used, in some

configurations, to provide high availability. These functions maintain logically

consistent copies of database tables at multiple locations. In addition, they provide

flexibility and complex functionality such as support for column and row filtering,

data transformation, updates to any copy of a table, and they can be used in

partitioned database environments.

DB2 High Availability (HA) Feature

The DB2 High Availability (HA) Feature enables integration between IBM Data

Server and cluster managing software.

When you stop a database manager instance in a clustered environment, you must

make your cluster manager aware that the instance is stopped. If the cluster

manager is not aware that the instance is stopped, the cluster manager might

attempt an operation such as failover on the stopped instance. The DB2 High

Availability (HA) Feature provides infrastructure for enabling the database

manager to communicate with your cluster manager when instance configuration

changes, such as stopping a database manager instance, require cluster changes.

If the database manager communicates with the cluster manager whenever

instance changes require cluster changes, then you are freed from having to

perform separate cluster operations after performing instance configuration

changes.

The DB2 HA Feature is composed of the following elements:

v IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component is

bundled with IBM Data Server on AIX® and Linux as part of the DB2 High

Availability (HA) Feature, and integrated with the DB2 installer. You can install,

upgrade, or uninstall SA MP Base Component using either the DB2 installer or

the installSAM and uninstallSAM scripts that are included in the IBM Data

Server install media. See: “Installing and upgrading the SA MP Base Component

with the DB2 installer” on page 64

Chapter 2. High availability with IBM Data Server 11

v In a clustered environment, some database manager instance configuration and

administration operations require related cluster configuration changes. The DB2

High Availability (HA) Feature enables the database manager to automatically

request cluster manager configuration changes whenever you perform certain

database manager instance configuration and administration operations. See:

“Configuring a cluster automatically with the DB2 High Availability (HA)

Feature” on page 77

v DB2 High Availability Instance Configuration Utility (db2haicu) is a text based

utility that you can use to configure and administer your highly available

databases in a clustered environment. db2haicu collects information about your

database instances, your cluster environment, and your cluster manager by

querying your system. You supply more information through parameters to the

db2haicu call, an input file, or at runtime by providing information at db2haicu

prompts. See: “DB2 High Availability Instance Configuration Utility (db2haicu)”

on page 80

v The DB2 cluster manager API defines a set of functions that enable the database

manager to communicate configuration changes to the cluster manager. See:

“DB2 cluster manager API” on page 89

High availability through log shipping

Log shipping is the process of copying whole log files to a standby machine either

from an archive device, or through a user exit program running against the

primary database.

The standby database is continuously rolling forward through the log files

produced by the production machine. When the production machine fails, a

failover occurs and the following takes place:

v The remaining logs are transferred over to the standby machine.

v The standby database rolls forward to the end of the logs and stops.

v The clients reconnect to the standby database and resume operations.

The standby machine has its own resources (for example, disks), but must have the

same physical and logical definitions as the production database. When using this

approach the primary database is restored to the standby machine, by using restore

utility or the split mirror function.

To ensure that you are able to recover your database in a disaster recovery

situation consider the following:

v The archive location should be geographically separate from the primary site.

v Remotely mirror the log at the standby database site

v Use a synchronous mirror for no loss support. You can do this using modern

disk subsystems such as ESS and EMC, or another remote mirroring technology.

NVRAM cache (both local and remote) is also recommended to minimize the

performance impact of a disaster recovery situation.

Note:

1. When the standby database processes a log record indicating that an index

rebuild took place on the primary database, the indexes on the standby server

are not automatically rebuilt. The index will be rebuilt on the standby server

either at the first connection to the database, or at the first attempt to access the

index after the standby server is taken out of rollforward pending state. It is

recommended that the standby server be resynchronized with the primary

12 Data Recovery and High Availability Guide and Reference

server if any indexes on the primary server are rebuilt. You can enable indexes

to be rebuilt during rollforward operations if you set the LOGINDEXBUILD

database configuration parameter.

2. If the load utility is run on the primary database with the COPY YES option

specified, the standby database must have access to the copy image.

3. If the load utility is run on the primary database with the COPY NO option

specified, the standby database should be resynchronized, otherwise the table

space will be placed in restore pending state.

4. There are two ways to initialize a standby machine:

a. By restoring to it from a backup image.

b. By creating a split mirror of the production system and issuing the db2inidb

command with the STANDBY option.

Only after the standby machine has been initialized can you issue the

ROLLFORWARD command on the standby system.

5. Operations that are not logged will not be replayed on the standby database.

As a result, it is recommended that you re-sync the standby database after such

operations. You can do this through online split mirror and suspended I/O

support.

Log mirroring

IBM Data Server supports log mirroring at the database level. Mirroring log files

helps protect a database from: accidental deletion of an active log; and data

corruption caused by hardware failure.

If you are concerned that your active logs might be damaged (as a result of a disk

crash), you should consider using the MIRRORLOGPATH configuration parameter

to specify a secondary path for the database to manage copies of the active log,

mirroring the volumes on which the logs are stored.

The MIRRORLOGPATH configuration parameter allows the database to write an

identical second copy of log files to a different path. It is recommended that you

place the secondary log path on a physically separate disk (preferably one that is

also on a different disk controller). That way, the disk controller cannot be a single

point of failure.

When MIRRORLOGPATH is first enabled, it will not actually be used until the

next database startup. This is similar to the NEWLOGPATH configuration

parameter.

If there is an error writing to either the active log path or the mirror log path, the

database will mark the failing path as “bad”, write a message to the administration

notification log, and write subsequent log records to the remaining “good” log

path only. DB2 will not attempt to use the “bad” path again until the current log

file is either full or truncated. When DB2 needs to open the next log file, it will

verify that this path is valid, and if so, will begin to use it. If not, DB2 will not

attempt to use the path again until the next log file is accessed for the first time.

There is no attempt to synchronize the log paths, but DB2 keeps information about

access errors that occur, so that the correct paths are used when log files are

archived. If a failure occurs while writing to the remaining “good” path, the

database shuts down.

Chapter 2. High availability with IBM Data Server 13

High availability through suspended I/O and online split mirror support

IBM Data Server suspended I/O support enables you to split mirrored copies of

your primary database without taking the database off-line. You can use this to

very quickly create a standby database to take over if the primary database fails.

Disk mirroring is the process of writing data to two separate hard disks at the

same time. One copy of the data is called a mirror of the other. Splitting a mirror is

the process of separating the two copies.

You can use disk mirroring to maintain a secondary copy of your primary

database. You can use IBM Data Server suspended I/O functionality to split the

primary and secondary mirrored copies of the database without taking the

database off-line. Once the primary and secondary databases copies are split, the

secondary database can take over operations if the primary database fails.

If you would rather not back up a large database using the IBM Data Server

backup utility, you can make copies from a mirrored image by using suspended

I/O and the split mirror function. This approach also:

v Eliminates backup operation overhead from the production machine

v Represents a fast way to clone systems

v Represents a fast implementation of idle standby failover. There is no initial

restore operation, and if a rollforward operation proves to be too slow, or

encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:

v As a clone database

v As a standby database

v As a backup image

This command can only be issued against a split mirror, and it must be run before

the split mirror can be used.

In a partitioned database environment, you do not have to suspend I/O writes on

all database partitions simultaneously. You can suspend a subset of one or more

database partitions to create split mirrors for performing offline backups. If the

catalog partition is included in the subset, it must be the last database partition to

be suspended.

In a partitioned database environment, the db2inidb command must be run on

every database partition before the split image from any of the database partitions

can be used. The tool can be run on all database partitions simultaneously using

the db2_all command. If; however, you are using the RELOCATE USING option,

you cannot use the db2_all command to run db2inidb on all of the database

partitions simultaneously. A separate configuration file must be supplied for each

database partition, that includes the NODENUM value of the database partition

being changed. For example, if the name of a database is being changed, every

database partition will be affected and the db2relocatedb command must be run

with a separate configuration file on each database partition. If containers

belonging to a single database partition are being moved, the db2relocatedb

command only needs to be run once on that database partition.

Note: Ensure that the split mirror contains all containers and directories which

comprise the database, including the volume directory. To gather this information,

14 Data Recovery and High Availability Guide and Reference

refer to the DBPATHS administrative view, which shows all the files and

directories of the database that need to be split.

Chapter 2. High availability with IBM Data Server 15

16 Data Recovery and High Availability Guide and Reference

Chapter 3. Configuring for high availability

To configure your DB2 database solution for high availability, you must: schedule

database maintenance activities; configure the primary and standby database

servers to know about each other and their respective roles in the event of a

failure; and configure any cluster managing software to transfer workload from a

failed cluster node.

Before configuring your database solution:

v Assemble and install the underlying hardware and software components that

make up the solution. These underlying components might include: power

supply; network connectivity; network cards; disks or other storage devices;

operating systems; and cluster managing software.

v Test these underlying components without any database workload to make sure

they are functioning properly before attempting to use them in database load

balancing, failover, or recovery operations.

Redundancy is an important part of a high availability solution. However, if you

do not schedule maintenance wisely, if you run out of storage space for needed

recovery logs, or if your cluster managing software is not configured correctly,

your solution might not be available when your users need to do crucial work

with the database.

Configuring for high availability includes:

v Configure client reroute

“Automatic client reroute description and setup”

v Configure fault monitor

“DB2 fault monitor registry file” on page 24

v Configure DB2 High Availability Disaster Recovery

“Initializing high availability disaster recovery (HADR)” on page 27

v Schedule maintenance activities

“Scheduling maintenance for high availability” on page 47

v Configure logging

“Configuring database logging options” on page 50

v Configure cluster managing software

“Configuring a Clustered environment for high availability” on page 63

Automatic client reroute description and setup

DB2 client reroute redirects database client application connections from a primary

database server to an alternate database server if the primary database server fails,

or if there is a loss of communication between the client application and the

primary server. To enable client reroute, the location of the alternate database

server must be configured on the primary database server.

The automatic client reroute feature could be used within the following

configurable environments:

1. Enterprise Server Edition (ESE) with the database partitioning feature (DPF)

2. DataPropagator™ (DPROPR)-style replication

© Copyright IBM Corp. 2001, 2007 17

3. High availability cluster multiprocessor (HACMP)

4. High availability disaster recovery (HADR).

Automatic client reroute works in conjunction with HADR to allow a client

application to continue its work with minimal interruption after a failover of

the database being accessed.

In the case of the DB2 Connect server, because there is no requirement for the

synchronization of local databases, you only need to ensure that both the original

and alternate DB2 Connect servers have the target host or System i™ database

catalogued in such a way that it is accessible using an identical database alias.

In order for the DB2 database system to have the ability to recover from a loss of

communications, an alternative server location must be specified before the loss of

communication occurs. The UPDATE ALTERNATE SERVER FOR DATABASE

command is used to define the alternate server location on a particular database.

The alternate hostname and port number is given as part of the command. The

location is stored in the system database directory file at the server. In order to

ensure the alternate server location specified applies to all clients, the alternate

server location has to be specified at the server side. The alternate server is ignored

if it is set at the client instance.

For example, assume a database is located at the database partition called “N1”

(with a hostname of XXX and a port number YYY). The database administrator

would like to set the alternate server location to be at the hostname = AAA with a

port number of 123. Here is the command the database administrator would run at

database partition N1 (on the server instance):

 db2 update alternate server for database db2 using hostname AAA port 123

After you have specified the alternate server location on a particular database at

the server instance, the alternate server location information is returned to the

client as part of the connection process. If communication between the client and

the server is lost for any reason, the DB2 client coded will attempt to re-establish

the connection by using the alternate server information. The DB2 client will

attempt to re-connect with the original server and the alternate server, alternating

the attempts between the two servers. The timing of these attempts varies from

very rapid attempts to begin with gradual lengthening of the intervals between the

attempts.

Once a connection is successful, the SQLCODE -30108 is returned to indicate that a

database connection has been re-established following the communication failure.

The hostname or IP address and service name or port number are returned. The

client code only returns the error for the original communications failure to the

application if the re-establishment of the client communications is not possible to

either the original or alternative server.

Consider the following two items involving alternate server connectivity with DB2

Connect™ server:

v The first consideration involves using DB2 Connect server for providing access

to a host or System i database on behalf of both remote and local clients. In such

situations, confusion can arise regarding alternate server connectivity

information in a system database directory entry. To minimize this confusion,

consider cataloging two entries in the system database directory to represent the

same host or System i database. Catalog one entry for remote clients and catalog

another for local clients.

18 Data Recovery and High Availability Guide and Reference

v Secondly, the alternate server information that is returned from a target server is

kept only in cache. If the DB2 process is terminated, the cache information,

therefore the alternate server information, is lost.

In general, if an alternate server is specified, automatic client reroute will be

enabled when a communication error (sqlcode -30081) or a sqlcode -1224 is

detected. However, in a high availability disaster recovery (HADR) environment, it

will also be enabled if sqlcode -1776 is returned back from the HADR standby

server.

Configuring automatic client reroute retry behavior using

registry variables

When a primary database server fails, DB2 automatic client reroute transfers client

application requests to a secondary database server. DB2 client reroute then

repeatedly tries to reconnect to the primary database. You can configure the

maximum number of reconnection attempts DB2 client reroute makes, and the

sleep time between consecutive reconnection attempts.

By default, the automatic client reroute feature retries the connection to a database

repeatedly for up to 10 minutes. It is, however, possible to configure the exact retry

behavior using one or both of the following two registry variables:

v DB2_MAX_CLIENT_CONNRETRIES: The maximum number of connection

retries attempted by automatic client reroute.

v DB2_CONNRETRIES_INTERVAL: The sleep time between consecutive

connection retries, in number of seconds.

If DB2_MAX_CLIENT_CONNRETRIES is set, but DB2_CONNRETRIES_INTERVAL

is not, DB2_CONNRETRIES_INTERVAL defaults to 30.

If DB2_MAX_CLIENT_CONNRETRIES is not set, but

DB2_CONNRETRIES_INTERVAL is set, DB2_MAX_CLIENT_CONNRETRIES

defaults to 10.

If neither DB2_MAX_CLIENT_CONNRETRIES nor

DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute feature reverts

to its default behavior described previously.

Note:

Users of Type 4 connectivity with the DB2 Universal JDBC Driver should use the

following two datasource properties to configure automatic client rerouting:

v maxRetriesForClientReroute: Use this property to limit the number of retries if

the primary connection to the server fails. This property is only used if the

retryIntervalClientReroute property is also set.

v retryIntervalForClientReroute: Use this property to specify the amount of time

(in seconds) to sleep before retrying again. This property is only used if the

maxRetriesForClientReroute property is also set.

Using client connection timeout with automatic client reroute

In a standard DB2 database solution implementation, a client application attempts

to connect to a database server until successful, or until a configured connection

timeout length of time has passed. If the connection times out, a communications

error is returned to the application. If you are using DB2 automatic client reroute,

Chapter 3. Configuring for high availability 19

DB2 will redirect that client application connection will to an alternate database

server instead of generating a communications error.

For CLI/ODBC, OLE DB, and ADO.NET applications, you can set a connection

timeout value to specify the number of seconds that the client application waits for

a reply when trying to establish a connection to a server before terminating the

connection attempt and generating a communication timeout.

If client reroute is enabled, you need to set the connection timeout value to a value

that is equal to or greater than the maximum time it takes to connect to the server.

Otherwise, the connection might timeout and be rerouted to the alternate server by

client reroute. For example, if on a normal day it takes about 10 seconds to connect

to the server, and on a busy day it takes about 20 seconds, the connection timeout

value should be set to at least 20 seconds.

Configuring automatic client reroute for client connection

distributor technology

Distributor or dispatcher technologies such as WebSphere EdgeServer distribute

client application reconnection requests to a defined set of systems if a primary

database server fails. If you are using distributor technology with DB2 automatic

client reroute, you must identify the distributor itself as the alternate server to DB2

automatic client reroute.

You might be using distributor technology in an environment similar to the

following:

Client —> distributor technology —> (DB2 Connect Server 1 or DB2 Connect

Server 2) —> DB2 z/OS

where:

v The distributor technology component has a TCP/IP host name of DThostname

v The DB2 Connect Server 1 has a TCP/IP host name of GWYhostname1

v The DB2 Connect Server 2 has a TCP/IP host name of GWYhostname2

v The DB2 z/OS server has a TCP/IP host name of zOShostname

The client is catalogued using DThostname in order to utilize the distributor

technology to access either of the DB2 Connect Servers. The intervening distributor

technology makes the decision to use GWYhostname1 or GWYhostname2. Once

the decision is made, the client has a direct socket connection to one of these two

DB2 Connect gateways. Once the socket connectivity is established to the chosen

DB2 Connect server, you have a typical client to DB2 Connect server to DB2 z/OS

connectivity.

For example, assume the distributor chooses GWYhostname2. This produces the

following environment:

Client —> DB2 Connect Server 2 —> DB2 z/OS

The distributor does not retry any of the connections if there is any communication

failure. If you want to enable the automatic client reroute feature for a database in

such an environment, the alternative server for the associated database or

databases in the DB2 Connect server (DB2 Connect Server 1 or DB2 Connect Server

2) should be set up to be the distributor (DThostname). Then, if DB2 Connect

Server 1 locks up for any reason, automatic client rerouting is triggered and a

20 Data Recovery and High Availability Guide and Reference

client connection is retried with the distributor as both the primary and the

alternate server. This option allows you to combine and maintain the distributor

capabilities with the DB2 automatic client reroute feature. Setting the alternate

server to a host other than the distributor host name still provides the clients with

the automatic client reroute feature. However, the clients will establish direct

connections to the defined alternate server and bypass the distributor technology,

which eliminates the distributor and the value that it brings.

The automatic client reroute feature intercepts the following SQL codes:

v sqlcode -20157

v sqlcode -1768 (reason code = 7)

Note: Client reroute might not be informed of socket failures in a timely fashion if

the setting of the ″TCP Keepalive″ operating system configurations parameter is

too high. (Note that the name of this configuration parameter varies by platform.)

Identifying an alternate server for automatic client reroute

Whenever a DB2 server or DB2 Connect server crashes, each client that is

connected to that server receives a communications error which terminates the

connection resulting in an application error. In cases where availability is

important, you should have implemented either a redundant set up or the ability

to fail the server over to a standby node. In either case, the DB2 client code

attempts to re-establish the connection to the original server which might be

running on a failover node (the IP address fails over as well), or to a new server.

To define a new or alternate server:

Use the UPDATE ALTERNATE SERVER FOR DATABASE or UPDATE

ALTERNATE SERVER FOR LDAP DATABASE command.

These commands update the alternate server information for a database alias in the

system database directory.

Client reroute setup when using IBM Data Server Driver for

JDBC and SQLJ

Whenever a server crashes, each client that is connected to that server receives a

communication error, which terminates the connection and results in an application

error. When availability is important, you should have a redundant setup or

failover support. Failover is the ability of a server to take over operations when

another server fails. When the connection is terminated, the IBM Data Server

Driver for JDBC and SQLJ client attempts to re-establish the connection to the

original server (which might be running on a failover node) or to a new server.

When the connection is re-established, the application receives an SQLException

that informs it of the transaction failure, but the application can continue with the

next transaction.

For detailed information, refer to the topic about client reroute support for the IBM

Data Server Driver for JDBC and SQLJ in the Related Concepts section, below.

Automatic client reroute limitations

Consider DB2 database client reroute restrictions when designing your high

availability DB2 database solution.

Here is a list of limitations of the DB2 database automatic client reroute feature:

Chapter 3. Configuring for high availability 21

v Automatic client reroute is only supported when the communications protocol

used for connecting to the DB2 database server, or to the DB2 Connect server, is

TCP/IP. This means that if the connection is using a different protocol other than

TCP/IP, the automatic client reroute feature will not be enabled. Even if DB2

database is set up for a loopback, TCP/IP communications protocol must be

used in order accommodate the automatic client reroute feature.

v When cataloging on a DB2 Connect server and you have an environment where

you want automatic client rerouting to be done, you will have situations which

have implications:

– When using DB2 Connect server for providing access to a host or System i

database on behalf of both remote and local clients. Confusion can arise

regarding alternate server connectivity information in a system database

directory entry. To minimize this confusion, consider cataloging two entries in

the system database directory to represent the same host or System i

database. Catalog one entry for remote clients and catalog another for local

clients.

– When the alternate server information that is returned from a target server is

kept only in cache memory. If the DB2 database process is terminated, the

cache information, and therefore the alternate server information, is lost.
v If the connection is reestablished to the alternate server location, any new

connection to the same database alias will be connected to the alternate server

location. If you want any new connection to be established, to the original

location in case the problem on the original location is fixed, there are a couple

of options from which to choose:

– You need to take the alternate server offline and allow the connections to fail

back over to the original server. (This assumes that the original server has

been cataloged using the UPDATE ALTERNATE SERVER command such that

it is set to be the alternate location for the alternate server.)

– You could catalog a new database alias to be used by the new connections.

– You could uncatalog the database entry and re-catalog it again.
v DB2 Database for Linux, UNIX, and Windows supports the automatic client

reroute feature for both the client and the server if both the client and server

support this feature. Other DB2 database product families do not currently

support this feature.

v The behavior of the automatic client reroute feature and the behavior of

rerouting in a DB2 for z/OS® sysplex environment are somewhat different.

Specifically:

– The automatic client reroute feature requires the primary server to designate a

single alternative server. This is done using the UPDATE ALTERNATE

SERVER FOR DATABASE or UPDATE ALTERNATE SERVER FOR LDAP

DATABASE command issued at the primary server. This command updates

the local database directory with the alternate server information so that other

applications at the same client have access this information. By contrast, a

data-sharing sysplex used for DB2 for z/OS maintains, in memory, a list of

one or more servers to which the client can connect. If a communication

failure happens, the client uses that list of servers to determine the location of

the appropriate alternative server.

– In the case of the automatic client reroute feature, the server informs the

client of the most current special register settings whenever a special register

setting is changed. This allows the client, to the best of its ability, to

re-establish the runtime environment after a reroute has occurred. By contrast,

22 Data Recovery and High Availability Guide and Reference

a sysplex used for DB2 for z/OS does not provide the special register settings

to the client and therefore, the client must reinstate the runtime environment

after the reroute is complete.
As of FixPak 7, full automatic client reroute support is available only between a

Linux, UNIX, or Windows client and a Linux, UNIX, or Windows server. It is

not available between a Linux, UNIX, or Windows client and a DB2 for z/OS

sysplex server (any supported version); only the reroute capability is supported.

v The DB2 database server installed in the alternate host server must be the same

version (but could have a higher FixPak) when compared to the DB2 database

instance installed on the original host server.

v Regardless of whether you have authority to update the database directory at

the client machine, the alternate server information is always kept in memory. In

other words, if you did not have authority to update the database directory (or

because it is a read-only database directory), other applications will not be able

to determine and use the alternate server, because the memory is not shared

among applications.

v The same authentication is applied to all alternate locations. This means that the

client will be unable to reestablish the database connection if the alternate

location has a different authentication type than the original location.

v When there is a communication failure, all session resources such as global

temporary tables, identity, sequences, cursors, server options (SET SERVER

OPTION) for federated processing and special registers are all lost. The

application is responsible to re-establish the session resources in order to

continue processing the work. You do not have to run any of the special register

statements after the connection is re-established, because the DB2 database will

re-play the special register statements that were issued before the

communication error. However, some of the special registers will not be

replayed. They are:

– SET ENCRYPTPW

– SET EVENT MONITOR STATE

– SET SESSION AUTHORIZATION

– SET TRANSFORM GROUP

Note: If the client is using CLI, JCC Type 2 or Type 4 drivers, after the

connection is re-established, then for those SQL and XQuery statements that

have been prepared against the original server, they are implicitly re-prepared

with the new server. However, for embedded SQL routines (for example, SQC

or SQX applications), they will not be re-prepared.
v Do not run high availability disaster recovery (HADR) commands on client

reroute-enabled database aliases. HADR commands are implemented to identify

the target database using database aliases. Consequently, if the target database

has an alternative database defined, it is difficult for HADR commands to

determine the database on which the command is actually operating. While a

client might need to connect using a client reroute-enabled alias, HADR

commands must be applied on a specific database. To accommodate this, you

can define aliases specific to the primary and standby databases and only run

HADR commands on those aliases.

An alternate way to implement automatic client rerouting is to use the DNS entry

to specify an alternate IP address for a DNS entry. The idea is to specify a second

IP address (an alternate server location) in the DNS entry; the client would not

know about an alternate server, but at connect time DB2 database system would

alternate between the IP addresses for the DNS entry.

Chapter 3. Configuring for high availability 23

DB2 fault monitor registry file

A fault monitor registry file is created for every DB2 database manager instance on

each physical machine when the fault monitor daemon is started. The keywords

and values in this file specify the behavior of the fault monitors.

The fault monitor registry file can be found in the /sqllib/ directory and is called

fm.<machine_name>.reg. This file can be altered using the db2fm command.

If the fault monitor registry file does not exist, the default values will be used.

Here is an example of the contents of the fault monitor registry file:

 FM_ON = no

 FM_ACTIVE = yes

 START_TIMEOUT = 600

 STOP_TIMEOUT = 600

 STATUS_TIMEOUT = 20

 STATUS_INTERVAL = 20

 RESTART_RETRIES = 3

 ACTION_RETRIES = 3

 NOTIFY_ADDRESS = <instance_name>@<machine_name>

Fault monitor registry file keywords

FM_ON

 Specifies whether or not the fault monitor should be started. If the value is

set to NO, the fault monitor daemon will not be started, or will be turned

off if it had already been started. The default value is NO.

FM_ACTIVE

 Specifies whether or not the fault monitor is active. The fault monitor will

only take action if both FM_ON and FM_ACTIVE are set to YES. If FM_ON

is set to YES and FM_ACTIVE is set to NO, the fault monitor daemon will be

started, but it will not be active. That means that is will not try to bring

DB2 back online if it shuts down. The default value is YES.

START_TIMEOUT

 Specifies the amount of time within which the fault monitor must start the

service it is monitoring. The default value is 600 seconds.

STOP_TIMEOUT

 Specifies the amount of time within which the fault monitor must bring

down the service it is monitoring. The default value is 600 seconds.

STATUS_TIMEOUT

 Specifies the amount of time within which the fault monitor must get the

status of the service it is monitoring. The default value is 20 seconds.

STATUS_INTERVAL

 Specifies the minimum time between two consecutive calls to obtain the

status of the service that is being monitored. The default value is 20

seconds.

RESTART_RETRIES

24 Data Recovery and High Availability Guide and Reference

Specifies the number of times the fault monitor will try to obtain the status

of the service being monitored after a failed attempt. Once this number is

reached the fault monitor will take action to bring the service back online.

The default value is 3.

ACTION_RETRIES

 Specifies the number of times the fault monitor will attempt to bring the

service back online. The default value is 3.

NOTIFY_ADDRESS

 Specifies the e-mail address to which the fault monitor will send

notification messages. The default is <instance_name>@<machine_name>)

Configuring DB2 fault monitor using the db2fm command

You can alter the DB2 fault monitor registry file using the db2fm command.

Here are some examples of using the db2fm command to update the fault monitor

registry file:

Example 1: Update START_TIMEOUT

 To update the START_TIMEOUT value to 100 seconds for instance

DB2INST1, type the following command from a DB2 database command

window:

 db2fm -i db2inst1 -T 100

Example 2: Update STOP_TIMEOUT

 To update the STOP_TIMEOUT value to 200 seconds for instance

DB2INST1, type the following command:

 db2fm -i db2inst1 -T /200

Example 3: Update START_TIMEOUT and STOP_TIMEOUT

 To update the START_TIMEOUT value to 100 seconds and the

STOP_TIMEOUT value to 200 seconds for instance DB2INST1, type the

following command:

 db2fm -i db2inst1 -T 100/200

Example 4: Turn on fault monitoring

 To turn on fault monitoring for instance DB2INST1, type the following

command:

 db2fm -i db2inst1 -f yes

Example 5: Turn off fault monitoring

 To turn off fault monitoring for instance DB2INST1, type the following

command:

 db2fm -i db2inst1 -f no

To confirm that fault monitor is no longer running for DB2INST1, type the

following command on UNIX systems:

 ps -ef|grep -i fm

On Linux, type the following command:

 ps auxw|grep -i fm

Chapter 3. Configuring for high availability 25

An entry that shows db2fmd and DB2INST1 indicates that the fault

monitor is still running on that instance. To turn off the fault monitor, type

the following command as the instance owner:

 db2fm -i db2inst1 -D

Configuring DB2 fault monitor using db2fmc and system

commands

You can configure the DB2 fault monitor using the DB2 Fault Monitor Controller

Utility (FMCU) command db2fmcu or system commands.

Here are some examples of using db2fmcu and system commands to configure the

fault monitor:

Example 1: Prevent FMC from being launched

 You can prevent the FMC from being launched by using the DB2 Fault

Monitor Controller Utility (FMCU). The FMCU must be run as root

because it accesses the system’s inittab file. To block the FMC from being

run, type the following command as root:

 db2fmcu -d

Note: If you apply a DB2 Data Server fix pack this will be reset so that the

inittab will again be configured to include the FMC. To prevent the FMC

from being launched after you have applied a fix pack, you must reissue

the above command.

Example 2: Include FMC to be launched

 To reverse the db2fmcu -d command and reconfigure the inittab to include

the FMC, type the following command:

 db2fmcu -u -p <installpath>

where <installpath> is the directory where db2fmcd is installed.

Example 3: automatically start the DB2 database manager instance

 You can also enable FMC to automatically start the instance when the

system is first booted. To enable this feature for instance DB2INST1, type

the following command:

 db2iauto -on db2inst1

Example 4: disable automatically starting the instance

 To turn off the autostart behaviour, type the following command:

 db2iauto -off db2inst1

Example 5: prevent fault monitor processes from being launched

 You can also prevent fault monitor processes from being launched for a

specific instances on the system by changing a field in the global registry

record for the instance. To change the global registry field to disable fault

monitors for instance DB2INST1, type the following command as root:

 db2greg -updinstrec instancename=db2inst1!startatboot=0

To reverse this command and re-enable fault monitors for instance

DB2INST1, type the following command as root:

 db2greg -updinstrec instancename=db2inst1!startatboot=1"

26 Data Recovery and High Availability Guide and Reference

Initializing high availability disaster recovery (HADR)

Use the following procedure to set up and initialize the primary and standby

databases for DB2 High Availability Disaster Recovery (HADR).

HADR can be initialized through the command line processor (CLP), the Set Up

High Availability Disaster Recovery (HADR) wizard in the Control Center, or by

calling the db2HADRStart API.

To use the CLP to initialize HADR on your system for the first time:

1. Determine the host name, host IP address, and the service name or port

number for each of the HADR databases.

If a host has multiple network interfaces, ensure that the HADR host name or

IP address maps to the intended one. You need to allocate separate HADR

ports in /etc/services for each protected database. These cannot be the same as

the ports allocated to the instance. The host name can only map to one IP

address.

Note: The instance names for the primary and standby databases do not have

to be the same.

2. Create the standby database by restoring a backup image or by initializing a

split mirror, based on the existing database that is to be the primary.

In the following example, the BACKUP DATABASE and RESTORE DATABASE

commands are used to initialize database SOCKS as a standby database. In this

case, an NFS mounted file system is accessible at both sites.

Issue the following command at the primary database:

 backup db socks to /nfs1/backups/db2/socks

Issue the following command at the standby database:

 restore db socks from /nfs1/backups/db2/socks replace history file

The following example illustrates how to use the db2inidb utility to initialize

the standby database using a split mirror of the primary database. This

procedure is an alternative to the backup and restore procedure illustrated

above.

Issue the following command at the standby database:

 db2inidb socks as standby

Note:

a. The database names for the primary and standby databases must be the

same.

b. It is recommended that you do not issue the ROLLFORWARD DATABASE

command on the standby database after the restore operation or split mirror

initialization. The results of using a rollforward operation might differ

slightly from replaying the logs using HADR on the standby database. If

the databases are not identical, issuing the START HADR command with

the AS STANDBY option will fail.

c. When using the RESTORE DATABASE command, it is recommended that

the REPLACE HISTORY FILE option is used.

d. When creating the standby database using the RESTORE DATABASE

command, you must ensure that the standby remains in rollforward mode.

This means that you cannot issue the ROLLFORWARD DATABASE

command with either the COMPLETE option or the STOP option. An error

Chapter 3. Configuring for high availability 27

will be returned if the START HADR command with the AS STANDBY

option is attempted on the database after rollforward is stopped.

e. The following RESTORE DATABASE command options should be avoided

when setting up the standby database: TABLESPACE, INTO, REDIRECT,

and WITHOUT ROLLING FORWARD.

f. When setting up the standby database using the db2inidb utility, do not use

the SNAPSHOT or MIRROR options. You can specify the RELOCATE

USING option to change one or more of the following configuration

attributes: instance name, log path, and database path. However, you must

not change the database name or the table space container paths.
3. Set the HADR configuration parameters on the primary and standby databases.

Note: It is very important that you set the following configuration parameters

after the standby databases has been created:

v HADR_LOCAL_HOST

v HADR_LOCAL_SVC

v HADR_REMOTE_HOST

v HADR_REMOTE_SVC

v HADR_REMOTE_INST

If they are set prior to creating the standby database, the settings on the

standby database will reflect what is set on the primary database.

4. Connect to the standby instance and start HADR on the standby database, as in

the following example:

 START HADR ON DB SOCKS AS STANDBY

Note: Usually, the standby database is started first. If you start the primary

database first, this startup procedure will fail if the standby database is not

started within the time period specified by the HADR_TIMEOUT database

configuration parameter.

5. Connect to the primary instance and start HADR on the primary database, as

in the following example:

 START HADR ON DB SOCKS AS PRIMARY

6. HADR is now started on the primary and standby databases.

To open the Set Up High Availability Disaster Recovery (HADR) Databases

wizard:

a. From the Control Center expand the object tree until you find the database

for which you want to configure HADR.

b. Right-click the database and click High Availability Disaster Recovery → Set

Up in the pop-up menu. The Set Up High Availability Disaster Recovery

Databases wizard opens.
Additional information is provided through the contextual help facility within

the Control Center.

Note: You can start HADR within the Set Up High Availability Disaster

Recovery Databases wizard, or you can just use the wizard to initialize HADR,

then start it at another time. To open the Start HADR window:

a. From the Control Center, expand the object tree until you find the database

for which you want to manage HADR. Right-click the database and click

High Availability Disaster Recovery→Manage in the pop-up menu. The

Manage High Availability Disaster Recovery window opens.

b. Click Start HADR. The Start HADR window opens.

28 Data Recovery and High Availability Guide and Reference

Configuring automatic client reroute and High Availability

Disaster Recovery (HADR)

You can use the automatic client reroute feature with the High Availability Disaster

Recovery (HADR) feature to transfer client application requests from a failed

database server to a standby database server.

Restrictions

v Rerouting is only possible when an alternate database location has been

specified at the server.

v Automatic client reroute is only supported with TCP/IP protocol.

Configuration details

v Use the UPDATE ALTERNATE SERVER FOR DATABASE command to enable

automatic client reroute.

v Client reroute is enabled by default if you set up HADR using the Set Up High

Availability Disaster Recovery (HADR) Databases wizard in the Control Center.

v Automatic client reroute does not use the HADR_REMOTE_HOST and

HADR_REMOTE_SVC database configuration parameters.

v The alternate host location is stored in the system database directory file at the

server.

v If automatic client reroute is not enabled, client applications will receive error

message SQL30081, and no further attempts will be made to establish a

connection with the server.

Using the UPDATE ALTERNATE SERVER FOR DATABASE

command to set up automatic client reroute with HADR

Your system is set up as follows:

v You have a client where database MUSIC is catalogued as being located at host

HORNET.

v Database MUSIC is the primary database and its corresponding standby

database, also MUSIC, resides on host MONTERO with port number 456, which

is assigned by the SVCENAME configuration parameter.

To enable automatic client reroute, update the alternate server for database MUSIC

on host HORNET:

 db2 update alternate server for database music using hostname montero port 456

After this command is issued, the client must successfully connect to host

HORNET to obtain the alternate server information. Then, if a communication

error occurs between the client and database MUSIC at host HORNET, the client

will first attempt to reconnect to database MUSIC at host HORNET. If this fails, the

client will then attempt to establish a connection with the standby database MUSIC

on host MONTERO.

Index logging and high availability disaster recovery (HADR)

You should consider setting the database configuration parameters

LOGINDEXBUILD and INDEXREC for DB2 High Availability Disaster Recovery

(HADR) databases.

Using the LOGINDEXBUILD database configuration parameter

Chapter 3. Configuring for high availability 29

Recommendation: For HADR databases, set the LOGINDEXBUILD database

configuration parameter to ON to ensure that complete information is logged for

index creation, recreation, and reorganization. Although this means that index

builds might take longer on the primary system and that more log space is

required, the indexes will be rebuilt on the standby system during HADR log

replay and will be available when a failover takes place. If index builds on the

primary system are not logged and a failover occurs, any invalid indexes that

remain after the failover is complete will have to be rebuilt before they can be

accessed. While the indexes are being recreated, they cannot be accessed by any

applications.

Note: If the LOG INDEX BUILD table attribute is set to its default value of NULL,

DB2 will use the value specified for the LOGINDEXBUILD database configuration

parameter. If the LOG INDEX BUILD table attribute is set to ON or OFF, the value

specified for the LOGINDEXBUILD database configuration parameter will be

ignored.

You might choose to set the LOG INDEX BUILD table attribute to OFF on one or

more tables for either of the following reasons:

v You do not have enough active log space to support logging of the index builds.

v The index data is very large and the table is not accessed often; therefore, it is

acceptable for the indexes to be recreated at the end of the takeover operation.

In this case, set the INDEXREC configuration parameter to RESTART. Because

the table is not frequently accessed, this setting will cause the system to recreate

the indexes at the end of the takeover operation instead of waiting for the first

time the table is accessed after the takeover operation.

If the LOG INDEX BUILD table attribute is set to OFF on one or more tables, any

index build operation on those tables might cause the indexes to be recreated any

time a takeover operation occurs. Similarly, if the LOG INDEX BUILD table

attribute is set to its default value of NULL, and the LOGINDEXBUILD database

configuration parameter is set to OFF, any index build operation on a table might

cause the indexes on that table to be recreated any time a takeover operation

occurs. You can prevent the indexes from being recreated by taking one of the

following actions:

v After all invalid indexes are recreated on the new primary database, take a

backup of the database and apply it to the standby database. As a result of

doing this, the standby database does not have to apply the logs used for

recreating invalid indexes on the primary database, which would mark those

indexes as rebuild required on the standby database.

v Set the LOG INDEX BUILD table attribute to ON, or set the LOG INDEX BUILD

table attribute to NULL and the LOGINDEXBUILD configuration parameter to

ON on the standby database to ensure that the index recreation will be logged.

Using the INDEXREC database configuration parameter

Recommendation: Set the INDEXREC database configuration parameter to

RESTART (the default) on both the primary and standby databases. This will cause

invalid indexes to be rebuilt after a takeover operation is complete. If any index

builds have not been logged, this setting allows DB2 to check for invalid indexes

and to rebuild them. This process takes place in the background, and the database

will be accessible after the takeover operation has completed successfully.

30 Data Recovery and High Availability Guide and Reference

If a transaction accesses a table that has invalid indexes before the indexes have

been rebuilt by the background recreate index process, the invalid indexes will be

rebuilt by the first transaction that accesses it.

Database configuration for high availability disaster recovery

(HADR)

You can use database configuration parameters to achieve optimal performance

with DB2 High Availability Disaster Recovery (HADR).

To achieve optimal performance with DB2 High Availability Disaster Recovery

(HADR), ensure that your database configuration meets the following

requirements.

Recommendation: To the extent possible, the database configuration parameters

and database manager configuration parameters should be identical on the systems

where the primary and standby databases reside. If the configuration parameters

are not properly set on the standby database the following problems might occur:

v Error messages might be returned on the standby database while replaying the

log files that were shipped from the primary database.

v After a takeover operation, the new primary database will not be able to handle

the workload, resulting in performance problems or in applications receiving

error messages they were not receiving when they were connected to the

original primary database.

Changes to the configuration parameters on the primary database are not

automatically propagated to the standby database and must be made manually on

the standby database. For dynamic configuration parameters, changes will take

effect without shutting down and restarting the database management system

(DBMS) or the database. For non-dynamic configuration parameters, changes will

take effect after the standby database is restarted.

Size of log files configuration parameter on the standby

database

One exception to the configuration parameter behavior described above is the

LOGFILSIZ database configuration parameter. Although this parameter is not

replicated to the standby database, to guarantee identical log files on both

databases, the standby database ignores the local LOGFILSIZ configuration and

creates local log files that match the size of the log files on the primary database.

After a takeover, the original standby (new primary) will keep using the value that

was set on the original primary until the database is restarted. At that point, the

new primary will revert to the value configured locally. In addition, the new

primary also truncates the current log file and resizes any pre-created log files.

If the databases keep switching roles via non-forced takeover and neither database

is deactivated, then the log file size used will always be the one established by the

very first primary. However, if there is a deactivate and then a restart on the

original standby (new primary) then it would use the log file size configured

locally. This log file size would continue to be used if the original primary takes

over again. Only after a deactivate and restart on the original primary would the

log file size revert back to the settings on the original primary.

Chapter 3. Configuring for high availability 31

Log receive buffer size on the standby database

By default, the log receive buffer size on the standby database will be two times

the value specified for the LOGBUFSZ configuration parameter on the primary

database. There might be times when this size is not sufficient. For example, when

the HADR synchronization mode is asynchronous and the primary and standby

databases are in peer state, if the primary database is experiencing a high

transaction load, the log receive buffer on the standby database might fill to

capacity and the log shipping operation from the primary database might stall. To

manage these temporary peaks, you can increase the size of the log receive buffer

on the standby database by modifying the DB2_HADR_BUF_SIZE registry

variable.

Load operations and HADR

If a load operation is executed on the primary database with the COPY YES

option, the command will execute on the primary database and the data will be

replicated to the standby database as long as the copy can be accessed through the

path or device specified by the LOAD command. If the standby database cannot

access the data, the table space in which the table is stored is marked invalid on

the standby database. The standby database will skip future log records that

pertain to this table space. To ensure that the load operation can access the copy on

the standby database, it is recommended that you use a shared location for the

output file from the COPY YES option. Alternatively, you can deactivate the

standby database while the load operation is performed, perform the load on the

primary, place a copy of the output file in the standby path, and then activate the

standby database.

If a load operation is executed on the primary database with the

NONRECOVERABLE option, the command will execute on the primary database

and the table on the standby database will be marked invalid. The standby

database will skip future log records that pertain to this table. You can choose to

issue the LOAD command with the COPY YES and REPLACE options specified to

bring the table back, or you can drop the table to recover the space.

Since executing a load operation with the COPY NO option is not supported with

HADR, the command is automatically converted to a load operation with the

NONRECOVERABLE option. To enable a load operation with the COPY NO

option to be converted to a load operation with the COPY YES option, set the

DB2_LOAD_COPY_NO_OVERRIDE registry variable on the primary database.

This registry variable is ignored by the standby database. Ensure that the device or

directory specified on the primary database can be accessed by the standby

database using the same path, device, or load library.

If you are using Tivoli Storage Manager (TSM) to perform a load operation with

the COPY YES option, you might need to set the VENDOROPT configuration

parameter on the primary and standby databases. Depending on how TSM is

configured, the values on the primary and standby databases might not be the

same. Also, when using TSM to perform a load operation with the COPY YES

option, you must issue the db2adutl command with the GRANT option to give the

standby database read access for the files that are loaded.

If table data is replicated by a load operation with the COPY YES option specified,

the indexes will be replicated as follows:

v If the indexing mode is set to REBUILD and the table attribute is set to LOG

INDEX BUILD, or the table attribute is set to DEFAULT and the

32 Data Recovery and High Availability Guide and Reference

LOGINDEXBUILD database configuration parameter is set to ON, the primary

database will include the rebuilt index object in the copy file to enable the

standby database to replicate the index object. If the index object on the standby

database is marked invalid before the load operation, it will become usable

again after the load operation as a result of the index rebuild.

v If the indexing mode is set to INCREMENTAL and the table attribute is set to

LOG INDEX BUILD, or the table attribute is set to NULL and

LOGINDEXBUILD database configuration parameter on the primary database is

set to ON, the index object on the standby database is updated only if it is not

marked invalid before the load operation. Otherwise, the index is marked

invalid on the standby database.

HADR configuration parameters

Several new database configuration parameters are available to support HADR.

Setting these parameters does not change the role of a database. You must issue

the START HADR or STOP HADR commands to change the role of a database.

HADR configuration parameters are not dynamic. Any changes made to an HADR

configuration parameter are not effective until the database has been shut down

and restarted. In a partitioned database environment, the HADR configuration

parameters are visible and can be changed, but they are ignored.

The local host name of the primary database must be the same as the remote host

name of the standby database, and the local host name of the standby database

must be the same as the remote host name of the primary database. Use the

HADR_LOCAL_HOST and HADR_REMOTE_HOST configuration parameters to

set the local and remote hosts for each database. Configuration consistency for the

local and remote host names is checked when a connection is established to ensure

that the remote host specified is the expected database.

An HADR database can be configured to use either IPv4 or IPv6 to locate its

partner database. If the host server does not support IPv6, the database will use

IPv4. If the server does support IPv6, whether the database uses IPv4 or IPv6

depends upon the format of the address specified for the HADR_LOCAL_HOST

and HADR_REMOTE_HOST configuration parameters. The database attempts to

resolve the two parameters to the same IP format. The following table shows how

the IP mode is determined for IPv6-enabled servers:

 IP mode used for

HADR_LOCAL_HOST

IP mode used for

HADR_REMOTE_HOST

IP mode used for HADR

communications

IPv4 address IPv4 address IPv4

IPv4 address IPv6 address Error

IPv4 address hostname, maps to v4 only IPv4

IPv4 address hostname, maps to v6 only Error

IPv4 address hostname, maps to v4 and v6 IPv4

IPv6 address IPv4 address Error

IPv6 address IPv6 address IPv6

IPv6 address hostname, maps to v4 only Error

IPv6 address hostname, maps to v6 only IPv6

IPv6 address hostname, maps to v4 and v6 IPv6

hostname, maps to v4 only IPv4 address IPv4

Chapter 3. Configuring for high availability 33

IP mode used for

HADR_LOCAL_HOST

IP mode used for

HADR_REMOTE_HOST

IP mode used for HADR

communications

hostname, maps to v4 only IPv6 address Error

hostname, maps to v4 only hostname, maps to v4 only IPv4

hostname, maps to v4 only hostname, maps to v6 only Error

hostname, maps to v4 only hostname, maps to v4 and v6 IPv4

hostname, maps to v6 only IPv4 address Error

hostname, maps to v6 only IPv6 address IPv6

hostname, maps to v6 only hostname, maps to v4 only Error

hostname, maps to v6 only hostname, maps to v6 only IPv6

hostname, maps to v6 only hostname, maps to v4 and v6 IPv6

hostname, maps to v4 and v6 IPv4 address IPv4

hostname, maps to v4 and v6 IPv6 address IPv6

hostname, maps to v4 and v6 hostname, maps to v4 only IPv4

hostname, maps to v4 and v6 hostname, maps to v6 only IPv6

hostname, maps to v4 and v6 hostname, maps to v4 and v6 IPv6

The primary and standby databases can make HADR connections only if they use

the same format. If one server is IPv6 enabled (but also supports IPv4) and the

other server only supports IPv4, at least one of the HADR_LOCAL_HOST or

HADR_REMOTE_HOST parameters must specify an IPv4 address. This tells the

database to use IPv4 even if the server supports IPv6.

When you specify values for the high availability disaster recovery (HADR) local

service and remote service parameters (HADR_LOCAL_SVC and

HADR_REMOTE_SVC) while preparing an update database configuration

command, the values you specify must be ports that are not in use for any other

service, including other DB2 components or other HADR databases. In particular,

you cannot set either parameter value to the TCP/IP port used by the server to

await communications from remote clients (the SVCENAME database manager

configuration parameter) or the next port (SVCENAME + 1).

If the primary and standby databases are on different machines, they can use the

same port number or service name; otherwise, different values should be used. The

HADR_LOCAL_SVC and HADR_REMOTE_SVC parameters can be set to either a

port number or a service name.

The synchronization mode (HADR_SYNCMODE) and time-out period

(HADR_TIMEOUT) must be identical on both the primary and standby databases.

The consistency of these configuration parameters is checked when an HADR pair

establishes a connection.

TCP connections are used for communication between the primary and standby

databases. A primary database that is not connected to a standby database, either

because it is starting up or because the connection is lost, will listen on its local

port for new connections. A standby database that is not connected to a primary

database will continue issuing connection requests to its remote host.

34 Data Recovery and High Availability Guide and Reference

Although the local host and local service parameters (HADR_LOCAL_HOST,

HADR_LOCAL_SVC) are only used on the primary database, you should still set

them on the standby database to ensure that they are ready if the standby database

has to take over as the primary database.

When the primary database starts, it waits for a standby to connect for a minimum

of 30 seconds or for the number of seconds specified by the value of the

HADR_TIMEOUT database configuration parameter, whichever is longer. If the

standby does not connect in the specified time, the startup will fail. (The one

exception to this is when the START HADR command is issued with the BY

FORCE option.)

After an HADR pair establishes a connection, they will exchange heart beat

messages. The heartbeat interval is one-quarter of the value of the

HADR_TIMEOUT database configuration parameter, or 30 seconds, whichever is

shorter. The HADR_HEARTBEAT monitor element shows the number of heartbeats

a database expected to receive but did not receive from the other database. If one

database does not receive any message from the other database within the number

of seconds specified by HADR_TIMEOUT, it will initiate a disconnect. This means

that at most it takes the number of seconds specified by HADR_TIMEOUT for a

primary to detect the failure of either the standby or the intervening network. If

you set the HADR_TIMEOUT configuration parameter too low, you will receive

false alarms and frequent disconnections.

If the HADR_PEER_WINDOW database configuration parameter is set to zero,

then when the primary and standby databases are in peer state, problems with the

standby or network will only block primary transaction processing for the number

of seconds specified by the HADR_TIMEOUT configuration parameter, at most. If

you set the HADR_PEER_WINDOW to a non-zero value, then the primary

database will not commit transactions until connection with the standby database

is restored, or the HADR_PEER_WINDOW time value elapses, whichever happens

first.

Note: For maximal availability, the default value for the HADR_PEER_WINDOW

database configuration parameter is zero. When HADR_PEER_WINDOW is set to

zero, then as soon as the connection between the primary and the standby is

closed (either because the standby closed the connection, a network error is

detected, or timeout is reached), the primary drops out of peer state to avoid

blocking transactions. For increased data consistency, but reduced availability, you

can set the HADR_PEER_WINDOW database configuration parameter to a

non-zero value, which will cause the primary database to remain in disconnected

peer state for the length of time specified by the HADR_PEER_WINDOW value.

The following sample configuration is for the primary and standby databases.

On the primary:

 HADR_LOCAL_HOST host1.ibm.com

 HADR_LOCAL_SVC hadr_service

 HADR_REMOTE_HOST host2.ibm.com

 HADR_REMOTE_SVC hadr_service

 HADR_REMOTE_INST dbinst2

 HADR_TIMEOUT 120

 HADR_SYNCMODE NEARSYNC

 HADR_PEER_WINDOW 120

On the standby:

Chapter 3. Configuring for high availability 35

HADR_LOCAL_HOST host2.ibm.com

 HADR_LOCAL_SVC hadr_service

 HADR_REMOTE_HOST host1.ibm.com

 HADR_REMOTE_SVC hadr_service

 HADR_REMOTE_INST dbinst1

 HADR_TIMEOUT 120

 HADR_SYNCMODE NEARSYNC

 HADR_PEER_WINDOW 120

Log archiving configuration for DB2 High Availability Disaster

Recovery (HADR)

To use log archiving with DB2 High Availability Disaster Recovery (HADR),

configure both the primary database and the standby database for automatic log

retrieval capability from all log archive locations.

If either the standby database or the primary database is unable to access all log

archive locations, then you must manually copy log files from the log archive to

the following locations:

v the standby database logpath or archive location for local catchup

v the primary database logpath or archive location for remote catchup

Only the current primary database can perform log archiving. If the primary and

standby databases are set up with separate archiving locations, logs are archived

only to the primary database’s archiving location. In the event of a takeover, the

standby database becomes the new primary database and any logs archived from

that point on are saved to the original standby database’s archiving location. In

such a configuration, logs are archived to one location or the other, but not both;

with the exception that following a takeover, the new primary database might

archive a few logs that the original primary database had already archived.

After a takeover, if the new primary database (original standby database)

experiences a media failure and needs to perform a restore and rollforward, it

might need to access logs that only exist in the original primary database archive

location.

The standby database will not delete a log file from its local logpath until it has

been notified by the primary database that the primary database has archived it.

This behavior provides added protection against the loss of log files. If the primary

database fails and its log disk becomes corrupted before a particular log file is

archived on the primary database, the standby database will not delete that log file

from its own disk because it has not received notification that the primary

database successfully archived the log file. If the standby database then takes over

as the new primary database, it will archive that log file before recycling it. If both

the logarchmeth1 and logarchmeth2 configuration parameters are in use, the standby

database will not recycle a log file until the primary database has archived it using

both methods.

High availability disaster recovery (HADR) performance

Configuring different aspects of your database system, including network

bandwidth, CPU power, and buffer size, can improve the performance of your DB2

High Availability Disaster Recovery (HADR) databases.

For optimum HADR performance, consider the following recommendations for

managing your system:

v Network bandwidth must be greater than the database log generation rate.

36 Data Recovery and High Availability Guide and Reference

v Network delays affect the primary only in SYNC and NEARSYNC modes.

v The slowdown in system performance as a result of using SYNC mode can be

significantly larger than that of the other synchronization modes. In SYNC

mode, the primary database sends log pages to the standby database only after

the log pages have been successfully written to the primary database log disk. In

order to protect the integrity of the system, the primary database waits for an

acknowledgement from the standby before notifying an application that a

transaction was prepared or committed. The standby database sends the

acknowledgement only after it writes the received log pages to the standby

database disk. The resulting overhead is: the log write on the standby database

plus round-trip messaging.

v In NEARSYNC mode, the primary database writes and sends log pages in

parallel. The primary then waits for an acknowledgement from the standby. The

standby database acknowledges as soon as the log pages are received into its

memory. On a fast network, the overhead to the primary database is minimal.

The acknowledgement might have already arrived by the time the primary

database finishes local log write.

v For ASYNC mode, the log write and send are also in parallel; however, in this

mode the primary database does not wait for an acknowledgement from the

standby. Therefore, network delay is not an issue. Performance overhead is even

smaller with ASYNC mode than with NEARSYNC mode.

v For each log write on the primary, the same log pages are also sent to the

standby. Each write operation is called a flush. The size of the flush is limited to

the log buffer size on the primary database (which is controlled by the database

configuration parameter LOGBUFSZ). The exact size of each flush is

nondeterministic. A larger log buffer does not necessarily lead to a larger flush

size.

v The standby database should be powerful enough to replay the logged

operations of the database as fast as they are generated on the primary. Identical

primary and standby hardware is recommended.

v In most systems, the logging capability is not driven to its limit. Even in SYNC

mode, there might not be an observable slow down on the primary database.

For example, if the limit of logging is 40 Mb per second with HADR enabled,

but the system was just running at 30 Mb per second before HADR is enabled,

then you might not notice any difference in overall system performance.

v To speed up the catchup process, you can use a shared log archive device.

However, if the shared device is a serial device such as a tape drive, you might

experience performance degradation on both the primary and standby databases

because of mixed read and write operations.

Network congestion

If the standby database is too slow replaying log pages, its log-receiving buffer

might fill up, thereby preventing the buffer from receiving more log pages. In

SYNC and NEARSYNC modes, if the primary database flushes its log buffer one

more time, the data will likely be buffered in the network pipeline consisting of the

primary machine, the network, and the standby database. Because the standby

database does not have free buffer to receive the data, it cannot acknowledge, so

the primary database becomes blocked while waiting for the standby database’s

acknowledgement.

In ASYNC mode, the primary database continues to send log pages until the

pipeline fills up and it cannot send additional log pages. This condition is called

congestion. Congestion is reported by the hadr_connect_status monitor element. For

Chapter 3. Configuring for high availability 37

SYNC and NEARSYNC modes, the pipeline can usually absorb a single flush and

congestion will not occur. However, the primary database remains blocked waiting

for an acknowledgement from the standby database on the flush operation.

Congestion can also occur if the standby database is replaying log records that take

a long time to replay, such as database or table reorganization log records.

Increasing the size of the standby database log-receiving buffer can help to reduce

congestion, although it might not remove all of the causes of congestion. By

default, the size of the standby database log-receiving buffer is two times the size

of the primary database log-writing buffer. The database configuration parameter

LOGBUFSZ specifies the size of the primary database log-writing buffer. The DB2

registry variable DB2_HADR_BUF_SIZE can be used to tune the size of the

standby database log-receiving buffer.

Cluster managers and high availability disaster recovery

(HADR)

You can implement DB2 High Availability Disaster Recovery (HADR) databases on

nodes of a cluster, and use a cluster manager to improve the availability of your

database solution. You can have both the primary database and the standby

database managed by the same cluster manager, or you can have the primary

database and the standby database managed by different cluster managers.

Set up an HADR pair where the primary and standby databases

are serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby

databases are located at the same site and where the fastest possible failover is

required. These environments would benefit from using HADR to maintain DBMS

availability, rather using crash recovery or another recovery method.

You can use the cluster manager to quickly detect a problem and to initiate a

takeover operation. Because HADR requires separate storage for the DBMS, the

cluster manager should be configured with separate volume control. This

configuration prevents the cluster manager from waiting for failover to occur on

the volume before using the DBMS on the standby system. You can use the

automatic client reroute feature to redirect client applications to the new primary

database.

Set up an HADR pair where the primary and standby databases

are not serviced by the same cluster manager

This configuration is best suited to environments where the primary and standby

databases are located at different sites and where high availability is required for

disaster recovery in the event of a complete site failure. There are several ways you

can implement this configuration. When an HADR primary or standby database is

part of a cluster, there are two possible failover scenarios.

v If a partial site failure occurs and a node to which the DBMS can fail over

remains available, you can choose to perform a cluster failover. In this case, the

IP address and volume failover is performed using the cluster manager; HADR

is not affected.

v If a complete site failure occurs where the primary database is located, you can

use HADR to maintain DBMS availability by initiating a takeover operation. If a

complete site failure occurs where the standby database is located, you can

repair the site or move the standby database to another site.

38 Data Recovery and High Availability Guide and Reference

Initializing a Standby database

One strategy for making a database solution highly available is maintaining a

primary database to respond to user application requests, and a secondary or

standby database that can take over database operations for the primary database

if the primary database fails. Initializing the standby database entails copying the

primary database to the standby database.

There are several ways to initialize the standby database. For example:

v Use disk mirroring to copy the primary database, and use DB2 database

suspended I/O support to split the mirror to create the second database.

v Create a backup image of the primary database and recovery that image to the

standby database.

v Use SQL replication to capture data from the primary database and apply that

data to the standby database.

After initializing the standby database, you must configure your database solution

to synchronize the primary database and standby database so the standby database

can take over for the primary database if the primary database fails.

Using a split mirror as a standby database

Use the following procedure to create a split mirror of a database for use as a

standby database. If a failure occurs on the primary database and crash recovery is

necessary, you can use the standby database to take over for the primary database.

To use a split mirror as a standby database, follow these steps:

 1. Suspend I/O on the primary database:

 db2 set write suspend for database

 2. Use appropriate operating system-level commands to split the mirror or

mirrors from the primary database.

Note: Ensure that you copy the entire database directory including the

volume directory. You must also copy the log directory and any container

directories that exist outside the database directory. To gather this information,

refer to the DBPATHS administrative view, which shows all the files and

directories of the database that need to be split.

 3. Resume I/O on the primary database:

 db2 set write resume for database

 4. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the

primary database. It must be located on a secondary system that has the same

directory structure and uses the same instance name as the primary database.

If the mirrored database must exist on the same system as the primary

database, you can use the db2relocatedb utility or the RELOCATE USING

option of the db2inidb command to accomplish this.

 5. Start the database instance on the secondary system:

 db2start

 6. Initialize the mirrored database on the secondary system by placing it in

rollforward pending state:

 db2inidb database_alias as standby

If required, specify the RELOCATE USING option of the db2inidb command

to relocate the standby database:

Chapter 3. Configuring for high availability 39

db2inidb database_alias as standby relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate

the database.

Note:

a. If you have only DMS table spaces (database managed space), you can

take a full database backup to offload the overhead of taking a backup on

the production database.

b. The database directory (including the volume directory), the log directory,

and the container directories must be moved to the desired location before

you use the RELOCATE USING option.
 7. Set up a user exit program to retrieve the log files from the primary system.

 8. Roll the database forward to the end of the logs or to a point-in-time.

 9. Continue retrieving log files, and rolling the database forward through the

logs until you reach the end of the logs or the point-in-time required for the

standby database.

10. To bring the standby database online issue the ROLLFORWARD command

with the STOP option specified.

Note: The logs from the primary database cannot be applied to the mirrored

database once it has been taken out of rollforward pending state.

Configuring DB2 High Availability Disaster Recovery (HADR)

synchronization mode

The HADR_SYNCMODE configuration parameter determines the degree of

protection your DB2 High Availability Disaster Recovery (HADR) database

solution has against transaction loss. The synchronization mode determines when

the primary database server considers a transaction complete, based on the state of

the logging on the standby database. The more strict the synch mode configuration

parameter value, the more protection your database solution has against

transaction data loss, but the slower your transaction processing performance. You

must balance the need for protection against transaction loss with the need for

performance.

These modes apply only when the primary and standby databases are in peer or

disconnected peer state.

Use the HADR_SYNCMODE configuration parameter to set the synchronization

mode. Valid values are:

SYNC (synchronous)

This mode provides the greatest protection against transaction loss, and

using it results in the longest transaction response time among the three

modes.

 In this mode, log writes are considered successful only when logs have

been written to log files on the primary database and when the primary

database has received acknowledgement from the standby database that

the logs have also been written to log files on the standby database. The

log data is guaranteed to be stored at both sites.

 If the standby database crashes before it can replay the log records, the

next time it starts it can retrieve and replay them from its local log files. If

the primary database fails, a failover to the standby database guarantees

40 Data Recovery and High Availability Guide and Reference

that any transaction that has been committed on the primary database has

also been committed on the standby database. After the failover operation,

when the client reconnects to the new primary database, there can be

transactions committed on the new primary database that were never

reported as committed to the original primary. This occurs when the

primary database fails before it processes an acknowledgement message

from the standby database. Client applications should consider querying

the database to determine whether any such transactions exist.

 If the primary database loses its connection to the standby database, what

happens next depends on the configuration of the hadr_peer_window

database configuration parameter. If hadr_peer_window is set to a

non-zero time value, then upon losing connection with the standby

database the primary database will move into disconnected peer state and

continue to wait for acknowledgement from the standby database before

committing transactions. If the hadr_peer_window database configuration

parameter is set to zero, the primary and standby databases are no longer

considered to be in peer state and transactions will not be held back

waiting for acknowledgement from the standby database. If the failover

operation is performed when the databases are not in peer or disconnected

peer state, there is no guarantee that all of the transactions committed on

the primary database will appear on the standby database.

 If the primary database fails when the databases are in peer or

disconnected peer state, it can rejoin the HADR pair as a standby database

after a failover operation. Because a transaction is not considered to be

committed until the primary database receives acknowledgement from the

standby database that the logs have also been written to log files on the

standby database, the log sequence on the primary will be the same as the

log sequence on the standby database. The original primary database (now

a standby database) just needs to catch up by replaying the new log

records generated on the new primary database since the failover

operation.

 If the primary database is not in peer state when it fails, its log sequence

might be different from the log sequence on the standby database. If a

failover operation has to be performed, the log sequence on the primary

and standby databases might be different because the standby database

starts its own log sequence after the failover. Because some operations

cannot be undone (for example, dropping a table), it is not possible to

revert the primary database to the point in time when the new log

sequence was created. If the log sequences are different and you issue the

START HADR command with the STANDBY option on the original

primary, you will receive a message that the command was successful.

However, this message is issued before reintegration is attempted. If

reintegration fails, pair validation messages will be issued to the

administration log and the diagnostics log on both the primary and the

standby. The reintegrated standby will remain the standby, but the primary

will reject the standby during pair validation causing the standby database

to shut down. If the original primary database successfully rejoins the

HADR pair, you can achieve failback of the database by issuing the

TAKEOVER HADR command without specifying the BY FORCE option. If

the original primary database cannot rejoin the HADR pair, you can

reinitialize it as a standby database by restoring a backup image of the

new primary database.

Chapter 3. Configuring for high availability 41

NEARSYNC (near synchronous)

While this mode has a shorter transaction response time than synchronous

mode, it also provides slightly less protection against transaction loss.

 In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

when the primary database has received acknowledgement from the

standby system that the logs have also been written to main memory on

the standby system. Loss of data occurs only if both sites fail

simultaneously and if the target site has not transferred to nonvolatile

storage all of the log data that it has received.

 If the standby database crashes before it can copy the log records from

memory to disk, the log records will be lost on the standby database.

Usually, the standby database can get the missing log records from the

primary database when the standby database restarts. However, if a failure

on the primary database or the network makes retrieval impossible and a

failover is required, the log records will never appear on the standby

database, and transactions associated with these log records will never

appear on the standby database.

 If transactions are lost, the new primary database is not identical to the

original primary database after a failover operation. Client applications

should consider resubmitting these transactions to bring the application

state up to date.

 If the primary database fails when the primary and standby databases are

in peer state, it is possible that the original primary database cannot to

rejoin the HADR pair as a standby database without being reinitialized

using a full restore operation. If the failover involves lost log records

(because both the primary and standby databases have failed), the log

sequences on the primary and standby databases will be different and

attempts to restart the original primary database as a standby database

without first performing a restore operation will fail. If the original

primary database successfully rejoins the HADR pair, you can achieve

failback of the database by issuing the TAKEOVER HADR command

without specifying the BY FORCE option. If the original primary database

cannot rejoin the HADR pair, you can reinitialize it as a standby database

by restoring a backup image of the new primary database.

ASYNC (asynchronous)

This mode has the highest chance of transaction loss if the primary system

fails. It also has the shortest transaction response time among the three

modes.

 In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

have been delivered to the TCP layer of the primary system’s host

machine. Because the primary system does not wait for acknowledgement

from the standby system, transactions might be considered committed

when they are still on their way to the standby.

 A failure on the primary database host machine, on the network, or on the

standby database can cause log records in transit to be lost. If the primary

database is available, the missing log records can be resent to the standby

database when the pair reestablishes a connection. However, if a failover

operation is required while there are missing log records, those log records

will never reach the standby database, causing the associated transactions

to be lost in the failover.

42 Data Recovery and High Availability Guide and Reference

If transactions are lost, the new primary database is not exactly the same as

the original primary database after a failover operation. Client applications

should consider resubmitting these transactions to bring the application

state up to date.

 If the primary database fails when the primary and standby databases are

in peer state, it is possible that the original primary database will not be

able to rejoin the HADR pair as a standby database without being

reinitialized using a full restore operation. If the failover involves lost log

records, the log sequences on the primary and standby databases will be

different, and attempts to restart the original primary database as a

standby database will fail. Because there is a greater possibility of log

records being lost if a failover occurs in asynchronous mode, there is also a

greater possibility that the primary database will not be able to rejoin the

HADR pair. If the original primary database successfully rejoins the HADR

pair, you can achieve failback of the database by issuing the TAKEOVER

HADR command without specifying the BY FORCE option. If the original

primary database cannot rejoin the HADR pair, you can reinitialize it as a

standby database by restoring a backup image of the new primary

database.

High availability disaster recovery (HADR) support

To get the most out of the DB2 database High Availability Disaster Recovery

(HADR) feature, consider system requirements and feature limitations when

designing your high availability database solution.

System requirements for High Availability Disaster Recovery

(HADR)

To achieve optimal performance with High Availability Disaster Recovery (HADR),

ensure that your system meets the following requirements for hardware, operating

systems, and for the DB2 database system.

Recommendation: For better performance, use the same hardware and software for

the system where the primary database resides and for the system where the

standby database resides. If the system where the standby database resides has

fewer resources than the system where the primary database resides, it is possible

that the standby database will be unable to keep up with the transaction load

generated by the primary database. This can cause the standby database to fall

behind or the performance of the primary database to degrade. In a failover

situation, the new primary database should have the resources to service the client

applications adequately.

Hardware and operating system requirements

Recommendation: Use identical host computers for the HADR primary and

standby databases. That is, they should be from the same vendor and have the

same architecture.

The operating system on the primary and standby databases should be the same

version, including patches. You can violate this rule for a short time during a

rolling upgrade, but take extreme caution.

A TCP/IP interface must be available between the HADR host machines, and a

high-speed, high-capacity network is recommended.

Chapter 3. Configuring for high availability 43

DB2 database requirements

The versions of the database systems for the primary and standby databases must

be identical; for example, both must be either version 8 or version 9. During rolling

upgrades, the modification level (for example, the fix pack level) of the database

system for the standby database can be later than that of the primary database for

a short while to test the new level. However, you should not keep this

configuration for an extended period of time. The primary and standby databases

will not connect to each other if the modification level of the database system for

the primary database is later than that of the standby database.

The DB2 database software for both the primary and standby databases must have

the same bit size (32 or 64 bit). Table spaces and their containers must be identical

on the primary and standby databases. Properties that must be identical include

the table space type (DMS or SMS), table space size, container path, container size,

and container file type (raw device or file system). The amount of space allocated

for log files should also be the same on both the primary and standby databases.

When you issue a table space statement on the primary database, such as CREATE

TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the

standby database. You must ensure that the devices involved are set up on both of

the databases before you issue the table space statement on the primary database.

If you create a table space on the primary database and log replay fails on the

standby database because the containers are not available, the primary database

does not receive an error message stating that the log replay failed.

To check for log replay errors, you must monitor the db2diag.log and the

administration log on the standby database when you are creating new table

spaces.

If a takeover operation occurs, the new table space that you created is not available

on the new primary database. To recover from this situation, restore the table space

on the new primary database from a backup image.

In the following example, table space MY_TABLESPACE is restored on database

MY_DATABASE before it is used as the new primary database:

1. db2 connect to my_database

2. db2 list tablespaces show detail

Note: Run the db2 list tablespaces show detail command to show the status of

all table spaces and to obtain the table space ID number required for Step 5.

3. db2 stop hadr on database my_database

4. db2 "restore database my_database tablespace (my_tablespace) online

redirect"

5. db2 "set tablespace containers for my_tablespace_ID_# ignore rollforward

container operations using (path ’/my_new_container_path/’)"

6. db2 "restore database my_database continue"

7. db2 rollforward database my_database to end of logs and stop tablespace

"(my_tablespace)"

8. db2 start hadr on database my_database as primary

44 Data Recovery and High Availability Guide and Reference

The primary and standby databases do not require the same database path. If

relative container paths are used, the same relative path might map to different

absolute container paths on the primary and standby databases.

Automatic storage databases are fully supported by HADR, including replication

of the ALTER DATABASE statement with the ADD STORAGE ON clause. Similar

to table space containers, the storage path must exist on both primary and standby.

The primary and standby databases must have the same database name. This

means that they must be in different instances.

Redirected restore is not supported. That is, HADR does not support redirecting

table space containers. However, database directory and log directory changes are

supported. Table space containers created by relative paths will be restored to

paths relative to the new database directory.

Buffer pool requirements

Since buffer pool operations are also replayed on the standby database, it is

important that the primary and standby databases have the same amount of

memory.

Installation and storage requirements for High Availability

Disaster Recovery (HADR)

To achieve optimal performance with High Availability Disaster Recovery (HADR),

ensure that your system meets the following installation and storage requirements.

Installation requirements

For HADR, instance paths should be the same on the primary and the standby

databases. Using different instance paths can cause problems in some situations,

such as if an SQL stored procedure invokes a user-defined function (UDF) and the

path to the UDF object code is expected to be on the same directory for both the

primary and standby server.

Storage requirements

Automatic storage databases are fully supported by HADR, including replication

of the ALTER DATABASE statement with the ADD STORAGE ON clause. Similar

to table space containers, the storage path must exist on both primary and standby.

Symbolic links can be used to create identical paths. The primary and standby

databases can be on the same computer. Even though their database storage starts

at the same path, they do not conflict because the actual directories used have

instance names embedded in them (since the primary and standby databases must

have the same database name, they must be in different instances). The storage

path is formulated as storage_path_name/inst_name/dbpart_name/db_name/
tbsp_name/container_name.

Table spaces and their containers must be identical on the primary and standby

databases. Properties that must be identical include: the table space type (DMS or

SMS), table space size, container path, container size, and container file type (raw

device or file system). If the database is enabled for automatic storage then the

storage paths must be identical. This includes the path names and the amount of

space on each that is devoted to the database. The amount of space allocated for

log files should also be the same on both the primary and standby databases.

Chapter 3. Configuring for high availability 45

When you issue a table space statement on the primary database, such as CREATE

TABLESPACE, ALTER TABLESPACE, or DROP TABLESPACE, it is replayed on the

standby database. You must ensure that the devices involved are set up on both of

the databases before you issue the table space statement on the primary database.

If the table space setup is not identical on the primary and standby databases, log

replay on the standby database might encounter errors such as OUT OF SPACE or

TABLE SPACE CONTAINER NOT FOUND. Similarly, if the databases are enabled

for automatic storage and the storage paths are not identical, log records associated

with the ADD STORAGE ON clause of the ALTER DATABASE statement will not

be replayed. As a result, the existing storage paths might prematurely run out of

space on the standby system and automatic storage table spaces will not be able to

increase in size. If any of these situations occurs, the affected table space is put in

rollforward pending state and is ignored in subsequent log replay. If a takeover

operation occurs, the table space will not be available to applications.

If the problem is noticed on the standby system prior to a takeover then the

resolution is to re-establish the standby database while addressing the storage

issues. The steps to do this include:

v Deactivating the standby database.

v Dropping the standby database.

v Ensuring the necessary filesystems exist with enough free space for the

subsequent restore and rollforward.

v Restoring the database at the standby system using a recent backup of the

primary database (or, reinitialize using split mirror or flash copy with the

db2inidb command). If the primary database is enabled for automatic storage

then do not redefine the storage paths during the restore. Also, table space

containers should not be redirected as part of the restore.

v Restarting HADR on the standby system.

However, if the problem is noticed with the standby database after a takeover has

occurred (or if a choice was made to not address the storage issues until this time)

then the resolution is based on the type of problem that was encountered.

If the database is enabled for automatic storage and space is not available on the

storage paths associated with the standby database then follow these steps:

1. Make space available on the storage paths by extending the filesystems, or by

removing unnecessary non-DB2 files on them.

2. Perform a table space rollforward to the end of logs.

In the case where the addition or extension of containers as part of log replay

could not occur, if the necessary backup images and log file archives are available,

you might be able to recover the table space by first issuing the SET TABLESPACE

CONTAINERS statement with the IGNORE ROLLFORWARD CONTAINER

OPERATIONS option and then issuing the ROLLFORWARD command.

The primary and standby databases do not require the same database path. If

relative container paths are used, the same relative path might map to different

absolute container paths on the primary and standby databases. Consequently, if

the primary and standby databases are placed on the same computer, all table

space containers must be defined with relative paths so that they map to different

paths for primary and standby.

46 Data Recovery and High Availability Guide and Reference

Restrictions for high Availability Disaster Recovery (HADR)

To achieve optimal performance with High Availability Disaster Recovery (HADR),

consider HADR restrictions when designing your high availability DB2 database

solution.

The following list is a summary of High Availability Disaster Recovery (HADR)

restrictions:

v HADR is not supported in a partitioned database environment.

v The primary and standby databases must have the same operating system

version and the same version of the DB2 database system, except for a short

time during a rolling upgrade.

v The DB2 database system release on the primary and standby databases must be

the same bit size (32 or 64 bit).

v Reads on the standby database are not supported. Clients cannot connect to the

standby database.

v Log archiving can only be performed by the current primary database.

v Self Tuning Memory Manager (STMM) can be run only on the current primary

database.

v Backup operations are not supported on the standby database.

v Non-logged operations, such as changes to database configuration parameters

and to the recovery history file, are not replicated to the standby database.

v Load operations with the COPY NO option specified are not supported.

v HADR does not support the use of raw i/o (direct disk access) for database log

files. If HADR is started via the START HADR command, or the database is

activated (restarted) with HADR configured, and raw logs are detected, the

associated command will fail.

Scheduling maintenance for high availability

Your DB2 database solution will require regular maintenance. You will have to

perform maintenance such as: software or hardware upgrades; database

performance tuning; database backups; statistics collection and monitoring for

business purposes. You must minimize the impact of these maintenance activities

on the availability of your database solution.

Before you can schedule maintenance activities, you must identify those

maintenance activities that you will have to perform on your database solution.

To schedule maintenance, perform the following steps:

1. Identify periods of low database activity.

It is best to schedule maintenance activities for low-usage times (those periods

of time when the fewest user applications are making requests of the database

system.) Depending on the type of business applications you are creating, there

might even be periods of time when no user applications are accessing the

database system.

2. Categorize the maintenance activities you must perform according to the

following:

v The maintenance can be automated

v You must bring the database solution offline while you perform the

maintenance

v You can perform the maintenance while the database solution is online

Chapter 3. Configuring for high availability 47

3. For those maintenance activities that can be automated, configure automated

maintenance using one of the following methods:

v Use the auto_maint configuration parameter

v Use the Configure Automatic Maintenance Wizard

v Use one of the system stored procedure called AUTOMAINT_SET_POLICY

and AUTOMAINT_SET_POLICYFILE
4. If any of the maintenance activities you must perform require the database

server to be offline, schedule those offline maintenance activities for those

low-usage times.

5. For those maintenance activities that can be performed while the database

server is online:

v Identify the availability impact of running those online maintenance

activities.

v Schedule those online maintenance activities so as to minimize the impact of

running those maintenance activities on the availability of the database

system.

For example: schedule online maintenance activities for low-usage times; and

use throttling mechanisms to balance the amount of system resources the

maintenance activities use.

Collecting automated maintenance policy information using

SYSPROC.AUTOMAINT_GET_POLICY or

SYSPROC.AUTOMAINT_GET_POLICYFILE

You can use the system stored procedures AUTOMAINT_GET_POLICY and

AUTOMAINT_GET_POLICYFILE to retrieve the automated maintenance policy

configured for a database.

To retrieve the automated maintenance policy for a database, perform the

following steps:

1. Connect to the database

2. Call AUTOMAINT_GET_POLICY or AUTOMAINT_GET_POLICYFILE

v The parameters required for AUTOMAINT_GET_POLICY are:

a. Maintenance type, specifying the type of automated maintenance activity

about which to return information.

b. Pointer to a BLOB in which the procedure will return the automated

maintenance policy information in XML format.
v The parameters required for AUTOMAINT_GET_POLICYFILE are:

a. Maintenance type, specifying the type of automated maintenance activity

about which to return information.

b. The name of a file to which the procedure will print the automated

maintenance policy information.

Valid maintenance type values are:

v AUTO_BACKUP - automatic backup

v AUTO_REORG - automatic table and index reorganization

v AUTO_RUNSTATS - automatic table runstats operations

v MAINTENANCE_WINDOW - maintenance window

48 Data Recovery and High Availability Guide and Reference

Configuring an automated maintenance policy using

SYSPROC.AUTOMAINT_SET_POLICY or

SYSPROC.AUTOMAINT_SET_POLICYFILE

You can use the system stored procedures AUTOMAINT_SET_POLICY and

AUTOMAINT_SET_POLICYFILE to configure the automated maintenance policy

for a database.

To configure the automated maintenance policy for a database, perform the

following steps:

1. Connect to the database

2. Call AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE

v The parameters required for AUTOMAINT_SET_POLICY are:

a. Maintenance type, specifying the type of automated maintenance activity

to configure.

b. Pointer to a BLOB that specifies the automated maintenance policy in

XML format.
v The parameters required for AUTOMAINT_SET_POLICYFILE are:

a. Maintenance type, specifying the type of automated maintenance activity

to configure.

b. The name of an XML file that specifies the automated maintenance policy.

Valid maintenance type values are:

v AUTO_BACKUP - automatic backup

v AUTO_REORG - automatic table and index reorganization

v AUTO_RUNSTATS - automatic table runstats operations

v MAINTENANCE_WINDOW - maintenance window

Sample automated maintenance policy specification XML for

AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE

Whether you are using AUTOMAINT_SET_POLICY or

AUTOMAINT_SET_POLICYFILE to specify your automated maintenance policy,

you must specify the policy using XML. There are sample files in

SQLLIB/samples/automaintcnf that demonstrate how to specify your automated

maintenance policy in XML.

The second parameter you pass to the system stored procedure

AUTOMAINT_SET_POLICY is a BLOB containing XML, specifying your desired

automated maintenance policy. The second parameter you pass to the system

stored procedure AUTOMAINT_SET_POLICYFILE is the name of an XML file that

specifies your desired automated maintenance policy. The XML elements that are

valid in the BLOB you pass to AUTOMAINT_SET_POLICY are the same elements

that are valid in the XML file you pass to AUTOMAINT_SET_POLICYFILE.

In the samples directory SQLLIB/samples/automaintcnf there are four XML files

that contain example automated maintenance policy specification:

DB2MaintenanceWindowPolicySample.xml

 demonstrates specifying a maintenance window during which time the

database manager should schedule automated maintenance.

DB2AutoBackupPolicySample.xml

Chapter 3. Configuring for high availability 49

demonstrates specifying how the database manager should perform

automatic backup.

DB2AutoReorgPolicySample.xml

 demonstrates specifying how the database manager should perform

automatic table and index reorganization.

DB2DefaultAutoRunstatsPolicySample.xml

 demonstrates specifying how the database manager should perform

automatic table runstats operations.

 You can create your own automated maintenance policy specification XML by

copying the XML from these files and modifying that XML according to the

requirements of your system.

Configuring database logging options

Use database logging configuration parameters to specify data logging options for

your database, such as the type of logging to use, the size of the log files, and the

location where log files should be stored.

To configure database logging options, you must have SYSADM, SYSCTRL, or

SYSMAINT authority.

You can configure database logging options using the UPDATE DATABASE

CONFIGURATION command on the command line processor (CLP), through the

Configure Database Logging wizard GUI in the Control Center, or by calling the

db2CfgSet API.

v To configure database logging options using the UPDATE DATABASE

CONFIGURATION command on the command line processor:

1. Specify whether you want to use circular logging or archive logging. If you

want to use circular logging, the LOGARCHMETH1 and LOGARCHMETH2

database configuration parameters must be set to OFF. This is the default

setting. To use archive logging, you must set at least one of these database

configuration parameters to a value other than OFF. For example, if you

want to use archive logging and you want to save the archived logs to disk,

issue the following:

 db2 update db configuration for mydb using logarchmeth1

 disk:/u/dbuser/archived_logs

The archived logs will be placed in a directory called /u/dbuser/
archived_logs.

2. Specify values for other database logging configuration parameters, as

required. The following are additional configuration parameters for database

logging:

– ARCHRETRYDELAY

– BLK_LOG_DSK_FUL

– FAILARCHPATH

– LOGARCHOPT1

– LOGARCHOPT2

– LOGBUFSZ

– LOGFILSIZ

– LOGPRIMARY

50 Data Recovery and High Availability Guide and Reference

– LOGRETAIN

– LOGSECOND

– MAX_LOG

– MIRRORLOGPATH

– NEWLOGPATH

– MINCOMMIT

– NUMARCHRETRY

– NUM_LOG_SPAN

– OVERFLOWLOGPATH

– USEREXIT

For more information on these database logging configuration parameters,

refer to “Configuration parameters for database logging.”
v To open the Configure Database Logging wizard:

1. From the Control Center, expand the object tree until you find the database

for which you want to set up logging.

2. Right-click on the database and select Configure Database Logging from the

pop-up menu. The Configure Database Logging wizard opens.
v Detailed information is provided through the online help facility within the

Control Center.

Configuration parameters for database logging

A key element of any high availability strategy is database logging. You can use

database logs to record transaction information, synchronize primary and

secondary or standby databases, and rollforward a secondary database that has

taken over for a failed primary database. To configure these database logging

activities according to your needs, you must set a variety of database configuration

parameters.

Archive Retry Delay (archretrydelay)

Specifies the amount of time (in seconds) to wait between attempts to

archive log files after the previous attempt fails. The default value is 20.

Block on log disk full (blk_log_dsk_ful)

This configuration parameter can be set to prevent disk full errors from

being generated when DB2 cannot create a new log file in the active log

path. Instead, DB2 will attempt to create the log file every five minutes

until it succeeds. After each attempt, DB2 will write a message to the

administration notification log. The only way to confirm that your

application is hanging because of a log disk full condition is to monitor the

administration notification log. Until the log file is successfully created, any

user application that attempts to update table data will not be able to

commit transactions. Read-only queries might not be directly affected;

however, if a query needs to access data that is locked by an update

request or a data page that is fixed in the buffer pool by the updating

application, read-only queries will also appear to hang.

 Setting blk_log_dsk_ful to YES causes applications to hang when DB2

encounters a log disk full error. You are then able to resolve the error and

the transaction can continue. A disk full situation can be resolved by

moving old log files to another file system, or by increasing the size of the

file system so that hanging applications can complete.

Chapter 3. Configuring for high availability 51

If blk_log_dsk_ful is set to NO, a transaction that receives a log disk full

error will fail and be rolled back. In some cases, the database will come

down if a transaction causes a log disk full error.

Failover Archive Path (failarchpath)

Specifies an alternate directory for the archive log files if the log archive

method specified fails. This directory is a temporary storage area for the

log files until the log archive method that failed becomes available again at

which time the log files will be moved from this directory to the log

archive method. By moving the log files to this temporary location, log

directory full situations might be avoided. This parameter must be a fully

qualified existing directory.

Log archive method 1 (logarchmeth1), log archive method 2 (logarchmeth2)

These parameters cause the database manager to archive log files to a

location that is not the active log path. If both of these parameters are

specified, each log file is archived twice. This means that you will have

two copies of archived log files in two different locations.

 Valid values for these parameters include a media type and, in some cases,

a target field. Use a colon (:) to separate the values. Valid values are:

OFF Specifies that the log archiving method is not to be used. If both

logarchmeth1 and logarchmeth2 are set to OFF, the database is

considered to be using circular logging and will not be rollforward

recoverable. This is the default.

LOGRETAIN

This value can only be used for logarchmeth1 and is equivalent to

setting the logretain configuration parameter to RECOVERY. If you

specify this value, the logretain configuration parameters will

automatically be updated.

USEREXIT

This value is only valid for logarchmeth1 and is equivalent to

setting the userexit configuration parameter to ON. If specify this

value, the userexit configuration parameter will be automatically

updated.

DISK This value must be followed by a colon(:) and then a fully

qualified existing path name where the log files will be archived.

For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory

called /u/dbuser/archived_logs.

Note: If you are archiving to tape, you can use the db2tapemgr

utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this

value indicates that log files should be archived on the local TSM

server using the default management class. If followed by a

colon(:) and a TSM management class, the log files will be archived

using the specified management class.

VENDOR

Specifies that a vendor library will be used to archive the log files.

This value must be followed by a colon(:) and the name of the

library. The APIs provided in the library must use the backup and

restore APIs for vendor products.

52 Data Recovery and High Availability Guide and Reference

Note:

1. If either logarchmeth1 or logarchmeth2 is set to a value other than OFF, the

database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration parameters

logarchmeth1 will automatically be updated and vice versa. However, if

you are using either userexit or logretain, logarchmeth2 must be set to OFF.

Log archive options 1 (logarchopt1), log archive options 2 (logarchopt2)

Specifies a string which is passed on to the TSM server or vendor APIs.

For TSM, this field is used to allow the database to retrieve logs that were

generated on a different TSM node or by a different TSM user. The string

must be provided in the following format:

 "-fromnode=nodename -fromowner=ownername"

where nodename is the name of the TSM node that originally archived the

log files, and ownername is the name of the TSM user that originally

archived the log files. Each log archive options field corresponds to one of

the log archive methods: logarchopt1 is used with logarchmeth1, and

logarchopt2 is used with logarchmeth2.

Log Buffer (logbufsz)

This parameter allows you to specify the amount of memory to use as a

buffer for log records before writing these records to disk. The log records

are written to disk when any one of the following events occurs:

v A transaction commits

v The log buffer becomes full

v Some other internal database manager event occurs.

Increasing the log buffer size results in more efficient input/output (I/O)

activity associated with logging, because the log records are written to disk

less frequently, and more records are written each time. However, recovery

can take longer with a larger log buffer size value.

Log file size (logfilsiz)

This parameter specifies the size of each configured log, in number of 4-KB

pages.

 There is a 512-GB logical limit on the total active log space that you can

configure. This limit is the result of the upper limit for each log file, which

is 2 GB, and the maximum combined number of primary and secondary

log files, which is 256.

 The size of the log file has a direct bearing on performance. There is a

performance cost for switching from one log to another. So, from a pure

performance perspective, the larger the log file size the better. This

parameter also indicates the log file size for archiving. In this case, a larger

log file is size it not necessarily better, since a larger log file size can

increase the chance of failure or cause a delay in log shipping scenarios.

When considering active log space, it might be better to have a larger

number of smaller log files. For example, if there are 2 very large log files

and a transaction starts close to the end of one log file, only half of the log

space remains available.

 Every time a database is deactivated (all connections to the database are

terminated), the log file that is currently being written is truncated. So, if a

database is frequently being deactivated, it is better not to choose a large

log file size because DB2 will create a large file only to have it truncated.

Chapter 3. Configuring for high availability 53

You can use the ACTIVATE DATABASE command to avoid this cost, and

having the buffer pool primed will also help with performance.

 Assuming that you have an application that keeps the database open to

minimize processing time when opening the database, the log file size

should be determined by the amount of time it takes to make offline

archived log copies.

 Minimizing log file loss is also an important consideration when setting

the log size. Archiving takes an entire log. If you use a single large log,

you increase the time between archiving. If the medium containing the log

fails, some transaction information will probably be lost. Decreasing the log

size increases the frequency of archiving but can reduce the amount of

information loss in case of a media failure since the smaller logs before the

one lost can be used.

Log retain (logretain)

This configuration parameter has been replaced by logarchmeth1. It is still

supported for compatibility with previous versions of DB2.

 If logretain is set to RECOVERY, archived logs are kept in the database log

path directory, and the database is considered to be recoverable, meaning

that rollforward recovery is enabled.

Note: The default value for the logretain database configuration parameter

does not support rollforward recovery. You must change the value of this

parameter if you are going to use rollforward recovery.

Maximum log per transaction (max_log)

This parameter indicates the percentage of primary log space that can be

consumed by one transaction. The value is a percentage of the value

specified for the logprimary configuration parameter.

 If the value is set to 0, there is no limit to the percentage of total primary

log space that a transaction can consume. If an application violates the

max_log configuration, the application will be forced to disconnect from the

database, the transaction will be rolled back, and error SQL1224N will be

returned.

 You can override this behavior by setting the

DB2_FORCE_APP_ON_MAX_LOG registry variable to FALSE. This will

cause transactions that violate the max_log configuration to fail and return

error SQL0964N. The application can still commit the work completed by

previous statements in the unit or work, or it can roll the work completed

back to undo the unit of work.

 This parameter, along with the num_log_span configuration parameter, can

be useful when infinite active logspace is enabled. If infinite logging is on

(that is, if logsecondary is -1) then transactions are not restricted to the

upper limit of the number of log files (logprimary + logsecond). When the

value of logprimary is reached, DB2 starts to archive the active logs, rather

than failing the transaction. This can cause problems if, for instance, there

is a long running transactions that has been left uncommitted (perhaps

caused by a bad application). If this occurs, the active logspace keeps

growing, which might lead to poor crash recovery performance. To prevent

this, you can specify values for either one or both of the max_log or

num_log_span configuration parameters.

Note: The following DB2 commands are excluded from the limitation

imposed by the max_log configuration parameter: ARCHIVE LOG,

54 Data Recovery and High Availability Guide and Reference

BACKUP DATABASE, LOAD, REORG TABLE (online), RESTORE

DATABASE, and ROLLFORWARD DATABASE.

Mirror log path (mirrorlogpath)

To protect the logs on the primary log path from disk failure or accidental

deletion, you can specify that an identical set of logs be maintained on a

secondary (mirror) log path. To do this, change the value of this

configuration parameter to point to a different directory. Active logs that

are currently stored in the mirrored log path directory are not moved to

the new location if the database is configured for rollforward recovery.

 Because you can change the log path location, the logs needed for

rollforward recovery might exist in different directories. You can change

the value of this configuration parameter during a rollforward operation to

allow you to access logs in multiple locations.

 You must keep track of the location of the logs.

 Changes are not applied until the database is in a consistent state. The

configuration parameter database_consistent returns the status of the

database.

 To turn this configuration parameter off, set its value to DEFAULT.

Note:

1. This configuration parameter is not supported if the primary log path

is a raw device.

2. The value specified for this parameter cannot be a raw device.

New log path (newlogpath)

The database logs are initially created in SQLOGDIR, which is a

subdirectory of the database directory. You can change the location in

which active logs and future archived logs are placed by changing the

value of this configuration parameter to point to a different directory or to

a device. Active logs that are currently stored in the database log path

directory are not moved to the new location if the database is configured

for rollforward recovery.

 Because you can change the log path location, the logs needed for

rollforward recovery might exist in different directories or on different

devices. You can change the value of this configuration parameter during a

rollforward operation to allow you to access logs in multiple locations.

 You must keep track of the location of the logs.

 Changes are not applied until the database is in a consistent state. The

configuration parameter database_consistent returns the status of the

database.

Number of Commits to Group (mincommit)

This parameter allows you to delay the writing of log records to disk until

a minimum number of commits have been performed. This delay can help

reduce the database manager overhead associated with writing log records

and, as a result, improve performance when you have multiple

applications running against a database, and many commits are requested

by the applications within a very short period of time.

 The grouping of commits occurs only if the value of this parameter is

greater than 1, and if the number of applications connected to the database

is greater than the value of this parameter. When commit grouping is in

Chapter 3. Configuring for high availability 55

effect, application commit requests are held until either one second has

elapsed, or the number of commit requests equals the value of this

parameter.

Number of archive retries on error (numarchretry)

Specifies the number of attempts that will be made to archive log files

using the specified log archive method before they are archived to the path

specified by the failarchpath configuration parameter. This parameter can

only be used if the failarchpath configuration parameter is set. The default

value is 5.

Number log span (num_log_span)

This parameter indicates the number of active log files that an active

transaction can span. If the value is set to 0, there is no limit to how many

log files one single transaction can span.

 If an application violates the num_log_span configuration, the application

will be forced to disconnect from the database and error SQL1224N will be

returned.

 This parameter, along with the max_log configuration parameter, can be

useful when infinite active logspace is enabled. If infinite logging is on

(that is, if logsecondary is -1) then transactions are not restricted to the

upper limit of the number of log files (logprimary + logsecond). When the

value of logprimary is reached, DB2 starts to archive the active logs, rather

than failing the transaction. This can cause problems if, for instance, there

is a long running transactions that has been left uncommitted (perhaps

caused by a bad application). If this occurs, the active logspace keeps

growing, which might lead to poor crash recovery performance. To prevent

this, you can specify values for either one or both of the max_log or

num_log_span configuration parameters.

Note: The following DB2 commands are excluded from the limitation

imposed by the num_log_span configuration parameter: ARCHIVE LOG,

BACKUP DATABASE, LOAD, REORG TABLE (online), RESTORE

DATABASE, and ROLLFORWARD DATABASE.

Overflow log path (overflowlogpath)

This parameter can be used for several functions, depending on your

logging requirements. You can specify a location for DB2 to find log files

that are needed for a rollforward operation. It is similar to the OVERFLOW

LOG PATH option of the ROLLFORWARD command; however, instead of

specifying the OVERFLOW LOG PATH option for every ROLLFORWARD

command issued, you can set this configuration parameter once. If both are

used, the OVERFLOW LOG PATH option will overwrite the overflowlogpath

configuration parameter for that rollforward operation.

 If logsecond is set to -1, you can specify a directory for DB2 to store active

log files retrieved from the archive. (Active log files must be retrieved for

rollback operations if they are no longer in the active log path).

 If overflowlogpath is not specified, DB2 will retrieve the log files into the

active log path. By specifying this parameter you can provide additional

resource for DB2 to store the retrieved log files. The benefit includes

spreading the I/O cost to different disks, and allowing more log files to be

stored in the active log path.

 For example, if you are using the db2ReadLog API for replication, you can

use overflowlogpath to specify a location for DB2 to search for log files that

are needed for this API. If the log file is not found (in either the active log

56 Data Recovery and High Availability Guide and Reference

path or the overflow log path) and the database is configured with userexit

enabled, DB2 will retrieve the log file. You can also use this parameter to

specify a directory for DB2 to store the retrieved log files. The benefit

comes from reducing the I/O cost on the active log path and allowing

more log files to be stored in the active log path.

 If you have configured a raw device for the active log path, overflowlogpath

must be configured if you want to set logsecond to -1, or if you want to use

the db2ReadLog API.

 To set overflowlogpath, specify a string of up to 242 bytes. The string must

point to a path name, and it must be a fully qualified path name, not a

relative path name. The path name must be a directory, not a raw device.

Note: In a partitioned database environment, the database partition

number is automatically appended to the path. This is done to maintain

the uniqueness of the path in multiple logical node configurations.

Primary logs (logprimary)

This parameter specifies the number of primary logs of size logfilsiz that

will be created.

 A primary log, whether empty or full, requires the same amount of disk

space. Thus, if you configure more logs than you need, you use disk space

unnecessarily. If you configure too few logs, you can encounter a log-full

condition. As you select the number of logs to configure, you must

consider the size you make each log and whether your application can

handle a log-full condition. The total log file size limit on active log space

is 256 GB.

 If you are enabling an existing database for rollforward recovery, change

the number of primary logs to the sum of the number of primary and

secondary logs, plus 1. Additional information is logged for LONG

VARCHAR and LOB fields in a database enabled for rollforward recovery.

Secondary logs (logsecond)

This parameter specifies the number of secondary log files that are created

and used for recovery, if needed.

 If the primary log files become full, secondary log files (of size logfilsiz) are

allocated, one at a time as needed, up to the maximum number specified

by this parameter. If this parameter is set to -1, the database is configured

with infinite active log space. There is no limit on the size or number of

in-flight transactions running on the database. Infinite active logging is

useful in environments that must accommodate large jobs requiring more

log space than you would normally allocate to the primary logs.

Note:

1. Log archiving must be enabled in order to set logsecond to -1.

2. If this parameter is set to -1, crash recovery time might be increased

since DB2 might need to retrieve archived log files.

User exit (userexit)

This configuration parameter has been replaced by logarchmeth1. It is still

supported for compatibility with previous versions of DB2.

 This parameter causes the database manager to call a user exit program for

archiving and retrieving logs. The log files are archived in a location that is

different from the active log path. If userexit is set to ON, rollforward

recovery is enabled.

Chapter 3. Configuring for high availability 57

The data transfer speed of the device you use to store offline archived logs,

and the software used to make the copies, must at a minimum match the

average rate at which the database manager writes data in the logs. If the

transfer speed cannot keep up with new log data being generated, you

might run out of disk space if logging activity continues for a sufficiently

long period of time. The amount of time it takes to run out of disk space is

determined by the amount of free disk space. If this happens, database

processing stops.

 The data transfer speed is most significant when using tape or an optical

medium. Some tape devices require the same amount of time to copy a

file, regardless of its size. You must determine the capabilities of your

archiving device.

 Tape devices have other considerations. The frequency of the archiving

request is important. For example, if the time taken to complete any copy

operation is five minutes, the log should be large enough to hold five

minutes of log data during your peak work load. The tape device might

have design limits that restrict the number of operations per day. These

factors must be considered when you determine the log size.

Note:

1. This value must be set to ON to enable infinite active log space.

2. The default value for the userexit database configuration parameter does

not support rollforward recovery, and must be changed if you are

going to use it.

Reducing logging with the NOT LOGGED INITIALLY parameter

If your application creates and populates work tables from master tables, and you

are not concerned about the recoverability of these work tables because they can be

easily recreated from the master tables, you can create the work tables specifying

the NOT LOGGED INITIALLY parameter on the CREATE TABLE statement. This

reduces logging and improves performance.

The advantage of using the NOT LOGGED INITIALLY parameter is that any

changes made on a table (including insert, delete, update, or create index

operations) in the same unit of work that creates the table will not be logged. This

not only reduces the logging that is done, but can also increase the performance of

your application. You can achieve the same result for existing tables by using the

ALTER TABLE statement with the NOT LOGGED INITIALLY parameter.

Note:

1. You can create more than one table with the NOT LOGGED INITIALLY

parameter in the same unit of work.

2. Changes to the catalog tables and other user tables are still logged.

Because changes to the table are not logged, you should consider the following

when deciding to use the NOT LOGGED INITIALLY table attribute:

v All changes to the table will be flushed out to disk at commit time. This means

that the commit might take longer.

v If the NOT LOGGED INITIALLY attribute is activated and an activity occurs

that is not logged, the entire unit of work will be rolled back if a statement fails

or a ROLLBACK TO SAVEPOINT is executed (SQL1476N).

v If you are using high availability disaster recovery (HADR) you should not use

the NOT LOGGED INITIALLY table attribute. Tables created with the NOT

58 Data Recovery and High Availability Guide and Reference

LOGGED INITIALLY option specified are not replicated. Attempts access such

tables after an HADR standby database takes over as the primary database will

result in an error.

v You cannot recover these tables when rolling forward. If the rollforward

operation encounters a table that was created or altered with the NOT LOGGED

INITIALLY option, the table is marked as unavailable. After the database is

recovered, any attempt to access the table returns SQL1477N.

Note: When a table is created, row locks are held on the catalog tables until a

COMMIT is done. To take advantage of the no logging behavior, you must

populate the table in the same unit of work in which it is created. This has

implications for concurrency.

Reducing logging with declared temporary tables

If you plan to use declared temporary tables as work tables, note the following:

v Declared temporary tables are not created in the catalogs; therefore locks are not

held.

v Logging is not performed against declared temporary tables, even after the first

COMMIT.

v Use the ON COMMIT PRESERVE option to keep the rows in the table after a

COMMIT; otherwise, all rows will be deleted.

v Only the application that creates the declared temporary table can access that

instance of the table.

v The table is implicitly dropped when the application connection to the database

is dropped.

v Errors in operation during a unit of work using a declared temporary table do

not cause the unit of work to be completely rolled back. However, an error in

operation in a statement changing the contents of a declared temporary table

will delete all the rows in that table. A rollback of the unit of work (or a

savepoint) will delete all rows in declared temporary tables that were modified

in that unit of work (or savepoint).

Blocking transactions when the log directory is full

When the DB2 database manager cannot create a new log file in the active log path

because there is not enough room for the new file, you will get errors indicating

the disk is full. If you set the blk_log_dsk_ful database configuration parameter,

the DB2 database manager will repeatedly attempt to create the new log file until

the file is successfully created instead of returning “disk full” errors.

If you set the blk_log_dsk_ful database configuration parameter, the DB2 database

manager attempts to create the log file every five minutes until it succeeds. If a log

archiving method is specified, the DB2 database manager also checks for the

completion of log file archiving. If an archived log file is archived successfully, the

DB2 database manager can rename the inactive log file to the new log file name

and continue. After each attempt, the DB2 database manager writes a message to

the administration notification log. The only way that you can confirm that your

application is hanging because of a log disk full condition is to monitor the

administration notification log.

Until the log file is successfully created, any user application that attempts to

update table data will not able to commit transactions. Read-only queries might

not be directly affected; however, if a query needs to access data that is locked by

Chapter 3. Configuring for high availability 59

an update request, or a data page that is fixed in the buffer pool by the updating

application, read-only queries will also appear to hang.

Log file management through log archiving

DB2 Data Server log file archiving is complicated by a variety of operating system

file handling and scheduling problems. For example: under certain conditions, the

DB2 database manager could try to retrieve a log file while the file is being

archived; also, if a disk fails just as the DB2 database manager is archiving a queue

of log files, those log files (and the transaction data they contain) could be lost.

Correctly configuring database logging can prevent these kinds of potential

problems from undermining your availability and recovery strategy.

The following are general considerations that apply to all methods of log

archiving:

v Specifying a value for the database configuration parameter logarchmeth1

indicates that you want the database manager to archive files or to retrieve log

files during rollforward recovery of databases using the method specified. A

request to retrieve a log file is made when the rollforward utility needs a log file

that is not found in the log path directory.

v Locally attached tape drives should not be used to store log files if you are using

any of the following:

– infinite logging

– online table space level recovery

– replication

– the Asynchronous Read Log API (db2ReadLog)

– high availability disaster recovery (HADR)

Any of these events can cause a log file to be retrieved, which can conflict with

log archiving operations.

v If you are using log archiving, the log manager will attempt to archive active

logs as they are filled. In some cases, if a database is deactivated before the log

manager is able to record the archive as successful, the log manager might try to

archive the log again when the database is activated. Thus, a log file can be

archived more than once.

v When archiving, a log file is passed to the log manager when it is full, even if

the log file is still active and is needed for normal processing. This allows copies

of the data to be moved away from volatile media as quickly as possible. The

log file passed to the log manager is retained in the log path directory until it is

no longer needed for normal processing. At this point, the disk space is reused.

v When a log file has been archived and it contains no open transactions, the DB2

database manager does not delete the file but renames it as the next log file

when such a file is needed. This results in a performance gain, because creating

a new log file (instead of renaming the file) causes all pages to be written out to

guarantee the disk space. It is more efficient to reuse than to free up and then

reacquire the necessary pages on disk.

v The DB2 database manager will not retrieve log files during crash recovery or

rollback unless the logsecond database configuration parameter is set to -1.

v Configuring log archiving does not guarantee rollforward recovery to the point

of failure, but only attempts to make the failure window smaller. As log files fill,

the log manager will asynchronously archive the logs. Should the disk

containing the log fail before a log file is filled, the data in that log file is lost.

Also, since the files are queued for archiving, the disk can fail before all the files

are copied, causing any log files in the queue to be lost.

60 Data Recovery and High Availability Guide and Reference

In the case of a failure of the disk or device on which the log path resides, you

can use the MIRRORLOGPATH database configuration parameter to ensure that

your logs are written to the secondary path, as long as the disk or device on

which the mirror log path is located has not also failed.

v The configured size of each individual log file has a direct bearing on log

archiving. If each log file is very large, a large amount of data can be lost if a

disk fails. If you configure your database to use small log files the log manager

will archive the logs more frequently.

However, if you are moving the data to a slower device such as tape, you might

want to have larger log files to prevent the queue from building up. Using larger

log files is also recommended if archiving each file requires substantial

overhead, such as rewinding the tape device or establishing a connection to the

archive media.

v If you are using log archiving, the log manager will attempt to archive active

logs as they are filled. In some cases, the log manager will archive a log before it

is full. This will occur if the log file is truncated either due to database

deactivation, issuing of the ARCHIVE LOG command, at the end of an online

backup, or issuing the SET WRITE SUSPEND command.

Note: To free unused log space, the log file is truncated before it is archived.

v If you are archiving logs and backup images to a tape drive as a storage device

for logs and backup images, you need to ensure that the destination for the

backup images and the archived logs is not the same tape drive. Since some log

archiving can take place while a backup operation is in progress, an error can

occur when the two processes are trying to write to the same tape drive at the

same time.

The following considerations apply to calling a user exit program or a vendor

program for archiving and retrieving log files:

v The DB2 database manager opens a log file in read mode when it starts a user

exit program to archive the file. On some platforms, this prevents the user exit

program from being able to delete the log file. Other platforms, like AIX, allow

processes, including the user exit program, to delete log files. A user exit

program should never delete a log file after it is archived, because the file could

still be active and needed for crash recovery. The DB2 database manager

manages disk space reuse when log files are archived.

v If a user exit or vendor program receives a request to archive a file that does not

exist (because there were multiple requests to archive and the file was deleted

after the first successful archiving operation), or to retrieve a file that does not

exist (because it is located in another directory or the end of the logs has been

reached), it should ignore this request and pass a successful return code.

v On Windows operating systems, you cannot use a REXX user exit to archive

logs.

v The user exit or vendor program should allow for the existence of different log

files with the same name after a point in time recovery; it should be written to

preserve both log files and to associate those log files with the correct recovery

path.

v If a user exit or vendor program is enabled for two or more databases that are

using the same tape device to archive log files, and a rollforward operation is

taking place on one of the databases, no other database should be active. If

another database tries to archive a log file while the rollforward operation is in

progress, the logs required for the rollforward operation might not be found or

the new log file archived to the tape device might overwrite the log files

previously stored on that tape device.

Chapter 3. Configuring for high availability 61

To prevent either situation from occurring, you can ensure that no other

databases on the database partition that calls the user exit program are open

during the rollforward operation, or you can write a user exit program to handle

this situation.

Configuring database logging without file system caching

You can use non-buffered I/O (also known as Direct I/O or DIO) when managing

database recovery logs on AIX JFS and JFS2 file systems. This eliminates the

operating system overhead of caching database recovery logs.

Before you begin

If the file system will also contain files that are not related to IBM Data Server,

consult your operating system documentation before disabling file system caching.

Some AIX operating systems have requirements such as serialization of read and

write access. DB2 database manager adheres to these requirements.

Restrictions

Do not use the dio or cio mount options on file systems that contain other IBM

Data Server files or directories, such as the sqllib directory.

Procedure

1. Mount the file system, specifying the AIX dio or cio mount options.

Concurrent I/O (CIO) is an enhanced version of Direct I/O and is supported

only on JFS2 file systems. Consult your operating system documentation for

more information.

2. Create a directory on the file system for the database recovery logs.

For example:

mkdir /new_filesystem/db2logs

where new_filesystem is the mount point for the file system.

3. Update the database log path.

For example:

db2 update db cfg for sample using newlogpath /new_filesystem/db2logs

where SAMPLE is the database name.

The new setting does not become the value for the logpath database

configuration parameter until both of the following occur:

v The database is in a consistent state, as indicated by the database_consistent

database configuration parameter.

v All users are disconnected from the database.

Results

This configuration eliminates any overhead incurred by the operating system as a

result of caching database recovery logs. However, the lack of file caching might

degrade the performance of log archiving and rollback operations. This

performance degradation can be addressed by ensuring that you use an

appropriate number of disk spindles and by tuning the log buffer size database

configuration parameter (logbufsz).

62 Data Recovery and High Availability Guide and Reference

Configuring a Clustered environment for high availability

Creating a cluster of machines, and using cluster managing software to balance

work load on those machines is one strategy for designing a highly available

solution. If you install IBM Data Server on one or several of the machines in a

cluster, you must configure the cluster manager to properly react to failures that

affect the database or databases. Also, you must configure the database manager

instances to work properly in the clustered environment.

About this task

Configuring and administering the database instances and the cluster manager

manually is complex, time-consuming, and prone to error. The DB2 High

Availability (HA) Feature provides infrastructure for enabling the database

manager to communicate with your cluster manager when instance configuration

changes, such as stopping a database manager instance, require cluster changes.

Procedure

1. Install cluster managing software.

SA MP Base Component is bundled with IBM Data Server on AIX and Linux as

part of the DB2 High Availability (HA) Feature, and integrated with the DB2

installer. SA MP Base Component is the default cluster manager in an IBM Data

Server clustered environment on AIX and Linux.

2. Configure IBM Data Server database manager instances for your cluster

manager, and configure your cluster manager for IBM Data Server.

DB2 High Availability Instance Configuration Utility (db2haicu) is a text based

utility that you can use to configure and administer your highly available

databases in a clustered environment. db2haicu collects information about your

database instances, your cluster environment, and your cluster manager by

querying your system. You supply more information through parameters to the

db2haicu call, an input file, or at runtime by providing information at db2haicu

prompts.

3. Over time, as your database needs change and you need to modify your

database configuration within the clustered environment, continue to keep the

database manager instance configuration and the cluster manager configuration

synchronized.

The DB2 High Availability (HA) Feature provides infrastructure for enabling

the database manager to communicate with your cluster manager when

instance configuration changes, such as stopping a database manager instance,

require cluster changes.

Whether you use db2haicu with SA MP Base Component, or you use another

cluster manager that supports the DB2 cluster manager API, administering you

clustered environment with the DB2 HA Feature is easier than maintaining the

database manager configuration and the cluster configuration separately.

Cluster manager integration with the DB2 High Availability

(HA) Feature

The DB2 High Availability (HA) Feature enables integration between IBM Data

Server and cluster managing software.

When you stop a database manager instance in a clustered environment, you must

make your cluster manager aware that the instance is stopped. If the cluster

manager is not aware that the instance is stopped, the cluster manager might

Chapter 3. Configuring for high availability 63

attempt an operation such as failover on the stopped instance. The DB2 High

Availability (HA) Feature provides infrastructure for enabling the database

manager to communicate with your cluster manager when instance configuration

changes, such as stopping a database manager instance, require cluster changes.

The DB2 HA Feature is composed of the following elements:

v IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component is

bundled with IBM Data Server on AIX and Linux as part of the DB2 High

Availability (HA) Feature, and integrated with the DB2 installer. You can install,

upgrade, or uninstall SA MP Base Component using either the DB2 installer or

the installSAM and uninstallSAM scripts that are included in the IBM Data

Server install media. See: “Installing and upgrading the SA MP Base Component

with the DB2 installer”

v In a clustered environment, some database manager instance configuration and

administration operations require related cluster configuration changes. The DB2

High Availability (HA) Feature enables the database manager to automatically

request cluster manager configuration changes whenever you perform certain

database manager instance configuration and administration operations. See:

“Configuring a cluster automatically with the DB2 High Availability (HA)

Feature” on page 77

v DB2 High Availability Instance Configuration Utility (db2haicu) is a text based

utility that you can use to configure and administer your highly available

databases in a clustered environment. db2haicu collects information about your

database instances, your cluster environment, and your cluster manager by

querying your system. You supply more information through parameters to the

db2haicu call, an input file, or at runtime by providing information at db2haicu

prompts. See: “DB2 High Availability Instance Configuration Utility (db2haicu)”

on page 80

v The DB2 cluster manager API defines a set of functions that enable the database

manager to communicate configuration changes to the cluster manager. See:

“DB2 cluster manager API” on page 89

Installing and upgrading the SA MP Base Component with the

DB2 installer

IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component is

bundled with IBM Data Server on AIX and Linux as part of the DB2 High

Availability (HA) Feature, and integrated with the DB2 installer. You can install,

upgrade, or uninstall SA MP Base Component using either the DB2 installer or the

installSAM and uninstallSAM scripts that are included in the IBM Data Server

install media.

Before you begin

v To install and use SA MP Base Component, your system configuration and

intended use of SA MP Base Component must meet the terms of the license that

comes with SA MP Base Component that is integrated with IBM Data Server.

For information about the license details of SA MP Base Component that is

integrated with IBM Data Server, see: “License terms for using IBM Tivoli

System Automation for Multiplatforms (SA MP) Base Component integrated

with IBM Data Server” on page 76

v To install or upgrade SA MP Base Component your system architecture must be

supported by SA MP Base Component that is integrated with IBM Data Server.

64 Data Recovery and High Availability Guide and Reference

For more information about SA MP Base Component supported software and

hardware, see: “Supported software and hardware for IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component” on page 77

v You must have root authority to install SA MP Base Component.

If you perform a non-root install of IBM Data Server, you can install SA MP Base

Component from the IBM Data Server install media separately. When you install

SA MP Base Component separately, you still must have root authority.

IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component

IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component

provides high availability and disaster recovery capabilities for AIX and Linux.

SA MP Base Component is bundled with IBM Data Server on AIX and Linux as

part of the DB2 High Availability (HA) Feature, and integrated with the DB2

installer. SA MP Base Component is the default cluster manager in an IBM Data

Server clustered environment on AIX and Linux.

For more information about SA MP Base Component, see: http://
publib.boulder.ibm.com/tividd/td/
IBMTivoliSystemAutomationforMultiplatforms2.2.html.

Installing IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component

You can install IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using either the DB2 installer or the installSAM install script that is

included in the IBM Data Server install media.

Before you begin

Whether you are using the DB2 installer, installSAM, or uninstallSAM, you must

meet the basic prerequisites for installing, upgrading, or uninstalling SA MP Base

Component. See: “Installing and upgrading the SA MP Base Component with the

DB2 installer” on page 64.

If you already have SA MP Base Component installed, you can upgrade the

installed version of SA MP Base Component using the DB2 installer or the

installSAM install script. For more information about upgrading SA MP Base

Component, see: “Upgrading IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component” on page 68.

Procedure

There are two methods for installing or upgrading SA MP Base Component:

v Using the DB2 installer

v Using the installSAM install script that is included in the IBM Data Server install

media

What to do next

Look in the SA MP Base Component install log for diagnostic information about

any warnings or errors that the DB2 installer or the installSAM install script

returned. For more information about the SA MP Base Component install log, see:

“IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component

install and uninstall logs” on page 76.

Chapter 3. Configuring for high availability 65

Installing IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the DB2 installer:

You can install IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the DB2 installer.

 Before you begin

Whether you use the DB2 installer or the installSAM install script to install SA MP

Base Component, you must meet the basic prerequisites for installing SA MP Base

Component. See: “Installing IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component” on page 65.

About this task

There are three methods for using the DB2 installer:

v DB2 Setup wizard (install, upgrade, or uninstall)

v Silent install using a response file with db2setup (install or upgrade) or

db2unins (for uninstall)

v db2_install command (for install), installFixPack command (for upgrade), or

db2_deinstall command (for uninstall)

Before installing SA MP Base Component on a given machine, the DB2 installer

queries your system for the following information:

v Is SA MP Base Component on your IBM Data Server install media?

v Is SA MP Base Component already installed?

The DB2 installer calls the installSAM install script to perform some parts of the

SA MP Base Component install operation. Instead of using the DB2 installer to

install SA MP Base Component, you can call installSAM directly. For more

information about using the installSAM install script to install SA MP Base

Component, see: “Installing IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component using the installSAM install script” on page 67.

You can use the -l option with db2setup, db2_install, or installFixPack to specify

where the installSAM utility should place the SA MP Base Component install log.

For more information about the SA MP Base Component install log, see: “IBM

Tivoli System Automation for Multiplatforms (SA MP) Base Component install and

uninstall logs” on page 76.

Procedure

v To install SA MP Base Component using DB2 Setup wizard, run DB2 Setup

wizard and follow the instructions in the wizard.

The information about your system that the DB2 installer collects determines

which panels appear in the graphical interface of the DB2 Setup wizard during

install. For example, if you already have SA MP Base Component installed, then

the DB2 Setup wizard will not display a panel to install SA MP Base

Component.

v To install SA MP Base Component using a response file, set the response file

keyword INSTALL_TSAMP to ″YES″.

In a response file installation operation, the default behavior of the DB2 installer

is to install SA MP Base Component. If INSTALL_TSAMP is ″YES″, or if

INSTALL_TSAMP is commented out or missing from the response file, the DB2

installer will attempt to install SA MP Base Component.

66 Data Recovery and High Availability Guide and Reference

To prevent the DB2 installer from installing SA MP Base Component in a

response file installation, set INSTALL_TSAMP to ″NO″.

v To install SA MP Base Component using db2_install, you can run db2_install

without any parameters specific to SA MP Base Component.

The default behavior of db2_install is to install SA MP Base Component.

To prevent db2_install from installing SA MP Base Component, use the -f

NOTSAMP option with db2_install.

What to do next

Whether you use the DB2 installer or the installSAM install script to install SA MP

Base Component, follow the same post-installation steps. For more information

about general post-install steps, see: “Installing IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component” on page 65

Installing IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the installSAM install script:

You can install IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the installSAM install script that is included in the IBM Data

Server install media.

 Before you begin

Whether you use the DB2 installer or the installSAM install script to install SA MP

Base Component, you must meet the basic prerequisites for installing SA MP Base

Component. See: “Installing IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component” on page 65.

Run the installSAM install script

The installSAM install script is located on the IBM Data Server media at the

following location:

db2/<platform>/tsamp

where <platform> refers to the appropriate hardware platform.

For information about using installSAM see: http://publib.boulder.ibm.com/
tividd/td/IBMTivoliSystemAutomationforMultiplatforms2.2.html.

What to do next

Whether you use the DB2 installer or the installSAM install script to install SA MP

Base Component, follow the same post-installation steps. For more information

about general post-install steps, see: “Installing IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component” on page 65

If you use the DB2 High Availability (HA) Feature with IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component as your cluster manager,

the database manager uses scripts to support DB2 High Availability Disaster

Recovery (HADR) functionality. These HADR scripts are installed or updated

automatically when you use the DB2 installer to install or update SA MP Base

Component. When you install or update SA MP Base Component using the

installSam utility, then you must manually install or update these HADR scripts.

For more information about installing or upgrading the HADR scripts manually,

Chapter 3. Configuring for high availability 67

see: “Installing, updating, and uninstalling DB2 High Availability Disaster

Recovery (HADR) scripts for the IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component” on page 73.

Upgrading IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component

You can upgrade IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using either the DB2 installer or the installSAM install script that is

included in the IBM Data Server install media.

Before you begin

Whether you are using the DB2 installer, installSAM, or uninstallSAM, you must

meet the basic prerequisites for installing, upgrading, or uninstalling SA MP Base

Component. See: “Installing and upgrading the SA MP Base Component with the

DB2 installer” on page 64.

If you already have SA MP Base Component installed, you can upgrade the

installed version of SA MP Base Component using the DB2 installer or the

installSAM install script. For more information about upgrading SA MP Base

Component, see: “Upgrading IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component.”

Restrictions

v The version of SA MP Base Component that is on the IBM Data Server install

media is Version 2.2. SA MP Base Component does not support directly

upgrading from Version 1 to Version 2.2. If you have SA MP Base Component

Version 1 currently installed, you must upgrade from Version 1 to Version 2.1

before you can upgrade to Version 2.2.

v You cannot upgrade SA MP Base Component using either the DB2 installer or

the installSAM install script included in the IBM Data Server install media if you

have one or more IBM Reliable Scalable Cluster Technology (RSCT) peer

domains defined on your system.

Procedure

There are two methods for installing or upgrading SA MP Base Component:

v Using the DB2 installer

v Using the installSAM install script that is included in the IBM Data Server install

media

What to do next

Look in the SA MP Base Component install log for diagnostic information about

any warnings or errors that the DB2 installer or the installSAM install script

returned. For more information about the SA MP Base Component install log, see:

“IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component

install and uninstall logs” on page 76.

Upgrading IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the DB2 installer:

You can upgrade IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the DB2 installer.

68 Data Recovery and High Availability Guide and Reference

Before you begin

Whether you use the DB2 installer or the installSAM install script that is included

in the IBM Data Server install media to upgrade SA MP Base Component, you

must meet the basic prerequisites for upgrading SA MP Base Component. See:

“Upgrading IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component” on page 68.

About this task

There are three methods for using the DB2 installer:

v DB2 Setup wizard (install, upgrade, or uninstall)

v Silent install using a response file with db2setup (install or upgrade) or

db2unins (for uninstall)

v db2_install command (for install), installFixPack command (for upgrade), or

db2_deinstall command (for uninstall)

Before upgrading SA MP Base Component on a given machine, the DB2 installer

queries your system for the following information:

v If SA MP Base Component is already installed, is the version of SA MP Base

Component that is already installed older than the version of SA MP Base

Component that is on the IBM Data Server install media?

The DB2 installer calls the installSAM install script to perform some parts of the

SA MP Base Component upgrade operation. You can call installSAM directly. For

more information about using the installSAM install script to upgrade SA MP Base

Component, see: “Upgrading IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component using the installSAM install script” on page 70.

You can use the -l option with db2setup, db2_install, or installFixPack to specify

where the installSAM utility should place the SA MP Base Component install log.

For more information about the SA MP Base Component install log, see: “IBM

Tivoli System Automation for Multiplatforms (SA MP) Base Component install and

uninstall logs” on page 76.

Procedure

v To upgrade SA MP Base Component using DB2 Setup wizard, run DB2 Setup

wizard and follow the instructions in the wizard.

The information about your system that the DB2 installer collects determines

which panels appear in the graphical interface of the DB2 Setup wizard during

the upgrade. For example, if the version of SA MP Base Component that you

already have installed is at the same version as, or at a later version than the

version of SA MP Base Component that is on the IBM Data Server install media,

then the DB2 Setup wizard will not display a panel to upgrade SA MP Base

Component.

v To upgrade SA MP Base Component using a response file, set the response file

keyword INSTALL_TSAMP to ″YES″.

In a response file installation operation, the default behavior of the DB2 installer

is to upgrade SA MP Base Component if the version of SA MP Base Component

that is already installed is older than the version that is on the IBM Data Server

install media. If INSTALL_TSAMP is ″YES″, or if INSTALL_TSAMP is comment

out or missing from the response file, the DB2 installer will attempt to upgrade

SA MP Base Component.

Chapter 3. Configuring for high availability 69

To prevent the DB2 installer from upgrading SA MP Base Component in a

response file installation, set INSTALL_TSAMP to ″NO″.

v To upgrade SA MP Base Component using db2_install, you can run db2_install

without any parameters specific to SA MP Base Component.

The default behavior of db2_install is to upgrade SA MP Base Component if the

version of SA MP Base Component that is already installed is older than the

version that is on the IBM Data Server install media.

To prevent db2_install from upgrading SA MP Base Component, use the -f

NOTSAMP option with db2_install.

What to do next

Whether you use the DB2 installer or the installSAM install script to upgrade SA

MP Base Component, follow the same post-upgrade steps. For more information

about general post-upgrade steps, see: “Installing IBM Tivoli System Automation

for Multiplatforms (SA MP) Base Component” on page 65

Upgrading IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the installSAM install script:

You can upgrade IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the installSAM install script that is included in the IBM Data

Server install media.

 Before you begin

Whether you use the DB2 installer or the installSAM install script that is included

in the IBM Data Server install media to upgrade SA MP Base Component, you

must meet the basic prerequisites for upgrading SA MP Base Component. See:

“Upgrading IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component” on page 68.

Run the installSAM install script

The installSAM install script is located on the IBM Data Server media at the

following location:

db2/<platform>/tsamp

where <platform> refers to the appropriate hardware platform.

For information about using installSAM see: http://publib.boulder.ibm.com/
tividd/td/IBMTivoliSystemAutomationforMultiplatforms2.2.html.

What to do next

Whether you use the DB2 installer or the installSAM install script to install SA MP

Base Component, follow the same post-installation steps. For more information

about general post-install steps, see: “Installing IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component” on page 65

If you use the DB2 High Availability (HA) Feature with IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component as your cluster manager,

the database manager uses scripts to support DB2 High Availability Disaster

Recovery (HADR) functionality. These HADR scripts are installed or updated

automatically when you use the DB2 installer to install or update SA MP Base

70 Data Recovery and High Availability Guide and Reference

Component. When you install or update SA MP Base Component using the

installSam utility, then you must manually install or update these HADR scripts.

For more information about installing or upgrading the HADR scripts manually,

see: “Installing, updating, and uninstalling DB2 High Availability Disaster

Recovery (HADR) scripts for the IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component” on page 73.

Uninstalling IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component

You can uninstall IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using either the DB2 installer or the uninstallSAM uninstall script that

is included in the IBM Data Server install media.

Before you begin

Whether you are using the DB2 installer, installSAM, or uninstallSAM, you must

meet the basic prerequisites for installing, upgrading, or uninstalling SA MP Base

Component. See: “Installing and upgrading the SA MP Base Component with the

DB2 installer” on page 64.

If you already have SA MP Base Component installed, you can upgrade the

installed version of SA MP Base Component using the DB2 installer or the

installSAM install script. For more information about upgrading SA MP Base

Component, see: “Upgrading IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component” on page 68.

Procedure

There are two methods for uninstalling SA MP Base Component:

v Using the DB2 installer

v Using the uninstallSAM uninstall script that is included in the IBM Data Server

install media

What to do next

Look in the SA MP Base Component uninstall log for diagnostic information about

any warnings or errors that the DB2 installer or the uninstallSAM uninstall script

returned. For more information about the SA MP Base Component uninstall log,

see: “IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component

install and uninstall logs” on page 76.

Uninstalling IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the DB2 installer:

You can uninstall IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the DB2 installer.

 Before you begin

Whether you use the DB2 installer or the uninstallSAM uninstall script that is

included in the IBM Data Server install media to uninstall SA MP Base

Component, you must meet the basic prerequisites for uninstalling SA MP Base

Component. See: “Uninstalling IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component.”

About this task

Chapter 3. Configuring for high availability 71

There are three methods for using the DB2 installer:

v DB2 Setup wizard (install, upgrade, or uninstall)

v Silent install using a response file with db2setup (install or upgrade) or

db2unins (for uninstall)

v db2_install command (for install), installFixPack command (for upgrade), or

db2_deinstall command (for uninstall)

The DB2 installer calls the uninstallSAM install script to perform parts of the SA

MP Base Component uninstall. You can call uninstallSAM directly. For more

information about using the uninstallSAM script to uninstall SA MP Base

Component, see: “Installing IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component using the installSAM install script” on page 67.

You can use the -l option with db2setup, db2_install, or installFixPack to specify

where the installSAM utility should place the SA MP Base Component install log.

For more information about the SA MP Base Component install log, see: “IBM

Tivoli System Automation for Multiplatforms (SA MP) Base Component install and

uninstall logs” on page 76.

Procedure

v To uninstall SA MP Base Component using DB2 Setup wizard, run DB2 Setup

wizard and follow the instructions in the wizard.

The information about your system that the DB2 installer collects determines

which panels appear in the graphical interface of the DB2 Setup wizard during

uninstall. For example, if you do not have SA MP Base Component installed,

then the DB2 Setup wizard will not display a panel to uninstall SA MP Base

Component.

v To uninstall SA MP Base Component using a response file, set the response file

keyword INSTALL_TSAMP to ″YES″.

In a response file uninstall operation, the DB2 installer will not uninstall SA MP

Base Component by default. If INSTALL_TSAMP is ″NO″, or if

INSTALL_TSAMP is commented out or missing from the response file, the DB2

installer will not attempt to uninstall SA MP Base Component.

v To uninstall SA MP Base Component using db2_deinstall, you can run

db2_deinstall with the -a -F TSAMP option.

By default, the DB2 installer will not uninstall SA MP Base Component when

you run db2_deinstall.

What to do next

Whether you use the DB2 installer or the uninstallSAM uninstall script that is

included with the IBM Data Server install media to uninstall SA MP Base

Component, follow the same post-uninstall steps. For more information about

general post-uninstall steps, see: “Uninstalling IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component” on page 71

Uninstalling IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the uninstallSAM uninstall script:

You can uninstall IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component using the uninstallSAM uninstall script that is included in the IBM

Data Server install media.

 Before you begin

72 Data Recovery and High Availability Guide and Reference

Whether you use the DB2 installer or the uninstallSAM uninstall script that is

included in the IBM Data Server install media to uninstall SA MP Base

Component, you must meet the basic prerequisites for uninstalling SA MP Base

Component. See: “Uninstalling IBM Tivoli System Automation for Multiplatforms

(SA MP) Base Component” on page 71.

Run the uninstallSAM uninstall script

The uninstallSAM uninstall script is located on the IBM Data Server media at the

following location:

db2/<platform>/tsamp

where <platform> refers to the appropriate hardware platform.

For information about using uninstallSAM see: http://publib.boulder.ibm.com/
tividd/td/IBMTivoliSystemAutomationforMultiplatforms2.2.html.

What to do next

Whether you use the DB2 installer or the installSAM install script to install SA MP

Base Component, follow the same post-installation steps. For more information

about general post-install steps, see: “Installing IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component” on page 65

If you use the DB2 High Availability (HA) Feature with IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component as your cluster manager,

the database manager uses scripts to support DB2 High Availability Disaster

Recovery (HADR) functionality. These HADR scripts are uninstalled automatically

when you run db2_deinstall to uninstall SA MP Base Component. When you

uninstall SA MP Base Component using the uninstallSam utility, then you must

manually uninstall these HADR scripts. For more information about uninstalling

the HADR scripts manually, see: “Installing, updating, and uninstalling DB2 High

Availability Disaster Recovery (HADR) scripts for the IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component.”

Installing, updating, and uninstalling DB2 High Availability

Disaster Recovery (HADR) scripts for the IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component

If you use the DB2 High Availability (HA) Feature with IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component as your cluster manager,

the database manager uses scripts to support DB2 High Availability Disaster

Recovery (HADR) functionality. You can install, upgrade, and uninstall these SA

MP Base Component HADR scripts using the DB2 installer, or the installSAM or

uninstallSAM scripts that are included in the IBM Data Server install media.

Before you begin

v To install, upgrade, or uninstall SA MP Base Component HADR scripts using the

DB2 installer or the installSAM or uninstallSAM scripts that are included in the

IBM Data Server install media, you must purchase the DB2 High Availability

Feature.

v You must have root authority to install, upgrade, or uninstall SA MP Base

Component HADR scripts.

If you perform a non-root install of IBM Data Server, you can install the SA MP

Base Component HADR scripts from the IBM Data Server install media

Chapter 3. Configuring for high availability 73

separately. When you install the SA MP Base Component HADR scripts

separately, you still must have root authority.

Procedure

There are two methods for installing, upgrading, and uninstalling SA MP Base

Component HADR scripts:

v Using the DB2 installer

v Manually installing from the IBM Data Server install media

Results

When you install the SA MP Base Component HADR scripts, the scripts are

installed in the following location:

/usr/sbin/rsct/sapolicies/db2

If you uninstall the SA MP Base Component HADR scripts, you can no longer use

HADR functionality within a cluster managed by SA MP Base Component.

Installing, updating, and uninstalling DB2 High Availability Disaster Recovery

(HADR) scripts for the IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component using DB2 installer:

You can install, upgrade, or uninstall IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component DB2 High Availability Disaster Recovery

(HADR) scripts using the DB2 installer.

 Before you begin

Whether you use the DB2 installer or manually install, upgrade, or uninstall SA

MP Base Component HADR scripts, you must meet the basic prerequisites for

installing, upgrading, and uninstalling SA MP Base Component HADR scripts. See:

“Installing, updating, and uninstalling DB2 High Availability Disaster Recovery

(HADR) scripts for the IBM Tivoli System Automation for Multiplatforms (SA MP)

Base Component” on page 73.

About this task

There are three methods for using the DB2 installer:

v DB2 Setup wizard (install, upgrade, or uninstall)

v Silent install using a response file with db2setup (install or upgrade) or

db2unins (for uninstall)

v db2_install command (for install), installFixPack command (for upgrade), or

db2_deinstall command (for uninstall)

Procedure

1. To install SA MP Base Component HADR scripts, run the DB2 installer.

By default, the DB2 installer installs SA MP Base Component HADR scripts if

SA MP Base Component is installed or being installed, and the scripts are not

already installed.

2. To upgrade the SA MP Base Component HADR scripts, run the DB2 installer.

By default, the DB2 installer will upgrade SA MP Base Component HADR

scripts if SA MP Base Component is installed or being installed, and the scripts

74 Data Recovery and High Availability Guide and Reference

that are already installed are at a lower version than the version of the scripts

that are on the IBM Data Server install media.

3. To uninstall SA MP Base Component HADR scripts, run the DB2 installer.

Results

Whether you use the DB2 installer or manually install, upgrade, or uninstall SA

MP Base Component HADR scripts, the general results are the same, see:

“Installing, updating, and uninstalling DB2 High Availability Disaster Recovery

(HADR) scripts for the IBM Tivoli System Automation for Multiplatforms (SA MP)

Base Component” on page 73.

Installing, updating, and uninstalling DB2 High Availability Disaster Recovery

(HADR) scripts for the IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component manually:

You can manually install, upgrade, or uninstall IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component DB2 High Availability Disaster Recovery

(HADR) scripts from the IBM Data Server install media.

 Before you begin

Whether you use the DB2 installer or manually install, upgrade, or uninstall SA

MP Base Component HADR scripts, you must meet the basic prerequisites for

installing, upgrading, and uninstalling SA MP Base Component HADR scripts. See:

“Installing, updating, and uninstalling DB2 High Availability Disaster Recovery

(HADR) scripts for the IBM Tivoli System Automation for Multiplatforms (SA MP)

Base Component” on page 73.

About this task

The SA MP Base Component HADR scripts are installed automatically by the DB2

installer when SA MP Base Component is installed or being installed. If you install

or upgrade SA MP Base Component manually, then you must install or upgrade

the SA MP Base Component HADR scripts manually. The DB2 installer does not

uninstall the SA MP Base Component HADR scripts, so to remove these scripts,

you must uninstall them manually.

Procedure

To install, update, or uninstall SA MP Base Component HADR scripts manually,

use the db2cptsa utility.

Results

Whether you use the DB2 installer or manually install, upgrade, or uninstall SA

MP Base Component HADR scripts, the general results are the same, see:

“Installing, updating, and uninstalling DB2 High Availability Disaster Recovery

(HADR) scripts for the IBM Tivoli System Automation for Multiplatforms (SA MP)

Base Component” on page 73.

Chapter 3. Configuring for high availability 75

IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component install and uninstall logs

Diagnostic information, warnings, and error messages related to installing,

upgrading, and uninstalling IBM Tivoli System Automation for Multiplatforms (SA

MP) Base Component are located in install and uninstall logs specific to SA MP

Base Component.

You can install, upgrade, or uninstall SA MP Base Component using the DB2

installer, or the installSAM or uninstallSAM scripts that are included on the IBM

Data Server install media. In fact, the DB2 installer uses the installSAM utility and

the uninstallSAM utility to perform part of the install, upgrade, and uninstall

operations.

The installSAM utility generates a sequence of log files that are named

sequentially:

/tmp/installSAM.<log-number>.log

where log-number identifies the log file in the sequence.

You can use the -l option with db2setup, db2_install, or installFixPack to specify

where the installSAM utility should place the SA MP Base Component install log.

The uninstallSAM utility generates a sequence of log files that are named

sequentially:

/tmp/uninstallSAM.<log-number>.log

log-number identifies the log file in the sequence.

You can use the -l option with db2unins or db2_deinstall to specify where the

uninstallSAM utility should place the SA MP Base Component uninstall log.

License terms for using IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component integrated with IBM

Data Server

There are conditions under which you can use IBM Tivoli System Automation for

Multiplatforms (SA MP) Base Component that is integrated with IBM Data Server.

You can use SA MP Base Component that is integrated with IBM Data Server with

DB2 High Availability Disaster Recovery (HADR) functionality if you have

purchased a license for one of:

v DB2 Enterprise Server Edition

v DB2 Connect Enterprise Server Edition

v DB2 Workgroup Server Edition

Also you can use SA MP Base Component that is integrated with IBM Data Server

with HADR functionality if you have purchased a license for the DB2 High

Availability Feature and one of:

v DB2 Express Edition

You can use a try and buy version of SA MP Base Component that is integrated

with IBM Data Server with HADR functionality if you have a try and buy license

for one of:

v DB2 Enterprise Server Edition

v DB2 Connect Enterprise Server Edition

76 Data Recovery and High Availability Guide and Reference

v DB2 Workgroup Server Edition

v DB2 Express Edition

Supported software and hardware for IBM Tivoli System

Automation for Multiplatforms (SA MP) Base Component

IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component is

integrated with IBM Data Server and supported on AIX and Linux.

Supported operating systems and hardware

SA MP Base Component is integrated with IBM Data Server and supported on the

following operating systems and hardware:

AIX Version 5.3 is supported on the following hardware:

v eServer™ pSeries®

v IBM System p™

v IBM System p5™

The following versions of Linux are supported:

v Red Hat Enterprise Linux (RHEL) 4 Update 4

v SUSE Linux Enterprise Server (SLES) 9 Service Pack 3

v SUSE Linux Enterprise Server (SLES) 10 Service Pack 1

Linux is supported on the following hardware:

v x86 (Intel® Pentium®, Intel Xeon®, and AMD) 32-bit Intel and AMD processors

v x64 (64-bit AMD64 and Intel EM64T processors)

v POWER™ (IBM eServer OpenPower™, System i™ or pSeries systems that support

Linux)

v eServer System z™ or System z9™

Supported editions of IBM Data Server

SA MP Base Component is integrated with the following editions of IBM Data

Server:

v DB2 Enterprise Server Edition

v DB2 Connect Enterprise Server Edition

v DB2 Workgroup Server Edition

v DB2 Express Edition

Configuring a cluster automatically with the DB2 High

Availability (HA) Feature

In a clustered environment, some database manager instance configuration and

administration operations require related cluster configuration changes. The DB2

High Availability (HA) Feature enables the database manager to automatically

request cluster manager configuration changes whenever you perform certain

database manager instance configuration and administration operations.

Before you begin

To enable the database manager to perform required cluster configuration for

database administration tasks, you must configure the instance for high availability by

Chapter 3. Configuring for high availability 77

using db2haicu to create a cluster domain for the instance. For more information,

see: “Configuring a database clustered environment using DB2 High Availability

Instance Configuration Utility (db2haicu)” on page 79.

Procedure

When you perform the following database manager instance configuration and

administration operations, the database manager automatically performs related

cluster manager configuration for you:

v Starting a database using START DATABASE or db2start

v Stopping a database using STOP DATABASE or db2stop

v Creating a database using CREATE DATABASE

v Adding storage using CREATE TABLESPACE

v Removing storage using ALTER TABLESPACE DROP or DROP TABLESPACE

v Dropping a database using DROP TABLESPACE

v Restoring a database using the RESTORE DATABASE or db2Restore

v Specifying the table space containers for redirected restore using SET

TABLESPACE CONTAINERS

v Rolling a database forward using ROLLFORWARD DATABASE or

db2Rollforward

v Recovering a database using RECOVER DATABASE or db2Recover

v Creating event monitors using CREATE EVENT MONITOR

v Dropping event monitors using DROP EVENT MONITOR

v Creating and altering external routines using:

– CREATE PROCEDURE

– CREATE FUNCTION

– CREATE FUNCTION

– CREATE METHOD

– ALTER PROCEDURE

– ALTER FUNCTION

– ALTER METHOD
v Dropping external routines using:

– DROP PROCEDURE

– DROP FUNCTION

– DROP METHOD
v Start DB2 High Availability Disaster Recovery (HADR) operations for a database

using START HADR

v Stop HADR operations for a database using STOP HADR

v Cause a HADR standby database to take over as a HADR primary database

using TAKEOVER HADR

v Setting the database manager configuration parameter DIAGPATH or

SPM_LOG_PATH

v Setting the database configuration parameter NEWLOGPATH,

OVERFLOWLOGPATH, MIRRORLOGPATH, or FAILARCHPATH

v Dropping a database manager instance using db2idrop

Results

78 Data Recovery and High Availability Guide and Reference

When the database manager coordinates the cluster configuration changes for

database administration tasks listed, you do not have to perform separate cluster

manager operations.

Configuring a database clustered environment using DB2

High Availability Instance Configuration Utility (db2haicu)

You can configure and administer your databases in a clustered environment using

DB2 High Availability Instance Configuration Utility (db2haicu). When you specify

database manager instance configuration details to db2haicu, db2haicu

communicates the required cluster configuration details to your cluster managing

software.

Before you begin

There is a set of tasks you must perform before using DB2 High Availability

Instance Configuration Utility (db2haicu). For more information, see: “DB2 High

Availability Instance Configuration Utility (db2haicu) prerequisites” on page 84.

Restrictions

There are some restrictions for using DB2 High Availability Instance Configuration

Utility (db2haicu). For more information, see: “DB2 High Availability Instance

Configuration Utility (db2haicu) restrictions” on page 87.

About this task

You can run db2haicu interactively, or using an XML input file:

Interactive mode

When you invoke DB2 High Availability Instance Configuration Utility

(db2haicu) by running the db2haicu command without specifying an XML

input file with the -f parameter, the utility runs in interactive mode. In

interactive mode, db2haicu displays information and queries you for

information in a text-based format. For more information, see: “Running

DB2 High Availability Instance Configuration Utility (db2haicu) in

interactive mode” on page 82

Batch mode with an XML input file

You can use the -f <input-file-name> parameter with the db2haicu

command to run DB2 High Availability Instance Configuration Utility

(db2haicu) with an XML input file specifying your configuration details.

Running db2haicu with an XML input file is useful when you must

perform configuration tasks multiple times, such as when you have

multiple database partitions to be configured for high availability. For more

information, see: “Running DB2 High Availability Instance Configuration

Utility (db2haicu) with an XML input file” on page 83

Procedure

Perform the following steps for each database manager instance.

1. Create a new cluster domain

When you run DB2 High Availability Instance Configuration Utility (db2haicu)

for the first time for a database manager instance, db2haicu creates a model of

your cluster, called a cluster domain. For more information, see: “Creating a

cluster domain using DB2 High Availability Instance Configuration Utility

(db2haicu)” on page 85

Chapter 3. Configuring for high availability 79

2. Continue to refine the cluster domain configuration, and administer and

maintain the cluster domain

When you modifying the cluster domain model of your clustered environment

using db2haicu, the database manager propagates the related changes to your

database manager instance and cluster configuration. For more information,

see: “Maintaining a cluster domain using DB2 High Availability Instance

Configuration Utility (db2haicu)” on page 85

What to do next

DB2 High Availability Instance Configuration Utility (db2haicu) does not have a

separate diagnostic log. You can investigate and diagnose db2haicu errors using

the database manager diagnostic log, db2diag.log, and the db2pd tool. For more

information, see: “Troubleshooting DB2 High Availability Instance Configuration

Utility (db2haicu)” on page 87

DB2 High Availability Instance Configuration Utility (db2haicu)

DB2 High Availability Instance Configuration Utility (db2haicu) is a text based

utility that you can use to configure and administer your highly available

databases in a clustered environment. db2haicu collects information about your

database instances, your cluster environment, and your cluster manager by

querying your system. You supply more information through parameters to the

db2haicu call, an input file, or at runtime by providing information at db2haicu

prompts.

Syntax

db2haicu [-f <XML-input-file-name>]

 [-disable]

 [-delete [dbpartitionnum <db-partition-list> |

 hadrdb <database-name>]]

Parameters

The parameters that you pass to the db2haicu command are case-sensitive, and

must be in lowercase.

-f <XML-input-file-name>

You can use the -f parameter to specify your cluster domain details in an

XML input file, <XML-input-file-name>.

-disable

A database manager instance is considered configured for high availability

once you have used db2haicu to create a cluster domain for that instance.

When a database manager instance is configured for high availability, then

whenever you perform certain database manager administrative operations

that require related cluster configuration changes, the database manager

will communicate those cluster configuration changes to the cluster

manager. When the database manager coordinates these cluster

management tasks with the cluster manager for you, you do not have to

perform a separate cluster manager operation for those administrative

tasks. This integration between the database manager and the cluster

manager is a function of the DB2 High Availability (HA) Feature.

 You can use the -disable parameter to cause a database manager instance

to cease to be configured for high availability. If the database manager

instance is no longer configured for high availability, then the database

80 Data Recovery and High Availability Guide and Reference

manager will not coordinate with the cluster manager if you perform any

database manager administrative operations that require related cluster

configuration changes.

 To reconfigure a database manager instance for high availability, you can

run db2haicu again.

-delete

You can use the -delete parameter to delete resource groups for the current

database manager instance.

 If you do not use either the dbpartitionnum parameter or the hadrdb

parameter, then db2haicu will remove all the resources groups associated

with the current database manager instance.

dbpartitionnum <db-partition-list>

You can use the dbpartitionnum parameter to delete resource

groups that are associated with the database partitions listed in

<db-partition-list>. <db-partition-list> is a comma-separated

list of numbers identifying the database partitions. If the resource

groups associated with the specified database partitions are the

only resource groups in the cluster domain for the current database

manager instance, then db2haicu will delete the cluster domain

after deleting the resource groups.

hadrdb <database-name>

You can use the hadrdb parameter to delete resource groups that

are associated with the DB2 High Availability Disaster Recovery

(HADR) database named <database-name>. If the resource groups

associated with the specified HADR database are the only resource

groups in the cluster domain for the current database manager

instance, then db2haicu will delete the cluster domain after

deleting the resource groups.

If there are no resource groups left in the cluster domain after db2haicu

removes the resource groups, then db2haicu will also remove the cluster

domain.

 Running db2haicu with the -delete parameter causes the current database

manager instance to cease to be configured for high availability. If the

database manager instance is no longer configured for high availability,

then the database manager will not coordinate with the cluster manager if

you perform any database manager administrative operations that require

related cluster configuration changes.

 To reconfigure a database manager instance for high availability, you can

run db2haicu again.

DB2 High Availability Instance Configuration Utility (db2haicu) startup mode:

The first time that you run DB2 High Availability Instance Configuration Utility

(db2haicu) for a given database manager instance, db2haicu operates in startup

mode.

 When you run db2haicu, db2haicu examines your database manager instance and

your system configuration, and searches for an existing cluster domain. A cluster

domain is a model that contains information about your database and cluster

elements such databases, mount points, and failover policies. DB2 High

Chapter 3. Configuring for high availability 81

Availability Instance Configuration Utility (db2haicu) uses the information in the

cluster domain to manage configuration and maintenance of database and cluster

elements.

When you run db2haicu for a given database manager instance, and there are is no

cluster domain created and configured for that instance, db2haicu will immediately

begin the process of creating and configuring a new cluster domain. db2haicu

creates a new cluster domain by prompting you for information such as a name for

the new cluster domain and the hostname of the current machine.

If you create a cluster domain, but do not complete the task of configuring the

cluster domain, then the next time you run db2haicu, db2haicu will resume the

task of configuring the cluster domain.

After you create and configure a cluster domain for a database manager instance,

db2haicu will run in maintenance mode.

DB2 High Availability Instance Configuration Utility (db2haicu) maintenance

mode:

When you run DB2 High Availability Instance Configuration Utility (db2haicu) and

there is already a cluster domain created for the current database manager

instance, db2haicu operates in maintenance mode.

 When db2haicu is running in maintenance mode, db2haicu presents you with a list

of configuration and administration tasks that you can perform.

db2haicu maintenance tasks include adding database or cluster elements such as

databases or machines to the cluster domain logical model, and removing elements

from the cluster domain. db2haicu maintenance tasks also include modifying the

details of cluster domain elements such as the failover policy for the database

manager instance.

When you run db2haicu in maintenance mode, db2haicu presents you with a list

of operations you can perform on the cluster domain:

v Add or remove cluster nodes (machine identified by hostname)

v Add or remove a network interface (network interface card)

v Add or remove database partitions (partitioned database environment only)

v Add or remove a DB2 High Availability Disaster Recovery (HADR) database

v Add or remove a highly available database

v Add or remove a mount point

v Add or remove an IP address

v Add or remove a non-critical path

v Move database partitions and HADR databases for scheduled maintenance

v Change failover policy for the current instance

v Create a new quorum device for the cluster domain

v Destroy the cluster domain

Running DB2 High Availability Instance Configuration Utility (db2haicu) in

interactive mode:

When you invoke DB2 High Availability Instance Configuration Utility (db2haicu)

by running the db2haicu command without specifying an XML input file with the

82 Data Recovery and High Availability Guide and Reference

-f parameter, the utility runs in interactive mode. In interactive mode, db2haicu

displays information and queries you for information in a text-based format.

 Before you begin

There is a set of tasks you must perform before using DB2 High Availability

Instance Configuration Utility (db2haicu). For more information, see: “DB2 High

Availability Instance Configuration Utility (db2haicu) prerequisites” on page 84.

About this task

When you run db2haicu in interactive mode, you will see information and

questions presented to you in text format on your screen. You can enter the

information requested by db2haicu at a prompt at the bottom of your screen.

Procedure

To run db2haicu in interactive mode, call the db2haicu command without the -f

<input-file-name>.

What to do next

DB2 High Availability Instance Configuration Utility (db2haicu) does not have a

separate diagnostic log. You can investigate and diagnose db2haicu errors using

the database manager diagnostic log, db2diag.log, and the db2pd tool. For more

information, see: “Troubleshooting DB2 High Availability Instance Configuration

Utility (db2haicu)” on page 87

Running DB2 High Availability Instance Configuration Utility (db2haicu) with

an XML input file:

You can use the -f <input-file-name> parameter with the db2haicu command to

run DB2 High Availability Instance Configuration Utility (db2haicu) with an XML

input file specifying your configuration details. Running db2haicu with an XML

input file is useful when you must perform configuration tasks multiple times,

such as when you have multiple database partitions to be configured for high

availability.

 Before you begin

There is a set of tasks you must perform before using DB2 High Availability

Instance Configuration Utility (db2haicu). For more information, see: “DB2 High

Availability Instance Configuration Utility (db2haicu) prerequisites” on page 84.

About this task

There is a set of sample XML input files located in the samples subdirectory of the

sqllib directory that you can modify and use with db2haicu to configure your

clustered environment. For more information, see: “Sample XML input files for

DB2 High Availability Instance Configuration Utility (db2haicu)” on page 84

Procedure

1. Create an XML input file.

2. Call db2haicu with the -f <input-file-name>.

Chapter 3. Configuring for high availability 83

To configure your clustered environment for the current database manager

instance using db2haicu and an input file that you create called

db2haicu-input.xml, use the following command:

db2haicu -f db2haicu-input.xml

What to do next

DB2 High Availability Instance Configuration Utility (db2haicu) does not have a

separate diagnostic log. You can investigate and diagnose db2haicu errors using

the database manager diagnostic log, db2diag.log, and the db2pd tool. For more

information, see: “Troubleshooting DB2 High Availability Instance Configuration

Utility (db2haicu)” on page 87

Sample XML input files for DB2 High Availability Instance Configuration Utility

(db2haicu):

There is a set of sample XML input files located in the samples subdirectory of the

sqllib directory that you can modify and use with db2haicu to configure your

clustered environment.

Elements of a cluster domain

A cluster domain is a model that contains information about your database and

cluster elements such databases, mount points, and failover policies. DB2 High

Availability Instance Configuration Utility (db2haicu) uses the information in the

cluster domain to manage configuration and maintenance of database and cluster

elements.

If you add a database or cluster element to the cluster domain, then that element

will be included in any subsequent db2haicu configuration operations, or any

automated cluster administration operations that are performed by the database

manager as part of the DB2 High Availability (HA) Feature. If you remove a

database or cluster element from the cluster domain, then that element will no

longer be included in db2haicu operations or database manager automated cluster

configuration operations. The database manager can only coordinate with the

cluster manager for database or cluster elements that are in the cluster domain.

DB2 High Availability Instance Configuration Utility (db2haicu)

prerequisites

There is a set of tasks you must perform before using DB2 High Availability

Instance Configuration Utility (db2haicu).

General

Before a database manager instance owner can run db2haicu, a user with root

authority must perform the following task:

v Initialize db2haicu. For more information, see: “Initializing DB2 High

Availability Instance Configuration Utility (db2haicu)” on page 85.

Before running db2haicu, a database manager instance owner must perform the

following tasks:

v Synchronize services files on all machines that will be added to the cluster.

v Run the db2profile script for the database manager instance that will be used to

create the cluster domain.

v Start the database manager using the db2start command.

84 Data Recovery and High Availability Guide and Reference

DB2 High Availability Disaster Recovery (HADR)

If you will be using HADR functionality, perform the following tasks:

v Ensure all DB2 High Availability Disaster Recovery (HADR) databases are

started in their respective primary and standby database roles, and that all

HADR primary-standby database pairs are in peer state.

v Configure hadr_peer_window for all HADR databases to a value of at least 120

seconds.

v Disable DB2 fault monitor.

Partitioned database environment

If you have multiple database partitions to configure for high availability, perform

the following steps:

v Configure the DB2_NUM_FAILOVER_NODES registry variable on all machines

that will be added to the cluster domain.

v (Optional) Activate the database before running db2haicu.

Initializing DB2 High Availability Instance Configuration Utility (db2haicu):

A user with root authority must initialize DB2 High Availability Instance

Configuration Utility (db2haicu) on all machines that will be added to the cluster

domain before any database manager instance owner can run db2haicu.

 Procedure

1. Run the preprpnode command.

preprpnode is part of the Reliable Scalable Cluster Technology (RSCT) fileset

for AIX and the RSCT package for Linux. For more information about

preprpnode, see:

v preprpnode Command (AIX)

v RSCT for Linux Technical Reference - preprpnode

For more information about RSCT, see: RSCT Administration Guide - What is

RSCT?

2. Export the instance owner profile.

Results

Once a user with root authority has initialized db2haicu, then a database manager

instance owner can use db2haicu to perform cluster configuration and

administration operations.

Creating a cluster domain using DB2 High Availability Instance

Configuration Utility (db2haicu)

When you run DB2 High Availability Instance Configuration Utility (db2haicu) for

the first time for a database manager instance, db2haicu creates a model of your

cluster, called a cluster domain.

Maintaining a cluster domain using DB2 High Availability

Instance Configuration Utility (db2haicu)

When you modifying the cluster domain model of your clustered environment

using db2haicu, the database manager propagates the related changes to your

database manager instance and cluster configuration.

Chapter 3. Configuring for high availability 85

http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.cmds/doc/aixcmds4/preprpnode.htm
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.doc/rsct_linux141/bl5trl0837.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html

Before you begin

Before you can configure your clustered environment using db2haicu, you must

create and configure a cluster domain. For more information, see “Creating a

cluster domain using DB2 High Availability Instance Configuration Utility

(db2haicu)” on page 85

About this task

db2haicu maintenance tasks include adding database or cluster elements such as

databases or machines to the cluster domain logical model, and removing elements

from the cluster domain. db2haicu maintenance tasks also include modifying the

details of cluster domain elements such as the failover policy for the database

manager instance.

Procedure

1. Run db2haicu

When you run db2haicu in maintenance mode, db2haicu presents you with a

list of operations you can perform on the cluster domain:

v Add or remove cluster nodes (machine identified by hostname)

v Add or remove a network interface (network interface card)

v Add or remove database partitions (partitioned database environment only)

v Add or remove a DB2 High Availability Disaster Recovery (HADR) database

v Add or remove a highly available database

v Add or remove a mount point

v Add or remove an IP address

v Add or remove a non-critical path

v Move database partitions and HADR databases for scheduled maintenance

v Change failover policy for the current instance

v Create a new quorum device for the cluster domain

v Destroy the cluster domain
2. Select a task to perform, and answer subsequent questions that db2haicu

presents.

Results

The database manager uses the information in the cluster domain to coordinate

with your cluster manager. When you configure your database and cluster

elements using db2haicu then those elements are included in integrated and

automated cluster configuration and administration provided by the DB2 High

Availability (HA) Feature. When you use db2haicu to make a database manager

instance configuration change, the database manager makes the required cluster

manager configuration change for you so that you do not have to make a

subsequent call to your cluster manager.

What to do next

DB2 High Availability Instance Configuration Utility (db2haicu) does not have a

separate diagnostic log. You can investigate and diagnose db2haicu errors using

the database manager diagnostic log, db2diag.log, and the db2pd tool. For more

information, see: “Troubleshooting DB2 High Availability Instance Configuration

Utility (db2haicu)” on page 87

86 Data Recovery and High Availability Guide and Reference

Troubleshooting DB2 High Availability Instance Configuration

Utility (db2haicu)

DB2 High Availability Instance Configuration Utility (db2haicu) does not have a

separate diagnostic log. You can investigate and diagnose db2haicu errors using

the database manager diagnostic log, db2diag.log, and the db2pd tool.

DB2 High Availability Instance Configuration Utility (db2haicu)

restrictions

There are some restrictions for using DB2 High Availability Instance Configuration

Utility (db2haicu).

v “Software and hardware”

v “Configuration tasks”

v “Usage notes”

v “Recommendations” on page 88

Software and hardware

Currently, IBM Tivoli System Automation for Multiplatforms (SA MP) Base

Component Version 2.2, fixpack 3 is the only cluster manager that db2haicu

supports. For a list of operating systems and hardware that SA MP Base

Component supports, see: “Supported software and hardware for IBM Tivoli

System Automation for Multiplatforms (SA MP) Base Component” on page 77

Reliable Scalable Cluster Technology (RSCT) Version 2.4.7.3 is also required. For

more information about RSCT, see: RSCT Administration Guide - What is RSCT?

Configuration tasks

You cannot perform the following tasks using db2haicu:

v You cannot configure automatic client reroute using db2haicu.

v When you upgrade from DB2 Database for Linux, UNIX, and Windows Version

9 to IBM Data Server Version 9.5, or from Version 9.5 to a later version, you

cannot use db2haicu to to migrate your cluster configuration. To migrate a

cluster configuration, you must perform the following steps:

1. Delete the existing cluster domain (if one exists)

2. Upgrade the database server

3. Create a new cluster domain using db2haicu

Usage notes

Consider the following db2haicu usage notes when planning your cluster

configuration and administration activities:

v Even though db2haicu performs some administration tasks that normally require

root authority, db2haicu runs with the privileges of the database manager

instance owner. db2haicu initialization, performed by a root user, enables

db2haicu to carry out the required configuration changes despite having only

instance owner privileges.

v When you create a new cluster domain, db2haicu does not verify that the name

you specify for the new cluster domain is valid. For example, db2haicu does not

confirm that the name is a valid length, or contains valid characters, or that is

not the same name as an existing cluster domain.

v db2haicu does not verify or validate information that a user specifies and that is

passed to a cluster manager. Because db2haicu cannot be aware of all cluster

Chapter 3. Configuring for high availability 87

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.rsct.doc/rsct_aix5l53/bl5adm1110.html

manager restrictions with respect to cluster object names, for example, db2haicu

passes text to the cluster manager without validating it for things like valid

characters, or length.

v If an error happens and db2haicu fails while you are creating and configuring a

new cluster domain, you must perform the following steps:

1. Remove the resource groups of the partially created cluster domain by

running db2haicu using the -delete parameter

2. Recreate the new cluster domain by calling db2haicu again.
v When you run db2haicu with the -delete parameter, db2haicu deletes the

resource groups associated with the current database manager instance

immediately, without confirming whether thoseresource groups are locked.

v To remove resource groups associated with the database manager instances of a

DB2 High Availability Disaster Recovery (HADR) primary database, standby

database pair, perform the following steps:

1. Run db2haicu with the -delete parameter against the database manager

instance of the HADR standby database first.

2. Also run db2haicu with the -delete parameter against the database manager

instance of the HADR primary database.
v If a cluster operation you attempt to perform using db2haicu times out,

db2haicu will not return an error to you. When a cluster operation times out,

you will not know that the operation timed out unless you review diagnostic

logs after making the db2haicu call; or unless a subsequent cluster action fails,

and while investigating that subsequent failure, you determine that the original

cluster operation timed out.

v If you attempt to change the failover policy for a given database instance to

active-passive, there is one condition under which that configuration operation

will fail, but for which db2haicu will not return a error to you. If you specify a

machine that is currently offline to be the active machine, db2haicu will not

make that machine the active machine, but db2haicu will not return an error

indicating that the change did not succeed.

Recommendations

The following is a list of recommendations for configuration your cluster, and your

database manager instances when using db2haicu.

v When you add new mount points for the cluster by adding entries to /etc/fstab,

use the noauto option to prevent the mount points from being automatically

mounted on more than one machine in the cluster. For example:

dev/vpatha1 /db/svtpdb/NODE0010 ext3 noauto 0 0

DB2 High Availability Instance Configuration Utility (db2haicu)

cluster domain file sqlha.sys

DB2 High Availability Instance Configuration Utility (db2haicu) stores information

about cluster domains for a given database manager instance in a binary file called

sqlha.sys in the instance home directory.

There is a duplicate of the sqlha.sys cluster domain file in the instance home

directory in case the original cluster domain file is damaged, lost, or unavailable to

db2haicu. Both copies of the cluster domain file are owned by the instance owner.

If db2haicu can access neither copy of the cluster domain file, because they are

damaged or missing, db2haicu sets the database manager instance configuration

parameter cluster_mgr to NULL and disables the automatic cluster configuration

88 Data Recovery and High Availability Guide and Reference

functionality of the DB2 High Availability Feature. To re-enable the DB2 HA

Feature integrated cluster configuration, you must perform the following steps:

1. Remove any existing cluster domains for the current instance by running the

command db2haicu -delete

2. Recreate the cluster domains using db2haicu

DB2 cluster manager API

The DB2 cluster manager API defines a set of functions that enable the database

manager to communicate configuration changes to the cluster manager.

Supported cluster management software

Cluster managing software enables the transfer of DB2 database operations from a

failed primary database on one node of the cluster to a secondary database on

another node in the cluster.

DB2 database supports the following cluster managing software:

v High Availability Cluster Multi-Processing (HACMP), for AIX

For detailed information about HACMP/ES, see the white paper entitled “IBM

DB2 Universal Database™ Enterprise Edition for AIX and HACMP/ES”, which is

available from the “DB2 Database for Linux, UNIX, and Windows Support” web

site (http://www.ibm.com/software/data/pubs/papers/).

v Tivoli System Automation for Linux.

For detailed information about Tivoli System Automation, see the whitepaper

entitled “Highly Available DB2 Universal Database using Tivoli System

Automation for Linux”, which is available from the “DB2 Database for Linux,

UNIX, and Windows and DB2 Connect Online Support” web site

(http://www.ibm.com/software/data/pubs/papers/).

v Microsoft® Cluster Server, for Windows operating systems

For information about Microsoft Cluster Server see the following white paper

which is available from the “ DB2 Database for Linux, UNIX, and Windows

Support” web site (http://www.ibm.com/software/data/pubs/papers/):

“Implementing IBM DB2 Universal Database V8.1 Enterprise Server Edition with

Microsoft Cluster Server”.

v Sun Cluster, or VERITAS Cluster Server, for the Solaris operating system.

For information about Sun Cluster, see the white paper entitled “DB2 Universal

Database and High Availability on Sun Cluster 3.X”, which is available from the

“DB2 Database for Linux, UNIX, and Windows Support” web site

(http://www.ibm.com/software/data/pubs/papers/). For information about

VERITAS Cluster Server, see the white paper entitled “DB2 UDB and High

Availability with VERITAS Cluster Server”, which is available from the “IBM

Support and downloads” Web site (http://www.ibm.com/support/
docview.wss?uid=swg21045033).

v Multi-Computer/ServiceGuard, for Hewlett-Packard

For detailed information about HP MC/ServiceGuard, see the white paper

which discusses IBM DB2 ESE V8.1 with HP MC/ServiceGuard High

Availability Software, which is available from the “IBM DB2 Information

Management Products for HP” web site (http://www.ibm.com/software/data/
hp/).

High Availability Cluster Multi-Processing for AIX

High Availability Cluster Multi-Processing (HACMP) for AIX is cluster managing

software. The nodes in HACMP clusters exchange messages called heartbeats, or

Chapter 3. Configuring for high availability 89

http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/support/docview.wss?uid=swg21045033
http://www.ibm.com/support/docview.wss?uid=swg21045033
http://www.ibm.com/software/data/hp/
http://www.ibm.com/software/data/hp/

keepalive packets. If a node stops sending these messages, HACMP invokes

failover across the other nodes in the cluster; and when the node that failed is

repaired, HACMP re-integrates it back into the cluster.

There are two types of events: standard events that are anticipated within the

operations of HACMP, and user-defined events that are associated with the

monitoring of parameters in hardware and software components.

One of the standard events is the node_down event. This is when a node in the

cluster has failed, and HACMP has initiated failover across the other nodes in the

cluster. When planning what should be done as part of the recovery process,

HACMP allows two failover options: hot (or idle) standby, and mutual takeover.

Note: When using HACMP, ensure that DB2 instances are not started at boot time

by using the db2iauto utility as follows:

 db2iauto -off InstName

where InstName is the login name of the instance.

Cluster Configuration

In a hot standby configuration, the AIX processor node that is the takeover node is

not running any other workload. In a mutual takeover configuration, the AIX

processor node that is the takeover node is running other workloads.

Generally, in a partitioned database environment, DB2 database runs in mutual

takeover mode with database partitions on each node. One exception is a scenario

in which the catalog partition is part of a hot standby configuration.

One planning consideration is how to manage big clusters. It is easier to manage a

small cluster than a big one; however, it is also easier to manage one big cluster

than many smaller ones. When planning, consider how your applications will be

used in your cluster environment. If there is a single, large, homogeneous

application running, for example, on 16 nodes, it is probably easier to manage the

configuration as a single cluster rather than as eight two-node clusters. If the same

16 nodes contain many different applications with different networks, disks, and

node relationships, it is probably better to group the nodes into smaller clusters.

Keep in mind that nodes integrate into an HACMP cluster one at a time; it will be

faster to start a configuration of multiple clusters rather than one large cluster.

HACMP supports both single and multiple clusters, as long as a node and its

backup are in the same cluster.

HACMP failover recovery allows pre-defined (also known as cascading) assignment

of a resource group to a physical node. The failover recovery procedure also allows

floating (or rotating) assignment of a resource group to a physical node. IP

addresses, and external disk volume groups, or file systems, or NFS file systems,

and application servers within each resource group specify either an application or

an application component, which can be manipulated by HACMP between

physical nodes by failover and reintegration. Failover and reintegration behavior is

specified by the type of resource group created, and by the number of nodes

placed in the resource group.

For example, consider a DB2 database partition (logical node). If its log and table

space containers were placed on external disks, and other nodes were linked to

those disks, it would be possible for those other nodes to access these disks and to

restart the database partition (on a takeover node). It is this type of operation that

90 Data Recovery and High Availability Guide and Reference

is automated by HACMP. HACMP can also be used to recover NFS file systems

used by DB2 instance main user directories.

Read the HACMP documentation thoroughly as part of your planning for recovery

with DB2 database in a partitioned database environment. You should read the

Concepts, Planning, Installation, and Administration guides, then build the

recovery architecture for your environment. For each subsystem that you have

identified for recovery, based on known points of failure, identify the HACMP

clusters that you need, as well as the recovery nodes (either hot standby or mutual

takeover).

It is strongly recommended that both disks and adapters be mirrored in your

external disk configuration. For DB2 physical nodes that are configured for

HACMP, care is required to ensure that nodes on the volume group can vary from

the shared external disks. In a mutual takeover configuration, this arrangement

requires some additional planning, so that the paired nodes can access each other’s

volume groups without conflicts. In a partitioned database environment, this

means that all container names must be unique across all databases.

One way to achieve uniqueness is to include the database partition number as part

of the name. You can specify a node expression for container string syntax when

creating either SMS or DMS containers. When you specify the expression, the node

number can be part of the container name or, if you specify additional arguments,

the results of those arguments can be part of the container name. Use the argument

″ $N″ (blank]$N) to indicate the node expression. The argument must occur at the

end of the container string, and can only be used in one of the following forms:

 Table 2. Arguments for Creating Containers. The node number is assumed to be five.

Syntax Example Value

blank]$N ″ $N″ 5

blank]$N+ number] ″ $N+1011″ 1016

blank]$N% number] ″ $N%3″ 2

blank]$N+ number]% number] ″ $N+12%13″ 4

blank]$N% number]+ number] ″ $N%3+20″ 22

Note:

1. % is modulus.

2. In all cases, the operators are evaluated from left to right.

Following are some examples of how to create containers using this special

argument:

v Creating containers for use on a two-node system.

 CREATE TABLESPACE TS1 MANAGED BY DATABASE USING

 (device ’/dev/rcont $N’ 20000)

The following containers would be used:

 /dev/rcont0 - on Node 0

 /dev/rcont1 - on Node 1

v Creating containers for use on a four-node system.

 CREATE TABLESPACE TS2 MANAGED BY DATABASE USING

 (file ’/DB2/containers/TS2/container $N+100’ 10000)

The following containers would be used:

Chapter 3. Configuring for high availability 91

/DB2/containers/TS2/container100 - on Node 0

 /DB2/containers/TS2/container101 - on Node 1

 /DB2/containers/TS2/container102 - on Node 2

 /DB2/containers/TS2/container103 - on Node 3

v Creating containers for use on a two-node system.

 CREATE TABLESPACE TS3 MANAGED BY SYSTEM USING

 (’/TS3/cont $N%2, ’/TS3/cont $N%2+2’)

The following containers would be used:

 /TS3/cont0 - on Node 0

 /TS3/cont2 - on Node 0

 /TS3/cont1 - on Node 1

 /TS3/cont3 - on Node 1

Configuring DB2 Database Partitions for HACMP

Once configured, each database partition in an instance is started by HACMP, one

physical node at a time. Multiple clusters are recommended for starting parallel

DB2 configurations that are larger than four nodes. Note that in a 64-node parallel

DB2 configuration, it is faster to start 32 two-node HACMP clusters in parallel,

than four 16-node clusters.

A script file is packaged with DB2 Enterprise Server Edition to assist in configuring

for HACMP failover or recovery in either hot standby or mutual takeover nodes.

The script file is called rc.db2pe.ee for a single node and rc.db2pe.eee for

multiple nodes. They are located in the sqllib/samples/hacmp/es directory. Copy

the appropriate file to /usr/bin on each system in the HACMP cluster and rename

it to rc.db2pe.

In addition, DB2 buffer pool sizes can be customized during failover in mutual

takeover configurations from within rc.db2pe. (Buffer pool sizes can be configured

to ensure proper resource allocation when two database partitions run on one

physical node.)

HACMP Event Monitoring and User-defined Events

Initiating a failover operation if a process dies on a given node, is an example of a

user-defined event. Events must be configured manually as a user defined event as

part of the cluster setup.

For detailed information on the implementation and design of highly available

IBM DB2 database environments see the ″DB2 Database for Linux, UNIX,and

Windows Support″ web site (http://www.ibm.com/software/data/pubs/papers/).

IBM Tivoli System Automation for Multiplatforms (Linux and AIX)

IBM Tivoli System Automation for Multiplatforms (Tivoli SAM) is cluster

managing software that facilitates automatic switching of users, applications, and

data from one database system to another in a cluster. Tivoli SAM automates

control of IT resources such as processes, file systems, and IP addresses.

Tivoli SAM provides a framework to automatically manage the availability of what

are known as resources. Examples of resources are:

v Any piece of software for which start, monitor, and stop scripts can be written to

control

92 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/data/pubs/papers/

v Any network interface card (NIC) to which Tivoli SAM has been granted access.

That is, Tivoli SAM will manage the availability of any IP address that a user

wants to use by floating that IP address amongst NICs that it has been granted

access to.

For example, both a DB2 instance and the High Availability Disaster Recovery

feature, have start, stop, and monitor commands. Therefore, Tivoli SAM scripts can

be written to automatically manage these resources. Resources that are closely

related (for example, ones that collectively run on the same node at the same time)

are called a resource group.

DB2 resources

In a single-partition DB2 environment, a single DB2 instance is running on a

server. This DB2 instance has local access to data (its own executable image as well

as databases owned by the instance). If this DB2 instance is made accessible to

remote clients, an unused IP address must be assigned to this DB2 instance.

The DB2 instance, the local data, and the IP address are all considered resources,

which must be automated by Tivoli SAM. Since these resources are closely related

(for example, they collectively run on the same node at the same time), they are

called a resource group.

The entire resource group is collocated on one node in the cluster. In the case of a

failover, the entire resource group is started on another node.

The following dependencies exist between the resources in the group:

v The DB2 instance must be started after the local disk

v The DB2 instance must be stopped before the local disk

v The HA IP address must be collocated with the instance

Disk storage

The DB2 database can utilize these resources for local data storage:

v Raw disk (for example, /dev/sda1)

v Logical volume managed by Logical Volume Manager (LVM)

v File system (for example, ext3, jfs)

DB2 data can be stored either entirely on one or more raw disks, entirely on logical

volumes, entirely on file systems, or on a mixture of all three. Any executables

need to reside on a file system of some sort.

DB2 database requirements for the HA IP address

The DB2 database has no special requirements for the IP address. It is not

necessary to define a highly available IP address in order for the instance to be

considered highly available. However, it is important to remember that the IP

address that is protected (if any) is the client’s access point to the data, and as

such, this address must be well known by all clients. In practice, it is

recommended that this IP address be the one that is used by the clients in their

CATALOG TCPIP NODE commands.

Chapter 3. Configuring for high availability 93

Tivoli SAM resource groups

IBM Tivoli System Automation for Multiplatforms is a product that provides high

availability by automating resources such as processes, applications, IP addresses,

and others in Linux-based clusters. To automate an IT resource (such as an IP

address), the resource must be defined to Tivoli SAM. Furthermore, these resources

must all be contained in at least one resource group. If these resources are always

required to be hosted on the same machine, they should all be placed in the same

resource group.

Every application needs to be defined as a resource in order to be managed and

automated with Tivoli SAM. Application resources are usually defined in the

generic resource class IBM.Application. In this resource class, there are several

attributes that define a resource, but at least three of them are application-specific:

v StartCommand

v StopCommand

v MonitorCommand

These commands may be scripts or binary executables.

Setting up Tivoli SAM with your DB2 environment

For detailed configuration information to help you set up Tivoli SAM to work with

your DB2 environment, search for ″Tivoli System Automation″ on the DB2

Database for Linux, UNIX, and Windows and DB2 Connect Online Support web

site (http://www.ibm.com/software/data/pubs/papers/).

Microsoft Cluster Server support (Windows)

Microsoft Cluster Server (MSCS) supports clusters of up to four servers on

Windows operating systems. It automatically detects and responds to server or

application failure, and can balance server workloads.

Introduction

Microsoft Cluster Server (MSCS) is a feature of Windows 2000 Server and

Windows Server 2003 operating systems. It is the software that supports the

connection of two servers (up to four servers in DataCenter Server) into a cluster

for high availability and easier management of data and applications. MSCS can

also automatically detect and recover from server or application failures. It can be

used to move server workloads to balance machine utilization and to provide for

planned maintenance without downtime.

The following DB2 products have support for MSCS:

v DB2 Workgroup Server Edition

v DB2 Enterprise Server Edition (DB2 ESE)

v DB2 Connect Enterprise Edition (DB2 CEE)

DB2 MSCS Components

A cluster is a configuration of two or more nodes, each of which is an independent

computer system. The cluster appears to network clients as a single server.

94 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/data/pubs/papers/

The nodes in an MSCS cluster are connected using one or more shared storage

buses and one or more physically independent networks. The network that

connects only the servers but does not connect the clients to the cluster is referred

to as a private network. The network that supports client connections is referred to

as the public network. There are one or more local disks on each node. Each shared

storage bus attaches to one or more disks. Each disk on the shared bus is owned

by only one node of the cluster at a time. The DB2 software resides on the local

disk. DB2 database files (for example tables, indexes, log files) reside on the shared

disks. Because MSCS does not support the use of raw partitions in a cluster, it is

not possible to configure DB2 to use raw devices in an MSCS environment.

The DB2 Resource

In an MSCS environment, a resource is an entity that is managed by the clustering

software. For example, a disk, an IP address, or a generic service can be managed

as a resource. DB2 integrates with MSCS by creating its own resource type called

DB2 Server. Each DB2 Server resource manages a DB2 instance, and when running

in a partitioned database environment, each DB2 Server resource manages a

database partition. The name of the DB2 Server resource is the instance name,

although in the case of a partitioned database environment, the name of the DB2

Server resource consists of both the instance name and the database partition (or

node) number.

Pre-online and Post-online Script

You can run scripts both before and after a DB2 resource is brought online. These

scripts are referred to as pre-online and post-online scripts respectively. Pre-online

and post-online scripts are .BAT files that can run DB2 and system commands.

In a situation when multiple instances of DB2 might be running on the same

machine, you can use the pre-online and post-online scripts to adjust the

configuration so that both instances can be started successfully. In the event of a

failover, you can use the post-online script to perform manual database recovery.

Post-online script can also be used to start any applications or services that depend

on DB2.

Machine A Machine B

C: C:

E:

F:

SQLLIB SQLLIB

(Each machine has DB2 code
installed on a local disk)

Quorum disk
used by MSCS

DB2 Group 0

DB2 Group 1

Cluster disks in a disk tower

D:

Figure 3. Example MSCS Configuration

Chapter 3. Configuring for high availability 95

The DB2 Group

Related or dependent resources are organized into resource groups. All resources

in a group move between cluster nodes as a unit. For example, in a typical DB2

single partition cluster environment, there will be a DB2 group that contains the

following resources:

1. DB2 resource. The DB2 resource manages the DB2 instance (or node).

2. IP Address resource. The IP Address resource allows client applications to

connect to the DB2 server.

3. Network Name resource. The Network Name resource allows client

applications to connect to the DB2 server by using a name rather than using an

IP address. The Network Name resource has a dependency on the IP Address

resource. The Network Name resource is optional. (Configuring a Network

Name resource can affect the failover performance.)

4. One or more Physical Disk resources. Each Physical Disk resource manages a

shared disk in the cluster.

Note: The DB2 resource is configured to depend on all other resources in the same

group so the DB2 server can only be started after all other resources are online.

Failover Configurations

Two types of configuration are available:

v Hot standby

v Mutual takeover

In a partitioned database environment, the clusters do not all have to have the

same type of configuration. You can have some clusters that are set up to use hot

standby, and others that are set up for mutual takeover. For example, if your DB2

instance consists of five workstations, you can have two machines set up to use a

mutual takeover configuration, two to use a hot standby configuration, and one

machine not configured for failover support.

Hot Standby Configuration

In a hot standby configuration, one machine in the MSCS cluster provides

dedicated failover support, and the other machine participates in the database

system. If the machine participating in the database system fails, the database

server on it will be started on the failover machine. If, in a partitioned database

environment, you are running multiple logical nodes on a machine and it fails, the

logical nodes will be started on the failover machine. Figure 4 on page 97 shows an

example of a hot standby configuration.

96 Data Recovery and High Availability Guide and Reference

Mutual Takeover Configuration

In a mutual takeover configuration, both workstations participate in the database

system (that is, each machine has at least one database server running on it). If one

of the workstations in the MSCS cluster fails, the database server on the failing

machine will be started to run on the other machine. In a mutual takeover

configuration, a database server on one machine can fail independently of the

database server on another machine. Any database server can be active on any

machine at any given point in time. Figure 5 shows an example of a mutual

takeover configuration.

For detailed information on the implementation and design of highly available

IBM DB2 database environments on the Windows Operating System see the

following white papers which are available from the ″DB2 Database for Linux,

UNIX, and Windows Support″ web site (http://www.ibm.com/software/data/
pubs/papers/).:

v ″Implementing IBM DB2 Universal Database Enterprise - Extended Edition with

Microsoft Cluster Server″

v ″Implementing IBM DB2 Universal Database Enterprise Edition with Microsoft

Cluster Server″

Workstation BWorkstation A

Cluster

Instance A Instance A

Figure 4. Hot Standby Configuration

Workstation BWorkstation A

Cluster

Instance A

Instance B

Instance A

Instance B

Figure 5. Mutual Takeover Configuration

Chapter 3. Configuring for high availability 97

http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/

v ″DB2 Universal Database for Windows: High Availability Support Using

Microsoft Cluster Server - Overview″

Solaris Operating System cluster support

DB2 supports two cluster managers available for the Solaris Operating System: Sun

Cluster; and Veritas Cluster Server (VCS).

For information about Sun Cluster, see the white paper entitled “DB2 Universal

Database and High Availability on Sun Cluster 3.X”, which is available from the

“DB2 Database for Linux, UNIX, and Windows Support” web site

(http://www.ibm.com/software/data/pubs/papers).

Note: When using Sun Cluster 3.0 or Veritas Cluster Server, ensure that DB2

instances are not started at boot time by using the db2iauto utility as follows:

 db2iauto -off InstName

where InstName is the login name of the instance.

High Availability

The computer systems that host data services contain many distinct components,

and each component has a ″mean time before failure″ (MTBF) associated with it.

The MTBF is the average time that a component will remain usable. The MTBF for

a quality hard drive is in the order of one million hours (approximately 114 years).

While this seems like a long time, one out of 200 disks is likely to fail within a

6-month period.

Although there are a number of methods to increase availability for a data service,

the most common is an HA cluster. A cluster, when used for high availability,

consists of two or more machines, a set of private network interfaces, one or more

public network interfaces, and some shared disks. This special configuration allows

a data service to be moved from one machine to another. By moving the data

service to another machine in the cluster, it should be able to continue providing

access to its data. Moving a data service from one machine to another is called a

failover, as illustrated in Figure 6 on page 99.

98 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/data/pubs/papers

The private network interfaces are used to send heartbeat messages, as well as

control messages, among the machines in the cluster. The public network interfaces

are used to communicate directly with clients of the HA cluster. The disks in an

HA cluster are connected to two or more machines in the cluster, so that if one

machine fails, another machine has access to them.

A data service running on an HA cluster has one or more logical public network

interfaces and a set of disks associated with it. The clients of an HA data service

connect via TCP/IP to the logical network interfaces of the data service only. If a

failover occurs, the data service, along with its logical network interfaces and set of

disks, are moved to another machine.

One of the benefits of an HA cluster is that a data service can recover without the

aid of support staff, and it can do so at any time. Another benefit is redundancy.

All of the parts in the cluster should be redundant, including the machines

themselves. The cluster should be able to survive any single point of failure.

Even though highly available data services can be very different in nature, they

have some common requirements. Clients of a highly available data service expect

the network address and host name of the data service to remain the same, and

expect to be able to make requests in the same way, regardless of which machine

the data service is on.

Consider a web browser that is accessing a highly available web server. The

request is issued with a URL (Uniform Resource Locator), which contains both a

host name, and the path to a file on the web server. The browser expects both the

host name and the path to remain the same after failover of the web server. If the

browser is downloading a file from the web server, and the server is failed over,

the browser will need to reissue the request.

Data 3Data 0 Switch

Data 1

Data 2

Machine A

Machine C

Machine B

Machine D

Figure 6. Failover. When Machine B fails its data service is moved to another machine in the cluster so that the data

can still be accessed.

Chapter 3. Configuring for high availability 99

Availability of a data service is measured by the amount of time the data service is

available to its users. The most common unit of measurement for availability is the

percentage of ″up time″; this is often referred to as the number of ″nines″:

 99.99% => service is down for (at most) 52.6 minutes / yr

 99.999% => service is down for (at most) 5.26 minutes / yr

 99.9999% => service is down for (at most) 31.5 seconds / yr

When designing and testing an HA cluster:

1. Ensure that the administrator of the cluster is familiar with the system and

what should happen when a failover occurs.

2. Ensure that each part of the cluster is truly redundant and can be replaced

quickly if it fails.

3. Force a test system to fail in a controlled environment, and make sure that it

fails over correctly each time.

4. Keep track of the reasons for each failover. Although this should not happen

often, it is important to address any issues that make the cluster unstable. For

example, if one piece of the cluster caused a failover five times in one month,

find out why and fix it.

5. Ensure that the support staff for the cluster is notified when a failover occurs.

6. Do not overload the cluster. Ensure that the remaining systems can still handle

the workload at an acceptable level after a failover.

7. Check failure-prone components (such as disks) often, so that they can be

replaced before problems occur.

Fault Tolerance

Another way to increase the availability of a data service is fault tolerance. A fault

tolerant machine has all of its redundancy built in, and should be able to withstand

a single failure of any part, including CPU and memory. Fault tolerant machines

are most often used in niche markets, and are usually expensive to implement. An

HA cluster with machines in different geographical locations has the added

advantage of being able to recover from a disaster affecting only a subset of those

locations.

An HA cluster is the most common solution to increase availability because it is

scalable, easy to use, and relatively inexpensive to implement.

Sun Cluster 3.0 (and higher) support:

If you plan to run your DB2 database solution on a Solaris Operating System

cluster, you can use Sun Cluster 3.0 to manager the cluster. A high availability

agent acts as a mediator between DB2 database and Sun Cluster 3.0.

 The statements made in this topic about the support for Sun Cluster 3.0 also apply

to versions of Sun Cluster higher than 3.0.

100 Data Recovery and High Availability Guide and Reference

Failover

Sun Cluster 3.0 provides high availability by enabling application failover. Each

node is periodically monitored and the cluster software automatically relocates a

cluster-aware application from a failed primary node to a designated secondary

node. When a failover occurs, clients might experience a brief interruption in

service and might have to reconnect to the server. However, they will not be aware

of the physical server from which they are accessing the application and the data.

By allowing other nodes in a cluster to automatically host workloads when the

primary node fails, Sun Cluster 3.0 can significantly reduce downtime and increase

productivity.

Multihost Disks

Sun Cluster 3.0 requires multihost disk storage. This means that disks can be

connected to more than one node at a time. In the Sun Cluster 3.0 environment,

multihost storage allows disk devices to become highly available. Disk devices that

reside on multihost storage can tolerate single node failures since there is still a

physical path to the data through the alternate server node. Multihost disks can be

accessed globally through a primary node. If client requests are accessing the data

through one node and that node fails, the requests are switched over to another

node that has a direct connection to the same disks. A volume manager provides

for mirrored or RAID 5 configurations for data redundancy of the multihost disks.

Currently, Sun Cluster 3.0 supports Solstice DiskSuite and VERITAS Volume

Manager as volume managers. Combining multihost disks with disk mirroring and

striping protects against both node failure and individual disk failure.

Global Devices

Global devices are used to provide cluster-wide, highly available access to any

device in a cluster, from any node, regardless of the device’s physical location. All

disks are included in the global namespace with an assigned device ID (DID) and

are configured as global devices. Therefore, the disks themselves are visible from

all cluster nodes.

File systems/Global File Systems

A cluster or global file system is a proxy between the kernel (on one node) and the

underlying file system volume manager (on a node that has a physical connection

to one or more disks). Cluster file systems are dependent on global devices with

physical connections to one or more nodes. They are independent of the

underlying file system and volume manager. Currently, cluster file systems can be

DB2 HA Agent SC3.0

Figure 7. DB2 database, Sun Cluster 3.0, and High Availability. The relationship between DB2 database, Sun Cluster

3.0 and the high availability agent.

Chapter 3. Configuring for high availability 101

built on UFS using either Solstice DiskSuite or VERITAS Volume Manager. The

data only becomes available to all nodes if the file systems on the disks are

mounted globally as a cluster file system.

Device Group

All multihost disks must be controlled by the Sun Cluster framework. Disk groups,

managed by either Solstice DiskSuite or VERITAS Volume Manager, are first

created on the multihost disk. Then, they are registered as Sun Cluster disk device

groups. A disk device group is a type of global device. Multihost device groups are

highly available. Disks are accessible through an alternate path if the node

currently mastering the device group fails. The failure of the node mastering the

device group does not affect access to the device group except for the time

required to perform the recovery and consistency checks. During this time, all

requests are blocked (transparently to the application) until the system makes the

device group available.

Resource Group Manager (RGM)

The RGM, provides the mechanism for high availability and runs as a daemon on

each cluster node. It automatically starts and stops resources on selected nodes

according to pre-configured policies. The RGM allows a resource to be highly

available in the event of a node failure or to reboot by stopping the resource on the

affected node and starting it on another. The RGM also automatically starts and

stops resource-specific monitors that can detect resource failures and relocate

failing resources onto another node.

Data Services

The term data service is used to describe a third-party application that has been

configured to run on a cluster rather than on a single server. A data service

includes the application software and Sun Cluster 3.0 software that starts, stops

and monitors the application. Sun Cluster 3.0 supplies data service methods that

are used to control and monitor the application within the cluster. These methods

run under the control of the Resource Group Manager (RGM), which uses them to

start, stop, and monitor the application on the cluster nodes. These methods, along

with the cluster framework software and multihost disks, enable applications to

become highly available data services. As highly available data services, they can

prevent significant application interruptions after any single failure within the

cluster, regardless of whether the failure is on a node, on an interface component

or in the application itself. The RGM also manages resources in the cluster,

including network resources (logical host names and shared addresses)and

application instances.

Resource Type, Resource and Resource Group

A resource type is made up of the following:

1. A software application to be run on the cluster.

2. Control programs used as callback methods by the RGM to manage the

application as a cluster resource.

3. A set of properties that form part of the static configuration of a cluster.

The RGM uses resource type properties to manage resources of a particular type.

A resource inherits the properties and values of its resource type. It is an instance

of the underlying application running on the cluster. Each instance requires a

102 Data Recovery and High Availability Guide and Reference

unique name within the cluster. Each resource must be configured in a resource

group. The RGM brings all resources in a group online and offline together on the

same node. When the RGM brings a resource group online or offline, it invokes

callback methods on the individual resources in the group.

The nodes on which a resource group is currently online are called its primary

nodes, or its primaries. A resource group is mastered by each of its primaries. Each

resource group has an associated Nodelist property, set by the cluster

administrator, to identify all potential primaries or masters of the resource group.

For detailed information on the implementation and design of highly available

IBM DB2 database environments on the Sun Cluster 3.0 platform see the white

paper entitled ″DB2 and High Availability on Sun Cluster 3.0″ which is available

from the ″DB2 Database for Linux, UNIX, and Windows Support″ web site

(http://www.ibm.com/software/data/pubs/papers/).

VERITAS Cluster Server support:

If you plan to run your DB2 database solution on a Solaris Operating System

cluster, you can use VERITAS Cluster Server to manager the cluster. VERITAS

Cluster Server can manage a wide range of applications in heterogeneous

environments; and it supports up to 32 node clusters in both storage area network

(SAN) and traditional client/server environments.

 Hardware Requirements

Following is a list of hardware currently supported by VERITAS Cluster Server:

v For server nodes:

– Any SPARC/Solaris server from Sun Microsystems running Solaris 2.6 or later

with a minimum of 128MB RAM.
v For disk storage:

– EMC Symmetrix, IBM Enterprise Storage Server®, HDS 7700 and 9xxx, Sun

T3, Sun A5000, Sun A1000, Sun D1000 and any other disk storage supported

by VCS 2.0 or later; your VERITAS representative can confirm which disk

subsystems are supported or you can refer to VCS documentation.

– Typical environments will require mirrored private disks (in each cluster

node) for the DB2 binaries and shared disks between nodes for the DB2 data.
v For network interconnects:

– For the public network connections, any network connection supporting

IP-based addressing.

– For the heartbeat connections (internal to the cluster), redundant heartbeat

connections are required; this requirement can be met through the use of two

additional Ethernet controllers per server or one additional Ethernet controller

per server and the use of one shared GABdisk per cluster

Software Requirements

The following VERITAS software components are qualified configurations:

v VERITAS Volume Manager 3.2 or later, VERITAS File System 3.4 or later,

VERITAS Cluster Server 2.0 or later.

v DB Edition for DB2 for Solaris 1.0 or later.

Chapter 3. Configuring for high availability 103

http://www.ibm.com/software/data/pubs/papers/

While VERITAS Cluster Server does not require a volume manager, the use of

VERITAS Volume Manager is strongly recommended for ease of installation,

configuration and management.

Failover

VERITAS Cluster Server is an availability clustering solution that manages the

availability of application services, such as DB2 database, by enabling application

failover. The state of each individual cluster node and its associated software

services are regularly monitored. When a failure occurs that disrupts the

application service (in this case, the DB2 database service), either VERITAS Cluster

Server or the VCS HA-DB2 Agent, or both will detect the failure and automatically

take steps to restore the service. The steps take to restore the service can include

restarting the DB2 database system on the same node or moving DB2 database

system to another node in the cluster and restarting it on that node. If an

application needs to be migrated to a new node, VERITAS Cluster Server moves

everything associated with the application (that is, network IP addresses,

ownership of underlying storage) to the new node so that users will not be aware

that the service is actually running on another node. They will still access the

service using the same IP addresses, but those addresses will now point to a

different cluster node.

When a failover occurs with VERITAS Cluster Server, users might or might not see

a disruption in service. This will be based on the type of connection (stateful or

stateless) that the client has with the application service. In application

environments with stateful connections (like DB2 database), users might see a brief

interruption in service and might need to reconnect after the failover has

completed. In application environments with stateless connections (like NFS), users

might see a brief delay in service but generally will not see a disruption and will

not need to log back on.

By supporting an application as a service that can be automatically migrated

between cluster nodes, VERITAS Cluster Server can not only reduce unplanned

downtime, but can also shorten the duration of outages associated with planned

downtime (for maintenance and upgrades). Failovers can also be initiated

manually. If a hardware or operating system upgrade must be performed on a

particular node, the DB2 database system can be migrated to another node in the

cluster, the upgrade can be performed, and then the DB2 database system can be

migrated back to the original node.

Applications recommended for use in these types of clustering environments

should be crash tolerant. A crash tolerant application can recover from an

unexpected crash while still maintaining the integrity of committed data. Crash

tolerant applications are sometimes referred to as cluster friendly applications. DB2

database system is a crash tolerant application.

For information on how to decrease the amount of time it takes to perform a

failover using a VERITAS CFS, CVM, and VCS solution, see the white paper

entitled “DB2 UDB Version 8 and VERITAS Database Edition: Accelerating Failover

Times in DB2 UDB Database Environments”, which is available from the “DB2

Database for Linux, UNIX, and Windows Support” web site (http://
www.ibm.com/software/data/pubs/papers/).

Shared Storage

104 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/data/pubs/papers/
http://www.ibm.com/software/data/pubs/papers/

When used with the VCS HA-DB2 Agent, Veritas Cluster Server requires shared

storage. Shared storage is storage that has a physical connection to multiple nodes

in the cluster. Disk devices resident on shared storage can tolerate node failures

since a physical path to the disk devices still exists through one or more alternate

cluster nodes.

Through the control of VERITAS Cluster Server, cluster nodes can access shared

storage through a logical construct called ″disk groups″. Disk groups represent a

collection of logically defined storage devices whose ownership can be atomically

migrated between nodes in a cluster. A disk group can only be imported to a

single node at any given time. For example, if Disk Group A is imported to Node 1

and Node 1 fails, Disk Group A can be exported from the failed node and

imported to a new node in the cluster. VERITAS Cluster Server can simultaneously

control multiple disk groups within a single cluster.

In addition to allowing disk group definition, a volume manager can provide for

redundant data configurations, using mirroring or RAID 5, on shared storage.

VERITAS Cluster Server supports VERITAS Volume Manager and Solstice

DiskSuite as logical volume managers. Combining shared storage with disk

mirroring and striping can protect against both node failure and individual disk or

controller failure.

VERITAS Cluster Server Global Atomic Broadcast(GAB) and Low Latency

Transport (LLT)

An internode communication mechanism is required in cluster configurations so

that nodes can exchange information concerning hardware and software status,

keep track of cluster membership, and keep this information synchronized across

all cluster nodes. The Global Atomic Broadcast (GAB) facility, running across a low

latency transport (LLT), provides the high speed, low latency mechanism used by

VERITAS Cluster Server to do this. GAB is loaded as a kernel module on each

cluster node and provides an atomic broadcast mechanism that ensures that all

nodes get status update information at the same time.

By leveraging kernel-to-kernel communication capabilities, LLT provides high

speed, low latency transport for all information that needs to be exchanged and

synchronized between cluster nodes. GAB runs on top of LLT. VERITAS Cluster

Server does not use IP as a heartbeat mechanism, but offers two other more

reliable options. GAB with LLT, can be configured to act as a heartbeat mechanism,

or a GABdisk can be configured as a disk-based heartbeat. The heartbeat must run

over redundant connections. These connections can either be two private Ethernet

connections between cluster nodes, or one private Ethernet connection and one

GABdisk connection. The use of two GABdisks is not a supported configuration

since the exchange of cluster status between nodes requires a private Ethernet

connection.

For more information about GAB or LLT, or how to configure them in VERITAS

Cluster Server configurations, consult the VERITAS Cluster Server 2.0 User’s Guide

for Solaris.

Bundled and Enterprise Agents

An agent is a program that is designed to manage the availability of a particular

resource or application. When an agent is started, it obtains the necessary

configuration information from VCS and then periodically monitors the resource or

application and updates VCS with the status. In general, agents are used to bring

Chapter 3. Configuring for high availability 105

resources online, take resources offline, or monitor resources and provide four

types of services: start, stop, monitor and clean. Start and stop are used to bring

resources online or offline, monitor is used to test a particular resource or

application for its status, and clean is used in the recovery process.

A variety of bundled agents are included as part of VERITAS Cluster Server and

are installed when VERITAS Cluster Server is installed. The bundled agents are

VCS processes that manage predefined resource types commonly found in cluster

configurations (that is, IP, mount, process and share), and they help to simplify

cluster installation and configuration considerably. There are over 20 bundled

agents with VERITAS Cluster Server.

Enterprise agents tend to focus on specific applications such as the DB2 database

application. The VCS HA-DB2 Agent can be considered an Enterprise Agent, and it

interfaces with VCS through the VCS Agent framework.

VCS Resources, Resource Types and Resource Groups

A resource type is an object definition used to define resources within a VCS

cluster that will be monitored. A resource type includes the resource type name

and a set of properties associated with that resource that are salient from a high

availability point of view. A resource inherits the properties and values of its

resource type, and resource names must be unique on a cluster-wide basis.

There are two types of resources: persistent and standard (non-persistent).

Persistent resources are resources such as network interface controllers (NICs) that

are monitored but are not brought online or taken offline by VCS. Standard

resources are those whose online and offline status is controlled by VCS.

The lowest level object that is monitored is a resource, and there are various

resource types (that is, share, mount). Each resource must be configured into a

resource group, and VCS will bring all resources in a particular resource group

online and offline together. To bring a resource group online or offline, VCS will

invoke the start or stop methods for each of the resources in the group. There are

two types of resource groups: failover and parallel. A highly available DB2

database configuration, regardless of whether it is partitioned database

environment or not, will use failover resource groups.

A ″primary″ or ″master″ node is a node that can potentially host a resource. A

resource group attribute called systemlist is used to specify which nodes within a

cluster can be primaries for a particular resource group. In a two node cluster,

usually both nodes are included in the systemlist, but in larger, multi-node

clusters that might be hosting several highly available applications there might be

a requirement to ensure that certain application services (defined by their resources

at the lowest level) can never fail over to certain nodes.

Dependencies can be defined between resource groups, and VERITAS Cluster

Server depends on this resource group dependency hierarchy in assessing the

impact of various resource failures and in managing recovery. For example, if the

resource group ClientApp1 can not be brought online unless the resource group

DB2 has already been successfully started, resource group ClientApp1 is

considered dependent on resource group DB2.

For detailed information on the implementation and design of highly available

IBM DB2 database environments with the VERITAS Cluster Server see the technote

106 Data Recovery and High Availability Guide and Reference

entitled ″DB2 UDB and High Availability with VERITAS Cluster Server″ which you

can view by going to the following web site: http://www.ibm.com/support, and

searching for the keyword ″1045033″.

Synchronizing clocks in a partitioned database environment

You should maintain relatively synchronized system clocks across the database

partition servers to ensure smooth database operations and unlimited forward

recoverability. Time differences among the database partition servers, plus any

potential operational and communications delays for a transaction should be less

than the value specified for the max_time_diff (maximum time difference among

nodes) database manager configuration parameter.

To ensure that the log record time stamps reflect the sequence of transactions in a

partitioned database environment, DB2 uses the system clock on each machine as

the basis for the time stamps in the log records. If, however, the system clock is set

ahead, the log clock is automatically set ahead with it. Although the system clock

can be set back, the clock for the logs cannot, and remains at the same advanced

time until the system clock matches this time. The clocks are then in synchrony.

The implication of this is that a short term system clock error on a database node

can have a long lasting effect on the time stamps of database logs.

For example, assume that the system clock on database partition server A is

mistakenly set to November 7, 2005 when the year is 2003, and assume that the

mistake is corrected after an update transaction is committed in the database

partition at that database partition server. If the database is in continual use, and is

regularly updated over time, any point between November 7, 2003 and November

7, 2005 is virtually unreachable through rollforward recovery. When the COMMIT

on database partition server A completes, the time stamp in the database log is set

to 2005, and the log clock remains at November 7, 2005 until the system clock

matches this time. If you attempt to roll forward to a point in time within this time

frame, the operation will stop at the first time stamp that is beyond the specified

stop point, which is November 7, 2003.

Although DB2 cannot control updates to the system clock, the max_time_diff

database manager configuration parameter reduces the chances of this type of

problem occurring:

v The configurable values for this parameter range from 1 minute to 24 hours.

v When the first connection request is made to a non-catalog partition, the

database partition server sends its time to the catalog partition for the database.

The catalog partition then checks that the time on the database partition

requesting the connection, and its own time are within the range specified by

the max_time_diff parameter. If this range is exceeded, the connection is refused.

v An update transaction that involves more than two database partition servers in

the database must verify that the clocks on the participating database partition

servers are in synchrony before the update can be committed. If two or more

database partition servers have a time difference that exceeds the limit allowed

by max_time_diff, the transaction is rolled back to prevent the incorrect time from

being propagated to other database partition servers.

Client/server timestamp conversion

This section explains the generation of timestamps in a client/server environment:

v If you specify a local time for a rollforward operation, all messages returned will

also be in local time.

Chapter 3. Configuring for high availability 107

http://www.ibm.com/software/data/pubs/papers/

Note: All times are converted on the server and (in partitioned database

environments) on the catalog database partition.

v The timestamp string is converted to GMT on the server, so the time represents

the server’s time zone, not the client’s. If the client is in a different time zone

from the server, the server’s local time should be used.

v If the timestamp string is close to the time change due to daylight savings time,

it is important to know whether the stop time is before or after the time change

so that it is specified correctly.

108 Data Recovery and High Availability Guide and Reference

Chapter 4. Administering and maintaining a highly available

solution

Once you have created, configured, and started your DB2 database high

availability solution running, there are ongoing activities you will have to perform.

You need to monitor, maintain, and repair your database solution to keep it

available to client applications.

As your database system runs, you need to monitor and respond to the following

kinds of things:

1. Manage log files.

Log files grow larger, require archiving; and some log files require copying or

moving to be available for a restore operation.

2. Perform maintenance activities:

v Installing software

v Upgrading hardware

v Reorganizing database tables

v Database performance tuning

v Database backup
3. Synchronize primary and secondary or standby databases so that failover

works smoothly.

4. Identify and respond to unexpected failures in hardware or software.

Log file management

The DB2 database manager uses a number scheme to name log files. This naming

strategy has implications for log file reuse and log sequences. Also, a DB2 database

that has no client application connection uses a new log file when the next client

application connects to that database server. These two aspects of DB2 Data Server

database logging behavior affect the log file management choices you make.

Consider the following when managing database logs:

v The numbering scheme for archived logs starts with S0000000.LOG, and

continues through S9999999.LOG, accommodating a potential maximum of 10

million log files. The database manager resets to S0000000.LOG if:

– A database configuration file is changed to enable rollforward recovery

– A database configuration file is changed to disable rollforward recovery

– S9999999.LOG has been used.
The DB2 database manager reuses log file names after restoring a database (with

or without rollforward recovery). The database manager ensures that an

incorrect log is not applied during rollforward recovery. If the DB2 database

manager reuses a log file name after a restore operation, the new log files are

archived to separate directories so that multiple log files with the same name

can be archived. The location of the log files is recorded in the recovery history

file so that they can be applied during rollforward recovery. You must ensure

that the correct logs are available for rollforward recovery.

When a rollforward operation completes successfully, the last log that was used

is truncated, and logging begins with the next sequential log. Any log in the log

path directory with a sequence number greater than the last log used for

© Copyright IBM Corp. 2001, 2007 109

rollforward recovery is re-used. Any entries in the truncated log following the

truncation point are overwritten with zeros. Ensure that you make a copy of the

logs before invoking the rollforward utility. (You can invoke a user exit program

to copy the logs to another location.)

v If a database has not been activated (by way of the ACTIVATE DATABASE

command), the DB2 database manager truncates the current log file when all

applications have disconnected from the database. The next time an application

connects to the database, the DB2 database manager starts logging to a new log

file. If many small log files are being produced on your system, you might want

to consider using the ACTIVATE DATABASE command. This not only saves the

overhead of having to initialize the database when applications connect, it also

saves the overhead of having to allocate a large log file, truncate it, and then

allocate a new large log file.

v An archived log can be associated with two or more different log sequences for a

database, because log file names are reused (see Figure 8 on page 111). For

example, if you want to recover Backup 2, there are two possible log sequences

that could be used. If, during full database recovery, you roll forward to a point

in time and stop before reaching the end of the logs, you have created a new log

sequence. The two log sequences cannot be combined. If you have an online

backup image that spans the first log sequence, you must use this log sequence

to complete rollforward recovery.

If you have created a new log sequence after recovery, any table space backup

images on the old log sequence are invalid. This is usually recognized at restore

time, but the restore utility fails to recognize a table space backup image on an

old log sequence if a database restore operation is immediately followed by the

table space restore operation. Until the database is actually rolled forward, the

log sequence that is to be used is unknown. If the table space is on an old log

sequence, it must be “caught” by the table space rollforward operation. A restore

operation using an invalid backup image might complete successfully, but the

table space rollforward operation for that table space will fail, and the table

space will be left in restore pending state.

For example, suppose that a table space-level backup operation, Backup 3,

completes between S0000013.LOG and S0000014.LOG in the top log sequence (see

Figure 8 on page 111). If you want to restore and roll forward using the

database-level backup image, Backup 2, you will need to roll forward through

S0000012.LOG. After this, you could continue to roll forward through either the

top log sequence or the (newer) bottom log sequence. If you roll forward

through the bottom log sequence, you will not be able to use the table

space-level backup image, Backup 3, to perform table space restore and

rollforward recovery.

To complete a table space rollforward operation to the end of the logs using the

table space-level backup image, Backup 3, you will have to restore the

database-level backup image, Backup 2, and then roll forward using the top log

sequence. Once the table space-level backup image, Backup 3, has been restored,

you can initiate a rollforward operation to the end of the logs.

110 Data Recovery and High Availability Guide and Reference

On demand log archive

IBM Data Server supports the closing (and, if enabled, the archiving) of the active

log for a recoverable database at any time. This allows you to collect a complete

set of log files up to a known point, and then to use these log files to update a

standby database.

You can initiate on demand log archiving by invoking the ARCHIVE LOG

command, or by calling the db2ArchiveLog API.

Log archiving using db2tapemgr

You can use the db2tapemgr utility to store archived log files to tape devices. The

db2tapemgr utility copies log files from disk to the specified tape device, and

updates the recovery history file with the new location of the copied log files.

Configuration

Set the database configuration parameter LOGARCHMETH1 to the location on

disk of the log files you want to copy to tape. The db2tapemgr utility reads this

LOGARCHMETH1 value to find the log files to copy. In a partitioned database

environment, the LOGARCHMETH1 configuration parameter must be set on each

database partition that contains log files to be copied.

The db2tapemgr utility does not use the LOGARCHMETH2 database configuration

parameter.

STORE and DOUBLE STORE options

Issue the DB2TAPEMGR command with either the STORE or DOUBLE STORE

option to transfer archived logs from disk to tape.

v The STORE option stores a range or all log files from the log archive directory to

a specified tape device and deletes the files from disk.

v The DOUBLE STORE option scans the history file to see if logs have been stored

to tape previously.

– If a log has never been stored before, DB2TAPEMGR stores the log file to tape

and but does not delete it from disk.

– If a log has been stored before, DB2TAPEMGR stores the log file to tape and

deletes it from disk.

Restore Backup 2
and Roll Forward to

end of log 12.

Backup 1

. . .

. . .

Backup 2 Backup 3

S0000010.LOG S0000011.LOG S0000012.LOG S0000013.LOG S0000014.LOG

S0000013.LOG S0000014.LOG

Figure 8. Re-using Log File Names

Chapter 4. Administering and maintaining a highly available solution 111

Use DOUBLE STORE if you want to keep duplicate copies of your archived logs

on tape and on disk, or if you want to store the same logs on two different

tapes.

When you issue the DB2TAPEMGR command with either the STORE or DOUBLE

STORE option, the db2tapemgr utility first scans the history file for entries where

the LOGARCHMETH1 configuration parameter is set to disk. If it finds that any

files that are supposed to be on disk, are not on disk, it issues a warning. If the

db2tapemgr utility finds no log files to store, it stops the operation and issues a

message to inform you that there is nothing to do.

RETRIEVE options

Issue the DB2TAPEMGR command with the RETRIEVE option to transfer files

from tape to disk.

v Use the RETRIEVE ALL LOGS or LOGS n TO n option to retrieve all archived

logs that meet your specified criteria and copy them to disk.

v Use the RETRIEVE FOR ROLLFORWARD TO POINT-IN-TIME option to retrieve

all archived logs required to perform a rollforward operation and copy them to

disk.

v Use the RETRIEVE HISTORY FILE option to retrieve the history file from tape

and copy it to disk.

Behavior

v If the db2tapemgr utility finds log files on disk, it then reads the tape header to

make sure that it can write the log files to the tape. It also updates the history

for those files that are currently on tape. If the update fails, the operation stops

and an error message is displayed.

v If the tape is writeable, the db2tapemgr utility copies the logs to tape. After the

files have been copied, the log files are deleted from disk. Finally, the

db2tapemgr utility copies the history file to tape and deletes it from disk.

v The db2tapemgr utility does not append log files to a tape. If a store operation

does not fill the entire tape, then the unused space is wasted.

v The db2tapemgr utility stores log files only once to any given tape. This

restriction exists to avoid any problems inherent to writing to tape media, such

as stretching of the tape.

v In a partitioned database environment, the db2tapemgr utility only executes

against one database partition at a time. You must run the appropriate command

for each database partition, specifying the database partition number using the

ON DBPARTITIONNUM option of the DB2TAPEMGR command. You must also

ensure that each database partition has access to a tape device.

Examples

The following example shows how to use the DB2TAPEMGR command to store all

log files from the primary archive log path for database sample on database

partition number 0 to a tape device and remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum 0 store on /dev/rmt0.1 all logs

The following example shows how to store the first 10 log files from the primary

archive log path to a tape device and remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum store on /dev/rmt0.1 10 logs

112 Data Recovery and High Availability Guide and Reference

The following example shows how to store the first 10 log files from the primary

archive log path to a tape device and then store the same log files to a second tape

and remove them from the archive log path:

db2tapemgr db sample on dbpartitionnum double store on /dev/rmt0.1 10 logs

db2tapemgr db sample on dbpartitionnum double store on /dev/rmt1.1 10 logs

The following example shows how to retrieve all log files from a tape to a

directory:

db2tapemgr db sample on dbpartitionnum retrieve all logs from /dev/rmt1.1

 to /home/dbuser/archived_logs

Automating log file archiving and retrieval with user exit

programs

You can automate log file archiving and retrieval by creating a user exit program

that the DB2 database manager calls to carry out the archiving or retrieval

operation.

When the DB2 database manager invokes your user exit program, the following

happens:

v the database manager passes control to the user exit program;

v the database manager passes parameters to the user exit program; and

v on completion, the use exit program passes a return code back to the database

manager.

Configuration

Before invoking a user exit program for log file archiving or retrieval, ensure that

the logarchmeth1 database configuration parameter has been set to USEREXIT.

This also enables your database for rollforward recovery.

User exit program requirements

v The executable file for your user exit program must be called db2uext2.

v User exit programs must copy log files from the active log path to the archive

log path, not move them. Do not remove log files from the active log path. If

you remove log files from the active log path, your DB2 database might not be

able to successfully recover in the event of a failure.

DB2 database requires the log files to be in the active log path during recovery.

The DB2 database server will remove archived log files from the active log path

when these log files are no longer needed for recovery.

v User exit programs must handle error conditions. Your user exit program must

handle errors because the DB2 database manager can only handle a limited set

of return conditions.

See “User exit error handling” on page 115.

v Each DB2 database manager instance can only invoke one user exit program.

Because the database manager instance can only invoke one user exit program,

you must design your user exit program with a section for each operation it

might have to perform.

Sample user exit programs

Sample user exit programs are provided for all supported platforms. You can

modify these programs to suit your particular requirements. The sample programs

are well commented with information that will help you to use them most

effectively.

Chapter 4. Administering and maintaining a highly available solution 113

You should be aware that user exit programs must copy log files from the active

log path to the archive log path. Do not remove log files from the active log path.

(This could cause problems during database recovery.) DB2 removes archived log

files from the active log path when these log files are no longer needed for

recovery.

Following is a description of the sample user exit programs that are shipped with

DB2 Data Server.

v UNIX based systems

The user exit sample programs for DB2 Data Serve for UNIX based systems are

found in the sqllib/samples/c subdirectory. Although the samples provided are

coded in C, your user exit program can be written in a different programming

language.

Your user exit program must be an executable file whose name is db2uext2.

There are four sample user exit programs for UNIX based systems:

– db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log

files.

– db2uext2.ctape

This sample uses tape media to archive and retrieve database log files .

– db2uext2.cdisk

This sample uses the operating system COPY command and disk media to

archive and retrieve database log files.

– db2uxt2.cxbsa

This sample works with the XBSA Draft 0.8 published by the X/Open group.

It can be used to archive and retrieve database log files. This sample is only

supported on AIX.
v Windows operating systems

The user exit sample programs for DB2 Data Server for Windows operating

systems are found in the sqllib\samples\c subdirectory. Although the samples

provided are coded in C, your user exit program can be written in a different

programming language.

Your user exit program must be an executable file whose name is db2uext2.

There are two sample user exit programs for Windows operating systems:

– db2uext2.ctsm

This sample uses Tivoli Storage Manager to archive and retrieve database log

files.

– db2uext2.cdisk

This sample uses the operating system COPY command and disk media to

archive and retrieve database log files.

User exit program calling format

When the DB2 database manager calls a user exit program, it passes a set of

parameters (of data type CHAR) to the program.

Command syntax

 db2uext2 -OS<os> -RL<db2rel> -RQ<request> -DB<dbname>

 -NN<nodenum> -LP<logpath> -LN<logname> -AP<tsmpasswd>

 -SP<startpage> -LS<logsize>

os Specifies the platform on which the instance is running. Valid values are:

AIX, Solaris, HP-UX, SCO, Linux, and NT.

114 Data Recovery and High Availability Guide and Reference

db2rel Specifies the DB2 release level. For example, SQL07020.

request

Specifies a request type. Valid values are: ARCHIVE and RETRIEVE.

dbname

Specifies a database name.

nodenum

Specifies the local node number, such as 5, for example.

logpath

Specifies the fully qualified path to the log files. The path must contain the

trailing path separator. For example, /u/database/log/path/, or

d:\logpath\.

logname

Specifies the name of the log file that is to be archived or retrieved, such as

S0000123.LOG, for example.

tsmpasswd

Specifies the TSM password. (If a value for the database configuration

parameter tsm_password has previously been specified, that value is passed

to the user exit program.)

startpage

Specifies the number of 4-KB offset pages of the device at which the log

extent starts.

logsize

Specifies the size of the log extent, in 4-KB pages. This parameter is only

valid if a raw device is used for logging.

User exit error handling

If you create a user exit program to automate log file archiving and retrieval, your

user exit program passes return codes to the DB2 database manager that invoked

the user exit program. The DB2 database manager can only handle a limited list of

specific error codes. However, your user exit program might encounter many

different kinds of error conditions, such as operating system errors. Your user exit

program must map the error conditions it encounters to error codes that the

database manager can handle.

Table 3 shows the codes that can be returned by a user exit program, and describes

how these codes are interpreted by the database manager. If a return code is not

listed in the table, it is treated as if its value were 32.

 Table 3. User Exit Program Return Codes. Applies to archiving and retrieval operations

only.

Return Code Explanation

0 Successful.

4 Temporary resource error encountered.a

8 Operator intervention is required.a

12 Hardware error.b

16 Error with the user exit program or a software function used by the

program.b

20 Error with one or more of the parameters passed to the user exit program.

Verify that the user exit program is correctly processing the specified

parameters.b

Chapter 4. Administering and maintaining a highly available solution 115

Table 3. User Exit Program Return Codes (continued). Applies to archiving and retrieval

operations only.

Return Code Explanation

24 The user exit program was not found.

b

28 Error caused by an input/output (I/O) failure, or by the operating

system.b

32 The user exit program was terminated by the user.b

255 Error caused by the user exit program not being able to load the library

file for the executable.c

a For archiving or retrieval requests, a return code of 4 or 8 causes a retry in five minutes.

If the user exit program continues to return 4 or 8 on retrieve requests for the same log file,

DB2 will continue to retry until successful. (This applies to rollforward operations, or calls

to the db2ReadLog API, which is used by the replication utility.)

b User exit requests are suspended for five minutes. During this time, all requests are

ignored, including the request that caused the error condition. Following this five-minute

suspension, the next request is processed. If this request is processed without error,

processing of new user exit requests continues, and DB2 reissues the archive request that

failed or was suspended previously. If a return code greater than 8 is generated during the

retry, requests are suspended for an additional five minutes. The five-minute suspensions

continue until the problem is corrected, or the database is stopped and restarted. Once all

applications have disconnected from the database, DB2 issues an archive request for any

log file that might not have been successfully archived previously. If the user exit program

fails to archive log files, your disk might become filled with log files, and performance

might be degraded. Once the disk becomes full, the database manager will not accept

further application requests for database updates. If the user exit program was called to

retrieve log files, rollforward recovery is suspended, but not stopped, unless the

ROLLFORWARD STOP option was specified. If the STOP option was not specified, you

can correct the problem and resume recovery.

c If the user exit program returns error code 255, it is likely that the program cannot load

the library file for the executable. To verify this, manually invoke the user exit program.

More information is displayed.

Note: During archiving and retrieval operations, an alert message is issued for all return

codes except 0, and 4. The alert message contains the return code from the user exit

program, and a copy of the input parameters that were provided to the user exit program.

Log file allocation and removal

Log files in the database log directory are never removed if they might be required

for crash recovery. A log file which is required for crash recovery is called an active

log. A log file which is not required for crash recovery is called an archived log.

If you have enabled infinite logging, log files will be deleted once they have been

successfully archived. When the logarchmeth1 database configuration parameter is

not set to OFF, a full log file becomes a candidate for removal only after it is no

longer required for crash recovery.

The process of allocating new log files and removing old log files is dependent on

the settings of the logarchmeth1 database configuration parameter:

Logarchmeth1 and Logarchmeth2 are set to OFF

Circular logging will be used. Rollforward recovery is not supported with

circular logging, while crash recovery is.

116 Data Recovery and High Availability Guide and Reference

During circular logging, new log files, other than secondary logs, are not

generated and old log files are not deleted. Log files are handled in a

circular fashion. That is, when the last log file is full, DB2 begins writing to

the first log file.

 A log full situation can occur if all of the log files are active and the

circular logging process cannot wrap to the first log file. Secondary log

files are created when all the primary log files are active and full.

Secondary log files are deleted when the database is deactivated or when

the space they are using is required for the active log files.

Logarchmeth1 is set to LOGRETAIN

Archive logging is used. The database is a recoverable database. Both

rollforward recovery and crash recovery are enabled. After you archive the

log files, you must delete them from the active log path so that the disk

space can be reused for new log files. Each time a log file becomes full,

DB2 begins writing records to another log file, and (if the maximum

number of primary and secondary logs has not been reached) creates a

new log file.

Logarchmeth1 is set to a value other than OFF or LOGRETAIN

Archive logging is used. The database is a recoverable database. Both

rollforward recovery and crash recovery are enabled. When a log file

becomes full, it is automatically archived.

 Log files are usually not deleted. Instead, when a new log file is required

and one is not available, an archived log file is renamed and used again.

An archived log file, is not deleted or renamed once it has been closed and

copied to the log archive directory. DB2 waits until a new log file is needed

and then renames the oldest archived log. A log file that has been moved

to the database directory during recovery is removed during the recovery

process when it is no longer needed. Until DB2 runs out of log space, you

will see old log files in the database directory.

 If an error occurs when log files are being archived, archiving is suspended

for the amount of time specified by the ARCHRETRYDELAY database

configuration parameter. You can also use the NUMARCHRETRY database

configuration parameter to specify the number of times that DB2 is to try

archiving a log file to the primary or secondary archive directory before it

tries to archive log files to the failover directory (specified by the

FAILARCHPATH database configuration parameter). NUMARCHRETRY is

only used if the FAILARCHPATH database configuration parameter is set.

If NUMARCHRETRY is set to 0, DB2 will continuously retry archiving

from the primary or the secondary log path.

 The easiest way to remove old log files is to restart the database. Once the

database is restarted, only new log files and log files that the user exit

program failed to archive will be found in the database directory.

 When a database is restarted, the minimum number of logs in the database

log directory will equal the number of primary logs which can be

configured using the logprimary database configuration parameter. It is

possible for more than the number of primary logs to be found in the log

directory. This can occur if the number of empty logs in the log directory

at the time the database was shut down, is greater than the value of the

logprimary configuration parameter at the time the database is restarted.

This will happen if the value of the logprimary configuration parameter is

changed between the database being shut down and restarted, or if

secondary logs are allocated and never used.

Chapter 4. Administering and maintaining a highly available solution 117

When a database is restarted, if the number of empty logs is less than the

number of primary logs specified by the logprimary configuration

parameter, additional log files will be allocated to make up the difference.

If there are more empty logs than primary logs available in the database

directory, the database can be restarted with as many available empty logs

as are found in the database directory. After database shutdown, secondary

log files that have been created will remain in the active log path when the

database is restarted.

Including log files with a backup image

When performing an online backup operation, you can specify that the log files

required to restore and recover a database are included in the backup image. This

means that if you need to ship backup images to a disaster recovery site, you do

not have to send the log files separately or package them together yourself.

Further, you do not have to decide which log files are required to guarantee the

consistency of an online backup. This provides some protection against the

deletion of log files required for successful recovery.

To make use of this feature specify the INCLUDE LOGS option of the BACKUP

DATABASE command. When you specify this option, the backup utility will

truncate the currently active log file and copy the necessary set of log extents into

the backup image.

To restore the log files from a backup image, use the LOGTARGET option of the

RESTORE DATABASE command and specify a fully qualified path that exists on

the DB2 server. The restore database utility will then write the log files from the

image to the target path. If a log file with the same name already exists in the

target path, the restore operation will fail and an error will be returned. If the

LOGTARGET option is not specified, no log files will be restored from the backup

image.

If the LOGTARGET option is specified and the backup image does not include any

log files, an error will be returned before an attempt is made to restore any table

space data. The restore operation will also fail if an invalid or read-only path is

specified. During a database or table space restore where the LOGTARGET option

is specified, if one or more log files cannot be extracted, the restore operation fails

and an error is returned.

You can also choose to restore only the log files saved in the backup image. To do

this, specify the LOGS option with the LOGTARGET option of the RESTORE

DATABASE command. If the restore operation encounters any problems when

restoring log files in this mode, the restore operation fails and an error is returned.

During an automatic incremental restore operation, only the logs included in the

target image of the restore operation will be retrieved from the backup image. Any

logs that are included in intermediate images referenced during the incremental

restore process will not be extracted from those backup images. During a manual

incremental restore, if you specify a log target directory when restoring a backup

image that includes log files, the log files in that backup image will be restored.

If you roll a database forward that was restored from an online backup image that

includes log files, you might encounter error SQL1268N, which indicates

roll-forward recovery has stopped due to an error received when retrieving a log.

118 Data Recovery and High Availability Guide and Reference

This error is generated when the target system to which you are attempting to

restore the backup image does not have access to the facility used by the source

system to archive its transaction logs.

If you specify the INCLUDE LOGS option of the BACKUP DATABASE command

when you back up a database, then subsequently perform a restore operation and

a roll-forward operation that use that backup image, DB2 will still search for

additional transaction logs when rolling the database forward, even though the

backup image includes logs. It is standard rollforward behaviour to continue to

search for additional transaction logs until no more logs are found. It is possible to

have more than one log file with the same timestamp. Consequently, DB2 does not

stop as soon as it finds the first timestamp that matches the point-in-time to which

you are rolling forward the database as there might be other log files that also

have that timestamp. Instead, DB2 continues to look at the transaction log until it

finds a timestamp greater than the point-in-time specified.

When no additional logs can be found, the rollforward operation ends successfully.

However, if there is an error while searching for additional transaction log files,

error SQL1268N is returned. Error SQL1268N can occur because during the initial

restore, certain database configuration parameters were reset or overwritten. Three

of these database configuration parameters are the TSM parameters,

TSM_NODENAME, TSM_OWNER and TSM_PASSWORD. They are all reset to

NULL. To rollforward to the end of logs, you need to reset these database

configuration parameters to correspond to the source system prior to the

rollforward operation. Alternatively, you can specify the NORETRIEVE option

when you issue the ROLLFORWARD DATABASE command. This will prevent the

DB2 database system from trying to obtain potentially missing transaction logs

elsewhere.

Note:

1. This feature is not supported for offline backups.

2. When logs are included in an online backup image, the resulting image cannot

be restored on releases of DB2 database prior to Version 8.2.

Preventing the accidental loss of log files

In situations where you need to drop a database or perform a point-in-time

rollforward recovery, it is possible to lose log files that might be required for future

recovery operations. In these cases, it is important to make copies of all the logs in

the current database log path directory.

Consider the following scenarios:

v If you plan to drop a database prior to a restore operation, you need to save the

log files in the active log path before issuing the DROP DATABASE command.

After the database has been restored, these log files might be required for

rollforward recovery because some of them might not have been archived before

the database was dropped. Normally, you are not required to drop a database

prior to issuing the RESTORE command. However, you might have to drop the

database (or drop the database on one database partition by specifying the AT

NODE option of DROP DATABASE command), because it has been damaged to

the extent that the RESTORE command fails. You might also decide to drop a

database prior to the restore operation to give yourself a fresh start.

v If you are rolling a database forward to a specific point in time, log data after

the time stamp you specify will be overwritten. If, after you have completed the

point-in-time rollforward operation and reconnected to the database, you

Chapter 4. Administering and maintaining a highly available solution 119

determine that you actually needed to roll the database forward to a later point

in time, you will not be able to because the logs will already have been

overwritten. It is possible that the original set of log files might have been

archived; however, DB2 might be calling a user exit program to automatically

archive the newly generated log files. Depending on how the user exit program

is written, this could cause the original set of log files in the archive log

directory to be overwritten. Even if both the original and new set of log files

exist in the archive log directory (as different versions of the same files), you

might have to determine which set of logs should be used for future recovery

operations.

Minimizing the impact of maintenance on availability

You will have to perform maintenance on your DB2 database solution such as:

software or hardware upgrades; database performance tuning; database backups;

statistics collection; and monitoring for business purposes. Minimizing the impact

that performing that maintenance has on the availability of your solution involves

careful scheduling of offline maintenance, and using DB2 features and functionality

that reduce the availability impact of online maintenance.

Before you can use the following steps to minimize the impact of maintenance on

the availability of your DB2 database solution, you must:

v configure automatic maintenance; and

v install the High Availability Disaster Recovery (HADR) feature.
1. Allow automatic maintenance to do your maintenance for you.

DB2 database can automate many database maintenance activities. Once the

automatic maintenance has been configured, the maintenance will happen

without you taking any additional steps to perform that maintenance.

2. Use a DB2 High Availability Disaster Recovery (HADR) rolling upgrade to

minimize the impact of other maintenance activities.

If you are upgrading software or hardware, or if you are modifying some

database manager configuration parameters, the HADR feature enables you to

accomplish those changes with minimal interruption of availability. This

seamless change enabled by HADR is called a rolling upgrade.

Some maintenance activities require you to shut down a database before

performing the maintenance, even in the HADR environment. Under some

conditions, the procedure for shutting down a HADR database is a little

different than the procedure for shutting down a standard database: if a HADR

database is started by a client application connecting to it, you must use the

DEACTIVATE DATABASE command.

Stopping DB2 High Availability Disaster Recovery (HADR)

If you are using the DB2 High Availability Disaster Recovery (HADR) feature,

performing maintenance on the two DB2 database systems, the primary and the

standby, can be more complicated than performing maintenance on one standalone

database server. If you need to stop HADR to perform maintenance, use the STOP

HADR command to stop HADR functionality. If you are performing maintenance

on the standby database system only, you only need to stop HADR on the standby

database. To stop using HADR completely, you can stop HADR on both databases.

Warning: If you want to stop the specified database but you still want it to

maintain its role as either an HADR primary or standby database, do not issue the

STOP HADR command. If you issue the STOP HADR command the database will

120 Data Recovery and High Availability Guide and Reference

become a standard database and might require reinitialization in order to resume

operations as an HADR database. Instead, issue the DEACTIVATE DATABASE

command.

You can issue the STOP HADR command against a primary or a standby database

only. If you issue this command against a standard database an error will be

returned.

You can stop HADR by using the command line processor (CLP), the Manage

High Availability Disaster Recovery (HADR) window in the Control Center, or the

db2HADRStop application programming interface (API).

To use the CLP to stop HADR operations on the primary or standby database,

issue the STOP HADR command on the database where you want to stop HADR

operations.

In the following example, HADR operations are stopped on database SOCKS:

STOP HADR ON DATABASE SOCKS

If you issue this command against an inactive primary database, the database

switches to a standard database and remains offline.

If you issue this command against an inactive standby database the database

switches to a standard database, is placed in rollforward pending state, and

remains offline.

If you issue this command on an active primary database, logs stop being shipped

to the standby database and all HADR engine dispatchable units (EDUs) are shut

down on the primary database. The database switches to a standard database and

remains online. Transaction processing can continue. You can issue the START

HADR command with the AS PRIMARY option to switch the role of the database

back to primary database.

If you issue this command on an active standby database, an error message is

returned, indicating that you must deactivate the standby database before

attempting to convert it to a standard database.

To open the Stop HADR window:

1. From the Control Center, expand the object tree until you find the database for

which you want to manage HADR. Right-click the database and click High

Availability Disaster Recovery→Manage in the pop-up menu. The Manage High

Availability Disaster Recovery window opens.

2. Click Stop HADR. The Stop HADR window opens.

3. If you want to stop HADR on one database only, clear the check box for the

other database.

4. If only one database is started (either the primary database or the standby

database), the name of that database is displayed in the Stop HADR window.

5. Click OK. The window closes. A progress indicator might open to indicate

when the command is running. When it completes, you will get a notification

indicating whether or not it is successful.

Additional information is provided through the contextual help facility within

the Control Center.

Chapter 4. Administering and maintaining a highly available solution 121

Database activation and deactivation in a DB2 High

Availability Disaster Recovery (HADR) environment

If a standard database is started by a client connection, the database is shut down

when the last client disconnects. If an HADR primary database is started by a

client connection, it is equivalent to starting the database by using the ACTIVATE

DATABASE command. To shut down an HADR primary database that was started

by a client connection, you need to explicitly issue the DEACTIVATE DATABASE

command.

On a standard database in rollforward pending state, the ACTIVATE DATABASE

and DEACTIVATE DATABASE commands are not applicable. You can only

continue rollforward, stop rollforward, or use START HADR start the database as

an HADR standby database. Once a database is started as an HADR standby, you

can use the ACTIVATE DATABASE and DEACTIVATE DATABASE commands to

start and stop the database.

Activate a primary database using the following methods:

v client connection

v ACTIVATE DATABASE command

v START HADR command with the AS PRIMARY option

Deactivate a primary database using the following methods:

v DEACTIVATE DATABASE command

v db2stop command with the FORCE option

Activate a standby database using the following methods:

v ACTIVATE DATABASE command

v START HADR command with the AS STANDBY option

Deactivate a standby database using the following methods:

v DEACTIVATE DATABASE command

v db2stop command with the FORCE option

Performing a rolling upgrade in a DB2 High Availability

Disaster Recovery (HADR) environment

Use this procedure in a high availability disaster recovery (HADR) environment

when you upgrade software (operating system or DB2 database system) or

hardware, or when you make changes to database configuration parameters. This

procedure keeps database service available throughout the upgrade process, with

only a momentary service interruption when processing is switched from one

database to the other. Because HADR performs optimally when both the primary

and standby databases are on identical systems, you should apply changes to both

systems as quickly as possible.

Note: All DB2 database system fix packs and upgrades should be implemented in

a test environment before being applied to your production system.

The HADR pair should be in peer state before starting the rolling upgrade.

This procedure will not work to migrate from an earlier to a later version of a DB2

database system; for example, you cannot use this procedure to migrate from a

122 Data Recovery and High Availability Guide and Reference

version 8 to a version 9 database system. You can use this procedure to update

your database system from one modification level to another only, for example by

applying a fix pack.

This procedure will not work if you update the DB2 HADR configuration

parameters. Updates to HADR configuration parameters should be made

separately. Because HADR requires the parameters on the primary and standby to

be the same, this might require both the primary and standby databases to be

deactivated and updated at the same time.

To perform a rolling upgrade in an HADR environment:

1. Upgrade the system where the standby database resides:

a. Use the DEACTIVATE DATABASE command to shut down the standby

database.

b. If necessary, shut down the instance on the standby database.

c. Make changes to one or more of the following: the software, the hardware,

or the DB2 configuration parameters.

Note: You cannot change any HADR configuration parameters when

performing a rolling upgrade.

d. If necessary, restart the instance on the standby database.

e. Use the ACTIVATE DATABASE command to restart the standby database.

f. Ensure that the standby database enters peer state. Use the GET SNAPSHOT

command to check this.
2. Switch the roles of the primary and standby databases:

a. Issue the TAKEOVER HADR command on the standby database.

b. Direct clients to the new primary database. This can be done using

automatic client reroute.

Note: Because the standby database takes over as the primary database, the

new primary database is now upgraded. If you are applying a DB2

database system fix pack, the TAKEOVER HADR command will change the

role of the original primary database to standby database. However, the

command will not let the new standby database connect to the newly

upgraded primary database. Because the new standby database uses an

older version of the DB2 database system, it might not understand the new

log records generated by the upgraded primary database, and it will be

shut down. In order for the new standby database to reconnect with the

new primary database (that is, for the HADR pair to reform), the new

standby database must also be upgraded.
3. Upgrade original primary database (which is now the standby database) using

the same procedure as in Step 1 above. When you have done this, both

databases are upgraded and connected to each other in HADR peer state. The

HADR system provides full database service and full high availability

protection.

4. Optional. To return to your original configuration, switch the roles of the

primary and standby database as in step 2.

Using a split mirror to clone a database

Use the following procedure to create a clone database. Although you can write to

clone databases, they are generally used for read-only activities such as running

reports.

Chapter 4. Administering and maintaining a highly available solution 123

You cannot back up a cloned database, restore the backup image on the original

system, or roll forward through log files produced on the original system. You can

use the AS SNAPSHOT option, but this provides only an instantaneous copy of the

database at that time when the I/O is suspended; any other outstanding

uncommitted work will be rolled back after the db2inidb command is executed on

the clone.

To clone a database, follow these steps:

1. Suspend I/O on the primary database:

db2 set write suspend for database

2. Use appropriate operating system-level commands to split the mirror or

mirrors from the primary database.

Note: Ensure that you copy the entire database directory including the volume

directory. You must also copy the log directory and any container directories

that exist outside the database directory. To gather this information, refer to the

DBPATHS administrative view, which shows all the files and directories of the

database that need to be split.

3. Resume I/O on the primary database:

db2 set write resume for database

4. Catalog the mirrored database on the secondary system.

Note: By default, a mirrored database cannot exist on the same system as the

primary database. It must be located on a secondary system that has the same

directory structure and uses the same instance name as the primary database. If

the mirrored database must exist on the same system as the primary database,

you can use the db2relocatedb utility or the RELOCATE USING option of the

db2inidb command to accomplish this.

5. Start the database instance on the secondary system:

db2start

6. Initialize the mirrored database on the secondary system:

db2inidb database_alias as snapshot

If required, specify the RELOCATE USING option of the db2inidb command to

relocate the clone database:

 db2inidb database_alias as snapshot relocate using relocatedbcfg.txt

where the relocatedbcfg.txt file contains the information required to relocate the

database.

Notes:

a. This command will roll back transactions that are in flight when the split

occurs, and start a new log chain sequence so that any logs from the

primary database cannot be replayed on the cloned database.

b. The database directory (including the volume directory), the log directory,

and the container directories must be moved to the desired location before

you use the RELOCATE USING option.

Synchronizing the primary and standby databases

One high availability strategy is to have a primary database and a secondary or

standby database to take over operations if the primary database fails. If the

standby database must take over database operations for a failed primary

database, it must contain exactly the same data, know about all inflight

transactions, and otherwise continue database processing exactly the same way as

124 Data Recovery and High Availability Guide and Reference

the primary database server would, if it had not failed. The ongoing process of

updating the standby database so that it is a copy of the primary database is called

synchronization.

Before you can synchronize the primary and standby databases you must:

v Create and configure the primary and standby databases.

v Configure communications between the primary and standby databases.

v Choose a synchronization strategy (for example, log shipping, log mirroring,

suspended I/O and disk mirroring, or HADR.)

There are several strategies for keeping the primary database server and the

standby database server synchronized:

– shipping logs from the primary database to the standby database and rolling

them forward on the standby database;

– writing database logs to both the primary and standby databases at the same

time, known as log mirroring;

– using suspended I/O support with disk mirroring to periodically taking a

copy of the primary database, splitting th mirror and initializing the copy as a

new standby database server; and

– using a availability feature such as the DB2 High Availability Disaster

Recovery (HADR) feature to keep the primary and standby database

synchronized.
1. If you are using logs to synchronize the primary database and the secondary or

standby database, configure DB2 database to perform the required log

management for you. For example, if you want DB2 database to mirror the

logs, set the MIRRORLOGPATH configuration parameter to the location where

you want the second copy of the logs to be saved.

2. If you are using DB2 database suspended I/O functionality to split a disk

mirror of the primary database, you must do the following:

a. Initialize the disk mirroring for the primary database.

b. When you need to split the mirror of the primary database, follow the

instructions in the topic “Using a split mirror as a standby database.”
3. If you are using the HADR feature to manage synchronizing the primary and

standby databases, configure DB2 database for HADR, and allow DB2 database

to synchronize the primary and standby databases for you.

DB2 High Availability Disaster Recovery (HADR) replicated

operations

DB2 High Availability Disaster Recovery (HADR) uses database logs to replicate

data from the primary database to the standby database. Some activities can cause

the standby database to fall behind the primary database as logs are replayed on

the standby database. Some activities are so heavily logged that the large amount

of log files they generate can cause storage problems. Although replicating data to

the standby database using logs is the core of availability strategies, logging itself

can potentially have a negative impact on the availability of your solution. Design

you maintenance strategy wisely, configure your system to minimize the negative

impact of logging, and allow logging to protect your transaction data.

In high availability disaster recovery (HADR), the following operations are

replicated from the primary to the standby database:

v Data definition language (DDL)

v Data manipulation language (DML)

Chapter 4. Administering and maintaining a highly available solution 125

v Buffer pool operations

v Table space operations

v Online reorganization

v Offline reorganization

v Metadata for stored procedures and user defined functions (UDF) (but not the

related object or library files)

During an online reorganization, all operations are logged in detail. As a result,

HADR can replicate the operation without the standby database falling further

behind than it would for more typical database updates. However, this behavior

can potentially have a large impact on the system because of the large number of

log records generated.

While offline reorganizations are not logged as extensively as online

reorganizations, operations are typically logged per hundreds or thousands of

affected rows. This means that the standby database could fall behind because it

waits for each log record and then replays many updates at once. If the offline

reorganization is non-clustered, a single log record is generated after the entire

reorganization operation. This mode has the greatest impact on the ability of the

standby database to keep up with the primary database. The standby database will

perform the entire reorganization after it receives the log record from the primary

database.

HADR does not replicate stored procedure and UDF object and library files. You

must create the files on identical paths on both the primary and standby databases.

If the standby database cannot find the referenced object or library file, the stored

procedure or UDF invocation will fail on the standby database.

DB2 High Availability Disaster Recovery (HADR)

non-replicated operations

DB2 High Availability Disaster Recovery (HADR) uses database logs to replicate

data from the primary database to the standby database. Non-logged operations

are allowed on the primary database, but not replicated to the standby database. If

you want non-logged operations, such as updates to the history file, to be reflected

in the standby database, you must take extra steps to cause this to happen.

The following are examples of cases in which operations on the primary database

are not replicated to the standby database:

v Tables created with the NOT LOGGED INITIALLY option specified are not

replicated. Attempts to access such tables after an HADR standby database takes

over as the primary database will result in an error.

v BLOBs and CLOBs that are larger than 1GB cannot be logged, so they cannot be

replicated. Non-logged BLOBs and CLOBs are not replicated. However, the

space for them will be allocated on the standby database. The data for the LOB

column will be binary zeroes. All logged BLOBs and CLOBs are replicated.

v Updates to database configuration using the UPDATE DATABASE

CONFIGURATION and UPDATE DATABASE MANAGER CONFIGURATION

commands are not replicated.

v Database configuration and database manager configuration parameters are not

replicated.

v For user-defined functions (UDFs), changes to objects external to the database

(such as related objects and library files) are not replicated. They will need to be

setup on the standby via other means.

126 Data Recovery and High Availability Guide and Reference

v The recovery history file (db2rhist.asc), and changes to it, are not automatically

shipped from the primary database to the standby database.

You can place an initial copy of the history file (obtained from the backup image

of the primary) on the standby database by issuing the RESTORE DATABASE

command with the REPLACE HISTORY FILE option:

 RESTORE DB KELLY REPLACE HISTORY FILE

After HADR is initialized and subsequent backup activities take place on the

primary database, the history file on the standby database will become out of

date. However, a copy of the history file is stored in each backup image. You can

update the history file on the standby by extracting the history file from a

backup image using the following command:

 RESTORE DB KELLY HISTORY FILE

Do not use regular operating system commands to copy the history file in the

database directory from the primary database to the standby database. The

history file can become corrupted if the primary is updating the files when the

copy is made.

If a takeover operation occurs and the standby database has an up-to-date

history file, backup and restore operations on the new primary will generate

new records in the history file and blend seamlessly with the records generated

on the original primary. If the history file is out of date or has missing entries,

an automatic incremental restore might not be possible; instead, a manual

incremental restore operation will be required.

DB2 High Availability Disaster Recovery (HADR) standby

database states

At any time, the standby database is in one of five states: local catchup; remote

catchup pending; remote catchup; peer; and disconnected peer. The state that the

standby database is in determines what operations it is capable of performing. You

can use the GET SNAPSHOT command to see what state your standby database is

in.

Chapter 4. Administering and maintaining a highly available solution 127

Database startup, local catchup, and remote catchup pending

With the high availability disaster recovery (HADR) feature, when the standby

database is started, it enters local catchup state and attempts to read the log files in

its local log path. If it does not find a log file in the local log path and a log

archiving method has been specified, the log file is retrieved using the specified

method. After the log files are read, they are replayed on the standby database.

During this time, a connection to the primary database is not required; however, if

a connection does not exist, the standby database tries to connect to the primary

database. When the end of local log files is reached, the standby database enters

remote catchup pending state.

If local log files become available after the standby database enters remote catchup

pending state, you can shut down the standby database and restart it to cause it to

re-enter local catchup state. You might do this if local access to such log files on

the standby database is more efficient than allowing HADR to copy the files over

the network from the primary database.

Local catchup

Remote catchup

Remote catchup
pending

Peer

Connected

Database
startup

Connection lost
HADR_PEER_WINDOW = 0

Connection lost

Connection restored or
peer window expires

Connection lost
HADR_PEER_WINDOW > 0

Disconnected
peer

Figure 9. States of the standby database

128 Data Recovery and High Availability Guide and Reference

Remote catchup pending, remote catchup, peer

The standby database remains in remote catchup pending state until a connection

to the primary database is established, at which time the standby database enters

remote catchup state. During this time, the primary database reads log data from

its log path or by way of a log archiving method and sends the log files to the

standby database. The standby database receives and replays the log data. The

primary and standby databases enter peer state when the standby database

receives all of the log files that are on the disk of the primary database machine.

When in peer state, log pages are shipped to the standby database whenever the

primary database flushes a log page to disk. The log pages are written to the local

log files on the standby database to ensure that the primary and standby databases

have identical log file sequences. The log pages can then be replayed on the

standby database.

If the connection between the primary and standby databases is lost when the

databases are in remote catchup state, the standby database will enter remote

catchup pending state. If the connection between the primary and standby

databases is lost when the databases are in peer state, and if the

HADR_PEER_WINDOW database configuration parameter is not set (or set to

zero) then the standby database will enter remote catchup pending state. However,

if the connection between the primary and standby databases is lost when the

databases are in peer state, and if the HADR_PEER_WINDOW database

configuration parameter is set to a non-zero value, then the standby database

enters disconnected peer state.

Disconnected peer

If you configure the database configuration parameter HADR_PEER_WINDOW to

a time value that is greater than zero, then if the primary database loses connection

with the standby database, then the primary database will continue to behave as

though the primary and standby databases were in peer state for the configured

amount of time. When the primary database and standby database are

disconnected, but behaving as though in peer state, this state is called disconnected

peer. The period of time for which the primary database remains in disconnected

peer state after losing connection with the standby database is called the peer

window. When the connection to the standby database is restored or the peer

window expires, the standby database leaves the disconnected peer state.

The advantage of configuring a peer window is a lower risk of transaction loss

during multiple or cascading failures. Without the peer window, when the primary

database loses connection with the standby database, the primary database moves

out of peer state. When the primary database is disconnected, it processes

transactions independent of the standby database. If a failure occurs on the

primary database while it is not in peer state like this, then transactions could be

lost because they have not been replicated on the standby database. With the peer

window configured, the primary database will not consider a transaction

committed until the primary database has received acknowledgement from the

standby database that the logs have been written to main memory on the standby

system, or that the logs have been written to log files on the standby database

(depending on the HADR synchronization mode.)

Chapter 4. Administering and maintaining a highly available solution 129

The disadvantage of configuring a peer window is that transactions on the primary

database will take longer or even time out while the primary database is in the

peer window waiting for the connection with the standby database to be restored

or for the peer window to expire.

You can determine the peer window size, which is the value of the

HADR_PEER_WINDOW database configuration parameter, using the GET

SNAPSHOT command or the db2pd utility with the -hadr parameter.

Implications and restrictions of these standby database states

for synchronizing the primary and standby databases

One method for synchronizing the primary and standby databases is to manually

copy the primary database log files into the standby database log path to be used

for local catchup. If you synchronize the primary and standby databases by

manually copying the primary database logs into the standby database log path,

you must copy the primary log files before you start the standby database for the

following reasons:

1. When the end of the local log files is reached, the standby database will enter

remote catchup pending state and will not try to access the local log files again

until the standby database is restarted.

2. If the standby database enters remote catchup state, copying log files into its

log path could interfere with the writing of local log files by the standby

database.

Determining the HADR standby database state using the GET

SNAPSHOT command

You can determine the state of a DB2 High Availability Disaster Recovery (HADR)

standby database by issuing the GET SNAPSHOT command with the DATABASE

ON option.

To determine the state of a HADR standby database in a primary-standby HADR

database pair, you can issue the GET SNAPSHOT command from the primary

database or the standby database.

v If you issue the GET SNAPSHOT command from the standby database, the state

of the standby database is returned in the State field of the output.

v If you issue the GET SNAPSHOT command from a primary database that is

connected to the standby database, the state of the standby database is returned

in the State field of the output.

v If you issue the GET SNAPSHOT command from a primary database that is not

connected to the standby database, disconnected is returned in the State field of

the output.

For example, if you have standby database MUSIC, you can issue the following

command to see its state:

 get snapshot for database on music

The following output shows the HADR status section returned by the GET

SNAPSHOT command:

 HADR status

 Role = Primary

 State = Peer

 Synchronization mode = Sync

130 Data Recovery and High Availability Guide and Reference

Connection status = Connected, 11-03-2002 12:23:09.35092

 Heartbeat missed = 0

 Local host = host1.ibm.com

 Local service = hadr_service

 Remote host = host2.ibm.com

 Remote service = hadr_service

 Remote instance = dbinst2

 timeout(seconds) = 120

 Primary log position(file, page, LSN) = S0001234.LOG, 12, 0000000000BB800C

 Standby log position(file, page, LSN) = S0001234.LOG, 12, 0000000000BB800C

 Log gap running average(bytes) = 8723

While reviewing the output of the GET SNAPSHOT command, you might notice a

log gap. A log gap can happen because when a log file is truncated, either as the

result of an explicit log truncation, or as a result of stopping and restarting the

primary database, the primary moves to the beginning of the next log file. The

standby, however, stays at the end of the last log file. As soon as the primary

writes any log, the log will be replicated and the standby will update its log

position.

DB2 High Availability Disaster Recovery (HADR) management

DB2 High Availability Disaster Recovery (HADR) management involves

configuring and maintaining the status of your HADR system.

Managing HADR includes such tasks as:

v “Initializing high availability disaster recovery (HADR)” on page 27

v “Stopping DB2 High Availability Disaster Recovery (HADR)” on page 120

v “Switching database roles in high availability disaster recovery (HADR)” on

page 142

v “Performing an HADR failover operation” on page 140

v “Monitoring high availability disaster recovery (HADR)” on page 136

v Checking or altering database configuration parameters related to HADR.

v Cataloging an HADR database (if required).

You can manage HADR using the following methods:

v Command line processor

v Control Center GUI tools

v DB2 administrative API

DB2 High Availability Disaster Recovery (HADR) commands

The DB2 High Availability Disaster Recovery (HADR) feature provides complex

logging, failover, and recovery functionality for DB2 high availability database

solutions. Despite the complexity of the functionality HADR provides, there are

only a few actions you need to directly command HADR to perform: starting

HADR; stopping HADR; and causing the standby database to take over as the

primary database.

There are three high availability disaster recover (HADR) commands used to

manage HADR:

v Start HADR

v Stop HADR

v Takeover HADR

Chapter 4. Administering and maintaining a highly available solution 131

To invoke these commands, use the command line processor or the administrative

API. You can also invoke these commands using the GUIs available from the

Manage High Availability Disaster Recovery window in the Control Center. To

open the Manage High Availability Disaster Recovery window from the Control

Center, right-click a database and click High Availability Disaster

Recovery-—>Manage.

Issuing the START HADR command with either the AS PRIMARY or AS

STANDBY option changes the database role to the one specified if the database is

not already in that role. This command also activates the database, if it is not

already activated.

The STOP HADR command changes an HADR database (either primary or

standby) into a standard database. Any database configuration parameters related

to HADR remain unchanged so that the database can easily be reactivated as an

HADR database.

The TAKEOVER HADR command, which you can issue on the standby database

only, changes the standby database to a primary database. When you do not

specify the BY FORCE option, the primary and standby databases switch roles.

When you do specify the BY FORCE option, the standby database unilaterally

switches to become the primary database. In this case, the standby database

attempts to stop transaction processing on the old primary database. However,

there is no guarantee that transaction processing will stop. Use the BY FORCE

option to force a takeover operation for failover conditions only. To whatever

extent possible, ensure that the current primary has definitely failed, or shut it

down yourself, prior to issuing the TAKEOVER HADR command with the BY

FORCE option.

HADR database role switching

A database can be switched between primary and standard roles dynamically and

repeatedly. When the database is either online or offline, you can issue both the

START HADR command with the AS PRIMARY option and the STOP HADR

command.

You can switch a database between standby and standard roles statically. You can

do so repeatedly only if the database remains in rollforward pending state. You can

issue the START HADR command with the AS STANDBY option to change a

standard database to standby while the database is offline and in rollforward

pending state. Use the STOP HADR command to change a standby database to a

standard database while the database is offline. The database remains in

rollforward pending state after you issue the STOP HADR command. Issuing a

subsequent START HADR command with the AS STANDBY option returns the

database to standby. If you issue the ROLLFORWARD DATABASE command with

the STOP option after stopping HADR on a standby database, you cannot bring it

back to standby. Because the database is out of rollforward pending state, you can

use it as a standard database. This is referred to as taking a snapshot of the

standby database. After changing an existing standby database into a standard

database, consider creating a new standby database for high availability purposes.

To switch the role of the primary and standby databases, perform a takeover

operation without using the BY FORCE option.

132 Data Recovery and High Availability Guide and Reference

To change the standby to primary unilaterally (without changing the primary to

standby), use forced takeover. Subsequently, you might be able to reintegrate the

old primary as a new standby.

HADR role is persistent. Once an HADR role is established, it remains with the

database, even through repeated stopping and restarting of the DB2 instance or

deactivation and activation of the DB2 database.

Starting the standby is asynchronous

When you issue the START HADR command with the AS STANDBY option, the

command returns as soon as the relevant engine dispatchable units (EDUs) are

successfully started. The command does not wait for the standby to connect to the

primary database. In contrast, the primary database is not considered started until

it connects to a standby database (with the exception of when the START HADR

command is issued on the primary with the BY FORCE option). If the standby

database encounters an error, such as the connection being rejected by the primary

database, the START HADR command with the AS STANDBY option might have

already returned successfully. As a result, there is no user prompt to which HADR

can return an error indication. The HADR standby will write a message to the DB2

diagnostic log and shut itself down. You should monitor the status of the HADR

standby to ensure that it successfully connects with the HADR primary.

Replay errors, which are errors that the standby encounters while replaying log

records, can also bring down the standby database. These errors might occur, for

example, when there is not enough memory to create a buffer pool, or if the path

is not found while creating a table space. You should continuously monitor the

status of the standby database.

Do not run HADR commands from a client using a database alias enabled for

client reroute

When automatic client reroute is set up, the database server has a predefined

alternate server so that client applications can switch between working with either

the original database server or the alternative server with only minimal

interruption of the work. In such an environment, when a client connects to the

database via TCP, the actual connection can go to either the original database or to

the alternate database. HADR commands are implemented to identify the target

database through regular client connection logic. Consequently, if the target

database has an alternative database defined, it is difficult to determine the

database on which the command is actually operating. Although an SQL client

does not need to know which database it is connecting to, HADR commands must

be applied on a specific database. To accommodate this limitation, HADR

commands should be issued locally on the server machine so that client reroute is

bypassed (client reroute affects only TCP/IP connections).

HADR commands must be run on a server with a valid license

The START HADR, STOP HADR, and TAKEOVER HADR commands require that

a valid HADR license has been installed on the server where the command is

executed. If the license is not present, these commands will fail and return a

command-specific error code (SQL1767N, SQL1769N, or SQL1770N, respectively)

along with a reason code of 98. To correct the problem, either install a valid HADR

license using db2licm, or install a version of the server that contains a valid HADR

license as part of its distribution.

Chapter 4. Administering and maintaining a highly available solution 133

134 Data Recovery and High Availability Guide and Reference

Chapter 5. Detecting and responding to system outages in a

high availability solution

Implementing a high availability solution does not prevent hardware or software

failures. However, having redundant systems and a failover mechanism enables

your solution to detect and respond to failures, and reroute workload so that user

applications are still able to do work.

When a failure occurs, your database solution must do the following:

1. Detect the failure.

Failover software can use heartbeat monitoring to confirm the availability of

system components. A heartbeat monitor listens for regular communication

from all the components of the system. If the heartbeat monitor stops hearing

from a component, the heartbeat monitor signals to the system that the

component has failed.

2. Respond to the failure: failover.

a. Identify, bring online, and initialize a secondary component to take over

operations for the failed component.

b. Reroute workload to the secondary component.

c. Remove the failed component from the system.
3. Recover from the failure.

If a primary database server fails, the first priority is to redirect clients to an

alternate server or to failover to a standby database so that client applications

can do their work with as little interruption as possible. Once that failover

succeeds, you must repair whatever went wrong on the failed database server

so that is can be reintegrate it back into the solution. Repairing the failed

database server may just mean restarting it.

4. Return to normal operations.

Once the failed database system is repaired, you must integrate it back into the

database solution. You could reintegrate a failed primary database as the

standby database for the database that took over as the primary database when

the failure occurred. You could also force the repaired database server to take

over as the primary database server again.

DB2 database can perform some of these steps for you. For example:

v The DB2 High Availability Disaster Recovery (HADR) heartbeat monitor

element, hadr_heartbeat, can detect when a primary database has failed.

v DB2 client reroute can transfer workload from a failed database server to a

secondary one.

v The DB2 fault monitor can restart a database instance that terminates

unexpectedly.

Administration notification log

The DB2 database manager writes the following kinds of information to the

administration notification log: the status of DB2 utilities such REORG and

BACKUP; client application errors; service class changes, licensing activity; log file

paths and storage problems; monitoring and indexing activities; and table space

© Copyright IBM Corp. 2001, 2007 135

problems. A database administrator can use this information to diagnose problems,

tune the database, or simply monitor the database.

Administration notification log messages are also logged to the db2diag.log using a

standardized message format.

Notification messages provide additional information to supplement the SQLCODE

that is provided. The type of event and the level of detail of the information

gathered are determined by the NOTIFYLEVEL configuration parameter.

Detecting an unplanned outage

Before you can respond to the failure of a component, you must detect that the

component failed. DB2 Data Server has several tools for monitoring the health of a

database, or otherwise detecting that a database has failed. You can configure these

tools to notify you or take predefined actions when they detect a failure.

You can use the following tools to detect when a failure has occurred in some part

of your DB2 database solution:

DB2 fault monitor facility

 The DB2 fault monitor facility keeps DB2 database instances up and

running. When the DB2 database instance to which a DB2 fault monitor is

attached terminates unexpectedly, the DB2 fault monitor restarts the

instance. If your database solution is implemented in a cluster, you should

configure the cluster managing software to restart failed database instances

instead of the DB2 fault monitor.

Heartbeat monitoring in clustered environments

 Cluster managing software uses heartbeat messages between the nodes of a

cluster to monitor the health of the nodes. The cluster manager detects that

a node has failed when the node stops responding or sending any

messages.

Monitoring DB2 High Availability Disaster Recovery (HADR) databases

 The HADR feature has its own heartbeat monitor. The primary database

and the standby database each expect heartbeat messages from the other at

regular intervals.

Monitoring high availability disaster recovery (HADR)

You can use the following methods to monitor the status of your HADR databases.

db2pd utility

This utility retrieves information from the DB2 memory sets. For example,

to view information about high availability disaster recovery for database

MYDB, issue the following:

 db2pd -db mydb -hadr

GET SNAPSHOT FOR DATABASE command

This command collects status information and formats the output. The

information returned represents a snapshot of the database manager

operational status at the time the command was issued. HADR information

appears in the output under the heading HADR status.

db2GetSnapshot API

This API collects database manager monitor information and returns it to a

136 Data Recovery and High Availability Guide and Reference

user-allocated data buffer. The information returned represents a snapshot

of the database manager operational status at the time the API was called.

HADR configuration parameters are not dynamic

If you change a parameter while the HADR database is online, the changes are

visible when you issue a db2 get db cfg for the database. However, the changes are

not effective until you stop and restart the database. To retrieve the parameters that

are currently effective, use the GET SNAPSHOT command, the db2pd tool, or the

snapshot monitor API.

HADR database roles

The current role of a database is indicated by the database configuration parameter

hadr_db_role. Valid values for this configuration parameter are PRIMARY,

STANDBY, or STANDARD (the latter indicates the database is not an HADR

database).

Status of the standby database

When a database is in the standby role, it is also in rollforward pending state.

Consequently, the standby database configuration will indicate:

Rollforward pending = DATABASE

Restore pending = YES

Responding to an unplanned outage

If your database management software or cluster management software detects

that a database server has failed, your database solution must respond to that

failure as quickly and as smoothly as possible. Your database solution must

attempt to shield user applications from the failure by rerouting workload, if

possible, and failover to a secondary or standby database, if one is available.

If your database or cluster management software detects that a database server has

failed, you or your database or cluster management software must do the

following:

1. Identify, bring online, and initialize a secondary database server to take over

operations for the failed database server.

If you are using DB2 High Availability Disaster Recover (HADR) to manage

primary and standby database servers, HADR will manage keeping the

standby database synchronized with the primary database; and HADR will

manage the takeover of the primary database by the standby database.

2. Reroute user application workload to the secondary database server.

DB2 client reroute can automatically reroute client application away from a

failed database server to a secondary database server previously identified and

configured for this purpose.

3. Remove the failed database server from the system to repair it.

Once the user applications have been rerouted to a secondary or standby

database server, the failed database server can not handle any client application

requests until it has been restarted or otherwise repaired. For example, if the

cause of the failure on the primary database was that a database instance

terminated unexpectedly, the DB2 fault monitor facility will automatically

restart it.

Chapter 5. Detecting and responding to system outages 137

Automatic client reroute examples

DB2 Data Server client reroute can automatically reroute client application away

from a failed database server to a secondary database server previously identified

and configured for this purpose. You can easily create client applications that test

and demonstrate this DB2 Data Server functionality.

Here is an automatic client reroute example for a client application (shown using

pseudo-code only):

 int checkpoint = 0;

 check_sqlca(unsigned char *str, struct sqlca *sqlca)

 {

 if (sqlca–>sqlcode == -30081)

 {

 // as communication is lost, terminate the application right away

 exit(1);

 }

 else

 // print out the error

 printf(...);

 if (sqlca–>sqlcode == -30108)

 {

 // connection is re-established, re-execute the failed transaction

 if (checkpoint == 0)

 {

 goto checkpt0;

 }

 else if (checkpoint == 1)

 {

 goto checkpt1;

 }

 else if (checkpoint == 2)

 {

 goto checkpt2;

 }

 exit;

 }

 }

 }

 main()

 {

 connect to mydb;

 check_sqlca("connect failed", &sqlca);

 checkpt0:

 EXEC SQL set current schema XXX;

 check_sqlca("set current schema XXX failed", &sqlca);

 EXEC SQL create table t1...;

 check_sqlca("create table t1 failed", &sqlca);

 EXEC SQL commit;

 check_sqlca("commit failed", &sqlca);

 if (sqlca.sqlcode == 0)

 {

 checkpoint = 1;

 }

 checkpt1:

 EXEC SQL set current schema YYY;

138 Data Recovery and High Availability Guide and Reference

check_sqlca("set current schema YYY failed", &sqlca);

 EXEC SQL create table t2...;

 check_sqlca("create table t2 failed", &sqlca);

 EXEC SQL commit;

 check_sqlca("commit failed", &sqlca);

 if (sqlca.sqlcode == 0)

 {

 checkpoint = 2;

 }

 ...

 }

At the client machine, the database called “mydb” is cataloged which references a

node “hornet” where “hornet” is also cataloged in the node directory (hostname

“hornet” with port number 456).

Example 1 (involving a non-HADR database)

At the server “hornet” (hostname equals hornet with a port number), a database

“mydb” is created. Furthermore, the database “mydb” is also created at the

alternate server (hostname “montero” with port number 456). You will also need to

update the alternate server for database “mydb” at server “hornet” as follows:

 db2 update alternate server for database mydb using hostname montero port 456

In the sample application above, and without having the automatic client reroute

feature set up, if there is a communication error in the create table t1 statement,

the application will be terminated. With the automatic client reroute feature set up,

the DB2 database manager will try to establish the connection to host “hornet”

(with port 456) again. If it is still not working, the DB2 database manager will try

the alternate server location (host “montero” with port 456). Assuming there is no

communication error on the connection to the alternate server location, the

application can then continue to run subsequent statements (and to re-run the

failed transaction).

Example 2 (involving an HADR database)

At the server “hornet” (hostname equals hornet with a port number), primary

database “mydb” is created. A standby database is also created at host “montero”

with port 456. Information on how to setup HADR for both a primary and standby

database is found in Data Recovery and High Availability Guide and Reference. You

will also need to update the alternate server for database “mydb” as follows:

 db2 update alternate server for database mydb using hostname montero port 456

In the sample application above, and without having the automatic client reroute

feature set up, if there is a communication error in the create table t1 statement,

the application will be terminated. With the automatic client reroute feature set up,

the DB2 database system will try to establish the connection to host “hornet” (with

port 456) again. If it is still not working, the DB2 database system will try the

alternate server location (host “montero” with port 456). Assuming there is no

communication error on the connection to the alternate server location, the

application can then continue to run subsequent statements (and to re-run the

failed transaction).

Chapter 5. Detecting and responding to system outages 139

Performing an HADR failover operation

When you want the current standby database to become the new primary database

because the current primary database is not available, you can perform a failover.

Warning:

This procedure might cause a loss of data. Review the following information before

performing this emergency procedure:

v Ensure that the primary database is no longer processing database transactions.

If the primary database is still running, but cannot communicate with the

standby database, executing a forced takeover operation (issuing the TAKEOVER

HADR command with the BY FORCE option) could result in two primary

databases. When there are two primary databases, each database will have

different data, and the two databases can no longer be automatically

synchronized.

– Deactivate the primary database or stop its instance, if possible. (This might

not be possible if the primary system has hung, crashed, or is otherwise

inaccessible.) After a takeover operation is performed, if the failed database is

later restarted, it will not automatically assume the role of primary database.
v The likelihood and extent of transaction loss depends on your specific

configuration and circumstances:

– If the primary database fails while in peer state and the synchronization

mode is synchronous (SYNC), the standby database will not lose transactions

that were reported committed to an application before the primary database

failed.

– If the primary database fails while in peer state and the synchronization

mode is near synchronous (NEARSYNC), the standby database can only lose

transactions committed by the primary database if both the primary and the

standby databases fail at the same time.

– If the primary database fails while in peer state and the synchronization

mode is asynchronous (ASYNC), the standby database can lose transactions

committed by the primary database if the standby database did not receive all

of the log records for the transactions before the takeover operation was

performed. The standby database can also lose transactions committed by the

primary database if both the primary and the standby databases fail at the

same time.

– If the primary database fails while in remote catchup pending state,

transactions that have not been received and processed by the standby

database will be lost.

Note: Any log gap shown in the database snapshot will represent the gap at

the last time the primary and standby databases were communicating with

each other; the primary database might have processed a very large number

of transactions since that time.
v Ensure that any application that connects to the new primary (or that is rerouted

to the new primary by client reroute), is prepared to handle the following:

– There is data loss during failover. The new primary does not have all of the

transactions committed on the old primary. This can happen even when the

HADR_SYNCMODE configuration parameter is set to SYNC. Because an

HADR standby applies logs sequentially, you can assume that if a transaction

in an SQL session is committed on the new primary, all previous transactions

in the same session have also been committed on the new primary. The

140 Data Recovery and High Availability Guide and Reference

commit sequence of transactions across multiple sessions can be determined

only with detailed analysis of the log stream.

– It is possible that a transaction can be issued to the original primary,

committed on the original primary and replicated to the new primary

(original standby), but not be reported as committed because the original

primary crashed before it could report to the client that the transaction was

committed. Any application you write should be able to handle that

transactions issued to the original primary, but not reported as committed on

the original primary, are committed on the new primary (original standby).

– Some operations are not replicated, such as changes to database configuration

and to external UDF objects.
v The TAKEOVER HADR command can only be issued on the standby database.

v HADR does not interface with the DB2 fault monitor (db2fm) which can be used

to automatically restart a failed database. If the fault monitor is enabled, you

should be aware of possible fault monitor action on a presumably failed primary

database.

v A takeover operation can only take place if the primary and standby databases

are in peer state or the standby database is in remote catchup pending state. If

the standby database is in any other state, an error will be returned.

Note: You can make a standby database that is in local catchup state available

for normal use by converting it to a standard database. To do this, shut the

database down by issuing the DEACTIVATE DATABASE command, and then

issue the STOP HADR command. Once HADR has been stopped, you must

complete a rollforward operation on the former standby database before it can

be used. A database cannot rejoin an HADR pair after it has been converted

from a standby database to a standard database. To restart HADR on the two

servers, follow the procedure for initializing HADR.

In a failover scenario, a takeover operation can be performed through the

command line processor (CLP), the Manage High Availability Disaster Recovery

window in the Control Center, or the db2HADRTakeover application programming

interface (API).

The following procedure shows you how to initiate a failover on the primary or

standby database using the CLP:

1. Completely disable the failed primary database. When a database encounters

internal errors, normal shutdown commands might not completely shut it

down. You might need to use operating system commands to remove resources

such as processes, shared memory, or network connections.

2. Issue the TAKEOVER HADR command with the BY FORCE option on the

standby database. In the following example the failover takes place on database

LEAFS:

 TAKEOVER HADR ON DB LEAFS BY FORCE

The BY FORCE option is required because the primary is expected to be offline.

If the primary database is not completely disabled, the standby database will

still have a connection to the primary and will send a message to the primary

database asking it to shutdown. The standby database will still switch to the

role of primary database whether or not it receives confirmation from that the

primary database has been shutdown.

To open the Takeover HADR window:

Chapter 5. Detecting and responding to system outages 141

1. From the Control Center, expand the object tree until you find the database for

which you want to manage HADR. Right-click the database and click High

Availability Disaster Recovery→Manage in the pop-up menu. The Manage High

Availability Disaster Recovery window opens.

2. Click Takeover HADR. The Takeover HADR window opens.

3. Select that you want to execute a failover operation.

4. If both databases in the HADR pair have been started as standby databases,

select one of the databases to take over as the primary database.

5. Click OK. The window closes. A progress indicator might open to indicate

when the command is running. When it completes, you will get a notification

indicating whether or not it is successful.

6. Refresh the Manage High Availability Disaster Recovery window to ensure that

the standby database has taken over as the new primary.

7. If you are not using the automatic client reroute feature, redirect client

applications to the new primary database.

Detailed information is provided through the online help facility within the

Control Center.

Switching database roles in high availability disaster recovery

(HADR)

During high availability disaster recovery (HADR), use the TAKEOVER HADR

command to switch the roles of the primary and standby databases.

v The TAKEOVER HADR command can only be issued on the standby database.

If the primary database is not connected to the standby database when the

command is issued, the takeover operation will fail.

v The TAKEOVER HADR command can only be used to switch the roles of the

primary and standby databases if the databases are in peer state. If the standby

database is in any other state, an error message will be returned.

You can switch the HADR database roles using the command line processor (CLP),

the Manage High Availability Disaster Recovery (HADR) window in the Control

Center, or the db2HADRTakeover application programming interface (API).

To use the CLP to initiate a takeover operation on the standby database, issue the

TAKEOVER HADR command without the BY FORCE option on the standby

database.

In the following example, the takeover operation takes place on the standby

database LEAFS:

TAKEOVER HADR ON DB LEAFS

A log full error is slightly more likely to occur immediately following a takeover

operation. To limit the possibility of such an error, an asynchronous buffer pool

flush is automatically started at the end of each takeover. The likelihood of a log

full error decreases as the asynchronous buffer pool flush progresses. Additionally,

if your configuration provides a sufficient amount of active log space, a log full

error is even more unlikely. If a log full error does occur, the current transaction is

aborted and rolled back.

Note: Issuing the TAKEOVER HADR command without the BY FORCE option

will cause any applications currently connected to the HADR primary database to

be forced off. This action is designed to work in coordination with automatic client

142 Data Recovery and High Availability Guide and Reference

reroute to assist in rerouting clients to the new HADR primary database after a

role switch. However, if the forcing off of applications from the primary would be

disruptive in your environment, you might want to implement your own

procedure to shut down such applications prior to performing a role switch, and

then restart them with the new HADR primary database as their target after the

role switch is completed.

To open the Takeover HADR window:

1. From the Control Center, expand the object tree until you find the database for

which you want to manage HADR. Right-click the database and click High

Availability Disaster Recovery→Manage in the pop-up menu. The Manage High

Availability Disaster Recovery window opens.

2. Ensure that the databases are in peer state

3. Click Takeover HADR. The Takeover HADR window opens.

4. Select that you want to switch the database roles.

5. If both databases in the HADR pair have been started as standby databases,

select one of the databases to take over as the primary database.

6. Click OK. The window closes. A progress indicator might open to indicate

when the command is running. When it completes, you will get a notification

indicating whether or not it is successful.

7. Refresh the Manage High Availability Disaster Recovery window to ensure that

the databases have switched roles.

8. If you are not using the automatic client reroute feature, redirect client

applications to the new primary database.

Additional information is provided through the contextual help facility within

the Control Center.

Reintegrating a database after a takeover operation

If you executed a takeover operation in a high availability disaster recovery

(HADR) environment because the primary database failed, you can bring the failed

database back online and use it as a standby database or return it to its status as

primary database.

To reintegrate the failed primary database into the HADR pair as the new standby

database:

1. Repair the system where the original primary database resided. This could

involve repairing failed hardware or rebooting the crashed operating system.

2. Restart the failed primary database as a standby database. In the following

example, database LEAFS is started as a standby database:

 START HADR ON DB LEAFS AS STANDBY

Note: Reintegration will fail if the two copies of the database have

incompatible log streams. In particular, HADR requires that the original

primary database did not apply any logged operation that was never reflected

on the original standby database before it took over as the new primary

database. If this did occur, you can restart the original primary database as a

standby database by restoring a backup image of the new primary database or

by initializing a split mirror.

Successful return of this command does not indicate that reintegration has

succeeded; it means only that the database has been started. Reintegration is

still in progress. If reintegration subsequently fails, the database will shut itself

Chapter 5. Detecting and responding to system outages 143

down. You should monitor standby states using the GET SNAPSHOT FOR

DATABASE command or the db2pd tool to make sure that the standby

database stays online and proceeds with the normal state transition. If

necessary, you can check the administration log file db2diag.log to find out the

status of the database.

After the original primary database has rejoined the HADR pair as the standby

database, you can choose to perform a failback operation to switch the roles of the

databases to enable the original primary database to be once again the primary

database. To perform this failback operation, issue the following command on the

standby database:

 TAKEOVER HADR ON DB LEAFS

Note:

1. If the HADR databases are not in peer state or the pair is not connected, this

command will fail.

2. Open sessions on the primary database are forced closed and inflight

transactions are rolled back.

3. When switching the roles of the primary and standby databases, the BY FORCE

option of the TAKEOVER HADR command cannot be specified.

144 Data Recovery and High Availability Guide and Reference

Part 2. Data recovery

Recovery is the rebuilding of a database or table space after a problem such as

media or storage failure, power interruption, or application failure. If you have

backed up your database, or individual table spaces, you can rebuild them should

they become damaged or corrupted in some way.

There are three types of recovery:

v Crash recovery protects a database from being left in an inconsistent, or

unusable, state when transactions (also called units of work) are interrupted

unexpectedly.

v Version recovery is the restoration of a previous version of the database, using

an image that was created during a backup operation.

v Rollforward recovery can be used to reapply changes that were made by

transactions that were committed after a backup was made.

The DB2 database manager starts crash recovery automatically to attempt to

recover a database after a power interruption. You can use version recovery or

rollforward recovery to recover a damaged database.

© Copyright IBM Corp. 2001, 2007 145

146 Data Recovery and High Availability Guide and Reference

Chapter 6. Developing a backup and recovery strategy

A database can become unusable because of hardware or software failure, or both.

You might, at one time or another, encounter storage problems, power

interruptions, or application failures, and each failure scenario requires a different

recovery action. Protect your data against the possibility of loss by having a well

rehearsed recovery strategy in place. Some of the questions that you should answer

when developing your recovery strategy are:

v Will the database be recoverable?

v How much time can be spent recovering the database?

v How much time will pass between backup operations?

v How much storage space can be allocated for backup copies and archived logs?

v Will table space level backups be sufficient, or will full database backups be

necessary?

v Should I configure a standby system, either manually or through high

availability disaster recovery (HADR)?

A database recovery strategy should ensure that all information is available when

it is required for database recovery. It should include a regular schedule for taking

database backups and, in the case of partitioned database environments, include

backups when the system is scaled (when database partition servers or nodes are

added or dropped). Your overall strategy should also include procedures for

recovering command scripts, applications, user-defined functions (UDFs), stored

procedure code in operating system libraries, and load copies.

Different recovery methods are discussed in the sections that follow, and you will

discover which recovery method is best suited to your business environment.

The concept of a database backup is the same as any other data backup: taking a

copy of the data and then storing it on a different medium in case of failure or

damage to the original. The simplest case of a backup involves shutting down the

database to ensure that no further transactions occur, and then simply backing it

up. You can then recreate the database if it becomes damaged or corrupted in some

way.

The recreation of the database is called recovery. Version recovery is the restoration of

a previous version of the database, using an image that was created during a

backup operation. Rollforward recovery is the reapplication of transactions recorded

in the database log files after a database or a table space backup image has been

restored.

Crash recovery is the automatic recovery of the database if a failure occurs before all

of the changes that are part of one or more units of work (transactions) are

completed and committed. This is done by rolling back incomplete transactions

and completing committed transactions that were still in memory when the crash

occurred.

Recovery log files and the recovery history file are created automatically when a

database is created (Figure 10 on page 148). These log files are important if you

need to recover data that is lost or damaged.

© Copyright IBM Corp. 2001, 2007 147

Each database includes recovery logs, which are used to recover from application or

system errors. In combination with the database backups, they are used to recover

the consistency of the database right up to the point in time when the error

occurred.

The recovery history file contains a summary of the backup information that can be

used to determine recovery options, if all or part of the database must be

recovered to a given point in time. It is used to track recovery-related events such

as backup and restore operations, among others. This file is located in the database

directory.

The table space change history file, which is also located in the database directory,

contains information that can be used to determine which log files are required for

the recovery of a particular table space.

You cannot directly modify the recovery history file or the table space change

history file; however, you can delete entries from the files using the PRUNE

HISTORY command. You can also use the rec_his_retentn database configuration

parameter to specify the number of days that these history files will be retained.

 Data that is easily recreated can be stored in a non-recoverable database. This

includes data from an outside source that is used for read-only applications, and

tables that are not often updated, for which the small amount of logging does not

justify the added complexity of managing log files and rolling forward after a

restore operation. If both the logarchmeth1 and logarchmeth2 database configuration

parameters are set to “OFF” then the database is Non-recoverable. This means that

the only logs that are kept are those required for crash recovery. These logs are

known as active logs, and they contain current transaction data. Version recovery

using offline backups is the primary means of recovery for a non-recoverable

database. (An offline backup means that no other application can use the database

when the backup operation is in progress.) Such a database can only be restored

offline. It is restored to the state it was in when the backup image was taken and

rollforward recovery is not supported.

Data that cannot be easily recreated should be stored in a recoverable database.

This includes data whose source is destroyed after the data is loaded, data that is

Equivalent
physical object

Database

Table space
change history file

Recovery
history file

Recovery
log files

System

Instance

Database
object or concept

Figure 10. Database recovery files

148 Data Recovery and High Availability Guide and Reference

manually entered into tables, and data that is modified by application programs or

users after it is loaded into the database. Recoverable databases have the logarchmeth1

or logarchmeth2 database configuration parameters set to a value other than “OFF”.

Active logs are still available for crash recovery, but you also have the archived logs,

which contain committed transaction data. Such a database can only be restored

offline. It is restored to the state it was in when the backup image was taken.

However, with rollforward recovery, you can roll the database forward (that is, past

the time when the backup image was taken) by using the active and archived logs

to either a specific point in time, or to the end of the active logs.

Recoverable database backup operations can be performed either offline or online

(online meaning that other applications can connect to the database during the

backup operation). Online table space restore and rollforward operations are

supported only if the database is recoverable. If the database is non-recoverable,

database restore and rollforward operations must be performed offline. During an

online backup operation, rollforward recovery ensures that all table changes are

captured and reapplied if that backup is restored.

If you have a recoverable database, you can back up, restore, and roll individual

table spaces forward, rather than the entire database. When you back up a table

space online, it is still available for use, and simultaneous updates are recorded in

the logs. When you perform an online restore or rollforward operation on a table

space, the table space itself is not available for use until the operation completes,

but users are not prevented from accessing tables in other table spaces.

Automated backup operations

Since it can be time-consuming to determine whether and when to run

maintenance activities such as backup operations, you can use the Configure

Automatic Maintenance wizard to do this for you. With automatic maintenance,

you specify your maintenance objectives, including when automatic maintenance

can run. DB2 then uses these objectives to determine if the maintenance activities

need to be done and then runs only the required maintenance activities during the

next available maintenance window (a user-defined time period for the running of

automatic maintenance activities).

Note: You can still perform manual backup operations when automatic

maintenance is configured. DB2 will only perform automatic backup operations if

they are required.

Deciding how often to back up

Your recovery plan should allow for regularly scheduled backup operations,

because backing up a database requires time and system resources. Your plan

might include a combination of full database backups and incremental backup

operations.

You should take full database backups regularly, even if you archive the logs

(which allows for rollforward recovery). To recover a database, you can use either

a full database backup image that contains all of the table space backup images, or

you can rebuild the database using selected table space images. Table space backup

images are also useful for recovering from an isolated disk failure or an application

error. In partitioned database environments, you only need to restore the table

spaces that reside on database partitions that have failed. You do not need to

restore all of the table spaces or all of the database partitions.

Chapter 6. Developing a backup and recovery strategy 149

Although full database backups are no longer required for database recovery now

that you can rebuild a database from table space images, it is still good practice to

occasionally take a full backup of your database.

You should also consider not overwriting backup images and logs, saving at least

two full database backup images and their associated logs as an extra precaution.

If the amount of time needed to apply archived logs when recovering and rolling a

very active database forward is a major concern, consider the cost of backing up

the database more frequently. This reduces the number of archived logs you need

to apply when rolling forward.

You can initiate a backup operation while the database is either online or offline. If

it is online, other applications or processes can connect to the database, as well as

read and modify data while the backup operation is running. If the backup

operation is running offline, other applications cannot connect to the database.

To reduce the amount of time that the database is not available, consider using

online backup operations. Online backup operations are supported only if

rollforward recovery is enabled. If rollforward recovery is enabled and you have a

complete set of recovery logs, you can restore the database, should the need arise.

You can only use an online backup image for recovery if you have the logs that

span the time during which the backup operation was running.

Offline backup operations are faster than online backup operations, since there is

no contention for the data files.

The backup utility lets you back up selected table spaces. If you use DMS table

spaces, you can store different types of data in their own table spaces to reduce the

time required for backup operations. You can keep table data in one table space,

long field and LOB data in another table space, and indexes in yet another table

space. If you do this and a disk failure occurs, it is likely to affect only one of the

table spaces. Restoring or rolling forward one of these table spaces will take less

time than it would have taken to restore a single table space containing all of the

data.

You can also save time by taking backups of different table spaces at different

times, as long as the changes to them are not the same. So, if long field or LOB

data is not changed as frequently as the other data, you can back up these table

spaces less frequently. If long field and LOB data are not required for recovery, you

can also consider not backing up the table space that contains that data. If the LOB

data can be reproduced from a separate source, choose the NOT LOGGED option

when creating or altering a table to include LOB columns.

Note: Consider the following if you keep your long field data, LOB data, and

indexes in separate table spaces, but do not back them up together: If you back up

a table space that does not contain all of the table data, you cannot perform

point-in-time rollforward recovery on that table space. All the table spaces that

contain any type of data for a table must be rolled forward simultaneously to the

same point in time.

If you reorganize a table, you should back up the affected table spaces after the

operation completes. If you have to restore the table spaces, you will not have to

roll forward through the data reorganization.

150 Data Recovery and High Availability Guide and Reference

The time required to recover a database is made up of two parts: the time required

to complete the restoration of the backup; and, if the database is enabled for

forward recovery, the time required to apply the logs during the rollforward

operation. When formulating a recovery plan, you should take these recovery costs

and their impact on your business operations into account. Testing your overall

recovery plan will assist you in determining whether the time required to recover

the database is reasonable given your business requirements. Following each test,

you might want to increase the frequency with which you take a backup. If

rollforward recovery is part of your strategy, this will reduce the number of logs

that are archived between backups and, as a result, reduce the time required to roll

the database forward after a restore operation.

Storage considerations for recovery

When deciding which recovery method to use, consider the storage space required.

The version recovery method requires space to hold the backup copy of the

database and the restored database. The rollforward recovery method requires

space to hold the backup copy of the database or table spaces, the restored

database, and the archived database logs.

If a table contains long field or large object (LOB) columns, you should consider

placing this data into a separate table space. This will affect your storage space

considerations, as well as affect your plan for recovery. With a separate table space

for long field and LOB data, and knowing the time required to back up long field

and LOB data, you might decide to use a recovery plan that only occasionally

saves a backup of this table space. You can also choose, when creating or altering a

table to include LOB columns, not to log changes to those columns. This will

reduce the size of the required log space and the corresponding log archive space.

To prevent media failure from destroying a database and your ability to restore it,

keep the database backup, the database logs, and the database itself on different

devices. For this reason, it is highly recommended that you use the newlogpath

configuration parameter to put database logs on a separate device once the

database is created.

The database logs can use up a large amount of storage. If you plan to use the

rollforward recovery method, you must decide how to manage the archived logs.

Your choices are the following:

v Specify a log archiving method using the LOGARCHMETH1 or

LOGARCHMETH2 configuration parameters.

v Manually copy the logs to a storage device or directory other than the database

log path directory after they are no longer in the active set of logs.

v Use a user exit program to copy these logs to another storage device in your

environment.

Keeping related data together

In the process of designing your database, you will develop an understanding of

the relationships that exist between tables. These relationships can be expressed:

v At the application level, when transactions update more than one table

v At the database level, where referential integrity exists between tables, or where

triggers on one table affect another table.

Chapter 6. Developing a backup and recovery strategy 151

You should consider these relationships when developing a recovery plan. You will

want to back up related sets of data together. Such sets can be established at either

the table space or the database level. By keeping related sets of data together, you

can recover to a point where all of the data is consistent. This is especially

important if you want to be able to perform point-in-time rollforward recovery on

table spaces.

Backup and restore operations between different operating systems

and hardware platforms

DB2 database systems support some backup and restore operations between

different operating systems and hardware platforms.

The supported platforms for DB2 backup and restore operations can be grouped

into one of three families:

v Big-endian Linux and UNIX

v Little-endian Linux and UNIX

v Windows

A database backup from one platform family can be restored on any system within

the same platform family. For Windows operating systems, you can restore a

database created on DB2 Universal Database(UDB) V8 on a DB2 Version 9 database

system. For Linux and UNIX operating systems, as long as the endianness (big

endian or little endian) of the backup and restore platforms is the same, you can

restore backups that were produced on DB2 UDB V8 on DB2 Version 9.

The following table shows each of the Linux and UNIX platforms DB2 supports

and indicates whether the platforms are big endian or little endian:

 Table 4. Endianness of supported Linux and UNIX operating systems DB2 supports

Platform Endianness

AIX big endian

HP-UX big endian

HP on IPF big endian

Solaris Operating environment big endian

Linux on zSeries big endian

Linux on Power PC big endian

Linux on IA-64 little endian

Linux on AMD64 and Intel EM64T little endian

32-bit Linux on x86 little endian

The target system must have the same (or later) version of the DB2 database

product as the source system. You cannot restore a backup created on one version

of the database product to a system running an earlier version of the database

product. For example, you can restore a V8 backup on a V9 database system, but

you cannot restore a V9 backup on a V8 database system.

In situations where certain backup and restore combinations are not allowed, you

can move tables between DB2 databases using other methods:

v db2move command

v Export utility followed by the import or the load utilities

152 Data Recovery and High Availability Guide and Reference

Chapter 7. Recovery history file

A recovery history file is created with each database and is automatically updated

whenever:

v A database or table spaces are backed up

v A database or table spaces are restored

v A database or table spaces are rolled forward

v A database is automatically rebuilt and more than one image is restored

v A table space is created

v A table space is altered

v A table space is quiesced

v A table space is renamed

v A table space is dropped

v A table is loaded

v A table is dropped (when dropped table recovery is enabled)

v A table is reorganized

v On-demand log archiving is invoked

v A new log file is written to (when using recoverable logging)

v A log file is archived (when using recoverable logging)

v A database is recovered

 You can use the summarized backup information in this file to recover all or part

of a database to a given point in time. The information in the file includes:

v An identification (ID) field to uniquely identify each entry

v The part of the database that was copied and how

v The time the copy was made

v The location of the copy (stating both the device information and the logical way

to access the copy)

v The last time a restore operation was done

v The time at which a table space was renamed, showing the previous and the

current name of the table space

v The status of a backup operation: active, inactive, expired, or deleted

CREATE
database

BACKUP
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

RHF is the Recovery History File

RHF

create

RHF

update

RHF

update

RHF

update

RHF

update

ROLLFORWARD

changes in logs
Units of workUnits of work Units of work

RHF

update

Figure 11. Creating and Updating the Recovery History File

© Copyright IBM Corp. 2001, 2007 153

v The last log sequence number saved by the database backup or processed

during a rollforward recovery operation.

To see the entries in the recovery history file, use the LIST HISTORY command.

Every backup operation (database, table space, or incremental) includes a copy of

the recovery history file. The recovery history file is associated with the database.

Dropping a database deletes the recovery history file. Restoring a database to a

new location restores the recovery history file. Restoring does not overwrite the

existing recovery history file unless the file that exists on disk has no entries. If

that is the case, the database history will be restored from the backup image.

If the current database is unusable or not available, and the associated recovery

history file is damaged or deleted, an option on the RESTORE command allows

only the recovery history file to be restored. The recovery history file can then be

reviewed to provide information on which backup to use to restore the database.

The size of the file is controlled by the rec_his_retentn configuration parameter that

specifies a retention period (in days) for the entries in the file. Even if the number

for this parameter is set to zero (0), the most recent full database backup (plus its

restore set) is kept. (The only way to remove this copy is to use the PRUNE with

FORCE option.) The retention period has a default value of 366 days. The period

can be set to an indefinite number of days by using -1. In this case, explicit

pruning of the file is required.

Recovery history file entry status

The database manager creates entries in the recovery history file for events such as

a backup operation, a restore operation, table space creation, and others. Each

entry in the recovery history file has an associated status: active, inactive, expired,

deleted, or do_not_delete.

The database manager uses the status of a recovery history file entry to determine

whether the physical files associated with that entry would be needed to recover

the database. As part of automated pruning, the database manager updates the

status of recovery history file entries.

Active database backup

An active database backup is one that can be restored and rolled forward using the

current logs to recover the current state of the database.

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

d2 d4d1 d3 LS1

t1 t4t3t2

Figure 12. Active Database Backups. The value of num_db_backups has been set to four.

154 Data Recovery and High Availability Guide and Reference

Inactive database backup

An inactive database backup is one that, if restored, moves the database back to a

previous state.

Expired database backups

An expired database backup image is one that is no longer needed, because more

recent backup images are available.

Entries marked do_not_delete

You can remove (prune) recovery history file entries using the PRUNE HISTORY

command or the db2Prune API. The database manager also prunes the recovery

history file entries as part of automated pruning.

There are only three ways to prune entries marked do_not_delete:

v Invoke the PRUNE HISTORY command with the WITH FORCE option

v Call the ADMIN_CMD procedure with PRUNE HISTORY and WITH FORCE

option

v Call the db2Prune API with the DB2_PRUNE_OPTION_FORCE option

d2 d4d1 d3

RS1 d5 d6

LS1

LS2

t1 t3t2

t5

t4

t7t6

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 13. Inactive Database Backups

d2 d4d1 d3 LS1

t1 t4t3t2

d5

t5

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 14. Expired Database Backups

Chapter 7. Recovery history file 155

Those entries that are marked do_not_delete will never be pruned from the

recovery history file unless you perform one of these three actions.

The database manager does not set the status of recovery history file entries to

do_not_delete. You can set the status of of a recovery history file entry to

do_not_delete using the UPDATE HISTORY command.

Here are more examples of the status of different recovery history file entries:

Viewing recovery history file entries using the DB_HISTORY

administrative view

You can use the DB_HISTORY() administrative view to access the contents of the

database history file. This method is an alternative to using the LIST HISTORY

CLP command or the C history APIs.

A database connection is required to use this function.

d2 d4d1 d3 LS1

RS1 d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 15. Mixed Active, Inactive, and Expired Database Backups

d2 d4d1 d3 LS1

RS1
d5 d6 LS2

t1 t3t2

t5

t4

t7t6 t8

d7

t10t9

d9d8

= active = inactive = expired

tn = time = backup = restore/rollforward = log sequencedn rsn lsn

Figure 16. Expired Log Sequence

156 Data Recovery and High Availability Guide and Reference

Deletes and updates to the database history file can only be done through the

PRUNE or UPDATE HISTORY commands.

This administrative view is not available for databases created using DB2 Universal

Database Version 8.2 and earlier.

To access the history file:

1. Ensure you are connected to a database.

2. Use the DB_HISTORY() administrative view within an SQL SELECT statement

to access the database history file for the database you are connected to, or on

the database partition specified by the DB2NODE environment. For example, to

see the contents of the history file use:

 SELECT * FROM TABLE(DB_HISTORY()) AS LIST_HISTORY

To hide the syntax of the administrative view, you can create a view as follows:

 CREATE VIEW LIST_HISTORY AS

 SELECT * FROM TABLE(DB_HISTORY()) AS LIST_HISTORY

After creating this view, you can run queries against the view. For example:

 SELECT * FROM LIST_HISTORY

or

 SELECT dbpartitionnum FROM LIST_HISTORY

or

 SELECT dbpartitionnum, start_time, seqnum, tabname, sqlstate

 FROM LIST_HISTORY

The Table 5 table lists the columns and the column data types returned by the

LIST_HISTORY table function.

 Table 5. Contents of the history table

Column name Data type

dbpartitionnum smallint smallint

EID bigint

start_time char(14)

seqnum smallint

end_time varchar(14)

firstlog varchar(254)

lastlog varchar(254)

backup_id varchar(24)

tabschema varchar(128)

tabname varchar(128)

comment varchar(254)

cmd_text clob(2M)

num_tbsps integer

tbspnames clob(5M)

operation char(1)

operationtype char(1)

Chapter 7. Recovery history file 157

Table 5. Contents of the history table (continued)

Column name Data type

objecttype varchar(255)

location char(1)

devicetype char(1)

entry_status varchar(8)

sqlcaid varchar(8)

sqlcabc integer

sqlcode integer

sqlerrml smallint

sqlerrmc varchar(70)

sqlerrp varchar(8)

sqlerrd1 integer

sqlerrd2 integer

sqlerrd3 integer

sqlerrd4 integer

sqlerrd5 integer

sqlwarn varchar(11)

sqlstate varchar(5)

Pruning the recovery history file

The database manager creates entries in the recovery history file for events such as

a backup operation, a restore operation, table space creation, and others. When an

entry in the recovery history file is no longer relevant, because the associated

recovery objects would no longer be needed to recover the database, you might

want to remove, or prune, those entries from the recovery history file.

You can prune the entries in the recovery history file using the following methods:

v Invoke the PRUNE HISTORY command

v Call the db2Prune API

v Call the ADMIN_CMD procedure with the PRUNE_HISTORY parameter

When you use one of these methods to prune the recovery history file, the

database manager removes (prunes) entries from the recovery history file that are

older than a timestamp you specify.

If a recovery history file entry matches the criteria you specify for pruning, but

that entry would still be needed for a recovery of the database, the database

manager will not prune the entry unless you use the WITH FORCE parameter or

the DB2PRUNE_OPTION_FORCE flag.

If you use the AND DELETE parameter or the DB2PRUNE_OPTION_DELETE flag,

then log files associated with pruned entries will be deleted as well.

158 Data Recovery and High Availability Guide and Reference

If you set the AUTO_DEL_REC_OBJ database configuration parameter to ON, and

you use the AND DELETE parameter or the DB2PRUNE_OPTION_DELETE flag,

then log files, backup images, and load copy images associated with pruned entries

will be deleted.

Automating recovery history file pruning

You can configure the database manager to automatically prune and update the

status of recovery history file entries.

You can manually update the status of entries in the recovery history file using the

UPDATE HISTORY command, the db2HistoryUpdate API, or the ADMIN_CMD

procedure with the ″UPDATE_HISTORY″ parameter. You can use the PRUNE

HISTORY command, the db2Prune API, or the ADMIN_CMD procedure with the

″PRUNE_HISTORY″ parameter to manually remove, or prune, entries from the

recovery history file. However, it is recommended that you configure the database

manager to manage the recovery history file instead of updating and pruning the

recovery history file manually.

The database manager automatically updates and prunes recovery history file

entries at the following times:

v After a full (non-incremental) database backup operation or full

(non-incremental) table space operation completes successfully

v After a database restore operation, where a rollforward operation is not required,

completes successfully

v After a database rollforward operation completes successfully

During automated pruning, the database manager performs two operations:

1. Updates the status of the recovery history file entries

2. Prunes expired recovery history file entries

The database manager updates the recovery history file entries in the following

way:

v All active database backup images that are no longer needed are marked as

expired.

v All database backup images that are marked as inactive and that were taken

prior to the point at which an expired database backup was taken are also

marked as expired. All associated inactive table space backup images and load

backup copies are also marked as expired.

v If an active database backup image is restored, but it is not the most recent

database backup recorded in the history file, any subsequent database backup

images belonging to the same log sequence are marked as inactive.

v If an inactive database backup image is restored, any inactive database backups

belonging to the current log sequence are marked as active again. All active

database backup images that are no longer in the current log sequence are

marked as inactive.

v Any database or table space backup image that does not correspond to the

current log sequence, also called the current log chain, is marked inactive.

The current log sequence is determined by the database backup image that has

been restored, and the log files that have been processed. Once a database

backup image is restored, all subsequent database backup images become

inactive, because the restored image begins a new log chain. (This is true if the

backup image was restored without rolling forward. If a rollforward operation

Chapter 7. Recovery history file 159

has occurred, all database backups that were taken after the break in the log

chain are marked as inactive. It is conceivable that an older database backup

image will have to be restored because the rollforward utility has gone through

the log sequence containing a damaged current backup image.)

v A table space-level backup image becomes inactive if, after it is restored, the

current state of the database cannot be reached by applying the current log

sequence.

v Any entries that have a status of do_not_delete are not pruned, and their

associated log files, backup images, and load copy images are not deleted.

v When a database is migrated, all online database backup entries and all online

or offline table space backup entries in the history file are marked as expired, so

that these entries are not selected by automatic rebuild as images required for

rebuilding. Load copy images and log archive entries are also marked as

expired, since these types of entries cannot be used for recovery purposes

The following database configuration parameters control which entries the

database manager prunes:

num_db_backups

specifies the number of database backups to retain for a database

rec_his_retentn

specifies the number of days that historical information on backups will be

retained

auto_del_rec_obj

specifies whether the database manager should delete log files, backup

images, and load copy images that are associated with recovery history file

entries that are pruned

 To configure the database manager to automatically manage the recovery history

file, set the following configuration parameters:

v num_db_backups

v rec_his_retentn

v auto_del_rec_obj

When auto_del_rec_obj is set to ON, and whenever there are more successful

database backup entries than the num_db_backups configuration parameter, then

the database manager will automatically prune recovery history file entries that are

older than rec_his_retentn.

Protecting recovery history file entries from being pruned

You can prevent key recovery history file entries from being pruned, and

associated recovery objects from being deleted by setting the status of the recovery

history files entries to do_not_delete.

You can remove (prune) recovery history file entries using the PRUNE HISTORY

command, the ADMIN_CMD procedure with PRUNE_HISTORY, or the db2Prune

API. If you use the AND DELETE parameter with PRUNE HISTORY, or the

DB2PRUNE_OPTION_DELETE flag with db2Prune, and the AUTO_DEL_REC_OBJ

database configuration parameter is set to ON, then the associated recovery objects

will also be physically deleted.

160 Data Recovery and High Availability Guide and Reference

The database manager also prunes the recovery history file entries as part of

automated pruning. If the AUTO_DEL_REC_OBJ database configuration parameter

is set to ON, the database manager will delete the recovery objects associated with

any entries that are pruned.

To protect key recovery history file entries and associated recovery objects:

Use the UPDATE HISTORY command, the db2HistoryUpdate API, or the

ADMIN_CMD procedure with ″UPDATE_HISTORY″ to set the status for key

recovery file entries to do_no_delete

There are three ways to prune entries marked do_not_delete:

v Invoke the PRUNE HISTORY command with the WITH FORCE option

v Call the ADMIN_CMD procedure with PRUNE HISTORY and WITH FORCE

option

v Call the db2Prune API with the DB2_PRUNE_OPTION_FORCE iOption

Those entries that are marked do_not_delete will never be pruned from the

recovery history file unless you perform one of these three procedures.

Restrictions:

v You can set the status of only backup images, load copy images, and log files to

do_not_delete.

v The status of a backup entry is not propagated to load copy images,

non-incremental backups, or log files related to that backup operation. If you

want to save a particular database backup entry and its related log file entries,

you must set the status for the database backup entry and the entry for each

related log file.

Chapter 7. Recovery history file 161

162 Data Recovery and High Availability Guide and Reference

Chapter 8. Managing recovery objects

As you regularly backup your database, you might accumulate very large database

backup images, and many database logs and load copy images. The IBM Data

Server database manager can simplify managing these recovery objects.

Storing recovery objects can consume great amounts of storage space. Once

subsequent backup operations are run, you can delete the older recovery objects

because they are no longer needed to restore the database. However, removing the

older recovery objects can be time consuming. Also, while you are deleting the

older recovery objects, you might accidentally damage recovery objects that are

still needed.

There are two ways to use the database manager to delete recovery objects that are

no longer required to restore the database:

v You can invoke the PRUNE HISTORY command with the AND DELETE

parameter, or call the db2Prune API with the DB2PRUNE_OPTION_DELETE

flag.

v You can configure the database manager to automatically delete unneeded

recovery objects.

Deleting database recovery objects using the PRUNE HISTORY

command or the db2Prune API

You can use the AUTO_DEL_REC_OBJ database configuration parameter and the

PRUNE HISTORY command or the db2Prune API to delete recovery objects.

When you invoke the PRUNE HISTORY command, or call the db2Prune API, the

IBM Data Server database manager does the following:

v Prunes entries from the recovery history file that do not have the status

DB2HISTORY_STATUS_DO_NOT_DEL

When you invoke the PRUNE HISTORY command with the AND DELETE

parameter, or when you call the db2Prune API with the

DB2PRUNE_OPTION_DELETE flag, the database manager does the following:

v Prunes entries from the recovery history file that are older than a timestamp you

specify and that do not have the status DB2HISTORY_STATUS_DO_NOT_DEL

v Deletes the physical log files associated with the pruned entries

If you set the AUTO_DEL_REC_OBJ database configuration parameter to ON, then

when you invoke the PRUNE HISTORY command with the AND DELETE

parameter, or when you call the db2Prune API with the

DB2PRUNE_OPTION_DELETE flag, the database manager does the following:

v Prunes entries from the recovery history file that do not have the status

DB2HISTORY_STATUS_DO_NOT_DEL

v Deletes the physical log files associated with the pruned entries

v Deletes the backup images associated with the pruned entries

v Deletes the load copy images associated with the pruned entries

To delete unneeded recovery objects:

© Copyright IBM Corp. 2001, 2007 163

1. Set the AUTO_DEL_REC_OBJ database configuration parameter to ON.

2. Invoke the PRUNE HISTORY command with the AND DELETE parameter, or

call the db2Prune API with the DB2PRUNE_OPTION_DELETE flag.

Automating database recovery object management

You can use the AUTO_DEL_REC_OBJ database configuration parameter and

automated recovery history file pruning to configure the IBM Data Server database

manager to automatically delete unneeded recovery objects after every full

database backup operation.

After every successful full (non-incremental) database backup operation, the

database manager will prune the recovery history file according to the value of the

num_db_backup and rec_his_retentn configuration parameters:

v If there are more database backup entries in the recovery history file than the

value of the num_db_backup configuration parameter, the database manager

will prune those entries from the recovery history file that are older than the

value of the rec_his_retentn configuration parameter and that do not have the

status DB2HISTORY_STATUS_DO_NOT_DEL.

If you set the AUTO_DEL_REC_OBJ database configuration parameter to ON, then

the database manager will do the following in addition to pruning entries from the

recovery history file:

v Delete the physical log files associated with the pruned entries

v Delete the backup images associated with the pruned entries

v Delete the load copy images associated with the pruned entries

If there are no full database backup images available for consideration in the

current recovery history (perhaps none were ever taken), then images older than

the range of time specified by REC_HIS_RETENTN will be deleted.

If the database manager is unable to delete a file because the file is no longer at

the location listed in the recovery history file, then the database manager will

prune the history entry.

If the database manager is unable to delete a file because of a communication error

between the database manager and the storage manager or device, then the

database manager will not prune the history file entry. When the error is resolved,

the file can be deleted during the next automated prune.

To configure the database manager to automatically delete unneeded recovery

objects:

1. Set the AUTO_DEL_REC_OBJ database configuration parameter to ON

2. Set the rec_his_retentn and num_db_backups configuration parameters to

enable automated recovery history file pruning.

Protecting recovery objects from being deleted

Automated recovery object management saves administration time and storage

space. However, you might want to prevent certain recovery objects from being

automatically deleted. You can prevent key recovery objects from being deleted by

setting the status of the associated recovery history files entries to do_not_delete.

About this task

164 Data Recovery and High Availability Guide and Reference

If you set the AUTO_DEL_REC_OBJ database configuration parameter to ON, then

recovery objects get deleted when their associated recovery history file entries get

pruned. Recovery history file entries get pruned when one of the following

happens:

v You invoke the PRUNE HISTORY command with the AND DELETE parameter

v You call the db2Prune API with the DB2PRUNE_OPTION_DELETE flag

v The database manager automatically prunes the recovery history file, which

happens after every successful table space or database full backup.

Whether you invoke the PRUNE HISTORY command, call the db2Prune API, or

configure the database manager to automatically prune the entries in the recovery

history file, entries that are marked do_not_delete will not be pruned, and the

associated recovery objects will not be deleted.

Procedure

Use the UPDATE HISTORY command to set the status for associated recovery file

entries to do_no_delete.

Restrictions:

v You can set the status of only backup images, load copy images, and log files to

do_not_delete.

v The status of a backup entry is not propagated to log files, load copy images, or

non-incremental backups related to that backup operation. If you want to save a

particular database backup entry and its related log file entries, you must set the

status for the database backup entry and the entry for each related log file.

Managing snapshot backup objects

You must use the db2acsutil command to manage snapshot backup objects.

Before you begin

To perform snapshot backup and restore operations, you need a DB2 ACS API

driver for your storage device. Integrated into IBM Data Server is a DB2 ACS API

driver for the following storage hardware:

v IBM TotalStorage SAN Volume Controller

v IBM Enterprise Storage Server Model 800

v IBM System Storage DS6000

v IBM System Storage DS8000

v IBM System Storage N Series

v NetApp V-series

Before you can manage snapshot backup objects, you must enable DB2 Advanced

Copy Services (ACS). See: “Enabling DB2 Advanced Copy Services (ACS)” on page

263.

Restrictions

The db2acsutil command is currently only supported on AIX and Linux.

Procedure

1. To list available snapshot backup objects, use the QUERY parameter.

Chapter 8. Managing recovery objects 165

http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-03.ibm.com/servers/storage/disk/ds6000/index.html
http://www-03.ibm.com/systems/storage/disk/ds8000/index.html
http://www-03.ibm.com/systems/storage/network/software
http://www.netapp.com/products/enterprise-systems/virtualized-storage/index.html

For example, to list available snapshot backup objects for the database manager

instance named dbminst1, use the following syntax:

db2acsutil query instance dbminst1

2. To check the progress of a given snapshot backup operation, use the STATUS

parameter.

For example, to see the progress of snapshot backup operations that might be

currently running on a database called database1, use the following syntax:

db2acsutil query status db database1

3. To delete a particular snapshot backup object, use the DELETE parameter.

For example, to delete all snapshot backup objects for the database called

database1 that are older then 10 days, use the following syntax:

db2acsutil delete older than 10 days ago db database1

166 Data Recovery and High Availability Guide and Reference

Chapter 9. Monitoring the progress of backup, restore and

recovery operations

You can use the LIST UTILITIES command to monitor backup, restore, and

rollforward operations on a database.

To use progress monitoring for backup, restore and recovery operations:

Issue the LIST UTILITIES command and specify the SHOW DETAIL option.

 list utilities show detail

The following is an example of the output for monitoring the performance of an

offline database backup operation:

 LIST UTILITIES SHOW DETAIL

 ID = 2

 Type = BACKUP

 Database Name = SAMPLE

 Description = offline db

 Start Time = 10/30/2003 12:55:31.786115

 Throttling:

 Priority = Unthrottled

 Progress Monitoring:

 Estimated Percentage Complete = 41

 Total Work Units = 20232453 bytes

 Completed Work Units = 230637 bytes

 Start Time = 10/30/2003 12:55:31.786115

For backup operations, an initial estimate of the number of bytes to be processed

will be specified. As the backup operation progresses the number of bytes to be

processed will be updated. The bytes shown does not correspond to the size of the

image and should not be used as an estimate for backup image size. The actual

image might be much smaller depending on whether it is an incremental or

compressed backup.

For restore operations, no initial estimate will be given. Instead UNKNOWN will

be specified. As each buffer is read from the image, the actual amount of bytes

read will be updated. For automatic incremental restore operations where multiple

images might be restored, the progress will be tracked using phases. Each phase

represents an image to be restored from the incremental chain. Initially, only one

phase will be indicated. After the first image is restored, the total number of

phases will be indicated. As each image is restored the number of phases

completed will be updated, as will the number of bytes processed.

For crash recovery and rollforward recovery there will be two phases of progress

monitoring: FORWARD and BACKWARD. During the FORWARD phase, log files

are read and the log records are applied to the database. For crash recovery, the

total amount of work is estimated using the starting log sequence number up to

the end of the last log file. For rollforward recovery, when this phase begins

UNKNOWN will be specified for the total work estimate. The amount of work

processed in bytes will be updated as the process continues.

© Copyright IBM Corp. 2001, 2007 167

During the BACKWARD phase, any uncommitted changes applied during the

FORWARD phase are rolled back. An estimate for the amount of log data to be

processed in bytes will be provided. The amount of work processed in bytes will

be updated as the process continues.

Table space states

The current status of a table space is reflected by its state. The table space states

most commonly associated with recovery are:

v Backup pending. A table space is put in this state after a point-in-time rollforward

operation, or after a load operation with the no copy option. The table space

must be backed up before it can be used. (If it is not backed up, the table space

cannot be updated, but read-only operations are allowed.)

v Restore pending. A table space is put in this state if a rollforward operation on

that table space is cancelled, or if a rollforward operation on that table space

encounters an unrecoverable error, in which case the table space must be

restored and rolled forward again. A table space is also put in this state if,

during a restore operation, the table space cannot be restored.

v Rollforward-in-progress. A table space is put in this state when a rollforward

operation on that table space is in progress. Once the rollforward operation

completes successfully, the table space is no longer in rollforward-in-progress

state. The table space can also be taken out of this state if the rollforward

operation is cancelled.

v Rollforward pending. A table space is put in this state after it is restored, or

following an input/output (I/O) error. After it is restored, the table space can be

rolled forward to the end of the logs or to a point in time. Following an I/O

error, the table space must be rolled forward to the end of the logs.

168 Data Recovery and High Availability Guide and Reference

Chapter 10. Backup overview

The simplest form of the DB2 BACKUP DATABASE command requires only that

you specify the alias name of the database that you want to back up. For example:

 db2 backup db sample

If the command completes successfully, you will have acquired a new backup

image that is located in the path or the directory from which the command was

issued. It is located in this directory because the command in this example does

not explicitly specify a target location for the backup image.

Note: If the DB2 client and server are not located on the same system, DB2 will

determine which directory is the current working directory on the client machine

and use that as the backup target directory on the server. For this reason, it is

recommended that you specify a target directory for the backup image.

Backup images are created at the target location specified when you invoke the

backup utility. This location can be:

v A directory (for backups to disk or diskette)

v A device (for backups to tape)

v A Tivoli Storage Manager (TSM) server

v Another vendor’s server

The recovery history file is updated automatically with summary information

whenever you invoke a database backup operation. This file is created in the same

directory as the database configuration file.

If you want to delete old backup images that are no longer required, you can

remove the files if the backups are stored as files. If you subsequently run a LIST

HISTORY command with the BACKUP option, information about the deleted

backup images will also be returned. You must use the PRUNE command to

remove those entries from the recovery history file.

If your recovery objects were saved using Tivoli Storage Manager (TSM), you can

use the db2adutl utility to query, extract, verify, and delete the recovery objects. On

Linux and UNIX, this utility is located in the sqllib/adsm directory, and on

Windows operating systems, it is located in sqllib\bin.

On all operating systems, file names for backup images created on disk consist of a

concatenation of several elements, separated by periods:

 DB_alias.Type.Inst_name.NODEnnnn.CATNnnnn.timestamp.Seq_num

For example:

 STAFF.0.DB201.NODE0000.CATN0000.19950922120112.001

Note: DB2 Universal Database, Version 8.2.2 and earlier versions used a four-level

subdirectory tree when storing backup images on Windows operating systems:

 DB_alias.Type\Inst_name\NODEnnnn\CATNnnnn\yyyymmdd\hhmmss.Seq_num

For example:

 SAMPLE.0\DB2\NODE0000\CATN0000\20010320\122644.001

© Copyright IBM Corp. 2001, 2007 169

Database alias

A 1- to 8-character database alias name that was specified when the

backup utility was invoked.

Type Type of backup operation, where: 0 represents a full database-level backup,

3 represents a table space-level backup, and 4 represents a backup image

generated by the LOAD...COPY TO command.

Instance name

A 1- to 8-character name of the current instance that is taken from the

DB2INSTANCE environment variable.

Node number

The database partition number. In single partition database environments,

this is always NODE0000. In partitioned database environments, it is

NODExxxx, where xxxx is the number assigned to the database partition in

the db2nodes.cfg file.

Catalog partition number

The database partition number of the catalog partition for the database. In

single partition database environments, this is always CATN0000. In

partitioned database environments, it is CATNxxxx, where xxxx is the

number assigned to the database partition in the db2nodes.cfg file.

Time stamp

A 14-character representation of the date and time at which the backup

operation was performed. The time stamp is in the form yyyymmddhhnnss,

where:

v yyyy represents the year (1995 to 9999)

v mm represents the month (01 to 12)

v dd represents the day of the month (01 to 31)

v hh represents the hour (00 to 23)

v nn represents the minutes (00 to 59)

v ss represents the seconds (00 to 59)

Sequence number

A 3-digit number used as a file extension.

 When a backup image is written to tape:

v File names are not created, but the information described above is stored in the

backup header for verification purposes.

v A tape device must be available through the standard operating system

interface. In a large partitioned database environment, however, it might not be

practical to have a tape device dedicated to each database partition server. You

can connect the tape devices to one or more TSM servers, so that access to these

tape devices is provided to each database partition server.

v In a partitioned database environment, you can also use products that provide

virtual tape device functions, such as REELlibrarian 4.2 or CLIO/S. You can use

these products to access the tape device connected to other nodes (database

partition servers) through a pseudo tape device. Access to the remote tape

device is provided transparently, and the pseudo tape device can be accessed

through the standard operating system interface.

You cannot back up a database that is in an unusable state, except when that

database is in backup pending state. If any table space is in an abnormal state, you

cannot back up the database or that table space, unless it is in backup pending

state.

170 Data Recovery and High Availability Guide and Reference

Concurrent backup operations on the same table space are not permitted. Once a

backup operation has been initiated on a table space, any subsequent attempts will

fail (SQL2048).

If a database or a table space is in a partially restored state because a system crash

occurred during the restore operation, you must successfully restore the database

or the table space before you can back it up.

A backup operation will fail if a list of the table spaces to be backed up contains

the name of a temporary table space.

The backup utility provides concurrency control for multiple processes that are

making backup copies of different databases. This concurrency control keeps the

backup target devices open until all the backup operations have ended. If an error

occurs during a backup operation, and an open container cannot be closed, other

backup operations targeting the same drive might receive access errors. To correct

such access errors, you must terminate the backup operation that caused the error

and disconnect from the target device. If you are using the backup utility for

concurrent backup operations to tape, ensure that the processes do not target the

same tape.

Displaying backup information

You can use db2ckbkp to display information about existing backup images. This

utility allows you to:

v Test the integrity of a backup image and determine whether or not it can be

restored.

v Display information that is stored in the backup header.

v Display information about the objects and the log file header in the backup

image.

Using backup

Use the BACKUP DATABASE command to take a copy of a database’s data and

store it on a different medium in case of failure or damage to the original. You can

back up an entire database, database partition, or only selected table spaces.

Before you begin

You do not need to be connected to the database that is to be backed up: the

backup database utility automatically establishes a connection to the specified

database, and this connection is terminated at the completion of the backup

operation. If you are connected to a database that is to be backed up, you will be

disconnected when the BACKUP DATABASE command is issued and the backup

operation will proceed.

The database can be local or remote. The backup image remains on the database

server, unless you are using a storage management product such as Tivoli Storage

Manager (TSM) or DB2 Advanced Copy Services (ACS).

If you are performing an offline backup and if you have activated the database

using the ACTIVATE DATABASE statement, you must deactivate the database

before you run the offline backup. If there are active connections to the database,

in order to deactivate the database successfully, a user with SYSADM authority

must connect to the database and issue the following commands:

Chapter 10. Backup 171

CONNECT TO database-alias

QUIESCE DATABASE IMMEDIATE FORCE CONNECTIONS;

UNQUIESCE DATABASE;

TERMINATE;

DEACTIVATE DATABASE database-alias

In a partitioned database environment, you can use the BACKUP DATABASE

command to back up database partitions individually, use the ON

DBPARTITIONNUM command parameter to back up several of the database

partitions at once, or use the ALL DBPARTITIONNUMS parameter to back up all

of the database partitions simultaneously. You can use the LIST NODES command

to identify the database partitions that have user tables on them that you might

want to back up.

Unless you are using a single system view (SSV) backup, if you are performing an

offline backup in a partitioned database environment, you should back up the

catalog partition separately from all other database partitions. For example, you

can back up the catalog partition first, then back up the other database partitions.

This is necessary because the backup operation may require an exclusive database

connection on the catalog partition, during which the other database partitions

cannot connect. If you are performing an online backup, all database partitions

(including the catalog partition) can be backed up simultaneously or in any order.

You can also use the Command Editor to back up database partitions. Because this

approach does not support rollforward recovery, you should back up the database

residing on these nodes regularly. You should also keep a copy of the db2nodes.cfg

file with any backup copies you take, as protection against possible damage to this

file.

On a distributed request system, backup operations apply to the distributed

request database and the metadata stored in the database catalog (wrappers,

servers, nicknames, and so on). Data source objects (tables and views) are not

backed up, unless they are stored in the distributed request database

If a database was created with a previous release of the database manager, and the

database has not been migrated, you must migrate the database before you can

back it up.

About this task

The following restrictions apply to the backup utility:

v A table space backup operation and a table space restore operation cannot be

run at the same time, even if different table spaces are involved.

v If you want to be able to do rollforward recovery in a partitioned database

environment, you must regularly back up the database on the list of nodes, and

you must have at least one backup image of the rest of the nodes in the system

(even those that do not contain user data for that database). Two situations

require the backed-up image of a database partition at a database partition

server that does not contain user data for the database:

– You added a database partition server to the database system after taking the

last backup, and you need to do forward recovery on this database partition

server.

– Point-in-time recovery is used, which requires that all database partitions in

the system are in rollforward pending state.

172 Data Recovery and High Availability Guide and Reference

v Online backup operations for DMS table spaces are incompatible with the

following operations:

– load

– reorganization (online and offline)

– drop table space

– table truncation

– index creation

– not logged initially (used with the CREATE TABLE and ALTER TABLE

statements)
v If you attempt to perform an offline backup of a database that is currently

active, you will receive an error. Before you run an offline backup you can make

sure the database is not active by issuing the DEACTIVATE DATABASE

command.

The backup utility can be invoked through the command line processor (CLP), the

Backup Database wizard in the Control Center, by running the ADMIN_CMD

procedure with the BACKUP DATABASE parameter, or the db2Backup application

programming interface (API).

Following is an example of the BACKUP DATABASE command issued through the

CLP:

db2 backup database sample to c:\DB2Backups

Procedure

To open the Backup Database wizard:

1. From the Control Center, expand the object tree until you find the database or

table space object that you want to back up.

2. Right-click on the object and select Backup from the pop-up menu. The Backup

Database wizard opens. .

What to do next

Detailed information is provided through the contextual help facility within the

Control Center

If you performed an offline backup, after the backup completes, you must

reactivate the database:

ACTIVATE DATABASE sample

Performing a snapshot backup

A snapshot backup operation uses the fast copying technology of a storage device

to perform the data copying portion of the backup.

Before you begin

To perform snapshot backup and restore operations, you need a DB2 ACS API

driver for your storage device. Integrated into IBM Data Server is a DB2 ACS API

driver for the following storage hardware:

v IBM TotalStorage SAN Volume Controller

v IBM Enterprise Storage Server Model 800

v IBM System Storage DS6000

Chapter 10. Backup 173

http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-03.ibm.com/servers/storage/disk/ds6000/index.html

v IBM System Storage DS8000

v IBM System Storage N Series

v NetApp V-series

Before you can perform a snapshot backup, you must enable DB2 Advanced Copy

Services (ACS). See: “Enabling DB2 Advanced Copy Services (ACS)” on page 263.

Procedure

You can perform a snapshot backup using the BACKUP DATABASE command

with the USE SNAPSHOT parameter, the db2Backup API with the

SQLU_SNAPSHOT_MEDIA media type, or the ADMIN_CMD procedure with the

BACKUP DATABASE and the USE SNAPSHOT parameters:

BACKUP DATABASE command:

db2 backup db sample use snapshot

ADMIN_CMD procedure with BACKUP DATABASE parameter:

CALL SYSPROC.ADMIN_CMD

 (’backup db sample use snapshot’)

db2Backup API

int sampleBackupFunction(char dbAlias[],

 char user[],

 char pswd[],

 char workingPath[])

{

 db2MediaListStruct mediaListStruct = { 0 };

 mediaListStruct.locations = &workingPath;

 mediaListStruct.numLocations = 1;

 mediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

 db2BackupStruct backupStruct = { 0 };

 backupStruct.piDBAlias = dbAlias;

 backupStruct.piUsername = user;

 backupStruct.piPassword = pswd;

 backupStruct.piVendorOptions = NULL;

 backupStruct.piMediaList = &mediaListStruct;

 db2Backup(db2Version950, &backupStruct, &sqlca);

 return 0;

}

Results

After performing a snapshot backup, you can restore from the snapshot backup.

Using a split mirror as a backup image

Use the following procedure to create a split mirror of a primary database for use

as a backup image. This procedure can be used instead of performing backup

database operations on the primary database.

To use a split mirror as a “backup image”, follow these steps:

1. Suspend I/O on the primary database:

174 Data Recovery and High Availability Guide and Reference

http://www-03.ibm.com/systems/storage/disk/ds8000/index.html
http://www-03.ibm.com/systems/storage/network/software
http://www.netapp.com/products/enterprise-systems/virtualized-storage/index.html

db2 set write suspend for database

2. Use appropriate operating system-level commands to split the mirror or

mirrors from the primary database.

Note: Ensure that you copy the entire database directory including the volume

directory. You must also copy the log directory and any container directories

that exist outside the database directory. To gather this information, refer to the

DBPATHS administrative view, which shows all the files and directories of the

database that need to be split.

3. Resume I/O on the primary database:

db2 set write resume for database

4. A failure occurs on the primary system, necessitating a restore from backup.

5. Stop the primary database instance:

db2stop

6. Use operating system-level commands to copy the split-off data over the

primary system. Do not copy the split-off log files, because the primary logs

will be needed for rollforward recovery.

7. Start the primary database instance:

db2start

8. Initialize the primary database:

db2inidb database_alias as mirror

9. Roll the primary database forward to the end of the logs or to a point-in-time

and stop.

Backing up to tape

When you back up your database or table space, you must correctly set your block

size and your buffer size. This is particularly true if you are using a variable block

size (on AIX, for example, if the block size has been set to zero).

There is a restriction on the number of fixed block sizes that can be used when

backing up. This restriction exists because DB2 writes out the backup image header

as a 4-KB block. The only fixed block sizes DB2 supports are 512, 1024, 2048, and

4096 bytes. If you are using a fixed block size, you can specify any backup buffer

size. However, you might find that your backup operation will not complete

successfully if the fixed block size is not one of the sizes that DB2 supports.

If your database is large, using a fixed block size means that your backup

operations might take a long time to complete. You might want to consider using a

variable block size.

Note: Use of a variable block size is currently not supported. If you must use this

option, ensure that you have well tested procedures in place that enable you to

recover successfully, using backup images that were created with a variable block

size.

When using a variable block size, you must specify a backup buffer size that is less

than or equal to the maximum limit for the tape devices that you are using. For

optimal performance, the buffer size must be equal to the maximum block size

limit of the device being used.

Before a tape device can be used on a Windows operating system, the following

command must be issued:

 db2 initialize tape on <device> using <blksize>

Chapter 10. Backup 175

Where:

<device>

is a valid tape device name. The default on Windows operating systems is

\\.\TAPE0.

<blksize>

is the blocking factor for the tape. It must be a factor or multiple of 4096.

The default value is the default block size for the device.

Restoring from a backup image with variable block size might return an error. If

this happens, you might need to rewrite the image using an appropriate block size.

Following is an example on AIX:

 tctl -b 0 -Bn -f /dev/rmt0 read > backup_filename.file

 dd if=backup_filename.file of=/dev/rmt0 obs=4096 conv=sync

The backup image is dumped to a file called backup_filename.file. The dd

command dumps the image back onto tape, using a block size of 4096.

There is a problem with this approach if the image is too large to dump to a file.

One possible solution is to use the dd command to dump the image from one tape

device to another. This will work as long as the image does not span more than

one tape. When using two tape devices, the dd command is:

 dd if=/dev/rmt1 of=/dev/rmt0 obs=4096

If using two tape devices is not possible, you might be able to dump the image to

a raw device using the dd command, and then to dump the image from the raw

device to tape. The problem with this approach is that the dd command must keep

track of the number of blocks dumped to the raw device. This number must be

specified when the image is moved back to tape. If the dd command is used to

dump the image from the raw device to tape, the command dumps the entire

contents of the raw device to tape. The dd utility cannot determine how much of

the raw device is used to hold the image.

When using the backup utility, you will need to know the maximum block size

limit for your tape devices. Here are some examples:

 Device Attachment Block Size Limit DB2 Buffer Size

Limit (in 4-KB

pages)

8 mm scsi 131,072 32

3420 s370 65,536 16

3480 s370 61 440 15

3490 s370 61 440 15

3490E s370 65,536 16

7332 (4 mm)1 scsi 262,144 64

3490e scsi 262,144 64

35902 scsi 2,097,152 512

3570 (magstar MP) 262,144 64

Note:

1. The 7332 does not implement a block size limit. 256 KB is simply a suggested

value. Block size limit is imposed by the parent adapter.

176 Data Recovery and High Availability Guide and Reference

2. While the 3590 does support a 2-MB block size, you could experiment with

lower values (like 256 KB), provided the performance is adequate for your

needs.

3. For information about your device limit, check your device documentation or

consult with the device vendor.

Backing up to named pipes

Support is now available for database backup to (and database restore from) local

named pipes on UNIX based systems.

Both the writer and the reader of the named pipe must be on the same machine.

The pipe must exist and be located on a local file system. Because the named pipe

is treated as a local device, there is no need to specify that the target is a named

pipe.

Following is an AIX example:

1. Create a named pipe:

 mkfifo /u/dmcinnis/mypipe

2. If this backup image is going to be used by the restore utility, the restore

operation must be invoked before the backup operation, so that it will not miss

any data:

 db2 restore db sample into mynewdb from /u/dmcinnis/mypipe

3. Use this pipe as the target for a database backup operation:

 db2 backup db sample to /u/dmcinnis/mypipe

Backing up partitioned databases

Backing up a database in a partitioned database environment can pose difficulties

such as: tracking the success of the backup of each database partition; managing

the multiple log files and backup images; and ensuring the log files and backup

images for all the database partitions span the minimum recovery time required to

restore the database. Using a single system view (SSV) backup is the easiest way to

back up a partitioned database.

There are three possible ways to back up a database in a partitioned database

environment:

v Back up each database partition one at a time using the BACKUP DATABASE

command, the BACKUP DATABASE command with the ADMIN_CMD

procedure, or the db2Backup API function

v Use the db2_all command with the BACKUP DATABASE command to back up

all the database partitions that you specify

v Run a single system view (SSV) backup to back up some or all of the database

partitions simultaneously

Backing up each database partition one at a time is time-consuming and

error-prone. Backing up all the partitions using the db2_all command is easier than

backing up each database partition individually because you generally only have

to make one command call. However, when you use db2_all to back up a

partitioned database, you sometimes still have to make multiple calls to db2_all

because the database partition containing the catalog can not be backed up

simultaneously with non-catalog database partitions. Whether you back up each

database partition one at a time or use db2_all, managing backup images created

using either of these methods is difficult because the timestamp for each database

Chapter 10. Backup 177

partition’s backup image will be different, and coordinating the minimum recovery

time across the database partitions’ backup images is difficult as well.

For the reasons mentioned above, the recommended way to back up a database in

a partitioned database environment is to use a SSV backup.

To back up some or all of the database partitions of a partitioned database

simultaneously using a SSV backup:

1. Optional: allow the database to remain online, or take the database offline.

You can back up a partitioned database while the database is online or offline.

If the database is online, the backup utility will acquire shared connections to

the other database partitions, so user applications will be able to connect to

database partitions while they are being backed up.

2. On the database partition that contains the database catalog, invoke backup

with appropriate parameters for partitioned databases.

v You can call the BACKUP DATABASE command with the ON

DBPARTITIONNUMS parameter.

v You can call the BACKUP DATABASE command with the ON

DBPARTITIONNUMS parameter using the ADMIN_CMD procedure.

v You can call the db2Backup API with the iAllNodeFlag parameter.
3. Optional: include the log files required for recovery with the backup images.

When you back up a partitioned database, log files are included with backup

images by default. If you do not want log files to be included with the backup

images, use the EXCLUDE LOGS command parameter when you run the

backup.

See the following topic for more information: “Including log files with a

backup image” on page 118.

4. Optional: delete previous backup images. The method you use to delete old

backup images depends on how you store the backup images. For example, if

you store the backup images to disk, you can delete the files; if you store the

backup images using Tivoli storage manager, you can use the db2adutl utility

to delete the backup images. If you are using DB2 Advanced Copy Services

(ACS), you can use the db2acsutil to delete snapshot backup objects.

Backing up partitioned tables using IBM Tivoli Space Manager

Hierarchical Storage Management

The Tivoli Space Manager Hierarchical Storage Manager (HSM) client program

automatically migrates eligible files to secondary storage to maintain specific levels

of free space on local file systems.

With table partitioning, table data is divided across multiple storage objects called

data partitions. HSM supports the backup of individual data partitions to

secondary storage.

When using SMS table spaces, each data partition range is represented as a file in

the corresponding directory. Therefore, it is very easy to migrate individual ranges

of data (data partitions) to secondary storage.

When using DMS table spaces, each container is represented as a file. In this case,

infrequently accessed ranges should be stored in their own table space. When you

issue a CREATE TABLE statement using the EVERY clause, use the NO CYCLE

178 Data Recovery and High Availability Guide and Reference

clause to ensure that the number of table spaces listed in the table level IN clause

match the number of data partitions being created. This is demonstrated in the

following example:

Example 1

CREATE TABLE t1 (c INT) IN tbsp1, tbsp2, tbsp3 NO CYCLE

 PARTITION BY RANGE(c)

 (STARTING FROM 2 ENDING AT 6 EVERY 2);

Enabling automatic backup

A database can become unusable due to a wide variety of hardware or software

failures. Ensuring that you have a recent, full backup of your database is an

integral part of planning and implementing a disaster recovery strategy for your

system. Use automatic database backup as part of your disaster recovery strategy

to enable DB2 to back up your database both properly and regularly.

You can configure automatic backup using the graphical user interface tools, the

command line interface, or the AUTOMAINT_SET_POLICY system stored

procedure.

v To configure automatic backup using the graphical user interface tools:

1. Open the Configure Automatic Maintenance wizard either from the Control

Center by right-clicking on a database object or from the Health Center by

right-clicking on the database instance that you want to configure for

automatic backup. Select Configure Automatic Maintenance from the

pop-up window.

2. Within this wizard, you can enable automatic backup and specify a

maintenance window for the execution of the BACKUP utility.
v To configure automatic backup using the command line interface, set each of the

following configuration parameters to ON:

– AUTO_MAINT

– AUTO_DB_BACKUP
v To configure automatic backup using the AUTOMAINT_SET_POLICY system

stored procedure:

1. Create configuration XML input specifying details like backup media,

whether the backup should be online or offline, and frequency of the backup.

You can copy the contents of the sample file called

DB2DefaultAutoBackupPolicy.xml in the SQLLIB/samples/automaintcfg

directory and modify the XML to satisfy your configuration requirements.

2. Optional: create an XML input file containing your configuration XML input.

3. Call AUTOMAINT_SET_POLICY with the following parameters:

– maintenance type: AutoBackup

– configuration XML input: either a BLOB containing your configuration

XML input text; or the name of the file containing your configuration

XML input.

See the topic “Configuring an automated maintenance policy using

SYSPROC.AUTOMAINT_SET_POLICY or

SYSPROC.AUTOMAINT_SET_POLICYFILE” on page 49 for more information

about using the AUTOMAINT_SET_POLICY system stored procedure.

Chapter 10. Backup 179

Automatic database backup

A database may become unusable due to a wide variety of hardware or software

failures. Automatic database backup simplifies database backup management tasks

for the DBA by always ensuring that a recent full backup of the database is

performed as needed. It determines the need to perform a backup operation based

on one or more of the following measures:

v You have never completed a full database backup

v The time elapsed since the last full backup is more than a specified number of

hours

v The transaction log space consumed since the last backup is more than a

specified number of 4 KB pages (in archive logging mode only).

Protect your data by planning and implementing a disaster recovery strategy for

your system. If suitable to your needs, you may incorporate the automatic

database backup feature as part of your backup and recovery strategy.

If the database is enabled for roll-forward recovery (archive logging), then

automatic database backup can be enabled for either online or offline backup.

Otherwise, only offline backup is available. Automatic database backup supports

disk, tape, Tivoli Storage Manager (TSM), and vendor DLL media types.

Through the Configure Automatic Maintenance wizard in the Control Center or

Health Center, you can configure:

v The requested time or number of log pages between backups

v The backup media

v Whether it will be an online or offline backup.

If backup to disk is selected, the automatic backup feature will regularly delete

backup images from the directory specified in the Configure Automatic

Maintenance wizard. Only the most recent backup image is guaranteed to be

available at any given time. It is recommended that this directory be kept

exclusively for the automatic backup feature and not be used to store other backup

images.

The automatic database backup feature can be enabled or disabled by using the

auto_db_backup and auto_maint database configuration parameters. In a

partitioned database environment, the automatic database backup runs on each

database partition if the database configuration parameters are enabled on that

database partition.

You can also configure automatic backup using one of the system stored

procedures called AUTOMAINT_SET_POLICY and

AUTOMAINT_SET_POLICYFILE.

Optimizing backup performance

When you perform a backup operation, DB2 will automatically choose an optimal

value for the number of buffers, the buffer size and the parallelism settings. The

values are based on the amount of utility heap memory available, the number of

processors available, and the database configuration. Therefore, depending on the

amount of storage available on your system, you should consider allocating more

memory by increasing the UTIL_HEAP_SZ configuration parameter. The objective

180 Data Recovery and High Availability Guide and Reference

is to minimize the time it takes to complete a backup operation. Unless you

explicitly enter a value for the following BACKUP DATABASE command

parameters, DB2 will select one for them:

v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

If the number of buffers and the buffer size are not specified, resulting in DB2

setting the values, it should have minimal affect on large databases. However, for

small databases, it can cause a large percentage increase in backup image size.

Even if the last data buffer written to disk contains little data, the full buffer is

written to the image anyway. In a small database, this means that a considerable

percentage of the image size might be empty.

You can also choose to do any of the following to reduce the amount of time

required to complete a backup operation:

v Specify table space backup.

You can back up (and subsequently recover) part of a database by using the

TABLESPACE option on the BACKUP DATABASE command. This facilitates the

management of table data, indexes, and long field or large object (LOB) data in

separate table spaces.

v Increase the value of the PARALLELISM parameter on the BACKUP DATABASE

command so that it reflects the number of table spaces being backed up.

The PARALLELISM parameter defines the number of processes or threads that

are started to read data from the database and to compress data during a

compressed backup operation. Each process or thread is assigned to a specific

table space, so there is no benefit to specifying a value for the PARALLELISM

parameter that is larger than the number of table spaces being backed up. When

it finishes backing up this table space, it requests another. Note, however, that

each process or thread requires both memory and CPU overhead.

v Increase the backup buffer size.

The ideal backup buffer size is a multiple of the table space extent size plus one

page. If you have multiple table spaces with different extent sizes, specify a

value that is a common multiple of the extent sizes plus one page.

v Increase the number of buffers.

Use at least twice as many buffers as backup targets (or sessions) to ensure that

the backup target devices do not have to wait for data.

v Use multiple target devices.

Privileges, authorities, and authorization required to use backup

Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the backup

utility.

Chapter 10. Backup 181

Compatibility of online backup and other utilities

Some utilities can be run at the same time as an online backup, but others cannot.

The following utilities are compatible with online backup:

v EXPORT

v ONLINE INSPECT

v RUNSTATS (allow write and allow read)

The following utilities are compatible with online backup only under certain

circumstances:

v ONLINE CREATE INDEX

In SMS mode, online index create and online backup will not be compatible due

to the ALTER TABLE lock. Online index create acquires it in exclusive mode

while online backup acquires it in share.

In DMS mode, online index create and online backup can run concurrently in

most cases. There is a possibility if you have a large number of indexes that the

online index create will internally acquire an online backup lock that will

conflict with any concurrent online backup.

v ONLINE INDEX REORG

As with online index create, in SMS mode, online index reorganization is not

compatible with online backup due to the ALTER TABLE lock. Online index

reorganization acquires it in exclusive mode while online backup acquires it in

share. In addition, an online index reorganization operation, quiesces the table

before the switch phase and acquires a Z lock, which prevents an online backup.

However, the ALTER TABLE lock should prevent an online backup from

running concurrently before the Z table lock is acquired.

In DMS mode, online index reorganization and online backup can run

concurrently.

In addition, online index reorganization quiesces the table before the switch

phase and gets a Z lock, which prevents an online backup.

v REBALANCE

When online backup and rebalancer are running concurrently, online backup

will pause the rebalancer and does not wait for it to complete.

v IMPORT

The import utility is compatible with online backup except when the IMPORT

command is issued with the REPLACE option, in which case, import gets a Z

lock on the table and prevents an online backup from running concurrently.

v ONLINE LOAD

Online load is not compatible with online backup when the LOAD command is

issued with the COPY NO option. In this mode the utilities both modify the

table space state, causing one of the utilities to report an error.

Online load is compatible with online backup when the LOAD command is

issued with the COPY YES option, although there might still be some

compatibility issues. In SMS mode, the utilities can execute concurrently, but

they will hold incompatible table lock modes and consequently might be subject

to table lock waits. In DMS mode, the utilities both hold incompatible

″Internal-B″ (OLB) lock modes and might be subject to waits on that lock. If the

utilities execute on the same table space concurrently, the load utility might be

forced to wait for the backup utility to complete processing of the table space

before the load utility can proceed.

182 Data Recovery and High Availability Guide and Reference

v ONLINE TABLE REORG

The clean up phase of online table reorganization cannot start while an online

backup is running. You can pause the table reorganization, if required, to allow

the online backup to finish before resuming the online table reorg.

You can start an online backup of a DMS table space when a table within the

same table space is being reorganized online. There might be lock waits

associated with the reorganization operation during the truncate phase.

You cannot start an online backup of an SMS table space when a table within

the same table space is being reorganized online. Both operations require an

exclusive lock.

v DDLs that require a Z lock (such as ALTER TABLE, DROP TABLE and DROP

INDEX)

Online DMS table space backup is compatible with DDLs that require a Z lock.

Online SMS table space backup must wait for the Z lock to be released.

The following utilities are not compatible with online backup:

v REORG TABLE

v RESTORE

v ROLLFORWARD

v ONLINE BACKUP

v OFFLINE LOAD

v SET WRITE

Backup examples

Example 1

In the following example database SAMPLE is backed up to a TSM server using 2

concurrent TSM client sessions. The backup utility will compute the optimal

number of buffers. The optimal size of the buffers, in 4 KB pages, is automatically

calculated based on the amount of memory and the number of target devices that

are available. The parallelism setting is also automatically calculated and is based

on the number or processors available and the number of table spaces to be backed

up.

 db2 backup database sample use tsm open 2 sessions with 4 buffers

 db2 backup database payroll tablespace (syscatspace, userspace1) to

 /dev/rmt0, /dev/rmt1 with 8 buffers without prompting

Example 2

Following is a sample weekly incremental backup strategy for a recoverable

database. It includes a weekly full database backup operation, a daily

non-cumulative (delta) backup operation, and a mid-week cumulative

(incremental) backup operation:

 (Sun) db2 backup db kdr use tsm

 (Mon) db2 backup db kdr online incremental delta use tsm

 (Tue) db2 backup db kdr online incremental delta use tsm

 (Wed) db2 backup db kdr online incremental use tsm

 (Thu) db2 backup db kdr online incremental delta use tsm

 (Fri) db2 backup db kdr online incremental delta use tsm

 (Sat) db2 backup db kdr online incremental use tsm

Example 3

Chapter 10. Backup 183

To initiate a backup operation to a tape device in a Windows environment, issue:

 db2 backup database sample to \\.\tape0

184 Data Recovery and High Availability Guide and Reference

Chapter 11. Recover overview

The recover utility performs the necessary restore and rollforward operations to

recover a database to a specified time, based on information found in the recovery

history file. When you use this utility, you specify that the database be recovered

to a point-in-time or to the end of the log files. The utility will then select the best

suitable backup image and perform the recovery operations.

The recover utility does not support the following RESTORE DATABASE

command options:

v TABLESPACE tablespace-name. Table space restore operations are not supported.

v INCREMENTAL. Incremental restore operations are not supported.

v OPEN num-sessions SESSIONS. You cannot indicate the number of I/O sessions

that are to be used with TSM or another vendor product.

v BUFFER buffer-size. You cannot set the size of the buffer used for the restore

operation.

v DLREPORT filename. You cannot specify a file name for reporting files that

become unlinked.

v WITHOUT ROLLING FORWARD. You cannot specify that the database is not to

be placed in rollforward pending state after a successful restore operation.

v PARALLELISM n. You cannot indicate the degree of parallelism for the restore

operation.

v WITHOUT PROMPTING. You cannot specify that a restore operation is to run

unattended

In addition, the recover utility does not allow you to specify any of the REBUILD

options. However, the recovery utility will automatically use the appropriate

REBUILD option if it cannot locate any database backup images based on the

information in the recovery history file.

Recovering data

Use the RECOVER DATABASE command to recover a database to a specified time,

using information found in the recovery history file.

If you issue the RECOVER DATABASE command following an incomplete recover

operation that ended during the rollforward phase, the recover utility will attempt

to continue the previous recover operation, without redoing the restore phase. If

you want to force the recover utility to redo the restore phase, issue the RECOVER

DATABASE command with the RESTART option to force the recover utility to

ignore any prior recover operation that failed to complete. If you are using the

application programming interface (API), specify the caller action

DB2RECOVER_RESTART for the iRecoverAction field to force the recover utility to

redo the restore phase.

If the RECOVER DATABASE command is interrupted during the restore phase, it

cannot be continued. You need to reissue the RECOVER DATABASE command.

You should not be connected to the database that is to be recovered: the recover

database utility automatically establishes a connection to the specified database,

and this connection is terminated at the completion of the recover operation.

© Copyright IBM Corp. 2001, 2007 185

The database can be local or remote.

You can invoke the recover utility through the command line processor (CLP) or

the db2Recover application programming interface (API).

The following example shows how to use the RECOVER DATABASE command

through the CLP:

 db2 recover db sample

Note: In a partitioned database environment, the recover utility must be invoked

from the catalog partition of the database.

Recovering data using db2adutl

The examples that follow show how to perform cross-node recovery using the

db2adutl command, and the logarchopt1 and vendoropt database configuration

parameters.

For the following examples, computer 1 is called bar and is running AIX. The

owner of this machine is roecken. The database on bar is called zample. Computer

2 is called dps. This machine is also running AIX, and is owned by regress9.

PASSWORDACCESS = generate

Computer 1

1. Set up the database for log archiving to TSM. Update the database

configuration parameter logarchmeth1 for the zample database:

 bar:/home/roecken> db2 update db cfg for zample using LOGARCHMETH1 tsm

The following information is returned:

 DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.

Note: Before updating the database configuration, you might have to take an

offline backup of the database.

2. Force off applications:

 db2 force applications all

3. Verify that all applications have been forced off:

 db2 list applications

You should receive a message that says no data was returned.

Note: In a partitioned database environment, you must perform this step on all

database partitions.

4. Take a backup of the database:

 db2 backup db zample use tsm

Information similar to the following is returned:

 Backup successful. The timestamp for this backup image is : 20040216151025

Note: In a partitioned database environment, you must perform this step on all

database partitions. The order in which you perform this step on the database

partitions differs depending on whether you are performing an online backup

or an offline backup. For more information, see “Using backup” on page 171.

5. Connect to the zample database, then create a table in it.

186 Data Recovery and High Availability Guide and Reference

6. Load data into the new table. In this example, the table is called a, and the data

is being loaded from a delimited ASCII file called mr. The COPY YES option is

specified to make a copy of the data that is loaded, and the USE TSM option

specifies that the copy of the data is stored on Tivoli Storage Manager.

Note: You can only specify the COPY YES option if the database is enabled for

rollforward recovery; that is, the logarchmeth1 database configuration parameter

must be set to either USEREXIT or LOGRETAIN.

 bar:/home/roecken> db2 load from mr of del modified by noheader replace

 into a copy yes use tsm

The utility returns a series of messages to indicate its progress:

 SQL3109N The utility is beginning to load data from file "/home/roecken/mr".

 SQL3500W The utility is beginning the "LOAD" phase at time "02/16/2004

 15:12:13.392633".

 SQL3519W Begin Load Consistency Point. Input record count = "0".

 SQL3520W Load Consistency Point was successful.

 SQL3110N The utility has completed processing. "1" rows were read from the

 input file.

 SQL3519W Begin Load Consistency Point. Input record count = "1".

 SQL3520W Load Consistency Point was successful.

 SQL3515W The utility has finished the "LOAD" phase at time "02/16/2004

 15:12:13.445718".

 Number of rows read = 1

 Number of rows skipped = 0

 Number of rows loaded = 1

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 1

There should now be one backup image, one load copy image and one log file

on TSM. A query on the zample database can be run as follows:

 bar:/home/roecken/sqllib/adsm> db2adutl query db zample

The following information is returned:

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20040216151025 Oldest log: S0000000.LOG DB Partition Number: 0

 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.

 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

Chapter 11. Recover 187

Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.

 1 Time: 20040216151213

 Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at: 2004-02-16-15.10.38

7. To enable cross-node recovery, another node and account must be given access

to the objects on the bar computer. In this example, access is given to the node

dps and the user regress9.

 bar:/home/roecken/sqllib/adsm> db2adutl grant user regress9

 on nodename dps for db zample

The following information is returned:

 Successfully added permissions for regress9 to access ZAMPLE on node dps.

To query the results of the db2adutl grant operation, issue the following

command:

 bar:/home/roecken/sqllib/adsm> db2adutl queryaccess

The following information is returned:

 Node Username Database Name Type

 --

 DPS regress9 ZAMPLE A

 --

 Access Types: B - backup images L - logs A - both

PASSWORDACCESS = generate environment

Computer 2

Computer 2, dps, is not yet set up. A db2adutl query on dps for the zample

database returns the following results:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample

 --- Database directory is empty ---

 Warning: There are no file spaces created by DB2 on the ADSM server

 Warning: No DB2 backup images found in ADSM for any alias.

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename

 bar owner roecken

 --- Database directory is empty ---

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20040216151025 Oldest log: S0000000.LOG DB Partition Number: 0

 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.

188 Data Recovery and High Availability Guide and Reference

No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.

 1 Time: 20040216151213

 Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at: 2004-02-16-15.10.38

The zample database does not yet exist on the dps computer.

1. Restore the zample database to the dps computer:

 dps:/home/regress9> db2 restore db zample use tsm options

 "’-fromnode=bar -fromowner=roecken’" without prompting

The following information is returned:

 DB20000I The RESTORE DATABASE command completed successfully.

Note: If the zample database already existed on dps, the OPTIONS parameter

would be omitted, and the database configuration parameter vendoropt would

be used. This configuration parameter overrides the OPTIONS parameter for a

backup or restore operation.

A rollforward operation on the zample database will fail because the

rollforward utility cannot find the log files. A rollforward operation such as the

following:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

Returns the following error:

 SQL4970N Roll-forward recovery on database "ZAMPLE" cannot reach the

 specified stop point (end-of-log or point-in-time) because of missing log

 file(s) on node(s) "0".

2. To force the rollforward utility to look for log files on another machine, you

must configure the proper logarchopt value, in this situation the logarchopt1

database configuration parameter:

 dps:/home/regress9> db2 update db cfg for zample using logarchopt1

 "’-fromnode=bar -fromowner=roecken’"

3. For the rollforward utility to be able to use the load copy images, you must

also set the vendoropt database configuration parameter:

 dps:/home/regress9> db2 update db cfg for zample using VENDOROPT

 "’-fromnode=bar -fromowner=roecken’"

4. The zample database can now be rolled forward::

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following information is returned:

 Rollforward Status

 Input database alias = zample

 Number of nodes have returned status = 1

 Node number = 0

 Rollforward status = not pending

 Next log file to be read =

Chapter 11. Recover 189

Log files processed = S0000000.LOG - S0000000.LOG

 Last committed transaction = 2004-02-16-20.10.38.000000 UTC

 DB20000I The ROLLFORWARD command completed successfully.

PASSWORDACCESS = prompt environment

In a PROMPT environment, extra information is required, specifically the TSM

nodename and password of the machine where the objects were created.

For db2adutl, update the dsm.sys file (called the dsm.opt file on Windows-based

platforms) and add NODENAME bar (because bar is the name of the source

computer) to the server clause:

 dps:/home/regress9/sqllib/adsm> db2adutl query db zample nodename bar

 owner roecken password *******

The following information is returned:

 Query for database ZAMPLE

 Retrieving FULL DATABASE BACKUP information.

 1 Time: 20040216151025 Oldest log: S0000000.LOG DB Partition Number: 0

 Sessions: 1

 Retrieving INCREMENTAL DATABASE BACKUP information.

 No INCREMENTAL DATABASE BACKUP images found for ZAMPLE

 Retrieving DELTA DATABASE BACKUP information.

 No DELTA DATABASE BACKUP images found for ZAMPLE

 Retrieving TABLESPACE BACKUP information.

 No TABLESPACE BACKUP images found for ZAMPLE

 Retrieving INCREMENTAL TABLESPACE BACKUP information.

 No INCREMENTAL TABLESPACE BACKUP images found for ZAMPLE

 Retrieving DELTA TABLESPACE BACKUP information.

 No DELTA TABLESPACE BACKUP images found for ZAMPLE

 Retrieving LOAD COPY information.

 1 Time: 20040216151213

 Retrieving LOG ARCHIVE information.

 Log file: S0000000.LOG, Chain Num: 0, DB Partition Number: 0,

 Taken at: 2004-02-16-15.10.38

1. If the database does not exist, create an empty zample database. If the zample

database already exists, this step, and the next two steps that update the

database configuration, can be skipped.

 dps:/home/regress9> db2 create db zample

2. Update the database configuration parameter tsm_nodename for the zample

database:

 dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

3. Update the database configuration parameter tsm_password for the zample

database:

190 Data Recovery and High Availability Guide and Reference

dps:/home/regress9> db2 update db cfg for zample using

 tsm_password ********

4. Restore the zample database:

 dps:/home/regress9> db2 restore db zample use tsm options

 "’-fromnode=bar -fromowner=roecken’" without prompting

The restore operation completes successfully, but a warning is issued:

 SQL2540W Restore is successful, however a warning "2523" was

 encountered during Database Restore while processing in No

 Interrupt mode.

Again, at this point, the rollforward utility cannot find the correct log files:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

The following error message is returned:

 SQL1268N Roll-forward recovery stopped due to error "-2112880618"

 while retrieving log file "S0000000.LOG" for database "ZAMPLE" on node "0".

5. Because the database restore operation replaces the database configuration file,

the TSM database configuration values must be set to the correct values. First

the tsm_nodename configuration parameter must be reset:

 dps:/home/regress9> db2 update db cfg for zample using tsm_nodename bar

6. The tsm_password database configuration parameter must be reset:

 dps:/home/regress9> db2 update db cfg for zample using tsm_password *******

7. The logarchopt1 database configuration parameter must be reset so the

rollforward utility can find the correct log files:

 dps:/home/regress9> db2 update db cfg for zample using logarchopt1

 "’-fromnode=bar -fromowner=roecken’"

8. The vendoropt database configuration parameter must also be reset so that the

load recovery file can also be used:

 dps:/home/regress9> db2 update db cfg for zample using VENDOROPT

 "’-fromnode=bar -fromowner=roecken’"

9. When the database configuration parameters are set, the database can be rolled

forward:

 dps:/home/regress9> db2 rollforward db zample to end of logs and stop

A ROLLFORWARD QUERY STATUS command on the zample database shows

the following:

 Rollforward Status

 Input database alias = zample

 Number of nodes have returned status = 1

 Node number = 0

 Rollforward status = not pending

 Next log file to be read =

 Log files processed = S0000000.LOG - S0000000.LOG

 Last committed transaction = 2004-02-16-20.10.38.000000 UTC

 DB20000I The ROLLFORWARD command completed successfully.

Recovering a dropped table

You might occasionally drop a table that contains data you still need. If this is the

case, you should consider making your critical tables recoverable following a drop

table operation. You could recover the table data by invoking a database restore

operation, followed by a database rollforward operation to a point in time before

the table was dropped. This can be time-consuming if the database is large, and

your data will be unavailable during recovery. The dropped table recovery feature

Chapter 11. Recover 191

lets you recover your dropped table data using table space-level restore and

rollforward operations. This will be faster than database-level recovery, and your

database will remain available to users.

For a dropped table to be recoverable, the table space in which the table resides

must have the DROPPED TABLE RECOVERY option turned on. This can be done

during table space creation, or by invoking the ALTER TABLESPACE statement.

The DROPPED TABLE RECOVERY option is table space-specific and limited to

regular table spaces. To determine if a table space is enabled for dropped table

recovery, you can query the DROP_RECOVERY column in the

SYSCAT.TABLESPACES catalog table.

The dropped table recovery option is on by default when you create a table space.

If you do not want to enable a table space for dropped table recovery, you can

either explicitly set the DROPPED TABLE RECOVERY option to OFF when you

issue the CREATE TABLESPACE command, or you can use the ALTER

TABLESPACE command to disable dropped table recovery for an existing table

space. The dropped table recovery feature may have a performance impact on

forward recovery if there are many drop table operations to recover or if the

history file is large.

When a DROP TABLE statement is run against a table whose table space is

enabled for dropped table recovery, an additional entry (identifying the dropped

table) is made in the log files. An entry is also made in the recovery history file,

containing information that can be used to recreate the table.

For partitioned tables, dropped table recovery is always on even if the dropped

table recovery is turned off for non-partitioned tables in one or more table spaces.

Only one dropped table log record is written for a partitioned table. This log

record is sufficient to recover all the data partitions of the table.

There are some restrictions on the type of data that is recoverable from a dropped

table. It is not possible to recover:

v Large object (LOB) or long field data. The DROPPED TABLE RECOVERY option

is not supported for large table spaces. If you attempt to recover a dropped table

that contains LOB or LONG VARCHAR columns, these columns will be set to

NULL in the generated export file. The DROPPED TABLE RECOVERY option

can only be used for regular table spaces, not for temporary or large table

spaces.

v The metadata associated with row types. (The data is recovered, but not the

metadata.) The data in the hierarchy table of the typed table will be recovered.

This data might contain more information than appeared in the typed table that

was dropped.

v XML data. If you attempt to recover a dropped table that contains XML data, the

corresponding column data will be empty.

If the table was in reorg pending state when it was dropped, the CREATE TABLE

DDL in the history file will not match exactly that of the import file. The import

file will be in the format of the table before the first REORG-recommended ALTER

was performed, but the CREATE TABLE statement in the history file will match

the state of the table including the results of any ALTER TABLE statements.″

If the data being recovered is of the GRAPHIC or VARGRAPHIC data type, it

might include more than one code page. In order to recover this data, you need to

specify the USEGRAPHICCODEPAGE file type modifier of the IMPORT or LOAD

192 Data Recovery and High Availability Guide and Reference

commands. In this case, using the LOAD command to recover the data will

increase the performance of the recovery operation.

Only one dropped table can be recovered at a time. You can recover a dropped

table by doing the following:

1. Identify the dropped table by invoking the LIST HISTORY DROPPED TABLE

command. The dropped table ID is listed in the Backup ID column.

2. Restore a database- or table space-level backup image taken before the table

was dropped. .

3. Create an export directory to which files containing the table data are to be

written. This directory must either be accessible to all database partitions, or

exist on each database partition. Subdirectories under this export directory are

created automatically by each database partition. These subdirectories are

named NODEnnnn, where nnnn represents the database partition or node

number. Data files containing the dropped table data as it existed on each

database partition are exported to a lower subdirectory called data. For

example,

\export_directory\NODE0000\data.

4. Roll forward to a point in time after the table was dropped, using the

RECOVER DROPPED TABLE option on the ROLLFORWARD DATABASE

command. Alternatively, roll forward to the end of the logs, so that updates to

other tables in the table space or database are not lost.

5. Recreate the table using the CREATE TABLE statement from the recovery

history file.

6. Import the table data that was exported during the rollforward operation into

the table. If the table was in reorg pending state when the drop took place, the

contents of the CREATE TABLE DDL might need to be changed to match the

contents of the data file.

Crash recovery

Transactions (or units of work) against a database can be interrupted unexpectedly.

If a failure occurs before all of the changes that are part of the unit of work are

completed and committed, the database is left in an inconsistent and unusable

state. Crash recovery is the process by which the database is moved back to a

consistent and usable state. This is done by rolling back incomplete transactions

and completing committed transactions that were still in memory when the crash

occurred (Figure 17 on page 194). When a database is in a consistent and usable

state, it has attained what is known as a ″point of consistency″.

Chapter 11. Recover 193

A transaction failure results from a severe error or condition that causes the

database or the database manager to end abnormally. Partially completed units of

work, or UOW that have not been flushed to disk at the time of failure, leave the

database in an inconsistent state. Following a transaction failure, the database must

be recovered. Conditions that can result in transaction failure include:

v A power failure on the machine, causing the database manager and the database

partitions on it to go down

v A hardware failure such as memory corruption, or disk, CPU, or network

failure.

v A serious operating system error that causes DB2 to go down

v An application terminating abnormally.

If you want the rollback of incomplete units of work to be done automatically by

the database manager, enable the automatic restart (autorestart) database

configuration parameter by setting it to ON. (This is the default value.) If you do

not want automatic restart behavior, set the autorestart database configuration

parameter to OFF. As a result, you will need to issue the RESTART DATABASE

command when a database failure occurs. If the database I/O was suspended

before the crash occurred, you must specify the WRITE RESUME option of the

RESTART DATABASE command in order for the crash recovery to continue. The

administration notification log records when the database restart operation begins.

If crash recovery is applied to a database that is enabled for forward recovery (that

is, the logarchmeth1 configuration parameter is not set to OFF), and an error occurs

during crash recovery that is attributable to an individual table space, that table

space will be taken offline, and cannot be accessed until it is repaired. Crash

recovery continues. At the completion of crash recovery, the other table spaces in

the database will be accessible, and connections to the database can be established.

However, if the table space that is taken offline is the table space that contains the

system catalogs, it must be repaired before any connections will be permitted.

Recovering damaged table spaces

A damaged table space has one or more containers that cannot be accessed. This is

often caused by media problems that are either permanent (for example, a bad

disk), or temporary (for example, an offline disk, or an unmounted file system).

1

2

3

4

rollback

rollback

rollback

rollback

Units of work

Crash
All four rolled back

TIME

Figure 17. Rolling Back Units of Work (Crash Recovery)

194 Data Recovery and High Availability Guide and Reference

If the damaged table space is the system catalog table space, the database cannot

be restarted. If the container problems cannot be fixed leaving the original data

intact, the only available options are:

v To restore the database

v To restore the catalog table space.

Note:

1. Table space restore is only valid for recoverable databases, because the

database must be rolled forward.

2. If you restore the catalog table space, you must perform a rollforward

operation to the end of logs.

If the damaged table space is not the system catalog table space, DB2 attempts to

make as much of the database available as possible.

If the damaged table space is the only temporary table space, you should create a

new temporary table space as soon as a connection to the database can be made.

Once created, the new temporary table space can be used, and normal database

operations requiring a temporary table space can resume. You can, if you want,

drop the offline temporary table space. There are special considerations for table

reorganization using a system temporary table space:

v If the database or the database manager configuration parameter indexrec is set

to RESTART, all invalid indexes must be rebuilt during database activation; this

includes indexes from a reorganization that crashed during the build phase.

v If there are incomplete reorganization requests in a damaged temporary table

space, you might have to set the indexrec configuration parameter to ACCESS to

avoid restart failures.

Recovering table spaces in recoverable databases

When crash recovery is necessary, the damaged table spaces is taken offline and is

not accessible. It is placed in roll-forward pending state. If there are no additional

problems, a restart operation will succeed in bringing the database online even

with the damaged table space. Once online, the damaged table space is unusable,

but the rest of the database is usable. To fix the damaged table space and make it

usable, follow the procedure below.

To make the damaged table space usable, use one of the procedures that follow:

v Method 1

1. Fix the damaged containers without losing the original data.

2. Complete a table space rollforward operation to the end of the logs.

Note: The rollforward operation will first attempt to bring the table space

from offline to normal state.
v Method 2

1. Fix the damaged containers with or without losing the original data.

2. Perform a table space restore operation.

3. Complete a table space rollforward operation to the end of the logs or to a

point-in-time.

Recovering table spaces in non-recoverable databases

When crash recovery is needed, but there are damaged table spaces, you can only

successfully restart the database if the damaged table spaces are dropped. In a

Chapter 11. Recover 195

non-recoverable database, the logs necessary to recover the damaged table spaces

are not retained. Therefore, the only valid action against such table spaces is to

drop them.

To restart a database with damaged table spaces:

1. Invoke an unqualified restart database operation. It will succeed if there are no

damaged table spaces. If it fails (SQL0290N), look in the administration

notification log file for a complete list of table spaces that are currently

damaged.

2. If you are willing to drop all of the damaged table spaces, initiate another

restart database operation, listing all of the damaged table spaces under the

DROP PENDING TABLESPACES option. If a damaged table space is included

in the DROP PENDING TABLESPACES list, the table space is put into drop

pending state, and you must drop the table space after the recovery operation

is complete.

The restart operation continues without recovering the specified table spaces. If

a damaged table space is not included in the DROP PENDING TABLESPACES

list, the restart database operation fails with SQL0290N.

Note: Including a table space name in the DROP PENDING TABLESPACES list

does not mean that the table space will be in drop pending state. It will be

placed in this state only if the table space is found to be damaged during the

restart operation.

3. If the restart database operation is successful, invoke the LIST TABLESPACES

command to find out which table spaces are in drop pending state.

4. Issue DROP TABLESPACE statements to drop each of the table spaces that are

in drop pending state. Once you have done this, you will be able to reclaim the

space that the damaged table spaces were using or recreate the table spaces.

5. If you are unwilling to drop and lose the data in the damaged table spaces, you

can:

v Fix the damaged containers (without losing the original data).

v Reissue the RESTART DATABASE command.

v Perform a database restore operation.

Reducing the impact of media failure

To reduce the probability of media failure, and to simplify recovery from this type

of failure:

v Mirror or duplicate the disks that hold the data and logs for important

databases.

v Use a Redundant Array of Independent Disks (RAID) configuration, such as

RAID Level 5.

v In a partitioned database environment, set up a rigorous procedure for handling

the data and the logs on the catalog partition. Because this database partition is

critical for maintaining the database:

– Ensure that it resides on a reliable disk

– Duplicate it

– Make frequent backups

– Do not put user data on it.

196 Data Recovery and High Availability Guide and Reference

Protecting against disk failure

If you are concerned about the possibility of damaged data or logs due to a disk

crash, consider the use of some form of disk fault tolerance. Generally, this is

accomplished through the use of a disk array, which is a set of disks.

A disk array is sometimes referred to simply as a RAID (Redundant Array of

Independent Disks). Disk arrays can also be provided through software at the

operating system or application level. The point of distinction between hardware

and software disk arrays is how CPU processing of input/output (I/O) requests is

handled. For hardware disk arrays, I/O activity is managed by disk controllers; for

software disk arrays, this is done by the operating system or an application.

Hardware disk arrays

In a hardware disk array, multiple disks are used and managed by a disk

controller, complete with its own CPU. All of the logic required to manage the

disks forming this array is contained on the disk controller; therefore, this

implementation is operating system-independent.

There are several types of RAID architecture, differing in function and

performance, but only RAID level 1 and level 5 are commonly used today.

RAID level 1 is also known as disk mirroring or duplexing. Disk mirroring copies

data (a complete file) from one disk to a second disk, using a single disk controller.

Disk duplexing is similar to disk mirroring, except that disks are attached to a

second disk controller (like two SCSI adapters). Data protection is good: Either

disk can fail, and data is still accessible from the other disk. With disk duplexing, a

disk controller can also fail without compromising data protection. Performance is

good, but this implementation requires twice the usual number of disks.

RAID level 5 involves data and parity striping by sectors, across all disks. Parity is

interleaved with data, rather than being stored on a dedicated drive. Data

protection is good: If any disk fails, the data can still be accessed by using

information from the other disks, along with the striped parity information. Read

performance is good, but write performance is not. A RAID level 5 configuration

requires a minimum of three identical disks. The amount of disk space required for

overhead varies with the number of disks in the array. In the case of a RAID level

5 configuration with 5 disks, the space overhead is 20 percent.

When using a RAID (but not a RAID level 0) disk array, a failed disk will not

prevent you from accessing data on the array. When hot-pluggable or

hot-swappable disks are used in the array, a replacement disk can be swapped

with the failed disk while the array is in use. With RAID level 5, if two disks fail at

the same time, all data is lost (but the probability of simultaneous disk failures is

very small).

You might consider using a RAID level 1 hardware disk array or a software disk

array for your logs, because this provides recoverability to the point of failure, and

offers good write performance, which is important for logs. To do this, use the

mirrorlogpath configuration parameter to specify a mirror log path on a RAID level

1 file system. In cases where reliability is critical (because time cannot be lost

recovering data following a disk failure), and write performance is not so critical,

consider using a RAID level 5 hardware disk array. Alternatively, if write

Chapter 11. Recover 197

performance is critical, and the cost of additional disk space is not significant,

consider a RAID level 1 hardware disk array for your data, as well as for your

logs.

For detailed information about the available RAID levels, visit the following web

site: http://www.acnc.com/04_01_00.html

Software disk arrays

A software disk array accomplishes much the same as does a hardware disk array,

but disk traffic is managed by either the operating system, or by an application

program running on the server. Like other programs, the software array must

compete for CPU and system resources. This is not a good option for a

CPU-constrained system, and it should be remembered that overall disk array

performance is dependent on the server’s CPU load and capacity.

A typical software disk array provides disk mirroring. Although redundant disks

are required, a software disk array is comparatively inexpensive to implement,

because costly disk controllers are not required.

CAUTION:

Having the operating system boot drive in the disk array prevents your system

from starting if that drive fails. If the drive fails before the disk array is

running, the disk array cannot allow access to the drive. A boot drive should be

separate from the disk array.

Reducing the impact of transaction failure

To reduce the impact of a transaction failure, try to ensure:

v An uninterrupted power supply for each DB2 server

v Adequate disk space for database logs on all database partitions

v Reliable communication links among the database partition servers in a

partitioned database environment

v Synchronization of the system clocks in a partitioned database environment.

Recovering from transaction failures in a partitioned database

environment

If a transaction failure occurs in a partitioned database environment, database

recovery is usually necessary on both the failed database partition server and any

other database partition server that was participating in the transaction:

v Crash recovery occurs on the failed database partition server after the antecedent

condition is corrected.

v Database partition failure recovery on the other (still active) database partition

servers occurs immediately after the failure has been detected.

In a partitioned database environment, the database partition server on which an

application is submitted is the coordinator partition, and the first agent that works

for the application is the coordinator agent. The coordinator agent is responsible

for distributing work to other database partition servers, and it keeps track of

which ones are involved in the transaction. When the application issues a

COMMIT statement for a transaction, the coordinator agent commits the

transaction by using the two-phase commit protocol. During the first phase, the

198 Data Recovery and High Availability Guide and Reference

http://www.acnc.com/04_01_00.html

coordinator partition distributes a PREPARE request to all the other database

partition servers that are participating in the transaction. These servers then

respond with one of the following:

READ-ONLY

No data change occurred at this server

YES Data change occurred at this server

NO Because of an error, the server is not prepared to commit

If one of the servers responds with a NO, the transaction is rolled back. Otherwise,

the coordinator partition begins the second phase.

During the second phase, the coordinator partition writes a COMMIT log record,

then distributes a COMMIT request to all the servers that responded with a YES.

After all the other database partition servers have committed, they send an

acknowledgement of the COMMIT to the coordinator partition. The transaction is

complete when the coordinator agent has received all COMMIT acknowledgments

from all the participating servers. At this point, the coordinator agent writes a

FORGET log record.

Transaction failure recovery on an active database partition

server

If any database partition server detects that another server is down, all work that

is associated with the failed database partition server is stopped:

v If the still active database partition server is the coordinator partition for an

application, and the application was running on the failed database partition

server (and not ready to COMMIT), the coordinator agent is interrupted to do

failure recovery. If the coordinator agent is in the second phase of COMMIT

processing, SQL0279N is returned to the application, which in turn loses its

database connection. Otherwise, the coordinator agent distributes a ROLLBACK

request to all other servers participating in the transaction, and SQL1229N is

returned to the application.

v If the failed database partition server was the coordinator partition for the

application, then agents that are still working for the application on the active

servers are interrupted to do failure recovery. The transaction is rolled back

locally on each database partition where the transaction is not in prepared state.

On those database partitions where the transaction is in prepared state, the

transaction becomes indoubt. The coordinator database partition is not aware

that the transaction is indoubt on some database partitions because the

coordinator database partition is not available.

v If the application connected to the failed database partition server (before it

failed), but neither the local database partition server nor the failed database

partition server is the coordinator partition, agents working for this application

are interrupted. The coordinator partition will either send a ROLLBACK or a

disconnect message to the other database partition servers. The transaction will

only be indoubt on database partition servers that are still active if the

coordinator partition returns SQL0279.

Any process (such as an agent or deadlock detector) that attempts to send a

request to the failed server is informed that it cannot send the request.

Chapter 11. Recover 199

Transaction failure recovery on the failed database partition

server

If the transaction failure causes the database manager to end abnormally, you can

issue the db2start command with the RESTART option to restart the database

manager once the database partition has been restarted. If you cannot restart the

database partition, you can issue db2start to restart the database manager on a

different database partition.

If the database manager ends abnormally, database partitions on the server can be

left in an inconsistent state. To make them usable, crash recovery can be triggered

on a database partition server:

v Explicitly, through the RESTART DATABASE command

v Implicitly, through a CONNECT request when the autorestart database

configuration parameter has been set to ON

Crash recovery reapplies the log records in the active log files to ensure that the

effects of all complete transactions are in the database. After the changes have been

reapplied, all uncommitted transactions are rolled back locally, except for indoubt

transactions. There are two types of indoubt transaction in a partitioned database

environment:

v On a database partition server that is not the coordinator partition, a transaction

is in doubt if it is prepared but not yet committed.

v On the coordinator partition, a transaction is in doubt if it is committed but not

yet logged as complete (that is, the FORGET record is not yet written). This

situation occurs when the coordinator agent has not received all the COMMIT

acknowledgments from all the servers that worked for the application.

Crash recovery attempts to resolve all the indoubt transactions by doing one of the

following. The action that is taken depends on whether the database partition

server was the coordinator partition for an application:

v If the server that restarted is not the coordinator partition for the application, it

sends a query message to the coordinator agent to discover the outcome of the

transaction.

v If the server that restarted is the coordinator partition for the application, it

sends a message to all the other agents (subordinate agents) that the coordinator

agent is still waiting for COMMIT acknowledgments.

It is possible that crash recovery might not be able to resolve all the indoubt

transactions (for example, some of the database partition servers might not be

available). In this situation, the SQL warning message SQL1061W is returned.

Because indoubt transactions hold resources, such as locks and active log space, it

is possible to get to a point where no changes can be made to the database because

the active log space is being held up by indoubt transactions. For this reason, you

should determine whether indoubt transactions remain after crash recovery, and

recover all database partition servers that are required to resolve the indoubt

transactions as quickly as possible.

If one or more servers that are required to resolve an indoubt transaction cannot be

recovered in time, and access is required to database partitions on other servers,

you can manually resolve the indoubt transaction by making an heuristic decision.

You can use the LIST INDOUBT TRANSACTIONS command to query, commit,

and roll back the indoubt transaction on the server.

200 Data Recovery and High Availability Guide and Reference

Note: The LIST INDOUBT TRANSACTIONS command is also used in a

distributed transaction environment. To distinguish between the two types of

indoubt transactions, the originator field in the output that is returned by the LIST

INDOUBT TRANSACTIONS command displays one of the following:

v DB2 Enterprise Server Edition, which indicates that the transaction originated in

a partitioned database environment.

v XA, which indicates that the transaction originated in a distributed environment.

Identifying the failed database partition server

When a database partition server fails, the application will typically receive one of

the following SQLCODEs. The method for detecting which database manager

failed depends on the SQLCODE received:

SQL0279N

This SQLCODE is received when a database partition server involved in a

transaction is terminated during COMMIT processing.

SQL1224N

This SQLCODE is received when the database partition server that failed is

the coordinator partition for the transaction.

SQL1229N

This SQLCODE is received when the database partition server that failed is

not the coordinator partition for the transaction.

Determining which database partition server failed is a two-step process. The

SQLCA associated with SQLCODE SQL1229N contains the node number of the

server that detected the error in the sixth array position of the sqlerrd field. (The

node number that is written for the server corresponds to the node number in the

db2nodes.cfg file.) On the database partition server that detects the error, a

message that indicates the node number of the failed server is written to the

administration notification log.

Note: If multiple logical nodes are being used on a processor, the failure of one

logical node can cause other logical nodes on the same processor to fail.

Recovering from the failure of a database partition server

To recover from the failure of a database partition server, perform the following

steps.

1. Correct the problem that caused the failure.

2. Restart the database manager by issuing the db2start command from any

database partition server.

3. Restart the database by issuing the RESTART DATABASE command on the

failed database partition server or servers.

Recovering indoubt transactions on mainframe or midrange

servers

Recovering indoubt transactions on the host when DB2 Connect

has the DB2 Syncpoint Manager configured

If your application has accessed a host or System i database server during a

transaction, there are some differences in how indoubt transactions are recovered.

To access host or System i database servers, DB2 Connect is used. The recovery

steps differ if DB2 Connect has the DB2 Syncpoint Manager configured.

Chapter 11. Recover 201

The recovery of indoubt transactions at host or System i servers is normally

performed automatically by the Transaction Manager (TM) and the DB2 Syncpoint

Manager (SPM). An indoubt transaction at a host or System i server does not hold

any resources at the local DB2 location, but does hold resources at the host or

System i server as long as the transaction is indoubt at that location. If the

administrator of the host or System i server determines that a heuristic decision

must be made, then the administrator might contact the local DB2 database

administrator (for example via telephone) to determine whether to commit or roll

back the transaction at the host or System i server. If this occurs, the LIST DRDA

INDOUBT TRANSACTIONS command can be used to determine the state of the

transaction at the DB2 Connect instance. The following steps can be used as a

guideline for most situations involving an SNA communications environment.

1. Connect to the SPM as shown below:

db2 => connect to db2spm

Database Connection Information

Database product = SPM0500

SQL authorization ID = CRUS

Local database alias = DB2SPM

2. Issue the LIST DRDA INDOUBT TRANSACTIONS command to display the

indoubt transactions known to the SPM. The example below shows one

indoubt transaction known to the SPM. The db_name is the local alias for the

host or System i server. The partner_lu is the fully qualified luname of the host

or System i server. This provides the best identification of the host or System i

server, and should be provided by the caller from the host or System i server.

The luwid provides a unique identifier for a transaction and is available at all

hosts and System i servers. If the transaction in question is displayed, then the

uow_status field can be used to determine the outcome of the transaction if the

value is C (commit) or R (rollback). If you issue the LIST DRDA INDOUBT

TRANSACTIONS command with the WITH PROMPTING parameter, you can

commit, roll back, or forget the transaction interactively.

db2 => list drda indoubt transactions

DRDA Indoubt Transactions:

1.db_name: DBAS3 db_alias: DBAS3 role: AR

 uow_status: C partner_status: I partner_lu: USIBMSY.SY12DQA

corr_tok: USIBMST.STB3327L

luwid: USIBMST.STB3327.305DFDA5DC00.0001

xid: 53514C2000000017 00000000544D4442 0000000000305DFD A63055E962000000

 00035F

3. If an indoubt transaction for the partner_lu and for the luwid is not displayed,

or if the LIST DRDA INDOUBT TRANSACTIONS command returns as follows:

db2 => list drda indoubt transactions

SQL1251W No data returned for heuristic query.

then the transaction was rolled back.

There is another unlikely but possible situation that can occur. If an indoubt

transaction with the proper luwid for the partner_lu is displayed, but the

uow_status is ″I″, the SPM doesn’t know whether the transaction is to be

committed or rolled back. In this situation, you should use the WITH

PROMPTING parameter to either commit or roll back the transaction on the DB2

Connect workstation. Then allow DB2 Connect to resynchronize with the host or

System i server based on the heuristic decision.

202 Data Recovery and High Availability Guide and Reference

Recovering indoubt transactions on the host when DB2 Connect

does not use the DB2 Syncpoint Manager

If your application has accessed a host or System i database server during a

transaction, there are some differences in how indoubt transactions are recovered.

To access host or System i database servers, DB2 Connect is used. The recovery

steps differ if DB2 Connect has the DB2 Syncpoint Manager configured.

Use the information in this section when TCP/IP connectivity is used to update

DB2 for z/OS in a multisite update from either DB2 Connect Personal Edition or

DB2 Connect Enterprise Edition, and the DB2 Syncpoint Manager is not used. The

recovery of indoubt transactions in this situation differs from that for indoubt

transactions involving the DB2 Syncpoint Manager. When an indoubt transaction

occurs in this environment, an alert entry is generated at the client, at the database

server, and (or) at the Transaction Manager (TM) database, depending on who

detected the problem. The alert entry is placed in the db2alert.log file.

The resynchronization of any indoubt transactions occurs automatically as soon as

the TM and the participating databases and their connections are all available

again. You should allow automatic resynchronization to occur rather than

heuristically force a decision at the database server. If, however, you must do this

then use the following steps as a guideline.

Note: Because the DB2 Syncpoint Manager is not involved, you cannot use the

LIST DRDA INDOUBT TRANSACTIONS command.

1. On the z/OS host, issue the command DISPLAY THREAD TYPE(INDOUBT).

From this list identify the transaction that you want to heuristically complete.

For details about the DISPLAY command, see the DB2 for z/OS Command

Reference. The LUWID displayed can be matched to the same luwid at the

Transaction Manager Database.

2. Issue the RECOVER THREAD(<LUWID>) ACTION(ABORT|COMMIT)

command, depending on what you want to do.

For details about the RECOVER THREAD command, see the DB2 for z/OS

Command Reference.

Disaster recovery

The term disaster recovery is used to describe the activities that need to be done to

restore the database in the event of a fire, earthquake, vandalism, or other

catastrophic events. A plan for disaster recovery can include one or more of the

following:

v A site to be used in the event of an emergency

v A different machine on which to recover the database

v Off-site storage of either database backups, table space backups, or both, as well

as archived logs.

If your plan for disaster recovery is to restore the entire database on another

machine, it is recommended that you have at least one full database backup and

all the archived logs for the database. Although it is possible to rebuild a database

if you have a full table space backup of each table space in the database, this

method might involve numerous backup images and be more time-consuming

than recovery using a full database backup.

You can choose to keep a standby database up to date by applying the logs to it as

they are archived. Or, you can choose to keep the database or table space backups

Chapter 11. Recover 203

and log archives in the standby site, and perform restore and rollforward

operations only after a disaster has occurred. (In the latter case, recent backup

images are preferable.) In a disaster situation, however, it is generally not possible

to recover all of the transactions up to the time of the disaster.

The usefulness of a table space backup for disaster recovery depends on the scope

of the failure. Typically, disaster recovery is less complicated and time-consuming

if you restore the entire database; therefore, a full database backup should be kept

at a standby site. If the disaster is a damaged disk, a table space backup of each

table space on that disk can be used to recover. If you have lost access to a

container because of a disk failure (or for any other reason), you can restore the

container to a different location.

Another way you can protect your data from partial or complete site failures is to

implement the DB2 high availability disaster recovery (HADR) feature. Once it is

set up, HADR protects against data loss by replicating data changes from a source

database, called the primary, to a target database, called the standby.

You can also protect your data from partial or complete site failures using

replication. Replication allows you to copy data on a regular basis to multiple

remote databases. DB2 database provides a number of replication tools that allow

you to specify what data should be copied, which database tables the data should

be copied to, and how often the updates should be copied.

Storage mirroring, such as Peer-to-Peer Remote Copy (PPRC), can also be used to

protect your data. PPRC provides a synchronous copy of a volume or disk to

protect against disasters.

DB2 provides you with several options when planning for disaster recovery. Based

on your business needs, you might decide to use table space or full database

backups as a safeguard against data loss, or you might decide that your

environment is better suited to a solution like HADR. Whatever your choice, you

should test your recovery procedures in a test environment before implementing

them in your production environment.

Version recovery

Version recovery is the restoration of a previous version of the database, using an

image that was created during a backup operation. You use this recovery method

with non-recoverable databases (that is, databases for which you do not have

archived logs). You can also use this method with recoverable databases by using

the WITHOUT ROLLING FORWARD option on the RESTORE DATABASE

command. A database restore operation will restore the entire database using a

backup image created earlier. A database backup allows you to restore a database

to a state identical to the one at the time that the backup was made. However,

every unit of work from the time of the backup to the time of the failure is lost

(see Figure 18 on page 205).

204 Data Recovery and High Availability Guide and Reference

Using the version recovery method, you must schedule and perform full backups

of the database on a regular basis.

In a partitioned database environment, the database is located across many

database partition servers (or nodes). You must restore all database partitions, and

the backup images that you use for the restore database operation must all have

been taken at the same time. (Each database partition is backed up and restored

separately.) A backup of each database partition taken at the same time is known

as a version backup.

Rollforward recovery

To use the rollforward recovery method, you must have taken a backup of the

database and archived the logs (by setting the logarchmeth1 and logarchmeth2

configuration parameters to a value other than OFF). Restoring the database and

specifying the WITHOUT ROLLING FORWARD option is equivalent to using the

version recovery method. The database is restored to a state identical to the one at

the time that the offline backup image was made. If you restore the database and

do not specify the WITHOUT ROLLING FORWARD option for the restore database

operation, the database will be in rollforward pending state at the end of the

restore operation. This allows rollforward recovery to take place.

Note: The WITHOUT ROLLING FORWARD option cannot be used if:

v You are restoring from an online backup image

v You are issuing a table space-level restore

The two types of rollforward recovery to consider are:

v Database rollforward recovery. In this type of rollforward recovery, transactions

recorded in database logs are applied following the database restore operation

(see Figure 19 on page 206). The database logs record all changes made to the

database. This method completes the recovery of the database to its state at a

particular point in time, or to its state immediately before the failure (that is, to

the end of the active logs.)

In a partitioned database environment, the database is located across many

database partitions, and the ROLLFORWARD DATABASE command must be

issued on the database partition where the catalog tables for the database resides

(catalog partition). If you are performing point-in-time rollforward recovery, all

CREATE
database

BACKUP
database

BACKUP
database

image

TIME

create

RESTORE
database

Units of work

Figure 18. Version Recovery. Shows that units of work from the time of the backup to the time of the failure is lost.

Chapter 11. Recover 205

database partitions must be rolled forward to ensure that all database partitions

are at the same level. If you need to restore a single database partition, you can

perform rollforward recovery to the end of the logs to bring it up to the same

level as the other database partitions in the database. Only recovery to the end

of the logs can be used if one database partition is being rolled forward.

Point-in-time recovery applies to all database partitions.

v Table space rollforward recovery. If the database is enabled for forward recovery, it

is also possible to back up, restore, and roll table spaces forward (see Figure 20

on page 207). To perform a table space restore and rollforward operation, you

need a backup image of either the entire database (that is, all of the table

spaces), or one or more individual table spaces. You also need the log records

that affect the table spaces that are to be recovered. You can roll forward through

the logs to one of two points:

– The end of the logs; or,

– A particular point in time (called point-in-time recovery).

Table space rollforward recovery can be used in the following two situations:

v After a table space restore operation, the table space is always in rollforward

pending state, and it must be rolled forward. Invoke the ROLLFORWARD

DATABASE command to apply the logs against the table spaces to either a point

in time, or to the end of the logs.

v If one or more table spaces are in rollforward pending state after crash recovery,

first correct the table space problem. In some cases, correcting the table space

problem does not involve a restore database operation. For example, a power

loss could leave the table space in rollforward pending state. A restore database

operation is not required in this case. Once the problem with the table space is

corrected, you can use the ROLLFORWARD DATABASE command to apply the

logs against the table spaces to the end of the logs. If the problem is corrected

before crash recovery, crash recovery might be sufficient to take the database to

a consistent, usable state.

Note: If the table space in error contains the system catalog tables, you will not

be able to start the database. You must restore the SYSCATSPACE table space,

then perform rollforward recovery to the end of the logs.

CREATE
database

BACKUP
database

TIME

BACKUP
database

RESTORE
database

ROLLFORWARD

changes in logs
Units of workUnits of work

update update

n archived logs
1 active log

n archived logs
1 active log

Figure 19. Database Rollforward Recovery. There can be more than one active log in the case of a long-running

transaction.

206 Data Recovery and High Availability Guide and Reference

In a partitioned database environment, if you are rolling a table space forward to a

point in time, you do not have to supply the list of database partitions on which the

table space resides. DB2 submits the rollforward request to all database partitions.

This means the table space must be restored on all database partitions on which

the table space resides.

In a partitioned database environment, if you are rolling a table space forward to

the end of the logs, you must supply the list of database partitions if you do not

want to roll the table space forward on all database partitions. If you want to roll

all table spaces (on all database partitions) that are in rollforward pending state

forward to the end of the logs, you do not have to supply the list of database

partitions. By default, the database rollforward request is sent to all database

partitions.

If you are rolling a table space forward that contains any piece of a partitioned

table and you are rolling it forward to a point in time, you must also roll all of the

other table spaces in which that table resides forward to the same point in time.

However, you can roll a single table space containing a piece of a partitioned table

forward to the end of logs.

Note: If a partitioned table has any attached, detached, or dropped data partitions,

then point-in-time rollforward must also include all table spaces for these data

partitions. To determine if a partitioned table has any attached, detached, or

dropped data partitions, query the SYSDATAPARTITIONS catalog table.

Incremental backup and recovery

As the size of databases, and particularly warehouses, continues to expand into the

terabyte and petabyte range, the time and hardware resources required to back up

and recover these databases is also growing substantially. Full database and table

space backups are not always the best approach when dealing with large

BACKUP
table space(s)

RESTORE
table space(s)

n archived logs
1 active log

n archived logs
1 active log

update update

Units of work Units of workall changes to
end of logs

ROLLFORWARD

Time

Media
error

Figure 20. Table Space Rollforward Recovery. There can be more than one active log in the case of a long-running

transaction.

Chapter 11. Recover 207

databases, because the storage requirements for multiple copies of such databases

are enormous. Consider the following issues:

v When a small percentage of the data in a warehouse changes, it should not be

necessary to back up the entire database.

v Appending table spaces to existing databases and then taking only table space

backups is risky, because there is no guarantee that nothing outside of the

backed up table spaces has changed between table space backups.

To address these issues, DB2 provides incremental backup and recovery. An

incremental backup is a backup image that contains only pages that have been

updated since the previous backup was taken. In addition to updated data and

index pages, each incremental backup image also contains all of the initial database

meta-data (such as database configuration, table space definitions, database history,

and so on) that is normally stored in full backup images.

Note:

1. If a table space contains long field or large object data and an incremental

backup is taken, all of the long field or large object data will be copied into the

backup image if any of the pages in that table space have been modified since

the previous backup.

2. If you take an incremental backup of a table space that contains a dirty page

(that is, a page that contains data that has been changed but has not yet been

written to disk) then all large object data is backed up. Normal data is backed

up only if it has changed.

Two types of incremental backup are supported:

v Incremental. An incremental backup image is a copy of all database data that has

changed since the most recent, successful, full backup operation. This is also

known as a cumulative backup image, because a series of incremental backups

taken over time will each have the contents of the previous incremental backup

image. The predecessor of an incremental backup image is always the most

recent successful full backup of the same object.

v Delta. A delta, or incremental delta, backup image is a copy of all database data

that has changed since the last successful backup (full, incremental, or delta) of

the table space in question. This is also known as a differential, or

non-cumulative, backup image. The predecessor of a delta backup image is the

most recent successful backup containing a copy of each of the table spaces in

the delta backup image.

The key difference between incremental and delta backup images is their behavior

when successive backups are taken of an object that is continually changing over

time. Each successive incremental image contains the entire contents of the

previous incremental image, plus any data that has changed, or is new, since the

previous full backup was produced. Delta backup images contain only the pages

that have changed since the previous image of any type was produced.

Combinations of database and table space incremental backups are permitted, in

both online and offline modes of operation. Be careful when planning your backup

strategy, because combining database and table space incremental backups implies

that the predecessor of a database backup (or a table space backup of multiple

table spaces) is not necessarily a single image, but could be a unique set of

previous database and table space backups taken at different times.

208 Data Recovery and High Availability Guide and Reference

To restore the database or the table space to a consistent state, the recovery process

must begin with a consistent image of the entire object (database or table space) to

be restored, and must then apply each of the appropriate incremental backup

images in the order described below.

To enable the tracking of database updates, DB2 supports a new database

configuration parameter, trackmod, which can have one of two accepted values:

v NO. Incremental backup is not permitted with this configuration. Database page

updates are not tracked or recorded in any way. This is the default value.

v YES. Incremental backup is permitted with this configuration. When update

tracking is enabled, the change becomes effective at the first successful

connection to the database. Before an incremental backup can be taken on a

particular table space, a full backup of that table space is necessary.

For SMS and DMS table spaces, the granularity of this tracking is at the table space

level. In table space level tracking, a flag for each table space indicates whether or

not there are pages in that table space that need to be backed up. If no pages in a

table space need to be backed up, the backup operation can skip that table space

altogether.

Although minimal, the tracking of updates to the database can have an impact on

the runtime performance of transactions that update or insert data.

Restoring from incremental backup images

v A restore operation from incremental backup images always consists of the

following steps:

1. Identifying the incremental target image.

Determine the final image to be restored, and request an incremental restore

operation from the DB2 restore utility. This image is known as the target

image of the incremental restore, because it will be the last image to be

restored. The incremental target image is specified using the TAKEN AT

parameter in the RESTORE DATABASE command.

2. Restoring the most recent full database or table space image to establish a

baseline against which each of the subsequent incremental backup images

can be applied.

3. Restoring each of the required full or table space incremental backup images,

in the order in which they were produced, on top of the baseline image

restored in Step 2.

4. Repeating Step 3 until the target image from Step 1 is read a second time.

The target image is accessed twice during a complete incremental restore

operation. During the first access, only initial data is read from the image;

none of the user data is read. The complete image is read and processed only

during the second access.

The target image of the incremental restore operation must be accessed twice

to ensure that the database is initially configured with the correct history,

database configuration, and table space definitions for the database that will

be created during the restore operation. In cases where a table space has

been dropped since the initial full database backup image was taken, the

table space data for that image will be read from the backup images but

ignored during incremental restore processing.
v There are two ways to restore incremental backup images.

Chapter 11. Recover 209

– For an automatic incremental restore, the RESTORE command is issued only

once specifying the target image to be used. DB2 then uses the database

history to determine the remaining required backup images and restores

them.

– For a manual incremental restore, the RESTORE command must be issued

once for each backup image that needs to be restored (as outlined in the steps

above).
v Automatic Incremental Restore Example

To restore a set of incremental backup images using automatic incremental

restore, specify the TAKEN AT timestamp option on the RESTORE DATABASE

command. Use the time stamp for the last image that you want to restore. For

example:

 db2 restore db sample incremental automatic taken at 20031228152133

This will result in the DB2 restore utility performing each of the steps described

at the beginning of this section automatically. During the initial phase of

processing, the backup image with time stamp 20001228152133 is read, and the

restore utility verifies that the database, its history, and the table space

definitions exist and are valid.

During the second phase of processing, the database history is queried to build a

chain of backup images required to perform the requested restore operation. If,

for some reason this is not possible, and DB2 is unable to build a complete chain

of required images, the restore operation terminates, and an error message is

returned. In this case, an automatic incremental restore will not be possible, and

you will have issue the RESTORE DATABASE command with the

INCREMENTAL ABORT option. This will cleanup any remaining resources so

that you can proceed with a manual incremental restore.

Note: It is highly recommended that you not use the FORCE option of the

PRUNE HISTORY command. The default operation of this command prevents

you from deleting history entries that might be required for recovery from the

most recent, full database backup image, but with the FORCE option, it is

possible to delete entries that are required for an automatic restore operation.

During the third phase of processing, DB2 will restore each of the remaining

backup images in the generated chain. If an error occurs during this phase, you

will have to issue the RESTORE DATABASE command with the

INCREMENTAL ABORT option to cleanup any remaining resources. You will

then have to determine if the error can be resolved before you re-issue the

RESTORE command or attempt the manual incremental restore again.

v Manual Incremental Restore Example

To restore a set of incremental backup images, using manual incremental restore,

specify the target image using the TAKEN AT timestamp option of the

RESTORE DATABASE command and follow the steps outlined above. For

example:

1.

db2 restore database sample incremental taken at <ts>

where: <ts> points to the last incremental backup image (the target image) to

be restored.

2.

db2 restore database sample incremental taken at <ts1>

where: <ts1> points to the initial full database (or table space) image.

3.

210 Data Recovery and High Availability Guide and Reference

db2 restore database sample incremental taken at <tsX>

where: <tsX> points to each incremental backup image in creation sequence.

4. Repeat Step 3, restoring each incremental backup image up to and including

image <ts>.

If you are performing a database restore operation, and table space backup

images have been produced, the table space images must be restored in the

chronological order of their backup time stamps.

The db2ckrst utility can be used to query the database history and generate a list

of backup image time stamps needed for an incremental restore. A simplified

restore syntax for a manual incremental restore is also generated. It is

recommended that you keep a complete record of backups, and only use this

utility as a guide.

Limitations to automatic incremental restore

1. If a table space name has been changed since the backup operation you want to

restore from, and you use the new name when you issue a table space level

restore operation, the required chain of backup images from the database

history will not be generated correctly and an error will occur (SQL2571N).

Example:

db2 backup db sample —> <ts1>

db2 backup db sample incremental —> <ts2>

db2 rename tablespace from userspace1 to t1

db2 restore db sample tablespace (’t1’) incremental automatic taken

at <ts2>

SQL2571N Automatic incremental restore is unable to proceed.

Reason code: "3".

Suggested workaround: Use manual incremental restore.

2. If you drop a database, the database history will be deleted. If you restore the

dropped database, the database history will be restored to its state at the time

of the restored backup and all history entries after that time will be lost. If you

then attempt to perform an automatic incremental restore that would need to

use any of these lost history entries, the RESTORE utility will attempt to restore

an incorrect chain of backups and will return an ″out of sequence″ error

(SQL2572N).

Example:

db2 backup db sample —> <ts1>

db2 backup db sample incremental —> <ts2>

db2 backup db sample incremental delta —> <ts3>

db2 backup db sample incremental delta —> <ts4>

db2 drop db sample

db2 restore db sample incremental automatic taken at <ts2>

db2 restore db sample incremental automatic taken at <ts4>

Suggested workarounds:

v Use manual incremental restore.

v Restore the history file first from image <ts4> before issuing an automatic

incremental restore.
3. If you restore a backup image from one database into another database and

then do an incremental (delta) backup, you can no longer use automatic

incremental restore to restore this backup image.

Example:

Chapter 11. Recover 211

db2 create db a

db2 create db b

db2 update db cfg for a using trackmod on

db2 backup db a —> ts1

db2 restore db a taken at ts1 into b

db2 backup db b incremental —> ts2

db2 restore db b incremental automatic taken at ts2

SQL2542N No match for a database image file was found based on the source

database alias "B" and timestamp "ts1" provided.

Suggested workaround:

v Use manual incremental restore as follows:

db2 restore db b incremental taken at ts2

db2 restore db a incremental taken at ts1 into b

db2 restore db b incremental taken at ts2

v After the manual restore operation into database B, issue a full database

backup to start a new incremental chain

Optimizing recovery performance

The following should be considered when thinking about recovery performance:

v You can improve performance for databases that are frequently updated by

placing the logs on a separate device. In the case of an online transaction

processing (OLTP) environment, often more I/O is needed to write data to the

logs than to store a row of data. Placing the logs on a separate device will

minimize the disk arm movement that is required to move between a log and

the database files.

You should also consider what other files are on the disk. For example, moving

the logs to the disk used for system paging in a system that has insufficient real

memory will defeat your tuning efforts.

DB2 automatically attempts to minimize the time it takes to complete a backup

or restore operation by choosing an optimal value for the number of buffers, the

buffer size and the parallelism settings. The values are based on the amount of

utility heap memory available, the number of processors available and the

database configuration.

v To reduce the amount of time required to complete a restore operation, use

multiple source devices.

v If a table contains large amounts of long field and LOB data, restoring it could

be very time consuming. If the database is enabled for rollforward recovery, the

RESTORE command provides the capability to restore selected table spaces. If

the long field and LOB data is critical to your business, restoring these table

spaces should be considered against the time required to complete the backup

task for these table spaces. By storing long field and LOB data in separate table

spaces, the time required to complete the restore operation can be reduced by

choosing not to restore the table spaces containing the long field and LOB data.

If the LOB data can be reproduced from a separate source, choose the NOT

LOGGED option when creating or altering a table to include LOB columns. If

you choose not to restore the table spaces that contain long field and LOB data,

but you need to restore the table spaces that contain the table, you must roll

forward to the end of the logs so that all table spaces that contain table data are

consistent.

212 Data Recovery and High Availability Guide and Reference

Note: If you back up a table space that contains table data without the

associated long or LOB fields, you cannot perform point-in-time rollforward

recovery on that table space. All the table spaces for a table must be rolled

forward simultaneously to the same point in time.

v The following apply for both backup and restore operations:

– Multiple devices should be used.

– Do not overload the I/O device controller bandwidth.
v DB2 uses multiple agents to perform both crash recovery and database

rollforward recovery. You can expect better performance during these operations,

particularly on symmetric multi-processor (SMP) machines; using multiple

agents during database recovery takes advantage of the extra CPUs that are

available on SMP machines.

The agent type introduced by parallel recovery is db2agnsc. DB2 chooses the

number of agents to be used for database recovery based on the number of

CPUs on the machine.

DB2 distributes log records to these agents so that they can be reapplied

concurrently, where appropriate. For example, the processing of log records

associated with insert, delete, update, add key, and delete key operations can be

parallelized in this way. Because the log records are parallelized at the page level

(log records on the same data page are processed by the same agent),

performance is enhanced, even if all the work was done on one table.

Privileges, authorities, and authorization required to use recover

Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the recover

utility.

Chapter 11. Recover 213

214 Data Recovery and High Availability Guide and Reference

Chapter 12. Restore overview

The simplest form of the DB2 RESTORE DATABASE command requires only that

you specify the alias name of the database that you want to restore. For example:

 db2 restore db sample

In this example, because the SAMPLE database exists and will be replaced when

the RESTORE DATABASE command is issued, the following message is returned:

SQL2539W Warning! Restoring to an existing database that is the same as

the backup image database. The database files will be deleted.

Do you want to continue ? (y/n)

If you specify y, the restore operation should complete successfully.

A database restore operation requires an exclusive connection: that is, no

applications can be running against the database when the operation starts, and

the restore utility prevents other applications from accessing the database until the

restore operation completes successfully. A table space restore operation, however,

can be done online.

A table space is not usable until the restore operation (followed by rollforward

recovery) completes successfully.

If you have tables that span more than one table space, you should back up and

restore the set of table spaces together.

When doing a partial or subset restore operation, you can use either a table

space-level backup image, or a full database-level backup image and choose one or

more table spaces from that image. All the log files associated with these table

spaces from the time that the backup image was created must exist.

Using restore

Use the RESTORE DATABASE command to recover a database or table space after

a problem such as media or storage failure, power interruption, or application

failure. If you have backed up your database, or individual table spaces, you can

recreate them if they have become damaged or corrupted in some way.

When restoring to an existing database, you should not be connected to the

database that is to be restored: the restore utility automatically establishes a

connection to the specified database, and this connection is terminated at the

completion of the restore operation. When restoring to a new database, an instance

attachment is required to create the database. When restoring to a new remote

database, you must first attach to the instance where the new database will reside.

Then, create the new database, specifying the code page and the territory of the

server. Restore will overwrite the code page of the destination database with that

of the backup image.

The database can be local or remote.

The following restrictions apply to the restore utility:

© Copyright IBM Corp. 2001, 2007 215

v You can only use the restore utility if the database has been previously backed

up using the DB2 backup utility.

v A database restore operation cannot be started while the rollforward process is

running.

v You can restore a table space into an existing database only if the table space

currently exists, and if it is the same table space; “same” means that the table

space was not dropped and then recreated between the backup and the restore

operation. The database on disk and in the backup image must be the same.

v You cannot issue a table space-level restore of a table space-level backup to a

new database.

v You cannot perform an online table space-level restore operation involving the

system catalog tables.

v You cannot restore a backup taken in a single database partition environment

into an existing partitioned database environment. Instead you must restore the

backup to a single database partition environment and then add database

partitions as required.

v When restoring a backup image with one code page into a system with a

different codepage, the system code page will be overwritten by the code page

of the backup image.

v You cannot use the RESTORE DATABASE command to convert non-automatic

storage enabled table spaces to automatic storage enabled table space.

The restore utility can be invoked through the command line processor (CLP), the

Restore Database notebook or wizard in the Control Center, or the db2Restore

application programming interface (API).

Following is an example of the RESTORE DATABASE command issued through

the CLP:

db2 restore db sample from D:\DB2Backups taken at 20010320122644

To open the Restore wizard:

1. From the Control Center, expand the object tree until you find the database or

table space object that you want to restore.

2. Right-click on the object and select Restore from the pop-up menu. The Restore

wizard opens.

Detailed information is provided through the contextual help facility within the

Control Center.

Restoring from a snapshot backup image

Restoring from a snapshot backup uses the fast copying technology of a storage

device to perform the data copying portion of the restore.

Before you begin

To perform snapshot backup and restore operations, you need a DB2 ACS API

driver for your storage device. Integrated into IBM Data Server is a DB2 ACS API

driver for the following storage hardware:

v IBM TotalStorage SAN Volume Controller

v IBM Enterprise Storage Server Model 800

v IBM System Storage DS6000

v IBM System Storage DS8000

216 Data Recovery and High Availability Guide and Reference

http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-03.ibm.com/servers/storage/disk/ds6000/index.html
http://www-03.ibm.com/systems/storage/disk/ds8000/index.html

v IBM System Storage N Series

v NetApp V-series

You must perform a snapshot backup before you can restore from a snapshot

backup. See: “Performing a snapshot backup” on page 173.

Procedure

You can restore from a snapshot backup using the RESTORE DATABASE

command with the USE SNAPSHOT parameter, or the db2Restore API with the

SQLU_SNAPSHOT_MEDIA media type:

RESTORE DATABASE command:

db2 restore db sample use snapshot

db2Restore API

int sampleRestoreFunction(char dbAlias[],

 char restoredDbAlias[],

 char user[],

 char pswd[],

 char workingPath[])

{

 db2MediaListStruct mediaListStruct = { 0 };

 rmediaListStruct.locations = &workingPath;

 rmediaListStruct.numLocations = 1;

 rmediaListStruct.locationType = SQLU_SNAPSHOT_MEDIA;

 db2RestoreStruct restoreStruct = { 0 };

 restoreStruct.piSourceDBAlias = dbAlias;

 restoreStruct.piTargetDBAlias = restoredDbAlias;

 restoreStruct.piMediaList = &mediaListStruct;

 restoreStruct.piUsername = user;

 restoreStruct.piPassword = pswd;

 restoreStruct.iCallerAction = DB2RESTORE_STORDEF_NOINTERRUPT;

 struct sqlca sqlca = { 0 };

 db2Restore(db2Version900, &restoreStruct, &sqlca);

 return 0;

}

Restoring to an existing database

You can restore any database or table space backup image to an existing database.

For a database-level restore, the backup image can differ from the existing database

in its alias name, its database name, or its database seed. For a table-space level

restore, you can restore a table space into an existing database only if the table

space currently exists, and if it is the same table space; ″same″ means that the table

space was not dropped and then recreated between the backup and the restore

operation. The database on disk and in the backup image must be the same.

A database seed is a unique identifier for a database that does not change during

the life of the database. The seed is assigned by the database manager when the

database is created. DB2 always uses the seed from the backup image.

Chapter 12. Restore 217

http://www-03.ibm.com/systems/storage/network/software
http://www.netapp.com/products/enterprise-systems/virtualized-storage/index.html

When restoring to an existing database, the restore utility:

v Deletes table, index, and long field data from the existing database, and replaces

it with data from the backup image.

v Replaces table entries for each table space being restored.

v Retains the recovery history file, unless it is damaged or has no entries. If the

recovery history file is damaged or contains no entries, the database manager

copies the file from the backup image. If you want to replace the recovery

history file you can issue the RESTORE command with the REPLACE HISTORY

FILE option.

v Retains the authentication type for the existing database.

v Retains the database directories for the existing database. The directories define

where the database resides, and how it is cataloged.

v Compares the database seeds. If the seeds are different:

– Deletes the logs associated with the existing database.

– Copies the database configuration file from the backup image.

– Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE

command.

If the database seeds are the same:

– Deletes the logs if the image is for a non-recoverable database.

– Retains the current database configuration file, unless the file has been

corrupted, in which case the file is copied from the backup image.

– Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE

command; otherwise, copies the current log path to the database

configuration file. Validates the log path: If the path cannot be used by the

database, changes the database configuration to use the default log path.

Restoring to a new database

You can create a new database and then restore a full database backup image to it.

If you do not create a new database, the restore utility will create one.

When restoring to a new database, the restore utility:

v Creates a new database, using the database alias name that was specified

through the target database alias parameter. (If a target database alias was not

specified, the restore utility creates the database with an alias that is the same as

that specified through the source database alias parameter.)

v Restores the database configuration file from the backup image.

v Sets NEWLOGPATH to the value of the logpath database configuration

parameter if NEWLOGPATH was specified on the RESTORE DATABASE

command. Validates the log path: If the path cannot be used by the database,

changes the database configuration to use the default log path.

v Restores the authentication type from the backup image.

v Restores the comments from the database directories in the backup image.

v Restores the recovery history file for the database.

v Overwrites the code page of the database with the codepage of the backup

image.

218 Data Recovery and High Availability Guide and Reference

Using incremental restore in a test and production

environment

Once a production database is enabled for incremental backup and recovery, you

can use an incremental or delta backup image to create or refresh a test database.

You can do this by using either manual or automatic incremental restore. To restore

the backup image from the production database to the test database, use the INTO

target-database-alias option on the RESTORE DATABASE command. For example, in

a production database with the following backup images:

 backup db prod

 Backup successful. The timestamp for this backup image is : <ts1>

 backup db prod incremental

 Backup successful. The timestamp for this backup image is : <ts2>

an example of a manual incremental restore would be:

 restore db prod incremental taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

 restore db prod incremental taken at <ts1> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

 restore db prod incremental taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

If the database TEST already exists, the restore operation will overwrite any data

that is already there. If the database TEST does not exist, the restore utility will

create it and then populate it with the data from the backup images.

Since automatic incremental restore operations are dependent on the database

history, the restore steps change slightly based on whether or not the test database

exists. To perform an automatic incremental restore to the database TEST, its

history must contain the backup image history for database PROD. The database

history for the backup image will replace any database history that already exists

for database TEST if:

v the database TEST does not exist when the RESTORE DATABASE command is

issued, or

v the database TEST exists when the RESTORE DATABASE command is issued,

and the database TEST history contains no records.

The following example shows an automatic incremental restore to database TEST

which does not exist:

 restore db prod incremental automatic taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

The restore utility will create the TEST database and populate it.

If the database TEST does exist and the database history is not empty, you must

drop the database before the automatic incremental restore operation as follows:

 drop db test

 DB20000I The DROP DATABASE command completed successfully.

Chapter 12. Restore 219

restore db prod incremental automatic taken at <ts2> into test without

 prompting

 DB20000I The RESTORE DATABASE command completed successfully.

If you do not want to drop the database, you can issue the PRUNE HISTORY

command using a timestamp far into the future and the WITH FORCE OPTION

parameter before issuing the RESTORE DATABASE command:

 connect to test

 Database Connection Information

 Database server = <server id>

 SQL authorization ID = <id>

 Local database alias = TEST

 prune history 9999 with force option

 DB20000I The PRUNE command completed successfully.

 connect reset

 DB20000I The SQL command completed successfully.

 restore db prod incremental automatic taken at <ts2> into test without

 prompting

 SQL2540W Restore is successful, however a warning "2539" was

 encountered during Database Restore while processing in No

 Interrupt mode.

In this case, the RESTORE DATABASE COMMAND will act in the same manner as

when the database TEST did not exist.

If the database TEST does exist and the database history is empty, you do not have

to drop the database TEST before the automatic incremental restore operation:

 restore db prod incremental automatic taken at <ts2> into test without

 prompting

 SQL2540W Restore is successful, however a warning "2539" was

 encountered during Database Restore while processing in No

 Interrupt mode.

You can continue taking incremental or delta backups of the test database without

first taking a full database backup. However, if you ever need to restore one of the

incremental or delta images you will have to perform a manual incremental

restore. This is because automatic incremental restore operations require that each

of the backup images restored during an automatic incremental restore be created

from the same database alias.

If you make a full database backup of the test database after you complete the

restore operation using the production backup image, you can take incremental or

delta backups and can restore them using either manual or automatic mode.

Performing a redirected restore operation

A redirected restore operation is performed when one of the following situations

occur:

v You want to restore a backup image to a target machine that is different than the

source machine

v You want to restore your table space containers into a different physical location

v Your restore operation has failed because one or more containers is inaccessible

Note: A redirected restore cannot be used to move data from one operating system

to another.

220 Data Recovery and High Availability Guide and Reference

During a redirected restore operation, directory and file containers are

automatically created if they do not already exist. The database manager does not

automatically create device containers.

DB2 only supports adding, changing or removing table space containers of a DMS

table space. For an SMS table space, redirected restore is the only method to

modify the table space container configuration.

You can redefine table space containers by invoking the RESTORE DATABASE

command and specifying the REDIRECT parameter, or by using the Restore

Database wizard in the Control Center. The process for invoking a redirected

restore of an incremental backup image is similar to the process for invoking a

redirected restore of a non-incremental backup image. Issue the RESTORE

DATABASE command with the REDIRECT option and specify the backup image

that should be used for the incrementally restore of the database. Alternatively, you

can generate a redirected restore script from a backup image, then you can modify

the script as required. See “Performing a redirected restore using an automatically

generated script” on page 224.

Container redirection provides considerable flexibility for managing table space

containers. For example, even though adding containers to SMS table spaces is not

supported, you could accomplish this by specifying an additional container when

invoking a redirected restore operation.

Example

A redirected restore operation consists of a two-step database restore process with

an intervening table space container definition step:

1. Issue the RESTORE DATABASE command with the REDIRECT option.

2. Use the SET TABLESPACE CONTAINERS command to define table space

containers for the restored database (specifies the table space locations on the

target system)

3. Issue the RESTORE DATABASE command again, this time specifying the

CONTINUE option.

The following example shows how to perform a redirected restore on database

SAMPLE:

 db2 restore db sample redirect without prompting

 SQL1277W A redirected restore operation is being performed.

 Table space configuration can now be viewed and table spaces that do not

 use automatic storage can have their containers reconfigured.

 DB20000I The RESTORE DATABASE command completed successfully.

 db2 set tablespace containers for 2 using (path ’userspace1.0’, path

 ’userspace1.1’)

 DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

 db2 restore db sample continue

 DB20000I The RESTORE DATABASE command completed successfully.

Redefine table space containers by restoring a database using

an automatically generated script

When you restore a database, the restore utility assumes that the physical container

layout will be identical to that of the database when it was backed up. If you need

to change the location or size of any of the physical containers, you must issue the

Chapter 12. Restore 221

RESTORE DATABASE command with the REDIRECT option. Using this option

requires that you specify the locations of physical containers stored in the backup

image and provide the complete set of containers for each non-automatic table

space that will be altered. You can capture the container information at the time of

the backup, but this can be cumbersome.

To make it easier to perform a redirected restore, the restore utility allows you to

generate a redirected restore script from an existing backup image by issuing the

RESTORE DATABASE command with the REDIRECT option and the GENERATE

SCRIPT option. The restore utility examines the backup image, extracts container

information from the backup image, and generates a CLP script that includes all of

the detailed container information. You can then modify any of the paths or

container sizes in the script, then run the CLP script to recreate the database with

the new set of containers. The script you generate can be used to restore a

database even if you only have a backup image and you do not know the layout

of the containers. The script is created on the client. Using the script as your basis,

you can decide where the restored database will require space for log files and

containers and you can change the log file and container paths accordingly.

The generated script consists of four sections:

Initialization

The first section sets command options and specifies the database

partitions on which the command will run. The following is an example of

the first section:

 UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;

 SET CLIENT ATTACH_DBPARTITIONNUM 0;

 SET CLIENT CONNECT_DBPARTITIONNUM 0;

where

v S ON specifies that execution of the command should stop if a command

error occurs

v Z ON SAMPLE_NODE0000.out specifies that output should be directed to a

file named <dbalias>_NODE<dbpartitionnum>.out

v V ON specifies that the current command should be printed to standard

output.

When running the script on a partitioned database environment, it is

important to specify the database partition on which the script

commands will run.

RESTORE command with the REDIRECT option

The second section starts the RESTORE command and uses the REDIRECT

option. This section can use all of the RESTORE command options, except

any options that cannot be used in conjunction with the REDIRECT option.

The following is an example of the second section:

 RESTORE DATABASE SAMPLE

 -- USER ’<username>’

 -- USING ’<password>’

 FROM ’/home/jseifert/backups’

 TAKEN AT 20050906194027

 -- DBPATH ON ’<target-directory>’

 INTO SAMPLE

 -- NEWLOGPATH ’/home/jseifert/jseifert/NODE0000/SQL00001/SQLOGDIR/’

 -- WITH <num-buff> BUFFERS

 -- BUFFER <buffer-size>

 -- REPLACE HISTORY FILE

 -- REPLACE EXISTING

 REDIRECT

222 Data Recovery and High Availability Guide and Reference

-- PARALLELISM <n>

 -- WITHOUT ROLLING FORWARD

 -- WITHOUT PROMPTING

 ;

Table space definitions

This section contains table space definitions for each table space in the

backup image or specified on the command line. There is a section for each

table space, consisting of a comment block that contains information about

the name, type and size of the table space. The information is provided in

the same format as a table space snapshot. You can use the information

provided to determine the required size for the table space. For table

spaces that were created using automatic storage, this section does not

include a SET TABLESPACE CONTAINERS clause. The following is an

example of the third section:

 -- ***

 -- ** Tablespace name = SYSCATSPACE

 -- ** Tablespace ID = 0

 -- ** Tablespace Type = System managed space

 -- ** Tablespace Content Type = Any data

 -- ** Tablespace Page size (bytes) = 4096

 -- ** Tablespace Extent size (pages) = 32

 -- ** Using automatic storage = No

 -- ** Total number of pages = 5572

 -- ***

 SET TABLESPACE CONTAINERS FOR 0

 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS

 USING (

 PATH ’SQLT0000.0’

);

 -- ***

 -- ** Tablespace name = TEMPSPACE1

 -- ** Tablespace ID = 1

 -- ** Tablespace Type = System managed space

 -- ** Tablespace Content Type = System Temporary data

 -- ** Tablespace Page size (bytes) = 4096

 -- ** Tablespace Extent size (pages) = 32

 -- ** Using automatic storage = No

 -- ** Total number of pages = 0

 -- ***

 SET TABLESPACE CONTAINERS FOR 1

 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS

 USING (

 PATH ’SQLT0001.0’

);

 -- ***

 -- ** Tablespace name = DMS

 -- ** Tablespace ID = 2

 -- ** Tablespace Type = Database managed space

 -- ** Tablespace Content Type = Any data

 -- ** Tablespace Page size (bytes) = 4096

 -- ** Tablespace Extent size (pages) = 32

 -- ** Using automatic storage = No

 -- ** Auto-resize enabled = No

 -- ** Total number of pages = 2000

 -- ** Number of usable pages = 1960

 -- ** High water mark (pages) = 96

 -- ***

 SET TABLESPACE CONTAINERS FOR 2

 -- IGNORE ROLLFORWARD CONTAINER OPERATIONS

 USING (

 FILE ’/tmp/dms1’ 1000

 , FILE ’/tmp/dms2’ 1000

);

Chapter 12. Restore 223

RESTORE command with the CONTINUE option

The final section issues the RESTORE command with the CONTINUE

option, to complete the redirected restore. The following is an example of

the final section:

 RESTORE DATABASE SAMPLE CONTINUE;

Performing a redirected restore using an automatically

generated script

When you perform a redirected restore operation, you need to specify the locations

of physical containers stored in the backup image and provide the complete set of

containers for each table space that will be altered. Use the following procedure to

generate a redirected restore script based on an existing backup image, modify the

generated script, then run the script to perform the redirected restore.

You can perform a redirected restore only if the database has been previously

backed up using the DB2 backup utility.

v If the database exists, you must be able to connect to it in order to generate the

script. Therefore, if the database requires migration or crash recovery this must

be done before you attempt to generate a redirected restore script.

v If you are working in a partitioned database environment, and the target

database does not exist, you cannot run the command to generate the redirected

restore script concurrently on all database partitions. Instead, the command to

generate the redirected restore script must be run one database partition at a

time, starting from the catalog partition.

Alternatively, you can first create a dummy database with the same name as

your target database. After the dummy database has been created, you can then

generate the redirected restore script concurrently on all database partitions.

v Even if you specify the REPLACE EXISTING option when you issue the

RESTORE command to generate the script, the REPLACE EXISTING option will

appear in the script commented out.

v For security reasons, your password will not appear in the generated script. You

need to fill in the password manually.

v You cannot generate a script for redirected restore using the Restore Wizard in

the Control Center.

To perform a redirected restore using a script:

1. Use the restore utility to generate a redirected restore script. The restore utility

can be invoked through the command line processor (CLP) or the db2Restore

application programming interface (API). The following is an example of the

RESTORE DATABASE command with the REDIRECT option and the

GENERATE SCRIPT option:

 db2 restore db test from /home/jseifert/backups taken at 20050304090733

 redirect generate script test_node0000.clp

This creates a redirected restore script on the client called test_node0000.clp.

2. Open the redirected restore script in a text editor to make any modifications

that are required. You can modify:

v Restore options

v Automatic storage paths

v Container layout and paths
3. Run the modified redirected restore script. For example:

224 Data Recovery and High Availability Guide and Reference

db2 -tvf test_node0000.clp

Database rebuild

Rebuilding a database is the process of restoring a database or a subset of its table

spaces using a set of restore operations. The functionality provided with database

rebuild makes DB2 more robust and versatile, and provides you with a more

complete recovery solution.

The ability to rebuild a database from table space backup images means that you

no longer have to take as many full database backups. As databases grow in size,

opportunities for taking a full database backup are becoming limited. With table

space backup as an alternative, you no longer need to take full database backups

as frequently. Instead, you can take more frequent table space backups and plan to

use them, along with log files, in case of a disaster.

In a recovery situation, if you need to bring a subset of table spaces online faster

than others, you can use rebuild to accomplish this. The ability to bring only a

subset of table spaces online is especially useful in a test and production

environment.

Rebuilding a database involves a series of potentially many restore operations. A

rebuild operation can use a database image, or table space images, or both. It can

use full backups, or incremental backups, or both. The initial restore operation

restores the target image, which defines the structure of the database that can be

restored (such as the table space set and the database configuration). For

recoverable databases, rebuilding allows you to build a database that is

connectable and that contains the subset of table spaces that you need to have

online, while keeping table spaces that can be recovered at a later time offline.

The method you use to rebuild your database depends on whether it is recoverable

or non-recoverable.

v If the database is recoverable, use one of the following methods:

– Using a full or incremental database or table space backup image as your

target, rebuild your database by restoring SYSCATSPACE and any other table

spaces from the target image only using the REBUILD option. You can then

roll your database forward to a point in time.

– Using a full or incremental database or table space backup image as your

target, rebuild your database by specifying the set of table spaces defined in

the database at the time of the target image to be restored using the REBUILD

option. SYSCATSPACE must be part of this set. This operation will restore

those table spaces specified that are defined in the target image and then use

the recovery history file to find and restore any other required backup images

for the remaining table spaces not in the target image automatically. Once the

restores are complete, roll your database forward to a point in time.
v If the database is non-recoverable:

– Using a full or incremental database backup image as your target, rebuild

your database by restoring SYSCATSPACE and any other table spaces from

the target image using the appropriate REBUILD syntax. When the restore

completes you can connect to the database.

Specifying the target image

To perform a rebuild of a database, you start by issuing the RESTORE command,

specifying the most recent backup image that you use as the target of the restore

Chapter 12. Restore 225

operation. This image is known as the target image of the rebuild operation,

because it defines the structure of the database to be restored, including the table

spaces that can be restored, the database configuration, and the log sequence. The

rebuild target image is specified using the TAKEN AT parameter in the RESTORE

DATABASE command. The target image can be any type of backup (full, table

space, incremental, online or offline). The table spaces defined in the database at

the time the target image was created will be the table spaces available to rebuild

the database.

You must specify the table spaces you want restored using one of the following

methods:

v Specify that you want all table spaces defined in the database to be restored and

provide an exception list if there are table spaces you want to exclude

v Specify that you want all table spaces that have user data in the target image to

be restored and provide an exception list if there are table spaces you want to

exclude

v Specify the list of table spaces defined in the database that you want to restore

Once you know the table spaces you want the rebuilt database to contain, issue the

RESTORE command with the appropriate REBUILD option and specify the target

image to be used.

Rebuild phase

After you issue the RESTORE command with the appropriate REBUILD option

and the target image has been successfully restored, the database is considered to

be in the rebuild phase. After the target image is restored, any additional table

space restores that occur will restore data into existing table spaces, as defined in

the rebuilt database. These table spaces will then be rolled forward with the

database at the completion of the rebuild operation.

If you issue the RESTORE command with the appropriate REBUILD option and

the database does not exist, a new database is created based on the attributes in

the target image. If the database does exist, you will receive a warning message

notifying you that the rebuild phase is starting. You will be asked if you want to

continue the rebuild operation or not.

The rebuild operation restores all initial metadata from the target image. This

includes all data that belongs to the database and does not belong to the table

space data or the log files. Examples of initial metadata are:

v Table spaces definitions

v The history file, which is a database file that records administrative operations

The rebuild operation also restores the database configuration. The target image

sets the log chain that determines what images can be used for the remaining

restores during the rebuild phase. Only images on the same log chain can be used.

If a database already exists on disk and you want the history file to come from the

target image, then you should specify the REPLACE HISTORY FILE option. The

history file on disk at this time is used by the automatic logic to find the remaining

images needed to rebuild the database.

Once the target image is restored:

226 Data Recovery and High Availability Guide and Reference

v if the database is recoverable, the database is put into roll-forward pending state

and all table spaces that you restore are also put into roll-forward pending state.

Any table spaces defined in the database but not restored are put in restore

pending state.

v If the database is not recoverable, then the database and the table spaces

restored will go into normal state. Any table spaces not restored are put in drop

pending state, as they can no longer be recovered. For this type of database, the

rebuild phase is complete.

For recoverable databases, the rebuild phase ends when the first ROLLFORWARD

DATABASE command is issued and the rollforward utility begins processing log

records. If a rollforward operation fails after starting to process log records and a

restore operation is issued next, the restore is not considered to be part of the

rebuild phase. Such restores should be considered as normal table space restores

that are not part of the rebuild phase.

Automatic processing

After the target image is restored, the restore utility determines if there are

remaining table spaces that need to be restored. If there are, they are restored using

the same connection that was used for running the RESTORE DATABASE

command with the REBUILD option. The utility uses the history file on disk to

find the most recent backup images taken prior to the target image that contains

each of the remaining table spaces that needs to be restored. The restore utility

uses the backup image location data stored in the history file to restore each of

these images automatically. These subsequent restores, which are table space level

restores, can be performed only offline. If the image selected does not belong on

the current log chain, an error is returned. Each table space that is restored from

that image is placed in roll-forward pending state.

The restore utility tries to restore all required table spaces automatically. In some

cases, it will not be able to restore some table spaces due to problems with the

history file, or an error will occur restoring one of the required images. In such a

case, you can either finish the rebuild manually or correct the problem and re-issue

the rebuild.

If automatic rebuilding cannot complete successfully, the restore utility writes to

the diagnostics log (db2diag.log) any information it gathered for the remaining

restore steps. You can use this information to complete the rebuild manually.

If a database is being rebuilt, only containers belonging to table spaces that are

part of the rebuild process will be acquired.

If any containers need to be redefined through redirected restore, you will need to

set the new path and size of the new container for the remaining restores and the

subsequent rollforward operation.

If the data for a table space restored from one of these remaining images cannot fit

into the new container definitions, the table space is put into restore pending state

and a warning message is returned at the end of the restore. You can find

additional information about the problem in the diagnostic log.

Completing the rebuild phase

Once all the intended table spaces have been restored you have two options based

on the configuration of the database. If the database is non-recoverable, the

Chapter 12. Restore 227

database will be connectable and any table spaces restored will be online. Any

table spaces that are in drop pending state can no longer be recovered and should

be dropped if future backups will be performed on the database.

If the database is recoverable, you can issue the rollforward command to bring the

table spaces that were restored online. If SYSCATSPACE has not been restored, the

rollforward will fail and this table space will have to be restored before the

rollforward operation can begin. This means that during the rebuild phase,

SYSCATSPACE must be restored.

Note: In a partitioned database environment, SYSCATSPACE does not exist on

non-catalog partitions so it cannot be rebuilt there. However, on the catalog

partition, SYSCATSPACE must be one of the table spaces that is rebuilt, or the

rollforward operation will not succeed.

Rolling the database forward brings the database out of roll-forward pending state

and rolls any table spaces in roll-forward pending state forward. The rollforward

utility will not operate on any table space in restore pending state.

The stop time for the rollforward operation must be a time that is later than the

end time of the most recent backup image restored during the rebuild phase. An

error will occur if any other time is given. If the rollforward operation is not able

to reach the backup time of the oldest image that was restored, the rollforward

utility will not be able to bring the database up to a consistent point, and the

rollforward fails.

You must have all log files for the time frame between the earliest and most recent

backup images available for the rollforward utility to use. The logs required are

those logs which follow the log chain from the earliest backup image to the target

backup image, as defined by the truncation array in the target image, otherwise

the rollforward operation will fail. If any backup images more recent than the

target image were restored during the rebuild phase, then the additional logs from

the target image to the most recent backup image restored are required. If the logs

are not made available, the rollforward operation will put those table spaces that

were not reached by the logs into restore pending state. You can issue the LIST

HISTORY command to show the restore rebuild entry with the log range that will

be required by roll forward.

The correct log files must be available. If you rely on the rollforward utility to

retrieve the logs, you must ensure that the DB2 Log Manager is configured to

indicate the location from which log files can be retrieved. If the log path or

archive path has changed, you need to use the OVERFLOW LOG PATH option of

the ROLLFORWARD DATABASE command.

Use the AND STOP option of the ROLLFORWARD DATABASE command to make

the database available when the rollforward command successfully completes. At

this point, the database is no longer in roll-forward pending state. If the

rollforward operation begins, but an error occurs before it successfully completes,

the rollforward operation stops at the point of the failure and an error is returned.

The database remains in roll-forward pending state. You must take steps to correct

the problem (for example, fix the log file) and then issue another rollforward

operation to continue processing.

If the error cannot be fixed, you will be able to bring the database up at the point

of the failure by issuing the ROLLFORWARD STOP command. Any log data

beyond that point in the logs will no longer be available once the STOP option is

228 Data Recovery and High Availability Guide and Reference

used. The database comes up at that point and any table spaces that have been

recovered are online. Table spaces that have not yet been recovered are in restore

pending state. The database is in the normal state.

You will have to decide what is the best way to recover the remaining table spaces

in restore pending state. This could be by doing a new restore and roll forward of

a table space or by re-issuing the whole rebuild operation again. This will depend

on the type of problems encountered. In the situation where SYSCATSPACE is one

of the table spaces in restore pending state, the database will not be connectable.

Rebuild and table space containers

During a rebuild, only those table spaces that are part of the rebuild process will

have their containers acquired. The containers belonging to each table space will be

acquired at the time the table space user data is restored out of an image.

When the target image is restored, each table space known to the database at the

time of the backup will have its definitions only restored. This means the database

created by the rebuild will have knowledge of the same table spaces it did at

backup time. For those table spaces that should also have their user data restored

from the target image, their containers will also be acquired at this time.

Any remaining table spaces that are restored through intermediate table space

restores will have their containers acquired at the time the image is restored that

contains the table space data.

Rebuild with redirected restore

In the case of redirected restore, all table space containers must be defined during

the restore of the target image. If you specify the REDIRECT option, control will be

given back to you to redefine your table space containers. If you have redefined

table space containers using the SET TABLESPACE CONTAINERS command then

those new containers will be acquired at that time. Any table space containers that

you have not redefined will be acquired as normal, at the time the table space user

data is restored out of an image.

If the data for a table space that is restored cannot fit into the new container

definitions, the table space will be put into restore-pending state and a warning

(SQL2563W) will be returned to the you at the end of the restore. There will be a

message in the DB2 diagnostics log detailing the problem.

Rebuild and temporary table spaces

In general, a DB2 backup image is made up of the following components:

v Initial database metadata, such as the table space definitions, database

configuration file, and history file.

v Data for non-temporary table spaces specified to the BACKUP utility

v Final database metadata such as the log file header

v Log files (if the INCLUDE LOGS option was specified)

In every backup image, whether it is a database or table space backup, a full or

incremental (delta) backup, these core components can always be found.

A database backup image will contain all of the above components, as well as data

for every table space defined in the database at the time of the backup.

Chapter 12. Restore 229

A table space backup image will always include the database metadata listed

above, but it will only contain data for those table spaces that are specified to the

backup utility.

Temporary table spaces are treated differently than non-temporary table spaces.

Temporary table space data is never backed up, but their existence is important to

the framework of the database. Although temporary table space data is never

backed up, the temporary table spaces are considered part of the database, so they

are specially marked in the metadata that is stored with a backup image. This

makes it look like they are in the backup image. In addition, the table space

definitions hold information about the existence of any temporary table spaces.

Although no backup image ever contains data for a temporary table space, during

a database rebuild operation when the target image is restored (regardless the type

of image), temporary table spaces are also restored, only in the sense that their

containers are acquired and allocated. The acquisition and allocation of containers

is done automatically as part of the rebuild processing. As a result, when

rebuilding a database, you cannot exclude temporary table spaces.

Choosing a target image for database rebuild

The rebuild target image should be the most recent backup image that you want to

use as the starting point of your restore operation. This image is known as the

target image of the rebuild operation, because it defines the structure of the

database to be restored, including the table spaces that can be restored, the

database configuration, and the log sequence. It can be any type of backup (full,

table space, incremental, online or offline).

The target image sets the log sequence (or log chain) that determines what images

can be used for the remaining restores during the rebuild phase. Only images on

the same log chain can be used.

The following examples illustrate how to choose the image you should use as the

target image for a rebuild operation.

Suppose there is a database called SAMPLE that has the following table spaces in

it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

Figure 21 on page 231 shows that the following database-level backups and table

space-level backups that have been taken, in chronological order:

1. Full database backup DB1

2. Full table space backup TS1

3. Full table space backup TS2

4. Full table space backup TS3

5. Database restore and roll forward to a point between TS1 and TS2

6. Full table space backup TS4

7. Full table space backup TS5

230 Data Recovery and High Availability Guide and Reference

Example 1

The following example demonstrates the CLP commands you need to issue to

rebuild database SAMPLE to the current point of time. First you need to choose

the table spaces you want to rebuild. Since your goal is to rebuild the database to

the current point of time you need to select the most recent backup image as your

target image. The most recent backup image is image TS5, which is on log chain 2:

 db2 restore db sample rebuild with all tablespaces in database taken at

 TS5 without prompting

 db2 rollforward db sample to end of logs

 db2 rollforward db sample stop

This restores backup images TS5, TS4, TS1 and DB1 automatically, then rolls the

database forward to the end of log chain 2.

Note: All logs belonging to log chain 2 must be accessible for the rollforward

operations to complete.

Figure 21. Database and table space-level backups of database SAMPLE

Chapter 12. Restore 231

Example 2

This second example demonstrates the CLP commands you need to issue to

rebuild database SAMPLE to the end of log chain 1. The target image you select

should be the most recent backup image on log chain 1, which is TS3:

 db2 restore db sample rebuild with all tablespaces in database

 taken at TS3 without prompting

 db2 rollforward db sample to end of logs

 db2 rollforward db sample stop

This restores backup images TS3, TS2, TS1 and DB1 automatically, then rolls the

database forward to the end of log chain 1.

Note: All logs belonging to log chain 1 must be accessible for the rollforward

operations to complete.

Choosing the wrong target image for rebuild

Suppose there is a database called SAMPLE2 that has the following table spaces in

it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

Figure 22 shows the backup log chain for SAMPLE2, which consists of the

following backups:

1. BK1 is a full database backup, which includes all table spaces

2. BK2 is a full table space backup of USERSP1

3. BK3 is a full table space backup of USERSP2

The following example demonstrates the CLP command you need to issue to

rebuild the database from BK3 using table spaces SYSCATSPACE and USERSP2:

 db2 restore db sample2 rebuild with tablespace (SYSCATSPACE,

 USERSP2) taken at BK3 without prompting

Figure 22. Backup log chain for database SAMPLE2

232 Data Recovery and High Availability Guide and Reference

Now suppose that after this restore completes, you decide that you also want to

restore USERSP1, so, you issue the following command:

 db2 restore db sample2 tablespace (USERSP1) taken at BK2

This restore fails and provides a message that says BK2 is from the wrong log

chain (SQL2154N). As you can see in Figure 22 on page 232, the only image that

can be used to restore USERSP1 is BK1. Therefore, you need to type the following

command:

 db2 restore db sample2 tablespace (USERSP1) taken at BK1

This succeeds so that database can be rolled forward accordingly.

Rebuilding selected table spaces

Rebuilding a database allows you to build a database that contains a subset of the

table spaces that make up the original database. Rebuilding only a subset of table

spaces within a database can be useful in the following situations:

v In a test and development environment in which you want to work on only a

subset of table spaces.

v In a recovery situation in which you need to bring table spaces that are more

critical online faster than others, you can first restore a subset of table spaces

then restore other table spaces at a later time.

To rebuild a database that contains a subset of the table spaces that make up the

original database, consider the following example.

In this example, there is a database named SAMPLE that has the following table

spaces:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

The following backups have been taken:

v BK1 is a backup of SYSCATSPACE and USERSP1

v BK2 is a backup of USERSP2 and USERSP3

v BK3 is a backup of USERSP3

Chapter 12. Restore 233

The following procedure demonstrates using the RESTORE DATABASE and

ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild just

SYSCATSPACE and USERSP1 to end of logs:

db2 restore db mydb rebuild with all tablespaces in image

 taken at BK1 without prompting

db2 rollforward db mydb to end of logs

db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP1

are in NORMAL state. USERSP2 and USERSP3 are in restore-pending state. You

can still restore USERSP2 and USERSP3 at a later time.

Rebuild and incremental backup images

You can rebuild a database using incremental images. By default, the restore utility

tries to use automatic incremental restore for all incremental images. This means

that if you do not use the INCREMENTAL option of the RESTORE DATABASE

command, but the target image is an incremental backup image, the restore utility

will issue the rebuild operation using automatic incremental restore. If the target

image is not an incremental image, but another required image is an incremental

image then the restore utility will make sure those incremental images are restored

using automatic incremental restore. The restore utility will behave in the same

way whether you specify the INCREMENTAL option with the AUTOMATIC

option or not.

If you specify the INCREMENTAL option but not the AUTOMATIC option, you

will need to perform the entire rebuild process manually. The restore utility will

just restore the initial metadata from the target image, as it would in a regular

manual incremental restore. You will then need to complete the restore of the

target image using the required incremental restore chain. Then you will need to

restore the remaining images to rebuild the database.

Figure 23. Backup images available for database SAMPLE

234 Data Recovery and High Availability Guide and Reference

It is recommended that you use automatic incremental restore to rebuild your

database. Only in the event of a restore failure, should you attempt to rebuild a

database using manual methods.

Rebuilding partitioned databases

To rebuild a partitioned database, rebuild each database partition separately. For

each database partition, beginning with the catalog partition, first restore all the

table spaces that you require. Any table spaces that are not restored are placed in

restore pending state. Once all the database partitions are restored, you then issue

the ROLLFORWARD DATABASE command on the catalog partition to roll all of

the database partitions forward.

Note: If, at a later date, you need to restore any table spaces that were not

originally included in the rebuild phase, you need to make sure that when you

subsequently roll the table space forward that the rollforward utility keeps all the

data across the database partitions synchronized. If a table space is missed during

the original restore and rollforward operation, it might not be detected until there

is an attempt to access the data and a data access error occurs. You will then need

to restore and roll the missing table space forward to get it back in sync with the

rest of the partitions.

To rebuild a partitioned database using table-space level backup images, consider

the following example.

In this example, there is a recoverable database called SAMPLE with three

database partitions:

v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition

v Database partition 2 contains table spaces USERSP1 and USERSP3

v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x

on partition y:

v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2

v BK12 is a backup of USERSP2 and USERSP3

v BK13 is a backup of USERSP1, USERSP2 and USERSP3

v BK21 is a backup of USERSP1

v BK22 is a backup of USERSP1

v BK23 is a backup of USERSP1

v BK31 is a backup of USERSP2

v BK33 is a backup of USERSP2

v BK42 is a backup of USERSP3

v BK43 is a backup of USERSP3

The following procedure demonstrates using the RESTORE DATABASE and

ROLLFORWARD DATABASE commands, issued through the CLP, to rebuild the

entire database to the end of logs.

1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db sample rebuild with all tablespaces in database

 taken at BK31 without prompting

Chapter 12. Restore 235

2. On database partition 2, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db sample rebuild with tablespaces in database

 taken at BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db sample rebuild with all tablespaces in database

 taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with

the TO END OF LOGS option:

 db2 rollforward db sample to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db sample stop

At this point the database is connectable on all database partitions and all table

spaces are in NORMAL state.

Restrictions for database rebuild

The following list is a summary of database rebuild restrictions:

v One of the table spaces you rebuild must be SYSCATSPACE on the catalog

partition.

v You cannot perform a rebuild operation using the Control Center GUI tools. You

must either issue commands using the command line processor (CLP) or use the

corresponding application programming interfaces (APIs).

v The REBUILD option cannot be used against a pre-Version 9.1 target image

unless the image is that of an offline database backup. If the target image is an

offline database backup then only the table spaces in this image can be used for

the rebuild. The database will need to be migrated after the rebuild operation

successfully completes. Attempts to rebuild using any other type of pre-Version

9.1 target image will result in an error.

v The REBUILD option cannot be issued against a target image from a different

operating system than the one being restored on unless the target image is a full

database backup. If the target image is a full database backup then only the

table spaces in this image can be used for the rebuild. Attempts to rebuild using

any other type of target image from a different operating system than the one

being restored on will result in an error.

Optimizing restore performance

When you perform a restore operation, DB2 will automatically choose an optimal

value for the number of buffers, the buffer size and the parallelism settings. The

values will be based on the amount of utility heap memory available, the number

of processors available and the database configuration. The objective is to minimize

the time it takes to complete a restore operation. Unless you explicitly enter a

value for the following RESTORE DATABASE command parameters, DB2 will

select one for them:

v WITH num-buffers BUFFERS

v PARALLELISM n

v BUFFER buffer-size

For restore operations, a multiple of the buffer size used by the backup operation

will always be used. The values specified by the database manager configuration

236 Data Recovery and High Availability Guide and Reference

parameters BACKBUFSZ and RESTBUFSZ are ignored. If you want to use these

values, you must explicitly specify a buffer size when you issue the RESTORE

DATABASE command.

You can also choose to do any of the following to reduce the amount of time

required to complete a restore operation:

v Increase the restore buffer size.

The restore buffer size must be a positive integer multiple of the backup buffer

size specified during the backup operation. If an incorrect buffer size is

specified, the buffers allocated will be the smallest acceptable size.

v Increase the number of buffers.

The value you specify must be a multiple of the number of pages that you

specified for the backup buffer. The minimum number of pages is 8.

v Increase the value of the PARALLELISM parameter.

This will increase the number of buffer manipulators (BM) that will be used to

write to the database during the restore operation.

v Increase the utility heap size

This will increase the memory that can be used simultaneously by the other

utilities.

Privileges, authorities, and authorization required to use restore

Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to restore to an

existing database from a full database backup. To restore to a new database, you

must have SYSADM or SYSCTRL authority.

Restore examples

Redirected Restore sessions - CLP examples

Example 1

Following is a typical non-incremental redirected restore scenario for a database

whose alias is MYDB:

1. Issue a RESTORE DATABASE command with the REDIRECT option.

 db2 restore db mydb replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers you want to redefine. For example, in a Windows environment:

 db2 set tablespace containers for 5 using

 (file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified in

this step, issue the LIST TABLESPACE CONTAINERS command for every table

space whose container locations are being redefined.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

Chapter 12. Restore 237

This is the final step of the redirected restore operation.

4. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1.

Note:

1. After successful completion of step 1, and before completing step 3, the restore

operation can be aborted by issuing:

 db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1.

Example 2

Following is a typical manual incremental redirected restore scenario for a database

whose alias is MYDB and has the following backup images:

 backup db mydb

 Backup successful. The timestamp for this backup image is : <ts1>

 backup db mydb incremental

 Backup successful. The timestamp for this backup image is : <ts2>

1. Issue a RESTORE DATABASE command with the INCREMENTAL and

REDIRECT options.

 db2 restore db mydb incremental taken at <ts2> replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers must be redefined. For example, in a Windows environment:

 db2 set tablespace containers for 5 using

 (file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified in

this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

4. The remaining incremental restore commands can now be issued as follows:

 db2 restore db mydb incremental taken at <ts1>

 db2 restore db mydb incremental taken at <ts2>

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the restore

operation can be aborted by issuing:

 db2 restore db mydb abort

2. After successful completion of step 3, and before issuing all the required

commands in step 4, the restore operation can be aborted by issuing:

 db2 restore db mydb incremental abort

3. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1.

4. If either restore command fails in step 4, the failing command can be reissued

to continue the restore process.

Example 3

238 Data Recovery and High Availability Guide and Reference

Following is a typical automatic incremental redirected restore scenario for the

same database:

1. Issue a RESTORE DATABASE command with the INCREMENTAL

AUTOMATIC and REDIRECT options.

 db2 restore db mydb incremental automatic taken at <ts2>

 replace existing redirect

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers must be redefined. For example, in a Windows environment:

 db2 set tablespace containers for 5 using

 (file ’f:\ts3con1’20000, file ’f:\ts3con2’20000)

To verify that the containers of the restored database are the ones specified in

this step, issue the LIST TABLESPACE CONTAINERS command.

3. After successful completion of steps 1 and 2, issue:

 db2 restore db mydb continue

This is the final step of the redirected restore operation.

Note:

1. After successful completion of step 1, and before completing step 3, the restore

operation can be aborted by issuing:

 db2 restore db mydb abort

2. If step 3 fails, or if the restore operation has been aborted, the redirected restore

can be restarted, beginning at step 1 after issuing:

 db2 restore db mydb incremental abort

Rebuild sessions - CLP examples

Scenario 1

In the following examples, there is a recoverable database called MYDB with the

following table spaces in it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

The following backups have been taken:

v BK1 is a backup of SYSCATSPACE and USERSP1

v BK2 is a backup of USERSP2 and USERSP3

v BK3 is a backup of USERSP3

Example 1

The following rebuilds the entire database to the most recent point in time:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

Chapter 12. Restore 239

db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

Example 2

The following rebuilds just SYSCATSPACE and USERSP2 to a point in time (where

end of BK3 is less recent than the point in time, which is less recent than end of

logs):

1. Issue a RESTORE DATABASE command with the REBUILD option and specify

the table spaces you want to include.

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

 taken at BK2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO PIT option (this

assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to PIT

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2

are in NORMAL state. USERSP1 and USERSP3 are in RESTORE_PENDING state.

To restore USERSP1 and USERSP3 at a later time, using normal table space restores

(without the REBUILD option):

1. Issue the RESTORE DATABASE command without the REBUILD option and

specify the table space you want to restore. First restore USERSPI:

 db2 restore db mydb tablespace (USERSP1) taken at BK1 without prompting

2. Then restore USERSP3:

 db2 restore db mydb tablespace taken at BK3 without prompting

3. Issue a ROLLFORWARD DATABASE command with the END OF LOGS option

and specify the table spaces to be restored (this assumes all logs have been

saved and are accessible):

 db2 rollforward db mydb to end of logs tablespace (USERSP1, USERSP3)

The rollforward will replay all logs up to the PIT and then stop for these two

table spaces since no work has been done on them since the first rollforward.

4. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

Example 3

The following rebuilds just SYSCATSPACE and USERSP1 to end of logs:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image

 taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

240 Data Recovery and High Availability Guide and Reference

At this point the database is connectable and only SYSCATSPACE and USERSP1

are in NORMAL state. USERSP2 and USERSP3 are in RESTORE_PENDING state.

Example 4

In the following example, the backups BK1 and BK2 are no longer in the same

location as stated in the history file, but this is not known when the rebuild is

issued.

1. Issue a RESTORE DATABASE command with the REBUILD option , specifying

that you want to rebuild the entire database to the most recent point in time:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK3 without prompting

At this point, the target image is restored successfully, but an error is returned

from the restore utility stating it could not find a required image.

2. You must now complete the rebuild manually. Since the database is in the

rebuild phase this can be done as follows:

a. Issue a RESTORE DATABASE command and specify the location of the BK1

backup image:

 db2 restore db mydb tablespace taken at BK1 from <location>

 without prompting

b. Issue a RESTORE DATABASE command and specify the location of the BK2

backup image:

 db2 restore db mydb tablespace (USERSP2) taken at BK2 from

 <location> without prompting

c. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

d. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

Example 5

In this example, table space USERSP3 contains independent data that is needed for

generating a specific report, but you do not want the report generation to interfere

with the original database. In order to gain access to the data but not affect the

original database, you can use REBUILD to generate a new database with just this

table space and SYSCATSPACE. SYSCATSPACE is also required so that the

database will be connectable after the restore and roll forward operations.

To build a new database with the most recent data in SYSCATSPACE and

USERSP3:

1. Issue a RESTORE DATABASE command with the REBUILD option, and specify

that table spaces SYSCATSPACE and USERSP3 are to be restored to a new

database, NEWDB:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP3)

 taken at BK3 into newdb without prompting

2. Issue a ROLLFORWARD DATABASE command on NEWDB with the TO END

OF LOGS option (this assumes all logs have been saved and are accessible):

 db2 rollforward db newdb to end of logs

Chapter 12. Restore 241

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db newdb stop

At this point the new database is connectable and only SYSCATSPACE and

USERSP3 are in NORMAL state. USERSP1 and USERSP2 are in

RESTORE_PENDING state.

Note: If container paths are an issue between the current database and the new

database (for example, if the containers for the original database need to be altered

because the file system does not exist or if the containers are already in use by the

original database) then you will need to perform a redirected restore. The example

above assumes the default autostorage database paths are used for the table

spaces.

Scenario 2

In the following example, there is a recoverable database called MYDB that has

SYSCATSPACE and one thousand user table spaces named Txxxx, where x stands

for the table space number (for example, T0001). There is one full database backup

image (BK1)

Example 6

The following restores all table spaces except T0999 and T1000:

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image except

 tablespace (T0999, T1000) taken at BK1 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database will be connectable and all table spaces except T0999

and T1000 will be in NORMAL state. T0999 and T1000 will be in

RESTORE_PENDING state.

Scenario 3

The examples in this scenario demonstrate how to rebuild a recoverable database

using incremental backups. In the following examples, there is a database called

MYDB with the following table spaces in it:

v SYSCATSPACE (system catalogs)

v USERSP1 (data table space)

v USERSP2 (user data table space)

v USERSP3 (user data table space)

The following backups have been taken:

v FULL1 is a full backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3

v DELTA1 is a delta backup of SYSCATSPACE and USERSP1

v INCR1 is an incremental backup of USERSP2 and USERSP3

v DELTA2 is a delta backup of SYSCATSPACE, USERSP1, USERSP2 and USERSP3

242 Data Recovery and High Availability Guide and Reference

v DELTA3 is a delta backup of USERSP2

v FULL2 is a full backup of USERSP1

Example 7

The following rebuilds just SYSCATSPACE and USERSP2 to the most recent point

in time using incremental automatic restore.

1. Issue a RESTORE DATABASE command with the REBUILD option. The

INCREMENTAL AUTO option is optional. The restore utility will detect what

the granularity of the image is and use automatic incremental restore if it is

required.

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

 incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2

are in NORMAL state. USERSP1 and USERSP3 are in RESTORE_PENDING state.

Example 8

The following rebuilds the entire database to the most recent point in time using

incremental automatic restore.

1. Issue a RESTORE DATABASE command with the REBUILD option. The

INCREMENTAL AUTO option is optional. The restore utility will detect what

the granularity of the image is and use automatic incremental restore if it is

required.

 db2 restore db mydb rebuild with all tablespaces in database

 incremental auto taken at DELTA3 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

Example 9

The following rebuilds the entire database, except for USERSP3, to the most recent

point in time.

1. Issue a RESTORE DATABASE command with the REBUILD option. Although

the target image is a non-incremental image, the restore utility will detect that

the required rebuild chain includes incremental images and it will

automatically restore those images incrementally.

 db2 restore db mydb rebuild with all tablespaces in database except

 tablespace (USERSP3) taken at FULL2 without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

Chapter 12. Restore 243

db2 rollforward db mydb to end of logs

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

Scenario 4

The examples in this scenario demonstrate how to rebuild a recoverable database

using backup images that contain log files. In the following examples, there is a

database called MYDB with the following table spaces in it:

v SYSCATSPACE (system catalogs)

v USERSP1 (user data table space)

v USERSP2 (user data table space)

Example 10

The following rebuilds the database with just SYSCATSPACE and USERSP2 to the

most recent point in time. There is a full online database backup image (BK1),

which includes log files.

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP2)

 taken at BK1 logtarget /logs without prompting

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs after the end of BK1 have been saved and are

accessible):

 db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and only SYSCATSPACE and USERSP2

are in NORMAL state. USERSP1 is in RESTORE_PENDING state.

Example 11

The following rebuilds the database to the most recent point in time. There are two

full online table space backup images that include log files:

v BK1 is a backup of SYSCATSPACE, using log files 10-45

v BK2 is a backup of USERSP1 and USERSP2, using log files 64-80
1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK2 logtarget /logs without prompting

The rollforward operation will start at log file 10, which it will always find in

the overflow log path if not in the primary log file path. The log range 46-63,

since they are not contained in any backup image, will need to be made

available for roll forward.

2. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option, using the overflow log path for log files 64-80:

 db2 rollforward db mydb to end of logs overflow log path (/logs)

3. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

244 Data Recovery and High Availability Guide and Reference

At this point the database is connectable and all table spaces are in NORMAL

state.

Scenario 5

In the following examples, there is a recoverable database called MYDB with the

following table spaces in it:

v SYSCATSPACE (0), SMS system catalog (relative container)

v USERSP1 (1) SMS user data table space (relative container)

v USERSP2 (2) DMS user data table space (absolute container /usersp2)

v USERSP3 (3) DMS user data table space (absolute container /usersp3)

The following backups have been taken:

v BK1 is a backup of SYSCATSPACE and USERSP1

v BK2 is a backup of USERSP2 and USERSP3

v BK3 is a backup of USERSP3

Example 12

The following rebuilds the entire database to the most recent point in time using

redirected restore.

1. Issue a RESTORE DATABASE command with the REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK3 redirect without prompting

2. Issue a SET TABLESPACE CONTAINERS command for each table space whose

containers you want to redefine. For example:

 db2 set tablespace containers for 3 using (file ’/newusersp2’ 10000)

3.

 db2 set tablespace containers for 4 using (file ’/newusersp3’ 15000)

4. Issue a RESTORE DATABASE command with the CONTINUE option:

 db2 restore db mydb continue

5. Issue a ROLLFORWARD DATABASE command with the TO END OF LOGS

option (this assumes all logs have been saved and are accessible):

 db2 rollforward db mydb to end of logs

6. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable and all table spaces are in NORMAL

state.

Scenario 6

In the following examples, there is a database called MYDB with three database

partitions:

v Database partition 1 contains table spaces SYSCATSPACE, USERSP1 and

USERSP2, and is the catalog partition

v Database partition 2 contains table spaces USERSP1 and USERSP3

v Database partition 3 contains table spaces USERSP1, USERSP2 and USERSP3

The following backups have been taken, where BKxy represents backup number x

on partition y:

Chapter 12. Restore 245

v BK11 is a backup of SYSCATSPACE, USERSP1 and USERSP2

v BK12 is a backup of USERSP2 and USERSP3

v BK13 is a backup of USERSP1, USERSP2 and USERSP3

v BK21 is a backup of USERSP1

v BK22 is a backup of USERSP1

v BK23 is a backup of USERSP1

v BK31 is a backup of USERSP2

v BK33 is a backup of USERSP2

v BK42 is a backup of USERSP3

v BK43 is a backup of USERSP3

Example 13

The following rebuilds the entire database to the end of logs.

1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with tablespaces in database taken at

 BK42 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK43 without prompting

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with

the TO END OF LOGS option (assumes all logs have been saved and are

accessible on all database partitions):

 db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

At this point the database is connectable on all database partitions and all table

spaces are in NORMAL state.

Example 14

The following rebuilds SYSCATSPACE, USERSP1 and USERSP2 to the most recent

point in time.

1. On database partition 1, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in database

 taken at BK31 without prompting

2. On database partition 2, issue a RESTORE DATABASE command with the

REBUILD option:

 db2 restore db mydb rebuild with all tablespaces in image taken at

 BK22 without prompting

3. On database partition 3, issue a RESTORE DATABASE command with the

REBUILD option:

246 Data Recovery and High Availability Guide and Reference

db2 restore db mydb rebuild with all tablespaces in image taken at

 BK33 without prompting

Note: this command omitted USERSP1, which is needed to complete the

rebuild operation.

4. On the catalog partition, issue a ROLLFORWARD DATABASE command with

the TO END OF LOGS option:

 db2 rollforward db mydb to end of logs

5. Issue a ROLLFORWARD DATABASE command with the STOP option:

 db2 rollforward db mydb stop

The rollforward succeeds and the database is connectable on all database

partitions. All table spaces are in NORMAL state, except USERSP3, which is in

RESTORE PENDING state on all database partitions on which it exists, and

USERSP1, which is in RESTORE PENDING state on database partition 3.

When an attempt is made to access data in USERSP1 on database partition 3, a

data access error will occur. To fix this, USERSP1 will need to be recovered:

a. On database partitions 3, issue a RESTORE DATABASE command,

specifying a backup image that contains USERSP1:

 db2 restore db mydb tablespace taken at BK23 without prompting

b. On the catalog partition, issue a ROLLFORWARD DATABASE command

with the TO END OF LOGS option and the AND STOP option:

 db2 rollforward db mydb to end of logs on dbpartitionnum (3) and stop

At this point USERSP1 on database partition 3 can have its data accessed since it is

in NORMAL state.

Scenario 7

In the following examples, there is a nonrecoverable database called MYDB with the

following table spaces:

v SYSCATSPACE (0), SMS system catalog

v USERSP1 (1) SMS user data table space

v USERSP2 (2) DMS user data table space

v USERSP3 (3) DMS user data table space

There is just one backup of the database, BK1:

Example 15

The following demonstrates using rebuild on a nonrecoverable database.

Rebuild the database using only SYSCATSPACE and USERSP1:

 db2 restore db mydb rebuild with tablespace (SYSCATSPACE, USERSP1)

 taken at BK1 without prompting

Following the restore, the database is connectable. If you issue the LIST

TABLESPACES command you see that that SYSCATSPACE and USERSP1 are in

NORMAL state, while USERSP2 and USERSP3 are in DELETE_PENDING/
OFFLINE state. You can now work with the two table spaces that are in NORMAL

state.

Chapter 12. Restore 247

If you want to do a database backup, you will first need to drop USERSP2 and

USERSP3 using the DROP TABLESPACE command, otherwise, the backup will fail.

To restore USERSP2 and USERSP3 at a later time, you need to reissue a database

restore from BK1.

248 Data Recovery and High Availability Guide and Reference

Chapter 13. Rollforward overview

The simplest form of the DB2 ROLLFORWARD DATABASE command requires

only that you specify the alias name of the database that you want to rollforward

recover. For example:

 db2 rollforward db sample to end of logs and stop

In this example, the command returns:

 Rollforward Status

 Input database alias = sample

 Number of nodes have returned status = 1

 Node number = 0

 Rollforward status = not pending

 Next log file to be read =

 Log files processed = -

 Last committed transaction = 2001-03-11-02.39.48.000000

DB20000I The ROLLFORWARD command completed successfully.

The following is one approach you can use to perform rollforward recovery:

1. Invoke the rollforward utility without the STOP option.

2. Invoke the rollforward utility with the QUERY STATUS option

If you specify recovery to the end of the logs, the QUERY STATUS option can

indicate that one or more log files is missing, if the returned point in time is

earlier than you expect.

If you specify point-in-time recovery, the QUERY STATUS option will help you

to ensure that the rollforward operation has completed at the correct point.

3. Invoke the rollforward utility with the STOP option. After the operation stops,

it is not possible to roll additional changes forward.

An alternate approach you can use to perform rollforward recovery is the

following:

1. Invoke the rollforward utility with the AND STOP option.

2. The need to take further steps depends on the outcome of the rollforward

operation:

v If it is successful, the rollforward is complete and the database will be

connectable and usable. At this point it is not possible to roll additional

changes forward.

v If any errors were returned, take whatever action is required to fix the

problem (for example, if there is a missing logfile, find the log file, or if there

are retrieve errors, ensure that log archiving is working). Then reissue the

rollforward utility with the AND STOP option.

A database must be restored successfully (using the restore utility) before it can be

rolled forward, but a table space does not. A table space can be temporarily put in

rollforward pending state, but not require a restore operation to undo it (following

a power interruption, for example).

When the rollforward utility is invoked:

© Copyright IBM Corp. 2001, 2007 249

v If the database is in rollforward pending state, the database is rolled forward. If

table spaces are also in rollforward pending state, you must invoke the

rollforward utility again after the database rollforward operation completes to

roll the table spaces forward.

v If the database is not in rollforward pending state, but table spaces in the

database are in rollforward pending state:

– If you specify a list of table spaces, only those table spaces are rolled forward.

– If you do not specify a list of table spaces, all table spaces that are in

rollforward pending state are rolled forward.

A database rollforward operation runs offline. The database is not available for use

until the rollforward operation completes successfully, and the operation cannot

complete unless the STOP option was specified when the utility was invoked.

A table space rollforward operation can run offline. The database is not available

for use until the rollforward operation completes successfully. This occurs if the

end of the logs is reached, or if the STOP option was specified when the utility

was invoked.

You can perform an online rollforward operation on table spaces, as long as

SYSCATSPACE is not included. When you perform an online rollforward operation

on a table space, the table space is not available for use, but the other table spaces

in the database are available.

When you first create a database, it is enabled for circular logging only. This means

that logs are reused, rather than being saved or archived. With circular logging,

rollforward recovery is not possible: only crash recovery or version recovery can be

done. Archived logs document changes to a database that occur after a backup was

taken. You enable log archiving (and rollforward recovery) by setting the

logarchmeth1 database configuration parameter to a value other than its default of

OFF. When you set logarchmeth1 to a value other than OFF, the database is placed in

backup pending state, and you must take an offline backup of the database before

it can be used again.

Note: Entries will be made in the recovery history file for each log file that is used

in a rollforward operation.

Using rollforward

Use the ROLLFORWARD DATABASE command to apply transactions that were

recorded in the database log files to a restored database backup image or table

space backup image.

You should not be connected to the database that is to be rollforward recovered:

the rollforward utility automatically establishes a connection to the specified

database, and this connection is terminated at the completion of the rollforward

operation.

Do not restore table spaces without cancelling a rollforward operation that is in

progress; otherwise, you might have a table space set in which some table spaces

are in rollforward in progress state, and some table spaces are in rollforward

pending state. A rollforward operation that is in progress will only operate on the

tables spaces that are in rollforward in progress state.

The database can be local or remote.

250 Data Recovery and High Availability Guide and Reference

The following restrictions apply to the rollforward utility:

v You can invoke only one rollforward operation at a time. If there are many table

spaces to recover, you can specify all of them in the same operation.

v If you have renamed a table space following the most recent backup operation,

ensure that you use the new name when rolling the table space forward. The

previous table space name will not be recognized.

v You cannot cancel a rollforward operation that is running. You can only cancel a

rollforward operation that has completed, but for which the STOP option has

not been specified, or a rollforward operation that has failed before completing.

v You cannot continue a table space rollforward operation to a point in time,

specifying a time stamp that is less than the previous one. If a point in time is

not specified, the previous one is used. You can issue a rollforward operation

that ends at a specified point in time by just specifying STOP, but this is only

allowed if the table spaces involved were all restored from the same offline

backup image. In this case, no log processing is required. If you start another

rollforward operation with a different table space list before the in-progress

rollforward operation is either completed or cancelled, an error message

(SQL4908) is returned. Invoke the LIST TABLESPACES command on all database

partitions to determine which table spaces are currently being rolled forward

(rollforward in progress state), and which table spaces are ready to be rolled

forward (rollforward pending state). You have three options:

– Finish the in-progress rollforward operation on all table spaces.

– Finish the in-progress rollforward operation on a subset of table spaces. (This

might not be possible if the rollforward operation is to continue to a specific

point in time, which requires the participation of all database partitions.)

– Cancel the in-progress rollforward operation.
v In a partitioned database environment, the rollforward utility must be invoked

from the catalog partition of the database.

v Point in time rollforward of a table space is available only from DB2 Version 9

clients. You should migrate any clients running an earlier version of the database

product to Version 9 in order to roll a table space forward to a point in time.

v You cannot roll forward logs from a previous release version.

The rollforward utility can be invoked through the command line processor (CLP),

the Restore wizard in the Control Center, or the db2Rollforward application

programming interface (API).

Following is an example of the ROLLFORWARD DATABASE command issued

through the CLP:

db2 rollforward db sample to end of logs and stop

To open the Restore wizard:

1. From the Control Center, expand the object tree until you find the database or

table space object that you want to restore.

2. Right-click on the object and select Roll-forward from the pop-up menu. The

Rollforward wizard opens.

Detailed information is provided through the contextual help facility within the

Control Center.

Chapter 13. Rollforward 251

Rolling forward changes in a table space

If the database is enabled for forward recovery, you have the option of backing up,

restoring, and rolling forward table spaces instead of the entire database. You

might want to implement a recovery strategy for individual table spaces because

this can save time: it takes less time to recover a portion of the database than it

does to recover the entire database. For example, if a disk is bad, and it contains

only one table space, that table space can be restored and rolled forward without

having to recover the entire database, and without impacting user access to the rest

of the database, unless the damaged table space contains the system catalog tables;

in this situation, you cannot connect to the database. (The system catalog table

space can be restored independently if a table space-level backup image containing

the system catalog table space is available.) Table space-level backups also allow

you to back up critical parts of the database more frequently than other parts, and

requires less time than backing up the entire database.

After a table space is restored, it is always in rollforward pending state. To make

the table space usable, you must perform rollforward recovery on it. In most cases,

you have the option of rolling forward to the end of the logs, or rolling forward to

a point in time. You cannot, however, roll table spaces containing system catalog

tables forward to a point in time. These table spaces must be rolled forward to the

end of the logs to ensure that all table spaces in the database remain consistent.

When a table space is rolled forward, DB2 will process all log files even if they do

not contain log records that affect that table space. To skip the log files known not

to contain any log records affecting the table space, set the

DB2_COLLECT_TS_REC_INFO registry variable to ON. This is the default value.

To ensure that the information required for skipping log files is collected, the

registry variable must be set before the log files are created and used.

The table space change history file (DB2TSCHG.HIS), located in the database

directory, keeps track of which logs should be processed for each table space. You

can view the contents of this file using the db2logsForRfwd utility, and delete

entries from it using the PRUNE HISTORY command. During a database restore

operation, DB2TSCHG.HIS is restored from the backup image and then brought up

to date during the database rollforward operation. If no information is available for

a log file, it is treated as though it is required for the recovery of every table space.

Since information for each log file is flushed to disk after the log becomes inactive,

this information can be lost as a result of a crash. To compensate for this, if a

recovery operation begins in the middle of a log file, the entire log is treated as

though it contains modifications to every table space in the system. After this, the

active logs will be processed and the information for them will be rebuilt. If

information for older or archived log files is lost in a crash situation and no

information for them exists in the data file, they will be treated as though they

contain modifications for every table space during the table space recovery

operation.

Before rolling a table space forward, invoke the LIST TABLESPACES SHOW

DETAIL command. This command returns the minimum recovery time, which is the

earliest point in time to which the table space can be rolled forward. The minimum

recovery time is updated when data definition language (DDL) statements are run

against the table space, or against tables in the table space. The table space must be

rolled forward to at least the minimum recovery time, so that it becomes

synchronized with the information in the system catalog tables. If recovering more

than one table space, the table spaces must be rolled forward to at least the highest

252 Data Recovery and High Availability Guide and Reference

minimum recovery time of all the table spaces being recovered. In a partitioned

database environment, issue the LIST TABLESPACES SHOW DETAIL command on

all database partitions. The table spaces must be rolled forward to at least the

highest minimum recovery time of all the table spaces on all database partitions.

If you are rolling table spaces forward to a point in time, and a table is contained

in multiple table spaces, all of these table spaces must be rolled forward

simultaneously. If, for example, the table data is contained in one table space, and

the index for the table is contained in another table space, you must roll both table

spaces forward simultaneously to the same point in time.

If the data and the long objects in a table are in separate table spaces, and the long

object data has been reorganized, the table spaces for both the data and the long

objects must be restored and rolled forward together. You should take a backup of

the affected table spaces after the table is reorganized.

If you want to roll a table space forward to a point in time, and a table in the table

space is either:

v An underlying table for a materialized query or staging table that is in another

table space

v A materialized query or staging table for a table in another table space

You should roll both table spaces forward to the same point in time. If you do not,

the materialized query or staging table is placed in set integrity pending state at

the end of the rollforward operation. The materialized query table will need to be

fully refreshed, and the staging table will be marked as incomplete.

If you want to roll a table space forward to a point in time, and a table in the table

space participates in a referential integrity relationship with another table that is

contained in another table space, you should roll both table spaces forward

simultaneously to the same point in time. If you do not, the child table in the

referential integrity relationship will be placed in set integrity pending state at the

end of the rollforward operation. When the child table is later checked for

constraint violations, a check on the entire table is required. If any of the following

tables exist, they will also be placed in set integrity pending state with the child

table:

v Any descendent materialized query tables for the child table

v Any descendent staging tables for the child table

v Any descendent foreign key tables of the child table

These tables will require full integrity processing to bring them out of the set

integrity pending state. If you roll both table spaces forward simultaneously, the

constraint will remain active at the end of the point-in-time rollforward operation.

Ensure that a point-in-time table space rollforward operation does not cause a

transaction to be rolled back in some table spaces, and committed in others. This

can happen if:

v A point-in-time rollforward operation is performed on a subset of the table

spaces that were updated by a transaction, and that point in time precedes the

time at which the transaction was committed.

v Any table contained in the table space being rolled forward to a point in time

has an associated trigger, or is updated by a trigger that affects table spaces

other than the one that is being rolled forward.

The solution is to find a suitable point in time that will prevent this from

happening.

Chapter 13. Rollforward 253

You can issue the QUIESCE TABLESPACES FOR TABLE command to create a

transaction-consistent point in time for rolling table spaces forward. The quiesce

request (in share, intent to update, or exclusive mode) waits (through locking) for

all running transactions against those table spaces to complete, and blocks new

requests. When the quiesce request is granted, the table spaces are in a consistent

state. To determine a suitable time to stop the rollforward operation, you can look

in the recovery history file to find quiesce points, and check whether they occur

after the minimum recovery time.

After a table space point-in-time rollforward operation completes, the table space is

put in backup pending state. You must take a backup of the table space, because

all updates made to it between the point in time to which you rolled forward and

the current time have been removed. You can no longer roll the table space

forward to the current time from a previous database- or table space-level backup

image. The following example shows why the table space-level backup image is

required, and how it is used. (To make the table space available, you can either

back up the entire database, the table space that is in backup pending state, or a

set of table spaces that includes the table space that is in backup pending state.)

 In the preceding example, the database is backed up at time T1. Then, at time T3,

table space TABSP1 is rolled forward to a specific point in time (T2), The table

space is backed up after time T3. Because the table space is in backup pending

state, this backup operation is mandatory. The time stamp of the table space

backup image is after time T3, but the table space is at time T2. Log records from

between T2 and T3 are not applied to TABSP1. At time T4, the database is restored,

using the backup image created at T1, and rolled forward to the end of the logs.

Table space TABSP1 is put in restore pending state at time T3, because the

database manager assumes that operations were performed on TABSP1 between T3

and T4 without the log changes between T2 and T3 having been applied to the

table space. If these log changes were in fact applied as part of the rollforward

operation against the database, this assumption would be incorrect. The table

space-level backup that must be taken after the table space is rolled forward to a

point in time allows you to roll that table space forward past a previous

point-in-time rollforward operation (T3 in the example).

Assuming that you want to recover table space TABSP1 to T4, you would restore

the table space from a backup image that was taken after T3 (either the required

backup, or a later one), then roll TABSP1 forward to the end of the logs.

In the preceding example, the most efficient way of restoring the database to time

T4 would be to perform the required steps in the following order:

1. Restore the database.

Database Time of rollforward of Restore

backup table space TABSP1 to database.

 T2. Back up TABSP1. Roll forward

 to end of logs.

T1 T2 T3 T4

| | | |

| | | |

|---

 | Logs are not

 applied to TABSP1

 between T2 and T3

 when it is rolled

 forward to T2.

Figure 24. Table Space Backup Requirement

254 Data Recovery and High Availability Guide and Reference

2. Restore the table space.

3. Roll the database forward.

4. Roll the table space forward.

Because you restore the table space before rolling the database forward, resource is

not used to apply log records to the table space when the database is rolled

forward.

If you cannot find the TABSP1 backup image that follows time T3, or you want to

restore TABSP1 to T3 (or earlier), you can:

v Roll the table space forward to T3. You do not need to restore the table space

again, because it was restored from the database backup image.

v Restore the table space again, using the database backup taken at time T1, then

roll the table space forward to a time that precedes time T3.

v Drop the table space.

In a partitioned database environment:

v You must simultaneously roll all parts of a table space forward to the same point

in time at the same time. This ensures that the table space is consistent across

database partitions.

v If some database partitions are in rollforward pending state, and on other

database partitions, some table spaces are in rollforward pending state (but the

database partitions are not), you must first roll the database partitions forward,

and then roll the table spaces forward.

v If you intend to roll a table space forward to the end of the logs, you do not

have to restore it at each database partition; you only need to restore it at the

database partitions that require recovery. If you intend to roll a table space

forward to a point in time, however, you must restore it at each database

partition.

In a database with partitioned tables:

v If you are rolling a table space containing any piece of a partitioned table

forward to a point in time, you must also roll all of the other table spaces in

which that table resides forward to the same point in time. However, rolling a

single table space containing a piece of a partitioned table forward to the end of

logs is allowed. If a partitioned table has any attached, detached, or dropped

data partitions, then point-in-time rollforward must also include all table spaces

for these data partitions. In order to determine if a partitioned table has any

attached, detached, or dropped data partitions, query the

SYSCAT.DATAPARTITIONS catalog view.

Authorization required for rollforward

Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

You must have SYSADM, SYSCTRL, or SYSMAINT authority to use the

rollforward utility.

Chapter 13. Rollforward 255

Rollforward sessions - CLP examples

Example 1

The ROLLFORWARD DATABASE command permits specification of multiple

operations at once, each being separated with the keyword AND. For example, to

roll forward to the end of logs, and complete, the separate commands are:

 db2 rollforward db sample to end of logs

 db2 rollforward db sample complete

can be combined as follows:

 db2 rollforward db sample to end of logs and complete

Although the two are equivalent, it is recommended that such operations be done

in two steps. It is important to verify that the rollforward operation has progressed

as expected before you stop it, so that you do not miss any logs.

If the rollforward command encounters an error, the rollforward operation will not

complete. The error will be returned, and you will then be able to fix the error and

reissue the command. If, however, you are unable to fix the error, you can force the

rollforward to complete by issuing the following:

 db2 rollforward db sample complete

This command brings the database online at the point in the logs before the failure.

Example 2

Roll the database forward to the end of the logs (two table spaces have been

restored):

 db2 rollforward db sample to end of logs

 db2 rollforward db sample to end of logs and stop

These two statements are equivalent. Neither AND STOP or AND COMPLETE is

needed for table space rollforward recovery to the end of the logs. Table space

names are not required. If not specified, all table spaces requiring rollforward

recovery will be included. If only a subset of these table spaces is to be rolled

forward, their names must be specified.

Example 3

After three table spaces have been restored, roll one forward to the end of the logs,

and the other two to a point in time, both to be done online:

 db2 rollforward db sample to end of logs tablespace(TBS1) online

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 tablespace(TBS2, TBS3) online

Note that two rollforward operations cannot be run concurrently. The second

command can only be invoked after the first rollforward operation completes

successfully.

Example 4

After restoring the database, roll forward to a point in time, using OVERFLOW

LOG PATH to specify the directory where the user exit saves archived logs:

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 overflow log path (/logs)

256 Data Recovery and High Availability Guide and Reference

Example 5

In the following example, there is a database called sample. The database is backed

up and the recovery logs are included in the backup image; the database is

restored; and the database is rolled forward to the end of backup timestamp.

Back up the database, including the recovery logs in the backup image:

 db2 backup db sample online include logs

Restore the database using that backup image:

 db2 restore db sample

Roll forward the database to the end of backup timestamp:

 db2 rollforward db sample to end of backup

Example 6 (partitioned database environments)

There are three database partitions: 0, 1, and 2. Table space TBS1 is defined on all

database partitions, and table space TBS2 is defined on database partitions 0 and 2.

After restoring the database on database partition 1, and TBS1 on database

partitions 0 and 2, roll the database forward on database partition 1:

 db2 rollforward db sample to end of logs and stop

This returns warning SQL1271 (“Database is recovered but one or more table

spaces are offline on database partitions 0 and 2.”).

 db2 rollforward db sample to end of logs

This rolls TBS1 forward on database partitions 0 and 2. The clause

TABLESPACE(TBS1) is optional in this case.

Example 7 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the

database partitions are backed up with a single system view backup; the database

is restored on all database partitions; and the database is rolled forward to the end

of backup timestamp.

Perform a single system view (SSV) backup:

 db2 backup db sample on all nodes online include logs

Restore the database on all database partitions:

 db2_all "db2 restore db sample taken at 1998-04-03-14.21.56.245378"

Roll forward the database to the end of backup timestamp:

 db2 rollforward db sample to end of backup on all nodes

Example 8 (partitioned database environments)

In the following example, there is a partitioned database called sample. All the

database partitions are backed up with one command using db2_all; the database

is restored on all database partitions; and the database is rolled forward to the end

of backup timestamp.

Back up all the database partitions with one command using db2_all:

Chapter 13. Rollforward 257

db2_all "db2 backup db sample include logs to /shared/dir/"

Restore the database on all database partitions:

 db2_all "db2 restore db sample from /shared/dir/"

Roll forward the database to the end of backup timestamp:

 db2 rollforward db sample to end of backup on all nodes

Example 9 (partitioned database environments)

After restoring table space TBS1 on database partitions 0 and 2 only, roll TBS1

forward on database partitions 0 and 2:

 db2 rollforward db sample to end of logs

Database partition 1 is ignored.

 db2 rollforward db sample to end of logs tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition

1. Reports SQL4906N.

 db2 rollforward db sample to end of logs on

 dbpartitionnums (0, 2) tablespace(TBS1)

This completes successfully.

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 tablespace(TBS1)

This fails, because TBS1 is not ready for rollforward recovery on database partition

1; all pieces must be rolled forward together.

Note: With table space rollforward to a point in time, the dbpartitionnum clause is

not accepted. The rollforward operation must take place on all the database

partitions on which the table space resides.

After restoring TBS1 on database partition 1:

 db2 rollforward db sample to 1998-04-03-14.21.56.245378 and stop

 tablespace(TBS1)

This completes successfully.

Example 10 (partitioned database environments)

After restoring a table space on all database partitions, roll forward to PIT2, but do

not specify AND STOP. The rollforward operation is still in progress. Cancel and roll

forward to PIT1:

 db2 rollforward db sample to pit2 tablespace(TBS1)

 db2 rollforward db sample cancel tablespace(TBS1)

 ** restore TBS1 on all dbpartitionnums **

 db2 rollforward db sample to pit1 tablespace(TBS1)

 db2 rollforward db sample stop tablespace(TBS1)

Example 11 (partitioned database environments)

Rollforward recover a table space that resides on eight database partitions (3 to 10)

listed in the db2nodes.cfg file:

258 Data Recovery and High Availability Guide and Reference

db2 rollforward database dwtest to end of logs tablespace (tssprodt)

This operation to the end of logs (not point in time) completes successfully. The

database partitions on which the table space resides do not have to be specified.

The utility defaults to the db2nodes.cfg file.

Example 12 (partitioned database environments)

Rollforward recover six small table spaces that reside on a single database partition

database partition group (on database partition 6):

 db2 rollforward database dwtest to end of logs on dbpartitionnum (6)

 tablespace(tsstore, tssbuyer, tsstime, tsswhse, tsslscat, tssvendor)

This operation to the end of logs (not point in time) completes successfully.

Example 13 (Partitioned tables - Rollforward to end of log on all

data partitions)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index

in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and attaches

data partitions from the table in tbsp5. All table spaces can be rolled forward to

END OF LOGS.

 db2 rollforward db PBARDB to END OF LOGS and stop

 tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Example 14 (Partitioned tables - Rollforward to end of logs on

one table space)

A partitioned table is created initially using table spaces tbsp1, tbsp2, tbsp3 with an

index in tbsp0. Later on, a user adds data partitions to the table in tbsp4, and

attaches data partitions from the table in tbsp5. Table space tbsp4 becomes corrupt

and requires a restore and rollforward to end of logs.

 db2 rollforward db PBARDB to END OF LOGS and stop tablespace(tbsp4)

This completes successfully.

Example 15 (Partitioned tables - Rollforward to PIT of all data

partitions including those added, attached, detached or with

indexes)

A partitioned table is created using table spaces tbsp1, tbsp2, tbsp3 with an index

in tbsp0. Later on, a user adds data partitions to the table in tbsp4, attaches data

partitions from the table in tbsp5, and detaches data partitions from tbsp1. The

user performs a rollforward to PIT with all the table spaces used by the partitioned

table including those table spaces specified in the INDEX IN clause.

 db2 rollforward db PBARDB to 2005-08-05-05.58.53.000000 and stop

 tablespace(tbsp0, tbsp1, tbsp2, tbsp3, tbsp4, tbsp5)

This completes successfully.

Chapter 13. Rollforward 259

Example 16 (Partitioned tables - Rollforward to PIT on a subset

of the table spaces)

A partitioned table is created using three table spaces (tbsp1, tbsp2, tbsp3). Later,

the user detaches all data partitions from tbsp3. The rollforward to PIT is only

permitted on tbsp1 and tbsp2.

 db2 rollforward db PBARDB to 2005-08-05-06.02.42.000000 and stop

 tablespace(tbsp1, tbsp2)

This completes successfully.

260 Data Recovery and High Availability Guide and Reference

Chapter 14. Data recovery with IBM Tivoli Storage Manager

(TSM)

When calling the BACKUP DATABASE or RESTORE DATABASE commands, you

can specify that you want to use the IBM Tivoli Storage Manager (TSM) product to

manage database or table space backup or restore operation. The minimum

required level of TSM client API is Version 4.2.0, except on the following:

v 64-bit Solaris systems, which require TSM client API Version 4.2.1.

v 64-bit Windows operating systems, which require TSM client API Version 5.1.

v All Windows X64 systems, which require TSM client API Version 5.3.2.

v 32-bit Linux for System i and pSeries, which require TSM client API Version

5.1.5 or later.

v 64-bit Linux for System i and pSeries, which require TSM client API Version

5.2.2 or later.

v 64-bit Linux on AMD Opteron systems, which require TSM client API Version

5.2.0 or later.

v Linux for zSeries®, which requires TSM client API Version 5.2.2 or later.

Configuring a Tivoli Storage Manager client

Before the database manager can use the TSM option, the following steps might be

required to configure the TSM environment:

1. A functioning TSM client and server must be installed and configured. In

addition, the TSM client API must be installed on each DB2 server.

2. Set the environment variables used by the TSM client API:

DSMI_DIR

Identifies the user-defined directory path where the API trusted agent

file (dsmtca) is located.

DSMI_CONFIG

Identifies the user-defined directory path to the dsm.opt file, which

contains the TSM user options. Unlike the other two variables, this

variable should contain a fully qualified path and file name.

DSMI_LOG

Identifies the user-defined directory path where the error log

(dsierror.log) will be created.

Note: In a multi-partition database environment these settings must be

specified in the sqllib/userprofile directory.

3. If any changes are made to these environment variables and the database

manager is running, you should:

v Stop the database manager using the db2stop command.

v Start the database manager using the db2start command.
4. Depending on the server’s configuration, a Tivoli client might require a

password to interface with a TSM server. If the TSM environment is configured

to use PASSWORDACCESS=generate, the Tivoli client needs to have its password

established.

© Copyright IBM Corp. 2001, 2007 261

The executable file dsmapipw is installed in the sqllib/adsm directory of the

instance owner. This executable allows you to establish and reset the TSM

password.

To execute the dsmapipw command, you must be logged in as the local

administrator or “root” user. When this command is executed, you will be

prompted for the following information:

v Old password, which is the current password for the TSM node, as recognized

by the TSM server. The first time you execute this command, this password

will be the one provided by the TSM administrator at the time your node

was registered on the TSM server.

v New password, which is the new password for the TSM node, stored at the

TSM server. (You will be prompted twice for the new password, to check for

input errors.)

Note: Users who invoke the BACKUP DATABASE or RESTORE DATABASE

commands do not need to know this password. You only need to run the

dsmapipw command to establish a password for the initial connection, and after

the password has been reset on the TSM server.

Considerations for using Tivoli Storage Manager

To use specific features within TSM, you might be required to give the fully

qualified path name of the object using the feature. (Remember that on Windows

operating systems, the \ will be used instead of /.) The fully qualified path name

of:

v A full database recovery object is: /<database>/NODEnnnn/
FULL_BACKUP.timestamp.seq_no

v An incremental database recovery object is: /<database>/NODEnnnn/
DB_INCR_BACKUP.timestamp.seq_no

v An incremental delta database recovery object is: /<database>/NODEnnnn/
DB_DELTA_BACKUP.timestamp.seq_no

v A full table space recovery object is: /<database>/NODEnnnn/
TSP_BACKUP.timestamp.seq_no

v An incremental table space recovery object is: /<database>/NODEnnnn/
TSP_INCR_BACKUP.timestamp.seq_no

v An incremental delta table space recovery object is: /<database>/NODEnnnn/
TSP_DELTA_BACKUP.timestamp.seq_no

where <database> is the database alias name, and NODEnnnn is the node number.

The names shown in uppercase characters must be entered as shown.

v In the case where you have multiple backup images using the same database

alias name, the time stamp and sequence number become the distinguishing part

of a fully qualified name. You will need to query TSM to determine which

backup version to use.

v If you perform an online backup operation and specify the USE TSM option and

the INCLUDE LOGS option, a deadlock can occur if the two processes try to

write to the same tape drive at the same time. If you are using a tape drive as a

storage device for logs and backup images, you need to define two separate tape

pools for TSM, one for the backup image and one for the archived logs.

262 Data Recovery and High Availability Guide and Reference

Chapter 15. DB2 Advanced Copy Services (ACS)

DB2 Advanced Copy Services (ACS) enables you to use the fast copying

technology of a storage device to perform the data copying part of backup and

restore operations.

In a traditional backup or restore operation, the database manager copies data to

or from disk or a storage device using operating system calls. Being able to use the

storage device to perform the data copying makes the backup and restore

operations much faster. A backup operation that uses DB2 ACS is called a snapshot

backup.

To perform snapshot backup and restore operations, you need a DB2 ACS API

driver for your storage device. Integrated into IBM Data Server is a DB2 ACS API

driver for the following storage hardware:

v IBM TotalStorage SAN Volume Controller

v IBM Enterprise Storage Server Model 800

v IBM System Storage DS6000

v IBM System Storage DS8000

v IBM System Storage N Series

v NetApp V-series

Enabling DB2 Advanced Copy Services (ACS)

To use DB2 Advanced Copy Services (ACS), or perform snapshot backup

operations, you must install, activate, and configure DB2 ACS.

Before you begin

DB2 ACS is part of the IBM DB2 High Availability (HA) Feature. To use DB2 ACS,

you must have a license for the DB2 HA Feature.

To perform snapshot backup and restore operations, you need a DB2 ACS API

driver for your storage device. Integrated into IBM Data Server is a DB2 ACS API

driver for the following storage hardware:

v IBM TotalStorage SAN Volume Controller

v IBM Enterprise Storage Server Model 800

v IBM System Storage DS6000

v IBM System Storage DS8000

v IBM System Storage N Series

v NetApp V-series

Procedure

1. Install DB2 ACS. See: “Installing DB2 Advanced Copy Services (ACS)” on page

264.

2. Create the database manager instance or instances with which you will use

DB2 ACS.

© Copyright IBM Corp. 2001, 2007 263

http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-03.ibm.com/servers/storage/disk/ds6000/index.html
http://www-03.ibm.com/systems/storage/disk/ds8000/index.html
http://www-03.ibm.com/systems/storage/network/software
http://www.netapp.com/products/enterprise-systems/virtualized-storage/index.html
http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-03.ibm.com/servers/storage/disk/ds6000/index.html
http://www-03.ibm.com/systems/storage/disk/ds8000/index.html
http://www-03.ibm.com/systems/storage/network/software
http://www.netapp.com/products/enterprise-systems/virtualized-storage/index.html

When you create a new database manager instance, a directory called acs is

created in the new instance sqllib directory. Because each database manager

instance has an acs directory, you can configure each database manager

instance differently.

3. For each database manager instance with which you will use DB2 ACS,

perform the following steps:

a. Activate DB2 ACS. See: “Activating DB2 Advanced Copy Services (ACS).”

b. Configure DB2 ACS. See: “Configuring DB2 Advanced Copy Services

(ACS)” on page 265.

Results

After you have enabled DB2 ACS, you can perform snapshot backup operations.

Installing DB2 Advanced Copy Services (ACS)

The files and libraries required for DB2 Advanced Copy Services (ACS) are

installed by the IBM Data Server installer.

Restrictions

DB2 ACS supports a subset of hardware and operating systems that IBM Data

Server supports. For a list of hardware and operating systems that DB2 ACS

supports, see: “DB2 Advanced Copy Services (ACS) supported operating systems

and hardware” on page 307.

Procedure

1. Install IBM Data Server.

2. Add a port for the DB2 ACS agent in the TCP/IP services file. For example:

 db2acs 5400/tcp # DB2 ACS service port

What to do next

After you have installed DB2 ACS, you must activate DB2 ACS and configure DB2

ACS before you can perform snapshot backup operations.

Activating DB2 Advanced Copy Services (ACS)

Before you can use DB2 Advanced Copy Services (ACS) to perform a snapshot

backup for a given database manager instance, you must activate DB2 ACS

functionality on that instance. You activate DB2 ACS by running a script.

Before you begin

You must perform the following tasks before you can activate DB2 ACS:

1. Install DB2 ACS

2. Create the database manager instance or instances with which you will use

DB2 ACS.

About this task

The database manager automatically calls the setup.sh to activate DB2 ACS

functionality during database manager instance creation and when you upgrade

IBM Data Server. You can also call the setup.sh script manually to activate DB2

ACS functionality.

264 Data Recovery and High Availability Guide and Reference

Procedure

To activate DB2 ACS functionality, run the script setup.sh as a user with root

authority. The file setup.sh is located in the acs subdirectory of the database

manager instance sqllib directory.

Here is the syntax for setup.sh:

usage: setup.sh -a enable

 -d <DB2_Instance_Directory>

 -u <Instance_user_ID_name>

 -g <Instance_primary_group_name>

where action can be one of:

v start

v stop

v query

v enable

v disable

Results

One important result of running the setup.sh script is that the ownership and

permissions of DB2 ACS executable files in the sqllib/acs directory are verified.

What to do next

After you have activated DB2 ACS, you must configure DB2 ACS before you can

perform snapshot backup operations.

Configuring DB2 Advanced Copy Services (ACS)

Before you can use DB2 Advanced Copy Services (ACS) to perform a snapshot

backup, you must configure DB2 ACS. You use configuration files to configure DB2

ACS.

Before you begin

You must perform the following tasks before you can configure DB2 ACS:

1. Install DB2 ACS

2. Create the database manager instance or instances with which you will use

DB2 ACS.

3. Activate DB2 ACS

Procedure

Run the setup.sh script from the sqllib/acs directory without any parameters. This

will lead you through an interactive, text-based wizard that will configure DB2

ACS.

Results

After you have configured DB2 ACS, you can perform snapshot backup operations.

Chapter 15. DB2 Advanced Copy Services (ACS) 265

Configuring the DB2 Advanced Copy Services (ACS) directory

When you create a new database manager instance, a directory called acs is created

in the new instance sqllib directory. DB2 Advanced Copy Services (ACS) uses this

acs directory to store configuration files like the target volume control file and the

shared repository for recovery objects. There are restrictions on the ways you can

alter or configure this acs directory.

1. The acs directory must not be involved in any DB2 ACS or snapshot backup

operation.

2. The acs directory can be NFS-exported and NFS-shared on all database

partitions and on the backup system for a snapshot backup using IBM Tivoli

Storage Manager (TSM).

DB2 Advanced Copy Services (ACS) API

The DB2 Advanced Copy Services (ACS) application programming interface (API)

defines a set of functions that the database manager uses to communicate with

storage hardware to perform snapshot backup operations.

To perform snapshot backup and restore operations, you need a DB2 ACS API

driver for your storage device. Integrated into IBM Data Server is a DB2 ACS API

driver for the following storage hardware:

v IBM TotalStorage SAN Volume Controller

v IBM Enterprise Storage Server Model 800

v IBM System Storage DS6000

v IBM System Storage DS8000

v IBM System Storage N Series

v NetApp V-series

DB2 Advanced Copy Services (ACS) API functions

The database manager communicates DB2 ACS requests to storage hardware

through the DB2 ACS API functions.

db2ACSQueryApiVersion - return the current version of the DB2

Advanced Copy Services (ACS) API

Returns the current version of the DB2 Advanced Copy Services (ACS) API.

API include file

db2ACSApi.h

API and data structure syntax

db2ACS_Version db2ACSQueryApiVersion();

Parameters

None.

Usage notes

Possible return values:

v DB2ACS_API_VERSION1

v DB2ACS_API_VERSION_UNKNOWN

266 Data Recovery and High Availability Guide and Reference

http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-03.ibm.com/servers/storage/disk/ds6000/index.html
http://www-03.ibm.com/systems/storage/disk/ds8000/index.html
http://www-03.ibm.com/systems/storage/network/software
http://www.netapp.com/products/enterprise-systems/virtualized-storage/index.html

db2ACSInitialize - initialize a DB2 Advanced Copy Services (ACS)

session

Initializes a new DB2 Advanced Copy Services (ACS) session. This call establishes

communication between the database manager’s DB2 ACS library and the DB2

ACS API driver for the storage hardware.

Include file

db2ACSApi.h

Syntax and data structures

/* ==

 * Session Initialization

 * == */

db2ACS_RC db2ACSInitialize(

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 Before calling db2ACSInitialize(), the database manager populates the

following fields:

 pControlBlock->session

 pControlBlock->options

 The DB2 ACS API driver populates the following fields before returning:

 pControlBlock->handle

 pControlBlock->vendorInfo

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 6. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

Chapter 15. DB2 Advanced Copy Services (ACS) 267

Table 6. Return codes (continued)

Return code Description Notes

DB2ACS_RC_INIT_FAILED The database manager attempted to

initialize a DB2 ACS session, but the

initialization failed.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_COMM_ERROR There was a communication error

with a storage device, such as a tape

drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_NO_DEV_AVAIL There is currently no storage device,

such as a tape drive, available to use.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

Before the database manager can make any DB2 ACS API calls, except calls to

db2ACSQueryAPIVersion(), the database manager must call db2ACSInitialize().

Once the database manager establishes a DB2 ACS session by calling

db2ACSInitialize(), then the database manager can perform any combination of

DB2 ACS query, read, write, or delete operations. The database manager can

terminate the DB2 ACS session by calling db2ACSTerminate().

db2ACSTerminate - terminate a DB2 Advanced Copy Services

(ACS) session

Terminates a DB2 Advanced Copy Services (ACS) session.

Include file

db2ACSApi.h

268 Data Recovery and High Availability Guide and Reference

Syntax and data structures

/* ==

 * Session Termination

 * == */

db2ACS_RC db2ACSTerminate(

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 The database manager allocated the memory for this parameter before

calling db2ACSInitialize(). The database manager is responsible for freeing

this memory after db2ACSTerminate().

 Before calling db2ACSTerminate(), the database manager populates the

following fields:

 pControlBlock->options

 The DB2 ACS API driver might invalidate and free the memory in

pControlBlock->vendorInfo.vendorCB.

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 7. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful. Free all memory allocated for this

session and terminate.

DB2ACS_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

Chapter 15. DB2 Advanced Copy Services (ACS) 269

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

The DB2 ACS API driver should free all memory that the driver allocated for the

DB2 ACS session in db2ACSTerminate().

Regardless of whether db2ACSTerminate() completes without error, the database

manager cannot call any DB2 ACS functions on this DB2 ACS session again,

without first calling db2ACSInitialize().

db2ACSPrepare - prepare to perform a snapshot backup

operation.

When a snapshot backup is performed, the database manager suspends the

database. db2ACSPrepare() performs all the steps to prepare to perform a snapshot

backup operation up to, but not including, the point where the database manager

suspends the database.

Include file

db2ACSApi.h

Syntax and data structures

/* ==

 * Prepare

 * == */

db2ACS_RC db2ACSPrepare(

 db2ACS_GroupList * pGroupList,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pGroupList

Data type: db2ACS_GroupList *

 db2ACS_GroupList contains a list of groups to be included in the snapshot

backup operation.

 If pGroupList is NULL, all groups (paths) will be included in the snapshot

backup operation.

 If pGroupList is not NULL:

v pGroupList contains a list of groups (paths) to be included in the

snapshot backup operation.

v The database manager is responsible for allocating and freeing the

memory for pGroupList.

v The database manager populates the following fields before passing

pGroupList to db2ACSPrepare():

 pGroupList->numGroupID

 pGroupList->id

pControlBlock

Data type: db2ACS_CB *

270 Data Recovery and High Availability Guide and Reference

db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSPrepare(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 8. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Chapter 15. DB2 Advanced Copy Services (ACS) 271

Usage notes

If db2ACSPrepare() succeeds, then the database manager will suspend the database

before calling db2ACSSnapshot().

db2ACSBeginOperation - begin a DB2 Advanced Copy Services

(ACS) operation.

Begins a DB2 Advanced Copy Services (ACS) operation.

Include file

db2ACSApi.h

Syntax and data structures

/* ==

 * Operation Begin

 *

 * A valid ACS operation is specified by passing an ObjectType OR’d with one of

 * the following Operations, such as:

 *

 * (DB2ACS_OP_CREATE | DB2ACS_OBJTYPE_SNAPSHOT)

 * == */

db2ACS_RC db2ACSBeginOperation(

 db2ACS_Operation operation,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

operation

Data type: db2ACS_Operation.

 operation is a bitmask indicating the DB2 ACS operation to begin, and the

type of object involved.

 Operation types:

 DB2ACS_OP_CREATE

 DB2ACS_OP_READ

 DB2ACS_OP_DELETE

 Object types:

 DB2ACS_OBJTYPE_BACKUP

 DB2ACS_OBJTYPE_LOG

 DB2ACS_OBJTYPE_LOADCOPY

 DB2ACS_OBJTYPE_SNAPSHOT

 For example: (DB2ACS_OP_CREATE | DB2ACS_OBJTYPE_SNAPSHOT) or (

DB2ACS_OP_DELETE | DB2ACS_OBJTYPE_LOADCOPY).

 The database manager passes operation to the db2ACSBeginOperation()

function call.

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSBeginOperation(), the database manager populates

the following fields:

272 Data Recovery and High Availability Guide and Reference

pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

 If operation is DB2ACS_OP_CREATE or DB2ACS_OP_READ, then the database

manager also populates the following field:

 pControlBlock->operation

 The information contained within pControlBlock->operation is only valid

within the context of a particular DB2 ACS operation.

pControlBlock->operation will be set during db2ACSBeginOperation(),

and will remain unchanged until db2ACSEndOperation() returns. Neither

the database manager nor the DB2 ACS API driver should referenced

pControlBlock->operation outside the scope of a DB2 ACS operation.

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 9. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_OPTIONS The database manager specified

invalid options.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

None.

Chapter 15. DB2 Advanced Copy Services (ACS) 273

db2ACSEndOperation - end a DB2 Advanced Copy Services

(ACS) operation.

Ends a DB2 Advanced Copy Services (ACS) operation.

Include file

db2ACSApi.h

Syntax and data structures

/* ==

 * Operation End

 * == */

db2ACS_RC db2ACSEndOperation(

 db2ACS_EndAction endAction,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

endAction

Data type: db2ACS_EndAction.

 endAction is a bitmask indicating how the DB2 ACS API driver should

end the DB2 ACS operation.

 Values:

 DB2ACS_END_COMMIT

 DB2ACS_END_ABORT

 The database manager passes endAction to the db2ACSEndOperation()

function call.

pControlBlock

Data type: db2ACS_CB

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSEndOperation(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

274 Data Recovery and High Availability Guide and Reference

Return Codes

 Table 10. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_COMMIT_FAILED The DB2 ACS API driver could not

commit a transaction.

DB2ACS_RC_ABORT_FAILED The database manager attempted to

abort a DB2 ACS operation, but the

attempt to abort failed.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

If the database manager passes DB2ACS_END_ABORT as the endAction parameter, the

result should be that the snapshot backup objects are deleted.

db2ACSBeginQuery - begin a query about snapshot backup

objects

Begins a DB2 Advanced Copy Services (ACS) query operation about snapshot

backup objects that are available to be used for restore operations.

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSBeginQuery(

 db2ACS_QueryInput * pQueryInput,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pQueryInput

Data type: db2ACS_QueryInput *

 db2ACS_QueryInput has the same fields as db2ACS_ObjectInfo.

db2ACS_ObjectInfo contains information about object created using the DB2

Advanced Copy Services (ACS) API.

Chapter 15. DB2 Advanced Copy Services (ACS) 275

The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 Before calling db2ACSBeginQuery(), the database manager populates the

fields of pQueryInput.

 The DB2 ACS API driver must support the use of the following wildcards

in the query:

v DB2ACS_WILDCARD in string fields

v DB2ACS_ANY_PARTITIONNUM for database partition fields

v DB2ACS_ANY_UINT32 for 32-bit unsigned integer (Uint32) fields

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSBeginQuery(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 11. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

276 Data Recovery and High Availability Guide and Reference

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

db2ACSBeginQuery() does not return any query data.

db2ACSGetNextObject - list next snapshot backup object

available to use for restore

Returns the next item in a list of snapshot backup objects that are available to be

used for a restore operation.

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSGetNextObject(

 db2ACS_QueryOutput * pQueryOutput,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pQueryOutput

Data type: db2ACS_QueryOutput *

 db2ACS_QueryOutput contains query result information about snapshot

backup objects.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pQueryOutput before

returning.

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSGetNextObject(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

Chapter 15. DB2 Advanced Copy Services (ACS) 277

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 12. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_OBJ_NOT_FOUND The DB2 ACS API driver could not

find the snapshot backup object

specified by the database manager.

The function call didn’t fail, but there

are no snapshot backup objects that

match the criteria passed to

db2ACSBeginQuery().

DB2ACS_RC_END_OF_DATA The DB2 ACS API driver cannot find

any more snapshot backup objects.

The function call didn’t fail, but there

are no more snapshot backup objects

that match the criteria passed to

db2ACSBeginQuery().

DB2ACS_RC_MORE_DATA There is more data to be transferred

from the storage location to the

database manager.

Information about a snapshot backup

object that matches the criteria passed

to db2ACSBeginQuery() is returned,

and there are more snapshot backup

objects that that match the criteria

passed to db2ACSBeginQuery().

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

278 Data Recovery and High Availability Guide and Reference

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

The database manager must call db2ACSBeginQuery() before calling

db2ACSGetNextObject(). The database manager specifies the search criteria in the

db2ACS_QueryInput parameter passed to db2ACSBeginQuery().

db2ACSGetNextObject() returns information about one snapshot backup object that

matches the search criteria passed to db2ACSBeginQuery(). If

db2ACSGetNextObject() returns DB2ACS_RC_MORE_DATA, the database manager can

call db2ACSGetNextObject() again to receive information about another snapshot

backup object that matches the search criteria. If db2ACSGetNextObject() returns

DB2ACS_RC_END_OF_DATA, there are no more snapshot backup objects that match the

search criteria.

db2ACSEndQuery - end a query about snapshot backup objects

The database manager uses the DB2 Advanced Copy Services (ACS) API functions

db2ACSBeginQuery() and db2ACSGetNextObject() to query about snapshot

backup objects that are available to use for restore operations. db2ACSEndQuery()

terminates that DB2 ACS query session.

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSEndQuery(

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSEndQuery(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Chapter 15. DB2 Advanced Copy Services (ACS) 279

Return Codes

 Table 13. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

The database manager cannot call db2ACSGetNextObject() again on this DB2 ACS

session without first calling db2ACSBeginQuery() again.

db2ACSSnapshot - perform a DB2 Advanced Copy Services

(ACS) operation

Performs a DB2 Advanced Copy Services (ACS) operation.

Include file

db2ACSApi.h

Syntax and data structures

typedef union db2ACS_ReadList

{

 db2ACS_GroupList group;

} db2ACS_ReadList;

db2ACS_RC db2ACSSnapshot(

 db2ACS_Action action,

 db2ACS_ObjectID objectID,

280 Data Recovery and High Availability Guide and Reference

db2ACS_ReadList * pReadList,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

action Data type: db2ACS_Action

 The type of DB2 ACS action to perform. Values:

 DB2ACS_ACTION_WRITE

 DB2ACS_ACTION_READ_BY_OBJECT

 DB2ACS_ACTION_READ_BY_GROUP

 The database manager passes action in to db2ACSSnapshot().

objectID

Data type: db2ACS_ObjectID

 A db2ACS_ObjectID is a unique identifier for each stored object, which is

returned by a query to the storage repository. A db2ACS_ObjectID is

guaranteed to be unique and persistent only within the the timeframe of a

single DB2 ACS session.

 If the database manager specified DB2ACS_OP_READ or DB2ACS_OP_DELETE as

operation in the call to db2ACSBeginOperation(), then the database

manager passes the value for objectID in to db2ACSSnapshot().

pReadList

Data type: db2ACS_ReadList *

 db2ACS_ReadList contains a list of groups.

 pReadList is only used if action is DB2ACS_ACTION_READ_BY_GROUP.

 If action is DB2ACS_ACTION_READ_BY_GROUP, then the database manager is

responsible for allocating memory for and populating the fields of

pReadLIst before calling db2ACSSnapshot(), and for freeing the memory

for pReadList afterwards.

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSSnapshot(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

Chapter 15. DB2 Advanced Copy Services (ACS) 281

The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 14. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

The database manager calls db2ACSBeginOperation() before calling

db2ACSPartition(), db2ACSPrepare(), and then db2ACSSnapshot(). The database

manager specifies the type of DB2 ACS operation that the DB2 ACS API driver

should perform in the operation parameter in the call to db2ACSBeginOperation().

db2ACSPartition - group target data for a database partition

together

Associates a group identifier with each of the paths listed by the database manager

as belonging to a database partition.

Include file

db2ACSApi.h

Syntax and data structures

/* ==

 * Partition

 * == */

db2ACS_RC db2ACSPartition(

 db2ACS_PathList * pPathList,

282 Data Recovery and High Availability Guide and Reference

db2ACS_CreateObjectInfo * pCreateObjInfo,

 db2ACS_CB * PControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pPathList

Data type: db2ACS_PathList

 db2ACS_PathList contains a list of database paths, including some extra

information about each of those paths specific to DB2 ACS operations.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The entry field of the db2ACS_PathList structure is an array of elements of

type db2ACS_PathEntry. db2ACS_PathEntry contains information about a

database path.

 Before calling db2ACSPartition, the database manager populates the

following fields of each db2ACS_PathEntry entry in pPathList:

v path

v type

v toBeExcluded

Every path identified by the database manager as belonging to this

database partition is given a group identifier by the DB2 ACS API driver.

The DB2 ACS API driver populates the groupID field of each

db2ACS_PathEntry in pPathList before returning.

pCreateObjInfo

Data type: db2ACS_CreateObjectInfo

 db2ACS_CreateObjectInfo contains information about the DB2 ACS backup

object creation.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The database manager populates the fields of pCreateObjInfo before

calling db2ACSPartition.

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSPartition(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

Chapter 15. DB2 Advanced Copy Services (ACS) 283

The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 15. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INIT_FAILED The database manager attempted to

initialize a DB2 ACS session, but the

initialization failed.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_OBJ_OUT_OF_SCOPE The database manager attempted to

perform a DB2 ACS operation on a

recovery object that is not managed

by the DB2 ACS API driver.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

DB2 Advanced Copy Services handles the data on a single database partition

atomically. That is: the data for one database partition is backed up or restored

together, and independently of other database partitions - even when the action is

part of an operation involving multiple database partitions. db2ACSPartition

groups database path information for a single database partition together.

The database manager calls db2ACSPartition before calling db2ACSSnapshot. The

database manager will list all the paths associated with this database partition in

284 Data Recovery and High Availability Guide and Reference

the pPathList parameter. The database manager can perform a DB2 ACS operation

on a subset of the paths listed in pPathList by specifying that subset of paths in

the pReadList parameter passed to db2ACSSnapshot.

db2ACSVerify - verify that a DB2 Advanced Copy Services (ACS)

operation has completed successfully

Verifies that a DB2 Advanced Copy Services (ACS) operation succeeded

Include file

db2ACSApi.h

Syntax and data structures

/* ==

 * Verify

 * == */

db2ACS_RC db2ACSVerify(

 db2ACS_PostObjectInfo * pPostObjInfo,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pPostObjInfo

Data type: db2ACS_PostObjectInfo

 db2ACS_DB2ID is a set of data that can not be known at snapshot backup

object creation time, but which must be maintained in the object repository.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The database manager populates the fields of pPostObjInfo before calling

db2ACSVerify. pPostObjInfo contains information that is relevant after the

DB2 ACS operation. For example, after a successful snapshot backup,

pPostObjInfo might contain the first active log file. If there is no data

relevant for after the DB2 ACS operation, then the database manager will

set pPostObjInfo to NULL.

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSVerify(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

Chapter 15. DB2 Advanced Copy Services (ACS) 285

The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 16. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

If db2ACSVerify returns that a snapshot backup operation succeeded, that means

that the recovery objects generated by the snapshot backup are available to be used

for restore operations.

db2ACSDelete - delete recovery objects that were created using

DB2 Advanced Copy Services (ACS)

Deletes recovery objects that were created using DB2 Advanced Copy Services

(ACS)

Include file

db2ACSApi.h

Syntax and data structures

/* ==

 * Delete

 * == */

db2ACS_RC db2ACSDelete(

286 Data Recovery and High Availability Guide and Reference

db2ACS_ObjectID objectID,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

objectID

Data type: db2ACS_ObjectID

 A db2ACS_ObjectID is a unique identifier for each stored object, which is

returned by a query to the storage repository. A db2ACS_ObjectID is

guaranteed to be unique and persistent only within the the timeframe of a

single DB2 ACS session.

 The database manager can use db2ACSQuery() to obtain a valid objectID

to pass to db2ACSDelete().

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSDelete(), the database manager populates the

following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 17. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful. The specified object is deleted. No

further DB2 ACS operations can be

performed on that object.

DB2ACS_RC_DELETE_FAILED The DB2 ACS API driver could not

successfully delete snapshot backup

objects specified by the database

manager.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

Chapter 15. DB2 Advanced Copy Services (ACS) 287

Table 17. Return codes (continued)

Return code Description Notes

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

When the database manager calls db2ACSDelete, the DB2 ACS API driver deletes

the recovery object identified by objectID.

The database manager calls db2ACSDelete when a user calls db2acsutil with the

DELETE parameter.

db2ACSStoreMetaData - store metadata for a recovery object

generated using DB2 Advanced Copy Services (ACS)

Stores metadata about a recovery object that was created using DB2 Advanced

Copy Services (ACS)

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSStoreMetaData(

 db2ACS_MetaData * pMetaData,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pMetaData

Data type: db2ACS_MetaData

 db2ACS_MetaData stores snapshot backup meta data.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The metadata stored in the data field of pMetaData is internal to the

database manager, and might change over time, so the DB2 ACS API

driver just treats this data as a binary stream.

288 Data Recovery and High Availability Guide and Reference

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSStoreMetaData(), the database manager populates

the following fields:

 pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 18. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Chapter 15. DB2 Advanced Copy Services (ACS) 289

Usage notes

A snapshot backup operation is comprised of several DB2 ACS API function calls

such as: db2ACSInitialize, db2ACSBeginOperation, db2ACSPrepare, and

db2ACSSnapshot. db2ACSStoreMetaData is part of the overall operation too. All of

these API calls, including db2ACSStoreMetaData must succeed for the snapshot

backup operation to succeed. If db2ACSStoreMetaData fails, the recovery object

that was generated by the DB2 ACS backup operation is unusable.

db2ACSRetrieveMetaData - retrieve metadata about a recovery

object generated using DB2 Advanced Copy Services (ACS)

Retrieves metadata about a recovery object that was created using DB2 Advanced

Copy Services (ACS)

Include file

db2ACSApi.h

Syntax and data structures

db2ACS_RC db2ACSRetrieveMetaData(

 db2ACS_MetaData * pMetaData,

 db2ACS_ObjectID objectID,

 db2ACS_CB * pControlBlock,

 db2ACS_ReturnCode * pRC);

Parameters

pMetaData

Data type: db2ACS_MetaData

 db2ACS_MetaData stores snapshot backup meta data.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The metadata stored in the data field of pMetaData is internal to the

database manager, and might change over time, so the DB2 ACS API

driver just treats this data as a binary stream.

objectID

Data type: db2ACS_ObjectID

 A db2ACS_ObjectID is a unique identifier for each stored object, which is

returned by a query to the storage repository. A db2ACS_ObjectID is

guaranteed to be unique and persistent only within the the timeframe of a

single DB2 ACS session.

 The database manager can use db2ACSQuery() to obtain a valid objectID

to pass to db2ACSRetrieveMetaData().

pControlBlock

Data type: db2ACS_CB *

 db2ACS_CB contains fundamental information required to initialize and

terminate a DB2 ACS session.

 Before calling db2ACSRetrieveMetaData(), the database manager populates

the following fields:

290 Data Recovery and High Availability Guide and Reference

pControlBlock->handle

 pControlBlock->vendorInfo

 pControlBlock->options

pRC Data type: db2ACS_ReturnCode *

 db2ACS_ReturnCode contains diagnostic information including message text

and error codes specific to the storage hardware. The contents of a

db2ACS_ReturnCode parameter for a DB2 ACS API function call will be

recorded in the database manager diagnostic logs.

 The database manager allocates the memory for this parameter, and passes

a pointer to that instantiated object to the function. The database manager

is responsible for freeing this memory.

 The DB2 ACS API driver populates the fields of pRC before returning.

Return Codes

 Table 19. Return codes

Return code Description Notes

DB2ACS_RC_OK The operation was successful.

DB2ACS_RC_INV_ACTION The database manager requested an

action from the DB2 ACS API driver

that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a

storage device handle that is invalid.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_DEV_ERROR There was an error with a storage

device, such as a tape drive.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered

an error resulting from input or

output operations.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

DB2ACS_RC_OBJ_NOT_FOUND The DB2 ACS API driver could not

find the snapshot backup object

specified by the database manager.

The DB2 ACS API driver encountered

an error. The database manager

cannot use the DB2 ACS API session.

If the DB2 ACS API driver encounters an error, the driver might abort a DB2 ACS

operation. The DB2 ACS session cannot be used for any action other than the

following:

v If a call to db2ACSBeginQuery() previously succeeded the database manager can

call db2ACSEndQuery()

v If a call to db2ACSBeginOperation() previously succeeded, the database manager

can call db2ACSEndOperation()

v If a call to db2ACSInitialize() previously succeeded, the database manager can

call db2ACSTerminate()

For more information about DB2 ACS API return codes, see the topic: “DB2

Advanced Copy Services (ACS) API return codes” on page 305.

Usage notes

None.

Chapter 15. DB2 Advanced Copy Services (ACS) 291

DB2 Advanced Copy Services (ACS) API data structures

To call DB2 Advanced Copy Services (ACS) API functions, you must use DB2 ACS

API data structures.

db2ACS_BackupDetails DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_BackupDetails contains information about a snapshot backup operation.

/* -- */

typedef struct db2ACS_BackupDetails

{

 /* A traditional DB2 backup can consist of multiple objects (logical tapes),

 * where each object is uniquely numbered with a non-zero natural number.

 * --- */

 db2Uint32 sequenceNum;

 char imageTimestamp[SQLU_TIME_STAMP_LEN + 1];

} db2ACS_BackupDetails;

sequenceNum

Data type: db2Uint32.

 Identifies a backup object by its unique number.

imageTimestamp

Data type: char[].

 A character string of length SQLU_TIME_STAMP_LEN + 1.

db2ACS_CB DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_CB contains fundamental information required to initialize and terminate a

DB2 ACS session.

/* ==

 * DB2 Backup Adapter Control Block

 * == */

typedef struct db2ACS_CB

{

 /* Output: Handle value for this session.

 * --- */

 db2Uint32 handle;

 db2ACS_VendorInfo vendorInfo;

 /* Input fields and parameters.

 * --- */

 db2ACS_SessionInfo session;

 db2ACS_Options options;

 /* Operation info is optional, possibly NULL, and is only ever valid

 * within the context of an operation (from call to BeginOperation() until

 * the EndOperation() call returns).

 *

 * The operation info will be present during creation or read operations

 * of snapshot and backup objects.

 * --- */

 db2ACS_OperationInfo * operation;

} db2ACS_CB;

handle

Data type: db2Uint32.

 A handle to reference the DB2 ACS session.

vendorInfo

Data type: db2ACS_VendorInfo.

292 Data Recovery and High Availability Guide and Reference

db2ACS_VendorInfo contains information about the DB2 ACS API driver.

session

Data type: db2ACS_SessionInfo.

 db2ACS_SessionInfo contains all the information about the DB2 ACS

session.

options

Data type: db2ACS_Options.

 db2ACS_Options specifies options to be used for a DB2 ACS operation. This

contents of this string is specific to the DB2 ACS API driver.

operation

Data type: db2ACS_OperationInfo *.

 db2ACS_OperationInfo contains information about a snapshot backup

operation.

db2ACS_CreateObjectInfo DB2 Advanced Copy Services (ACS)

API data structure

db2ACS_CreateObjectInfo contains information about the DB2 ACS backup object

creation.

/* ==

 * Object Creation Parameters.

 * == */

typedef struct db2ACS_CreateObjectInfo

{

 db2ACS_ObjectInfo object;

 db2ACS_DB2ID db2ID;

 /* ---

 * The following fields are optional information for the database manager

 * to use as it sees fit.

 * --- */

 /* Historically both the size estimate and management

 * class parameters have been used by the TSM client API for traditional

 * backup objects, log archives, and load copies, but not for snapshot

 * backups.

 * --- */

 db2Uint64 sizeEstimate;

 char mgmtClass[DB2ACS_MAX_MGMTCLASS_SZ + 1];

 /* The appOptions is a copy of the iOptions field of flags passed to DB2’s

 * db2Backup() API when this execution was initiated. This field will

 * only contain valid data when creating a backup or snapshot object.

 * --- */

 db2Uint32 appOptions;

} db2ACS_CreateObjectInfo;

object Data type: db2ACS_ObjectInfo

 db2ACS_ObjectInfo contains information about object created using the DB2

Advanced Copy Services (ACS) API.

db2ID Data type: db2ACS_DB2ID

 db2ACS_DB2ID identifies the IBM Data Server.

sizeEstimate

Data type: db2Uint64.

 An estimate of the size of backup objects being created. This estimate does

not apply to log archives, load copies, or snapshot backups objects.

Chapter 15. DB2 Advanced Copy Services (ACS) 293

mgmtClass

Data type: db2ACS_MgmtClass.

 A character string of length db2ACS_MAX_MGMTCLASS_SZ + 1.

 This does not apply to snapshot backup objects.

appOptions

Data type: db2Uint32.

 A copy of the backup options passed to the backup command that initiated

the snapshot backup.

db2ACS_DB2ID DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_DB2ID identifies the IBM Data Server.

/* ==

 * DB2 Data Server Identifier

 * == */

typedef struct db2ACS_DB2ID

{

 db2Uint32 version;

 db2Uint32 release;

 db2Uint32 level;

 char signature[DB2ACS_SIGNATURE_SZ + 1];

} db2ACS_DB2ID;

version

Data type: db2Uint32.

 Version of IBM Data Server. For example: 9

release

Data type: db2Uint32.

 Release level of IBM Data Server. For example: 5

level Data type: db2Uint32.

 Level identifier for the IBM Data Server. For example: 0

signature

Data type: db2ACS_Signature.

 A character string of length DB2ACS_SIGNATURE_SZ + 1. For example:

″SQL09050″

db2ACS_GroupList DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_GroupList contains a list of groups to be included in the snapshot backup

operation.

/* ==

 * Snapshot Group List

 *

 * This is an array of size ’numGroupIDs’, indicating the set of groups that

 * are to be included in the snapshot operation.

 * == */

typedef struct db2ACS_GroupList

{

 db2Uint32 numGroupIDs;

 db2Uint32 * id;

} db2ACS_GroupList;

numGroupIDs

Data type: db2Uint32.

294 Data Recovery and High Availability Guide and Reference

Number of groups in the array id.

id Data type: db2Uint32 *.

 An array of group identifiers. The groups identified are the groups (or lists

of paths) to be included in the snapshot backup operation.

db2ACS_LoadcopyDetails DB2 Advanced Copy Services (ACS)

API data structure

db2ACS_LoadcopyDetails contains information about a load copy operation.

/* -- */

typedef struct db2ACS_LoadcopyDetails

{

 /* Just like the BackupDetails, a DB2 load copy can consist of multiple

 * objects (logical tapes), where each object is uniquely numbered with a

 * non-zero natural number.

 * --- */

 db2Uint32 sequenceNum;

 char imageTimestamp[SQLU_TIME_STAMP_LEN + 1];

} db2ACS_LoadcopyDetails;

sequenceNum

Data type: db2Uint32.

 Identifies a backup object by its unique number.

imageTimestamp

Data type: char[].

 A character string of length SQLU_TIME_STAMP_LEN + 1

db2ACS_LogDetails DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_LogDetails contains information that identifies a particular database log

file.

/* -- */

typedef struct db2ACS_LogDetails

{

 db2Uint32 fileID;

 db2Uint32 chainID;

} db2ACS_LogDetails;

fileID Data type: db2Uint32.

 A number which is the file name of the database log file.

chainID

Data type: db2Uint32.

 A number which identifies the database log file chain to which the

database log file fileID belongs.

db2ACS_ObjectInfo DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_ObjectInfo contains information about object created using the DB2

Advanced Copy Services (ACS) API.

/* ==

 * Object Description and Associated Information.

 *

 * This structure is used for both input and output, and its contents define

 * the minimum information that must be recorded about any object created

 * through this interface.

 * == */

Chapter 15. DB2 Advanced Copy Services (ACS) 295

typedef struct db2ACS_ObjectInfo

{

 db2ACS_ObjectType type;

 SQL_PDB_NODE_TYPE dbPartitionNum;

 char db[SQL_DBNAME_SZ + 1];

 char instance[DB2ACS_MAX_OWNER_SZ + 1];

 char host[SQL_HOSTNAME_SZ + 1];

 char owner[DB2ACS_MAX_OWNER_SZ + 1];

 union

 {

 db2ACS_BackupDetails backup;

 db2ACS_LogDetails log;

 db2ACS_LoadcopyDetails loadcopy;

 db2ACS_SnapshotDetails snapshot;

 } details;

} db2ACS_ObjectInfo;

type Data type: db2ACS_ObjectType.

 Specifies the snapshot backup objects type. Values:

DB2ACS_OBJTYPE_ALL

DB2ACS_OBJTYPE_BACKUP

DB2ACS_OBJTYPE_LOG

DB2ACS_OBJTYPE_LOADCOPY

DB2ACS_OBJTYPE_SNAPSHOT

 DB2ACS_OBJTYPE_ALL can only be used as a filter for queries. There are

no objects of type 0.

dbPartitionNum

Data type: SQL_PDB_NODE_TYPE.

 An identifier for this database partition.

db Data type: char[].

 A character string of length SQL_DBNAME_SZ + 1.

instance

Data type: char[].

 A character string of length DB2ACS_MAX_OWNER_SZ + 1.

host Data type: char[].

 A character string of length SQL_HOSTNAME_SZ + 1.

owner Data type: char[].

 A character string of length DB2ACS_MAX_OWNER_SZ + 1.

details

backup

Data type: db2ACS_BackupDetails

 db2ACS_BackupDetails contains information about a snapshot

backup operation.

log Data type: db2ACS_LogDetails

 db2ACS_LogDetails contains information that identifies a particular

database log file.

296 Data Recovery and High Availability Guide and Reference

loadcopy

Data type: db2ACS_LoadcopyDetails

 db2ACS_LoadcopyDetails contains information about a load copy

operation.

snapshot

Data type: db2ACS_SnapshotDetails

 db2ACS_SnapshotDetails contains information about a snapshot

backup operation.

db2ACS_ObjectStatus DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_ObjectStatus contains information about the status or progress of a

snapshot backup operation, or the status or usability of a snapshot backup object.

typedef struct db2ACS_ObjectStatus

{

 /* The total and completed bytes refer only to the ACS snapshot backup

 * itself, not to the progress of any offloaded tape backup.

 *

 * A bytesTotal of 0 indicates that the progress could not be determined.

 * --- */

 db2Uint64 bytesCompleted;

 db2Uint64 bytesTotal;

 db2ACS_ProgressState progressState;

 db2ACS_UsabilityState usabilityState;

} db2ACS_ObjectStatus;

bytesCompleted

Data type: db2Uint64.

 The amount of the snapshot backup that has completed, in bytes.

bytesTotal

Data type: db2Uint64.

 The size of the completed snapshot backup, in bytes.

progressState

Data type: db2ACS_ProgressState.

 The state of the snapshot backup operation. Values:

DB2ACS_PSTATE_UNKNOWN

DB2ACS_PSTATE_IN_PROGRESS

DB2ACS_PSTATE_SUCCESSFUL

DB2ACS_PSTATE_FAILED

usabilityState

Data type: db2ACS_UsabilityState.

 The state of the snapshot backup object, how the snapshot backup object

can be used. Values:

DB2ACS_USTATE_UNKNOWN

DB2ACS_USTATE_LOCALLY_MOUNTABLE

DB2ACS_USTATE_REMOTELY_MOUNTABLE

DB2ACS_USTATE_REPETITIVELY_RESTORABLE

DB2ACS_USTATE_DESTRUCTIVELY_RESTORABLE

DB2ACS_USTATE_SWAP_RESTORABLE

DB2ACS_USTATE_PHYSICAL_PROTECTION

DB2ACS_USTATE_FULL_COPY

Chapter 15. DB2 Advanced Copy Services (ACS) 297

DB2ACS_USTATE_DELETED

DB2ACS_USTATE_FORCED_MOUNT

DB2ACS_USTATE_BACKGROUND_MONITOR_PENDING

DB2ACS_USTATE_TAPE_BACKUP_PENDING

DB2ACS_USTATE_TAPE_BACKUP_IN_PROGRESS

DB2ACS_USTATE_TAPE_BACKUP_COMPLETE

db2ACS_OperationInfo DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_OperationInfo contains information about a snapshot backup operation.

/* ==

 * Operation Info

 *

 * The information contained within this structure is only valid within the

 * context of a particular operation. It will be valid at the time

 * BeginOperation() is called, and will remain unchanged until EndOperation()

 * returns, but must not be referenced outside the scope of an operation.

 * == */

typedef struct db2ACS_OperationInfo

{

 db2ACS_SyncMode syncMode;

 /* List of database and backup operation partitions.

 *

 * For details, refer to the db2ACS_PartitionList definition.

 * --- */

 db2ACS_PartitionList * dbPartitionList;

} db2ACS_OperationInfo;

syncMode

Data type: db2ACS_SyncMode.

 The level of synchronization between the backup operations on separate

database partitions.

 Values:

DB2ACS_SYNC_NONE

No synchronization between related operations on multiple

database partitions. Used during operations which do not make

use of any synchronization between the multiple database

partitions.

DB2ACS_SYNC_SERIAL

Used when performing concurrent snapshot backup operations on

multiple database partitions. Each database partition will have its

input and output (IO) suspended when the snapshot backup

operation is issued, and then the IO on the database partitions is

resumed serially, not concurrently.

SYNC_PARALLEL

Performing a snapshot operation on multiple partitions

concurrently. Once all database partitions that are involved in the

snapshot backup operation have completed preparations for the

snapshot backup operation, input and output (IO) will be

suspended on all of the database partitions. The remaining

snapshot backup steps will take place concurrently on all of the

involved database partitions.

dbPartitionList

Data type: db2ACS_PartitionList *.

298 Data Recovery and High Availability Guide and Reference

db2ACS_PartitionList contains information about the database partitions

that are in the database and that are involved in a DB2 ACS operation.

db2ACS_Options DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_Options specifies options to be used for a DB2 ACS operation. This

contents of this string is specific to the DB2 ACS API driver.

/* ==

 * DB2 Backup Adapter User Options

 * == */

typedef struct db2ACS_Options

{

 db2Uint32 size;

 void * data;

} db2ACS_Options;

size Data type: db2Uint32.

 Size of data, in bytes.

data Data type: void *.

 Pointer to a block of memory that contains the options.

db2ACS_PartitionEntry DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_PartitionEntry is an element of a db2ACS_PartitionList.

typedef struct db2ACS_PartitionEntry

{

 SQL_PDB_NODE_TYPE num;

 char host[SQL_HOSTNAME_SZ + 1];

} db2ACS_PartitionEntry;

num Data type: SQL_PDB_NODE_TYPE.

 An identifier for this database partition entry.

host Data type: char[].

 A character string of length SQL_HOSTNAME_SZ + 1.

db2ACS_PartitionList DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_PartitionList contains information about the database partitions that are

in the database and that are involved in a DB2 ACS operation.

typedef struct db2ACS_PartitionList

{

 db2Uint64 numPartsInDB;

 db2Uint64 numPartsInOperation;

 db2ACS_PartitionEntry * partition;

} db2ACS_PartitionList;

numPartsInDB

Data type: db2Uint64.

 The number of database partitions in the database.

numPartsInOperation

Data type: db2Uint64.

 The number of database partitions involved in the DB2 ACS operation.

partition

Data type: db2ACS_PartitionEntry *.

Chapter 15. DB2 Advanced Copy Services (ACS) 299

db2ACS_PartitionEntry is an element of a db2ACS_PartitionList.

db2ACS_PathEntry DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_PathEntry contains information about a database path.

typedef struct db2ACS_PathEntry

{

 /* INPUT: The path and type will be provided by the database server, as well

 * as a flag indicating if the path is to be excluded from the backup.

 * --- */

 char path[DB2ACS_MAX_PATH_SZ + 1];

 db2ACS_PathType type;

 db2Uint32 toBeExcluded;

 /* OUTPUT: The group ID is to be provided by the backup adapter for use by

 * the DB2 server. The group ID will be used during with snapshot

 * operations as an indication of which paths are dependent and must

 * be included together in any snapshot operation. Unique group IDs

 * indicate that the paths in those groups are independent for the

 * purposes of snapshot operations.

 * --- */

 db2Uint32 groupID;

} db2ACS_PathEntry;

path Data type: char[].

 A character string of length DB2ACS_MAX_PATH_SZ + 1.

type Data type: db2ACS_PathType.

 The type of path. Values:

DB2ACS_PATH_TYPE_UNKNOWN

DB2ACS_PATH_TYPE_LOCAL_DB_DIRECTORY

DB2ACS_PATH_TYPE_DBPATH

DB2ACS_PATH_TYPE_DB_STORAGE_PATH

DB2ACS_PATH_TYPE_TBSP_CONTAINER

DB2ACS_PATH_TYPE_TBSP_DIRECTORY

DB2ACS_PATH_TYPE_TBSP_DEVICE

DB2ACS_PATH_TYPE_LOGPATH

DB2ACS_PATH_TYPE_MIRRORLOGPATH

toBeExcluded

Data type: db2Uint32.

 A flag indicating whether to include the given path in the snapshot

backup. Values:

v 0 - include the path in the snapshot backup

v 1 - do not include the path in the snapshot backup

groupID

Data type: db2Uint32.

 A group identifier.

db2ACS_PathList DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_PathList contains a list of database paths, including some extra

information about each of those paths specific to DB2 ACS operations.

/* ==

 * Snapshot File List

 *

 * This is an array of ’numEntries’ db2ACS_PathEntry’s, where each path entry is

300 Data Recovery and High Availability Guide and Reference

* a path to some storage on the DB2 server which is in use by the current

 * database.

 * == */

typedef struct db2ACS_PathList

{

 db2Uint32 numEntries;

 db2ACS_PathEntry * entry;

} db2ACS_PathList;

numEntries

Data type: db2Uint32.

 The number of path entries in the entry array.

entry Data type: db2ACS_PathEntry.

 db2ACS_PathEntry contains information about a database path.

db2ACS_PostObjectInfo DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_DB2ID is a set of data that can not be known at snapshot backup object

creation time, but which must be maintained in the object repository.

/* ==

 * The PostObjectInfo is a set of data that can not be known at object

 * creation time, but which must be maintained in the object repository. This

 * is an optional field on the Verify() call, which may be NULL if there are

 * no post-operation updates to be made.

 * == */

typedef struct db2ACS_PostObjectInfo

{

 /* The first active log will only be valid when creating a backup or

 * snapshot object. It will indicate the file number and chain id of the

 * first log required for recovery using this object.

 * --- */

 db2ACS_LogDetails firstActiveLog;

} db2ACS_PostObjectInfo;

firstActiveLog

Data type: db2ACS_LogDetails.

 db2ACS_LogDetails contains information that identifies a particular

database log file.

db2ACS_QueryInput and db2ACS_QueryOutput DB2 Advanced

Copy Services (ACS) API data structures

db2ACS_QueryInput contains identifying information for an object about which you

are querying. db2ACS_QueryOutput contains query result information about

snapshot backup objects.

/* ==

 * Unique Querying.

 *

 * When using this structure as query input, to indicate the

 * intention to supply a ’wildcard’ search criteria, DB2 will supply:

 *

 * -- character strings as "*".

 * -- numeric values as (-1), cast as the appropriate signed or unsigned

 * type.

 * == */

typedef struct db2ACS_ObjectInfo db2ACS_QueryInput;

typedef struct db2ACS_QueryOutput

{

 db2ACS_ObjectID objectID;

Chapter 15. DB2 Advanced Copy Services (ACS) 301

db2ACS_ObjectInfo object;

 db2ACS_PostObjectInfo postInfo;

 db2ACS_DB2ID db2ID;

 db2ACS_ObjectStatus status;

 /* Size of the object in bytes.

 * -- */

 db2Uint64 objectSize;

 /* Size of the metadata associated with the object, if any, in bytes.

 * -- */

 db2Uint64 metaDataSize;

 /* The creation time of the object is a 64bit value with a definition

 * equivalent to an ANSI C time_t value (seconds since the epoch, GMT).

 *

 * This field is equivalent to the file creation or modification time in

 * a traditional filesystem. This should be created and stored

 * automatically by the BA subsystem, and a valid time value should be

 * returned with object query results, for all object types.

 * -- */

 db2Uint64 createTime;

} db2ACS_QueryOutput;

objectID

Data type: db2ACS_ObjectID.

 A db2ACS_ObjectID is a unique identifier for each stored object, which is

returned by a query to the storage repository. A db2ACS_ObjectID is

guaranteed to be unique and persistent only within the the timeframe of a

single DB2 ACS session.

object Data type: db2ACS_ObjectInfo

 db2ACS_ObjectInfo contains information about object created using the DB2

Advanced Copy Services (ACS) API.

postInfo

Data type: db2ACS_PostObjectInfo.

 db2ACS_DB2ID is a set of data that can not be known at snapshot backup

object creation time, but which must be maintained in the object repository.

db2ID Data type: db2ACS_DB2ID.

 db2ACS_DB2ID identifies the IBM Data Server.

status Data type: db2ACS_ObjectStatus.

 db2ACS_ObjectStatus contains information about the status or progress of a

snapshot backup operation, or the status or usability of a snapshot backup

object.

objectSize

Data type: db2Uint64.

 Size of the object in bytes.

metaDataSize

Data type: db2Uint64.

 Size of the metadata associated with the object, if any, in bytes.

createTime

Data type: db2Uint64.

 The creation time of an object. The value of createTime is equivalent to an

ANSI C time_t value.

302 Data Recovery and High Availability Guide and Reference

db2ACS_ReadList DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_ReadList contains a list of groups.

/* The ReadList will only be used for snapshots where the action is READ, and

 * where one of the granularity modifiers other than BY_OBJ has been specified.

 * In the typical usage scenario of (READ | BY_OBJ) the ReadList parameter

 * should be ignored.

 *

 * When the action is DB2ACS_ACTION_BY_GROUP the union is to be interpreted

 * as a group list.

 * -- */

typedef union db2ACS_ReadList

{

 db2ACS_GroupList group;

} db2ACS_ReadList;

group Data type: db2ACS_GroupList.

 db2ACS_GroupList contains a list of groups to be included in the snapshot

backup operation.

db2ACS_ReturnCode DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_ReturnCode contains diagnostic information including message text and

error codes specific to the storage hardware. The contents of a db2ACS_ReturnCode

parameter for a DB2 ACS API function call will be recorded in the database

manager diagnostic logs.

/* ==

 * Storage Adapter Return Code and Diagnostic Data.

 *

 * These will be recorded in the DB2 diagnostic logs, but are intended to be

 * internal return and reason codes from the storage layers which can be used

 * in conjunction with the DB2ACS_RC to provide more detailed diagnostic info.

 * == */

typedef struct db2ACS_ReturnCode

{

 int returnCode;

 int reasonCode;

 char description[DB2ACS_MAX_COMMENT_SZ + 1];

} db2ACS_ReturnCode;

returnCode

Data type: int.

 Return code specific to the storage hardware.

reasonCode

Data type: int.

 Reason code specific to the storage hardware.

description

Data type: .

 A character string of length DB2ACS_MAX_COMMENT_SZ + 1.

db2ACS_SessionInfo DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_SessionInfo contains all the information about the DB2 ACS session.

/* ==

 * Session Info

 * == */

typedef struct db2ACS_SessionInfo

{

Chapter 15. DB2 Advanced Copy Services (ACS) 303

db2ACS_DB2ID db2ID;

 /* Fields identifying the backup session originator.

 * --- */

 SQL_PDB_NODE_TYPE dbPartitionNum;

 char db[SQL_DBNAME_SZ + 1];

 char instance[DB2ACS_MAX_OWNER_SZ + 1];

 char host[SQL_HOSTNAME_SZ + 1];

 char user[DB2ACS_MAX_OWNER_SZ + 1];

 char password[DB2ACS_MAX_PASSWORD_SZ + 1];

 /* The fully qualified ACS vendor library name to be used.

 * --- */

 char libraryName[DB2ACS_MAX_PATH_SZ + 1];

} db2ACS_SessionInfo;

db2ID Data type: db2ACS_DB2ID

 db2ACS_DB2ID identifies the IBM Data Server.

dbPartitionNum

Data type: SQL_PDB_NODE_TYPE

 The unique, numeric identifier for a database partition.

db Data type: char[].

 A character string of length SQL_DBNAME_SZ + 1.

instance

Data type: char[].

 A character string of length DB2ACS_MAX_OWNER_SZ + 1.

host Data type: char[].

 A character string of length SQL_HOSTNAME_SZ + 1.

user Data type: char[].

 A character string of length DB2ACS_MAX_OWNER_SZ + 1.

password

Data type: char[].

 A character string of length DB2ACS_MAX_PASSWORD_SZ + 1.

libraryName

Data type: char[].

 A character string of length DB2ACS_MAX_PATH_SZ + 1.

db2ACS_SnapshotDetails DB2 Advanced Copy Services (ACS)

API data structure

db2ACS_SnapshotDetails contains information about a snapshot backup operation.

typedef struct db2ACS_SnapshotDetails

{

 char imageTimestamp[SQLU_TIME_STAMP_LEN + 1];

} db2ACS_SnapshotDetails;

imageTimestamp

Data type: char[].

 A character string of length SQLU_TIME_STAMP_LEN + 1.

db2ACS_MetaData DB2 Advanced Copy Services (ACS) API data

structure

db2ACS_MetaData stores snapshot backup meta data.

304 Data Recovery and High Availability Guide and Reference

/* ==

 * The metadata structure itself is internal to DB2 and is to be treated by

 * the storage interface as an unstructured block of data of the given size.

 * == */

typedef struct db2ACS_MetaData

{

 db2Uint64 size;

 void * data;

} db2ACS_MetaData;

size Data type: db2Uint32.

 Size of data, in bytes.

data Data type: void *.

 A pointer to a block of memory that the database manager uses to store

snapshot backup metadata.

db2ACS_VendorInfo DB2 Advanced Copy Services (ACS) API

data structure

db2ACS_VendorInfo contains information about the DB2 ACS API driver.

/* ==

 * Storage Vendor Identifier

 * == */

typedef struct db2ACS_VendorInfo

{

 void * vendorCB; /* Vendor control block */

 db2Uint32 version; /* Current version */

 db2Uint32 release; /* Current release */

 db2Uint32 level; /* Current level */

 char signature[DB2ACS_MAX_VENDORID_SZ + 1];

} db2ACS_VendorInfo;

vendorCB

Data type: void *.

 Pointer to a control block that is specific to the DB2 ACS API driver.

version

Data type: db2Uint32.

 Version of the DB2 ACS API driver.

release

Data type: db2Uint32.

 Release level of the DB2 ACS API driver.

level Data type: db2Uint32.

 Level identifier for the DB2 ACS API driver.

signature

Data type: db2ACS_VendorSignature.

 A character string of length DB2ACS_MAX_VENDORID_SZ + 1.

DB2 Advanced Copy Services (ACS) API return codes

DB2 Advanced Copy Services (ACS) API functions return a defined set of possible

return codes.

 Table 20. DB2 Advanced Copy Services (ACS) API return codes

Return code Description

DB2ACS_RC_OK The operation was successful.

Chapter 15. DB2 Advanced Copy Services (ACS) 305

Table 20. DB2 Advanced Copy Services (ACS) API return codes (continued)

Return code Description

DB2ACS_RC_LINK_EXIST The session was previously activated.

DB2ACS_RC_COMM_ERROR There was a communication error with a storage device,

such as a tape drive.

DB2ACS_RC_INV_VERSION The version of the database manager’s DB2 ACS library

and the version of the DB2 ACS API driver are not

compatible.

DB2ACS_RC_INV_ACTION The database manager requested an action from the DB2

ACS API driver that is invalid.

DB2ACS_RC_NO_DEV_AVAIL There is currently no storage device, such as a tape drive,

available to use.

DB2ACS_RC_OBJ_NOT_FOUND The DB2 ACS API driver could not find the snapshot

backup object specified by the database manager.

DB2ACS_RC_OBJS_FOUND The DB2 ACS API driver found more than one snapshot

backup object that matches the specification given by the

database manager.

DB2ACS_RC_INV_USERID The database manager passed an invalid user id to the

DB2 ACS API driver.

DB2ACS_RC_INV_PASSWORD The database manager passed an invalid password to the

DB2 ACS API driver.

DB2ACS_RC_INV_OPTIONS The database manager specified invalid options.

DB2ACS_RC_INIT_FAILED The database manager attempted to initialize a DB2 ACS

session, but the initialization failed.

DB2ACS_RC_INV_DEV_HANDLE The database manager passed a storage device handle

that is invalid.

DB2ACS_RC_BUFF_SIZE The database manager specified a buffer size that is

invalid.

DB2ACS_RC_END_OF_DATA The DB2 ACS API driver cannot find any more snapshot

backup objects.

DB2ACS_RC_END_OF_TAPE The storage device unexpectedly reached the end of tape

backup media.

DB2ACS_RC_DATA_RESEND A storage device, such as a tape drive, requested that the

database manager resend the most recent buffer of data.

DB2ACS_RC_COMMIT_FAILED The DB2 ACS API driver could not commit a transaction.

DB2ACS_RC_DEV_ERROR There was an error with a storage device, such as a tape

drive.

DB2ACS_RC_WARNING The storage hardware returned a warning. Look in the

database manager diagnostic logs for more information.

DB2ACS_RC_LINK_NOT_EXIST The session was not activated previously.

DB2ACS_RC_MORE_DATA There is more data to be transferred from the storage

location to the database manager.

DB2ACS_RC_ENDOFMEDIA_NO_DATA The storage device reached the end of the storage media

without finding any data.

DB2ACS_RC_ENDOFMEDIA The storage device reached the end of the storage media.

DB2ACS_RC_MAX_LINK_GRANT The maximum number of links has been established. The

database manager cannot establish more links.

DB2ACS_RC_IO_ERROR The DB2 ACS API driver encountered an error resulting

from input or output operations.

306 Data Recovery and High Availability Guide and Reference

Table 20. DB2 Advanced Copy Services (ACS) API return codes (continued)

Return code Description

DB2ACS_RC_DELETE_FAILED The DB2 ACS API driver could not successfully delete

snapshot backup objects specified by the database

manager.

DB2ACS_RC_INV_BKUP_FNAME The database manager specified an invalid filename for

the snapshot backup object.

DB2ACS_RC_NOT_ENOUGH_SPACE The DB2 ACS API driver estimated that there is not

enough storage space to perform a snapshot backup of

the database specified by the database manager.

DB2ACS_RC_ABORT_FAILED The database manager attempted to abort a DB2 ACS

operation, but the attempt to abort failed.

DB2ACS_RC_UNEXPECTED_ERROR The DB2 ACS API driver encountered a severe, unknown

error.

DB2ACS_RC_NO_DATA The DB2 ACS API driver did not return any data to the

database manager.

DB2ACS_RC_OBJ_OUT_OF_SCOPE The database manager attempted to perform a DB2 ACS

operation on a recovery object that is not managed by the

DB2 ACS API driver.

DB2ACS_RC_INV_CALL_SEQUENCE The database manager made calls to DB2 ACS API

functions in a sequence that is invalid. For example, the

database manager must call db2ACSInitialize before

calling any other DB2 ACS API function except

db2ACSQueryAPIVersion.

DB2ACS_RC_SHARED_STORAGE_GROUP The database manager attempted to perform a snapshot

operation against a storage object that is being used by

another database or application.

DB2 Advanced Copy Services (ACS) supported operating systems and

hardware

Integrated into IBM Data Server is a DB2 ACS API driver that supports a subset of

the operating systems and hardware that IBM Data Server supports.

 Table 21. DB2 Advanced Copy Services (ACS) API supported operating systems and hardware

Hardware

AIX operating system with

storage area network

(SAN) storage

AIX operating system with

network file system (NFS)

storage

Linux operating system

with network file system

(NFS) storage1

IBM TotalStorage SAN

Volume Controller

Full support. Not supported. Not supported.

IBM Enterprise Storage

Server Model 800

Full support except:

v incremental copying is

not supported

Not supported. Not supported.

IBM System Storage DS6000 Full support except:

v incremental copying is

not supported

Not supported. Not supported.

IBM System Storage DS8000 Full support except:

v incremental copying is

not supported

Not supported. Not supported.

IBM System Storage N

Series

Fully supported. Fully supported. Fully supported.

Chapter 15. DB2 Advanced Copy Services (ACS) 307

http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/software/virtualization/svc/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-5.ibm.com/storage/europe/uk/disk/ess/ess800/index.html
http://www-03.ibm.com/servers/storage/disk/ds6000/index.html
http://www-03.ibm.com/systems/storage/disk/ds8000/index.html
http://www-03.ibm.com/systems/storage/network/software
http://www-03.ibm.com/systems/storage/network/software

Table 21. DB2 Advanced Copy Services (ACS) API supported operating systems and hardware (continued)

Hardware

AIX operating system with

storage area network

(SAN) storage

AIX operating system with

network file system (NFS)

storage

Linux operating system

with network file system

(NFS) storage1

NetApp V-series Fully supported. Fully supported. Fully supported.

1Only the following systems are supported with DB2 ACS and Linux:

v 64-bit only on x86 (Intel Pentium, Intel Xeon, and AMD) processors

v POWER (IBM eServer OpenPower, System i or pSeries systems that support

Linux)

308 Data Recovery and High Availability Guide and Reference

http://www.netapp.com/products/enterprise-systems/virtualized-storage/index.html

Part 3. Appendixes

© Copyright IBM Corp. 2001, 2007 309

310 Data Recovery and High Availability Guide and Reference

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2007 311

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 22. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-00 Yes

Administrative Routines and

Views

SC23-5843-00 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-00 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-00 Yes

Command Reference SC23-5846-00 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-00 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-00 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-00 Yes

Database Security Guide SC23-5850-00 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-00 Yes

Developing Embedded SQL

Applications

SC23-5852-00 Yes

Developing Java Applications SC23-5853-00 Yes

Developing Perl and PHP

Applications

SC23-5854-00 No

Developing User-defined Routines

(SQL and External)

SC23-5855-00 Yes

Getting Started with Database

Application Development

GC23-5856-00 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-00 Yes

Internationalization Guide SC23-5858-00 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-00 Yes

Net Search Extender

Administration and User’s Guide

Note: The content of this

document is not included in

the DB2 Information Center

SC23-8509-00 Yes

Partitioning and Clustering Guide SC23-5860-00 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-00 No

Quick Beginnings for DB2

Servers

GC23-5864-00 Yes

312 Data Recovery and High Availability Guide and Reference

Table 22. DB2 technical information (continued)

Name Form Number Available in print

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-00 Yes

SQL Reference, Volume 1 SC23-5861-00 Yes

SQL Reference, Volume 2 SC23-5862-00 Yes

System Monitor Guide and

Reference

SC23-5865-00 Yes

Text Search Guide SC23-5866-00 Yes

Troubleshooting Guide GI11-7857-00 No

Tuning Database Performance SC23-5867-00 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-00 Yes

Workload Manager Guide and

Reference

SC23-5870-00 Yes

pureXML Guide SC23-5871-00 Yes

XQuery Reference SC23-5872-00 No

 Table 23. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-00 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-00 Yes

DB2 Connect User’s Guide SC23-5841-00 Yes

 Table 24. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix A. Overview of the DB2 technical information 313

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 311.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

314 Data Recovery and High Availability Guide and Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix A. Overview of the DB2 technical information 315

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can download and

install updates that IBM might make available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to download and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to download the

packages. However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

316 Data Recovery and High Availability Guide and Reference

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix A. Overview of the DB2 technical information 317

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

318 Data Recovery and High Availability Guide and Reference

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 319

320 Data Recovery and High Availability Guide and Reference

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2007 321

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

322 Data Recovery and High Availability Guide and Reference

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9.5 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon, Intel SpeedStep®, Itanium® and Pentium are trademarks of Intel

Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 323

http://www.ibm.com/legal/copytrade.shtml

324 Data Recovery and High Availability Guide and Reference

Index

A
About this book

Data Recovery and High Availability Guide and

Reference vii

active logs 5

administration log file 136

administration notification log 193

administrative views
DB_HISTORY 156

AIX
backup and restore support 152

alternate servers
examples 138

identifying 21

archive logging 6, 60

archived logs
offline 6

online 6

archiving log files
to tape 111

archiving logs on demand 111

ASYNC
synchronization mode 40

automatic backup
configuration

sample 49

enabling 179

automatic client reroute
configuration 19

connection failures 20

description 17

examples 138

high availability disaster recovery (HADR) 29, 131

limitations 21

roadmap 9

setup 17

automatic incremental restore
limitations 211

automatic maintenance 180

AUTOMAINT_GET_POLICY 48

AUTOMAINT_GET_POLICYFILE 48

AUTOMAINT_SET_POLICY 49

AUTOMAINT_SET_POLICYFILE 49

backup 147, 179

configuration
retrieving 48

configuring 49

policy specification
sample 49

automatic reorganization
configuration

sample 49

automatic restart 193

automatic statistics collection
configuration

sample 49

B
backing up

CLP examples 183

databases
automatically 179

to named pipes 177

to tape 175

backup
automated 147

automatic 180

backup image
including log files with 118

container names 169

frequency 149

images 169

incremental 207

offline 149

online 149

operating system restrictions 152

partitioned databases 177

storage considerations 151

user exit program 151

BACKUP DATABASE command 171

backup utility
authorities and privileges required to use 181

displaying information 169

examples 183

monitoring progress 167

overview 169

performance 180

restrictions 171

troubleshooting 169

blklogdskful database configuration parameter 51

C
cascading assignment 90

circular logging 5, 116

client communication errors 17

client reroute
automatic 17

examples 138

high availability disaster recovery (HADR) 29

IBM Data Server Driver for JDBC and SQLJ 21

interaction with connection timeout 20

limitations 21

clone database
creating 124

CLP (command line processor)
examples

backing up 183

database rebuild sessions 239

redirected restore sessions 237

restore sessions 237

rollforward sessions 256

cluster management
high availability disaster recovery (HADR) 38

cluster managing software
supported 89

© Copyright IBM Corp. 2001, 2007 325

clustering
heartbeat monitoring 4

IP address takeover 4

clusters
HACMP 90

commands
db2adutl

cross-node recovery example 186

configuration
fault monitor 24

db2fm 25

db2fmc 26

configuration parameters
AUTO_DEL_REC_OBJ 164

database logging 50, 51

logarchopt1
cross-node recovery example 186

TCP_KEEPALIVE 20

vendoropt
cross-node recovery example 186

configure automatic maintenance wizard 180

configuring
for high availability 17

high availability disaster recovery 31

connection failures
automatic client reroute 20

connectTimeout
interaction with client reroute 20

containers
names 169

continuous availability 98

crash recovery 193

creating
clone database 124

cross-node database recovery example 186

D
damaged table space 194

non-recoverable 196

recoverable 195

data
parity striping by sectors (RAID level 5) 196

data recovery
crash recovery 145

rollforward recovery 145

version recovery 145

database configuration
parameters

autorestart 193

database objects
recovery history file 147

recovery log file 147

table space change history file 147

database partition servers
recovering from failure 201

database partitions
synchronization 107

database rebuild
and temporary table spaces 229

choosing a target image 230

examples 239

partitioned databases 235

restrictions 236

table space containers 229

using incremental backup images 234

database servers
alternate 21

databases
activating and deactivating

high availability disaster recovery 122

backing up
automatically 179

logs 5

circular logging 5

configuration parameters 51

nonrecoverable 147

rebuilding 225

recoverable 147

rollforward recovery 205

DB_HISTORY administrative view 156

DB2 Advanced Copy Services
installing 264

DB2 Advanced Copy Services (ACS) 263

activating 264

configuring 265

enabling 263

supported operating systems and hardware 307

DB2 Advanced Copy Services (ACS) API 266

data structures 292

db2ACS_BackupDetails 292

db2ACS_CB 292

db2ACS_CreateObjectInfo 293

db2ACS_DB2ID 294, 301

db2ACS_GroupList 294

db2ACS_LoadcopyDetails 295

db2ACS_LogDetails 295

db2ACS_MetaData 305

db2ACS_ObjectInfo 295

db2ACS_ObjectStatus 297

db2ACS_OperationInfo 298

db2ACS_Options 299

db2ACS_PartitionEntry 299

db2ACS_PartitionList 299

db2ACS_PathEntry 300

db2ACS_PathList 300

db2ACS_QueryInput 301

db2ACS_QueryOutput 301

db2ACS_ReadList 303

db2ACS_ReturnCode 303

db2ACS_SessionInfo 303

db2ACS_SnapshotDetails 304

db2ACS_VendorInfo 305

functions 266

db2ACSBeginOperation 272

db2ACSBeginQuery 275

db2ACSDelete 286

db2ACSEndOperation 274

db2ACSEndQuery 279

db2ACSGetNextObject 277

db2ACSInitialize 267

db2ACSPartition 282

db2ACSPrepare 270

db2ACSQueryApiVersion 266

db2ACSRetrieveMetaData 290

db2ACSSnapshot 280

db2ACSStoreMetaData 288

db2ACSTerminate 268

db2ACSVerify 285

return codes 305

DB2 Advanced Copy Services (ACS)configuring the acs

directory
configuration 266

326 Data Recovery and High Availability Guide and Reference

DB2 High Availability (HA) Feature 11, 63

DB2 cluster manager API 89

integration with cluster manager 77

SA MP Base component integrated 64

DB2 High Availability Instance Configuration Utility

(db2haicu) 79, 80

cluster domain 84, 85, 86

creating 85

maintaining 86

cluster domain file sqlha.sys 88

initializing 85

maintenance mode 82

prerequisites 84

restrictions 87

running in interactive mode 83

running with an XML input file 83

sample XML input files 84

startup mode 81

troubleshooting 87

DB2 Information Center
updating 316

versions 315

viewing in different languages 315

DB2 sync point manager (SPM)
recovery of indoubt transactions 202

DB2 Universal JDBC Driver
client reroute support 17

DB2_CONNRETRIES_INTERVAL
registry variable 19

DB2_MAX_CLIENT_CONNRETRIES
registry variable 19

db2adutl command
cross-node recovery example 186

db2Backup API 171

db2diag.log 136

db2fm command 9

db2inidb command 174

db2inidb tool 14

db2Recover API 185

db2Restore API 215

db2Rollforward API 250

db2tapemgr
archiving log files to tape 111

db2uext2 program
calling format 114

description 113

Direct I/O (DIO)
supported configuration 62

disaster recovery 203

high availability (HADR) overview 10

requirements for high availability 45

disk arrays
hardware 196

reducing failure 196

software 196

disk failure protection 196

disk mirroring
RAID level 1 196

disks
RAID (redundant array of independent disks) 196

striping 196

displaying
backup utility 169

documentation
PDF or printed 311

terms and conditions of use 318

documentation overview 311

dropped table recovery 192

dual logging 13

duplexing
RAID level 1 196

E
Enhanced DIO

supported configuration 62

error handling
log full 51

event monitors
high-availability on AIX 90

examples
alternate server 138

automatic client reroute 138

export utility
compatibility with online backup 182

F
failback

operations 143

failed database partition server 198

failover 4, 135, 137

high availability disaster recovery (HADR) 140

idle Standby 4

mutual Takeover 4

failover support
AIX 90

overview 98

Solaris operating system 98

Sun Cluster 3.0 100

Windows 94

failure transaction 193

fault monitor 136

configuration 24

db2fm 25

db2fmc 26

Fault Monitor Facility 9

fault tolerance 98

G
GET SNAPSHOT command

HADR standby database state 130

H
HACMP (high availability cluster multi-processing) 90

HADR
configuration 39

standby database 39

standby database
initializing 39

state 130

synchronizing 125

support 43

HADR (high availability disaster recovery)
automatic client reroute 29

cluster managers 38

commands 131

configuring 31

database activation and deactivation 122

failback 143

Index 327

HADR (high availability disaster recovery) (continued)
failover 140

initializing 27

load operations 31

log archiving 36

managing 131

monitoring 136

overview 10

performance 36

performing a rolling upgrade 122

replicated operations 125, 126

requirements 45

restrictions 47

sample configuration 31

setting up 27

stopping 120

switching database roles 142

synchronization modes 40

system requirements 43

hardware
disk arrays 196

heartbeat 90, 98

heartbeat monitoring 135, 136

help
displaying 315

for SQL statements 314

high availability 1, 94, 98

administering 109

performing maintenance 120

configuration
fault monitor 24, 25, 26

configuration parameters
AUTO_DEL_REC_OBJ 164

configuring 17, 63

clustered environment 63

DB2 Data Server features
fault monitor 24

design 1, 43

fault monitor 136

heartbeat monitoring 136

IBM Data Server features 9

maintaining 109, 120

maintenance
automatic 120

manual 120

planned outage 1

strategies 3

clustering 4, 89

failover 3, 4

maintenance impact 3

maximizing performance 3

redundancy 3, 125

system monitoring 3

Sun Cluster 3.0 100

system outage
responding to 137

system outages
detecting 135

responding to 135

through log shipping 12

Tivoli System Automation for Multiplatforms 92

unplanned outage 1, 137

detecting 136

high availability cluster multi-processing (HACMP)
description 90

high availability disaster recovery (HADR)
automatic client reroute 29

high availability disaster recovery (HADR) (continued)
cluster managers 38

commands 131

configuring 31

database activation and deactivation 122

failback 143

failover 140

load operations 31

managing 131

monitoring 136

overview 10

performance 36

performing a rolling upgrade 122

primary reintegration 143

replicated operations 125, 126

requirements 45

restrictions 47

sample configuration 31

stopping 120

switching database roles 143

Switching database roles 142

synchronization modes 40

system requirements 43

history file
accessing 156

hot standby
configuration 90

HP on IPF
backup and restore support 152

HP-UX
backup and restore support 152

I
IBM Tivoli SA MP Base Component 65

install log 76

installing 64, 65

using DB2 installer 66

using installSAM 67

license terms 76

system requirements 77

uninstall log 76

uninstalling 64, 71

using DB2 installer 71

using uninstallSAM 72

upgrading 64, 68

using DB2 installer 69

using installSAM 70

IBM Tivoli SA MP Base Component HADR scripts
installing 73

manually 75

using DB2 installer 74

uninstalling 73

manually 75

using DB2 installer 74

upgrading 73

manually 75

using DB2 installer 74

IBM Tivoli Storage Manager (TSM)
using 261

with BACKUP DATABASE command
minimum required level 261

with RESTORE DATABASE command
minimum required level 261

images
backup 169

incremental backup and recovery 207

328 Data Recovery and High Availability Guide and Reference

incremental backup images
using when rebuilding a database 234

incremental restore 209, 219

indexes
logging for high availability disaster recovery (HADR) 29

indoubt transactions
recovering

on the host 202

recovery
with DB2 syncpoint manager 202

without DB2 syncpoint manager 203

Information Center
updating 316

versions 315

viewing in different languages 315

K
keepalive packets

description 90

L
Linux on AMD64 and Intel EM64T

backup and restore support 152

Linux on IA-64
backup and restore support 152

Linux on Power PC
backup and restore support 152

Linux zSeries
backup and restore support 152

LIST HISTORY command 153

local catchup state 128

log archiving
configuration 36

log control files 7

log file management
ACTIVATE DATABASE command 109

log files
administration 136

archiving 60

including in backup image 118

log control files 7

log mirroring 125

log shipping 125

high availability 12

logarchmeth1 configuration parameter
and HADR (high availability disaster recovery) 36

logarchmeth2 configuration parameter
and HADR (high availability disaster recovery) 36

logarchopt1 configuration parameter
cross-node recovery example 186

LOGBUFSZ configuration parameter 51

logfilsiz configuration parameter 51

and HADR (high availability disaster recovery) 31

logprimary configuration parameter 51

logretain configuration parameter 51

logs
active 5

allocation 116

archive 6

archiving on demand 111

circular 5

circular logging 116

configuration parameters 50

configuring for non-buffered I/O (AIX) 62

logs (continued)
database 5

directory, full 59

indexes
high availability disaster recovery (HADR) 29

managing 109

mirroring 13

offline archived 6

online archived 6

preventing loss 119

removal 116

storage required 151

user exit program 151

logsecond configuration parameter
description 51

M
maintenance

scheduling 47

managing
high availability disaster recovery (HADR) 131

maxRetriesForClientReroute 17

media failure
catalog partition considerations 196

logs 151

reducing the impact of 196

Microsoft Cluster Server (MSCS) 94

mincommit database configuration parameter 51

mirroring
logs 13

mirrorlogpath configuration parameter 13

mirrorlogpath database configuration parameter 51

monitoring
high availability disaster recovery (HADR) 136

progress
backup 167

crash recovery 167

restore 167

rollforward 167

MSCS (Microsoft Cluster Server) 94

multiple instances
using Tivoli Storage Manager 262

mutual takeover configuration 90

N
Named Pipes

backing up to 177

NEARSYNC synchronization mode 40

newlogpath database configuration parameter 51

node synchronization 107

nodedown event 90

nodeup event 90

non-buffered I/O
enabling on UNIX 62

nonrecoverable databases
backup and recovery 147

notices 321

O
offline archived logs 6

offline backup
compatibility with online backup 182

Index 329

offline load
compatibility with online backup 182

on demand log archiving 111

online
archived logs 6

online backup
compatibility with other utilities 182

online create index
compatibility with online backup 182

online index reorg
compatibility with online backup 182

online inspect
compatibility with online backup 182

online load
compatibility with online backup 182

online table reorg
compatibility with online backup 182

optimizing
backup performance 180

restore performance 236

ordering DB2 books 314

overflowlogpath database configuration parameter 51

P
parallel recovery 212

partitioned database environments
transaction failure recovery in 198

partitioned databases
backing up 177

database rebuild 235

partitioned tables
backing up 178

peer state 128

pending states 168

performance
optimizing high availability disaster recovery (HADR) 36

recovery 212

point of consistency
database 193

primary reintegration
high availability disaster recovery (HADR) 143

printed books
ordering 314

privileges
backup 181

restore utility 237

roll-forward utility 255

problem determination
online information 318

tutorials 318

protecting against disk failure 196

R
RAID (Redundant Array of Independent Disks) devices

level 1 (disk mirroring or duplexing) 196

level 5 (data and parity striping by sectors) 196

rebalancing
compatibility with online backup 182

rebuilding
databases 225

table space containers 229

using incremental backup images 234

selected table spaces 225, 233

RECOVER DATABASE command 185

RECOVER DATABASE command (continued)
authorities and privileges required 213

recoverable databases
description 147

recovering
databases

overview 185

from failure of database partition server 201

recovery
crash 193

cross-node example 186

damaged table spaces 194, 195, 196

database rebuild 225

dropped tables 192

history file 153

incremental 207

operating system restrictions 152

parallel 212

performance 212

point-in-time 205

reducing logging 58

roll-forward 205

storage considerations 151

strategy overview 147

time required 149

to end of logs 205

two-phase commit protocol 198

version 204

recovery history file
entries

protecting 160

pruning 158

entry status 154

pruning 164

automated 159

db2Prune API 158

PRUNE HISTORY command 158

recovery history fileactive
entry status 154

recovery history filedo_not_delete
entry status 154, 160

recovery history fileexpired
entry status 154

recovery history fileinactive
entry status 154

recovery object
management 163, 164

automated 164

db2Prune 163

PRUNE HISTORY 163

recovery objects
managing 163, 164

redefining table space containers
restore utility 220

using a script 221

redirected restore 220

using a script 221

using generated script 224

reducing
impact of media failure 196

impact of transaction failure 198

logging
with declared temporary tables 58

with the NOT LOGGED INITIALLY parameter 58

redundancy 3

Redundant Array of Independent Disks (RAID)
reducing the impact of media failure 196

330 Data Recovery and High Availability Guide and Reference

registry variables
DB2_CONNRETRIES_ INTERVAL 19

db2_connretries_interval 17

DB2_MAX_CLIENT_ CONNRETRIES 19

db2_max_client_connretries 17

relationships
between tables 151

remote catchup pending state 128

remote catchup state 128

reorg table
compatibility with online backup 182

reorganization
automatic 180

replicated operations
high availability disaster recovery (HADR) 125, 126

RESTART DATABASE command 193

RESTORE DATABASE command 215

restore utility
authorities and privileges required to use 237

compatibility with online backup 182

examples 237

monitoring progress 167

overview 215

performance 215, 236

redefining table space containers 220

restoring to a new database 218

restoring to an existing database 217

restrictions 215

restoring
automatic incremental

limitations 211

data to a new database 218

data to an existing database 217

databases
incremental 207

rollforward recovery 205

from a snapshot backup 216

incremental 209, 219

restrictions
high availability disaster recovery (HADR) 47

retryIntervalForClientReroute 17

return codes
user exit programs 115

roadmaps
automatic client reroute 9

roll-forward recovery
configuration file parameters supporting 51

database 205

log management considerations 109

log sequence 109

table space 205, 252

ROLLFORWARD
minimum recovery time 177, 252

ROLLFORWARD DATABASE command 250

rollforward utility
authorities and privileges required to use 255

compatibility with online backup 182

examples 256

monitoring progress 167

overview 249

recovering a dropped table 192

restrictions 250

rolling upgrade
performing 122

rotating assignment 90

rules file 90

RUNSTATS utility
compatibility with online backup 182

S
samples

automatic maintenance
configuration 49

scalability 90

seed database 217, 218

servers
alternate 17, 21

set write
compatibility with online backup 182

site failure
high availability disaster recovery (HADR) 10

snapshot backup 173, 264

managing snapshot backup objects 165

restoring from 216

software disk arrays 196

Solaris operating systems
backup and restore support 152

SP frame 90

split mirror
as backup image 174

as clone database 124

as standby database 39

handling 14

SQL statements
displaying help 314

standby database
states 128

START HADR command 131

states
pending 168

standby database 128

statistics collection
automatic 180

statistics profiling
automatic 180

STOP HADR command 131

stopping
high availability disaster recovery (HADR) 120

storage
media failure 151

requirements
backup and recovery 151

Sun Cluster 3.0
high availability 100

suspended I/O and disk mirroring 125

suspended I/O to support continuous availability 14

switching database roles
high availability disaster recovery (HADR) 143

switching HADR database roles 142

SYNC
synchronization mode 40

synchronization
database partition 107

node 107

recovery considerations 107

synchronization modes
high availability disaster recovery (HADR) 40

system requirements
high availability disaster recovery (HADR) 43

Index 331

T
table spaces

containers
rebuilding databases 229

rebuilding 225, 233

recovery 194, 195, 196

restoring 205

roll-forward recovery 205, 252

tables
relationships 151

TAKEOVER HADR command 131

performing a failover operation 140

switching database roles 142

tape backup 175

tape drives
storing log files on 60, 111

target image
for rebuild 230

TCP_KEEPALIVE
operating system configuration parameter 20

temporary table spaces
and database rebuild 229

terms and conditions
use of publications 318

time
database recovery time 149

timestamps
conversion

client/server environment 107

Tivoli Storage Manager (TSM)
with partitioned tables 178

Tivoli System Automation for Multiplatforms
high availability 92

transactions
blocking when log directory is full 59

failure recovery
crashes 198

n the failed database partition server 198

on active database partition server 198

reducing the impact of failure 193

troubleshooting
online information 318

tutorials 318

tutorials
troubleshooting and problem determination 318

Visual Explain 317

two-phase commit
protocol 198

U
unplanned outage

detecting 136

updates
DB2 Information Center 316

Information Center 316

user exit programs
archiving log files 60

backup 151

calling format 114

database recovery 113

error handling 115

logs 151

retrieving log files 60

sample programs
UNIX 114

user exit programs (continued)
sample programs (continued)

Windows 114

user-defined events 90

userexit database configuration parameter 51

V
vendoropt configuration parameter

cross-node recovery example 186

VERITAS Cluster Server 103

high availability 103

versions
version recovery of the database 204

Visual Explain
tutorial 317

W
Windows operating systems

failover 94

332 Data Recovery and High Availability Guide and Reference

����

Printed in USA

SC23-5848-00

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

Da
ta

Re

co
ve

ry

an

d
Hi

gh

Av

ai
la

bi
lit

y
Gu

id
e

an
d

Re
fe

re
nc

e
�
�

�

	Contents
	About this book
	Part 1. High availability
	Chapter 1. High availability strategies
	High availability through redundancy
	High availability though failover
	High availability through clustering
	Database logging
	Circular logging
	Archive logging
	Log control files

	Chapter 2. High availability with IBM Data Server
	Automatic client reroute roadmap
	DB2 fault monitor facilities for Linux and UNIX
	High Availability Disaster Recovery (HADR)
	DB2 High Availability (HA) Feature
	High availability through log shipping
	Log mirroring
	High availability through suspended I/O and online split mirror support

	Chapter 3. Configuring for high availability
	Automatic client reroute description and setup
	Configuring automatic client reroute retry behavior using registry variables
	Using client connection timeout with automatic client reroute
	Configuring automatic client reroute for client connection distributor technology
	Identifying an alternate server for automatic client reroute
	Client reroute setup when using IBM Data Server Driver for JDBC and SQLJ
	Automatic client reroute limitations

	DB2 fault monitor registry file
	Configuring DB2 fault monitor using the db2fm command
	Configuring DB2 fault monitor using db2fmc and system commands

	Initializing high availability disaster recovery (HADR)
	Configuring automatic client reroute and High Availability Disaster Recovery (HADR)
	Index logging and high availability disaster recovery (HADR)
	Database configuration for high availability disaster recovery (HADR)
	Log archiving configuration for DB2 High Availability Disaster Recovery (HADR)
	High availability disaster recovery (HADR) performance
	Cluster managers and high availability disaster recovery (HADR)
	Initializing a Standby database
	Using a split mirror as a standby database

	Configuring DB2 High Availability Disaster Recovery (HADR) synchronization mode
	High availability disaster recovery (HADR) support
	System requirements for High Availability Disaster Recovery (HADR)
	Installation and storage requirements for High Availability Disaster Recovery (HADR)
	Restrictions for high Availability Disaster Recovery (HADR)

	Scheduling maintenance for high availability
	Collecting automated maintenance policy information using SYSPROC.AUTOMAINT_GET_POLICY or SYSPROC.AUTOMAINT_GET_POLICYFILE
	Configuring an automated maintenance policy using SYSPROC.AUTOMAINT_SET_POLICY or SYSPROC.AUTOMAINT_SET_POLICYFILE
	Sample automated maintenance policy specification XML for AUTOMAINT_SET_POLICY or AUTOMAINT_SET_POLICYFILE

	Configuring database logging options
	Configuration parameters for database logging
	Reducing logging with the NOT LOGGED INITIALLY parameter
	Blocking transactions when the log directory is full
	Log file management through log archiving
	Configuring database logging without file system caching

	Configuring a Clustered environment for high availability
	Cluster manager integration with the DB2 High Availability (HA) Feature
	Installing and upgrading the SA MP Base Component with the DB2 installer
	IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component
	Installing IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component
	Upgrading IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component
	Uninstalling IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component
	Installing, updating, and uninstalling DB2 High Availability Disaster Recovery (HADR) scripts for the IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component
	IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component install and uninstall logs
	License terms for using IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component integrated with IBM Data Server
	Supported software and hardware for IBM Tivoli System Automation for Multiplatforms (SA MP) Base Component

	Configuring a cluster automatically with the DB2 High Availability (HA) Feature
	Configuring a database clustered environment using DB2 High Availability Instance Configuration Utility (db2haicu)
	DB2 High Availability Instance Configuration Utility (db2haicu)
	Elements of a cluster domain
	DB2 High Availability Instance Configuration Utility (db2haicu) prerequisites
	Creating a cluster domain using DB2 High Availability Instance Configuration Utility (db2haicu)
	Maintaining a cluster domain using DB2 High Availability Instance Configuration Utility (db2haicu)
	Troubleshooting DB2 High Availability Instance Configuration Utility (db2haicu)
	DB2 High Availability Instance Configuration Utility (db2haicu) restrictions
	DB2 High Availability Instance Configuration Utility (db2haicu) cluster domain file sqlha.sys

	DB2 cluster manager API
	Supported cluster management software
	High Availability Cluster Multi-Processing for AIX
	IBM Tivoli System Automation for Multiplatforms (Linux and AIX)
	Microsoft Cluster Server support (Windows)
	Solaris Operating System cluster support

	Synchronizing clocks in a partitioned database environment
	Client/server timestamp conversion

	Chapter 4. Administering and maintaining a highly available solution
	Log file management
	On demand log archive
	Log archiving using db2tapemgr
	Automating log file archiving and retrieval with user exit programs
	Sample user exit programs
	User exit program calling format
	User exit error handling

	Log file allocation and removal
	Including log files with a backup image
	Preventing the accidental loss of log files

	Minimizing the impact of maintenance on availability
	Stopping DB2 High Availability Disaster Recovery (HADR)
	Database activation and deactivation in a DB2 High Availability Disaster Recovery (HADR) environment
	Performing a rolling upgrade in a DB2 High Availability Disaster Recovery (HADR) environment
	Using a split mirror to clone a database

	Synchronizing the primary and standby databases
	DB2 High Availability Disaster Recovery (HADR) replicated operations
	DB2 High Availability Disaster Recovery (HADR) non-replicated operations
	DB2 High Availability Disaster Recovery (HADR) standby database states
	Determining the HADR standby database state using the GET SNAPSHOT command

	DB2 High Availability Disaster Recovery (HADR) management
	DB2 High Availability Disaster Recovery (HADR) commands

	Chapter 5. Detecting and responding to system outages in a high availability solution
	Administration notification log
	Detecting an unplanned outage
	Monitoring high availability disaster recovery (HADR)

	Responding to an unplanned outage
	Automatic client reroute examples
	Performing an HADR failover operation
	Switching database roles in high availability disaster recovery (HADR)

	Reintegrating a database after a takeover operation

	Part 2. Data recovery
	Chapter 6. Developing a backup and recovery strategy
	Deciding how often to back up
	Storage considerations for recovery
	Keeping related data together
	Backup and restore operations between different operating systems and hardware platforms

	Chapter 7. Recovery history file
	Recovery history file entry status
	Viewing recovery history file entries using the DB_HISTORY administrative view
	Pruning the recovery history file
	Automating recovery history file pruning
	Protecting recovery history file entries from being pruned

	Chapter 8. Managing recovery objects
	Deleting database recovery objects using the PRUNE HISTORY command or the db2Prune API
	Automating database recovery object management
	Protecting recovery objects from being deleted
	Managing snapshot backup objects

	Chapter 9. Monitoring the progress of backup, restore and recovery operations
	Table space states

	Chapter 10. Backup overview
	Using backup
	Performing a snapshot backup
	Using a split mirror as a backup image
	Backing up to tape
	Backing up to named pipes

	Backing up partitioned databases
	Backing up partitioned tables using IBM Tivoli Space Manager Hierarchical Storage Management

	Enabling automatic backup
	Automatic database backup

	Optimizing backup performance
	Privileges, authorities, and authorization required to use backup
	Compatibility of online backup and other utilities
	Backup examples

	Chapter 11. Recover overview
	Recovering data
	Recovering data using db2adutl
	Recovering a dropped table

	Crash recovery
	Recovering damaged table spaces
	Recovering table spaces in recoverable databases
	Recovering table spaces in non-recoverable databases
	Reducing the impact of media failure
	Reducing the impact of transaction failure
	Recovering from transaction failures in a partitioned database environment
	Recovering from the failure of a database partition server
	Recovering indoubt transactions on mainframe or midrange servers
	Recovering indoubt transactions on the host when DB2 Connect has the DB2 Syncpoint Manager configured
	Recovering indoubt transactions on the host when DB2 Connect does not use the DB2 Syncpoint Manager

	Disaster recovery
	Version recovery
	Rollforward recovery
	Incremental backup and recovery
	Restoring from incremental backup images
	Limitations to automatic incremental restore

	Optimizing recovery performance
	Privileges, authorities, and authorization required to use recover

	Chapter 12. Restore overview
	Using restore
	Restoring from a snapshot backup image
	Restoring to an existing database
	Restoring to a new database
	Using incremental restore in a test and production environment

	Performing a redirected restore operation
	Redefine table space containers by restoring a database using an automatically generated script
	Performing a redirected restore using an automatically generated script

	Database rebuild
	Rebuild and table space containers
	Rebuild and temporary table spaces
	Choosing a target image for database rebuild
	Rebuilding selected table spaces
	Rebuild and incremental backup images
	Rebuilding partitioned databases
	Restrictions for database rebuild

	Optimizing restore performance
	Privileges, authorities, and authorization required to use restore
	Restore examples
	Redirected Restore sessions - CLP examples
	Rebuild sessions - CLP examples

	Chapter 13. Rollforward overview
	Using rollforward
	Rolling forward changes in a table space

	Authorization required for rollforward
	Rollforward sessions - CLP examples

	Chapter 14. Data recovery with IBM Tivoli Storage Manager (TSM)
	Configuring a Tivoli Storage Manager client
	Considerations for using Tivoli Storage Manager

	Chapter 15. DB2 Advanced Copy Services (ACS)
	Enabling DB2 Advanced Copy Services (ACS)
	Installing DB2 Advanced Copy Services (ACS)
	Activating DB2 Advanced Copy Services (ACS)
	Configuring DB2 Advanced Copy Services (ACS)
	Configuring the DB2 Advanced Copy Services (ACS) directory

	DB2 Advanced Copy Services (ACS) API
	DB2 Advanced Copy Services (ACS) API functions
	db2ACSQueryApiVersion - return the current version of the DB2 Advanced Copy Services (ACS) API
	db2ACSInitialize - initialize a DB2 Advanced Copy Services (ACS) session
	db2ACSTerminate - terminate a DB2 Advanced Copy Services (ACS) session
	db2ACSPrepare - prepare to perform a snapshot backup operation.
	db2ACSBeginOperation - begin a DB2 Advanced Copy Services (ACS) operation.
	db2ACSEndOperation - end a DB2 Advanced Copy Services (ACS) operation.
	db2ACSBeginQuery - begin a query about snapshot backup objects
	db2ACSGetNextObject - list next snapshot backup object available to use for restore
	db2ACSEndQuery - end a query about snapshot backup objects
	db2ACSSnapshot - perform a DB2 Advanced Copy Services (ACS) operation
	db2ACSPartition - group target data for a database partition together
	db2ACSVerify - verify that a DB2 Advanced Copy Services (ACS) operation has completed successfully
	db2ACSDelete - delete recovery objects that were created using DB2 Advanced Copy Services (ACS)
	db2ACSStoreMetaData - store metadata for a recovery object generated using DB2 Advanced Copy Services (ACS)
	db2ACSRetrieveMetaData - retrieve metadata about a recovery object generated using DB2 Advanced Copy Services (ACS)

	DB2 Advanced Copy Services (ACS) API data structures
	db2ACS_BackupDetails DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_CB DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_CreateObjectInfo DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_DB2ID DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_GroupList DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_LoadcopyDetails DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_LogDetails DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_ObjectInfo DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_ObjectStatus DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_OperationInfo DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_Options DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_PartitionEntry DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_PartitionList DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_PathEntry DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_PathList DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_PostObjectInfo DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_QueryInput and db2ACS_QueryOutput DB2 Advanced Copy Services (ACS) API data structures
	db2ACS_ReadList DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_ReturnCode DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_SessionInfo DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_SnapshotDetails DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_MetaData DB2 Advanced Copy Services (ACS) API data structure
	db2ACS_VendorInfo DB2 Advanced Copy Services (ACS) API data structure

	DB2 Advanced Copy Services (ACS) API return codes

	DB2 Advanced Copy Services (ACS) supported operating systems and hardware

	Part 3. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

