DB2 Version 9.5
for Linux, UNIX, and Windows

| ® ]
TS
(0 | ! =: S
\ -] / |
Y Fs 1
{ ]

Data Servers, Databases, and Database Objects Guide
Updated April, 2009

SC23-5849-02






DB2 Version 9.5
for Linux, UNIX, and Windows

| ® ]
TS
(0 | ! =: S
\ -] / |
Y Fs 1
{ ]

Data Servers, Databases, and Database Objects Guide
Updated April, 2009

SC23-5849-02



Note
Before using this information and the product it supports, read the general information under|Appendix B, “Notices,” on|

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

* To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

¢ To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About this book .

Part 1. Data servers. . . . . . .

Chapter 1. DB2 data servers .

Management of data server capacity

Enabling large page support in a 64-bit env1ronment

(AIX) .

Chapter 2. Multiple DB2 copies.
Default IBM database client interface copy

.7

.7

Setting the DAS when running multiple DB2 copres 10

Setting the default instance when using multiple
DB2 copies (Windows). .o
Multiple instances of the database manager
Multiple instances (Windows) .

Updating DB2 copies (Windows) .

Running multiple instances concurrently (Wlndows)

Working with instances on the same or different
DB2 copies

Chapter 3. Autonomic computing
Automatic features .
Automatic maintenance
Maintenance windows.
Self-tuning memory
Memory allocation in DBZ
Self tuning memory operational details and
limitations.

Operational details, hmltatrons and 1nteract10n

between memory parameters

Enabling self tuning memory

Disabling self tuning memory . .

Determining which memory consumers are

enabled for self tuning. .

Self tuning memory in partrtroned database

environments. .

Using self-tuning memory in partltloned

database environments .
Configuring memory and memory heaps

Agent and process model configuration .

Agent, process model, and memory conflguratlon
. 38
. 38
. 44

Automatic storage .
Automatic storage table spaces
Automatic storage databases.
Automatic storage restrictions .

Automatic (compression) dictionary creatron (ADC)

Data row compression.
Automatic statistics collection .
Enabling automatic statistics collectlon
Configuration Advisor. .
Tuning configuration parameters usmg the
Configuration Advisor.

© Copyright IBM Corp. 1993, 2009

11
.12
.13

.13
14

.15

. 17
.17
.19
.19
.20
.21

.24
.25
.27
. 27
. 28
.29

.31
.32

. 35
36

. 47
47

.49
. 50
. 54
. 55

. 55

Generating database configuration

recommendations . . .. . . .56
Example: Requesting conflguratlon
recommendations using the Configuration

Advisor . . . . . . . . . . . . . .56
Utility throttling. . . . .. . . . . .b58
Asynchronous index cleanup .. . .58

Asynchronous index cleanup for MDC tables . .60

Chapter4.Instances. . . . . . . . . 63

Designing instances. . . . . . . . . . . .64
Default instance. . . . . . . . . . . .65
Instance directory . . .. . . .66
Multiple instances (Llnux UNIX) . . . . .66
Multiple instances (Windows) . . . . . . .67

Creating instances . . . . . . . . . . . .68

Modifying instances . . . . .69
Updating the instance conflguratlon (Llnux
UNIX) . . . . . . 69
Updating the 1nstance conﬁguratron (Wmdows) 70

Working with instances . . . . . . . . . .71
Auto-starting instances . . 4 |
Starting instances (Linux, UNIX) |
Starting instances (Windows) . . . . . . .72
Attaching to and detaching from instances . . . 72
Working with instances on the same or different
DB2 copies . . ... . .73
Stopping instances (Lmux UNIX) .. . . .73
Stopping instances (Windows) . . . . . . .74

Dropping instances. . . . . . . . . . . .75

Chapter 5. Lightweight Directory

Access Protocol (LDAP) . . . . . . .77
Security considerations in an LDAP environment. . 77
LDAP object classes and attributes used by DB2 . . 78
Extending the LDAP directory schema with DB2

object classes and attributes . . . . 88
Supported LDAP client and server confrguratrons 88
LDAP support and DB2 Connect . . . . .89
Extending the directory schema for IBM T1V0h
Directory Server. . . .90
Netscape LDAP d1rectory support and attrlbute
definitions. . . . .91
Extending the d1rect0ry schema for Sun One
Directory Server. . . ... . . . . .93
Windows Active Drrectory . . 95
Enabling LDAP support after DB2 1nstallat10n is
complete . . . . ... .98
Registering LDAP entrles . . .98
Registration of DB2 servers after mstallatlon . .98
Catalog a node alias for ATTACH . . . . . 100
Registration of databases in the LDAP directory 100
Deregistering LDAP entries. . . . . . . . . 100
Deregistering the DB2 server . . . . . . . 100
iii



Deregistering the database from the LDAP

directory . . . . (0
Configuring LDAP users . . . . . . . . .101
Creating an LDAP user . . . . (1)
Configuring the LDAP user for DB2
applications . . . . 102
Setting DB2 registry Varlables at the user level
in the LDAP environment . . . . . . . . 102
Disabling LDAP support . . .. 102
Updating the protocol mformatron for the DBZ
server . . . oo 102
Rerouting LDAP chents to another server . . . . 103
Attaching to a remote server in the LDAP
environment. . . .. 104
Refreshing LDAP entrles in local database and
node directories . . (0}
Searching the LDAP servers . . . . . . . . 105
Part 2. Databases. . . . . . . . . 107
Chapter 6. Databases . . 109
Designing databases . . . B (0]
Database directories and frles R B X0
Space requirements for database objects . . . 118
Space requirements for log files . . . . 118
Lightweight Directory Access Protocol (LDAP)
directory service . . . . . . . 119
Creating databases . . ..o 120
Automatic storage databases P 4|
Cataloging databases. . . Lo o128
Binding utilities to the database Lo 0129
Creating database aliases . . .. 130
Connecting to distributed relational databases .. 131
Remote unit of work for distributed relational
databases. . . . 131
Application- d1rected d1str1buted urut of work 134
Application process connection states . . . . 135
Connection states . . . . . 136
Options that govern unit of work semant1cs .. 137
Data representation considerations . . . . 138
Viewing the local or system database directory flles 138
Dropping databases . . . . . . . . . . .138
Dropping aliases . . . . . . . . . . .139
Chapter 7. Database partitions . 141
Chapter 8. Buffer pools . . 143
Designing buffer pools . . . . . 143
Buffer pool memory protection (AIX runnmg on
POWER6) . . . . . . . . . . . . . .145
Creating buffer pools. . . . . . . . . . . 146
Modifying buffer pools . . . . . . . . . . 147
Dropping buffer pools . . . . . . . . . . 148
Chapter 9. Table spaces. . 151
Designing table spaces . . . . . . . . . .152
Types of table spaces. . . .. 154
Comparison of SMS and DMS table spaces .. le7

iv  Data Servers, Databases, and Database Objects Guide

Considerations when choosing table spaces for

your tables . . . . 170
Automatic re-sizing of table spaces . . 171
Automatic prefetchsize adjustment after addmg
or dropping containers . . . 175
Table spaces without file system cachmg . 176
Table space extent sizes . . 182
Table space page sizes . 183
Table space disk I/O . . 183
Defining initial table spaces . 185
Attaching DMS direct disk access dev1ces . 186
Configuring and settmg up DMS direct disk
access (Linux) . T . 187
Creating table spaces . . 189
Altering table spaces . . . 193
Altering SMS table spaces . . 193
Altering DMS table spaces . . 193
Altering automatic storage table spaces . 206
Renaming a table space . . 206
Switching table spaces from ofﬂme to onlme . 207
Optimizing table space performance when data is
on RAID devices . . 207
Dropping table spaces . 208
Chapter 10. Schemas . . 211
Designing schemas . 212
Grouping objects by schema . 214
Schema name restrictions and recommendatlons 215
Creating schemas . . 216
Copying schemas . . . 216
Example of schema copy usmg the
ADMIN_COPY_SCHEMA procedure . 218
Examples of schema copy using the db2move
utility . . . . 218
Restarting a failed copy schema operatron . 219
Dropping schemas. . 222
Part 3. Database objects . . 223
Chapter 11. Tables . 225
Types of tables . . 225
Designing tables . 227
Table design concepts . . 227
Space requirements for tables . . 236
Space requirements for user table data . . 238
Space compression for tables . . 240
Optimistic locking . . 244
Table partitioning and data orgamzatlon schemes 253
Creating tables . . . 253
Declaring global temporary tables . 254
Creating tables like existing tables . 255
Creating tables for staging data . 255
Modifying tables . . . 256
Altering materialized query table propertles .. 257
Refreshing the data in a materialized query
table . 257
Changing column propert1es . 257
Renaming tables . 260
Recovering inoperative summary tables . 260
Viewing table definitions . 261



Table or view aliases . . 261
Dropping tables . 261
Dropping materialized query or stagmg tables 262
Scenarios and examples of tables . . 262
Scenarios: Optimistic locking and time- based
detection . . 263
Chapter 12. Constraints . . 267
Types of constraints . . 267
NOT NULL constraints . . 268
Unique constraints . 268
Primary key constraints . . 269
(Table) Check constraints .o . 269
Foreign key (referential) constraints . . 269
Informational constraints . 274
Designing constraints. . . 274
Designing unique constraints . . 274
Designing primary key constraints . 275
Designing check constraints . 275
Designing foreign key (referential) constramts 277
Designing informational constraints . . 282
Creating and modifying constraints . . 284
Viewing constraint definitions for a table . . 285
Dropping constraints . . 286
Chapter 13. Indexes . 289
Types of indexes . 290
Designing indexes . . . 292
Tools for designing mdexes . 294
Space requirements for indexes . 294
Creating indexes . 297
Modifying indexes . 298
Renaming indexes. . 298
Rebuilding indexes . 299
Dropping indexes . . 300
Chapter 14. Triggers . 301
Types of triggers . 302
BEFORE triggers . 303
AFTER triggers. . 303
INSTEAD OF triggers . 304
Designing triggers. . 305
Specifying what makes a tr1gger f1re (tr1ggermg
statement or event) .. 307
Specifying when a trigger flres (BEFORE
AFTER, and INSTEAD OF clauses) . . 308
Defining conditions for when tr1gger—act1on w1ll
fire (WHEN clause) . . 310
Supported SQL PL statements in tr1ggers . .31
Accessing old and new column values in
triggers using transition variables . 312
Referencing old and new table result sets usmg
transition tables . 313
Creating triggers . 314
Modifying and droppmg tr1ggers . 316
Examples of triggers and trigger use . 316
Examples of interaction between tr1ggers and
referential constraints. . 316
Examples of defining actions usmg tr1ggers . 318

Example of defining business rules using

triggers . . . .. 319
Example of preventmg operat10ns on tables
using triggers . . . . . . . . . . . .320
Chapter 15. Sequences . . 321
Designing sequences . . . PG 74 |
Managing sequence behav1or L. ... 0322
Application performance and sequences . . . 323
Sequences compared to identity columns . . . 324
Creating sequences . . .. . . . . .32
Generating sequential Values A . . 326
Determining when to use identity columns or
sequences . . G 24
Modifying sequences ... 327
Viewing sequence definitions . . . . . . . . 328
Dropping sequences . . . . . . . . . . .328
Examples of how to code sequences. . . . . . 329
Sequence reference . . . . . . . . . . .330
Chapter 16. Views . 335
Designing views . . . . . . . . . . . .336
System catalog views. . . . . . . . . .336
Views with the check option . . . . . . .337
Deletable views . . . . . . . . . . .339
Insertable views . . . . . . . . . . .340
Updatable views . . . . . . . . . . .340
Read-only views . . . . . . . . . . .341
Creating views . . . . 341
Creating views that use user—defmed funct1ons
(UDFs) . . . NG 7 ¥
Modifying typed views . . . . . . . . . .343
Recovering inoperative views . . . . . . . . 343
Dropping views . . . . . . . . . . . .34
Part4. Reference. . . . . . . . . 345
Chapter 17. Conforming to naming
rules . - 7 ¥
Naming rules . . . . . . . . . . . . .347
DB2 object naming rules. . . . ... 348
Delimited identifiers and object names . . . . . 349
User, user ID and group naming rules . . . . . 350
Naming rules in an NLS environment . . . . . 350
Naming rules in a Unicode environment . . . . 351
Chapter 18. SQL and XML limits . 353

Chapter 19. Registry and environment

variables . . . . 363
Environment variables and the proflle reglstry . . 363
Declaring, showing, changing, resetting, and
deleting registry and environment variables . . . 365
Setting environment variables on Windows . . 367
Setting environment variables on Linux and
UNIX operating systems. . . . . . . . .369
Setting the current instance environment
variables . . . . .. . . . . . .37
Aggregate registry Var1ables TG V4 |

Contents V



DB2 registry and environment variables . . . . 372

General registry variables . . . . . . . .377
System environment variables. . . . . . . 385
Communications variables . . . . . . . .3%
Command-line variables. . . . . . 397
Partitioned database environment varrables .. 398
Query compiler variables . . . . . . . .399
Performance variables . . . . . . . . .404
Miscellaneous variables . . . . . . . . .421

Chapter 20. Configuration parameters 439
Configuring the DB2 database manager with

configuration parameters . . . . . . . . . 440
Configuration parameters summary . . . . 443
Configuration parameters that affect the number of
agents. . . . .. . 455
Configuration parameters that affect query
optimization. . . ... . 456
Restrictions and behav1or when confrgurrng
max_coordagents and max_connections . . . . 458
Database Manager configuration parameters . . . 460
agent_stack_sz - Agent stack size. . . . . . 460
agentpri - Priority of agents . . . 461
aslheapsz - Application support layer heap size 463
audit_buf_sz - Audit buffer size . . . . . . 464
authentication - Authentication type. . . . 465
catalog_noauth - Cataloging allowed wrthout
authority . . . .. . 466
cInt_krb_plugin - Chent Kerberos plug-m 14
cInt_pw_plugin - Client userid- password
plug-in . . . ... L 467
cluster_mgr - Cluster manager name . . . 468
comm_bandwidth - Communications bandw1dth 468
conn_elapse - Connection elapse time . . . . 469
cpuspeed - CPU speed . . . . 469

dft_account_str - Default charge—back account 470
dft_monswitches - Default database system

monitor switches . . . R V4 |
dftdbpath - Default database path A Y42
diaglevel - Diagnostic error capture level . . . 473
diagpath - Diagnostic data directory path . . . 474
dir_cache - Directory cache support . . . . . 475
discover - Discovery mode . . . . . . . . 476
discover_inst - Discover server instance . . . 477

fcm_num_buffers - Number of FCM buffers . . 477
fcm_num_channels - Number of FCM channels 478
fed_noauth - Bypass federated authentication 479
federated - Federated database system support 479
federated_async - Maximum asynchronous TQs

per query configuration parameter . . . . . 480
fenced_pool - Maximum number of fenced

processes. . ... ... 480
group_plugin - Group plug in. . . . . . .482
health_mon - Health monitoring . . . . . . 482
indexrec - Index re-creation time . . . . . . 483
instance_memory - Instance memory . . . 485

intra_parallel - Enable intra-partition parallehsm 487
java_heap_sz - Maximum Java interpreter heap

size. . . .. 487
jdk_path - Software Developer s K1t for ]ava
installation path . . . L. . ... . 488

Vi Data Servers, Databases, and Database Objects Guide

keepfenced - Keep fenced process
local_gssplugin - GSS API plug-in used for local
instance level authorization.

max_connections - Maximum number of cl1ent
connections . .
max_connretries - Node connectlon retries.
max_coordagents - Maximum number of
coordinating agents

max_querydegree - Maxrmum query degree of
parallelism .

max_time_diff - Max1mum t1me drfference
among nodes .
maxagents - Maximum number of agents .
maxcagents - Maximum number of concurrent
agents .

mon_heap_sz - Database system momtor heap
size. .
nodetype - Machrne node type
notifylevel - Notify level. . .
num_initagents - Initial number of agents in
pool .o
num_initfenced - In1t1al number of fenced
processes .
num_poolagents - Agent pool size .
numdb - Maximum number of concurrently
active databases including host and System i
databases.

query_heap_sz - Query heap size.

release - Configuration file release level
resync_interval - Transaction resync interval .
rqrioblk - Client I/O block size

sheapthres - Sort heap threshold . .
spm_log_file_sz - Sync pornt manager log frle
size. .
spm_log path Sync po1nt manager log f1le
path

Spm_max_resync - Sync pomt manager resync
agent limit oo
spm_name - Sync pomt manager name.
srvcon_auth - Authentication type for incoming
connections at the server
srveon_gssplugin_list - List of GSS API plug—lns
for incoming connections at the server .
srvcon_pw_plugin - Userid-password plug-in
for incoming connections at the server .
srv_plugin_mode - Server plug-in mode
start_stop_time - Start and stop timeout
svcename - TCP/IP service name.
sysadm_group - System administration
authority group name

sysctrl_group - System control authorrty group
name . .

sysmaint_ group System ma1ntenance author1ty
group name .

sysmon_group - System monitor authority
group name .

tm_database - Transactlon manager database
name . o
tp_mon_name - Transact1on processor monitor
name . .

trust_allclnts - Trust all cl1ents

. 489

. 490

. 490
. 491

. 491

. 492

. 493
. 493

. 494

. 495
. 496
. 496

. 497

. 498
. 498

. 499
. 500
. 501
. 501
. 502
. 503

. 504

. 505

. 506
. 506

. 506

. 507

. 507
. 508
. 508
. 509

. 510

. 510

. 511

. 512

. 512

. 513
. 514



trust_cIntauth - Trusted clients authentication
util_impact_lim - Instance impact policy

Database configuration parameters .

alt_collate - Alternate collating sequence
app_ctl_heap_sz - Application control heap size
appgroup_mem_sz - Maximum size of
application group memory set.
appl_memory - Application Memory
configuration parameter . .
applheapsz - Application heap size . .
archretrydelay - Archive retry delay on error
auto_del_rec_obj - Automated deletion of
recovery objects configuration parameter .
auto_maint - Automatic maintenance
autorestart - Auto restart enable .

avg_appls - Average number of active
applications .

backup_pending - Backup pendmg mdrcator
blk_log_dsk_ful - Block on log disk full
catalogcache_sz - Catalog cache size.
chngpgs_thresh - Changed pages threshold
codepage - Code page for the database.
codeset - Codeset for the database
collate_info - Collating information .
country/region - Database territory code .
database_consistent - Database is consistent .
database_level - Database release level .
database_memory - Database shared memory
size.

db_mem_ thresh Database memory threshold
dbheap - Database heap .

decflt_rounding - Decimal ﬂoatmg po1nt
rounding configuration parameter
dft_degree - Default degree.

dft_extent_sz - Default extent size of table
spaces .

dft_loadrec_ses - Default number of load
recovery sessions .

dft_mttb_types - Default mamtamed table types
for optimization S
dft_prefetch_sz - Default prefetch size .
dft_queryopt - Default query optimization class
dft_refresh_age - Default refresh age.
dft_sqlmathwarn - Continue upon arithmetic
exceptions . .
discover_db - Dlscover database .

dlchktime - Time interval for checking deadlock
dyn_query_mgmt - Dynamlc SQL and XQuery
query management .

enable_xmlchar - Enable conversion to XML
configuration parameter .

failarchpath - Failover log archrve path
groupheap_ratio - Percent of memory for
application group heap .

hadr_db_role - HADR database role
hadr_local_host - HADR local host name .
hadr_local_svc - HADR local service name
hadr_peer_window - HADR peer window
configuration parameter .

hadr_remote_host - HADR remote host name

515

. 516
. 517
. 517

517

. 518

. 519
. 520

521

. 521
. 522
. 524

. 524

525

. 525
. 526
. 527
. 528
. 528
. 528
. 529
. 529
. 530

. 530

532

. 533

. 534
. 536

. 536

. 537

. 537
. 538

539

. 539

. 540
. 541

541

. 542

. 543
. 543

. 544
. 544
. 544
. 545

. 545

546

hadr_remote_inst - HADR instance name of the
remote server . .o
hadr_remote_svc - HADR remote service name
hadr_syncmode - HADR synchronization mode
for log write in peer state

hadr_timeout - HADR timeout value
indexrec - Index re-creation time .

jdk_64_path - 64-Bit Software Developer’s K1t
for Java installation path DAS. .o
locklist - Maximum storage for lock list
locktimeout - Lock timeout . .
log_retain_status - Log retain status 1nd1cator
logarchmeth1 - Primary log archive method .
logarchmeth?2 - Secondary log archive method
logarchoptl - Primary log archive options .
logarchopt2 - Secondary log archive options .
logbufsz - Log buffer size

logfilsiz - Size of log files

loghead - First active log file

logindexbuild - Log index pages created
logpath - Location of log files . .
logprimary - Number of primary log frles
logretain - Log retain enable .
logsecond - Number of secondary log f11es
max_log - Maximum log per transaction
maxappls - Maximum number of active
applications . .
maxfilop - Maximum database flles open per
application .

maxlocks - Maximum percent of lock list before
escalation. .
min_dec_div_3 - Dec1ma1 lelSlOIl scale to 3
mincommit - Number of commits to group
mirrorlogpath - Mirror log path .
multipage_alloc - Multipage file allocation
enabled .
newlogpath - Change the database log path .
num_db_backups - Number of database
backups .

num_freqvalues - Number of frequent Values
retained . .o .o
num_iocleaners - Number of asynchronous page
cleaners .

num_ioservers - Number of 1/ O servers
num_log_span - Number log span
num_quantiles - Number of quantiles for
columns . .
numarchretry - Number of retrles on error
numsegs - Default number of SMS containers
overflowlogpath - Overflow log path
pagesize - Database default page size
pckcachesz - Package cache size .
priv_mem_thresh - Private memory threshold
rec_his_retentn - Recovery history retention
period. . .
restore_pending - Restore pendmg
restrict_access - Database has restricted access
configuration parameter .

rollfwd_pending - Roll forward pendmg
indicator .

self_tuning_mem- Self tunmg memory

Contents

. 546

547

. 547
. 548
. 548

. 550
. 551
. 553

554

. 555

556

. 557
. 557
. 558
. 558
. 560
. 560
. 560
. 560
. 562
. 562
. 564

. 564
. 565
. 566
. 568
. 569
. 570

. 571
. 571

. 573
. 573
. 574
. 576
. 576

. 577
. 578

578

. 579
. 580
. 580

582

. 583
. 583

. 583

. 584
. 584

vii



seqdetect - Sequential detection flag. . . . . 585
sheapthres_shr - Sort heap threshold for shared
sorts . . . . 586
softmax - Recovery range and soft Checkpomt
interval . . . . ... . . . . .587
sortheap - Sort heap size . . . . . . . .b58
stat_heap_sz - Statistics heap size. . . . . . 590
stmtheap - Statement heap size . . . . . . 591
territory - Database territory . . ... 59
trackmod - Track modified pages enable ... 592
tsm_mgmtclass - Tivoli Storage Manager
management class. . . . . 592
tsm_nodename - Tivoli Storage Manager node
name . . . ... 0592
tsm_owner - Tlvoh Storage Manager owner
name . . .. . .593
tsm password TlVOh Storage Manager
password. . . . . . . 593
user_exit_status - User ex1t status 1nd1cator .. 5%
userexit - User exit enable . . . . . . . .5%
util_heap_sz - Utility heap size . . . . . . 5%
vendoropt - Vendor options . . . .. .5%
wlm_collect_int - Workload management
collection interval configuration parameter . . 595
DB2 Administration Server (DAS) conﬁguration
parameters . . . . . 5%
authentication - Authentlcatlon type DAS . . 5%
contact_host - Location of contact list . . . . 597
das_codepage - DAS code page . . . . . . 597
das_territory - DAS territory . . . 598
dasadm_group - DAS admlnlstratlon author1ty
group name . . . . 598
db2system - Name of the DBZ server system 599
discover - DAS discovery mode . . . . . . 599
viii Data Servers, Databases, and Database Objects Guide

exec_exp_task - Execute expired tasks . . . . 600
jdk_path - Software Developer’s Kit for Java

installation path DAS. . . . . . . . . .600
sched_enable - Scheduler mode . . . . . . 601
sched_userid - Scheduler user ID. . . . . . 601
smtp_server - SMTP server. . . .. . .601
toolscat_db - Tools catalog database . . 602

toolscat_inst - Tools catalog database 1nstance 602
toolscat_schema - Tools catalog database schema 602

Part 5. Appendixes . . . . . . . . 605

Appendix A. Overview of the DB2

technical information . . . . . 607
DB2 technical library in hardcopy or PDF format 607
Ordering printed DB2 books . . . .. . .610
Displaying SQL state help from the command line
processor. . . . 611
Accessing dlfferent versions of the DBZ Informatlon
Center. . . . 611
Displaying toprcs in your preferred language in the
DB2 Information Center . . . . 611
Updating the DB2 Information Center 1nsta11ed on

your computer or intranet server. . . . . . . 612
DB2 tutorials . . . . .. . . . . .6l4
DB2 troubleshooting 1nformat10n .. . . . .6l4
Terms and Conditions . . . . . . . . . .614

Appendix B. Notices . . . . . . . . 617

Index. . . . . ... ... ... .621



About this book

The Data Servers, Databases, and Database Objects Guide provides information
necessary to use and administer the DB2® relational database management system
(RDBMS) products. It contains information about database planning and design,
and implementation and management of database objects. This book also contains
reference information for database configuration and tuning.

Who should use this book

This book is intended primarily for database and system administrators who need
to design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2 relational database
management system.

How this book is structured

This book is structured in four parts, as follows:

Part 1. Data Servers
This section briefly describes DB2 data servers, including management of
their capacity and large page support in 64-bit environments on AIX®. In
addition, it also provides information on running multiple DB2 copies on a
single computer, information on the automatic features that assist you in
managing your database system, information on designing, creating, and
working with instances, and optional information on configuring
Lightweight Directory Access Protocol (LDAP) servers.

Part 2. Databases
This section describes the design, creation, and maintenance of databases,
buffer pools, table spaces, and schemas. Detailed information about
database partitions is found in the new Partitioning and Clustering Guide.

Part 3. Database objects
This section describes the design, creation, and maintenance of the
following database objects: tables, constraints, indexes, triggers, sequences
and views.

Part 4. Reference
This section contains reference information for configuring and tuning your
database system with environment and registry variables, and
configuration parameters. It also lists the various naming rules and SQL
and XML limits.

© Copyright IBM Corp. 1993, 2009 ix



X  Data Servers, Databases, and Database Objects Guide



Part 1. Data servers

© Copyright IBM Corp. 1993, 2009



2 Data Servers, Databases, and Database Objects Guide



Chapter 1. DB2 data servers

Data servers provide software services for the secure and efficient management of
structured information. DB2 is a hybrid relational and XML data server.

A data server refers to a machine where the DB2 database engine is installed. The
DB2 engine is a full-function, robust database management system that includes
optimized SQL support based on actual database usage and tools to help manage
the data.

IBM offers a number data server products, including data server clients that can
access all the various data servers. For a complete list of DB2 data server products,
features available, and detailed descriptions and specifications, see:

http:/ /www-306.ibm.com/software/data/db2/9/.

Management of data server capacity

If data server capacity does not meet your present or future needs, you can expand
its capacity by adding disk space and creating additional containers, or by adding
memory. If these simple strategies do not add the capacity you need, also consider
adding processors or physical partitions. When you scale your system by changing
the environment, you should be aware of the impact that such a change can have
on your database procedures such as loading data, or backing up and restoring
databases.

Adding processors

If a single-partition database configuration with a single processor is used
to its maximum capacity, you might either add processors or add database
partitions. The advantage of adding processors is greater processing power.
In an SMP system, processors share memory and storage system resources.
All of the processors are in one system, so there are no additional overhead
considerations such as communication between systems and coordination
of tasks between systems. Utilities such as load, backup, and restore can
take advantage of the additional processors.

Note: Some operating systems, such as the Solaris operating system, can
dynamically turn processors on- and off-line.

If you add processors, review and modify some database configuration
parameters that determine the number of processors used. The following
database configuration parameters determine the number of processors
used and might need to be updated:

* Default degree (dft_degree)
* Maximum degree of parallelism (max_querydegree)
* Enable intra-partition parallelism (intra_parallel)

You should also evaluate parameters that determine how applications
perform parallel processing.

In an environment where TCP/IP is used for communication, review the
value for the DB2TCPCONNMGRS registry variable.

Adding physical partitions

© Copyright IBM Corp. 1993, 2009 3



If your database manager is currently in a partitioned database
environment, you can increase both data-storage space and processing
power by adding separate single-processor or multiple-processor physical
partitions. The memory and storage system resources on each database
partition are not shared with the other database partitions. Although
adding database partitions might result in communication and
task-coordination issues, this choice provides the advantage of balancing
data and user access across more than one system. The database manager
supports this environment.

You can add database partitions either while the database manager system
is running or while it is stopped. If you add database partitions while the
system is running, however, you must stop and restart the system before
databases migrate to the new database partition.

When you add a new database partition, you cannot drop or create a
database that takes advantage of the new database partition until the
procedure is complete, and the new server is successfully integrated into
the system.

Enabling large page support in a 64-bit environment (AIX)

In addition to the traditional page size of 4 KB, the POWER4" processors (and
higher) in the IBM® eServer " pSeries® systems also support a 16 MB page size.
Applications such as IBM DB2 Version 9.1 for AIX 64-bit Edition, that require
intensive memory access and that use large amounts of virtual memory can gain
performance improvements by using large pages.

Note: Enabling large pages prevents the self-tuning memory manager from
automatically tuning overall database memory consumption, so should only be
considered for well-defined workloads that have relatively static database memory
requirements.

1. For detailed instructions on how to run the vmo command, refer to your AIX
manuals.

2. You should be extremely cautious when configuring your system for pinning
memory and supporting large pages. Pinning too much memory results in
heavy paging activities for the memory pages that are not pinned. Allocating
too much physical memory to large pages will degrade system performance if
there is insufficient memory to support the 4 KB pages.

3. Setting the DB2_LARGE_PAGE_MEM registry variable also implies that the
memory is pinned.

You must have root authority to work with the AIX operating system commands.

1. Configure your AIX server for large page support by issuing the vmo
command with the following flags: :

vmo -r -o lgpg_size=LargePageSize -o 1gpg_regions=LargePages

where LargePageSize specifies the size in bytes of the hardware-supported large
pages, and LargePages specifies the number of large pages to reserve. For
example, if you need to allocate 25 GB for large page support, run the
command as follows:

vmo -r -0 lgpg_size=16777216 -o 1gpg_regions=1600

2. Run the bosboot command so that the vimo command that you previously run
will take effect following the next system boot.

3. After the server comes up, enable it for pinned memory:

4  Data Servers, Databases, and Database Objects Guide



* Issue the vmo command with the following flags:
vmo -o v_pinshm=1
* Use the db2set command to set the DB2_LARGE_PAGE_MEM registry
variable to DB, then start DB2:

db2set DB2_LARGE_PAGE_MEM=DB
db2start

Chapter 1. DB2 data servers 5



6 Data Servers, Databases, and Database Objects Guide



Chapter 2. Multiple DB2 copies

With Version 9 and later, you can install and run multiple DB2 copies on the same
computer. A DB2 copy refers to one or more installations of DB2 database products
in a particular location on the same computer. Each DB2 Version 9 copy can be at
the same or different code levels.

The benefits of doing this include:

* The ability to run applications that require different DB2 versions on the same
computer at the same time

¢ The ability to run independent copies of DB2 products for different functions

* The ability to test on the same computer before moving the production database
to the latter version of the DB2 product

* For independent software vendors, the ability to embed a DB2 server product
into your product and hide the DB2 database from your users. For COM+
applications, use and distribute the IBM Data Server Driver for ODBC and CLI
with your application instead of the Data Server Runtime Client as only one
Data Server Runtime Client can be used for COM+ applications at a time. The
IBM Data Server Driver for ODBC and CLI does not have this restriction.

Default IBM database client interface copy

You can have multiple DB2 copies on a single computer, as well as a default IBM
database client interface copy, which is the means by which a client application has
the ODBC driver, CLI driver, and .NET data provider code needed to interface
with the database by default.

In Version 9.1 (and later), the code for the IBM database client interface copy is
included with the DB2 copy. With Version 9.5 (and later) there is a new product
you can choose to install that has the needed code to allow a client application to
interface with a database. This product is IBM Data Server Driver Package
(DSDRIVER). With Version 9.5 (and later) you can install DSDRIVER on an IBM
data server driver copy separate from the installation of a DB2 copy.

Following Version 9.1, you can have multiple DB2 copies installed on your
computer; following Version 9.5, you can have multiple IBM database client
interface copies and multiple DB2 copies installed on your computer. During the
time of installation of a new DB2 copy or new IBM data server driver copy you
would have had the opportunity to change the default DB2 copy and the default
IBM database client interface copy:.

The following diagram shows multiple DB2 copies installed on a DB2 server,
which can be any combination of the DB2 database products:

© Copyright IBM Corp. 1993, 2009 7



DB2 server

DB2 Copy 1 (dir1) DB2 Copy 2 (dir2)

DB2 instance DB201 instance

1 |

1 I

1 1

1 |

- = 1

D Database : : [] Database |
1 |

[ |

I |

Test
environment

= == Production
environment

Version 8 and Version 9 (or later) copies can coexist on the same computer,
however Version 8 must be the default DB2 and IBM database client interface copy.
You cannot change from the Version 8 copy to the Version 9 (or later) copy as the
default DB2 copy or default IBM database client interface copy during installation,
nor can you later run the switch default copy command, db2swtch, unless you first
migrate or uninstall Version 8 copy. If you run the db2swtch command when
Version 8 exists on the system, you will receive an error message indicating that
you cannot change the default copy because Version 8 is found on the system.

Sometime after installing multiple DB2 copies or multiple IBM data server driver
copies, you may want to change either the default DB2 copy or the default IBM®
database client interface copy. If you have Version 8 installed, you need to uninstall
the product or migrate it to at least Version 9 before you can change the default
DB2 copy or to at least Version 9.5 before you can change the default IBM database
client interface copy.

Client applications can always choose to go directly to a data server driver location
which is the directory where the DSDRIVER is installed.

When you uninstall either the DB2 copy or the IBM data server driver copy that
had been the default IBM database client interface copy, the defaults are managed
for you. Chosen default copies are removed and new defaults are selected for you.
When you uninstall the default DB2 copy which is not the last DB2 copy on the
system, you will be asked to switch the default to another DB2 copy first.

8 Data Servers, Databases, and Database Objects Guide



Choosing a default when installing a new IBM database client
interface copy

Following Version 9.5, consider the scenario where you have installed two DB2
copies (DB2COPY1 and DB2COPY2). DB2COPY?2 is the default DB2 copy and the
default IBM database client interface copy.

System environment

Install DSDRIVER as a new
DS driver copy (IBMDBCL1) DB2COPY1
-ESE
-WSE
DB2COPY2
Make IBMDBCL1 -ESE
the default IBM database —— No CLIENT
client interface copy? | )
IBMDBCLA1
DSDRIVER
Legend

Default DB2 copy

Default IBM database
client interface copy

DS driver copy = |IBM Data Server
driver copy

DSDRIVER = IBM Data Server
Driver Package

Install IBM Data Server Driver Package (DSDRIVER) on a new IBM data server
driver copy.

During the install of the new IBM data server driver copy (IBMDBCL1) you are
asked if you want to make the new IBM data server driver copy the default IBM
database client interface copy.

If you respond “No”, then DB2COPY2 remains the default IBM database client
interface copy. (And it continues to be the default DB2 copy.)

However, consider the same scenario but you respond “Yes” when asked if you

want to make the new IBM data server driver copy the default IBM database client
interface copy.

Chapter 2. Multiple DB2 copies 9



System environment

Install DSDRIVER as a new

DS driver copy (lBMDBCL1) DB2COPY1
-ESE
-WSE
DB2COPY2
Make IBMDBCLA1 ESE
the default IBM database — -CLIENT
client interface copy? B
Yes
IBMDBCL1
— DSDRIVER
Legend

Default DB2 copy

Default IBM database
client interface copy

DS driver copy = IBM Data Server
driver copy

DSDRIVER = IBM Data Server
Driver Package

In this case, IBMDBCL1 becomes the default IBM database client interface copy.
(DB2COPY2 remains the default DB2 copy.)

Setting the DAS when running multiple DB2 copies

Starting with Version 9, you can have multiple DB2 copies running on the same
computer. This affects how the DB2 Administration Server (DAS) operates. The
DAS is a unique component within the database manager that is limited to having
only one version active, despite how many DB2 copies are installed on the same
computer. For this reason the following restrictions and functional requirements

apply.

On the server, there can be only one DAS version and it administers instances as
follows:

e If the DAS is on Version 9.1 or Version 9.5, then it can administrator Version 8
and Version 9.1 or Version 9.5 instances.

* If the DAS is on Version 8, then it can administer only Version 8 instances. You
can migrate your Version 8 DAS, or drop it and create a new Version 9.5 DAS to
administer the Version 8 and Version 9.1 instances. This is required only if you
want to use the Control Center to administer the instances.

Only one DAS can be created on a given computer at any given time despite the
number of DB2 copies that are installed on the same computer. This DAS will be

10 Data Servers, Databases, and Database Objects Guide



used by all the DB2 copies that are on the same computer. In Version 9 or later, the

DAS can belong to any DB2 copy that is currently installed.

To move the DAS between one Version 9.5 copy to another Version 9.5 copy, use

the dasupdt command. To move the DAS between a Version 9.1 copy to a Version

9.5 copy, you cannot use dasupdt, you must migrate from Version 9.1 to Version
9.5.

On Windows operating systems, you can also use the dasupdt command when
you need to move the DAS to a new Default DB2 copy in the same version.

Note:

¢ The dasupdt command can only be used to move the DAS between various DB2

copies of the same release (that is, between different Fix Packs). It cannot be
used to setup DAS.

 For migration from Version 8 to Version 9.1 to Version 9.5 DAS, use the dasmigr

command.

* If DAS is not set up, then a regular DAS setup procedure should be followed to

set it up on one of the DB2 copies.

Setting the default instance when using multiple DB2 copies

(Windows)

Starting with Version 9.1, the DB2INSTANCE environment is set according to the

DB2 copy that your environment is currently set up to use. If you do not set it

explicitly to an instance in the current copy, it defaults to the default instance that

is specified with the DB2INSTDEEF profile registry variable.

DB2INSTDEEF is the default instance variable that is specific to the current DB2
copy in use. Every DB2 copy has its own DB2INSTDEEF profile registry variable.
Instance names must be unique on the system; when an instance is created, the

database manager scans through existing copies to ensure its uniqueness.

Use the following guidelines to set the default instance when using multiple DB2
copies:

If DB2INSTANCE is not set for a particular DB2 copy, then the value of
DB2INSTDEEF is used for that DB2 copy. This means:

— If DB2INSTANCE=ABC and DB2INSTDEF=XYZ, ABC is the value that is
used

— If DB2INSTANCE is not set and DB2INSTDEF=XYZ, XYZ is used

— If DB2INSTANCE is not set and DB2INSTDEEF is not set, then any application
or command that depends on a valid DB2INSTANCE will not work.

You can use either the db2envar.bat command or the db2SelectDB2Copy API to
switch DB2 copies. Setting all the environment variables appropriately (for
example, PATH,INCLUDE,LIB and DB2INSTANCE) will also work, but you
need to ensure that they are set properly.

Note: Using the db2envar.bat command is not quite the same as setting the
environment variables. The db2envar.bat command determines which DB2 copy
it belongs to, and then adds the path of this DB2 copy to the front of the PATH
environment variable.

Chapter 2. Multiple DB2 copies 11



When there are multiple DB2 copies on the same machine, the PATH
environment variable can only point to one of them: the DEFAULT COPY. For
example, if DB2COPY1 is under c:\sqllib\bin and is the default copy; and
DB2COPY?2 is under d:\sqgllib\bin. If you want to use DB2COPY2 in a regular
command window, you would run d:\sqllib\bin\db2envar.bat in that command
window. This adjusts the PATH (and some other environment variables) for this
command window so that it will pick up binaries from d:\sqllib\bin.

DB2INSTANCE is only valid for instances under the DB2 copy that you are
using. However, if you switch copies by running the db2envar.bat command,
DB2INSTANCE will be updated to the value of DB2INSTDEF for the DB2 copy
that you switched to initially.

DB2INSTANCE is the current DB2 instance that will be used by applications that
are executing in that DB2 copy. When you switch between copies, by default,
DB2INSTANCE is changed to the value of DB2INSTDEEF for that copy.
DB2INSTDEF is less meaningful on a one copy system because all the instances
are in the current copy; however, it is still applicable as being the default
instance, if another instance is not set.

All global profile registry variables are specific to a DB2 copy, unless you specify
them using SET VARIABLE=<variable_name>.

Multiple instances of the database manager

Multiple instances of the database manager might be created on a single server.
This means that you can create several instances of the same product on a physical
computer, and have them running concurrently. This provides flexibility in setting
up environments.

Note: The same instance name cannot be used in two different DB2 copies.

You might want to have multiple instances to create the following environments:

Separate your development environment from your production environment.
Separately tune each environment for the specific applications it will service.

Protect sensitive information from administrators. For example, you might want
to have your payroll database protected on its own instance so that owners of
other instances will not be able to see payroll data.

Note:

(On UNIX® operating systems only:) To prevent environmental conflicts between
two or more instances, you should ensure that each instance home directory is
on a local file system.

(On Windows® platforms only:) Instances are cataloged as either local or remote
in the node directory. Your default instance is defined by the DB2INSTANCE
environment variable. You can ATTACH to other instances to perform
maintenance and utility tasks that can only be done at an instance level, such as
creating a database, forcing off applications, monitoring a database, or updating
the database manager configuration. When you attempt to attach to an instance
that is not in your default instance, the node directory is used to determine how
to communicate with that instance.

(On any platform:) DB2 database program files are physically stored at one
location and each instance points back to the copy to which that instance
belongs so that the program files are not duplicated for each instance that is
created. Several related databases can be located within a single instance.

12  Data Servers, Databases, and Database Objects Guide



Multiple instances (Windows)

It is possible to run multiple instances of the database manager on the same
computer. Each instance of the database manager maintains its own databases and
has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that
can be at different levels of the database manager.

An instance of the database manager consists of the following:

* A Windows service that represents the instance. The name of the service is same
as the instance name. The display name of the service (from the Services panel)
is the instance name, prefixed with the “DB2 - ” string. For example, for an
instance named “DB2”, there exists a Windows service called “DB2” with a
display name of “DB2 - <DB2 Copy Name> - DB2".

Note: A Windows service is not created for client instances.

* An instance directory. This directory contains the database manager
configuration files, the system database directory, the node directory, the
Database Connection Services (DCS) directory, all the diagnostic log and dump
files that are associated with the instance. The instance directory is by default a
sub-directory inside the SQLLIB directory and has the same name as the
instance name. For example, the instance directory for instance “DB2” is
C:\SQLLIB\DB2, where C:\SQLLIB is where the database manager is installed. You
can use the registry variable DB2INSTPROF to change the default location of the
instance directory. If the DB2INSTPROF registry variable is set to another
location, then the instance directory is created under the directory pointed to by
DB2INSTPROF. For example, if DB2INSTPROF=D: \DB2PROFS, then the instance
directory will be D:\DB2PROFS\DB2.

— Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command
— Run DB2ICRT.exe command to create the instance.

* When you create an instance on Windows operating systems, the default
locations for user data files, such as instance directories and the db2cli.ini file,
are the following directories:

— Documents and Settings\ All Users\ Application Data\IBM\DB2\copy name
on the Windows XP and Windows 2003 operating systems

— ProgramData\IBM\DB2\copy name on the Windows Vista operating system

Updating DB2 copies (Windows)

When updating your DB2 product, you will be required to specify whether you
want to update an existing DB2 copy, or whether to install a new one. To update a
DB2 copy, you must select the Work with Existing option.

You will not be able to update more than one DB2 copy at the same time. In order
to update other DB2 copies that may be installed on the same computer, you need
to rerun the installation. The installation provides the option to migrate Version 8 -
or Version 9.1 copy (in the same path) or to install a new Version 9.1 or Version 9.5
copy without modifying the Version 8 installation.

* If you select to migrate, your Version 8 installation will be removed.

* If you select to install a new DB2 copy, you can later choose to migrate your
instances using the db2ckmig and db2imigr commands.

Chapter 2. Multiple DB2 copies 13



You can use the db2iupdt command to move a DB2 instance between different
Version 9.1 or Version 9.5 DB2 copies, and the db2imigr command to move a
Version 8 instance to Version 9.1 or Version 9.5.

Note:
* Coexistence of Version 7 and Version 9.1 or Version 9.5 is not supported.

* Coexistence of a 32-bit DB2 data server and a 64-bit DB2 data server on the
same Windows X64 computer is not supported.

It is not possible to migrate from a 32-bit X64 DB2 installation at Version 8 to a
64-bit installation at Version 9.1 or Version 9.5 Instead, you need to migrate to
Version 9.1 or Version 9.5 32-bit to use the X64 DB2 data server installation to
move to 64-bit. The 32-bit version will be removed. If you have more than one
32-bit DB2 copy installed, you will need to move all of your instances to one
DB2 copy and remove these copies from the computer.

* If you have multiple Version 9.1 or Version 9.5 copies, the installation options
are install a new copy or work with an existing DB2 copy, which you can
upgrade or add new features. The migrate action is available if you also have a
Version 8 copy in addition to the Version 9.1 or Version 9.5 copies.

* If Version 8 or Version 9.1 is installed, your installation options are to migrate
the existing Version 8 or Version 9.1 to Version 9.5 copy or install a new DB2
copy.

* If Version 7 or earlier is installed , the installation displays a message to indicate
that migration to Version 9.1 or Version 9.5 is not supported. You can only install
a new DB2 copy after uninstalling Version 7. In other words, Version 7 and
Version 9.1 or Version 9.5 cannot coexist.

* To move an instance from one Version 9.1 or Version 9.5 copy to another, you
can use the db2iupdt command.

 If you use the db2imigr command to migrate your instances from Version 8, you
will need to reconfigure any ODBC data sources.

Running multiple instances concurrently (Windows)

You can run multiple instances concurrently in the same DB2 copy, or in different
DB2 copies.

To run multiple instances concurrently in the same DB2 copy, using the command
line:
1. Set the DB2INSTANCE variable to the name of the other instance that you
want to start by entering:
set db2instance=<another_instName>

2. Start the instance by entering the db2start command.

To run multiple instances concurrently in different DB2 copies, use either of the
following methods:

* Using the DB2 Command window from the Start » Programs » IBM DB2 » <DB2
Copy Name> » Command Line Tools » DB2 Command Window: the Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

e Using db2envar.bat from a Command window:
1. Open a Command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy that
you want the application to use:

14  Data Servers, Databases, and Database Objects Guide



<DB2 Copy install dir>\bin\db2envar.bat

After you switch to a particular DB2 copy, use the method specified in the section
above, "To run multiple instances concurrently in the same DB2 copy”, to start the
instances.

Working with instances on the same or different DB2 copies

You can run multiple instances concurrently, in the same DB2 copy or in different
DB2 copies.

To work with instances in the same DB2 copy, you need to:
1. Create or migrate all instances to the same DB2 copy.

2. Set the DB2INSTANCE environment variable to the name of the instance you
are working with before issuing commands against that instance.

To prevent one instance from accessing the database of another instance, the
database files for an instance are created under a directory that has the same name
as the instance name. For example, when creating a database on drive C: for
instance “DB2”, the database files are created inside a directory called C:\DB2.
Similarly, when creating a database on drive C: for instance TEST, the database
files are created inside a directory called C:\TEST. By default, its value is the drive
letter where DB2 product is installed. For more information, see the dftdbpath
database manager configuration parameter.

To work with an instance in a system with multiple DB2 copies, use either of the
following methods:

* Using the Command window from the Start » Programs » IBM DB2 » <DB2
Copy Name> » Command Line Tools » Command Window: the Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

* Using db2envar.bat from a Command window:
1. Open a Command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy that
you want the application to use:

<DB2 Copy install dir>\bin\db2envar.bat

Chapter 2. Multiple DB2 copies 15



16 Data Servers, Databases, and Database Objects Guide



Chapter 3. Autonomic computing

The DB2 autonomic computing environment is self-configuring, self-healing,
self-optimizing, and self-protecting. By sensing and responding to situations that
occur, autonomic computing shifts the burden of managing a computing
environment from database administrators to technology.

The following automatic features can assist you in managing your database
system:

¢ Self-tuning memory

e Automatic storage

* Automatic (compression) dictionary creation (ADC)
¢ Automatic database backups

* Automatic statistics collection

* Configuration Advisor

* Health monitor

« Utility throttling

Automatic features

Automatic features assist you in managing your database system. They allow your
system to perform self-diagnosis and to anticipate problems before they happen by
analyzing real-time data against historical problem data. You can configure some of
the automatic tools to make changes to your system without intervention to avoid
service disruptions.

When you create a database, some of the following automatic features are enabled
by default, but others you need to enable manually:

Self-tuning memory (single-partition databases only)
The self-tuning memory feature simplifies the task of memory
configuration. This feature responds to significant changes in workload by
automatically and iteratively adjusting the values of several memory
configuration parameters and the sizes of the buffer pools, thus optimizing
performance. The memory tuner dynamically distributes available memory
resources among several memory consumers, including the sort function,
the package cache, the lock list, and buffer pools. You can disable
self-tuning memory after creating a database by setting the database
configuration parameter self_tuning mem to OFF.

Automatic storage
The automatic storage feature simplifies storage management for table
spaces. When you create a database, you specify the storage paths where
the database manager will place your table space data. Then, the database
manager manages the container and space allocation for the table spaces as
you create and populate them.

Automatic (compression) dictionary creation (ADC)
Compression dictionaries are automatically created during data population
operations on tables for which you defined the COMPRESS attribute to
YES if a compression dictionary does not already exist within the physical
table or partition and after a table reaches approximately 1 MB in size as
the result of data being added (through insert or load processing, for

© Copyright IBM Corp. 1993, 2009 17



example), the dictionary is created and is inserted into the table. Provided
that the table COMPRESS attribute remains enabled, all data moved into
the table after creation of the compression dictionary is subject to
compression.

Automatic database backups
A database can become unusable due to a wide variety of hardware or
software failures. Ensuring that you have a recent, full backup of your
database is an integral part of planning and implementing a disaster
recovery strategy for your system. Use automatic database backups as part
of your disaster recovery strategy to enable the database manager to back
up your database both properly and regularly.

Automatic statistics collection
Automatic statistics collection helps improve database performance by
ensuring that you have up-to-date table statistics. The database manager
determines which statistics are required by your workload and which
statistics need to be updated. Statistics can be collected either
asynchronously (in the background) or synchronously, by gathering
runtime statistics when SQL statements are compiled. The DB2 optimizer
can then choose an access plan based on accurate statistics. You can disable
automatic statistics collection after creating a database by setting the
database configuration parameter auto_runstats to OFF. Real-time statistics
gathering can be enabled only when automatic statistics collection is
enabled. Real-time statistics gathering is controlled by the auto_stmt_stats
configuration parameter.

Configuration Advisor
When you create a database, this tool is automatically run to determine
and set the database configuration parameters and the size of the default
buffer pool (IBMDEFAULTBP). The values are selected based on system
resources and the intended use of the system. This initial automatic tuning
means that your database performs better than an equivalent database that
you could create with the default values. It also means that you will spend
less time tuning your system after creating the database. You can run the
Configuration Advisor at any time (even after your databases are
populated) to have the tool recommend and optionally apply a set of
configuration parameters to optimize performance based on the current
system characteristics.

Health monitor
The health monitor is a server-side tool that proactively monitors situations
or changes in your database environment that could result in a
performance degradation or a potential outage. A range of health
information is presented without any form of active monitoring on your
part. If a health risk is encountered, the database manager informs you and
advises you on how to proceed. The health monitor gathers information
about the system by using the snapshot monitor and does not impose a
performance penalty. Further, it does not turn on any snapshot monitor
switches to gather information.

Utility throttling
This feature regulates the performance impact of maintenance utilities so
that they can run concurrently during production periods. Although the
impact policy for throttled utilities is defined by default, you must set the
impact priority if you want to run a throttled utility. The throttling system
ensures that the throttled utilities run as frequently as possible without

18 Data Servers, Databases, and Database Objects Guide



violating the impact policy. Currently, you can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index
cleanup.

Automatic maintenance

The database manager provides automatic maintenance capabilities for performing
database backups, keeping statistics current, and reorganizing tables and indexes
as necessary. Performing maintenance activities on your databases is essential in
ensuring that they are optimized for performance and recoverability.

Maintenance of your database includes some or all of the following activities:

* Backups. When you back up a database, the database manager takes a copy of
the data in the database and stores it on a different medium in case of failure or
damage to the original. Automatic database backups help to ensure that your
database is backed up properly and regularly so that you don’t have to worry
about when to back up or know the syntax of the BACKUP command.

* Data defragmentation (table or index reorganization). This maintenance activity
can increase the efficiency with which the database manager accesses your
tables. Automatic reorganization manages an offline table and index
reorganization so that you don’t need to worry about when and how to
reorganize your data.

* Data access optimization (statistics collection). The database manager updates
the system catalog statistics on the data in a table, the data in indexes, or the
data in both a table and its indexes. The optimizer uses these statistics to
determine which path to use to access the data. Automatic statistics collection
attempts to improve the performance of the database by maintaining up-to-date
table statistics. The goal is to allow the optimizer to choose an access plan based
on accurate statistics.

e Statistics profiling. Automatic statistics profiling advises when and how to
collect table statistics by detecting outdated, missing, or incorrect statistics, and
by generating statistical profiles based on query feedback.

It can be time-consuming to determine whether and when to run maintenance
activities, but automatic maintenance removes the burden from you. You can
manage the enablement of the automatic maintenance features simply and flexibly
by using the automatic maintenance database configuration parameters. Using the
Configure Automatic Maintenance wizard, you can specify your maintenance
objectives The database manager uses these objectives to determine whether the
maintenance activities need to be done and runs only the required ones during the
next available maintenance window (a time period that you define).

Maintenance windows

A maintenance window is a time period that you define for the running of
automatic maintenance activities, which are backups, statistics collection, statistics
profiling, and reorganizations. An offline window might be the time period when
access to a database is unavailable. An online window might be the time period
when users are permitted to connect to a database.

A maintenance window is different from a task schedule. During a maintenance

window, each automatic maintenance activity is not necessarily run. Instead, the
database manager evaluates the system to determine the need for each

Chapter 3. Autonomic computing 19



maintenance activity to be run. If the maintenance requirements are not met, the
maintenance activity is run. If the database is already well maintained, the
maintenance activity is not run.

Think about when you want the automatic maintenance activities to be run.
Automatic maintenance activities consume resources on your system and might
affect the performance of your database when the activities are run. Some of these
activities also restrict access to tables, indexes, and databases. Therefore, you must
provide appropriate windows when the database manager can run maintenance
activities. You specify these periods as offline and online maintenance time
windows using the Automatic Maintenance wizard from the Control Center or
Health Center.

Offline maintenance activities
Offline maintenance activities (offline database backups and table and
index reorganizations) are maintenance activities that can occur only in the
offline maintenance window. The extent to which user access is affected
depends on which maintenance activity is running:

* During an offline backup, no applications can connect to the database.
Any currently connected applications are forced off.

* During an offline table or index reorganization (data defragmentation),
applications can access but not update the data in tables.

Offline maintenance activities run to completion even if they go beyond
the window specified. Over time, the internal scheduling mechanism learns
how to best estimate job completion times. If the offline maintenance
window is too small for a particular database backup or reorganization
activity, the scheduler will not start the job the next time and relies on the
health monitor to provide notification of the need to increase the offline
maintenance window.

Online maintenance activities
Online maintenance activities (automatic statistics collection and profiling,
online index reorganizations, and online database backups) are
maintenance activities that can occur only in the online maintenance
window. When online maintenance activities run, any currently connected
applications are allowed to remain connected, and new connections can be
established. To minimize the impact on the system, online database
backups and automatic statistics collection and profiling are throttled by
the adaptive utility throttling mechanism.

Online maintenance activities run to completion even if they go beyond the
window specified.

Self-tuning memory

Starting in DB2 Version 9, a new memory-tuning feature simplifies the task of
memory configuration by automatically setting values for several memory
configuration parameters. When enabled, the memory tuner dynamically
distributes available memory resources among the following memory consumers:
buffer pools, package cache, locking memory and sort memory.

The tuner works within the memory limits defined by the database_memory
configuration parameter. The value of database_memory itself can be automatically
tuned as well. When self-tuning is enabled for database_memory (when you set it
to AUTOMATIC), the tuner determines the overall memory requirements for the
database and increases or decreases the amount of memory allocated for database

20 Data Servers, Databases, and Database Objects Guide



shared memory depending on the current database requirements. For example, if
the current database requirements are high and there is sufficient free memory on
the system, more memory will be consumed by database shared memory. If the
database memory requirements decrease or if the amount of free memory on the
system becomes too low, some database shared memory is released.

If you do not enable the database_memory parameter for self-tuning (you do not
set it to AUTOMATIC), the entire database uses the amount of memory that you
specify for the parameter, distributing it across the database memory consumers as
required. You can specify the amount of memory used by the database in two
ways: by setting database_memory to a numeric value or by setting it to
COMPUTED. In the second case, the total amount of memory is computed based
on the sum of the initial values of the database memory heaps at database startup
time.

In addition to tuning database shared memory by using the database_memory
configuration parameter, you can enable other memory consumers for self-tuning
as follows:

* For buffer pools, use the ALTER BUFFERPOOL and CREATE BUFFERPOOL
statements.

* For the package cache, use the pckcachesz configuration parameter.
* For locking memory, use the locklist and maxlocks configuration parameters.
* For sort memory, use the sheapthres_shr and sortheap configuration parameters.

Memory allocation in DB2

Memory allocation and de-allocation occurs at various times in DB2. Memory may
be allocated to a particular memory area when a specified event occurs, such as
when an application connects, or it may be re-allocated based on a change in a
configuration parameter setting.

The figure below shows the different areas of memory that the database manager
allocates for various uses and the configuration parameters that allow you to
control the size of this memory. Note that in an Enterprise Server Edition
environment that comprises multiple logical database partitions, each database
partition has its own Database Manager Shared Memory set.

Chapter 3. Autonomic computing 21



Database Manager
Shared Memory

Application Global Memory Application

Global Memory

Application Application
Heap Heap

] |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
: I (1) I (max_connections) :
| aes 1
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Global Memory

Database Global Memory

I
I
I
I
I
I
I
I
I
I
I
I
I
: Database
I
I
I
I
I
I
I
I
I
I
I
I
I
I

T (1) T (numdb)

Figure 1. Types of memory used by the Database Manager

Memory is allocated for each instance of the database manager when the following
events occur:

* When the database manager is started (db2start): Database manager global
shared memory (also known as instance shared memory) is allocated and
remains allocated until the database manager is stopped (db2stop). This area
contains information that the database manager uses to manage activity across
all database connections. DB2 automatically controls the database manager
global shared memory size.

* When a database is activated or connected to for the first time: Database global
memory is allocated. Database global memory is used across all applications that
connect to the database. The size of the database global memory is specified by
the database_memory configuration parameter. By default, this parameter is set
to automatic, allowing DB2 to calculate the initial amount of memory allocated
for the database and to automatically configure the database memory size
during runtime based on the needs of the database. You can set
database_memory to allocate more memory than is needed initially so that the
additional memory can be dynamically distributed later.

The following memory areas can be dynamically adjusted, for example, to
decrease memory allocated to one area and increase memory in another area.

— Buffer pools (using the ALTER BUFFERPOOL DDL statement)
— Database heap (including log buffers)

- Utility heap

— Package cache

— Catalog cache

— Lock list (This memory area can only be increased dynamically, and not
decreased.)

22  Data Servers, Databases, and Database Objects Guide



In an environment in which the database manager intra-partition parallelism
configuration parameter (intra_parallel) is enabled, in an environment in which
the connection concentrator is enabled, or in an environment where the database
partitioning feature (DPF) is enabled, the shared sort heap is also allocated as
part of the database global memory. Also, if the sheapthres database manager
configuration parameter is set to 0 (default), all sorts will use database global
memory.

* When an application connects to a database: An application heap is allocated.
Each application has its own application heap. If desired, you can limit the
amount of memory any one application can allocate using the applheapsz
configuration parameter, or limit overall application memory consumption using
the appl_memory configuration parameter.

The database manager configuration parameter max_connections sets an upper
limit on the number of applications that can attach to the instance or connect to
any databases that exist in the instance. Since each application that attaches to a
database involves the allocation of some memory, allowing a larger number of
concurrent applications will potentially use more memory.

* When an agent is created: Agent private memory is allocated for an agent when
the agent is assigned as the result of a connect request or a new SQL request in
a parallel environment. Agent private memory is allocated for the agent and
contains memory that is used only by this specific agent, such as the private sort
heap.

The figure also specifies the following configuration parameter settings, which
limit the amount of memory that is allocated for each type of memory area. Note
that in a partitioned database environment, this memory is allocated on each
database partition.

e numdb

This parameter specifies the maximum number of concurrent active databases
that different applications can use. Because each database has its own global
memory area, the amount of memory that might be allocated increases if you
increase the value of this parameter.

* maxappls

This parameter specifies the maximum number of applications that can
simultaneously connect to a single database. It affects the amount of memory
that might be allocated for agent private memory and application global
memory for that database. Note that this parameter can be set differently for
every database.

Two other parameters that need to be considered are max_coordagents and
max_connections both of which apply at the instance level (per node on a DPF
instance).

°* max_connections

This parameter limits the number of connections or instance attachments that
can access the DB2 server at any one time (per node on a DPF instance).

* max_coordagents

This parameter limits the number of database manager coordinating agents that
can exist simultaneously across all active databases in an instance (per node on a
DPF instance). Together with maxappls and max_connections, this parameter
limits the amount of memory allocated for agent private memory and
application global memory.

Chapter 3. Autonomic computing 23



The memory tracker, invoked by the db2mtrk command, allows you to view the
current allocation of memory within the instance, including the following types of
information for each memory pool:

e Current size
* Maximum size (hard limit)

* Largest size (high water mark)

Self tuning memory operational details and limitations
Determining tuning requirements

In order to ensure a fair and relevant comparison between memory consumers, a
new common metric has been developed. Each tuned memory consumer calculates
the predicted benefit from additional memory, and reports this to the self tuning
memory process. Self tuning memory uses these figures as the basis for memory
tuning, taking memory from consumers with the least need and reallocating it to
those memory areas that will benefit the most.

Frequency of memory tuning

When enabled, self tuning memory will periodically check the variability of
database workload. If the workload is not constant (that is, if the queries being run
do not exhibit similar memory characteristics), the memory tuner will reallocate
memory less frequently - up to 10 minutes between tuning cycles - to achieve more
stable trend prediction. For workloads with more constant memory profiles, the
memory tuner will tune memory more frequently - as little as 30 seconds between
tuning cycles - in order to converge more quickly.

Tracking the progress of self tuning memory

Your current memory configuration can be obtained using the GET DATABASE
CONFIGURATION command, or using a snapshot. Changes made by self tuning
are recorded in the memory tuning log files in the stmmlog directory. The memory
tuning log files contain summaries of the resource demands for each memory
consumer at each tuning interval. These intervals can be determined based on the
timestamps in the log entries.

Expected time to converge on best configuration

Leaving this feature enabled should result in quick tuning of parameters to
optimize memory usage. A system can be tuned from an initial configuration in as
little as one hour. In most cases, tuning will usually be complete in at most 10
hours. This worst case occurs when queries run against the database exhibit
markedly different memory characteristics.

Limitations of self tuning memory

In cases where low amounts of memory are available (for example, because the
value of database_memory is set very low, or because multiple databases, instances
or other applications are running on the server) performance benefits of self tuning
memory will be limited.

Because self tuning memory bases tuning decisions on database workload,
workloads with changing memory characteristics limit the ability of self tuning
memory to tune effectively. If your workload’s memory characteristics are
constantly changing, self tuning memory will tune memory less frequently, and

24  Data Servers, Databases, and Database Objects Guide



will repeatedly tune towards shifting target conditions. In this case, self tuning
memory will not achieve absolute convergence, but will instead try to maintain a
memory configuration that is tuned to the current workload.

Operational details, limitations, and interaction between
memory parameters

While you can enable self-tuning memory and use the default AUTOMATIC
setting on most memory-related configuration parameters, it might be useful to
know the operational details, limitations, and interactions between the different
memory parameters, especially the interactions between instance_memory,
database_memory, and appl_memory parameters, in order to have more control
over their setting, and also to understand why “out of memory” errors are still
possible under certain conditions.

Purpose

Basically, the DB2 database manager uses two types of memory:

¢ Cache-based memory, controlled and distributed to the various performance heaps
by the self-tuning memory manager (STMM). The database_memory
configuration parameter can be used to limit the maximum amount of
cache-based memory that can be used, or can be set to AUTOMATIC to let the
self-tuning memory manager (STMM) manage the overall amount of
cache-based memory.

* Functional memory, used by application programs. The appl_memory
configuration parameter is used to control the maximum amount of application
memory, or functional memory, that is allocated by DB2 database agents to
service application requests. By default, its value is set to AUTOMATIC,
meaning that application memory requests are allowed if the total amount of
memory allocated by the database partition is within the instance_memory
limits.

Process

In previous releases, various operating system and DB2 tools were available to see
different parts of the memory, such as shared memory, private memory, buffer pool
memory, locklists, sortheaps, and so forth, but it was almost impossible to see the
total memory used by the DB2 database manager. When one of the heaps reached
the memory limit, a statement in an application would fail with an “out of
memory” error message. The DBA could increase the memory for that heap, and
rerun the application, only to get an “out of memory” error on another statement
for another heap. Now, individual hard upper limits on functional memory heaps
can be removed by using the default AUTOMATIC configuration parameter
setting.

If desired (for instance, to avoid scenarios where a poorly-behaving database
application requires extremely large amounts of memory), a limit on overall
application memory can be applied at the database level using the appl_memory
configuration parameter. Individual heap limits can also be applied if desired by
changing the appropriate database configuration parameter for that heap from the
AUTOMATIC setting to a fixed value. If all the functional memory heaps are left at
the default AUTOMATIC setting, and appl_memory is also left at the default
AUTOMATIC setting, then the only limit on application memory consumption is
the instance_memory setting. If instance_memory is also set to AUTOMATIC, then
DB2 will automatically determine an upper limit on memory consumption. DBAs
can easily see the total amount of instance_memory consumed, as well as the

Chapter 3. Autonomic computing 25



current instance_memory limit, using the admin_get_dbp_mem_usage table
function.

Interaction between the self_tuning_mem, instance_memory,
database_memory, and appl_memory configuration parameters

When self-tuning memory is fully enabled (self_tuning_mem set to ON, and all
the memory parameters set to AUTOMATIC), the self-tuning memory manager
checks the free memory available on the system and automatically determines how
much memory should be dedicated for cache-based heaps for optimal
performance. All the cached-based heaps contribute to the overall
database_memory size. In addition to the cache-based memory requirements, some
memory is also required to ensure the operation and integrity of the DB2 database
manager. The difference between instance_memory and these two memory
consumers is what is left available for application memory (appl_memory) use.
Functional memory for application programs is then allocated as needed, as long
as it falls within the instance_memory limit - there are no additional restrictions to
how much memory a single application can allocate.

The self-tuning memory manager will also periodically query how much free
system memory is remaining, and how much free instance_memory is remaining.
The self-tuning memory manager weighs application requirements more heavily
than performance criteria (to prevent application failures), so will sacrifice
performance by lowering cache-based heaps in order to ensure enough free system
memory and instance_memory is available for application memory requests. As
applications complete, the used memory is freed, ready to be re-used either by
other applications, or to be reclaimed for database_memory use by the self-tuning
memory manager. If performance of the database system becomes unacceptable
during periods of heavy application activity, it may be useful to either apply
controls on how many applications are allowed into the database manager (for
instance, using either the connection concentrator or the new Workload Manager
feature of DB2 9.5), or to consider adding additional memory resources to the
system.

Limitations (cases where “out of memory” errors are still
possible)

In some cases, you might still get “out of memory” errors if the self-tuning
memory manager does not have enough time to react to sudden spikes in memory
usage, for example, when an application suddenly requires a very large amount of
memory, or if there is a sudden spike in your database workload (i.e. many new
applications connecting to your database at the same time). In this case, or in cases
where a DBA knows that most applications use a set amount of memory, it might
be better to use a hard-coded value for appl_memory instead of the AUTOMATIC
setting. If appl_memory is set to a hard value, for instance 2GB, then DB2 will not
allow total application memory consumption to exceed that amount. Each
application is then allowed to consume as much memory as required as long as
total application memory consumption is less than the appl_memory limit. If either
the appl_memory limit or the instance_memory limit is reached, the application
request causing the database manager to hit the limit will fail, returning a suitable
SQL code (the actual error code returned depends on exactly where in the
operation of the application the “out of memory” failure was encountered). When
an “out of memory” error is encountered, the DBA can view the db2diag.log to
determine how much memory was being used when the error occurred, which can
help determine whether any memory parameters need to be adjusted.

26 Data Servers, Databases, and Database Objects Guide



Enabling self tuning memory

Self tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools. When
enabled, the memory tuner dynamically distributes available memory resources
between several memory consumers including sort, package cache and lock list
areas and buffer pools.

1.

Enable self tuning for the database by setting self_tuning_mem to ON. You can
set self_tuning mem to ON using the UPDATE DATABASE
CONFIGURATION command, the sqlfupd API, or through the Change
Database Configuration Parameter window in the Control Center.

To enable self tuning of memory areas controlled by memory configuration
parameters, set the relevant configuration parameters to AUTOMATIC using
the UPDATE DATABASE CONFIGURATION command, the sqlfupd API, or
through the Change Database Configuration Parameter window in the Control
Center.

To enable self tuning of buffer pools, set the buffer pool size to AUTOMATIC.
You can do this using the ALTER BUFFER POOL statement for existing buffer
pools or the CREATE BUFFER POOL statement for new buffer pools. If the size
of a buffer pool is set to AUTOMATIC in a partitioned database environment,
that buffer pool should not have any entries defined in
SYSIBM.SYSBUFFERPOOLNODES.

Note:

1.

Because self tuning redistributes memory between different memory areas,
there must be at least two memory areas enabled for self tuning to occur, for
example the lock memory area and the database shared memory area. The only
exception to this is the memory controlled by the sortheap configuration
parameter. When sortheap alone is set to AUTOMATIC, self tuning of sortheap
is enabled.

In order to enable the locklist configuration parameter for self tuning,
maxlocks must also be enabled for self tuning, therefore maxlocks is set to
AUTOMATIC when locklist is set to AUTOMATIC. In order to enable the
sheapthres_shr configuration parameter for self tuning, sortheap must also be
enabled for self tuning, therefore sortheap is set to AUTOMATIC when
sheapthres_shr is set to AUTOMATIC.

Automatic tuning of sheapthres_shr or sortheap is allowed only when the
database manager configuration parameter sheapthres is set to 0.

Self tuning memory runs only on the HADR primary server. When self tuning
memory is activated on an HADR system, it will never run on the secondary
server and it will run on the primary server only if the configuration is set
properly. If a command is run that switches the HADR database roles, self
tuning memory operations will also switch so that they run on the new
primary server. After the primary database is started or the standby database is
converted to a primary database by takeover, the STMM EDU may not start
until the first client connection comes in.

Disabling self tuning memory

Self tuning can be disabled for the entire database by setting self_tuning mem to
OFF. When self_tuning_mem is set to OFF, the memory configuration parameters
and buffer pools that are set to AUTOMATIC remain AUTOMATIC and the
memory areas remain at their current size.

Chapter 3. Autonomic computing 27



You can set self_tuning mem to OFF using the UPDATE DATABASE
CONFIGURATION command, the sqlfupd API, or through the Change Database
Configuration Parameter window in the Control Center.

Self tuning can also be effectively deactivated for the entire database if only a
single memory consumer is enabled for self tuning. This is because memory cannot
be redistributed when only one memory area is enabled.

For example, to disable self tuning of the sortheap configuration parameter, you
could enter the following:

UPDATE DATABASE CONFIGURATION USING SORTHEAP MANUAL

To disable self tuning of the sortheap configuration parameter and change the
current value of sortheap to 2000 at the same time, enter the following;:

UPDATE DATABASE CONFIGURATION USING SORTHEAP 2000

In some cases, one memory configuration parameter can only be enabled for self
tuning if another related memory configuration parameter is also enabled. For
example, self tuning of the maxlocks configuration parameter is only permitted
when the locklist configuration parameter is also enabled. Similarly, self tuning of
the sheapthres_shr configuration parameter can only be enabled if self tuning of
the sortheap configuration parameter is also enabled. This means that disabling
self tuning of the locklist or sortheap parameters disables self tuning of the
maxlocks or sheapthres_shr parameters, respectively.

Self tuning can be disabled for a buffer pool by setting the buffer pool to a specific
size. For example, the following statement will disable self tuning for bufferpooll:

ALTER BUFFERPOOL bufferpooll SIZE 1000

Determining which memory consumers are enabled for self
tuning

To view the self tuning settings for memory consumers controlled by configuration
parameters, use one of the following methods.

* To view the self tuning settings for configuration parameters from the command
line, use the GET DATABASE CONFIGURATION command specifying the
SHOW DETAIL parameter.

The memory consumers that can be enabled for self tuning are grouped together
in the output as follows:

Description Parameter Current Value Delayed Value

Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON

Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200)  AUTOMATIC(37200)
Max storage for Tock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)
Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)
Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000)  AUTOMATIC(5000)
Sort Tist heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

*  You can also use the db2CfgGet API to determine whether or not tuning is
enabled. The following values are returned:

SQLF_OFF 0
SQLF_ON_ACTIVE 2
SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE describes a situation where self tuning is enabled and active
while SQLF_ON_INACTIVE indicates that self tuning is enabled but is currently
inactive.

28  Data Servers, Databases, and Database Objects Guide



* You can also view the configuration settings in the Database Configuration
window in the Control Center.

To view the self tuning settings for buffer pools, use one of the following methods.

¢ To retrieve the list of buffer pools that are enabled for self tuning from the
command line, enter:

db2 "select BPNAME, NPAGES from sysibm.sysbufferpools"

When self tuning is enabled for a buffer pool, the NPAGES field in the
sysibm.sysbufferpools table for that particular buffer pool will be set to -2. When
self tuning is disabled, the NPAGES field will be set to the buffer pool’s current
size.

¢ To determine the current size of buffer pools that have been enabled for self
tuning, use the snapshot monitor as follows and examine the current size of the
buffer pool (the value of the bp_cur_buffsz monitor element):

db2 get snapshot for bufferpools on db_name

* To view the self tuning settings of your buffer pools using the Control Center,
right-click on a buffer pool and view the attributes of the buffer pools in the
object details pane.

It is important to note that responsiveness of the memory tuner is limited by the
time required to resize a memory consumer. For example, reducing the size of a
buffer pool can be a lengthy process and therefore the performance benefits of
trading buffer pool memory for sort area memory may not be immediately
realized.

Self tuning memory in partitioned database environments

When using the self tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self tuning memory is enabled in partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. Once
tuning decisions are made on the tuning partition, the memory adjustments are
distributed to all other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model necessitates that the feature be used only on
database partitions that have similar memory requirements. The following are
guidelines to use when determining whether to enable self tuning memory on your
partitioned database.

Cases where self tuning is recommended in partitioned
databases

When all database partitions have similar memory requirements and are running
on similar hardware, self tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:

 All database partitions on identical hardware, including an even distribution of
multiple logical nodes to multiple physical nodes

¢ Perfect or near-perfect distribution of data

Chapter 3. Autonomic computing 29



* Workload running on the database partitions is distributed evenly across
database partitions. This means that no one database partition has elevated
memory requirements for one or more heaps.

In such an environment, it is desirable to have all database partitions configured
equally, and self tuning memory will properly configure the system.

Cases where self tuning is recommended in partitioned
databases with care

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self tuning memory as long as some care is taken with the initial configuration.
These systems might have a set of database partitions for data, and a much smaller
set of coordinator partitions and a catalog partitions. In such environments, it
might be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain your data.

In this environment, it is still possible to benefit from the self tuning memory
feature with some minor setup. Since the database partitions containing the data
comprise the bulk of the database partitions, self tuning should be enabled on all
of these database partitions and one of these database partitions should be
specified as the tuning partition. Additionally, since the catalog and coordinator
partitions might be configured differently, self tuning memory should be disabled
on these partitions. To disable self tuning on the catalog and coordinator partitions,
update the self_tuning_mem database configuration parameter on these partitions to
OFFE.

Cases where self tuning is not recommended in partitioned
databases

In environments where the memory requirements of each database partition are
different or when different database partitions are running on dramatically
different hardware, it is advisable to disable the self tuning memory feature. This
can be done by setting the self_tuning_mem database configuration parameter to
OFF on all partitions.

Comparing memory requirements of different database partitions
The best way to determine if the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all partitions (differing by no more

than 20%), then the partitions can be considered similar.

Collect the following data by issuing the command get snapshot for database on

<dbname>.

Total Shared Sort heap allocated =0
Shared Sort heap high water mark =0
Post threshold sorts (shared memory) =0
Sort overflows =0
Package cache Tookups =13
Package cache inserts =1
Package cache overflows =0
Package cache high water mark (Bytes) = 655360
Number of hash joins =0
Number of hash Toops =0

30 Data Servers, Databases, and Database Objects Guide



Number of hash join overflows =0
Number of small hash join overflows =0
Post threshold hash joins (shared memory) = 0
Locks held currently =0
Lock waits =0
Time database waited on Tocks (ms) =0
Lock Tist memory in use (Bytes) = 4968
Lock escalations =0
Exclusive Tock escalations =0

Collect the following data by issuing the command get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads

Buffer pool data physical reads

Buffer pool index Togical reads

Buffer pool index physical reads

Total buffer pool read time (milliseconds)
Total buffer pool write time (milliseconds)

[cNoRoNoNoNo)]

Using self-tuning memory in partitioned database
environments

When self-tuning is enabled in partitioned database environments, there is a single
database partition, known as the tuning partition, that monitors the memory
configuration and propagates any configuration changes to all other database
partitions to maintain a consistent configuration across all the participating
database partitions.

The tuning partition is selected based on a number of characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools defined.

* To determine which database partition is currently specified as the tuning
partition, use the following ADMIN_CMD:

CALL SYSPROC.ADMIN_CMD( 'get stmm tuning dbpartitionnum' )
¢ To change the tuning partition, use the following ADMIN_CMD:
CALL SYSPROC.ADMIN CMD( 'update stmm tuning dbpartitionnum <db_partition_num>"')

When you issue this command, the tuning partition will be updated
asynchronously or at the next database startup.

* To have the memory tuner automatically re-select the tuning partition, enter -1
for the <db_partition_num> value.

Starting the memory tuner on DPF systems

The memory tuner will only be started in a DPF environment if the database is
activated by an explicit ACTIVATE DATABASE command because self-tuning
requires all partitions to be active before it can properly tune the memory on a
multi-partition system.

Disabling self-tuning for a given database partition

* To disable self-tuning for a subset of database partitions, set the self_tuning_mem
configuration parameter to OFF for the database partitions you want to leave
untuned.

To disable self-tuning for a subset of the memory consumers controlled by
configuration parameters on a particular database partition, set the value of the

Chapter 3. Autonomic computing 31



relevant configuration parameter or buffer pool size to MANUAL or a specific
value on that database partition. However, it is recommended that self-tuning
configuration parameter values be consistent across all running partitions.

* To disable tuning for a particular buffer pool on a database partition, issue an
ALTER BUFFER POOL command specifying a size value and a value for the
PARTITIONNUM parameter for the partition where self-tuning is to be disabled.

An ALTER BUFFERPOOL statement that specifies the size on a particular
database partition using the PARTITIONNUM clause will create an exception
entry for the given buffer pool in the SYSCAT.SYSBUFFERPOOLNODES catalog,
or update the exception entry if one already exists. When an exception entry
exists for a buffer pool in this catalog, that buffer pool will not participate in
self-tuning when the default buffer pool size is set to AUTOMATIC. To remove
an exception entry so that a buffer pool can be re-enabled for self-tuning:

1. Disable tuning for this buffer pool by issuing an ALTER BUFFERPOOL
statement setting the buffer pool size to a specific value.

2. Issue another ALTER BUFFERPOOL statement with the PARTITIONNUM
clause specified to set the size of the buffer pool on this database partition to
the default buffer pool size.

3. Enable self-tuning by issuing another ALTER BUFFERPOOL statement
setting the size to AUTOMATIC.

Enabling self-tuning memory in non-uniform environments

Ideally, your data should be distributed evenly across all of your database
partitions and the workload run on each partition should have similar memory
requirements. If the data distribution is skewed so that one or more of your
database partitions contain significantly more or less data than other database
partitions, these anomalous database partitions should not be enabled for
self-tuning. The same is true if the memory requirements are skewed across the
database partitions, which can happen, for example, if resource-intensive sorts are
only performed on one partition, or if some database partitions are associated with
different hardware and more available memory than others. Self-tuning can still be
enabled on some database partitions in this type of environment. To take
advantage of self-tuning memory in environments with skew, identify a set of
database partitions that have similar data and memory requirements and enable
them for self-tuning. Memory configuration in the remaining partitions should be
configured manually.

Configuring memory and memory heaps

With the simplified memory configuration feature, you can configure memory and
memory heaps required by the DB2 data server by using the default AUTOMATIC
setting for most memory-related configuration parameters, thereby, requiring much
less tuning.

The simplified memory configuration feature provides the following benefits:

* You can use a single parameter, instance_memory, to specify all of the memory
that the database manager is allowed to allocate from its private and shared
memory heaps. Also, you can use the appl_memory configuration parameter to
control the maximum amount of application memory that is allocated by DB2
database agents to service application requests.

* You do not need to manually tune parameters used solely for functional
memory.

32  Data Servers, Databases, and Database Objects Guide



* You can query how much total memory is currently being consumed by the
private and shared memory heaps of the database manager by using the
Memory Visualizer. You can also use the db2mtrk command to monitor heap
usage and the ADMIN_GET_DBP_MEM_USAGE() table function to query
overall memory consumption.

* The default DB2 configuration requires much less tuning, a benefit for new

instances that you create.

The following table lists the memory configuration parameters whose values
default to the AUTOMATIC setting. These parameters can also be configured
dynamically, if necessary. Note that the meaning of the AUTOMATIC setting
differs with each parameter, as described in the rightmost column.

Table 1. Memory configuration parameters whose values default to AUTOMATIC

Configuration parameter

Meaning of the

to the amount of application
memory that each database
agent working for an
application could consume.
In Version 9.5, this parameter
refers to the total amount of
application memory that can
be consumed by the entire
application. For DPF,
Concentrator, or SMP
configurations, this means
that you might need to
increase the applheapsz
value used in previous
releases unless you use the
AUTOMATIC setting.

name Description AUTOMATIC setting
appl_memory Controls the maximum The AUTOMATIC setting
amount of application allows all application
memory that is allocated by | memory requests as long as
DB2 database agents to the total amount of memory
service application requests. |allocated by the database
partition is within the
instance_memory limits.
applheapsz Prior to Version 9.5, referred | The AUTOMATIC setting

allows the application heap
size to increase as needed
until either the appl_memory
or the instance_memory
limit is reached.

database_memory (Prior to
Version 9.5, the default
setting of AUTOMATIC
applied only to Windows
and AIX platforms. As of
Version 9.5, AUTOMATIC is
the default setting for all
DB2 server products.)

Specifies the amount of
shared memory that is
reserved for the database
shared memory region.

When enabled, the memory
tuner determines the overall
memory requirements for the
database and increases or
decreases the amount of
memory allocated for
database shared memory
depending on the current
database requirements.

dbheap

Determines the maximum
memory used by the
database heap.

The AUTOMATIC setting
allows the database heap to
increase as needed until
either the database_memory
or the instance_memory
limit is reached.

Chapter 3. Autonomic computing 33




Table 1. Memory configuration parameters whose values default to

AUTOMATIC (continued)

Configuration parameter
name

Description

Meaning of the
AUTOMATIC setting

instance_memory

Specifies the maximum
amount of memory that can
be allocated for a database
partition.

The AUTOMATIC setting
allows the overall memory
consumed by the entire
database manager instance to
increase to a limit of 75 -
95% of the physical RAM on
the machine. This limit is
calculated during db2start
processing.

mon_heap_sz

Determines the amount of
the memory, in pages, to
allocate for database system
monitor data.

The AUTOMATIC setting
allows the monitor heap to
increase as needed until the
instance_memory limit is
reached.

stat_heap_sz

Indicates the maximum size
of the heap used in collecting
statistics using the
RUNSTATS command.

The AUTOMATIC setting
allows the statistics heap size
to increase as needed until
either theappl_memory or
the instance_memory limit is
reached.

stmtheap

Specifies the size of the
statement heap, which is
used as a work space for the
SQL or XQuery compiler to
compile an SQL or XQuery
statement.

The AUTOMATIC setting
allows the statement heap to
increase as needed until
either the appl_memory or
the instance_memory limit is
reached.

Note: The DBMCFG and DBCFG administrative views retrieve database manager
configuration parameter information for the currently connected database for all
database partitions. For the mon_heap_sz, stmtheap, and stat_heap_sz
configuration parameters, the DEFERRED_VALUE column on this view does not
persist across database activations. That is, when you issue the get dbm cfg show
detail or get db cfg show detail command, the output from the query shows
updated (in memory) values.

The following table shows whether configuration parameters are set to the default
AUTOMATIC value during instance migration or creation and during database

migration or creation.

Table 2. Configuration parameters set to AUTOMATIC during instance and database

migration and creation

Set to AUTOMATIC

upon instance Set to AUTOMATIC | Set to AUTOMATIC
Configuration migration or upon database upon database
parameters instance creation migration creation
applheapsz' X X
dbheap X X
instance_memory X
mon_heap_sz' X
stat_heap_sz' X X

34 Data Servers, Databases, and Database Objects Guide




Table 2. Configuration parameters set to AUTOMATIC during instance and database
migration and creation (continued)

Set to AUTOMATIC
upon instance

Set to AUTOMATIC

Set to AUTOMATIC

Configuration migration or upon database upon database
parameters instance creation migration creation
stmtheap' X

As part of the move to simplified memory configuration, the following elements
have been deprecated:

 Configuration parameters appgroup_mem_sz, groupheap_ratio, and
app_ctl_heap_sz. These configuration parameters are replaced with the new
appl_memory configuration parameter.

* The -p parameter of the db2mtrk memory tracker command. This option, which
lists private agent memory heaps, is replaced with the -a parameter, which lists
all application memory consumption.

The Memory Visualizer displays the maximum application memory consumption
by a database using the new appl_memory configuration parameter, and the
maximum memory consumption by an instance using the updated
instance_memory configuration parameter. The Memory Visualizer also displays
the values for all of the configuration parameters that allow the AUTOMATIC
setting. Values for the deprecated configuration parameters are not displayed in the
Memory Visualizer for Version 9.5 databases, but they are displayed for earlier
versions of the databases.

Attempts to update the instance_memory parameter to values larger than those
specified in this list will fail with a SQL5130N return code:

* 4GB (1 048 576 * 4 KB pages) for DB2 Express Edition and DB2 Express-C
* 16 GB (4 194 304 * 4 KB pages) for DB2 Workgroup Server Edition

When fast communications manager (FCM) shared memory is allocated, each local
database partition’s share of the overall FCM shared memory size for the system is
accounted for in the instance_memory limit of that database partition. Due to the
nature of FCM memory (failure to allocate FCM buffers can bring down the
instance), FCM memory requests never fail due to the instance_memory limit.
However, they can fail if memory cannot be allocated from the operating system. If
an FCM memory request causes a database partition to exceed its
instance_memory limit, other memory requests will fail until the memory usage of
the partition returns to a level below the instance_memory limit.

Agent and process model configuration

Version 9.5 provides a less complex and more flexible mechanism for configuring
process model-related parameters. This simplified configuration eliminates the
need for regular adjustments to these parameters and reduces the time and effort
required to configure them. It also eliminates the need to shut down and restart
DB2 instances to have the new values take effect.

To allow for dynamic and automatic agent and memory configuration, slightly
more memory resources are required when an instance is activated.

Chapter 3. Autonomic computing 35



Agent, process model, and memory configuration

DB2 data servers exploit multithreaded architecture on both 32-bit and 64-bit
platforms to provide you with a number of benefits, such as enhanced usability,
better sharing of resources, memory footprint reduction, and consistent threading
architecture across all operating systems.

Configuring databases across multiple partitions

The database manager provides a single view of all database configuration
elements across multiple partitions. This means that you can update or reset a
database configuration across all database partitions without invoking the db2_all
command against each database partition.

You can update a database configuration across partitions by issuing only one SQL
statement or only one administration command from any partition on which the
database resides. By default, the method of updating or resetting a database
configuration is on all database partitions.

For backward compatibility of command scripts and applications, you have three

options:

e Use the db2set command to set the DB2_UPDDBCFG_SINGLE_DBPARTITION
registry variable to TRUE, as follows:

DB2_UPDDBCFG_SINGLE_DBPARTITION=TRUE

Note: Setting the registry variable does not apply to UPDATE DATABASE
CONFIGURATION or RESET DATABASE CONFIGURATION requests that you
make using the ADMIN_CMD procedure.

¢ Use the DBPARTITIONNUM parameter with either the UPDATE DATABASE
CONFIGURATION or the RESET DATABASE CONFIGURATION command or
with the ADMIN_CMD procedure. For example, to update the database
configurations on all database partitions, call the ADMIN_CMD procedure as
follows:

CALL SYSPROC.ADMIN_CMD
("UPDATE DB CFG USING sortheap 1000')

To update a single database partition, call the ADMIN_CMD procedure as
follows:
CALL SYSPROC.ADMIN_CMD
('UPDATE DB CFG DBPARTITIONNUM 10 USING sortheap 1000')

* Use the DBPARTITIONNUM parameter with the db2CfgSet API. The flags in
the db2Cfg structure indicate whether the value for the database configuration is
to be applied to a single database partition. If you set a flag, you must also
provide the DBPARTITIONNUM value, for example:

#define db2CfgSingleDbpartition 256

If you do not set the db2CfgSingleDbpartition value, the value for the database
configuration applies to all database partitions unless you set the
DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable to TRUE or you
set versionNumber to anything that is less than the version number for Version
9.5, for the db2CfgSet API that sets the database manager or database
configuration parameters.

When migrating your databases to Version 9.5, existing database configuration
parameters, as a general rule, retain their values after migration. However, new
parameters are added using their default values and some existing parameters are
set to their new Version 9.5 default values. Refer to the "DB2 server behavior

36 Data Servers, Databases, and Database Objects Guide



changes” topic in the Migration Guide for details about the changes to existing
database configuration parameters. Any subsequent update or reset database
configuration requests for the migrated databases will use the Version 9.5 method
of updating or resetting configuration requests.

For existing update or reset command scripts, the same rules mentioned previously
apply: you can use the pre-Version 9.5 method, you can modify your scripts to
include the DBPARTITIONNUM option of the UPDATE DATABASE
CONFIGURATION or RESET DATABASE CONFIGURATION command, or you
can set the DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable.

For existing applications that call the db2CfgSet API, you must use the Version 9.5
method. If you want the pre-Version 9.5 method, you can set the
DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable or modify your
applications to call the API with the Version 9.5 version number, including the new
db2CfgSingleDbpartition flag and the new dbpartitionnum field to update or reset
database configurations for a specific database partition.

Note: If you find that database configuration values are inconsistent, you can
update or reset each database partition individually.

Shared file handle table

The threaded database manager maintains a single shared file handle table for each
database and all agents working on each database so that I/O requests made on
the same file do not require the file to be reopened and closed.

Prior to Version 9.5, the file handle table was maintained separately by each DB2
agent, and the size of the per-agent file handle table was controlled by the
maxfilop configuration parameter. Starting in Version 9.5, the database manager
maintains a single shared file handle table for the entire database, such that the
same file handle can be shared among all agents working on the same database
file. As a result, the maxfilop configuration parameter is used to control the size of
the shared file handle table.

Because of this change, the maxfilop configuration parameter has a new default
value and new minimum and maximum values. During database migration, the
maxfilop configuration parameter is automatically set to the new default values.

Running vendor library functions in fenced-mode processes

The database manager supports vendor library functions in fenced-mode processes
that perform such tasks as data compression, TSM backups, and log data
archiving.

Prior to Version 9.5, vendor library functions, vendor utilities, or routines were run
inside agent processes. Since Version 9.5, because the DB2 database manager itself
is a multithreaded application, vendor library functions that are no longer
threadsafe and cause memory or stack corruption or, worse, data corruption in
DB2 databases. For these reasons, a new fenced-mode process is created for each
invocation of a vendor utility, and vendor library functions or routines run inside
this fenced-mode process. This does not result in significant performance
degradation.

Note: The fenced-mode feature is not available for Windows platforms.

Chapter 3. Autonomic computing 37



Automatic storage

Automatic storage simplifies storage management for table spaces. When you
create a database, you specify the storage paths where the database manager will
place your table space data. Then, the database manager will manage the container
and space allocation for the table spaces as you create and populate them.

Automatic storage table spaces

When you create a table space in a database that is not enabled for automatic
storage, you must specify the MANAGED BY SYSTEM or MANAGED BY
DATABASE clause. Using these clauses results in the creation of a system-managed
space (SMS) table space or database-managed space (DMS) table space,
respectively. You must provide an explicit list of containers in both cases.

If a database is enabled for automatic storage, other choices exist: you can specify
the MANAGED BY AUTOMATIC STORAGE clause or omit the MANAGED BY
clause (which implies the use of automatic storage) . You do not need to provide
container definitions in this case because the database manager assigns the
containers automatically.

Following are some examples of statements that create automatic storage table
spaces:

CREATE TABLESPACE TS1

CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE

CREATE TEMPORARY TABLESPACE TEMPTS

CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE

CREATE LONG TABLESPACE LONGTS

Although the automatic storage table space type appears to be a different table
space type, it is really just an extension of the existing SMS and DMS types. If you
create a table space as a regular or large table space, it is created as a DMS table
space with file containers. If you create a table space as a user or system temporary
table space, it is created as an SMS table space with directory containers.

Note: This behavior might change in future versions of the database manager.

The names associated with these containers have the following format:
storage path/instance name/NODE####/database name/T#######/CH###### . EXT

where:

storage path
Is a storage path associated with the database

instance name
Is the instance under which the database was created

database name
Is the name of the database

NODE#i##H#
Is the database partition number (for example, NODEO00O)

THH#HEHHE
Is the table space ID (for example, TO000003)

CHHHHHH
Is the container ID (for example, C0000012)

38 Data Servers, Databases, and Database Objects Guide



EXT Is an extension based on the type of data being stored:
CAT  System catalog table space
TMP System temporary table space
UTM User temporary table space
USR  User or regular table space
LRG Large table space

Differences between regular and large automatic storage table
spaces and DMS table spaces

Regular and large automatic storage table spaces are created as DMS table spaces,
and all of the rules and behaviors associated with DMS table spaces
apply.However, there are differences with respect to how storage is managed, as
shown in the following table:

Table 3. Differences between managing non-automatic storage and automatic storage table
spaces

Non-automatic storage Automatic storage
You must explicitly provide a list of You cannot provide a list of containers when
containers when creating the table space. creating the table space; instead, the

database manager automatically assigns and
allocates containers.

Automatic resizing of table spaces is off Automatic resizing of table spaces is on
(AUTORESIZE is set to NO) by default. (AUTORESIZE is set to YES) by default.
You cannot use the INITIALSIZE clause to | You can use the INITIALSIZE clause to
specify the initial size for the table space. specify the initial size for the table space.
You can perform container operations using | You cannot perform container operations
the ALTER TABLESPACE statement because the database manager manages
(specifying ADD, DROP, BEGIN NEW space.

STRIPE SET, and so on).

You can use a redirected restore operation to | You cannot use a redirected restore
redefine the containers associated with the |operation to redefine the containers

table space. associated with the table space because the
database manager manages space.

As mentioned in the previous table, when you create a regular or large automatic
storage table space, you can specify an initial size as part of the CREATE
TABLESPACE statement, as shown in the following example:

CREATE TABLESPACE TS1 INITIALSIZE 100 M

If you do not specify an initial size, the database manager uses a default value of
32 megabytes.

To create a table space with a given size, the database manager creates file
containers within the storage paths. If there is an uneven distribution of space
among the paths, containers might be created with different sizes. As a result, it is
important that all of the storage paths have a similar amount of free space on
them.

If you enable automatic resizing for a table space, as space is used within it, the
database manager automatically extends existing containers and adds new ones

Chapter 3. Autonomic computing 39



(using stripe sets). Whether containers are extended or added, no rebalancing takes
place.

Automatic re-sizing of table spaces

Enabling automatic storage table spaces for automatic resizing allows the database
manager to handle the full file system condition automatically by adding a new
stripe set of containers.

Two table space types can exist within a database system: system-managed space
(SMS) and database-managed space (DMS). The containers associated with SMS
table spaces are file system directories, and the files within these directories grow
as the objects in the table space grow. .The files grow until a file system limit is
reached for one of the containers or until the table space size limit of the database
is reached (see [SQL and XML limits).

DMS table spaces are made up of file containers or raw device containers, and
their sizes are set when the containers are assigned to the table space. The table
space is considered to be full when all of the space within the containers has been
used. However, unlike for SMS table spaces, you can add or extend containers
using the ALTER TABLESPACE statement, allowing more storage space to be given
to the table space. DMS table spaces also have a feature called auto-resize: as space
is consumed in a DMS table space that can be automatically resized, the database
system might extend the table space by one or more file containers. SMS table
spaces have similar capabilities for growing automatically, but the term auto-resize
is used exclusively for DMS.

Automatic resizing of table spaces has the following implications:

* Table spaces that are enabled for automatic resizing have metadata associated
with them that is not recognized by Version 8.2.1 or earlier releases. Any attempt
to use a database with table spaces enabled for automatic resizing with these
versions results in a failure (most likely, returning an SQL0980C or SQL0902C
error). An error might be sent if you try to connect to a database or try to restore
a database. If you enabled table spaces for automatic resizing, disabling the
auto-resize feature for these table spaces removes the metadata, allowing the
database to be used with Version 8.2.1 or earlier releases.

 If you disable the auto-resize feature, the values that are associated with
INCREASESIZE and MAXSIZE are lost if you subsequently enable this feature.

* You cannot this feature for table spaces that use raw device containers, and you
cannot add raw device containers to a table space that can be automatically
resized. Attempting these operations results in errors (SQLO109N). If you need to
add raw device containers, you must disable the feature first.

* A redirected restore operation cannot change the container definitions to include
a raw device container. Attempting this kind of operation results in an error
(SQLO109N).

* Because the maximum size limits how the database manager automatically
increases a table space, the maximum size also limits how you can increase a
table space. That is, when you perform an operation that adds space to a table
space, the resulting size must be less than or equal to the maximum size. You
can add space by using the ADD, EXTEND, RESIZE, or BEGIN NEW STRIPE
SET clause of the ALTER TABLESPACE statement.

Enabling and disabling the auto-resize feature

By default, the auto-resize feature is not enabled for a DMS table space. The
following statement creates a DMS table space without enabling auto-resize:

40 Data Servers, Databases, and Database Objects Guide



CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE '/db2files/DMS1' 10 M)

To enable the auto-resize feature, specify the AUTORESIZE YES clause for the
CREATE TABLESPACE statement:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE '/db2files/DMS1' 10 M) AUTORESIZE YES

You can also enable or disable the auto-resize feature after creating a DMS table
space by using ALTER TABLESPACE statement with the AUTORESIZE clause:

ALTER TABLESPACE DMS1 AUTORESIZE YES
ALTER TABLESPACE DMS1 AUTORESIZE NO

Two other attributes, MAXSIZE and INCREASESIZE, are associated with
auto-resize table spaces:

Maximum size (MAXSIZE)

The MAXSIZE clause of the CREATE TABLESPACE statement defines the
maximum size for the table space. For example, the following statement creates a
table space that can grow to 100 megabytes (per database partition if the database
has multiple database partitions):

CREATE TABLESPACE DMS1 MANAGED BY DATABASE

USING (FILE '/db2files/DMS1' 10 M)
AUTORESIZE YES MAXSIZE 100 M

The MAXSIZE NONE clause specifies that there is no maximum limit for the table
space. The table space can grow until a file system limit or table space limit is
reached (see [SQL and XML limits). If you do not specify the MAXSIZE clause,
there is no maximum limit when the auto-resize feature is enabled.

Use the ALTER TABLESPACE statement to change the value of MAXSIZE for a
table space that has auto-resize already enabled, as shown in the following
examples:

ALTER TABLESPACE DMS1 MAXSIZE 1 G
ALTER TABLESPACE DMS1 MAXSIZE NONE

If you specify a maximum size, the actual value that the database manager
enforces might be slightly smaller than the value specified because the database
manager attempts to keep container growth consistent.

Increase size (INCREASESIZE)

The INCREASESIZE clause of the CREATE TABLESPACE statement defines the
amount of space used to increase the table space when there are no free extents
within the table space but a request for one or more extents was made. You can
specify the value as an explicit size or as a percentage, as shown in the following
examples:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE

USING (FILE '/db2files/DMS1' 10 M)
AUTORESIZE YES INCREASESIZE 5 M

CREATE TABLESPACE DMS1 MANAGED BY DATABASE

USING (FILE '/db2files/DMS1' 10 M)
AUTORESIZE YES INCREASESIZE 50 PERCENT

Chapter 3. Autonomic computing 41



A percentage value means that the amount by which to increase, as specified by
the INCREASESIZE value, is calculated every time that the table space needs to
grow and that growth is based on a percentage of the table space size at that time.
For example, if the table space is 20 MB in size and the INCREASESIZE value is
50% , the table space grows by 10 MB the first time (to a size of 30 MB) and by 15
MB the next time.

If you do not specify the INCREASESIZE clause when you enable the auto-resize
feature, the database manager determines an appropriate value to use, which
might change over the life of the table space. As with AUTORESIZE and
MAXSIZE, you can change the value of INCREASESIZE using the ALTER
TABLESPACE statement.

If you specify a size increase, the actual value that the database manager will use
might be slightly different than the value that you provide. This adjustment in the
value used is done to keep growth consistent across the containers in the table
space.

How table spaces are extended

For table spaces that can be automatically resized, the database manager attempts
to increase the size of the table space when all of the existing space has been used
and a request for more space is made. The database manager determines which of
the containers can be extended in the table space so that a rebalance does not
occur. The database manager extends only those containers that exist within the
last range of the table space map (the map describes the storage layout for the
table space) and extends them by an equal amount.

For example, consider the following statement:

CREATE TABLESPACE TS1 MANAGED BY DATABASE
USING (FILE 'C:\TS1CONT' 1000, FILE 'D:\TS1CONT' 1000,
FILE 'E:\TS1CONT' 2000, FILE 'F:\TS1CONT' 2000)
EXTENTSIZE 4
AUTORESIZE YES

Keeping in mind that the database manager uses a small portion (one extent) of
each container for metadata, following is the table space map that is created for the
table space based on the CREATE TABLESPACE statement. (The table space map is
part of the output from a table space snapshot.)

Table space map:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[ el [ @] 0 995 3983 0 248 0 4 (0,1,2,3)
[ 11[ o] 0 1495 5983 249 498 0 2 (2,3)

The table space map shows that the containers with an identifier of 2 or 3
(E:\TS1CONT and F:\TSICONT) are the only containers in the last range of the map.
Therefore, when the database manager automatically extends the containers in this
table space, it extends only those two containers.

Note: If you create a table space with all of the containers having the same size,
there is only one range in the map. In such a case, the database manager extends
each of the containers. To prevent restricting extensions to only a subset of the
containers, create a table space with containers of equal size.

42  Data Servers, Databases, and Database Objects Guide



As discussed previously, you can specify a limit on the maximum size of the table
space, or you can specify a value of NONE, which does not limit growth. If you
specify NONE or no limit, the upper limit is defined by the file system limit or by
the table space limit; the database manager does not attempt to increase the table
space size past the upper limit. However, before that limit is reached, an attempt to
increase a container might fail due to a full file system. In this case, the database
manager does not increase the table space size any further and returns an
out-of-space condition to the application. There are two ways to resolve this
situation:

* Increase the amount of space available on the file system that is full.

* Perform container operations on the table space such that the container in
question is no longer in the last range of the table space map. The easiest way to
do this is to add a new stripe set to the table space with a new set of containers,
and the best practice is to ensure that the containers are all the same size. You
can add new stripe sets by using the ALTER TABLESPACE statement with the
BEGIN NEW STRIPE SET clause. By adding a new stripe set, a new range is
added to the table space map. With a new range, the containers that the
database manager automatically attempts to extend are within this new stripe
set, and the older containers remain unchanged.

Note: When a user-initiated container operation is pending or a subsequent
rebalance is in progress, the auto-resize feature is disabled until the operation is
committed or the rebalance is complete.

For example, for DMS table spaces, suppose that a table space has three containers
that are the same size and that each resides on its own file system. As work is
done on the table space, the database manager automatically extends these three
containers. Eventually, one of the file systems becomes full, and the corresponding
container can no longer grow. If more free space cannot be made available on the
file system, you must perform container operations on the table space such that the
container in question is no longer in the last range of the table space map. In this
case, you could add a new stripe set specifying two containers (one on each of the
file systems that still has space), or you could specify more or fewer containers
(again, making sure that each container being added is the same size and that
there is sufficient room for growth on each of the file systems being used). When
the database manager attempts to increase the size of the table space, it now
attempts to extend the containers in this new stripe set instead of attempting to
extend the older containers.

Monitoring
Information about automatic resizing for DMS table spaces is displayed as part of

the table space monitor snapshot output. The increase size and maximum size
values are included in the output, as shown in the following sample:

Auto-resize enabled = Yes or No

Current tablespace size (bytes) = ###

Maximum tablespace size (bytes) = ### or NONE

Increase size (bytes) = ###

Increase size (percent) = ###

Time of last successful resize = DD/MM/YYYY HH:MM:SS.SSSSSS
Last resize attempt failed = Yes or No

Chapter 3. Autonomic computing 43



Automatic storage databases

The database manager creates all databases as “automatic storage” databases, by
default. To create a database that is not an “automatic storage” database, specify
AUTOMATIC STORAGE NO when issuing the CREATE DATABASE command.

Databases that are enabled for automatic storage have a set of one or more storage
paths associated with them. A table space can be defined as managed by automatic
storage and its containers assigned and allocated by the database manager based on
those storage paths.

You can enable a database for automatic storage only when you create it; similarly,
you cannot disable automatic storage for a database that was originally designed
to use it.

All databases are created as automatic storage databases by default. To create a
database that is not an automatic storage database, specify AUTOMATIC
STORAGE NO when issuing the CREATE DATABASE command.

Examples of disabling automatic storage:

CREATE DATABASE ASNODB1 AUTOMATIC STORAGE NO
CREATE DATABASE ASNODB2 AUTOMATIC STORAGE NO ON X:

Examples of automatic storage being enabled either explicitly or implicitly:

CREATE DATABASE DB1

CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X:
CREATE DATABASE DB3 ON /data/pathl, /data/path2
CREATE DATABASE DB4 ON D:\StoragePath DBPATH ON C:

Based on the syntax used, the database manager extracts the following two pieces
of information that pertain to storage locations:

* The database path (where the database manager stores various control files for
the database):

— If you specify DBPATH ON, this indicates the database path.

— If you do not specify DBPATH ON, the first path listed in ON indicates the
database path (and the storage path).

— If you specify neither DBPATH ON nor ON, the dftdbpath database manager
configuration parameter is used to determine the database path.

* The storage paths (where the database manager creates automatic storage table
space containers):

— If you specify ON, all of the listed paths are storage paths.

— If you do not specify ON, there is a single storage path that is set to the value
of the dftdbpath database manager configuration parameter.

For the examples shown previously, the following table summarizes the database
and storage paths used:

Table 4. Automatic storage database and storage paths

CREATE DATABASE command Database path Storage paths

CREATE DATABASE DB1 AUTOMATIC STORAGE YES Value of the Value of the
dftdbpathconfiguration dftdbpathconfiguration
parameter parameter

CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X: X:

X:

44  Data Servers, Databases, and Database Objects Guide



Table 4. Automatic storage database and storage paths (continued)

CREATE DATABASE command Database path Storage paths

CREATE DATABASE DB3 ON /data/pathl, /data/pathl /data/pathl, /data/path2
/data/path2

CREATE DATABASE DB4 ON D:\StoragePath DBPATH C: D:\StoragePath

ON C:

The storage paths provided must exist and be accessible. In a partitioned database
environment, the same storage paths are used on each database partition. You
cannot specify a unique set of storage paths for a particular database partition
unless you use database partition expressions as part of the storage path names.
Doing this allows the database partition number to be reflected in the storage
paths such that the resulting path names are different on each database partition.

Use the argument $N (that is, $N preceded by a blank) to indicate a database
partition expression. You can use a database partition expression anywhere in the
storage path, and you can specify multiple database partition expressions.
Terminate the database partition expression with a space character; whatever
follows the space is appended to the storage path after the database partition
expression is evaluated. If there is no space character in the storage path after the
database partition expression, it is assumed that the rest of the string is part of the
expression. The following table lists the only valid forms of the $N argument.
Operators are evaluated from left to right, and % represents the modulus operator.
The database partition number in the examples is 10.

Table 5. Database partition expressions

Syntax Example Value
[blank]$N "N 10
[blank]$N+[number] " $N+100" 110
[blank]$N%[number] " $N%5" 0
[blank]$N+[number]%[number] " N+1%5" 1
[blank]$N%[number]+[number] " $N%4+2" 4

The following is an example of using database partition expressions:

CREATE DATABASE TESTDB ON "/pathlForNode $N",
"/path2ForNode $N" DBPATH ON "/dbpathForNodes"

The following is an example of a database partition expression embedded in the
middle of a path:

CREATE DATABASE TESTDB ON "/pathlForNode $N",
"/path2ForNode $N suffix" DBPATH ON "/dbpathForNodes"

Note: Database partition expressions are not valid in database paths, whether you
specify them explicitly in DBPATH ON or implicitly by using a database partition
expression in the first storage path.

When free space is calculated for a storage path for a given database partition, the

database manager checks for the existence of the following directories or mount
points within the storage path and uses the first one that it finds:

Chapter 3. Autonomic computing 45



storage path/instance name/NODE####/database name
storage path/instance name/NODE####

storage path/instance name

storage path

where:

storage path
Is a storage path associated with the database

instance name
Is the instance under which the database resides

NODE#H###
Is the database partition number (for example, NODE0OOO or NODE0001)

database name
Is the name of the database

File systems can be mounted at a point beneath the storage path, and the database
manager recognizes that the actual amount of free space available for table space
containers might not be the same amount that is associated with the storage path
directory itself.

Consider the example where two logical database partitions exist on one physical
computer and there is a single storage path: /db2data. Each database partition can
use this storage path, but you might want to isolate the data from each database
partition by creating for each one a separate file system. The file system is
mounted at /db2data/instance/NODE####. When creating containers on the
storage path and determining free space, the database manager does not retrieve
free space information for /db2data but instead retrieves it for the corresponding
/db2data/instance/ NODE#### directory.

There are three default table spaces created whenever you create a database. If you
do not provide explicit table space definitions as part of the CREATE DATABASE
command, the table spaces are created as automatic storage table spaces.

After you create a database, you can add new storage paths to it by using the
ADD STORAGE clause of the ALTER DATABASE statement, as shown in the
following example:

ALTER DATABASE ADD STORAGE ON '/data/path3', '/data/path4'

Adding automatic storage paths to databases enabled for
automatic storage

Using the ALTER DATABASE statement, you can add an automatic storage path to
a database that is enabled for automatic storage. You can enable a database for
automatic storage only when you create it.

When you add a storage path for a multi-partition database environment, the
storage path must exist on each database partition. If the specified path does not
exist on every database partition, the statement is rolled back.

To add a storage path to an existing database, issue the following ALTER
DATABASE statement:

ALTER DATABASE PATH pathname

46 Data Servers, Databases, and Database Objects Guide



Automatic storage restrictions

When deciding whether to create a database using automatic storage, there are
some restrictions to consider.

* You cannot disable or enable automatic storage for a database after you created
it.

* Storage paths must be absolute path names. They can be paths or drive letters
on the Windows operating system.The database path must be a drive letter. The
maximum path length is 175 characters.

* For partitioned databases, you must use the same set of storage paths on each
database partition (unless you use database partition expressions).

* Database partition expressions are not valid in database paths, whether you
specify them explicitly by using the DBPATH ON option of the CREATE
DATABASE command, or implicitly by using a database partition expression in
the first storage path.

Automatic (compression) dictionary creation (ADC)

A compression dictionary is used to compress data moved into a table to free up
space so that more data can be added in the table. A compression dictionary is
automatically created and inserted or appended to a table during a data
population operation (such as a load or an insert operation) if certain conditions
are met.

Automatic (compression) dictionary creation (ADC) occurs for a table if you
defined the COMPRESS attribute on the table, if a compression dictionary does not
already exist within that physical table or partition, and if the table has sufficient
data. Data subsequently moved into the table is compressed using the compression
dictionary (if the table COMPRESS attribute remains enabled).

The following diagram shows the process by which the compression dictionary is
automatically created:

Chapter 3. Autonomic computing 47



Uncompressed Uncompressed Uncompressed
EMPTY TABLE Row Data Row Data Row Data
INSERT INSERT INSERT
LOAD LOAD LOAD
5] a
Synchronous Uncompressed
Dictionary Row Data
Build
> Dictionary
Compressed
Row Data

1. A compression dictionary is not created because the table is empty.

2. Data is inserted into the table using insert or load operations and remains

uncompressed.

3. As more data is inserted or loaded into the table, it remains uncompressed.

4. After a threshold is reached, dictionary creation is triggered automatically if the
COMPRESS attribute is set to YES.

5. The dictionary is created.

6. The dictionary is appended to the table.

7. From this point forward, the data is compressed.

The following table shows the compression dictionary creation differences by

release:

Table 6. Compression dictionary creation differences by release

Commands and attributes

Version 9.1

Version 9.5

LOAD REPLACE command
with the
RESETDICTIONARY option

Not applicable.

When you set the table
COMPRESS attribute to YES,
any existing compression
dictionary is removed and a
new one is generated if at
least one row of data is
loaded or inserted into the
table.

CREATE or ALTER TABLE
statement with the
COMPRESS attribute set to
YES

Dictionary creation was not
automatic. To compress table
data, you had to explicitly
create a compression
dictionary using a table
reorganization process.

Setting the table COMPRESS
attribute to YES makes the
table eligible for ADC if at
least one row of data is
loaded or inserted into the
table.

48 Data Servers, Databases, and Database Objects Guide




Table 6. Compression dictionary creation differences by release (continued)

Commands and attributes

Version 9.1

Version 9.5

INSERT, LOAD INSERT,
IMPORT INSERT, or
REDISTRIBUTE command

Not applicable.

When you set the table
COMPRESS attribute to YES,
a table that does not already
have a compression
dictionary is subject to ADC,
if the table has enough data
(meaning that the threshold
is passed).

Note: The REDISTRIBUTE
command triggers ADC only
on newly added database
partitions.

REORG TABLE command
with the
KEEPDICTIONARY option

If you set the table
COMPRESS attribute to YES
and a compression dictionary
did not yet exist in the table,

A dictionary is inserted into
a table only if the table size
is equal to the ADC table
size threshold and if enough

data exists in the table when
it passes the threshold.

an attempt was made to
build, insert, or append a
compression dictionary into
the table independent of the
volume of data in the table.

Data row compression

The purpose of data row compression is to achieve disk storage space savings, and
it can also lead to disk I/O savings. Also, more data can be cached in the buffer
pool, thereby increasing bufferpool hit ratios. Data row compression uses a static
dictionary-based compression algorithm to compress data by row.

Compressing data at the row level allows repeating patterns that span multiple
column values within a row to be replaced with shorter symbol strings.

Note: There is an associated cost in the form of extra CPU cycles needed to
compress and decompress data. The storage savings and performance impact of
data row compression are tied to the characteristics of the data within the
database, the layout and tuning of the database, and the application workload.
Only the data on a data page or in log records is compressed.

To compress table data, a compression dictionary must exist for the table, you
must set the COMPRESS attribute of the CREATE TABLE or ALTER TABLE
statement to YES, and there needs to be sufficient data in the table. If these
compression conditions exist for the table, then when you issue an INSERT
statement or a LOAD INSERT, IMPORT INSERT, or REDISTRIBUTE command,
data added to the table is compressed.

In Version 9.5, data row compression is automatically enabled if a table has the
COMPRESS attribute set to YES and after the data compression dictionary has
been created. If you created or altered a table with a COMPRESS attribute set to
YES, no manual operation or database request is required on your part: that is, you
do not need to perform an explicit classic (offline) table reorganization to create the
data compression dictionary.

Note: If you set the COMPRESS attribute to YES and a compression dictionary
exists, compression applies to any insert row operation, including an insert

Chapter 3. Autonomic computing 49



through an import or a load operation. Compression is enabled for an entire table;
however, each row is compressed individually. Therefore, a table could contain
both compressed and non-compressed rows at the same time.

To explicitly build a compression dictionary (and subsequently compress a table),
perform a classic (offline) table reorganization. All of the data rows that exist in a
table participate in the building of the compression dictionary. The dictionary is
stored with the table data rows in the data object portions of the table.

To decompress a table, set the table COMPRESS attribute to NO, and then perform
a classic (offline) table reorganization.

Restrictions

* Data row compression is not applicable to index, long, LOB, and XML data
objects.

* Row compression is not compatible with table data replication support.

* You can generate row compression statistics by using the RUNSTATS command.
These are stored in the system catalog table SYSCAT.TABLES. A compression
estimation option, which estimates the effectiveness of row compression for a
table, is available with the INSPECT utility. The query optimizer includes
decompression cost in its costing model.

* Depending upon update activity and the positioning of update changes within a
data row, there might be an increase in log space consumption.

* If a row is increasing in size, the new version of the row might not fit on the
current data page. In that case, the new image of the row is stored on an
overflow page. To minimize the creation of such pointer-overflow records, you
can add more free space within a data page. For example, if 5% free space was
used without compression, allocate 10% free space with compression. This
recommendation is especially important for data that is heavily updated.

Automatic statistics collection

The DB2 optimizer uses catalog statistics to determine the most efficient access
plan for any given query. Having out-of-date or incomplete statistics for a table or
an index might lead the optimizer to select a plan that is not optimal, slowing
down query execution. However, deciding which statistics to collect for a given
workload is complex, and keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance
feature, you can let the DB2 database manager determine whether database
statistics need to be updated. Automatic statistics collection can occur at statement
compilation time using the real-time statistics (RTS) feature or can be collected by
running the RUNSTATS utility in the background. Background statistics collection
can be enabled while real-time statistics collection is disabled. Background statistics
collection must be enabled in order for real-time statistics collection to be enabled.
Background automatic statistics collection is enabled by default when you create a
new database. Real-time automated statistics are enabled by the dynamic
configuration parameter auto_stmt_stats.

Understanding asynchronous and real-time statistics collection

Automatic statistics can be collected synchronously or asynchronously by running
the RUNSTATS utility. Asynchronous collection occurs in the background. When the
real-time statistics feature is enabled, statistics can also be collected synchronously,
at statement compilation time. When real-time statistics collection is enabled,

50 Data Servers, Databases, and Database Objects Guide



statistics can also be fabricated using meta-data maintained by the index and data
manager. Fabrication means deriving or creating statistics, rather than collecting
them as part of normal RUNSTATS activity. For example, the number of rows in a
table can be derived from knowing the number of pages in the table, the page size,
and the average row width. In some cases, statistics are not actually derived, but
are maintained by the index and data manager and can be stored directly in the
catalog. For example, the index manager maintains a count of the number of leaf
pages and levels in each index.

The query optimizer determines how the statistics should be collected, based on
the needs of the query and the amount of table update activity. Table update
activity is measured by the number of update, insert, or delete operations.

Real-time statistics collection is determined by the needs of an SQL statement
before it is optimized. This provides more timely statistics collection and more
accurate statistics. Accurate statistics can result in better query execution plans and
improved performance. When real-time statistics collection is not enabled,
asynchronous statistics collection occurs at two-hour intervals. This might not be
frequent enough to provide accurate statistics for some applications.

When real-time statistics collection is enabled, asynchronous statistics collection
checking still occurs at two-hour intervals. Real-time statistics collection also
initiates asynchronous collection requests when:

* Table activity is not high enough to require synchronous collection, but is high
enough to require asynchronous collection

* Synchronous statistics collection used sampling because the table was large
* Synchronous statistics were fabricated

* Synchronous statistics collection failed because the collection time was exceeded

At most, two asynchronous requests can be processed at the same time, but only
for different tables. One request will have been initiated by real-time statistics, and
the other will have been initiated by asynchronous statistics collection checking.

The performance impact of automatic statistics collection is minimized in several

ways:

* Asynchronous statistics collection is performed using a throttled RUNSTATS
utility. Throttling controls the amount of resources consumed by the RUNSTATS
utility based on current database activity: as database activity increases, the
RUNSTATS utility runs more slowly, reducing its resource demands.

* Synchronous statistics collection is limited to five seconds per query. This value
can be controlled by the RTS optimization guideline. If synchronous collection
exceeds the time limit, an asynchronous collection request is submitted.

* Synchronous statistics collection does not store the statistics in the system
catalog. Instead, the statistics are stored in a statistics cache and are later stored
in the system catalog by an asynchronous operation. This avoids the overhead
and possible lock contention involved with updating the system catalog.
Statistics in the statistics cache are available for subsequent SQL compilation
requests.

* Only one synchronous statistics collection operation will occur per table. Other
agents requiring synchronous statistics collection will fabricate statistics, if
possible, and continue with statement compilation. This behavior is also
enforced in a partitioned database environment, where agents on different
database partitions might require synchronous statistics.

Chapter 3. Autonomic computing 51



* By default, statistics collected for synchronous and asynchronous operations are
basic table statistics with distribution information and detailed index statistics
using sampling. (The RUNSTATS command is issued specifying the WITH
DISTRIBUTION and SAMPLED DETAILED INDEXES ALL options.) You can
customize the type of statistics collected by enabling statistics profiling, which
uses information about previous database activity to determine which statistics
are required by the database workload. You can also customize the type of
statistics collected for a particular table by creating your own statistics profile for
that table.

* Only tables with missing statistics or high levels of activity (as measured by the
number of update, insert, or delete operations) are considered for statistics
collection. Even if a table meets the statistics collection criteria, synchronous
statistics are not collected unless query optimization requires them. In some
cases, the query optimizer can choose an access plan without statistics.

* For asynchronous statistics collection checking, large tables (with more than 4000
pages) are sampled to determine whether high table activity has changed the
statistics. Statistics for such large tables are collected only if warranted.

* For asynchronous statistics collection, the RUNSTATS utility is automatically
scheduled to run during the optimal maintenance window specified in your
maintenance policy definition. This policy also specifies the set of tables that are
within the scope of automatic statistics collection, further minimizing
unnecessary resource consumption.

* Synchronous statistics collection and fabrication do not follow the optimal
maintenance window specified in your maintenance policy definition, because
synchronous requests must occur immediately and have limited collection time.
Synchronous statistics collection and fabrication follow the policy that specifies
the set of tables that are within the scope of automatic statistics collection.

* While automatic statistics collection is being performed, the affected tables are
still available for regular database activity (update, insert, or delete operations).

 For asynchronous statistics collection, the SYSPROC.NNSTAT stored procedure
is run using the catalog-based collection method to refresh nickname statistics
automatically. Real-time statistics (synchronous or fabricated) are not collected
for nicknames.

Real-time synchronous statistics collection is performed for regular tables,
materialized query tables (MQTs), and declared global temporary tables (DGTTs).
Asynchronous statistics are not collected for DGTTs. This means that real-time
statistics processing will not initiate asynchronous requests for DGTTs.

Automatic statistics collection (synchronous or asynchronous) does not occur for:
e Statistical views

* Tables that are marked VOLATILE (tables with the VOLATILE field set in the
SYSCAT.TABLES catalog view)

* Tables that have had their statistics manually updated, by issuing UPDATE
statements directly against SYSSTAT catalog views

When you modify the statistics manually for tables, the database manager
assumes that you are now responsible for maintaining their statistics. To allow
the database manager to reconsider and maintain statistics for a table that has
had its statistics manually updated, collect statistics using the RUNSTATS
command or specify to collect statistics when using the LOAD command. Tables
created prior to Version 9.5 that had their statistics updated manually prior to
migration are not affected and their statistics are automatically maintained by
the database manager until you manually update their statistics.

52  Data Servers, Databases, and Database Objects Guide



Statistics fabrication does not occur for:
e Statistical views

* Tables that have had their statistics manually updated, by issuing UPDATE
statements directly against SYSSTAT catalog views. Note that if real-time
statistics collection is not enabled, some statistics fabrication will still occur for
tables that have had their statistics manually updated.

In a partitioned database environment, statistics are collected on a single database
partition and then extrapolated. The database manager always collects statistics
(both synchronous and asynchronous) on the first database partition of the
database partition group.

No real-time statistics collection activity will occur until at least five minutes after
database activation.

When real-time statistics are enabled, you should schedule a defined maintenance
window; the maintenance window is undefined by default. If there is no defined
maintenance window, only synchronous statistics collection will occur. In this case,
the collected statistics are only in-memory, and are typically collected using
sampling (except in the case of small tables).

Real-time statistics processing occurs for both static and dynamic SQL.

A table that has been truncated using the IMPORT command is automatically
recognized as having stale statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates
cached dynamic statements that reference tables for which statistics have been
collected. This is done so that cached dynamic statements can be re-optimized with
the latest statistics.

Real-time statistics and explain processing

There is no real-time processing for a query which is just explained (not executed)
using the explain facility. The following table summarizes the behavior for the
different values of the CURRENT EXPLAIN MODE special register.

Table 7. Real-time statistics collection as a function of the value of the CURRENT EXPLAIN
MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered
YES Yes
EXPLAIN No
NO Yes
REOPT Yes
RECOMMEND INDEXES No
EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously-
collected statistics available to all queries. This cache is part of the catalog cache. In
a partitioned database environment, this cache resides only on the catalog database
partition. The catalog cache can store multiple entries for the same SYSTABLES

Chapter 3. Autonomic computing 53



object, which increases the size of the catalog cache on all database partitions.
Consider increasing the value of the catalogcache_sz database configuration
parameter when real-time statistics collection is enabled.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine
the initial configuration for new databases. The Configuration Advisor
recommends that the auto_stmt_stats database configuration parameter be set to
ON.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical
profile that is in effect for a table, with the following exceptions:

* To minimize the overhead of synchronous statistics collection, the database
manager might collect statistics using sampling. In this case, the sampling rate
and method might be different from those specified in the statistical profile.

* Synchronous statistics collection might choose to fabricate statistics, but it might
not be possible to fabricate all statistics specified in the statistical profile. For
example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY
cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics specified in the
statistical profile, an asynchronous collection request is submitted.

Although real-time statistics collection is designed to minimize statistics collection
overhead, try it in a test environment first to ensure that there is no negative
performance impact. This might be the case in some online transaction processing
(OLTP) scenarios, especially if there is an upper boundary for how long a query
can run.

Enabling automatic statistics collection

Having accurate and complete database statistics is critical to efficient data access
and optimal workload performance. Use the automatic statistics collection feature
of the automated table maintenance functionality to update and maintain relevant
database statistics. You can optionally enhance this functionality in environments
where a single database partition operates on a single processor (serial
environment) by collecting query data and generating statistics profiles that help
DB2 automatically collect the exact set of statistics that is required by your
workload. This option is not available in MPP environments, certain federated
environments, or environments in which intra-partition parallelism is enabled.

To enable automatic statistics collection:

1. Configure your database instance by using the Configure Automatic
Maintenance wizard or the command line:

* To use the Configure Automatic Maintenance wizard:

a. Open the wizard either from the Control Center by right-clicking a
database object or from the Health Center by right-clicking a database
instance.

b. Select Configure Automatic Maintenance from the pop-up window.
Within this wizard, you can enable automatic statistics collection, specify
the tables from which you want to automatically collect statistics, and
specify a maintenance window for the execution of the RUNSTATS utility.

* To use the command line, set each of the following configuration parameters
to ON:

54  Data Servers, Databases, and Database Objects Guide



- AUTO_MAINT
- AUTO_TBL_MAINT
— AUTO_RUNSTATS

2. Optional: To enable the automatic statistics profile generation, set the following
two configuration parameters to ON:
¢ AUTO_STATS_PROF
« AUTO_PROF_UPD

3. Optional: To enable real-time statistics gathering, set the AUTO_STMT_STATS
configuration parameter to ON. If this configuration parameter is set to ON,

table statistics are automatically compiled at statement compilation time,
whenever they are needed to optimize a query.

Configuration Advisor

You can use the Configuration Advisor to obtain recommendations for the initial
values of the buffer pool size, database configuration parameters, and database
manager configuration parameters.

To use the Configuration Advisor, specify the AUTOCONFIGURE command for an
existing database, or specify AUTOCONFIGURE as an option of the CREATE
DATABASE command. To configure your database, you must have SYSADM,
SYSCTRL, or SYSMAINT authority.

You can display the recommended values or apply them by using the APPLY
option of the CREATE DATABASE command. The recommendations are based on
input that you provide and system information that the advisor gathers.

The values suggested by the Configuration Advisor are relevant for only one
database per instance. If you want to use this advisor on more than one database,
each database must belong to a separate instance.

Tuning configuration parameters using the Configuration
Advisor

The Configuration Advisor helps you to tune performance and to balance memory
requirements for a single database per instance by suggesting which configuration
parameters to modify and suggesting values for them. The Configuration Advisor
is automatically run when you create a database.

To disable this feature or to explicitly enable it, use the db2set command before
creating a database, as follows:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

To define values for several of the configuration parameters and to determine the
scope of the application of those parameters, use the AUTOCONFIGURE
command, specifying one of the following options:

¢ NONE, meaning that none of the values are applied

* DB ONLY, meaning that only database configuration and buffer pool values are
applied

* DB AND DBM, meaning that all parameters and their values are applied

Note: Even if you automatically enabled the Configuration Advisor when you ran
the CREATE DATABASE command, you can still specify AUTOCONFIGURE

Chapter 3. Autonomic computing 55



command options. If you did not enable the Configuration Advisor when you ran
the CREATE DATABASE command, you can run the Configuration Advisor
manually afterwards.

Generating database configuration recommendations

The Configuration Advisor is automatically run when you create a database. You
can also run the Configuration Advisor by specifying the AUTOCONFIGURE

command in the command line processor (CLP) or by calling the db2AutoConfig
API.

To request configuration recommendations using the CLP, enter the following
command:

AUTOCONFIGURE
USING input_keyword param_value
APPLY value

Following is an example of an AUTOCONFIGURE command that requests
configuration recommendations based on input about how the database is used but
specifies that the recommendations not be applied:

DB2 AUTOCONFIGURE USING
MEM_PERCENT 60
WORKLOAD_TYPE MIXED
NUM_STMTS 500
ADMIN_PRIORITY BOTH
IS_POPULATED YES
NUM_LOCAL_APPS 0
NUM_REMOTE_APPS 20
ISOLATION RR
BP_RESIZEABLE YES

APPLY NONE

Example: Requesting configuration recommendations using
the Configuration Advisor

This scenario demonstrates to run the Configuration Advisor from the command
line to generate recommendations and shows the output that the Configuration
Advisor produces.

To run the Configuration Advisor:

1. Connect to the PERSONL database by specifying the following command from
the command line:

DB2 CONNECT TO PERSONL

2. Issue the AUTOCONFIGURE command from the CLP, specifying how the
database is used. As shown in the following example, set a value of NONE for
the APPLY option to indicate that you want to view the configuration
recommendations but not apply them:

DB2 AUTOCONFIGURE USING
MEM_PERCENT 60
WORKLOAD_TYPE MIXED
NUM_STMTS 500
ADMIN_PRIORITY BOTH
IS_POPULATED YES
NUM_LOCAL_APPS 0
NUM_REMOTE_APPS 20
ISOLATION RR
BP_RESIZEABLE YES

APPLY NONE

56 Data Servers, Databases, and Database Objects Guide



If you are unsure about the value of a parameter for the command, you can
omit it, and the default will be used. You can pass up to 10 parameters without
values: MEM_PERCENT, WORKLOAD_TYPE, and so on, as shown in the

previous example.

The recommendations generated by the AUTOCONFIGURE command are
displayed on the screen in table format:

Table 8. Configuration Advisor sample output: Part 1

Former and Applied Values for Database Manager Configuration

Description

Application support Tlayer
No. of int. communication

Enable intra-partition parallelism
Maximum query degree of parallelism

Agent pool size

Initial number of agents i
Max requester I/0 block si
Sort heap threshold (4KB)

Parameter

heap size (4KB)  (ASLHEAPSZ)
buffers (4KB) (FCM_NUM_BUFFERS)
(INTRA_PARALLEL)
(MAX_QUERYDEGREE)
(NUM_POOLAGENTS)

n pool (NUM_INITAGENTS)
ze (bytes) (RQRIOBLK)
(SHEAPTHRES)

Current Value

15

AUTOMATIC

NO

ANY
100(calculated)
0

32767

0

Recommended Value

15
AUTOMATIC
NO

1

200

0

32767

0

Table 9. Configuration Advisor sample output (continued)

Former and Applied Values for Database Configuration

Description

Default application heap (4KB)

Catalog cache size (4KB)
Changed pages threshold
Database heap (4KB)
Degree of parallelism

Default tablespace extentsize (pages)
Default prefetch size (pages)
Default query optimization class

Max storage for lock list
Log buffer size (4KB)
Log file size (4KB)

Number of primary log files

Number of secondary log fi
Max number of active appli

Percent. of lock lists per application

Group commit count

Number of asynchronous page cleaners

Number of I/0 servers
Package cache size (4KB)

Percent log file reclaimed before soft chckpt (SOFTMAX)
Sort Tist heap (4KB)

statement heap (4KB)
Statistics heap size (4KB)
Utilities heap size (4KB)
Self tuning memory
Automatic runstats

Parameter Current Value Recommended Value
(APPLHEAPSZ) = 256 256
(CATALOGCACHE_SZ) = (MAXAPPLS+4) 260
(CHNGPGS_THRESH) = 60 80
(DBHEAP) = 1200 2791
(DFT_DEGREE) =1 1
(DFT_EXTENT_SZ) = 32 32
(DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC
(DFT_QUERYOPT) = 5 5
(4KB) (LOCKLIST) = 100 AUTOMATIC
(LOGBUFSZ) = 8 99
(LOGFILSIZ) = 1000 1024
(LOGPRIMARY) = 3 8
les (LOGSECOND) = 2 3
cations (MAXAPPLS) = AUTOMATIC AUTOMATIC
(MAXLOCKS) = 10 AUTOMATIC
(MINCOMMIT) =1 1
(NUM_IOCLEANERS) =1 1
(NUM_IOSERVERS) = 3 4
(PCKCACHESZ) = (MAXAPPLS*8) 1533
= 100 320
(SORTHEAP) = 256 AUTOMATIC
(STMTHEAP) = 4096 4096
(STAT_HEAP_SZ) = 4384 4384
(UTIL_HEAP_SZ) = 5000 113661
(SELF_TUNING_MEM) = ON ON
(AUTO_RUNSTATS) = ON ON
= 5000 AUTOMATIC

Sort heap thres for shared sorts (4KB) (SHEAPTHRES_ SHR)

57

Chapter 3. Autonomic computing



Table 10. Configuration Advisor sample output (continued)

Former and Applied Values for Bufferpool(s)
Description Parameter  Current Value Recommended Value

IBMDEFAULTBP Bufferpool size = -2 340985

DB210203I AUTOCONFIGURE completed successfully. Database manager or database
configuration values may have been changed. The instance must be restarted before
any changes come into effect. You may also want to rebind your packages after the
new configuration parameters take effect so that the new values will be used.

If you agree with all of the recommendations, either reissue the
AUTOCONFIGURE command but specify that you want the recommended values
to be applied by using the APPLY option, or update individual configuration
parameters using the UPDATE DATABASE MANAGER CONFIGURATION
command and the UPDATE DATABASE CONFIGURATION command.

Utility throttling

Utility throttling regulates the performance impact of maintenance utilities so that
they can run concurrently during production periods. Although the impact policy,
a setting that allows utilities to run in throttled mode, is defined by default, you
must set the impact priority, a setting that each cleaner has indicating its throttling
priority, when you run a utility if you want to throttle it.

The throttling system ensures that the throttled utilities are run as frequently as
possible without violating the impact policy. You can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index cleanups.

You define the impact policy by setting the util_impact_lim configuration
parameter.

Cleaners are integrated with the utility throttling facility. By default, each (index)
cleaner has a utility impact priority of 50 (acceptable values are between 1 and 100,
with 0 indicating no throttling). You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl APL

Asynchronous index cleanup

Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following
operations that invalidate index entries. Depending on the type of index, the
entries can be row identifiers (RIDs) or block identifiers (BIDs). Either way, these
entries are removed by the index cleaners, which operate asynchronously in the
background.

AIC accelerates the detach of a data partition from a partitioned table. If the
partitioned table contains one or more non-partitioned indexes, AIC is initiated. In
this case, AIC removes all non-partitioned index entries that refer to the detached
data partition and any pseudo-deleted entries. After all of the indexes have been
cleaned, the identifier associated with the detached data partition is removed from
the system catalog.

Note: If the partitioned table has dependent materialized query tables (MQTs)
defined, AIC is not initiated until after a SET INTEGRITY operation is performed.

58 Data Servers, Databases, and Database Objects Guide



While AIC is in progress, normal table access is maintained. Queries accessing the
indexes ignore any non-valid entries that have not yet been cleaned.

In most cases, one cleaner is started for each non-partitioned index associated with
the partitioned table. An internal task distribution daemon is responsible for
distributing the AIC tasks to the appropriate database partitions and assigning
database agents.

Both the distribution daemon and cleaner agents are internal system applications.
They appear in the LIST APPLICATION output with the application names
db2taskd and db2aic, respectively. To prevent accidental disruption, system
applications cannot be forced. The distribution daemon remains online as long as
the database is active. The cleaners remain active until the cleaning is complete. If
the database is deactivated while cleaning is in progress, AIC resumes when you
reactivate the database.

Performance
AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted
entry is committed. However, because the lock is never acquired, concurrency is
unaffected.

Each cleaner acquires a minimal table space lock (IX) and table lock (IS). These
locks are released if the cleaner determines that other applications are waiting for
the locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner
has a utility impact priority of 50. You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring

You can monitor AIC with the LIST UTILITIES command. Each index cleaner
appears in the monitor as a separate utility.

The following example demonstrates AIC activity in the WSDB database at the
current database partition using the Command Line Processor (CLP) interface:

$ db2 Tist utilities show detail

ID =2
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number =0
Description = Table: USER1.SALES, Index: USER1.I2
Start Time = 12/15/2005 11:15:01.967939
State = Executing
Invocation Type = Automatic
Throttling:
Priority = 50

Progress Monitoring:

Total Work = 5 pages

Completed Work = 0 pages

Start Time = 12/15/2005 11:15:01.979033
1D =1
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB

Chapter 3. Autonomic computing 59



Partition Number 0

Description = Table: USER1.SALES, Index: USERI1.I1
Start Time = 12/15/2005 11:15:01.978554
State = Executing
Invocation Type = Automatic
Throttling:
Priority = 50

Progress Monitoring:

Total Work = 5 pages

Completed Work = 0 pages

Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One
cleaner is processing index I1; the other is processing index 12. The progress
monitoring section shows the estimated total number of index pages that need
cleaning and the current number of clean index pages.

The State field indicates the current state of the cleaner.Normally, the state is
Executing. The cleaner might be in the Waiting state if the cleaner is waiting to be
assigned to an available database agent or if the cleaner is temporarily suspended
due to lock contention.

Note: Different tasks on different database partitions can have the same utility ID
because each database partition assigns IDs to tasks on that database partition only.

Asynchronous index cleanup for MDC tables

You can enhance the performance of a rollout deletion, an efficient method of
deleting qualifying blocks of data from multidimensional clustering (MDC) tables,
by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of
indexes following operations that invalidate index entries.

During a standard rollout delete, indexes are cleaned up synchronously with the
delete. For tables that contain many record ID (RID) indexes, a significant portion
of the delete time is spent removing index keys that reference the table rows being
deleted. You can speed up the rollout by specifying that these indexes are to be
cleaned up after the delete has been committed.

To take advantage of AIC for MDC tables, you need to explicitly enable the deferred
index cleanup rollout mechanism. There are two methods of specifying a deferred
rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER and issuing
the SET CURRENT MDC ROLLOUT MODE statement. During a deferred index
cleanup rollout, blocks are marked as rolled out without an update to the RID
indexes until after the transaction commits. Block identifier (BID) indexes are still
cleaned up during the delete because they don’t require row-level processing.

Rollout AIC is invoked when a rollout delete is committed or, if the database was
shut down, when the table is first accessed following a restart of the database.
While AIC is in progress, any queries against the indexes work, including those
accessing the index being cleaned up.

There one coordinating cleaner per MDC table. The index cleanup for multiple
rollouts is consolidated in the cleaner. The cleaner spawns a cleanup agent for each
RID index, and the cleanup agents update the RID indexes in parallel. Cleaners are
also integrated with the utility throttling facility. By default, each cleaner has a
utility impact priority of 50 (acceptable values are between 1 and 100, with 0
indicating no throttling). You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

60 Data Servers, Databases, and Database Objects Guide



Monitoring

Because the rolled-out blocks on an MDC table are not reusable until after the
cleanup is complete, it is useful to monitor the progress of a deferred index
cleanup rollout. Use the LIST UTILITIES monitor command to display a utility
monitor entry for each index being cleaned up. You can also query the number of
blocks in the table currently being cleaned up through deferred index cleanup
rollout (BLOCKS_PENDING_CLEANUP) by using the
SYSPROC.ADMIN_GET_TAB_INFO_V95 table function. To query the number of
MDC table blocks pending cleanup at the database level, use the GET SNAPSHOT
command.

In the following sample output for the LIST UTILITIES, progress is indicated by
the number of pages in each index that have been cleaned up. Each phase listed in
the output represents one of the RID indexes being cleaned for the table.

db2 LIST UTILITIES SHOW DETAILS output.

ID =2
Type = MDC ROLLOUT INDEX CLEANUP
Database Name = WSDB
Partition Number =0
Description = TABLE.<schema_name>.<table_name>
Start Time = 06/12/2006 08:56:33.390158
State = Executing
Invocation Type = Automatic
Throttling:
Priority = 50

Progress Monitoring:
Estimated Percentage Complete = 83

Phase Number

1

Description = <schema_name>.<index_name>

Total Work = 13 pages

Completed Work = 13 pages

Start Time = 06/12/2006 08:56:33.391566
Phase Number =2

Description = <schema_name>.<index_name>

Total Work = 13 pages

Completed Work = 13 pages

Start Time = 06/12/2006 08:56:33.391577
Phase Number =3

Description = <schema_name>.<index_name>

Total Work = 9 pages

Completed Work = 3 pages

Start Time = 06/12/2006 08:56:33.391587

Chapter 3. Autonomic computing

61



62 Data Servers, Databases, and Database Objects Guide



Chapter 4. Instances

An instance is a logical database manager environment where you catalog
databases and set configuration parameters. Depending on your needs, you can
create more than one instance on the same physical server providing a unique
database server environment for each instance.

Note: For non-root installations on Linux® and UNIX operating systems, a single
instance is created during the installation of your DB2 product. Additional
instances cannot be created.

You can use multiple instances to do the following:

* Use one instance for a development environment and another instance for a
production environment.

¢ Tune an instance for a particular environment.
* Restrict access to sensitive information.

* Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority for
each instance.

¢ Optimize the database manager configuration for each instance.

* Limit the impact of an instance failure. In the event of an instance failure, only
one instance is affected. Other instances can continue to function normally.

Multiple instances will require:
* Additional system resources (virtual memory and disk space) for each instance.
* More administration because of the additional instances to manage.

The instance directory stores all information that pertains to a database instance.
You cannot change the location of the instance directory once it is created. The
directory contains:

* The database manager configuration file

* The system database directory

* The node directory

* The node configuration file (db2nodes.cfg)

e Any other files that contain debugging information, such as the exception or
register dump or the call stack for the DB2 database processes.

Terminology:

Bit-width
The number of bits used to address virtual memory: 32-bit and 64-bit are
the most common. This term might be used to refer to the bit-width of an
instance, application code, external routine code. 32-bit application means
the same things as 32-bit width application.

32-bit DB2 instance
A DB2 instance that contains all 32-bit binaries including 32-bit shared
libraries and executables.

64-bit DB2 instance
A DB2 instance that contains 64-bit shared libraries and executables, and

© Copyright IBM Corp. 1993, 2009 63



also all 32-bit client application libraries (included for both client and
server), and 32-bit external routine support (included only on a server
instance).

Designing instances

DB2 databases are created within DB2 instances on the database server. The
creation of multiple instances on the same physical server provides a unique
database server environment for each instance.

For example, you can maintain a test environment and a production environment
on the same machine, or you can create an instance for each application and then
fine-tune each instance specifically for the application it will service, or, to protect
sensitive data, you can have your payroll database stored in its own instance so
that owners of other instances (on the same server) cannot see payroll data.

The installation process creates a default DB2 instance, which is defined by the
DB2INSTANCE environment variable. This is the instance that is used for most
operations. However, instances can be created (or dropped) after installation.

When determining and designing the instances for your environment, note that
each instance controls access to one or more databases. Every database within an
instance is assigned a unique name, has its own set of system catalog tables (which
are used to keep track of objects that are created within the database), and has its
own configuration file. Each database also has its own set of grantable authorities
and privileges that govern how users interact with the data and database objects
stored in itshows the hierarchical relationship among systems, instances,
and databases.

Data server (DB_SERVER)

Instance 1 (DB2_DEV) Instance 2 (DB2_PROD)
Database 1 Database 1
(PAYABLE) (PAYABLE)
Database 2 Database 2
(RECEIVABLE) (RECEIVABLE)

Database manager Database manager
Configuration file 1 Configuration file 2

. Database manager P
4 program files -

Figure 2. Hierarchical relationship among DB2 systems, instances, and databases

64 Data Servers, Databases, and Database Objects Guide



You also need to be aware of another particular type of instance called the DB2
administration server (DAS). The DAS is a special DB2 administration control point
used to assist with the administration tasks only on other DB2 servers. A DAS
must be running if you want to use the Client Configuration Assistant to discover
the remote databases or the graphical tools that come with the DB2 product, for
example, the Control Center or the Task Center. There is only one DAS in a DB2
database server, even when there are multiple instances.

Once your instances are created, you can attach to any other instance available
(including instances on other systems). Once attached, you can perform
maintenance and utility tasks that can only be done at the instance level, for
example, create a database, force applications off a database, monitor database
activity, or change the contents of the database manager configuration file that is
associated with that particular instance.

Default instance

As part of your DB2 installation procedure, you create an initial instance of the
database manager called DB2, if there is no other instance called “DB2”. If you have
DB2 Version 8 installed, and you upgrade to Version 9.1 or Version 9.5, the default
instance is “DB2_01".

On Linux and UNIX, the initial instance can be called anything you want within
the naming rules guidelines. The instance name is used to set up the directory
structure.

To support the immediate use of this instance, the following are set during
installation:

e The environment variable DB2INSTANCE is set to “DB2”.
* The registry variable DB2INSTDEEF is set to “DB2”.

These settings establish “DB2” as the default instance. You can change the instance
that is used by default, but first you have to create an additional instance.

Before using the database manager, the database environment for each user must
be updated so that it can access an instance and run the DB2 database programs.
This applies to all users (including administrative users).

On Linux and UNIX operating systems, sample script files are provided to help
you set the database environment. The files are: db2profile for Bourne or Korn
shell, and db2cshrc for C shell. These scripts are located in the sqllib subdirectory
under the home directory of the instance owner. The instance owner or any user
belonging to the instance’s SYSADM group can customize the script for all users of
an instance. Use sqllib/userprofile and sqllib/usercshre to customize a script for
each user.

The blank files sqllib/userprofile and sqllib/usercshrc are created during instance
creation to allow you to add your own instance environment settings. The
db2profile and db2cshrc files are overwritten during an instance update in a DB2
FixPak installation. If you do not want the new environment settings in the
db2profile or db2cshrc scripts, you can override them using the corresponding user
script , which is called at the end of the db2profile or db2cshrc script. During an
instance migration (using the db2imigr command), the user scripts are copied over
so that your environment modifications will still be in use.

The sample script contains statements to:

Chapter 4. Instances 65



* Update a user’s PATH by adding the following directories to the existing search
path: the bin, adm, and misc subdirectories under the sqllib subdirectory of the
instance owner’s home directory.

¢ Set the DB2INSTANCE environment variable to the instance name.

Instance directory

The instance directory stores all information that pertains to a database instance.
The location of the instance directory cannot be changed once it is created.

The instance directory contains:

* The database manager configuration file

* The system database directory

* The node directory

* The node configuration file (db2nodes.cfg)

¢ Other files that contain debugging information, such as the exception or register
dump or the call stack for the DB2 processes.

On Linux and UNIX operating systems, the instance directory is located in the
INSTHOME/sqllib directory, where INSTHOME is the home directory of the
instance owner. The default instance can be called anything you want within the
naming rules guidelines.

On Windows operating systems, the instance directory is located under the /sqllib
directory where the DB2 database product was installed. The instance name is the
same as the name of the service, so it should not conflict. No instance name should
be the same as another service name. You must have the correct authorization to
create a service.

In a partitioned database environment, the instance directory is shared between all
database partition servers belonging to the instance. Therefore, the instance
directory must be created on a network share drive that all computers in the
instance can access.

db2nodes.cfg

The db2nodes.cfg file is used to define the database partition servers that
participate in a DB2 instance. The db2nodes.cfg file is also used to specify the IP
address or host name of a high-speed interconnect, if you want to use a high-speed
interconnect for database partition server communication.

Multiple instances (Linux, UNIX)

It is possible to have more than one instance on a Linux or UNIX operating system
if the DB2 product was installed with root privileges. Although each instance runs
simultaneously, each is independent. Therefore, you can only work within one
instance of the database manager at a time.

Note: To prevent environmental conflicts between two or more instances, you
should ensure that each instance has its own home directory. Errors will be
returned when the home directory is shared. Each home directory can be in the
same or a different file system.

The instance owner and the group that is the System Administration (SYSADM)
group are associated with every instance. The instance owner and the SYSADM

66 Data Servers, Databases, and Database Objects Guide



group are assigned during the process of creating the instance. One user ID or
username can be used for only one instance, and that user ID or username is also
referred to as the instance owner.

Each instance owner must have a unique home directory. All of the configuration
files necessary to run the instance are created in the home directory of the instance
owner’s user ID or username. If it becomes necessary to remove the instance
owner’s user ID or username from the system, you could potentially lose files
associated with the instance and lose access to data stored in this instance. For this
reason, you should dedicate an instance owner user ID or username to be used
exclusively to run the database manager.

The primary group of the instance owner is also important. This primary group
automatically becomes the system administration group for the instance and gains
SYSADM authority over the instance. Other user IDs or usernames that are
members of the primary group of the instance owner also gain this level of
authority. For this reason, you might want to assign the instance owner’s user 1D
or username to a primary group that is reserved for the administration of
instances. (Also, ensure that you assign a primary group to the instance owner
user ID or username; otherwise, the system-default primary group is used.)

If you already have a group that you want to make the system administration
group for the instance, you can simply assign this group as the primary group
when you create the instance owner user ID or username. To give other users
administration authority on the instance, add them to the group that is assigned as
the system administration group.

To separate SYSADM authority between instances, ensure that each instance owner
user ID or username uses a different primary group. However, if you choose to
have a common SYSADM authority over multiple instances, you can use the same
primary group for multiple instances.

Multiple instances (Windows)

It is possible to run multiple instances of the database manager on the same
computer. Each instance of the database manager maintains its own databases and
has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that
can be at different levels of the database manager.

An instance of the database manager consists of the following:

* A Windows service that represents the instance. The name of the service is same
as the instance name. The display name of the service (from the Services panel)
is the instance name, prefixed with the “DB2 - ” string. For example, for an
instance named “DB2”, there exists a Windows service called “DB2” with a
display name of “DB2 - <DB2 Copy Name> - DB2".

Note: A Windows service is not created for client instances.

* An instance directory. This directory contains the database manager
configuration files, the system database directory, the node directory, the
Database Connection Services (DCS) directory, all the diagnostic log and dump
files that are associated with the instance. The instance directory is by default a
sub-directory inside the SQLLIB directory and has the same name as the
instance name. For example, the instance directory for instance “DB2” is
C:\SQLLIB\DB2, where C:\SQLLIB is where the database manager is installed. You

Chapter 4. Instances 67



can use the registry variable DB2INSTPROF to change the default location of the
instance directory. If the DB2INSTPROF registry variable is set to another
location, then the instance directory is created under the directory pointed to by
DB2INSTPROEF. For example, if DB2INSTPROF=D:\DB2PROFS, then the instance
directory will be D:\DB2PROFS\DB2.

— Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command
— Run DB2ICRT.exe command to create the instance.

* When you create an instance on Windows operating systems, the default
locations for user data files, such as instance directories and the db2cli.ini file,
are the following directories:

— Documents and Settings\ All Users\ Application Data\IBM\DB2\copy name
on the Windows XP and Windows 2003 operating systems

— ProgramData\IBM\DB2\copy name on the Windows Vista operating system

Creating instances

Although an instance is created as part of the installation of the database manager,
your business needs might require you to create additional instances.

Prerequisites

If you belong to the Administrative group on Windows, or you have root authority
on Linux or UNIX platforms, you can add additional instances. The computer
where you add the instance becomes the instance-owning computer (node zero).
Ensure that you add instances on a computer where a DB2 administration server
resides. Instance IDs should not be root or have password expired.

Restrictions

* On Linux and UNIX operating systems, additional instances cannot be created
for non-root installations.

* If existing user IDs are used to create DB2 instances, make sure that the user
IDs:
— Are not locked

— Do not have expired passwords

To add an instance using the command line, enter:
db2icrt <instance_name>

When creating instance on an AIX server, you must provide the fenced user id, for
example:

DB2DIR/instance/db2icrt -u db2fencl db2instl

When using the db2icrt command to add another DB2 instance, you should
provide the login name of the instance owner and optionally specify the
authentication type of the instance. The authentication type applies to all databases
created under that instance. The authentication type is a statement of where the
authenticating of users will take place.

You can change the location of the instance directory from DB2PATH using the
DB2INSTPROF environment variable. You require write-access for the instance
directory. If you want the directories created in a path other than DB2PATH, you
have to set DB2INSTPROF before entering the db2icrt command.

68 Data Servers, Databases, and Database Objects Guide



For DB2 Enterprise Server Edition (ESE), you also need to declare that you are
adding a new instance that is a partitioned database system. In addition, when
working with a ESE instance having more than one database partition, and
working with Fast Communication Manager (FCM), you can have multiple
connections between database partitions by defining more TCP/IP ports when
creating the instance.

For example, for Windows operating systems, use the db2icrt command with the -r
<port range> parameter. The port range is shown as follows, where the base_port
is the first port that can be used by FCM, and the end_port is the last port in a
range of port numbers that can be used by FCM:

-r:<base_port,end port>

Modifying instances

Instances are designed to be as independent as possible from the effects of
subsequent installation and removal of products. On Linux and UNIX, you can
update instances after the installation or removal of executables or components. On
Windows, you run the db2iupdt command.

In most cases, existing instances automatically inherit or lose access to the function
of the product being installed or removed. However, if certain executables or
components are installed or removed, existing instances do not automatically
inherit the new system configuration parameters or gain access to all the additional
function. The instance must be updated.

If the database manager is updated by installing a Program Temporary Fix (PTF)
or a patch, all the existing database instances should be updated using the
db2iupdt command (root installations) or the db2nrupdt command (non-root
installations).

You should ensure you understand the instances and database partition servers
you have in an instance before attempting to change or delete an instance.

Updating the instance configuration (Linux, UNIX)

This topic applies to root instances only. To update non-root instances, run the
db2nrupdt command.

Running the db2iupdt command updates the specified instance by performing the
following:

* Replaces the files in the sq11ib subdirectory under the instance owner’s home
directory.

e If the node type has changed, then a new database manager configuration file is
created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sq11ib subdirectory
under the instance owner’s home directory.

The db2iupdt command is found in /usr/opt/db2_09_05/instance/ directory on
AIX. The db2iupdt command is found in /opt/IBM/db2/V9.5/instance/ directory
on HP-UX, Solaris, or Linux.

To update an instance using the command line, enter:
db2iupdt InstName

Chapter 4. Instances 69



The InstName is the login name of the instance owner.

There are other optional parameters associated with this command:

-h or -?
Displays a help menu for this command.

-d Sets the debug mode for use during problem determination.

-a AuthType
Specifies the authentication type for the instance. Valid authentication
types are SERVER, SERVER_ENCRYPT, or CLIENT. If not specified, the
default is SERVER, if a DB2 server is installed. Otherwise, it is set to
CLIENT. The authentication type of the instance applies to all databases
owned by the instance.

-e Allows you to update each instance that exists. Usedb2ilist to list the
existing instances.
-u Fenced ID

Names the user under which the fenced user-defined functions (UDFs) and
stored procedures will execute. This is not required if you install the Data
Server Client or the DB2 Software Developer’s Kit. For other DB2 products,
this is a required parameter. Note: Fenced ID might not be "root” or "bin".

-k This parameter preserves the current instance type. If you do not specify
this parameter, the current instance is upgraded to the highest instance
type available in the following order:

* Partitioned database server with local and remote clients
e Database Server with local and remote clients
e Client

Examples:

* If you installed DB2 Workgroup Server Edition or DB2 Enterprise Server
Edition after the instance was created, enter the following command to update
that instance:

db2iupdt -u db2fencl db2instl

« If you installed the DB2® Connect " Enterprise Edition after creating the instance,
you can use the instance name as the Fenced ID also:

db2iupdt -u db2instl db2instl

* To update client instances, invoke the following command:

db2iupdt db2instl

Updating the instance configuration (Windows)

To update the instance configuration on Windows, use the db2iupdt command.

Running the db2iupdt command updates the specified instance by performing the
following:

* Replaces the files in the sq11ib subdirectory under the instance owner’s home
directory.

* If the node type is changed, then a new database manager configuration file is
created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sq11ib subdirectory
under the instance owner’s home directory.

70 Data Servers, Databases, and Database Objects Guide



The db2iupdt command is found in \sq11ib\bin directory.

The command is used as shown:
db2iupdt InstName

The InstName is the login name of the instance owner.

There are other optional parameters associated with this command:

/h: hostname
Overrides the default TCP/IP host name if there are one or more TCP/IP
host names for the current computer.

/p: instance profile path
Specifies the new instance profile path for the updated instance.

/r: baseport,endport
Specifies the range of TCP/IP ports used by the partitioned database
instance when running with multiple database partitions.

/u: username,password
Specifies the account name and password for the DB2 service.

Working with instances

When working with instances, you can start or stop instances, and attach to or
detach from instances.

Each instance is managed by users who belong to the SYSADM_GROUP defined in
the instance configuration file, also known as the database manager configuration file.
Creating user IDs and user groups is different for each operating environment.

Auto-starting instances

On Windows operating systems, the database instance that is created during install
is set as auto-started by default. An instance created using db2icrt is set as a
manual start. To change the start type, you need to go to the Services panel and
change the property of the DB2 service there.

On UNIX operating systems, to enable an instance to auto-start after each system
restart, enter the following command:

db2iauto -on <instance name>

where <instance name> is the login name of the instance.On UNIX operating
systems, to prevent an instance from auto-starting after each system restart, enter
the following command:

db2iauto -off <instance name>

where <instance name> is the login name of the instance.

Starting instances (Linux, UNIX)

You might need to start or stop a DB2 database during normal business operations,
for example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access host databases.

Before you start an instance on your Linux or UNIX system:

Chapter 4. Instances 71



1. Log in with a user ID or name that has SYSADM, SYSCTRL, or SYSMAINT
authority on the instance; or log in as the instance owner.

2. Run the startup script as follows, where INSTHOME is the home directory of the
instance you want to use:

. INSTHOME/sq11ib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc  (for C shell)

To start the instance using the command line, enter:
db2start

Note: When you run commands to start or stop an instance’s database manager,
the DB2 database manager applies the command to the current instance.

Starting instances (Windows)

You might need to start or stop a DB2 instance during normal business operations,
for example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access a host database.

In order to successfully launch the DB2 database instance as a service from
db2start, the user account must have the correct privilege as defined by the
Windows operating system to start a Windows service. The user account can be a
member of the Administrators, Server Operators, or Power Users group. When
extended security is enabled, only members of the DB2ADMNS and
Administrators groups can start the database by default.

To start an instance using the command line, enter:
db2start

Note: When you run commands to start or stop an instance’s database manager,
the DB2 database manager applies the command to the current instance.

The db2start command will launch the DB2 database instance as a Windows
service. The DB2 database instance on Windows can still be run as a process by
specifying the "/D" switch when invoking db2start. The DB2 database instance can
also be started as a service using the Control Panel or the NET START command.

When running in a partitioned database environment, each database partition
server is started as a Windows service. You can not use the "/D" switch to start a
DB2 instance as a process in a partitioned database environment.

Attaching to and detaching from instances

On all platforms, to attach to another instance of the database manager, which
might be remote, use the ATTACH command. To detach from an instance, use the
DETACH command.

More than one instance must already exist.

To attach to an instance using the command line, enter:
db2 attach to <instance name>

For example, to attach to an instance called testdb2 that was previously cataloged
in the node directory:

db2 attach to testdb2

72  Data Servers, Databases, and Database Objects Guide



After performing maintenance activities for the testdb2 instance, for example, to
detach from an instance using the command line, enter:

db2 detach

Attaching to and detaching from client applications:
* To attach to an instance from a client application, call the sqleatin API,

* To detach from an instance from a client application, call the sqledtin
APL

Working with instances on the same or different DB2 copies

You can run multiple instances concurrently, in the same DB2 copy or in different
DB2 copies.

To work with instances in the same DB2 copy, you need to:
1. Create or migrate all instances to the same DB2 copy.

2. Set the DB2INSTANCE environment variable to the name of the instance you
are working with before issuing commands against that instance.

To prevent one instance from accessing the database of another instance, the
database files for an instance are created under a directory that has the same name
as the instance name. For example, when creating a database on drive C: for
instance “DB2”, the database files are created inside a directory called C:\DB2.
Similarly, when creating a database on drive C: for instance TEST, the database
files are created inside a directory called C:\TEST. By default, its value is the drive
letter where DB2 product is installed. For more information, see the dftdbpath
database manager configuration parameter.

To work with an instance in a system with multiple DB2 copies, use either of the
following methods:

* Using the Command window from the Start » Programs » IBM DB2 » <DB2
Copy Name> » Command Line Tools » Command Window: the Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

* Using db2envar.bat from a Command window:
1. Open a Command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy that
you want the application to use:

<DB2 Copy install dir>\bin\db2envar.bat

Stopping instances (Linux, UNIX)

You might need to stop the current instance of the database manager.
Before you begin

To stop an instance on your Linux or UNIX system, you must do the following:

1. Log in or attach to an instance with a user ID or name that has SYSADM,
SYSCTRL, or SYSMAINT authority on the instance; or, log in as the instance
owner.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT
authority for this.

Chapter 4. Instances 73



3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are
allowed when running this command; however, if there are any instance
attachments, they are forced off before the instance is stopped.

Note: If command line processor sessions are attached to an instance, you must
run the terminate command to end each session before running the db2stop
command. The db2stop command stops the instance defined by the
DB2INSTANCE environment variable.

Note: When you run commands to start or stop an instance’s database manager,
the DB2 database manager applies the command to the current instance.For more
information, see [Setting the current instance environment variables}

Procedure

To stop the instance using the command line, enter: db2stop

You can use the db2stop command to stop, or drop, individual database partitions
within a partitioned database environment. When working in a partitioned
database environment and you are attempting to drop a logical partition using

db2stop drop nodenum <@>

You must ensure that no users are attempting to access the database. If they are,
you will receive an error message SQL6030N.

Stopping instances (Windows)

You might need to stop the current instance of the database manager.
Before you begin

To stop an instance on your system, you must do the following;:

1. The user account stopping the DB2 database service must have the correct
privilege as defined by the Windows operating system. The user account can be
a member of the Administrators, Server Operators, or Power Users group.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT
authority for this.

3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are
allowed when running this command; however, if there are any instance
attachments, they are forced off before the DB2 database service is stopped.

Note: If command line processor sessions are attached to an instance, you must
run the terminate command to end each session before running the db2stop
command. The db2stop command stops the instance defined by the
DB2INSTANCE environment variable.

74  Data Servers, Databases, and Database Objects Guide



Recall that when you are using the database manager in a partitioned database
environment, each database partition server is started as a service. Each service
must be stopped.

Note: When you run commands to start or stop an instance’s database manager,
the database manager applies the command to the current instance. For more
information, see [Setting the current instance environment variables}

Procedure

To stop an instance on your system, use one of the following methods:
* Stop using the db2stop command.
* Stop using the NET STOP command.

 Stop the instance from within an application.

Dropping instances

This topic applies to root instances only on all platforms. To drop non-root
instances, you must uninstall your DB2 product.

To remove an instance, from the command line, enter:
db2idrop <instance_name>

The preparation and details to removing an instance using the command line are:
1. Stop all applications that are currently using the instance.

2. Stop the Command Line Processor by running the terminate commands in each
Command window.

3. Stop the instance by running the db2stop command.

4. Back up the instance directory indicated by the DB2INSTPROF registry
variable.

On Linux and UNIX operating systems, consider backing up the files in the
INSTHOME/sqllib directory (where INSTHOME is the home directory of the
instance owner). For example, you might want to save the database manager
configuration file, db2systm, the db2nodes.cfg file, user-defined functions
(UDFs), or fenced stored procedure applications.

5. (On Linux and UNIX operating systems only) Log off as the instance owner.

6. (On Linux and UNIX operating systems only) Log in as a user with root
authority.

7. Issue the db2idrop command:
db2idrop InstName

where InstName is the name of the instance being dropped.

This command removes the instance entry from the list of instances and
removes the instance directory.

8. (On Linux and UNIX operating systems only) Optionally, as a user with root
authority, remove the instance owner’s user ID and group (if used only for that
instance). Do not remove these if you are planning to re-create the instance.

This step is optional since the instance owner and the instance owner group
might be used for other purposes.

The db2idrop command removes the instance entry from the list of instances and
removes the sqllib subdirectory under the instance owner’s home directory.

Chapter 4. Instances 75



Note: On Linux and UNIX operating systems, when attempting to drop an
instance using the db2idrop command, a message is generated saying that the
sqllib subdirectory cannot be removed, and in the adm subdirectory several files
with the .nfs extension are being generated. The adm subdirectory is an
NFS-mounted system and the files are controlled on the server. You must delete
the *.nfs files from the file server from where the directory is being mounted. Then
you can remove the sqllib subdirectory.

76 Data Servers, Databases, and Database Objects Guide



Chapter 5. Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is an industry standard access
method to directory services. A directory service is a repository of resource
information about multiple systems and services within a distributed environment;
and it provides client and server access to these resources.

Each database server instance publishes its existence to an LDAP server and
provides database information to the LDAP directory when the databases are
created. When a client connects to a database, the catalog information for the
server can be retrieved from the LDAP directory. Each client is no longer required
to store catalog information locally on each machine. Client applications search the
LDAP directory for information required to connect to the database.

A caching mechanism exists so that the client only needs to search the LDAP
directory server once. After the information is retrieved from the LDAP directory
server, it is stored or cached on the local machine based on the values of the
dir_cache database manager configuration parameter and the DB2LDAPCACHE
registry variable. The dir_cache database manager configuration parameter is used
to store database, node, and DCS directory files in a memory cache. The directory
cache is used by an application until the application closes. The DB2LDAPCACHE
registry variable is used to store database, node, and DCS directory files in a local
disk cache.

* If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information
from LDAP.

e If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from
LDAP once and insert it into the DB2 cache.

o If DB2LDAPCACHE=YES or is not set, then read the information from LDAP
once and cache it into the local database, node, and DCS directories.

Note: The DB2LDAPCACHE registry variable is only applicable to the database
and node directories.

Security considerations in an LDAP environment

Before accessing information in the LDAP directory, an application or user is
authenticated by the LDAP server. The authentication process is called binding to
the LDAP server. It is important to apply access control on the information stored
in the LDAP directory to prevent anonymous users from adding, deleting, or
modifying the information.

Access control is inherited by default and can be applied at the container level.
When a new object is created, it inherits the same security attribute as the parent
object. An administration tool available for the LDAP server can be used to define
access control for the container object.

By default, access control is defined as follows:

* For database and node entries in LDAP, everyone (or any anonymous user) has
read access. Only the Directory Administrator and the owner or creator of the
object has read /write access.

© Copyright IBM Corp. 1993, 2009 77



 For user profiles, the profile owner and the Directory Administrator have
read/write access. One user cannot access the profile of another user if that user
does not have Directory Administrator authority.

Note: The authorization check is always performed by the LDAP server and not
by DB2. The LDAP authorization check is not related to DB2 authorization. An
account or authorization ID that has SYSADM authority may not have access to

the LDAP directory.

When running the LDAP commands or APIs, if the bind Distinguished Name
(bindDN) and password are not specified, DB2 binds to the LDAP server using the
default credentials which may not have sufficient authority to perform the
requested commands and an error will be returned.

You can explicitly specify the user’s bindDN and password using the USER and
PASSWORD clauses for the DB2 commands or APIs.

LDAP object classes and attributes used by DB2

The following tables describe the object classes that are used by the DB2 database

manager:

Table 11. cimManagedElement

Class

cimManagedElement

Active Directory LDAP Display Name

Not applicable

Active Directory Common Name (cn)

Not applicable

Description Provides a base class of many of the system management
object classes in the IBM Schema

SubClassOf top

Required Attribute(s)

Optional Attribute(s) description

Type abstract

OID (Object Identifier) 1.3.18.0.2.6.132

GUID (Global Unique Identifier)

b3afd63f-5c5b-11d3-b818-002035559151

Table 12. cimSetting

Class

cimSetting

Active Directory LDAP Display Name

Not applicable

Active Directory Common Name (cn)

Not applicable

Description Provides a base class for configuration and settings in the
IBM Schema

SubClassOf cimManagedElement

Required Attribute(s)

Optional Attribute(s) settingID

Type abstract

OID (object identifier)

1.3.18.0.2.6.131

GUID (Global Unique Identifier)

b3afd64d-5c5b-11d3-b818-002035559151

78  Data Servers, Databases, and Database Objects Guide




Table 13. eProperty

Class

eProperty

Active Directory LDAP Display Name

ibm-eProperty

Active Directory Common Name (cn)

ibm-eProperty

Description Used to specify any application specific settings for user
preference properties

SubClassOf cimSetting

Required Attribute(s)

Optional Attribute(s) property Type
cisPropertyType
cisProperty
cesPropertyType
cesProperty
binPropertyType
binProperty

Type structural

OID (object identifier) 1.3.18.0.2.6.90

GUID (Global Unique Identifier)

b3afd69c¢-5¢5b-11d3-b818-002035559151

Table 14. DB2Node

Class

DB2Node

Active Directory LDAP Display Name

ibm-db2Node

Active Directory Common Name (cn)

ibm-db2Node

Description Represents a DB2 Server
SubClassOf eSap / ServiceConnectionPoint
Required Attribute(s) db2nodeName
Optional Attribute(s) db2nodeAlias
db2instanceName
db2Type
host / dNSHostName (see Note 2)
protocollnformation/ServiceBindingInformation
Type structural
OID (object identifier) 1.3.18.0.2.6.116

GUID (Global Unique Identifier)

b3afd65a-5c5b-11d3-b818-002035559151

Chapter 5. Lightweight Directory Access Protocol (LDAP)

79



Table 14. DB2Node (continued)

Class

DB2Node

Special Notes®

1. The DB2Node class is derived from eSap object class
under IBM Tivoli® Directory Server and from
ServiceConnectionPoint object class under Microsoft®
Active Directory.

2. The host is used under the IBM Tivoli Directory
Server environment. The dNSHostName attribute is
used under Microsoft Active Directory.

3. The protocollnformation is only used under the IBM
Tivoli Directory Server environment. For Microsoft
Active Directory, the attribute
ServiceBindingInformation, inherited from the
ServiceConnectionPoint class, is used to contain the
protocol information.

Table 15. DB2Database

The protocollnformation (in IBM Tivoli Directory Server) or ServiceBindingInformation
(in Microsoft Active Directory) attribute in the DB2Node object contains the
communication protocol information to bind the DB2 database server. It consists of
tokens that describe the network protocol supported. Each token is separated by a
semicolon. There is no space between the tokens. An asterisk (*) may be used to
specify an optional parameter.

The tokens for TCP/IP are:
e “TCPIP”
e Server hostname or IP address

* Service name (svcename) or port number (e.g. 50000)
* (Optional) security (“NONE” or “SOCKS”)

The tokens for Named Pipe are:
e “NPIPE”

* Computer name of the server
* Instance name of the server

Class DB2Database

Active Directory LDAP Display Name ibm-db2Database

Active Directory Common Name (cn) ibm-db2Database

Description Represents a DB2 database

SubClassOf top

Required Attribute(s) db2databaseName
db2nodePtr

80 Data Servers, Databases, and Database Objects Guide




Table 15. DB2Database (continued)

Class

DB2Database

Optional Attribute(s)

db2databaseAlias
db2additionalParameter
db2ARLibrary
db2authenticationLocation
db2gwPtr
db2databaseRelease
DCEPrincipalName
db2altgwPtr

db2altnodePtr

Type

structural

OID (object identifier)

1.3.18.0.2.6.117

GUID (Global Unique Identifier)

b3afd659-5c5b-11d3-b818-002035559151

Table 16. db2additionalParameters

Attribute

db2additionalParameters

Active Directory LDAP Display Name

ibm-db2AdditionalParameters

Active Directory Common Name (cn)

ibm-db2AdditionalParameters

Description Contains any additional parameters used when
connecting to the host database server
Syntax Case Ignore String

Maximum Length

1024

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.426

GUID (Global Unique Identifier)

b3afd315-5c5b-11d3-b818-002035559151

Table 17. db2authenticationLocation

Attribute

db2authenticationLocation

Active Directory LDAP Display Name

ibm-db2AuthenticationLocation

Active Directory Common Name (cn)

ibm-db2AuthenticationLocation

Description

Specifies where authentication takes place

Syntax

Case Ignore String

Maximum Length

64

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.425

GUID (Global Unique Identifier)

b3afd317-5c5b-11d3-b818-002035559151

Notes

Valid values are: CLIENT, SERVER, DCS, DCE,
KERBEROS, SVRENCRYPT, or DCSENCRYPT

Chapter 5. Lightweight Directory Access Protocol (LDAP)

81



Table 18. db2ARLibrary

Attribute

db2ARLibrary

Active Directory LDAP Display Name

ibm-db2ARLibrary

Active Directory Common Name (cn)

ibm-db2ARLibrary

Description

Name of the Application Requestor library

Syntax

Case Ignore String

Maximum Length

256

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.427

GUID (Global Unique Identifier)

b3afd316-5c5b-11d3-b818-002035559151

Table 19. db2databaseAlias

Attribute

db2databaseAlias

Active Directory LDAP Display Name

ibm-db2DatabaseAlias

Active Directory Common Name (cn)

ibm-db2DatabaseAlias

Description Database alias name(s)
Syntax Case Ignore String
Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.422

GUID (Global Unique Identifier)

b3afd318-5c5b-11d3-b818-002035559151

Table 20. db2databaseName

Attribute

db2databaseName

Active Directory LDAP Display Name

ibm-db2DatabaseName

Active Directory Common Name (cn)

ibm-db2DatabaseName

Description

Database name

Syntax

Case Ignore String

Maximum Length

1024

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.421

GUID (Global Unique Identifier)

b3afd319-5c¢5b-11d3-b818-002035559151

Table 21. db2databaseRelease

Attribute

db2databaseRelease

Active Directory LDAP Display Name

ibm-db2DatabaseRelease

Active Directory Common Name (cn)

ibm-db2DatabaseRelease

Description

Database release number

Syntax

Case Ignore String

Maximum Length

64

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.429

82  Data Servers, Databases, and Database Objects Guide




Table 21. db2databaseRelease (continued)

Attribute

db2databaseRelease

GUID (Global Unique Identifier)

b3afd31a-5c5b-11d3-b818-002035559151

Table 22. db2nodeAlias

Attribute

db2nodeAlias

Active Directory LDAP Display Name

ibm-db2NodeAlias

Active Directory Common Name (cn)

ibm-db2NodeAlias

Description Node alias name(s)
Syntax Case Ignore String
Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.420

GUID (Global Unique Identifier)

b3afd31d-5¢5b-11d3-b818-002035559151

Table 23. db2nodeName

Attribute

db2nodeName

Active Directory LDAP Display Name

ibm-db2NodeName

Active Directory Common Name (cn)

ibm-db2NodeName

Description

Node name

Syntax

Case Ignore String

Maximum Length

64

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.419

GUID (Global Unique Identifier)

b3afd31e-5c5b-11d3-b818-002035559151

Table 24. db2nodePtr

Attribute

db2nodePtr

Active Directory LDAP Display Name

ibm-db2NodePtr

Active Directory Common Name (cn)

ibm-db2NodePtr

Description Pointer to the Node (DB2Node) object that represents the
database server which owns the database
Syntax Distinguished Name

Maximum Length

1000

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.423

GUID (Global Unique Identifier)

b3afd31f-5c5b-11d3-b818-002035559151

Special Notes

This relationship allows the client to retrieve protocol
communication information to connect to the database

Table 25. db2altnodePtr

Attribute

db2altnodePtr

Active Directory LDAP Display Name

ibm-db2AltNodePtr

Chapter 5. Lightweight Directory Access Protocol (LDAP) 83



Table 25. db2altnodePtr (continued)

Attribute

db2altnodePtr

Active Directory Common Name (cn)

ibm-db2AltNodePtr

Description Pointer to the Node (DB2Node) object that represents the
alternate database server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3093

GUID (Global Unique Identifier)

5694€266-2059-4e32-971e-0778909e0e72

Table 26. db2gwPtr

Attribute

db2gwPtr

Active Directory LDAP Display Name

ibm-db2GwPtr

Active Directory Common Name (cn)

ibm-db2GwPtr

Description Pointer to the Node object that represents the gateway
server and from which the database can be accessed
Syntax Distinguished Name

Maximum Length

1000

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.424

GUID (Global Unique Identifier)

b3afd31b-5c5b-11d3-b818-002035559151

Table 27. db2altgwPtr

Attribute

db2altgwPtr

Active Directory LDAP Display Name

ibm-db2 AltGwPtr

Active Directory Common Name (cn)

ibm-db2 AltGwPtr

Description Pointer to the Node object that represents the alternate
gateway server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3092

GUID (Global Unique Identifier)

70ab425d-65cc-4d7£-91d8-084888b3a6db

Table 28. db2instanceName

Attribute

db2instanceName

Active Directory LDAP Display Name

ibm-db2InstanceName

Active Directory Common Name (cn)

ibm-db2InstanceName

Description

The name of the database server instance

Syntax

Case Ignore String

Maximum Length

256

Multi-Valued

Single-valued

84  Data Servers, Databases, and Database Objects Guide




Table 28. db2instanceName (continued)

Attribute

db2instanceName

OID (object identifier)

1.3.18.0.2.4.428

GUID (Global Unique Identifier)

b3afd31c-5¢5b-11d3-b818-002035559151

Table 29. db2Type

Attribute

db2Type

Active Directory LDAP Display Name

ibm-db2Type

Active Directory Common Name (cn)

ibm-db2Type

Description

Type of the database server

Syntax

Case Ignore String

Maximum Length

64

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.418

GUID (Global Unique Identifier)

b3afd320-5c5b-11d3-b818-002035559151

Notes

Valid types for database server are: SERVER, MPP, and
DCS

Table 30. DCEPrincipalName

Attribute

DCEPrincipalName

Active Directory LDAP Display Name

ibm-DCEPrincipalName

Active Directory Common Name (cn)

ibm-DCEPrincipalName

Description

DCE principal name

Syntax

Case Ignore String

Maximum Length

2048

Multi-Valued

Single-valued

OID (object identifier)

1.3.18.0.2.4.443

GUID (Global Unique Identifier)

b3afd32d-5¢5b-11d3-b818-002035559151

Table 31. cesProperty

Attribute

cesProperty

Active Directory LDAP Display Name

ibm-cesProperty

Active Directory Common Name (cn)

ibm-cesProperty

Description

Values of this attribute may be used to provide
application-specific preference configuration parameters.
For example, a value may contain XML-formatted data.
All values of this attribute must be homogeneous in the
cesPropertyType attribute value.

Syntax

Case Exact String

Maximum Length

32700

Multi-Valued

Multi-valued

OID (object identifier)

1.3.18.0.2.4.307

GUID (Global Unique Identifier)

b3afd2d5-5¢5b-11d3-b818-002035559151

Chapter 5. Lightweight Directory Access Protocol (LDAP) 85



Table 32. cesPropertyType

Attribute

cesPropertyType

Active Directory LDAP Display Name

ibm-cesPropertyType

Active Directory Common Name (cn)

ibm-cesPropertyType

Description Values of this attribute may be used to describe the
syntax, semantics, or other characteristics of all of the
values of the cesProperty attribute. For example, a value
of “XML” might be used to indicate that all the values of
the cesProperty attribute are encoded as XML syntax.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.308

GUID (Global Unique Identifier)

b3afd2d6-5¢5b-11d3-b818-002035559151

Table 33. cisProperty

Attribute

cisProperty

Active Directory LDAP Display Name

ibm-cisProperty

Active Directory Common Name (cn)

ibm-cisProperty

Description Values of this attribute may be used to provide
application-specific preference configuration parameters.
For example, a value may contain an INI file. All values
of this attribute must be homogeneous in their
cisPropertyType attribute value.

Syntax Case Ignore String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.309

GUID (Global Unique Identifier)

b3afd2e0-5c5b-11d3-b818-002035559151

Table 34. cisPropertyType

Attribute

cisPropertyType

Active Directory LDAP Display Name

ibm-cisPropertyType

Active Directory Common Name (cn)

ibm-cisPropertyType

Description Values of this attribute may be used to describe the
syntax, semantics, or other characteristics of all of the
values of the cisProperty attribute. For example, a value
of “INI File” might be used to indicate that all the values
of the cisProperty attribute are INI files.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.310

GUID (Global Unique Identifier)

b3afd2el-5c5b-11d3-b818-002035559151

86 Data Servers, Databases, and Database Objects Guide




Table 35. binProperty

Attribute binProperty

Active Directory LDAP Display Name ibm-binProperty

Active Directory Common Name (cn) ibm-binProperty

Description Values of this attribute may be used to provide
application-specific preference configuration parameters.
For example, a value may contain a set of
binary-encoded Lotus® 123 properties. All values of this
attribute must be homogeneous in their binPropertyType
attribute values.

Syntax binary

Maximum Length 250000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.305

GUID (Global Unique Identifier)

b3afd2ba-5c5b-11d3-b818-002035559151

Table 36. binPropertyType

Attribute binPropertyType
Active Directory LDAP Display Name ibm-binPropertyType
Active Directory Common Name (cn) ibm-binPropertyType

Description Values of this attribute may be used to describe the
syntax, semantics, or other characteristics of all of the
values of the binProperty attribute. For example, a value
of “Lotus 123” might be used to indicate that all the
values of the binProperty attribute are binary-encoded
Lotus 123 properties.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.306

GUID (Global Unique Identifier)

b3afd2bb-5c5b-11d3-b818-002035559151

Table 37. PropertyType

Attribute PropertyType
Active Directory LDAP Display Name ibm-propertyType
Active Directory Common Name (cn) ibm-propertyType

Description Values of this attribute describe the semantic
characteristics of the eProperty object

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.320

GUID (Global Unique Identifier)

b3afd4ed-5c5b-11d3-b818-002035559151

Chapter 5. Lightweight Directory Access Protocol (LDAP) 87



Table 38. settinglD

Attribute settingID

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description A naming attribute that may be used to identify the
cimSetting derived object entries such as eProperty

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.325

GUID (Global Unique Identifier) b3afd596-5c¢5b-11d3-b818-002035559151

Extending the LDAP directory schema with DB2 object classes and
attributes

The LDAP Directory Schema defines object classes and attributes for the
information stored in the LDAP directory entries. An object class consists of a set
of mandatory and optional attributes. Every entry in the LDAP directory has an
object class associated with it.

Before the DB2 database manager can store information in LDAP, the Directory
Schema for the LDAP server must include the object classes and attributes that the
DB2 database system uses. The process of adding new object classes and attributes
to the base schema is called schema extension.

Supported LDAP client and server configurations

The following table summarizes the supported LDAP client and server
configurations.

Table 39. Supported LDAP client and server configurations

LDAP servers
IBM Tivoli Directory | Microsoft Active Sun One LDAP
LDAP clients server ' Directory server * server
IBM LDAP Client * Supported Supported Supported
Microsoft Supported Supported Supported
LDAP/ADSI Client *

« ' IBM Tivoli Directory Server is an LDAP Version 3 server and is available for
Windows, AIX, Solaris, Linux, and HP-UX. It is shipped as part of the base
operating system on AIX and System i", and with OS/390° Security Server.

* 2 Microsoft Active Directory server is an LDAP Version 3 server and is available
as part of the Windows 2000 Server and Windows Server 2003 family of
operating systems.

« 3 The DB2 database system supports IBM LDAP client on AIX, Solaris, HP-UX
11.11, Windows, and Linux.

* * The Microsoft LDAP Client is included with the Windows operating system.

Note: When running on Windows operating systems, the DB2 database manager
supports using either the IBM LDAP client or the Microsoft LDAP client. To

88 Data Servers, Databases, and Database Objects Guide



explicitly select the IBM LDAP client, use the db2set command to set the
DB2LDAP_CLIENT_PROVIDER registry variable to IBM. The Microsoft LDAP
Client is included with the Windows operating system.

LDAP support and DB2 Connect

If LDAP support is available at the DB2 Connect gateway, and the database is not
found at the gateway database directory, then the DB2 database manager will look
up the database location in LDAP and will attempt to keep the found information.

Registering host databases in LDAP

When you register host databases in LDAP, there are two possible configurations:
direct connection to the host databases or, connection to the host database though a
gateway.

For direct connection to the host databases, you register the host server in LDAP,
then catalog the host database in LDAP specifying the node name of the host
server. For connection to the host database though a gateway, you register the
gateway server in LDAP, then catalog the host database in LDAP specifying the
node name of the gateway server.

If LDAP support is available at the DB2 Connect gateway, and the database is not
found at the gateway database directory, the DB2 database system looks up LDAP
and attempts to keep the found information.

The following example shows both cases, consider the following: Suppose there is
a host database called NIJAGARA_FALLS. It can accept incoming connections using
TCP/IP. If the client cannot connect directly to the host because it does not have
DB2 Connect, then it connects using a gateway called goto@niagara.

The following steps need to be done:

1. Register the host database server in LDAP for TCP/IP connectivity. The
TCP/IP hostname of the server is "myhost” and the port number is "446". The
NODETYPE clause is set to DCS to indicate that this is a host database server.

db2 register ldap as nftcpip tcpip hostname myhost svcename 446
remote mvssys instance mvsinst nodetype dcs

2. Register a DB2 Connect gateway server in LDAP for TCP/IP connectivity. The
TCP/IP hostname for the gateway server is "niagara” and the port number is
"50000".

db2 register ldap as whasf tcpip hostname niagara svcename 50000
remote niagara instance goto nodetype server

3. Catalog the host database in LDAP using TCP/IP connectivity. The host
database name is "NIAGARA_FALLS", the database alias name is "nftcpip”.
The GWNODE clause is used to specify the nodename of the DB2 Connect
gateway server.

db2 catalog ldap database NIAGARA_FALLS as nftcpip at node nftcpip
gwnode whasf authentication server

After completing the registration and cataloging shown above, if you want to
connect to the host using TCPIP, you connect to nftcpip. If you do not have DB2
Connect on your client workstation, the connection goes through the gateway
using TCPIP. From the gateway, it connects to the host using TCP/IP.

In general, you can manually configure host database information in LDAP so that
each client does not need to manually catalog the database and node locally on
each machine. The process follows:

Chapter 5. Lightweight Directory Access Protocol (LDAP) 89



1. Register the host database server in LDAP. You must specify the remote
computer name, instance name, and the node type for the host database server
in the REGISTER command using the REMOTE, INSTANCE, and NODETYPE
clauses respectively. The REMOTE clause can be set to either the host name or
the LU name of the host server machine. The INSTANCE clause can be set to
any character string that has eight characters or less. (For example, the instance
name can be set to "DB2".) The NODETYPE clause must be set to DCS to
indicate that this is a host database server.

2. Register the host database in LDAP using the CATALOG LDAP DATABASE
command. Any additional DRDA® parameters can be specified by using the
PARMS clause. The database authentication type should be set to SERVER.

Extending the directory schema for IBM Tivoli Directory
Server

If you are using IBM Tivoli Directory Server, all the object classes and attributes
that are required by the DB2 database before Version 8.2 are included in the base
schema.

Run the following command to extend the base schema with new DB2 database
attributes introduced in Version 8.2, and later:

1dapmodify -c -h machine_name:389 -D dn -w password -f altgwnode.ldif

The following is the content of the altgwnode.ldif file:

90 Data Servers, Databases, and Database Objects Guide



dn: cn=schema

changetype: modify
add: attributetypes
attributetypes: (

1.3.18.0.2.4.3092

NAME 'db2altgwPtr'

DESC 'DN pointer to DB2 alternate gateway (node) object'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
add: ibmattributetypes

ibmattributetypes: (

1.3.18.0.2.4.3092

DBNAME ('db2altgwPtr' 'db2altgwPtr')

ACCESS-CLASS NORMAL

LENGTH 1000)

dn: cn=schema
changetype: modi fy

add: attributetypes
attributetypes: (

1.3.18.0.2.4.3093

NAME 'db2altnodePtr'

DESC 'DN pointer to DB2 alternate node object'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

add: ibmattributetypes
ibmattributetypes: (

1.3.18.0.2.4.3093

DBNAME ('db2altnodePtr' 'db2altnodePtr')
ACCESS-CLASS NORMAL

LENGTH 1000)

dn: cn=schema
changetype: modi fy
replace: objectclasses

objectclasses: (

1.3.18.0.2.6.117

NAME 'DB2Database'’

DESC 'DB2 database'

SUP cimSetting

MUST ( db2databaseName § db2nodePtr )

MAY ( db2additionalParameters $ db2altgwPtr $ db2altnodePtr
$ db2ARLibrary § db2authenticationLocation $ db2databaseAlias
$ db2databaseRelease § db2gwPtr § DCEPrincipalName ) )

The altgwnode.ldif and altgwnode.readmefiles can be found at URL:
|ftp: / / ftp.software.ibm.com /ps/products/db2 /tools/ ldap|

After adding the DB2 schema definition, the Directory Server must be restarted for
all changes to be active.

Netscape LDAP directory support and attribute definitions
The supported level for Netscape LDAP Server is Version 4.12, or later.

Within Netscape LDAP Server Version 4.12, or later, the Netscape Directory Server
allows applications to extend the schema by adding attribute and object class
definitions to the following two files, slapd.user_oc.conf and slapd.user_at.conf.
These two files are located in the <Netscape_install path>\slapd-<machine name>\
config directory.

Chapter 5. Lightweight Directory Access Protocol (LDAP) 91


ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

Note: If you are using Sun One Directory Server 5.0, refer to the topic about
extending the directory schema for the Sun One Directory Server.

The DB2 attributes must be added to the slapd.user_at.conf as follows:

lfdgdsdddsddddddddddsdsdsdsdsdaddddddsdsdsdsdsdsdsdsddddddsdaddadadadadddsd
#

IBM DB2 Database

Attribute Definitions

#
#
#
# bin —> binary

# ces —> case exact string

# cis —> case insensitive string
# dn —> distinguished name

#
#

#H######HF A A FF A A AR A AR A A A A A AR A A A A A A A A

attribute binProperty 1.3.18.0.2.4.305 bin
attribute binPropertyType 1.3.18.0.2.4.306 cis
attribute cesProperty 1.3.18.0.2.4.307 ces
attribute cesPropertyType 1.3.18.0.2.4.308 cis
attribute cisProperty 1.3.18.0.2.4.309 cis
attribute cisPropertyType 1.3.18.0.2.4.310 cis
attribute propertyType 1.3.18.0.2.4.320 cis
attribute systemName 1.3.18.0.2.4.329 cis
attribute db2nodeName 1.3.18.0.2.4.419 cis
attribute db2nodeAlias 1.3.18.0.2.4.420 cis
attribute db2instanceName 1.3.18.0.2.4.428 cis
attribute db2Type 1.3.18.0.2.4.418 cis
attribute db2databaseName 1.3.18.0.2.4.421 cis
attribute db2databaseAlias 1.3.18.0.2.4.422 cis
attribute db2nodePtr 1.3.18.0.2.4.423 dn
attribute db2gwPtr 1.3.18.0.2.4.424 dn
attribute db2additionalParameters 1.3.18.0.2.4.426 cis
attribute db2ARLibrary 1.3.18.0.2.4.427 cis
attribute db2authenticationLocation 1.3.18.0.2.4.425 cis
attribute db2databaseRelease 1.3.18.0.2.4.429 cis
attribute DCEPrincipalName 1.3.18.0.2.4.443 cis

The DB2 object classes must be added to the slapd.user_oc.conf file as follows:

lfdddgdsdsdsdadddastadadsdsdsdadadadadasdadsdadsdsdsdadagddsdadsaadadadadaii
#

# IBM DB2 Database

# Object Class Definitions

#
[ddddsdsdsdsdsddddddddddddsdsdadsdadadaddddsdsdadsdadsdddddddddsdadadadadddd

objectclass eProperty

oid 1.3.18.0.2.6.90

requires
objectClass

allows
cn,
propertyType,
binProperty,
binPropertyType,
cesProperty,
cesPropertyType,
cisProperty,
cisPropertyType

objectclass eApplicationSystem
oid 1.3.18.0.2.6.84
requires
objectClass,
systemName

92  Data Servers, Databases, and Database Objects Guide



objectclass DB2Node

oid 1.3.18.0.2.6.116

requires
objectClass,
db2nodeName

allows
db2nodeAlias,
host,
db2instanceName,
db2Type,
description,
protocolInformation

objectclass DB2Database

oid 1.3.18.0.2.6.117

requires
objectClass,
db2databaseName,
db2nodePtr

allows
db2databaseAlias,
description,
db2gwPtr,
db2additionalParameters,
db2authenticationlLocation,
DCEPrincipalName,
db2databaseRelease,
db2ARLibrary

After adding the DB2 schema definition, the Directory Server must be restarted for
all changes to be active.

Extending the directory schema for Sun One Directory Server

The Sun One Directory Server is also known as the Netscape or iPlanet directory
server.

To have the Sun One Directory Server work in your environment, add the
60ibmdb2.1dif file to the following directory:

On Windows, if you have iPlanet installed in C:\iPlanet\Servers, add the above
file to .\sldap-<machine_name>\config\schema.

On UNIX, if you have iPlanet installed in /usr/iplanet/servers, add the above file
to ./slapd-<machine_name>/config/schema.

The following is the contents of the file:

[fdgdzdsdsdsdsddddddadsdsdsdadadsdsddddsdsdsdgdsdsdsdsdsddddsdsddaddadadsdd
# IBM DB2 Database
[fdgddsdsdddsddddddsdsdsdsdadadsdsddddddadsdsdsdsdsdsdddadadadadadadadaddad
dn: cn=schema
[fddsdsdsdddsddddddsdddsdsdadadsdddddddsdsdsdadadadsdddddadddadadadadaddad
# Attribute Definitions (Before V8.2)
[ddddsdsdsdsdaddddddddddsdadadadsdaddddddddsdgdadadadsdaddddsddddadadadaddad
attributetypes: ( 1.3.18.0.2.4.305 NAME 'binProperty'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.306 NAME 'binPropertyType'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.307 NAME 'cesProperty'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.308 NAME 'cesPropertyType'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )

Chapter 5. Lightweight Directory Access Protocol (LDAP) 93



attributetypes: ( 1.3.18.0.2.4.309 NAME 'cisProperty'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.310 NAME 'cisPropertyType'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.320 NAME 'propertyType'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.329 NAME 'systemName'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.419 NAME 'db2nodeName'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.420 NAME 'db2nodeAlias'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.428 NAME 'db2instanceName'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.418 NAME 'db2Type'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.421 NAME 'db2databaseName’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.422 NAME 'db2databaseAlias'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.426 NAME 'db2additionalParameters’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.427 NAME 'db2ARLibrary'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.425 NAME 'db2authenticationlLocation’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.429 NAME 'db2databaseRelease’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.443 NAME 'DCEPrincipalName’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.423 NAME 'db2nodePtr'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.424 NAME 'db2gwPtr'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN 'IBM DB2' )
fdddddsdddaddddsddddasddsaddssdddsdddssdddsadddsdddsadddsdddsaddaadddsddddsdd
# Attribute Definitions (V8.2 and later)
fdddddsddddsdddsaddasddsadddsdddsdddsdddsaddssdddsadddsdddsaddaaadsadddsdd
attributetypes: ( 1.3.18.0.2.4.3092 NAME 'db2altgwPtr'

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN 'IBM DB2' )
attributetypes: ( 1.3.18.0.2.4.3093 NAME 'db2altnodePtr'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN 'IBM DB2' )

iddssaddddddassaddddddsssadddddsssasdddddsssasddsddsstasdddddsssdsddddaaddi
# Object Class Definitions
# DB2Database for V8.2 has the above two new optional attributes.
[fddzddzddadzdsddsddsdsadsddadsdstdsddsdsadsdatdsddadsadadaaddaddaddadaddsdd
objectClasses: ( 1.3.18.0.2.6.90 NAME 'eProperty'
SUP top STRUCTURAL MAY ( cn $ propertyType $ binProperty
$ binPropertyType $ cesProperty $ cesPropertyType § cisProperty
$ cisPropertyType ) X-ORIGIN 'IBM DB2' )
objectClasses: ( 1.3.18.0.2.6.84 NAME 'eApplicationSystem'
SUP top STRUCTURAL MUST systemName
X-ORIGIN 'IBM DB2' )
objectClasses: ( 1.3.18.0.2.6.116 NAME 'DB2Node'’
SUP top STRUCTURAL MUST db2nodeName MAY ( db2instanceName § db2nodeAlias
$ db2Type $ description $ host $ protocolInformation )
X-ORIGIN 'IBM DB2' )
objectClasses: ( 1.3.18.0.2.6.117 NAME 'DB2Database’
SUP top STRUCTURAL MUST (db2databaseName § db2nodePtr ) MAY
( db2additionalParameters $ db2altgwPtr $ db2altnodePtr § db2ARLibrary
$ db2authenticationlLocation $ db2databaseAlias $ db2databaseRelease
$ db2gwPtr $ DCEPrincipalName $ description )
X-ORIGIN 'IBM DB2' )

The 60ibmdb2.1dif and 60ibmdb2.readmefiles can be found at URL:
ftp:/ / ftp.software.ibm.com/ps/products/db2/tools/ldap

94  Data Servers, Databases, and Database Objects Guide



After adding the DB2 schema definition, the Directory Server must be restarted for
all changes to be active.

Windows Active Directory

The DB2 database servers are published in the Active Directory as the
ibm_db2Node objects. The ibm_db2Node object class is a subclass of the
ServiceConnectionPoint (SCP) object class.

Each ibm_db2Node object contains protocol configuration information to allow
client applications to connect to the DB2 database server. When a new database is
created, the database is published in the Active Directory as the ibm_db2Database
object under the ibm_db2Node object.

When connecting to a remote database, a DB2 client queries the Active Directory,
through the LDAP interface, for the ibm_db2Database object. The protocol
communication to connect to the database server (binding information) is obtained
from the ibm_db2Node object, which the ibm_db2Database object is created under.

Property pages for the ibm_db2Node and ibm_db2Database objects can be viewed
or modified using the Active Directory Users and Computer Management Console
(MMC) at a domain controller. To set up the property page, run the regsrv32
command to register the property pages for the DB2 objects as follows:

regsvr32 %DB2PATH%\bin\db2ads.d11

You can view the objects by using the Active Directory Users and Computer
Management Console (MMC) at a domain controller. To get to this administration
tool, follow Start—> Program—> Administration Tools—> Active Directory Users
and Computer.

Note: You must select Users, Groups, and Computers as containers from the View
menu to display the DB2 database objects under the computer objects.

Note: If the DB2 database system is not installed on the domain controller, you can
still view the property pages of DB2 database objects by copying the db2ads.dll file
from %DB2PATH%\bin and the resource DLL db2adsr.dll from
%DB2PATH%\msg\locale-name to a local directory on the domain controller. (The
directory where you place these two copied files must be one of those found in the
PATH environment variable.) Then, you run the regsvr32 command from the local
directory to register the DLL.

Configuring the DB2 database manager to use Active Directory

In order to access Microsoft Active Directory, ensure that the following conditions
are met:

1. The machine that runs DB2 database must belong to a Windows 2000 or
Windows Server 2003 domain.

2. The Microsoft LDAP client is installed. The Microsoft LDAP client is part of the
Windows 2000, Windows XP, and Windows Server 2003 operating systems.

3. Enable LDAP support. For more information, see “Extending the Active
Directory Schema for LDAP directory services (Windows)” in Quick Beginnings
for DB2 Servers.

4. Log on to a domain user account when running the DB2 database system to
read information from the Active Directory.

Chapter 5. Lightweight Directory Access Protocol (LDAP) 95



Security considerations for Active Directory

The DB2 database and node objects are created under the computer object of the
machine where the DB2 server is installed in the Active Directory. To register a
database server or to catalog a database in the Active Directory, you need to have
sufficient access to create or update the objects under the computer object.

By default, objects under the computer object are readable by any authenticated
users and can be updated by administrators (users that belong to the
Administrators, Domain Administrators, and Enterprise Administrators groups). To
grant access for a specific user or a group, use the Active Directory Users and
Computer Management Console (MMC) as follows:

1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and
Computer)

2. Under View, select Advanced Features
3. Select the Computers container

4. Right click on the computer object that represents the server machine where
DB2 is installed and select Properties

5. Select the Security tab, then add the required access to the specified user or
group

The DB2 registry variables and CLI settings at the user level are maintained in the
DB2 property object under the user object. To set the DB2 registry variables or CLI
settings at the user level, a user needs to have sufficient access to create objects
under the User object.

By default, only administrators have access to create objects under the User object.
To grant access to a user to set the DB2 registry variables or CLI settings at the
user level, use the Active Directory Users and Computer Management Console
(MMC) as follows:

1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and
Computer)

Select the user object under the Users container

Right click on the user object and select Properties
Select the Security tab

Add the user name to the list by using the Add button
Grant “Write”, and “Create All Child Objects” access

Using the Advanced setting, set permissions to apply onto “This object and all
child objects”

8. Select the check box “Allow inheritable permissions from parent to propagate
to this object”

No o koD

DB2 objects in the Active Directory

The DB2 database manager creates objects in the Active Directory at two locations:

1. The DB2 database and node objects are created under the computer object of
the machine where the DB2 server is installed. For the DB2 server machine that
does not belong to the Windows domain, the DB2 database and node objects
are created under the “System” container.

2. The DB2 registry variables and CLI settings at the user level are stored in the
DB2 property objects under the User object. These objects contain information
that is specific to that user.

96 Data Servers, Databases, and Database Objects Guide



Extending the directory schema for Active Directory

Before the DB2 database manager can store information in the Active Directory, the
directory schema needs to be extended to include the new DB2 database object
classes and attributes. The process of adding new object classes and attributes to
the directory schema is called schema extension.

You must extend the schema for Active Directory by running the DB2 Schema
Installation program, db2schex. You should run this command before installing
DB2 products and creating databases, otherwise you have to manually register the
node and catalog the databases.

The db2schex program is included on the product CD-ROM in the following
location: x:\db2\windows\utilities\ where x: is the DVD drive letter.

To update the schema, you must be a member of the Schema Administrators group
or have been delegated the rights to update the schema. Run the following
command on any machine that is part of the Windows domain:

runas /user:MyDomain\Administrator x:\db2\Windows\utilities\db2schex.exe
where x: represents the DVD drive letter.

If you have run the db2schex command in an earlier version of the DB2 database
management system, when you run this same command again on DB2 UDB
Version 8.2, or later, the following two optional attributes are added to the
ibm-db2Database class:

ibm-db2AT1tGwPtr
ibm-db2NodePtr

If you have not run the db2schex command on an earlier version of the DB2
database management system on Windows, when you run this same command on
DB2Version 9.5, or later, all the classes and attributes for DB2 database system
LDAP support are added.

There are other optional clauses associated with this command. For more
information, refer to the “db2schex - Active Directory schema extension command”
topic.

Examples:
* To install the DB2 database schema:
db2schex
* To install the DB2 database schema and specify a bind DN and password:

db2schex -b "cn=A Name,dc=torontol,dc=ibm,dc=com"
-w password

Or,
db2schex -b Administrator -w password
* To uninstall the DB2 database schema:
db2schex -u
* To uninstall the DB2 database schema and ignore errors:
db2schex -u -k

Chapter 5. Lightweight Directory Access Protocol (LDAP) 97



Enabling LDAP support after DB2 installation is complete

Before you can use LDAP, you must enable it after the DB2 product installation is
complete.

To enable LDAP support:
1. On any machine that is part of a Windows domain, perform the following
steps:

a. If you did not do so before installing the DB2 product, you must extend the
directory schema if you want to use Microsoft Active Directory. For more
information, see the “Extending the directory schema for Active Directory”
topic.

b. Install the LDAP support binary files by running the DB2 Setup program
and selecting the LDAP Directory Exploitation support from Custom install.
The Setup program sets automatically the DB2 registry variable
DB2_ENABLE_LDAP to YES which is a required setting to enable LDAP
support.

c. Optional: To use the IBM LDAP client instead of the Microsoft LDAP client,
set the DB2LDAP_CLIENT_PROVIDER registry variable to IBM.

2. On each LDAP client, perform the following steps:

a. Specify the TCP/IP host name and optionally the port number of the LDAP
server by running the following command: db2set
DB2LDAPHOST=base_domain_name[:port_number] where base_domain_name is
the TCP/IP hostname, and [:port_number] is the port number. If you do not
specify a port number, the default LDAP port number 389 is used.

DB2 objects are located in the LDAP base distinguished name (baseDN).
You can configure the baseDN on each machine by running the following
command:

db2set DB2LDAP_BASEDN=baseDN

where baseDN is the name of the LDAP suffix that is defined at the LDAP
server.

b. Optional: To use LDAP to store DB2 user-specific information, enter the
distinguished name (DN) and password of the LDAP user.

3. If you extended the directory schema after installing the DB2 product, perform
the following steps:

a. Register the current instance of the DB2 server in LDAP by running the
following command:

db2 register 1dap as node-name protocol tcpip
b. Register specific databases in LDAP by running the following command:
db2 catalog ldap database dbname as alias_dbname

You can now register the LDAP entries.

Registering LDAP entries

Registration of DB2 servers after installation

Each DB2 server instance must be registered in LDAP to publish the protocol
configuration information that is used by the client applications to connect to the
DB2 server instance.

98 Data Servers, Databases, and Database Objects Guide



When registering an instance of the database server, you need to specify a node
name. The node name is used by client applications when they connect or attach to
the server. You can catalog another alias name for the LDAP node by using the
CATALOG LDAP NODE command.

Note: If you are working in a Windows domain environment, then during
installation the DB2 server instance is automatically registered in the Active
Directory with the following information:

nodename: TCP/IP hostname
protocol type: TCP/IP

If the TCP/IP hostname is longer than 8 characters, it will be truncated to 8
characters.

The REGISTER command appears as follows:

db2 register db2 server in Tdap
as <ldap_node_name>
protocol tcpip

The protocol clause specifies the communication protocol to use when connecting
to this database server.

When creating an instance for DB2 Enterprise Server Edition that includes multiple
physical machines, the REGISTER command must be invoked once for each
machine. Use the rah command to issue the REGISTER command on all machines.

Note: The same ldap_node_name cannot be used for each machine since the name
must be unique in LDAP. You will want to substitute the hostname of each
machine for the ldap_node_name in the REGISTER command. For example:

rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The "<>" is substituted by the hostname on each machine where the rah command
is run. In the rare occurrence where there are multiple DB2 Enterprise Server
Edition instances, the combination of the instance and host index may be used as
the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so, you
must specify the remote computer name, instance name, and the protocol
configuration parameters when registering a remote server. The command can be
used as follows:
db2 register db2 server in Tdap

as <ldap_node_name>

protocol tcpip

hostname <host_name>

svcename <tcpip_service_name>

remote <remote_computer_name>

instance <instance_name>

The following convention is used for the computer name:

» If TCP/IP is configured, the computer name must be the same as the TCP/IP
hostname.

When running in a high availability or failover environment, and using TCP/IP as
the communication protocol, the cluster IP address must be used. Using the cluster
IP address allows the client to connect to the server on either machine without
having to catalog a separate TCP/IP node for each machine. The cluster IP address
is specified using the hostname clause, shown as follows:

Chapter 5. Lightweight Directory Access Protocol (LDAP) 99



db2 register db2 server in ldap
as <ldap_node_name>
protocol tcpip
hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

To register the DB2 server in LDAP from a client application, call the
db2LdapRegister APL

Catalog a node alias for ATTACH

A node name for the DB2 server must be specified when registering the server in
LDAP. Applications use the node name to attach to the database server.

If you require a different node name, such as when the node name is hard-coded
in an application, use the CATALOG LDAP NODE command to make the change,
for example:

db2 catalog ldap node <ldap_node_name>
as <new_alias_name>

To uncatalog a LDAP node, use the UNCATALOG LDAP NODE command, for
example:

db2 uncatalog ldap node <ldap_node_name>

Registration of databases in the LDAP directory

During the creation of a database within an instance, the database is automatically
registered in LDAP. Registration allows remote client connection to the database
without having to catalog the database and node on the client machine. When a
client attempts to connect to a database, if the database does not exist in the
database directory on the local machine then the LDAP directory is searched.

If the name already exists in the LDAP directory, the database is still created on the
local machine but a warning message is returned stating the naming conflict in the
LDAP directory. For this reason you can manually catalog a database in the LDAP
directory. The user can register databases on a remote server in LDAP by using the
CATALOG LDAP DATABASE command. When registering a remote database, you
specify the name of the LDAP node that represents the remote database server. You
must register the remote database server in LDAP using the REGISTER DB2
SERVER IN LDAP command before registering the database. To register a database
manually in LDAP, use the CATALOG LDAP DATABASE command:

db2 catalog Tdap database <dbname>

at node <node_name>
with "My LDAP database"

To register a database in LDAP from a client application, call the
db2LdapCatalogDatabase API.

Deregistering LDAP entries

Deregistering the DB2 server

Deregistration of an instance from LDAP also removes all the node, or alias, objects
and the database objects referring to the instance.

100 Data Servers, Databases, and Database Objects Guide



Deregistration of the DB2 server on either a local or a remote machine requires the
LDAP node name be specified for the server:

db2 deregister db2 server in ldap
node <node_name>

To deregister the DB2 server from LDAP from a client application, call the
db2LdapDeregister APL

When the DB2 server is deregistered, any LDAP node entry and LDAP database
entries referring to the same instance of the DB2 server are also uncataloged.

Deregistering the database from the LDAP directory

The database is automatically deregistered from LDAP when the database is
dropped, or the owning instance is deregistered from LDAP.

You can manually deregister the database from LDAP using the following
command:

db2 uncatalog ldap database <dbname>

To deregister a database from LDAP from a client application, call the
db2LdapUncatalogDatabase APL

Configuring LDAP users

Creating an LDAP user

The DB2 database system supports setting DB2 registry variables and CLI
configuration at the user level. (This is not available on the Linux and UNIX
platforms.) User level support provides user-specific settings in a multi-user
environment. An example is Windows Terminal Server where each logged on user
can customize his or her own environment without interfering with the system
environment or another user’s environment.

When using the IBM Tivoli directory, you must define an LDAP user before you
can store user-level information in LDAP. You can create an LDAP user by creating
an LDIF file to contain all attributes for the user object, then run the LDIF import
utility to import the object into the LDAP directory. The LDIF utility for the IBM
Tivoli Directory Server is LDIF2DB.

LDIF file containing the attributes for a person object appears similar to the
following:

File name: newuser.1dif

dn: cn=Mary Burnnet, ou=DB2 Development, ou=Toronto, o=ibm, c=ca
objectclass: ePerson

cn: Mary Burnnet

sn: Burnnet

uid: mburnnet

userPassword: password

telephonenumber: 1-416-123-4567

facsimiletelephonenumber: 1-416-123-4568

title: Software Developer

Following is an example of the LDIF command to import an LDIF file using the
IBM LDIF import utility:

LDIF2DB -i newuser.ldif

Chapter 5. Lightweight Directory Access Protocol (LDAP) 101



Note:
1. You must run the LDIF2DB command from the LDAP server machine.

2. You must grant the required access (ACL) to the LDAP user object so that the
LDAP user can add, delete, read, and write to his own object. To grant ACL for
the user object, use the LDAP Directory Server Web Administration tool.

Configuring the LDAP user for DB2 applications

When you use the Microsoft LDAP client, the LDAP user is the same as the
operating system user account. However, when you use the IBM LDAP client,
before you use the DB2 database manager, you must configure the LDAP user
distinguished name (DN) and password for the current logged on user.

To configure the LDAP user distinguished name (DN) and password, use the
db2ldcfg utility:

db21dcfg -u <userDN> -w <password> --> set the user's DN and password
-r --> clear the user's DN and password

For example:

db21dcfg -u "cn=Mary Burnnet,ou=DB2 Development,ou=Toronto,o=ibm,c=ca"
-w password

Setting DB2 registry variables at the user level in the LDAP
environment

Under the LDAP environment, the DB2 profile registry variables can be set at the
user level which allows a user to customize their own DB2 environment.

To set the DB2 profile registry variables at the user level, use the -ul option:
db2set -ul <variable>=<value>

Note: This is not supported on AIX or Solaris operating systems.

DB2 has a caching mechanism. The DB2 profile registry variables at the user level
are cached on the local machine. If the -ul parameter is specified, DB2 always
reads from the cache for the DB2 registry variables. The cache is refreshed when:

* You update or reset a DB2 registry variable at the user level.
e The command to refresh the LDAP profile variables at the user level is:
db2set -ur

Disabling LDAP support

To disable LDAP support, use the following procedure:

1. For each instance of the DB2 server, deregister the DB2 server from LDAP:
db2 deregister db2 server in ldap node <nodename>

2. Set the DB2 profile registry variable DB2_ENABLE_LDAP to "NO”".

Updating the protocol information for the DB2 server

The DB2 server information in LDAP must be kept current. For example, changes
to the protocol configuration parameters or the server network address require an
update to LDAP.

102 Data Servers, Databases, and Database Objects Guide



To update the DB2 server in LDAP on the local machine, use the following
command:

db2 update ldap ...

Examples of protocol configuration parameters that can be updated include a
TCP/IP hostname and service name or port number parameters.

To update a remote DB2 server protocol configuration parameters use the UPDATE
LDAP command with a node clause:
db2 update 1dap
node <node_name>
hostname <host_name>
svcename <tcpip_service_name>

Rerouting LDAP clients to another server

Just as with the ability to reroute clients on a system failure, the same ability is
also available to you when working with LDAP.

The DB2_ENABLE_LDAP registry variable must be set to “Yes”.

Within an LDAP environment, all database and node directory information is
maintained at an LDAP server. The client retrieves information from the LDAP
directory. This information is updated in its local database and node directories if
the DB2LDAPCACHE registry variable is set to “Yes”.

Use the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command to
define the alternate server for a database that represents the DB2 database in
LDAP. Alternatively, you can call the db2LdapUpdateAlternateServerForDB API
from a client application to update the alternate server for the database in LDAP.

Once established, this alternate server information is returned to the client upon
connection.

Note: It is strongly recommended to keep the alternate server information stored
in the LDAP server synchronized with the alternate server information stored at
the database server instance. Issuing the UPDATE ALTERNATE SERVER FOR
DATABASE command (notice that it is not "FOR LDAP DATABASE") at the
database server instance will help ensure synchronization between the database
server instance and the LDAP server.

When you enter UPDATE ALTERNATE SERVER FOR DATABASE command at the
server instance, and if LDAP support is enabled (DB2_ENABLE_LDAP=Yes) on the
server, and if the LDAP user ID and password is cached (db2ldcfg was previously
run), then the alternate server for the database is automatically, or implicitly,
updated on the LDAP server. This works as if you entered UPDATE ALTERNATE
SERVER FOR LDAP DATABASE explicitly.

If the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command is issued
from an instance other than the database server instance, ensure the alternate
server information is also identically configured at the database server instance
using the UPDATE ALTERNATE SERVER FOR DATABASE command. After the
client initially connects to the database server instance, the alternate server
information returned from the database server instance will take precedence over

Chapter 5. Lightweight Directory Access Protocol (LDAP) 103



what is configured in the LDAP server. If the database server instance has no
alternate server information configured, client reroute will be considered disabled
after the initial connect.

Attaching to a remote server in the LDAP environment

In the LDAP environment, you can attach to a remote database server using the
LDAP node name on the ATTACH command: db2 attach to <Idap_node_name>.

When a client application attaches to a node or connects to a database for the first
time, since the node is not in the local node directory, the database manager
searches the LDAP directory for the target node entry. If the entry is found in the
LDAP directory, the protocol information of the remote server is retrieved. If you
connect to the database and if the entry is found in the LDAP directory, then the
database information is also retrieved. Using this information, the database
manager automatically catalogs a database entry and a node entry on the local
machine. The next time the client application attaches to the same node or
database, the information in the local database directory is used without having to
search the LDAP directory.

In more detail: A caching mechanism exists so that the client only searches the
LDAP server once. After the information is retrieved, it is stored or cached on the
local machine based on the values of the dir_cache database manager configuration
parameter and the DB2LDAPCACHE registry variable.

* If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information
from LDAP.

e If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from
LDAP once and insert it into the DB2(R) cache.

o If DB2LDAPCACHE=YES or is not set, then read the information from LDAP
server once and cache it into the local database, node, and DCS directories.

Note: The caching of LDAP information is not applicable to user-level CLI or DB2
profile registry variables.

Refreshing LDAP entries in local database and node directories

The DB2 database system provides a caching mechanism to reduce the number of
times a client searches the LDAP server.

After the information is retrieved, it is stored or cached on the local machine based
on the values of the dir_cache database manager configuration parameter and the
DB2LDAPCACHE registry variable.

* If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information
from LDAP.

e If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from
LDAP once and insert it into the DB2 cache.

e If DB2LDAPCACHE=YES or is not set, then read the information from LDAP
server once and cache it into the local database, node, and DCS directories.

Note: The caching of LDAP information is not applicable to user-level CLI or DB2
profile registry variables. Since information in LDAP is subject to change, it may be
necessary to refresh the LDAP entries cached in the local database and node
directories. There are a few ways to do this.

104 Data Servers, Databases, and Database Objects Guide



To refresh all the local database and node entries that were retrieved from LDAP,
use the following command:

db2 refresh 1dap immediate

Similarly, the following command can be used to both refresh existing local
database and node entries and add new entries from LDAP:

db2 refresh 1dap immediate all

Specifying the IMMEDIATE ALL option will add all the NODE and DB entries
contained with the LDAP server into the local directories.

Alternatively, to force DB2 to refresh the database entries that refer to LDAP
resources on the next database connection or instance attachment, use the
following command:

db2 refresh l1dap database directory

Likewise, to force the DB2 database manager to refresh the nodes entries that refer
to LDAP resources on the next database connection or instance attachment, use the
following command:

db2 refresh Tdap node directory

As part of the refresh, all the LDAP entries that are saved in the local database and
node directories are removed. The next time that the application accesses the
database or node, it will read the information directly from LDAP and generate a
new entry in the local database or node directory.

To ensure the refresh is done in a timely way, you may want to:
* Schedule a refresh that is run periodically.
* Run the REFRESH command during system bootup.

* Use an available administration package to invoke the REFRESH command on
all client machines.

* Set DB2LDAPCACHE="NO" to avoid LDAP information being cached in the
database, node, and DCS directories.

Searching the LDAP servers

The DB2 database system searches the current LDAP server but in an environment
where there are multiple LDAP servers, you can define the scope of the search.

For example, if the information is not found in the current LDAP server, you can
specify automatic search of all other LDAP servers, or, alternatively, you can
restrict the search scope to only the current LDAP server, or to the local DB2
database catalog.

When you set the search scope, this sets the default search scope for the entire
enterprise. The search scope is controlled through the DB2 database profile registry
variable, DB2LDAP_SEARCH_SCOPE. To set the search scope value, use the -gl
option, which means global in LDAP, on the db2set command:

db2set -g1 db21dap_search_scope=<value>

Possible values include: local, domain, or global. If it is not set, the default value is
domain which limits the search scope to the directory on the current LDAP server.

Chapter 5. Lightweight Directory Access Protocol (LDAP) 105



For example, you may want to initially set the search scope to “global” after a new
database is created. This allows any DB2 client configured to use LDAP to search
all the LDAP servers to find the database. Once the entry has been recorded on
each machine after the first connect or attach for each client, if you have caching
enabled, the search scope can be changed to “local”. Once changed to “local”, each
client will not scan any LDAP servers.

Note: The DB2 database profile registry variables

DB2LDAP_KEEP_CONNECTION and DB2LDAP_SEARCH_SCOPE are the only
registry variables that can be set at the global level in LDAP.

106 Data Servers, Databases, and Database Objects Guide



Part 2. Databases

© Copyright IBM Corp. 1993, 2009 107



108 Data Servers, Databases, and Database Objects Guide



Chapter 6. Databases

A DB2 database is a relational database. The database stores all data in tables that are
related to one another. Relationships are established between tables such that data
is shared and duplication is minimized.

A relational database is a database that is treated as a set of tables and manipulated
in accordance with the relational model of data. It contains a set of objects used to
store, manage, and access data. Examples of such objects are tables, views, indexes,
functions, triggers, and packages. Objects can be either defined by the system
(system-defined objects) or defined by the user (user-defined objects).

A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager to manage the tables in its environment.
The database managers communicate and cooperate with each other in a way that
allows a given database manager to execute SQL statements on another computer
system.

A partitioned relational database is a relational database whose data is managed
across multiple database partitions. This separation of data across database
partitions is transparent to users of most SQL statements. However, some data
definition language (DDL) statements take database partition information into
consideration (for example, CREATE DATABASE PARTITION GROUP). DDL is the
subset of SQL statements used to describe data relationships in a database.

A federated database is a relational database whose data is stored in multiple data
sources (such as separate relational databases). The data appears as if it were all in
a single large database and can be accessed through traditional SQL queries.
Changes to the data can be explicitly directed to the appropriate data source.

Designing databases

When designing a database, you are modeling a real business system that contains
a set of entities and their characteristics, or attributes, and the rules or relationships
between those entities.

The first step is to describe the system that you want to represent. For example, if
you were creating a database for publishing system, the system would contain
several types of entities, such as books, authors, editors, and publishers. For each
of these entities, there are certain pieces of information, or attributes, that you need
to record:

* Books: titles, ISBN, date published, location, publisher, ....
* Authors: name, address, phone and fax numbers, e-mail address, ....
* Editors: name, address, phone and fax numbers, e-mail address, ....

* Publishers: name, address, phone and fax numbers, e-mail address, ....

You will need the database to represent not only these types of entities and their
attributes, but you also need a way to relate these entities to each other. For
example, you need to represent the relationship between books and their authors,
the relationship between books/authors and editors, and the relationship between
books/authors and publishers.

© Copyright IBM Corp. 1993, 2009 109



There are three types of relationships between the entities in a database:

One-to-one relationships
In this type of relationship, each instance of an entity relates to only one
instance of another entity. Currently, no one-to-one relationships exist in
the scenario described above.

One-to-many relationships
In this type of relationship, each instance of an entity relates to one or
more instances of another entity. For example, an author could have
written multiple books, but certain books have only one author. This is the
most common type of relationship modeled in relational databases.

Many-to-many relationships
In this type of relationship, many instances of a given entity relate to one
or more instances of another entity. For example, co-authors could write a
number of books.

Because databases consist of tables, you need to construct a set of tables that will
best hold this data, with each cell in the table holding a single view. There are
many possible ways to perform this task. As the database designer, your job is to
come up with the best set of tables possible.

For example, you could create a single table, with many rows and columns, to
hold all of the information. However, using this method, some information would
be repeated. Secondly, data entry and data maintenance would be time-consuming
and error prone. In contrast to this single-table design, a relational database allows
you to have multiple simple tables, reducing redundancy and avoiding the
difficulties posed by a large and unmanageable table. In a relational database,
tables should contain information about a single type of entity.

Also, the integrity of the data in a relational database must be maintained as
multiple users access and change the data. Whenever data is shared, there is a
need to ensure the accuracy of the values within database tables.

You can:

e Use isolation levels to determines how data is locked or isolated from other
processes while the data is being accessed.

¢ Protect data and define relationships between data by defining constraints to
enforce business rules.

¢ Create triggers that can do complex, cross-table data validation.

* Implement a recovery strategy to protect data so that it can be restore to a
consistent state.

Database design is a much more complex task than is indicated here, and there are
many items that need to be considered, such as space requirements, keys, indexes,
constraints, security and authorization, and so forth. You can find some of this
information in the DB2 Information Center, and in the many DB2 retail books that
are available on this subject.

Database directories and files

When you create a database, information about the database including default
information is stored in a directory hierarchy.

The hierarchical directory structure is created for you at a location that is
determined by the information you provide in the CREATE DATABASE command.

110 Data Servers, Databases, and Database Objects Guide



If you do not specify the location of the directory path or drive when you create
the database, the default location is used. It is suggested that you explicitly state
where you would like the database created.

In the directory you specify as the database path in the CREATE DATABASE
command, a subdirectory that uses the name of the instance is created. This
subdirectory ensures that databases created in different instances under the same
directory do not use the same path. Below the instance-name subdirectory, a
subdirectory named NODEOQOOQO is created. This subdirectory differentiates database
partitions in a logically partitioned database environment. Below the node-name
directory, a subdirectory named SQLO00001 is created. This name of this
subdirectory uses the database token and represents the database being created.
SQL00001 contains objects associated with the first database created, and
subsequent databases are given higher numbers: SQL00002, and so on. These
subdirectories differentiate databases created in this instance on the directory that
you specified in the CREATE DATABASE command.

The directory structure appears as follows:your_database_path/your_instance/
NODE0000/SQL00001/.

The database directory contains the following files that are created as part of the
CREATE DATABASE command.

* The files SQLBP.1 and SQLBP.2 contain buffer pool information. These files are
duplicates of each other for backup purposes.

The files SQLSPCS.1 and SQLSPCS.2 contain table space information. These files
are duplicates of each other for backup purposes.

The files SQLSGE.1 and SQLSGFE.2 contain storage path information associated
with the database’s automatic storage. These files are duplicates of each other for
backup purposes.

The SQLDBCONEF file contains database configuration information. Do not edit
this file.

Note: The SQLDBCON file was used in previous releases and contains similar
information that can be used if SQLDBCONF is corrupted.

To change configuration parameters, use the UPDATE DATABASE
CONFIGURATION and RESET DATABASE CONFIGURATION commands.

The DB2RHIST.ASC history file and its backup DB2RHIST.BAK contain history
information about backups, restores, loading of tables, reorganization of tables,
altering of a table space, and other changes to a database.

The DB2TSCHG.HIS file contains a history of table space changes at a log-file
level. For each log file, DB2TSCHG.HIS contains information that helps to
identify which table spaces are affected by the log file. Table space recovery uses
information from this file to determine which log files to process during table
space recovery. You can examine the contents of both history files in a text
editor.

* The log control files, SQLOGCTL.LFH.1, its mirror copy SQLOGCTL.LFH.2, and
SQLOGMIR.LFH, contain information about the active logs.
Recovery processing uses information from these files to determine how far back

in the logs to begin recovery. The SQLOGDIR subdirectory contains the actual
log files.

Note: You should ensure the log subdirectory is mapped to different disks than
those used for your data. A disk problem could then be restricted to your data
or the logs but not both. This can provide a substantial performance benefit

Chapter 6. Databases 111



because the log files and database containers do not compete for movement of
the same disk heads. To change the location of the log subdirectory, change the
newlogpath database configuration parameter.

* The SQLINSLK file helps to ensure that a database is used by only one instance
of the database manager.

At the same time a database is created, a detailed deadlocks event monitor is also
created. The detailed deadlocks event monitor files are stored in the database
directory of the catalog node. When the event monitor reaches its maximum
number of files to output, it will deactivate and a message is written to the
notification log. This prevents the event monitor from consuming too much disk
space. Removing output files that are no longer needed will allow the event
monitor to activate again on the next database activation.

Additional information for SMS database directories in
non-automatic storage databases

In non-automatic storage databases, the SQLT* subdirectories contain the default
System Managed Space (SMS) table spaces required for an operational database.
Three default table spaces are created:

e SQLT0000.0 subdirectory contains the catalog table space with the system catalog
tables.

* SQLT0001.0 subdirectory contains the default temporary table space.
* SQLT0002.0 subdirectory contains the default user data table space.

Each subdirectory or container has a file created in it called SQLTAG.NAM. This
file marks the subdirectory as being in use so that subsequent table space creation
does not attempt to use these subdirectories.

In addition, a file called SQL*.DAT stores information about each table that the
subdirectory or container contains. The asterisk (*) is replaced by a unique set of
digits that identifies each table. For each SQL*.DAT file there might be one or more
of the following files, depending on the table type, the reorganization status of the
table, or whether indexes, LOB, or LONG fields exist for the table:

* SQL*.BKM (contains block allocation information if it is an MDC table)

* SQL*.LF (contains LONG VARCHAR or LONG VARGRAPHIC data)

* SQL*.LB (contains BLOB, CLOB, or DBCLOB data)

* SQL*XDA (contains XML data)

* SQL*.LBA (contains allocation and free space information about SQL*.LB files)
* SQL*INX (contains index table data)

* SQL*INI1 (contains index table data)

* SQL*.DTR (contains temporary data for a reorganization of an SQL*.DAT file)
* SQL*.LFR (contains temporary data for a reorganization of an SQL*.LF file)

e SQL*.RLB (contains temporary data for a reorganization of an SQL*.LB file)

* SQL*RBA (contains temporary data for a reorganization of an SQL*.LBA file)

Database configuration file

A database configuration file is created for each database. This file is called
SQLDBCON prior to Version 8.2, and SQLDBCONF in Version 8.2 and later. The
creation of this file is done for you.

112 Data Servers, Databases, and Database Objects Guide



This file contains values for various configuration parameters that affect the use of
the database, such as:

¢ Parameters specified or used when creating the database (for example, database
code page, collating sequence, DB2 database release level)

* Parameters indicating the current state of the database (for example, backup
pending flag, database consistency flag, roll-forward pending flag)

e Parameters defining the amount of system resources that the operation of the
database might use (for example, buffer pool size, database logging, sort
memory size).

Note: If you edit the db2system, SQLDBCON (prior to Version 8.2), or
SQLDBCONF (Version 8.2 and later) file using a method other than those provided
by the DB2 database manager, you might make the database unusable. Therefore,
do not change these files using methods other than those documented and
supported by the database manager.

Performance Tip: Many of the configuration parameters come with default values,
but might need to be updated to achieve optimal performance for your database.
By default, the Configuration Advisor is invoked as part of the CREATE
DATABASE command so that the initial values for some parameters are already
configured for your environment.

For multi-partition databases: When you have a database that is distributed across
more than one database partition, the configuration file should be the same on all
database partitions. Consistency is required since the query compiler compiles
distributed SQL statements based on information in the local node configuration
file and creates an access plan to satisfy the needs of the SQL statement.
Maintaining different configuration files on database partitions could lead to
different access plans, depending on which database partition the statement is
prepared.

Node directory
The database manager creates the node directory when the first database partition is
cataloged.

To catalog a database partition, use the CATALOG NODE command. To list the
contents of the local node directory, use the LIST NODE DIRECTORY command.

The node directory is created and maintained on each database client. The
directory contains an entry for each remote workstation having one or more
databases that the client can access. The DB2 client uses the communication end
point information in the node directory whenever a database connection or
instance attachment is requested.

The entries in the directory also contain information on the type of communication
protocol to be used to communicate from the client to the remote database
partition. Cataloging a local database partition creates an alias for an instance that
resides on the same computer.

Local database directory

A local database directory file exists in each path (or “drive” for Windows operating
systems) in which a database has been defined. This directory contains one entry
for each database accessible from that location.

Each entry contains:

Chapter 6. Databases 113



* The database name provided with the CREATE DATABASE command

* The database alias name (which is the same as the database name, if an alias
name is not specified)

* A comment describing the database, as provided with the CREATE DATABASE
command

e The name of the root directory for the database

* Other system information.

System database directory
A system database directory file exists for each instance of the database manager, and
contains one entry for each database that has been cataloged for this instance.

Databases are implicitly cataloged when the CREATE DATABASE command is
issued and can also be explicitly cataloged with the CATALOG DATABASE
command.

For each database created, an entry is added to the directory containing the
following information:

¢ The database name provided with the CREATE DATABASE command

* The database alias name (which is the same as the database name, if an alias
name is not specified)

* The database comment provided with the CREATE DATABASE command
* The location of the local database directory

¢ An indicator that the database is indirect, which means that it resides on the
current database manager instance

¢ Other system information.

On UNIX platforms and in a partitioned database environment, you must ensure
that all database partitions always access the same system database directory file,
sqldbdir, in the sqldbdir subdirectory of the home directory for the instance.
Unpredictable errors can occur if either the system database directory or the
system intention file sqldbins in the same sqldbdir subdirectory are symbolic links
to another file that is on a shared file system.

Creating node configuration files
If your database is to operate in a partitioned database environment, you must
create a node configuration file called db2nodes.cfg.

This file must be located in the sqllib subdirectory of the home directory for the
instance before you can start the database manager with parallel capabilities across
multiple database partitions. The file contains configuration information for all
database partitions in an instance, and is shared by all database partitions for that
instance.

Windows considerations

If you are using DB2 Enterprise Server Edition on Windows, the node
configuration file is created for you when you create the instance. You should not
attempt to create or modify the node configuration file manually. You can use the
db2ncrt command to add a database partition server to an instance. You can use
the db2ndrop command to drop a database partition server from an instance. You
can use the db2nchg command to modify a database partition server configuration

114 Data Servers, Databases, and Database Objects Guide



including moving the database partition server from one computer to another;
changing the TCP/IP host name; or, selecting a different logical port or network
name.

Note: You should not create files or directories under the sqllib subdirectory other
than those created by the database manager to prevent the loss of data if an
instance is deleted. There are two exceptions. If your system supports stored
procedures, put the stored procedure applications in the function subdirectory
under the sqllib subdirectory. The other exception is when user-defined functions
(UDFs) have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance.
Each line has the following format:

dbpartitionnum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

dbpartitionnum
The database partition number, which can be from 0 to 999, uniquely
defines a database partition. Database partition numbers must be in
ascending sequence. You can have gaps in the sequence.

Once a database partition number is assigned, it cannot be changed.
(Otherwise the information in the distribution map, which specifies how
data is distributed, would be compromised.)

If you drop a database partition, its database partition number can be used
again for any new database partition that you add.

The database partition number is used to generate a database partition
name in the database directory. It has the format:

NODE nnnn

The nnnn is the database partition number, which is left-padded with
zeros. This database partition number is also used by the CREATE
DATABASE and DROP DATABASE commands.

hostname
The hostname of the IP address for inter-partition communications. Use the
fully-qualified name for the hostname. The /etc/hosts file also should use
the fully-qualified name. If the fully-qualified name is not used in the
db2nodes.cfg file and in the /etc/hosts file, you might receive error
message SQL30082N RC=3.

(There is an exception when netname is specified. In this situation,
netname is used for most communications, with hostname only being used
for db2start, db2stop, and db2_all.)

logical-port
This parameter is optional, and specifies the logical port number for the
database partition. This number is used with the database manager
instance name to identify a TCP/IP service name entry in the etc/services
file.

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between database partitions.

For each hostname, one logical-port must be either 0 (zero) or blank (which
defaults to 0). The database partition associated with this logical-port is the

Chapter 6. Databases 115



default node on the host to which clients connect. You can override this
with the DB2NODE environment variable in db2profile script, or with the
sqlesetc() APL

netname
This parameter is optional, and is used to support a host that has more
than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for an RS/6000”
SP™ system on which SP2EN1 has multiple TCP/IP interfaces, two logical
partitions, and uses SP2SW1 as the DB2 database interface. It also shows the
database partition numbers starting at 1 (rather than at 0), and a gap in the
dbpartitionnum sequence:

Table 40. Database partition number example table.

dbpartitionnum hostname logical-port netname
1 SP2EN1.machl.xxx.com 0 SP2SW1
2 SP2EN1.machl.xxx.com 1 SP2SW1
4 SP2EN2.mach1.xxx.com 0

5 SP2EN3.mach1.xxx.com

You can update the db2nodes.cfg file using an editor of your choice. (The
exception is: an editor should not be used on Windows.) You must be careful,
however, to protect the integrity of the information in the file, as database
partitioning requires that the node configuration file is locked when you issue
db2start and unlocked after db2stop ends the database manager. The db2start
command can update the file, if necessary, when the file is locked. For example,
you can issue db2start with the RESTART option or the ADD
DBPARTITIONNUM option.

Note: If the db2stop command is not successful and does not unlock the node
configuration file, issue db2stop FORCE to unlock it.

Changing node and database configuration files
To update the database configuration file, run the AUTOCONFIGURE command
with the appropriate options.

The Configuration Advisor helps you to tune performance and to balance memory
requirements for a single database per instance by suggesting which configuration
parameters to modify and providing suggested values for them.

If you plan to change any database partition groups (adding or deleting database
partitions, or moving existing database partitions), the node configuration file must
be updated. If you plan to change the database, you should review the values for
the configuration parameters. You can adjust some values periodically as part of
the ongoing changes made to the database that are based on how it is used.

Note: If you modify any parameters, the values are not updated until:

* For database parameters, the first new connection to the database after all
applications are disconnected

* For database manager parameters, the next time that you stop and start the
instance

116 Data Servers, Databases, and Database Objects Guide



In most cases, the values recommended by the Configuration Advisor will provide
better performance than the default values because they are based on information
about your workload and your own particular server. However, the values are
designed to improve the performance of, though not necessarily optimize, your
database system. Think of the values as a starting point on which you can make
further adjustments to obtain optimized performance.

In Version 9.1, the Configuration Advisor is automatically invoked when you
create a database. To disable this feature, or to explicitly enable it, use the db2set
command before creating the database. Examples:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

See |[“ Automatic features” on page 17| for other features that are enabled by default.

To use the Configuration Advisor from the command line, use the
AUTOCONFIGURE command.

To update individual parameters in the database manager configuration using the
command line, enter:

UPDATE DBM CFG USING <config_keyword>=<value>

To update individual parameters in the database configuration using the command
line, enter:

UPDATE DB CFG FOR <database alias>
USING <config_keyword>=<value>

You can update one or more <config_keyword>=<value> combinations in a single
command. Most changes to the database manager configuration file become
effective only after they are loaded into memory. For a server configuration
parameter, this occurs during the running of the START DATABASE MANAGER
command. For a client configuration parameter, this occurs when the application is
restarted.

To view or print the current database manager configuration parameters, use the
GET DATABASE MANAGER CONFIGURATION command.

To access the Configuration Advisor from a client application, call the
db2AutoConfig API. To update individual parameters in the database manager
configuration or database configuration file from a client application, call the
db2CfgSet APIL

Database recovery log
A database recovery log keeps a record of all changes made to a database, including
the addition of new tables or updates to existing ones.

This log is made up of a number of log extents, each contained in a separate file
called a log file.

The database recovery log can be used to ensure that a failure (for example, a
system power outage or application error) does not leave the database in an
inconsistent state. In case of a failure, the changes already made but not committed
are rolled back, and all committed transactions, which might not have been
physically written to disk, are redone. These actions ensure the integrity of the
database.

Chapter 6. Databases 117



Space requirements for database objects

Estimating the size of database objects is an imprecise undertaking. Overhead
caused by disk fragmentation, free space, and the use of variable length columns
makes size estimation difficult, because there is such a wide range of possibilities
for column types and row lengths.

After initially estimating your database size, create a test database and populate it
with representative data. Then use the db2look utility to generate data definition
statements for the database.

When estimating the size of a database, the contribution of the following must be
considered:

* System catalog tables

* User table data

* Long field (LF) data
 Large object (LOB) data
* Index space

* Log file space

* Temporary work space

Also consider the overhead and space requirements for the following;:

* The local database directory file

* The system database directory file

* The file management overhead required by the operating system, including:
— File block size

— Directory control space

Space requirements for log files
You will require 56 KB of space for log control files.

You will also need at least enough space for your active log configuration, which
you can calculate as

(Togprimary + logsecond) * (logfilsiz + 2 ) * 4096

where:

* logprimary is the number of primary log files, defined in the database
configuration file

* logsecond is the number of secondary log files, defined in the database
configuration file; in this calculation, logsecond cannot be set to -1. (When
logsecond is set to -1, you are requesting an infinite active log space.)

* logfilsiz is the number of pages in each log file, defined in the database
configuration file

* 2 is the number of header pages required for each log file
* 4096 is the number of bytes in one page.

If the database is enabled for circular logging, the result of this formula is all the
space that will be allocated for logging; that is, more space will not be allocated,
and you will not receive insufficient disk space errors for any of your log files.

If the database is enabled for roll-forward recovery, special log space requirements
should be taken into consideration:

118 Data Servers, Databases, and Database Objects Guide



* With the logarchmethl configuration parameter set to logretain, the log files will
be archived in the log path directory. The online disk space will eventually fill
up, unless you move the log files to a different location.

* With the logarchmethl configuration parameter set to userexit, DISK, or
VENDOR, a user exit program moves the archived log files to a different
location. Extra log space is still required to allow for:

— Online archived logs that are waiting to be moved by the user exit program
— New log files being formatted for future use

If the database is enabled for infinite logging (that is, you set logsecond to -1), the
logarchmethl configuration parameter must be set to a value other than OFF or
LOGRETAIN to enable archive logging. The database manager will keep at least
the number of active log files specified by logprimary in the log path, so you should
not use the value of -1 for logsecond in the above formula. Ensure that you provide
extra disk space to allow for the delay caused by archiving log files.

If you are mirroring the log path, you will need to double the estimated log file
space requirements.

Lightweight Directory Access Protocol (LDAP) directory
service

A directory service is a repository of resource information about multiple systems
and services within a distributed environment; and it provides client and server
access to these resources.

Clients and servers would use the directory service to find out how to access other
resources. Information about these other resources in the distributed environment
must be entered into the directory service repository.

Lightweight Directory Access Protocol (LDAP) is an industry standard access method
to directory services. Each database server instance will publish its existence to an
LDAP server and provide database information to the LDAP directory when the
databases are created. When a client connects to a database, the catalog
information for the server can be retrieved from the LDAP directory. Each client is
no longer required to store catalog information locally on each computer. Client
applications search the LDAP directory for information required to connect to the
database.

Note: Publishing of the database server instance to the LDAP server is not an
automatic process, but must be done manually by the administrator.

As an administrator of a DB2 system, you can establish and maintain a directory
service. The Configuration Assistant can assist in the maintenance of this directory
service. The directory service is made available to the DB2 database manager
through Lightweight Directory Access Protocol (LDAP) directory services. To use
LDAP directory services, there must first exist an LDAP server that is supported
by the DB2 database manager so that directory information can be stored there.

Note: When running in a Windows domain environment, an LDAP server is
already available because it is integrated with the Windows Active Directory. As a

result, every computer running Windows can use LDAP.

An LDAP directory is helpful in an enterprise environment where it is difficult to
update local directory catalogs on each client computer because of the large

Chapter 6. Databases 119



number of clients. In this situation, you should consider storing your directory
entries in an LDAP server so that maintaining catalog entries is done in one place:
on the LDAP server.

Creating databases

You can create a database using the CREATE DATABASE command. To create a
database from a client application, call the sqlecrea APL

You should have spent sufficient time designing the contents, layout, potential
growth, and use of your database before you create it.

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the
system catalog views. However, if the RESTRICTIVE option is present, no
privileges are automatically granted to PUBLIC. For more information on the
RESTRICTIVE option, see the CREATE DATABASE command.

When you create a database, each of the following tasks are done for you:

* Setting up of all the system catalog tables that are needed by the database
 Allocation of the database recovery log

* Creation of the database configuration file and the default values are set

* Binding of the database utilities to the database

To create a database using the command line processor, enter:
CREATE DATABASE <database name>

For example, the following command creates a database called PERSONT1, in the
default location, with the associated comment "Personnel DB for BSchiefer Co”.

CREATE DATABASE personl
WITH "Personnel DB for BSchiefer Co"

Configuration Advisor
The Configuration Advisor helps you to tune performance and to balance
memory requirements for a single database per instance by suggesting
which configuration parameters to modify and providing suggested values
for them. The Configuration Advisor is automatically invoked when you
create a database. To disable this feature, or to explicitly enable it, use the
db2set command before creating the database. Examples:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

See |“Automatic features” on page 17] for other features that are enabled by
default.

Event Monitor
At the same time a database is created, a detailed deadlocks event monitor
is also created. As with any monitor, there is some overhead associated
with this event monitor. If you do not want the detailed deadlocks Event
Monitor, then the Event Monitor can be dropped using the command:

DROP EVENT MONITOR db2detaildeadlock
To limit the amount of disk space that this event monitor consumes, the

event monitor deactivates, and a message is written to the administration
notification log, once it has reached its maximum number of output files.

120 Data Servers, Databases, and Database Objects Guide



Removing output files that are no longer needed allows the event monitor
to activate again on the next database activation.

Remote databases

You have the ability to create a database in a different, possibly remote,
instance. To create a database at another (remote) database partition server,
you must first attach to that server. A database connection is temporarily
established by the following command during processing:

CREATE DATABASE <database name> AT DBPARTITIONNUM <options>

In this type of environment you can perform instance-level administration
against an instance other than your default instance, including remote
instances. For instructions on how to do this, see the db2iupdt (update
instance) command.

Database code pages
By default, databases are created in the UTF-8 (Unicode) code set.

To override the default code page for the database, it is necessary to
specify the desired code set and territory when creating the database. See
the CREATE DATABASE command or the sqlecrea API for information on
setting the code set and territory.

Automatic storage databases

The database manager creates all databases as “automatic storage” databases, by
default. To create a database that is not an “automatic storage” database, specify
AUTOMATIC STORAGE NO when issuing the CREATE DATABASE command.

Databases that are enabled for automatic storage have a set of one or more storage
paths associated with them. A table space can be defined as managed by automatic
storage and its containers assigned and allocated by the database manager based on
those storage paths.

You can enable a database for automatic storage only when you create it; similarly,
you cannot disable automatic storage for a database that was originally designed
to use it.

All databases are created as automatic storage databases by default. To create a
database that is not an automatic storage database, specify AUTOMATIC
STORAGE NO when issuing the CREATE DATABASE command.

Examples of disabling automatic storage:

CREATE DATABASE ASNODB1 AUTOMATIC STORAGE NO
CREATE DATABASE ASNODB2 AUTOMATIC STORAGE NO ON X:

Examples of automatic storage being enabled either explicitly or implicitly:

CREATE DATABASE DB1

CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X:
CREATE DATABASE DB3 ON /data/pathl, /data/path2
CREATE DATABASE DB4 ON D:\StoragePath DBPATH ON C:

Based on the syntax used, the database manager extracts the following two pieces
of information that pertain to storage locations:

* The database path (where the database manager stores various control files for
the database):

— If you specify DBPATH ON, this indicates the database path.

Chapter 6. Databases 121



— If you do not specify DBPATH ON, the first path listed in ON indicates the
database path (and the storage path).

— If you specify neither DBPATH ON nor ON, the dftdbpath database manager
configuration parameter is used to determine the database path.

* The storage paths (where the database manager creates automatic storage table
space containers):

— If you specify ON, all of the listed paths are storage paths.

— If you do not specify ON, there is a single storage path that is set to the value
of the dftdbpath database manager configuration parameter.

For the examples shown previously, the following table summarizes the database
and storage paths used:

Table 41. Automatic storage database and storage paths

CREATE DATABASE command Database path Storage paths

CREATE DATABASE DB1 AUTOMATIC STORAGE YES Value of the Value of the
dftdbpathconfiguration dftdbpathconfiguration
parameter parameter

CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X: X:

X:

CREATE DATABASE DB3 ON /data/pathl, /data/pathl /data/pathl, /data/path2

/data/path2

CREATE DATABASE DB4 ON D:\StoragePath DBPATH C D:\StoragePath

ON C:

The storage paths provided must exist and be accessible. In a partitioned database
environment, the same storage paths are used on each database partition. You
cannot specify a unique set of storage paths for a particular database partition
unless you use database partition expressions as part of the storage path names.
Doing this allows the database partition number to be reflected in the storage
paths such that the resulting path names are different on each database partition.

Use the argument $N (that is, $N preceded by a blank) to indicate a database
partition expression. You can use a database partition expression anywhere in the
storage path, and you can specify multiple database partition expressions.
Terminate the database partition expression with a space character; whatever
follows the space is appended to the storage path after the database partition
expression is evaluated. If there is no space character in the storage path after the
database partition expression, it is assumed that the rest of the string is part of the
expression. The following table lists the only valid forms of the $N argument.
Operators are evaluated from left to right, and % represents the modulus operator.
The database partition number in the examples is 10.

Table 42. Database partition expressions

Syntax Example Value
[blank]$N "N 10
[blank]$N+[number] " $N+100" 110
[blank]$N%[number] " gN%5" 0
[blank]$N+[number]%[number] " OSN+1%5" 1
[blank]$N%[number]+[number] " gN%4+2" 4

122  Data Servers, Databases, and Database Objects Guide



The following is an example of using database partition expressions:

CREATE DATABASE TESTDB ON "/pathlForNode $N",
"/path2ForNode $N" DBPATH ON "/dbpathForNodes"

The following is an example of a database partition expression embedded in the
middle of a path:

CREATE DATABASE TESTDB ON "/pathlForNode $N",
"/path2ForNode $N suffix" DBPATH ON "/dbpathForNodes"

Note: Database partition expressions are not valid in database paths, whether you
specify them explicitly in DBPATH ON or implicitly by using a database partition
expression in the first storage path.

When free space is calculated for a storage path for a given database partition, the
database manager checks for the existence of the following directories or mount
points within the storage path and uses the first one that it finds:

storage path/instance name/NODE####/database name

storage path/instance name/NODE####

storage path/instance name

storage path

where:

storage path
Is a storage path associated with the database

instance name
Is the instance under which the database resides

NODE##HH!
Is the database partition number (for example, NODE0000 or NODE0001)

database name
Is the name of the database

File systems can be mounted at a point beneath the storage path, and the database
manager recognizes that the actual amount of free space available for table space
containers might not be the same amount that is associated with the storage path
directory itself.

Consider the example where two logical database partitions exist on one physical
computer and there is a single storage path: /db2data. Each database partition can
use this storage path, but you might want to isolate the data from each database
partition by creating for each one a separate file system. The file system is
mounted at /db2data/instance/NODE##H#H#. When creating containers on the
storage path and determining free space, the database manager does not retrieve
free space information for /db2data but instead retrieves it for the corresponding
/db2data/instance/NODE#### directory.

There are three default table spaces created whenever you create a database. If you
do not provide explicit table space definitions as part of the CREATE DATABASE
command, the table spaces are created as automatic storage table spaces.

After you create a database, you can add new storage paths to it by using the
ADD STORAGE clause of the ALTER DATABASE statement, as shown in the
following example:

ALTER DATABASE ADD STORAGE ON '/data/path3', '/data/path4'

Chapter 6. Databases 123



Automatic storage restrictions

When deciding whether to create a database using automatic storage, there are

some restrictions to consider.

* You cannot disable or enable automatic storage for a database after you created
it.

 Storage paths must be absolute path names. They can be paths or drive letters
on the Windows operating system.The database path must be a drive letter. The
maximum path length is 175 characters.

* For partitioned databases, you must use the same set of storage paths on each
database partition (unless you use database partition expressions).

* Database partition expressions are not valid in database paths, whether you
specify them explicitly by using the DBPATH ON option of the CREATE
DATABASE command, or implicitly by using a database partition expression in
the first storage path.

Adding automatic storage paths to databases enabled for
automatic storage

Using the ALTER DATABASE statement, you can add an automatic storage path to
a database that is enabled for automatic storage. You can enable a database for
automatic storage only when you create it.

When you add a storage path for a multi-partition database environment, the
storage path must exist on each database partition. If the specified path does not
exist on every database partition, the statement is rolled back.

To add a storage path to an existing database, issue the following ALTER
DATABASE statement:

ALTER DATABASE PATH pathname

Monitoring storage paths
A database snapshot includes the list of storage paths associated with the database.

If the number of automatic storage paths is 0, automatic storage is not enabled for
the database:

Number of automatic storage paths = ##
Automatic storage path = <Ist path>
Automatic storage path = <2nd path>

If the bufferpool monitor switch is on, the following elements are also set:

File system ID = 12345

File system free space (bytes) = 20000000000
File system used space (bytes) = 40000000000000
File system total space (bytes) = 40020000000000

This data is set on a per path basis: on a single database partition system per path,
and per each database partition on a multi-database partitioned environment.

In addition, the following information is set within a table space snapshot. The
information indicates whether or not the table space was created as an automatic
storage table space:

Using automatic storage = Yes or No

124  Data Servers, Databases, and Database Objects Guide



Restore database implications
The RESTORE DATABASE command is used to restore a database from a backup
image.

During a restore operation it is possible to choose the location of the database path
and its also possible to redefine the storage paths that are associated with the
database. The database path and the storage paths are set by using a combination
of TO, ON, and DBPATH ON with the RESTORE DATABASE command.

For example, here are some valid RESTORE commands for databases enabled for
automatic storage:

RESTORE DATABASE TEST1

RESTORE DATABASE TEST2 TO X:

RESTORE DATABASE TEST3 DBPATH ON D:

RESTORE DATABASE TEST3 ON /pathl, /path2, /path3
RESTORE DATABASE TEST4 ON E:\newpathl, F:\newpath2 DBPATH ON D:

Like the CREATE DATABASE command, the database manager extracts the
following two pieces of information that pertain to storage locations:

¢ The database path (which is where the database manager stores various control
files for the database)

— If TO or DBPATH ON is specified, this indicates the database path.
— If ON is used but DBPATH ON is not specified with it, the first path listed
with ON is used as the database path (in addition to it being a storage path).

— If none of TO, ON, or DBPATH ON are specified, the dftdbpath database
manager configuration parameter determines the database path.

Note: If a database with the same name exists on disk, the database path is
ignored, and the database is placed into the same location as the existing
database.

* The storage paths (where the database manager creates automatic storage table
space containers)

— If ON is specified, all of the paths listed are considered storage paths, and
these paths are used instead of the ones stored within the backup image.

— If ON is not specified, no change is made to the storage paths (the storage
paths stored within the backup image are maintained).

To make this concept clearer, the same five RESTORE command examples
presented above are shown in the following table with their corresponding storage
paths:

Table 43. Restore implications regarding database and storage paths

Database exists on disk with same
name

No database on disk exists with
same name

RESTORE DATABASE command

Database path

Storage paths

Database path

Storage paths

RESTORE DATABASE TEST1 <dftdbpath> Uses storage Uses database Uses storage
paths defined in | path of existing |paths defined in
the backup image |database the backup image

RESTORE DATABASE TEST2 TO X: X: Uses storage Uses database Uses storage

paths defined in
the backup image

path of existing
database

paths defined in
the backup image

Chapter 6. Databases

125



Table 43. Restore implications regarding database and storage paths (continued)

RESTORE DATABASE command

No database on disk exists with
same name

Database exists on disk with same
name

Database path

Storage paths

Database path

Storage paths

RESTORE DATABASE TEST5
ON E:\newpathl, F:\newpath2
DBPATH ON D:

F:\newpath?2

path of existing
database

RESTORE DATABASE TEST3 /db2/databases | Uses storage Uses database Uses storage
DBPATH ON /db2/databases paths defined in | path of existing paths defined in
the backup image |database the backup image
RESTORE DATABASE TEST4 /pathl /pathl, /path2, Uses database /pathl, /path2,
ON /pathl, /path2, /path3 /path3 path of existing /path3
database
D: E:\newpathl, Uses database E:\newpathl,

F:\newpath2

For those cases where storage paths have been redefined as part of the restore
operation, the table spaces that are defined to use automatic storage are
automatically redirected to the new paths. However, you cannot explicitly redirect
containers associated with automatic storage table spaces using the SET
TABLESPACE CONTAINERS command; this action is not permitted.

Use the -s option of the db2ckbkp command to show whether or not automatic
storage is enabled for a database within a backup image. The storage paths
associated with the database are displayed if automatic storage is enabled.

For multi-partition automatic storage enabled databases, the RESTORE DATABASE
command has a few extra implications:

1. The database must use the same set of storage paths on all database partitions.

2. Issuing a RESTORE command with new storage paths can only be done on the
catalog database partition, which will set the state of the database to

RESTORE_PENDING on all non-catalog database partitions.

126 Data Servers, Databases, and Database Objects Guide




Table 44. Restore implications for multi-partition databases

No database on disk exists

Database exists on disk with
same name (includes skeleton

with same name databases)
Issued on Result on Result on
RESTORE DATABASE database other database other database
command partition # partitions Storage paths partitions Storage paths
RESTORE DATABASE TEST1 Catalog A skeleton Uses storage Nothing. Uses storage
database database is paths defined |Storage paths | paths defined
partition created using  |in the backup |have not in the backup
the storage image changed so image
paths from the nothing
backup image happens to
on the catalog other database
database partitions
partition. All
other database
partitions are
placed in a
RESTORE_
PENDING
state.
Non-catalog SQL2542N or |[N/A Nothing. Uses storage
database SQL2551N is Storage paths | paths defined
partition returned. If no have not in the backup
database exists, changed so image
the catalog nothing
database happens to
partition must other database
be restored partitions

first.

Chapter 6. Databases

127



Table 44. Restore implications for multi-partition databases (continued)

No database on disk exists

Database exists on disk with
same name (includes skeleton

the storage
paths specified
in the
RESTORE
command. All
other database
partitions are
place in a
RESTORE _
PENDING
state.

with same name databases)
Issued on Result on Result on
RESTORE DATABASE database other database other database
command partition # partitions Storage paths partitions Storage paths
RESTORE DATABASE TEST2  ON |Catalog A skeleton /pathl, /pathl,
/pathl, /path2, /path3 database database is /path2, /path3 /path2, /path3
partition created using

Non-catalog
database
partition

SQL1174N is
returned. If no
database exists,
the catalog
database
partition must
be restored
first. Storage
paths cannot
be specified on
the RESTORE
of a
non-catalog
database
partition.

N/A

SQL1172N is
returned. New
storage paths
cannot be
specified on
the RESTORE
of a
non-catalog
database
partition.

N/A

Cataloging databases

When you create a new database, it is automatically cataloged in the system
database directory file. You might also use the CATALOG DATABASE command to
explicitly catalog a database in the system database directory file.

The CATALOG DATABASE command allows you to catalog a database with a
different alias name, or to catalog a database entry that was previously deleted
using the UNCATALOG DATABASE command.

Although databases are cataloged automatically when a database is created, you
still might have a need to catalog the database. When you do so, the database
must exist.

By default directory files, including the database directory, are cached in memory
using the Directory Cache Support (dir_cache) configuration parameter. When
directory caching is enabled, a change made to a directory (for example, using a
CATALOG DATABASE or UNCATALOG DATABASE command) by another

128 Data Servers, Databases, and Database Objects Guide



application might not become effective until your application is restarted. To
refresh the directory cache used by a command line processor session, issue the
TERMINATE command.

In a partitioned database, a cache for directory files is created on each database
partition.

In addition to the application level cache, a database manager level cache is also
used for internal, database manager look-up. To refresh this “shared” cache, issue
the db2stop and db2start commands.

To catalog a database with a different alias name using the command line
processor, use the CATALOG DATABASE command. For example, the following
command line processor command catalogs the PERSON1 database as
HUMANRES:

CATALOG DATABASE personl AS humanres
WITH "Human Resources Database"

Here, the system database directory entry will have HUMANRES as the database
alias, which is different from the database name (PERSON1).

To catalog a database in the system database directory from a client application,
call the sqlecadb API.

To catalog a database on an instance other than the default using the command
line processor, use the CATALOG DATABASE command. In the following example,
connections to database B are to INSTNC_C. The instance instnc_c must already be
cataloged as a local node before attempting this command.

CATALOG DATABASE b as b_on_ic AT NODE instnc_c

Note: The CATALOG DATABASE command is also used on client nodes to catalog
databases that reside on database server computers.

Binding utilities to the database

When a database is created, the database manager attempts to bind the utilities in
db2ubind.lst and in db2cli.Ist to the database. These files are stored in the bnd
subdirectory of your sqllib directory.

Binding a utility creates a package, which is an object that includes all the
information needed to process specific SQL and XQuery statements from a single
source file.

Note: If you want to use these utilities from a client, you must bind them
explicitly. You must be in the directory where these files reside to create the
packages in the sample database. The bind files are found in the bnd subdirectory
of the sqllib directory. You must also bind the db2schema.bnd file when you create
or upgrade the database from a client. Refer to "DB2 CLI bind files and package
names” for details.

To bind or rebind the utilities to a database, from the command line, invoke the
following commands, where sample is the name of the database:

connect to sample
bind @db2ubind.Tst

Chapter 6. Databases 129



Creating database aliases

An alias is an indirect method of referencing a table, nickname, or view, so that an
SQL or XQuery statement can be independent of the qualified name of that table
or view.

Only the alias definition must be changed if the table or view name changes. An
alias can be created on another alias. An alias can be used in a view or trigger
definition and in any SQL or XQuery statement, except for table check-constraint
definitions, in which an existing table or view name can be referenced.

An alias can be defined for a table, view, or alias that does not exist at the time of
definition. However, it must exist when the SQL or XQuery statement containing
the alias is compiled.

An alias name can be used wherever an existing table name can be used, and can
refer to another alias if no circular or repetitive references are made along the
chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can only
refer to a table within the same database. The name of a table or view used in a
CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name
in the same schema.

You do not require special authority to create an alias, unless the alias is in a
schema other than the one owned by your current authorization ID, in which case
DBADM authority is required.

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked invalid and all views and triggers dependent
on the alias are marked inoperative.

To create an alias using the command line, enter:
CREATE ALIAS <alias_name> FOR <table_name>

The alias is replaced at statement compilation time by the table or view name. If
the alias or alias chain cannot be resolved to a table or view name, an error results.
For example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:
CREATE ALIAS WORKERS FOR EMPLOYEE

Note: DB2 for OS/390 or z/Series employs two distinct concepts of aliases: ALIAS
and SYNONYM. These two concepts differ from DB2 database as follows:

* ALIASes in DB2 for OS/390 or z/Series:
— Require their creator to have special authority or privilege
— Cannot reference other aliases

* SYNONYMs in DB2 for OS/390 or z/Series:
— Can only be used by their creator

— Are always unqualified

130 Data Servers, Databases, and Database Objects Guide



— Are dropped when a referenced table is dropped
— Do not share namespace with tables or views

Connecting to distributed relational databases

Distributed relational databases are built on formal requester-server protocols and
functions.

An application requester supports the application end of a connection. It transforms
a database request from the application into communication protocols suitable for
use in the distributed database network. These requests are received and processed
by a database server at the other end of the connection. Working together, the
application requester and the database server handle communication and location
considerations, so that the application can operate as if it were accessing a local
database.

An application process must connect to a database manager’s application server
before SQL statements that reference tables or views can be executed. The
CONNECT statement establishes a connection between an application process and
its server.

There are two types of CONNECT statements:

* CONNECT (Type 1) supports the single database per unit of work (Remote Unit
of Work) semantics.

¢ CONNECT (Type 2) supports the multiple databases per unit of work
(Application-Directed Distributed Unit of Work) semantics.

The DB2 call level interface (CLI) and embedded SQL support a connection mode
called concurrent transactions, which allows multiple connections, each of which is
an independent transaction. An application can have multiple concurrent
connections to the same database.

The application server can be local to or remote from the environment in which the
process is initiated. An application server is present, even if the environment is not
using distributed relational databases. This environment includes a local directory
that describes the application servers that can be identified in a CONNECT
statement.

The application server runs the bound form of a static SQL statement that
references tables or views. The bound statement is taken from a package that the
database manager has previously created through a bind operation.

For the most part, an application connected to an application server can use
statements and clauses that are supported by the application server’s database
manager. This is true even if an application is running through the application
requester of a database manager that does not support some of those statements
and clauses.

Remote unit of work for distributed relational databases

The remote unit of work facility provides for the remote preparation and execution of
SQL statements.

An application process at computer system “A” can connect to an application
server at computer system “B” and, within one or more units of work, execute any

Chapter 6. Databases 131



number of static or dynamic SQL statements that reference objects at “B”. After
ending a unit of work at B, the application process can connect to an application
server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed, with the following

restrictions:

* All objects referenced in a single SQL statement must be managed by the same
application server.

* All of the SQL statements in a unit of work must be executed by the same
application server.

At any given time, an application process is in one of four possible connection
states:

¢ Connectable and connected

An application process is connected to an application server, and CONNECT
statements can be executed.

If implicit connect is available:

— The application process enters this state when a CONNECT TO statement or
a CONNECT without operands statement is successfully executed from the
connectable and unconnected state.

— The application process may enter this state from the implicitly connectable

state if any SQL statement other than CONNECT RESET, DISCONNECT, SET
CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:

— A CONNECT TO statement is successfully executed from the connectable and
unconnected state.

- A COMMIT or ROLLBACK statement is successfully issued, or a forced
rollback occurs from the unconnectable and connected state.

¢ Unconnectable and connected

An application process is connected to an application server, but a CONNECT
TO statement cannot be successfully executed to change application servers. The
application process enters this state from the connectable and connected state
when it executes any SQL statement other than the following: CONNECT TO,
CONNECT with no operand, CONNECT RESET, DISCONNECT, SET
CONNECTION, RELEASE, COMMIT, or ROLLBACK.

* Connectable and unconnected
An application process is not connected to an application server. CONNECT TO

is the only SQL statement that can be executed; otherwise, an error (SQLSTATE
08003) is raised.

Whether or not implicit connect is available, the application process enters this
state if an error occurs when a CONNECT TO statement is issued, or an error
occurs within a unit of work, causing the loss of a connection and a rollback. An
error that occurs because the application process is not in the connectable state,
or because the server name is not listed in the local directory, does not cause a
transition to this state.

If implicit connect is not available:

— The application process is initially in this state

— The CONNECT RESET and DISCONNECT statements cause a transition to
this state.

* Implicitly connectable (if implicit connect is available).

132 Data Servers, Databases, and Database Objects Guide



If implicit connect is available, this is the initial state of an application process.
The CONNECT RESET statement causes a transition to this state. Issuing a
COMMIT or ROLLBACK statement in the unconnectable and connected state,
followed by a DISCONNECT statement in the connectable and connected state,
also results in this state.

Availability of implicit connect is determined by installation options, environment
variables, and authentication settings.

It is not an error to execute consecutive CONNECT statements, because
CONNECT itself does not remove the application process from the connectable
state. It is, however, an error to execute consecutive CONNECT RESET statements.
It is also an error to execute any SQL statement other than CONNECT TO,
CONNECT RESET, CONNECT with no operand, SET CONNECTION, RELEASE,
COMMIT, or ROLLBACK, and then to execute a CONNECT TO statement. To
avoid this error, a CONNECT RESET, DISCONNECT (preceded by a COMMIT or
ROLLBACK statement), COMMIT, or ROLLBACK statement should be executed
before the CONNECT TO statement.

CONNECT

Begin process A/ RESET

Failure of

implicit connect — —~a

Connectable
and
Unconnected

\

System failure
with rollback

Implicitly
Connectable

7

CONNECT
RESET

CONNECT TO,
COMMIT,
or ROLLBACK

CONNECT TO,
COMMIT, or
ROLLBACK

Connectable Unconnectable
and ROLLBACK, and
Connected successful COMMIT, Connected
or deadlock

/'SQL statement other

than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,
COMMIT or ROLLBACK

Figure 3. Connection State Transitions If Implicit Connect Is Available

Chapter 6. Databases 133



CONNECT RESET

Begin process
Successful CONNECT TO /

CONNECT TO,

COMMIT or —

ROLLBACK CONNECT TO

Connectable ith failure s Connectable
and with system failure and

Connected Unconnected

CONNECT
\ RESET

SQL statement other than

CONNECT TO, CONNECT RESET, CONNECT

COMMIT or ROLLBACK RESET

ROLLBACK, System failure
successful COMMIT, with rollback

or deadlock
Unconnectable

and
Connected

)

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

Figure 4. Connection State Transitions If Implicit Connect Is Not Available

Application-directed distributed unit of work

The application-directed distributed unit of work facility provides for the remote
preparation and execution of SQL statements.

An application process at computer system “A” can connect to an application
server at computer system “B” by issuing a CONNECT or a SET CONNECTION
statement. The application process can then execute any number of static and
dynamic SQL statements that reference objects at “B” before ending the unit of
work. All objects referenced in a single SQL statement must be managed by the
same application server. However, unlike the remote unit of work facility, any
number of application servers can participate in the same unit of work. A commit
or a rollback operation ends the unit of work.

An application-directed distributed unit of work uses a type 2 connection. A type 2
connection connects an application process to the identified application server, and
establishes the rules for application-directed distributed units of work.

A type 2 application process:

* Is always connectable

* Is either in the connected state or in the unconnected state
* Has zero or more connections.

Each connection of an application process is uniquely identified by the database
alias of the application server for the connection.

An individual connection always has one of the following connection states:

134 Data Servers, Databases, and Database Objects Guide



e current and held

* current and release-pending

¢ dormant and held

¢ dormant and release-pending

A type 2 application process is initially in the unconnected state, and does not

have any connections. A connection is initially in the current and held state.

Begin
process

Current

States of a Connection

of the connection

The current connection is intentionally ended,
or a failure occurs causing the loss

v

Successful CONNECT or
SET CONNECTION

Dormant

4

Current

States of a Connection

Successful CONNECT or
SET CONNECTION
specifying another connection

Held

Successful CONNECT or
SET CONNECTION
specifying an
existing dormant connection

RELEASE

Dormant

Release-
pending

Figure 5. Application-Directed Distributed Unit of Work Connection State Transitions

Application process connection states
There are certain rules that apply to the execution of a CONNECT statement.

The following rules apply to the execution of a CONNECT statement:

* A context cannot have more than one connection to the same application server

at the same time.

* When an application process executes a SET CONNECTION statement, the

specified location name must be an existing connection in the set of connections
for the application process.

* When an application process executes a CONNECT statement, and the

SQLRULES(STD) option is in effect, the specified server name must not be an
existing connection in the set of connections for the application process. For a
description of the SQLRULES option, see [‘Options that govern unit of work]

fsemantics” on page 137

Chapter 6. Databases

135



If an application process has a current connection, the application process is in
the connected state. The CURRENT SERVER special register contains the name of
the application server for the current connection. The application process can

execute SQL statements that refer to objects managed by that application server.

An application process that is in the unconnected state enters the connected state
when it successfully executes a CONNECT or a SET CONNECTION statement. If
there is no connection, but SQL statements are issued, an implicit connect is made,
provided the DB2DBDFT environment variable has been set with the name of a
default database.

If an application process does not have a current connection, the application
process is in the unconnected state. The only SQL statements that can be executed
are CONNECT, DISCONNECT ALL, DISCONNECT (specifying a database), SET
CONNECTION, RELEASE, COMMIT, ROLLBACK, and local SET statements.

An application process in the connected state enters the unconnected state when its
current connection intentionally ends, or when an SQL statement fails, causing a
rollback operation at the application server and loss of the connection. Connections
end intentionally following the successful execution of a DISCONNECT statement,
or a COMMIT statement when the connection is in release-pending state. (If the
DISCONNECT precompiler option is set to AUTOMATIC, all connections end. If it
is set to CONDITIONAL, all connections that do not have open WITH HOLD
cursors end.)

Connection states

There are two types of connection states: “held and release-pending states” and
“current and dormant states”.

If an application process executes a CONNECT statement, and the server name is
known to the application requester but is not in the set of existing connections for
the application process: (i) the current connection is placed into the dormant
connection state, the server name is added to the set of connections, and the new
connection is placed into both the current connection state and the held connection
state.

If the server name is already in the set of existing connections for the application
process, and the application is precompiled with the SQLRULES(STD) option, an
error (SQLSTATE 08002) is raised.

Held and release-pending states. The RELEASE statement controls whether a
connection is in the held or the release-pending state. The release-pending state
means that a disconnect is to occur at the next successful commit operation. (A
rollback has no effect on connections.) The held state means that a disconnect is not
to occur at the next commit operation.

All connections are initially in the held state and can be moved to the
release-pending state using the RELEASE statement. Once in the release-pending
state, a connection cannot be moved back to the held state. A connection remains
in release-pending state across unit of work boundaries if a ROLLBACK statement
is issued, or if an unsuccessful commit operation results in a rollback operation.

Even if a connection is not explicitly marked for release, it may still be

disconnected by a commit operation if the commit operation satisfies the
conditions of the DISCONNECT precompiler option.

136 Data Servers, Databases, and Database Objects Guide



Current and dormant states. Regardless of whether a connection is in the held
state or the release-pending state, it can also be in the current state or the dormant
state. A connection in the current state is the connection being used to execute SQL
statements while in this state. A connection in the dormant state is a connection that
is not current.

The only SQL statements that can flow on a dormant connection are COMMIT,
ROLLBACK, DISCONNECT, or RELEASE. The SET CONNECTION and
CONNECT statements change the connection state of the specified server to
current, and any existing connections are placed or remain in dormant state. At
any point in time, only one connection can be in current state. If a dormant
connection becomes current in the same unit of work, the state of all locks, cursors,
and prepared statements is the same as the state they were in the last time that the
connection was current.

When a connection ends

When a connection ends, all resources that were acquired by the application
process through the connection, and all resources that were used to create and
maintain the connection are de-allocated. For example, if the application process
executes a RELEASE statement, any open cursors are closed when the connection
ends during the next commit operation.

A connection can also end because of a communications failure. If this connection
is in current state, the application process is placed in unconnected state.

All connections for an application process end when the process ends.

Options that govern unit of work semantics

The semantics of type 2 connection management are determined by a set of
precompiler options. These options are summarized below with default values
indicated by bold and underlined text.

¢ CONNECT (1 | 2). Specifies whether CONNECT statements are to be processed
as type 1 or type 2.

* SQLRULES (DB2 | STD). Specifies whether type 2 CONNECTs are to be
processed according to the DB2 rules, which allow CONNECT to switch to a
dormant connection, or the SQL92 Standard rules, which do not allow this.

* DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC). Specifies what
database connections are to be disconnected when a commit operation occurs:

— Those that have been explicitly marked for release by the SQL RELEASE
statement (EXPLICIT)

— Those that have no open WITH HOLD cursors, and those that are marked for
release (CONDITIONAL)

— All connections (AUTOMATIC).

* SYNCPOINT (ONEPHASE | TWOPHASE | NONE). Specifies how COMMITs
or ROLLBACKS are to be coordinated among multiple database connections.
This option is ignored, and is included for backwards compatibility only.

— Updates can only occur against one database in the unit of work, and all
other databases are read-only (ONEPHASE). Any update attempts to other
databases raise an error (SQLSTATE 25000).

— A transaction manager (TM) is used at run time to coordinate two-phase
COMMITs among those databases that support this protocol (TWOPHASE).

Chapter 6. Databases 137



— Does not use a TM to perform two-phase COMMITs, and does not enforce
single updater, multiple reader (NONE). When a COMMIT or a ROLLBACK
statement is executed, individual COMMITs or ROLLBACKSs are posted to all
databases. If one or more ROLLBACKS fail, an error (SQLSTATE 58005) is
raised. If one or more COMMITs fail, another error (SQLSTATE 40003) is
raised.

To override any of the above options at run time, use the SET CLIENT command
or the sqlesetc application programming interface (API). Their current settings can
be obtained using the QUERY CLIENT command or the sqleqryc APIL. Note that
these are not SQL statements; they are APIs defined in the various host languages
and in the command line processor (CLP).

Data representation considerations

Different systems represent data in different ways. When data is moved from one
system to another, data conversion must sometimes be performed.

Products supporting DRDA automatically perform any necessary conversions at
the receiving system.

To perform conversions of numeric data, the system needs to know the data type
and how it is represented by the sending system. Additional information is needed
to convert character strings. String conversion depends on both the code page of
the data and the operation that is to be performed on that data. Character
conversions are performed in accordance with the IBM Character Data
Representation Architecture (CDRA). For more information about character
conversion, see the Character Data Representation Architecture: Reference & Registry
(5C09-2190-00) manual.

Viewing the local or system database directory files

Use the LIST DATABASE DIRECTORY command to view the information
associated with the databases that you have on your system.

Before viewing either the local or system database directory files, you must have
previously created an instance and a database.

To see the contents of the local database directory file, issue the following
command, where <location> specifies the location of the database:

LIST DATABASE DIRECTORY ON <Tocation>

To see the contents of the system database directory file, issue the LIST
DATABASE DIRECTORY command without specifying the location of the database
directory file.

Dropping databases

Dropping a database can have far-reaching effects, because this action deletes all its
objects, containers, and associated files. The dropped database is removed
(uncataloged) from the database directories.

To drop a database using the command line, enter:
DROP DATABASE <name>

The following command deletes the database SAMPLE:

138 Data Servers, Databases, and Database Objects Guide



DROP DATABASE SAMPLE

Note: If you drop the SAMPLE database and find that you need it again, you can
re-create it.

To drop a database from a client application, call the sqledrpd API To drop a
database at a specified database partition server, call the sqledpan APL

Dropping aliases

When you drop an alias, its description is deleted from the catalog, any packages
and cached dynamic queries that reference the alias are invalidated, and all views
and triggers dependent on the alias are marked inoperative.

To drop aliases, from the command line, issue the DROP statement:
DROP ALIAS EMPLOYEE-ALIAS

Chapter 6. Databases 139



140 Data Servers, Databases, and Database Objects Guide



Chapter 7. Database partitions

A database partition is a part of a database that consists of its own data, indexes,
configuration files, and transaction logs. A database partition is sometimes called a
node or a database node. A partitioned database environment is a database
installation that supports the distribution of data across database partitions.

For complete details about database partitions, see the Partitioning and Clustering
Guide.

© Copyright IBM Corp. 1993, 2009 141



142 Data Servers, Databases, and Database Objects Guide



Chapter 8. Buffer pools

A buffer pool is an area of main memory that has been allocated by the database
manager for the purpose of caching table and index data as it is read from disk.
Every DB2 database must have a buffer pool.

Each new database has a default bufferpool defined, called IBMDEFAULTBP.
Additional buffer pools can be created, dropped, and modified, using the CREATE
BUFFERPOOL, DROP BUFFERPOOL, and ALTER BUFFERPOOL statements. The
SYSCAT.BUFFERPOOLS catalog view accesses the information for the buffer pools
defined in the database.

How buffer pools are used

When a row of data in a table is first accessed, the database manager places the
page that contains that data into a buffer pool. Pages stay in the buffer pool until
the database is shut down or until the space occupied by the page is required by
another page.

Pages in the buffer pool can be either in-use or not, and they can be dirty or clean:

* In-use pages are currently being read or updated. To maintain data consistency,
the database manager only allows one agent to be updating a given page in a
bufferpool at one time. If a page is being updated, it is being accessed
exclusively by one agent. If it is being read, it may be read by multiple agents
simultaneously.

» "Dirty” pages contain data that has been changed but has not yet been written to
disk.

* After a changed page is written to disk, it is clean and might remain in the
buffer pool.

A large part of tuning a database involves setting the configuration parameters that
control the movement of data into the buffer pool and the writing of data from the
buffer out to disk. If not needed by a recent agent, the page space can be used for
new page requests from new applications. Database manager performance is
degraded by extra disk 1/O.

You can use the snapshot monitor to calculate the buffer pool hit ratio, which can
help you tune your buffer pools.

Designing buffer pools

The sizes of all buffer pools can have a major impact on the performance of your
database.

Before you create a new buffer pool, resolve the following items:
* What buffer pool name do you want to use?

* Whether the buffer pool is to be created immediately or following the next time
that the database is deactivated and reactivated?

* Whether the buffer pool should exist for all database partitions, or for a subset
of the database partitions?

© Copyright IBM Corp. 1993, 2009 143



+ What page size you want for the buffer pool? See [“Buffer pool page sizes”’|
below.

¢ Whether the buffer pool will be a fixed size, or whether the database manager
will automatically adjust the size of the buffer pool in response to your
workload? It is suggested that you allow the database manager to tune your
buffer pool automatically by leaving the SIZE parameter unspecified during
buffer pool creation. For details, see the SIZE parameter of the “CREATE
BUFFERPOOL statement” and [“Buffer pool memory considerations.”|

* Whether you want to reserve a portion of the buffer pool for block based 1/0?
For details, see: “Block-based buffer pools for improved sequential prefetching”.

Relationship between table spaces and buffer pools

When designing buffer pools, you need to understand the relationship between
table spaces and buffer pools. Each table space is associated with a specific buffer
pool. IBMDEFAULTBP is the default buffer pool. The database manager also
allocates these system buffer pools: IBMSYSTEMBP4K, IBMSYSTEMBPSK,
IBMSYSTEMBP16K, and IBMSYSTEMBP32K (formerly known as the “hidden
buffer pools”). To associate another buffer pool with a table space, the buffer pool
must exist and the two must have the same page size. The association is defined
when the table space is created (using the CREATE TABLESPACE statement), but it
can be changed at a later time (using the ALTER TABLESPACE statement).

Having more than one buffer pool allows you to configure the memory used by
the database to improve overall performance. For example, if you have a table
space with one or more large (larger than available memory) tables that are
accessed randomly by users, the size of the buffer pool can be limited, because
caching the data pages might not be beneficial. The table space for an online
transaction application might be associated with a larger buffer pool, so that the
data pages used by the application can be cached longer, resulting in faster
response times. Care must be taken in configuring new buffer pools.

Buffer pool page sizes

The page size for the default buffer pool is set when you use the CREATE
DATABASE command. This default represents the default page size for all future
CREATE BUFFERPOOL and CREATE TABLESPACE statements. If you do not
specify the page size when creating the database, the default page size is 4 KB.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is required
by your database, you must have at least one bufferpool of the matching page size
defined and associated with table space in your database.

However, you might need a buffer pool that has different characteristics than the
system buffer pool. You can create new buffer pools for the database manager to
use. You may have to restart the database for table space and bufferpool changes
to take effect. The page sizes that you specify for your table spaces should
determine the page sizes that you choose for your buffer pools. The choice of page
size used for a buffer pool is important because you cannot alter the page size
after you create a buffer pool.

Buffer pool memory considerations

Memory requirements
When designing buffer pools, you should also consider the memory
requirements based on the amount of installed memory on your machine

144 Data Servers, Databases, and Database Objects Guide



and the memory required by other applications running concurrently with
the database manager on the same machine. Operating system data
swapping occurs when there is insufficient memory to hold all the data
being accessed. This occurs when some data is written or swapped to
temporary disk storage to make room for other data. When the data on
temporary disk storage is needed, it is swapped back into main memory.

Buffer pool memory protection

With Version 9.5, data pages in buffer pool memory are protected using
storage keys, which are available only if explicitly enabled by the
DB2_MEMORY_PROTECT registry variable, and only on AIX (5.3 TL06
5.4), running on POWER6".

Buffer pool memory protection works on a per-agent level; any particular
agent will only have access to buffer pool pages when that agent needs
access. Memory protection works by identifying at which times the DB2
engine threads should have access to the buffer pool memory and at which
times they should not have access. For details, see: |“Buffer pool memory]|
fprotection (AIX running on POWERS6).”|

Address Windowing Extensions (AWE) and Extended Storage (ESTORE)

Note: AWE and ESTORE features have been discontinued, including the
ESTORE-related keywords, monitor elements, and data structures. To
allocate more memory, you need to upgrade to a 64-bit hardware operating
system, and associated DB2 products. You should also modify applications
and scripts to remove references to this discontinued functionality.

Buffer pool memory protection (AIX running on POWERSG)

The database manager uses the buffer pool to apply additions, modifications and
deletions to much of the database data. On AIX 5.3 TL06+ running on POWERS,
you can use storage keys to protect the buffer pool memory.

Storage keys is a new feature in IBM® Power6 processors and the AIX® operating
system that allows the protection of ranges of memory using hardware keys at a
kernel thread level. Storage key protection reduces buffer pool memory corruption
problems and limits errors that might halt the database. Attempts to illegally access
the buffer pool by programming means cause an error condition that the database
manager can detect and deal with.

Note: Buffer pool memory protection works on a per-agent level; any particular
agent will only have access to buffer pool pages when that agent needs access.

The database manager protects buffer pools by restricting access to buffer pool
memory. When an agent requires access to the buffer pools to perform it’'s work, it
will temporarily be granted access to the buffer pool memory. When the agent no
longer requires access to the buffer pools, access will be revoked. This ensures that
agents are only allowed to modify buffer pool contents when absolutely needed,
reducing the likelihood of buffer pool corruptions. Any illegal access to buffer pool
memory will result in a segmentation error. Tools to diagnose these errors are

provided, such as the db2diag, db2fodc, db2pdcfg, and db2support commands.

For complete enablement of this buffer pool memory protection feature, in order to
increase the resilience of the database engine, you should enable both the
DB2_MEMORY_PROTECT and the DB2_THREAD_SUSPENSION registry
variables:

Chapter 8. Buffer pools 145



DB2_MEMORY_PROTECT registry variable
This registry variable enables and disables the buffer pool memory
protection feature. When DB2_MEMORY_PROTECT is enabled (set to
YES), and a DB2 engine thread tries to illegally access buffer pool memory,
that engine thread traps. The default is NO.

DB2_THREAD_SUSPENSION registry variable
This registry variable enables and disables the DB2 thread suspension
feature. It allows you to control whether a DB2 instance sustains a trap by
suspending a faulty engine thread (that is, a thread which has tried to
illegally access memory protected with storage keys). .

Note: The buffer pool memory protection feature depends on the implementation
of AIX Storage Protect Keys and it may not work with the pinned shared
memory. If DB2_ MEMORY_PROTECT is specified with DB2_PINNED_BP
or DB2_LARGE_PAGE_MEM setting, AIX Storage Protect Keys may not be
enabled. For more information about AIX Storage Protect Keys, refer to the
following link: fhttp:/ /publib.boulder.ibm.com/infocenter /systems /scope/|
aix /index jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/|
storage_protect_keys.htm|

DB2_THREAD_SUSPENSION can be enabled only if
DB2_MEMORY_PROTECT is enabled. If DB2._ THREAD SUSPENSION is
enabled:

* Whatever failure in the thread, whether or not caused by an attempt to
access memory that is protected using storage keys and to which the
thread has no access, if it happens at a point in which the thread has no
access to this memory protected using storage keys, then the database
manager guarantees that the protected memory has not been corrupted,
and consequently, lets the DB2 engine continue running.

* When running a User Defined Function without SQL in unfenced mode,
if a buffer pool memory protection violation is detected, the database
manager will return the error to the caller of the UDF and the database
will continue running without being affected.

Creating buffer pools

Use the CREATE BUFFERPOOL statement to define a new buffer pool to be used
by the database manager.

Example of a basic CREATE BUFFERPOOL statement is:

CREATE BUFFERPOOL <buffer pool name>
PAGESIZE 4096

The buffer pool may be come active immediately if there is sufficient memory
available. By default new buffer pools are created using the IMMEDIATE keyword,
and on most platforms, the database manager will be able to acquire more
memory. The expected return is successful memory allocation. Only in cases where
the database manager is unable to allocate the extra memory will it return a
warning condition stating that the buffer pool could not be started, and this is
done on the subsequent database startup. For immediate requests, you do not need
to restart the database. When this statement is committed, the buffer pool is
reflected in the system catalog tables, but the buffer pool does not become active
until the next time the database is started. For more information about this
statement, including other options, see the “CREATE BUFFERPOOL statement”.

146 Data Servers, Databases, and Database Objects Guide


http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm

If you issue a CREATE BUFFERPOOL DEFERRED, the buffer pool is not
immediately activated; instead, it is created at the next database startup. Until the
database is restarted, any new table spaces will use an existing buffer pool, even if
that table space is created to explicitly use the deferred buffer pool.

There needs to be enough real memory on the machine for the total of all the
buffer pools that you have created. The operating system also needs some memory
to operate.

To create a buffer pool using the command line, do the following:

1. Get the list of buffer pool names that already exist in the database by issuing
the following SQL statement:

SELECT BPNAME FROM SYSCAT.BUFFERPOOLS
2. Choose a buffer pool name that is not currently found in the result list.

w

Determine the characteristics of the buffer pool you are going to create.

4. Ensure that you have the correct authorization ID to run the CREATE
BUFFERPOOL statement.

5. Issue the CREATE BUFFERPOOL statement.

On partitioned databases, you can also define the buffer pool to be created
differently, including different sizes, on each database partition. The default ALL
DBPARTITIONNUMS clause indicates that this buffer pool will be created on all
database partitions in the database.

In the following example, the optional DATABASE PARTITION GROUP clause
identifies the database partition group or groups to which the buffer pool
definition applies:

CREATE BUFFERPOOL <buffer pool name>

PAGESIZE 4096
DATABASE PARTITION GROUP <db partition group name>

If this parameter is specified, the buffer pool will only be created on database
partitions in these database partition groups. Each database partition group must
currently exist in the database. If the DATABASE PARTITION GROUP clause is not
specified, this buffer pool will be created on all database partitions (and on any
database partitions that are subsequently added to the database).

For more information, see the “CREATE BUFFERPOOL statement”.

Modifying buffer pools

There are a number of reasons why you might want to modify a buffer pool, for
example, to enable self-tuning memory. To do this, you use the ALTER
BUFFERPOOL statement.

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

When working with buffer pools, you might need to do one of the following tasks

* Enable self tuning for a buffer pool, allowing the database manager to adjust the
size of the buffer pool in response to your workload.

* Modify the block area of the buffer pool for block-based 1/0.
¢ Add this buffer pool definition to a new database partition group.
* Modify the size of the buffer pool on some or all database partitions.

Chapter 8. Buffer pools 147



To alter a buffer pool using the command line, do the following:

1. To get the list of the buffer pool names that already exist in the database, issue
the following statement:

SELECT BPNAME FROM SYSCAT.BUFFERPOOLS
2. Choose the buffer pool name from the result list.
3. Determine what changes need to be made.

4. Ensure that you have the correct authorization ID to run the ALTER
BUFFERPOOL statement.

Note: Two key parameters are IMMEDIATE and DEFERRED. With IMMEDIATE, the
buffer pool size is changed without having to wait until the next database
activation for it to take effect. If there is insufficient database shared memory to
allocate new space, the statement is run as DEFERRED.

With DEFERRED, the changes to the buffer pool will not be applied until the
database is reactivated. Reserved memory space is not needed; the database
manager allocates the required memory from the system at activation time.

5. Use the ALTER BUFFERPOOL statement to alter a single attribute of the buffer
pool object. For example:

ALTER BUFFERPOOL buffer pool name SIZE number of pages

* The buffer pool name is a one-part name that identifies a buffer pool described in
the system catalogs.

* The number of pages is the new number of pages to be allocated to this specific
buffer pool. You can also use a value of -1, which indicates that the size of the
buffer pool should be the value found in the buffpage database configuration
parameter.

The statement can also have the DBPARTITIONNUM <db partition number>
clause that specifies the database partition on which the size of the buffer pool is
modified. If this clause is not specified, the size of the buffer pool is modified on
all database partitions except those that have an exception entry in
SYSCAT.BUFFERPOOLDBPARTITIONS. For details on using this clause for
database partitions, see the ALTER BUFFERPOOL statement.

Changes to the buffer pool as a result of this statement are reflected in the system
catalog tables when the statement is committed. However, no changes to the actual
buffer pool take effect until the next time the database is started, except for
successful ALTER BUFFERPOOL requests specified with the default IMMEDIATE
keyword.

There must be enough real memory on the machine for the total of all the buffer
pools that you have created. There also needs to be sufficient real memory for the
rest of the database manager and for your applications.

Dropping buffer pools

When dropping buffer pools, ensure that no table spaces have been assigned to
those buffer pools. You cannot drop the IBMDEFAULTBP buffer pool.

Disk storage may not be released until the next connection to the database. Storage
memory is not actually released from a dropped buffer pool until the database is
stopped. Buffer pool memory is released immediately, to be used by the database
manager.

148 Data Servers, Databases, and Database Objects Guide



You can use the DROP BUFFERPOOL statement to drop buffer pools, as follows:
DROP BUFFERPOOL <buffer pool name>

Chapter 8. Buffer pools 149



150 Data Servers, Databases, and Database Objects Guide



Chapter 9. Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long
data. Table spaces reside in database partition groups. They allow you to assign the
location of database and table data directly onto containers. (A container can be a
directory name, a device name, or a file name.) This can provide improved
performance and more flexible configuration.

Since table spaces reside in database partition groups, the table space selected to
hold a table defines how the data for that table is distributed across the database
partitions in a database partition group. A single table space can span several
containers. It is possible for multiple containers (from one or more table spaces) to
be created on the same physical disk (or drive). If you are using automatic storage
table spaces, this is handled by the database manager. If you are not using
automatic storage table spaces, for improved performance, each container should
use a different disk.

illustrates the relationship between tables and table spaces within a
database, and the containers associated with that database.

Database

Database partition group

HUMANRES SCHED
table space table space
EMPLOYEE DEPARTMENT PROJECT
table table table

00000

Contalner Contalner Contalner Contamer Contalner

Figure 6. Table spaces and tables in a database

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,
which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table
space in container 4. This example shows each container existing on a separate
disk.

The database manager attempts to balance the data load across containers. As a
result, all containers are used to store data. The number of pages that the database
manager writes to a container before using a different container is called the extent
size. The database manager does not always start storing table data in the first
container.

© Copyright IBM Corp. 1993, 2009 151



shows the HUMANRES table space with an extent size of two 4 KB pages,
and four containers, each with a small number of allocated extents. The
DEPARTMENT and EMPLOYEE tables both have seven pages, and span all four

containers.
HUMANRES table space
Container 0 Container 1 Container 2 Container 3
DEPARTMENT EMPLOYEE EMPLOYEE EMPLOYEE
EMPLOYEE DEPARTMENT DEPARTMENT DEPARTMENT
I_{—< 4 KB page Extent size

Figure 7. Containers and extents in a table space

Designing table spaces

Table spaces are used to specify where data in a database is physically stored on a
system and to provide a layer of indirection between the database and the
container objects in which the actual data resides.

There are many reasons for creating table spaces, including recoverability, and the
ability to isolate objects in different bufferpools. With automatic storage, you no
longer need to be concerned about the physical disk location of table spaces, nor
about the physical location of containers. The database manager automatically
assigns or creates containers for table spaces.

A database must contain at least three table spaces:

* One catalog table space, which contains all of the system catalog tables for the
database. This table space is called SYSCATSPACE, and it cannot be dropped.
IBMCATGROUP is the default database partition group for this table space.

* One or more user table spaces, which contain all user defined tables. By default,
one table space, USERSPACE], is created. IBMDEFAULTGROUP is the default
database partition group for this table space.

You should specify a table space name when you create a table, or the results
may not be what you intend.

A table’s page size is determined either by row size, or the number of columns.
The maximum allowable length for a row is dependent upon the page size of
the table space in which the table is created. Possible values for page size are 4
KB, 8 KB, 16 KB, and 32 KB. Before Version 9.1, the default page size was 4 KB.
In Version 9.1 and following, the default page size may be one of the other
supported values. The default page size is declared when creating a new
database. Once the default page size has been declared, you are still free to
create a table space with one page size for the table, and a different table space
with a different page size for long or LOB data. (Recall that SMS does not

152 Data Servers, Databases, and Database Objects Guide



support tables that span table spaces, but that DMS does.) If the number of
columns or the row size exceeds the limits for a table space’s page size, an error
is returned (SQLSTATE 42997).

* One or more temporary table spaces, which contain temporary tables. Temporary
table spaces can be system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database
manager while performing operations such as sorts or joins. These types of
operations require extra space to process the results set. A database must have at
least one system temporary table space; by default, one system temporary table
space called TEMPSPACETL is created at database creation. IBMTEMPGROUP is
the default database partition group for this table space.

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE statement. To allow the definition of
declared temporary tables, at least one user temporary table space should be
created with the appropriate USE privileges. USE privileges are granted using
the GRANT statement. A user temporary table spaces is not created by default at
database creation.

If a database uses more than one temporary table space and a new temporary
object is needed, the optimizer will choose an appropriate page size for this
object. That object will then be allocated to the temporary table space with the
corresponding page size. If there is more than one temporary table space with
that page size, then the table space will be chosen in a round-robin fashion. In
most circumstances, it is not recommended to have more than one temporary
table space of any one page size.

If queries are running against tables in table spaces that are defined with page
sizes larger than the default, some of them may fail. This will occur if there are
no temporary table spaces defined with a larger page size. You may need to
create a temporary table space with a larger page size (if the default was 4 KB,
then you would need to create a temporary table space with a page size of 8 KB,
16 KB, or 32 KB). Any DML (Data Manipulation Language) statement could fail
unless there exists a temporary table space with the same page size as the
largest page size in the user table space.

You should define a single SMS temporary table space with a page size equal to
the page size used in the majority of your user table spaces. This should be
adequate for typical environments and workloads.

Table spaces and database partition groups

In a partitioned database environment, each table space is associated with a
specific database partition group. This allows the characteristics of the table space
to be applied to each database partition in the database partition group.

The database partition group must exist (it is defined with the CREATE
DATABASE PARTITION GROUP statement), and the association between the table
space and the database partition group is defined when the table space is created
using the CREATE TABLESPACE statement.

You cannot change the association between table space and database partition
group using the ALTER TABLESPACE statement. You can only change the table
space specification for individual database partitions within the database partition
group. In a single-partition environment, each table space is associated with the
default database partition group. The default database partition group, when
defining a table space, is IBMDEFAULTGROUP, unless a system temporary table
space is being defined; then IBMTEMPGROUP is used.

Chapter 9. Table spaces 153



Types of table spaces

A database must contain at least three types table spaces: one catalog table space,
one or more user table spaces, and one or more temporary table spaces.

There are two types of table space, both of which can be used in a single database:

* System managed space, in which the operating system’s file manager controls
the storage space.

* database managed space, in which the database manager controls the storage
space.

In a partitioned database environment, the catalog partition will contain all three
default table spaces, and the other database partitions will each contain only
TEMPSPACE1 and USERSPACEL.

Automatic storage table spaces can also be created, which will use SMS or DMS as
the underlying table space type. The actual type (SMS or DMS) is chosen by the
database manager depending on the type of data that will reside in it (SMS for
temporary table spaces, DMS otherwise).

System managed space
In an SMS (System Managed Space) table space, the operating system’s file system
manager allocates and manages the space where the table is stored.

The storage model typically consists of many files, representing table objects,
stored in the file system space. You decide the location of the files, the database
manager controls their names, and the file system is responsible for managing
them. By controlling the amount of data written to each file, the database manager
distributes the data evenly across the table space containers.

Each table has at least one SMS physical file associated with it.

The data in the table spaces is striped by extent across all the containers in the
system. An extent is a group of consecutive pages defined to the database. The file
extension denotes the type of the data stored in the file. To distribute the data
evenly across all containers in the table space, the starting extents for tables are
placed in round-robin fashion across all containers. Such distribution of extents is
particularly important if the database contains many small tables. DB2 striping is
recommended when writing data into multiple containers. If you choose to
implement disk striping along with DB2 striping, the extent size of the table space
and the strip size of the disk should be identical.

In an SMS table space, space for tables is allocated on demand. The amount of
space that is allocated is dependent on the setting of the multipage_alloc database
configuration parameter. If this configuration parameter is set to YES, then a full
extent (typically made up of two or more pages) will be allocated when space is
required. Otherwise, space will be allocated one page at a time.

Multipage file allocation is enabled by default. The value of the multipage_alloc
database configuration parameter will indicate if multipage file allocation is
enabled.

Note: Multipage file allocation is not applicable to temporary table spaces.

Multi-page file allocation only affects the data and index portions of a table. This
means that the .LF, .LB, and .LBA files are not extended one extent at a time.

154 Data Servers, Databases, and Database Objects Guide



When all space in a single container in an SMS table space is allocated to tables,
the table space is considered full, even if space remains in other containers. You
can add containers to an SMS table space only on a database partition that does
not yet have any containers.

Note: SMS table spaces can take advantage of file-system prefetching and caching.

SMS table spaces are defined using the MANAGED BY SYSTEM option on the
CREATE DATABASE command, or on the CREATE TABLESPACE statement. You
must consider two key factors when you design your SMS table spaces:

* Containers for the table space.

You must specify the number of containers that you want to use for your table
space. It is very important to identify all the containers you want to use, because
you cannot add or delete containers after an SMS table space is created. In a
partitioned database environment, when a new database partition is added to
the database partition group for an SMS table space, the ALTER TABLESPACE
statement can be used to add containers to the new database partition.

Each container used for an SMS table space identifies an absolute or relative
directory name. Each of these directories can be located on a different file system
(or physical disk). The maximum size of the table space can be estimated by:

number of containers * (maximum file system size

supported by the operating system)

This formula assumes that there is a distinct file system mapped to each
container, and that each file system has the maximum amount of space available.
In practice, this may not be the case, and the maximum table space size may be
much smaller. There are also SQL limits on the size of database objects, which
may affect the maximum size of a table space.

Note: Care must be taken when defining the containers. If there are existing files
or directories on the containers, an error (SQL0298N) is returned.

* Extent size for the table space.

The extent size can be specified only when the table space is created. Because it
cannot be changed later, it is important to select an appropriate value for the
extent size.

If you do not specify the extent size when creating a table space, the database
manager will create the table space using the default extent size, defined by the
dft_extent_sz database configuration parameter. This configuration parameter is
initially set based on information provided when the database is created. If the
dft_extent_sz parameter is not specified on the CREATE DATABASE command,
the default extent size will be set to 32.

To choose appropriate values for the number of containers and the extent size for
the table space, you must understand:

* The limitation that your operating system imposes on the size of a logical file
system.
For example, some operating systems have a 2 GB limit. Therefore, if you want a
64 GB table object, you will need at least 32 containers on this type of system.
When you create the table space, you can specify containers that reside on

different file systems and, as a result, increase the amount of data that can be
stored in the database.

* How the database manager manages the data files and containers associated
with a table space.

Chapter 9. Table spaces 155



The first table data file (SQLO0002.DAT) is created in the first container specified
for the table space, and this file is allowed to grow to the extent size. After it
reaches this size, the database manager writes data to SQL00002.DAT in the next
container. This process continues until all of the containers contain SQLO0002.DAT
files, at which time the database manager returns to the first container. This
process (known as striping) continues through the container directories until a
container becomes full (SQL0289N), or no more space can be allocated from the
operating system (disk full error). Striping applies to the block map files
(SQLnnnnn.BKM), to index objects, as well as other objects used to store table
data.

Note: The SMS table space is full as soon as any one of its containers is full.
Thus, it is important to have the same amount of space available to each
container.

To help distribute data across the containers more evenly, the database manager
determines which container to use first by taking the table identifier
(SQLOOOO2.DAT in the above example) and factoring into account the number of
containers. Containers are numbered sequentially, starting at 0.

Database managed space
In a DMS (database managed space) table space, the database manager controls the
storage space.

The storage model consists of a limited number of devices or files whose space is
managed by the database manager. The database administrator decides which
devices and files to use, and manages the space on those devices and files. The
table space is essentially an implementation of a special purpose file system
designed to best meet the needs of the database manager.

DMS table spaces are different from SMS table spaces in that space for DMS table
spaces is allocated when the table space is created. For SMS table spaces, space is
allocated as needed. A DMS table space containing user defined tables and data
can be defined as a regular or large table space that stores any table data or index
data.

When designing your DMS table spaces and containers, you should consider the
following:

* The database manager uses striping to ensure an even distribution of data across
all containers. This writes the data evenly across all containers in the table space,
placing the extents for tables in round-robin fashion across all containers. DB2
striping is recommended when writing data into multiple containers. If you
choose to implement disk striping along with DB2 striping, the extent size of the
table space and the strip size of the disk should be identical.

* The maximum size of a regular table space is 512 GB for 32 KB pages. The
maximum size of a large table space is 16 TB. See [SQL and XML limits| for the
maximum size of regular table spaces for other page sizes.

* Unlike SMS table spaces, the containers that make up a DMS table space do not
need to be the same size; however, this is not normally recommended, because it
results in uneven striping across the containers, and sub-optimal performance. If
any container is full, DMS table spaces use available free space from other
containers.

* Because space is pre-allocated, it must be available before the table space can be
created. When using device containers, the device must also exist with enough
space for the definition of the container. Each device can have only one
container defined on it. To avoid wasted space, the size of the device and the

156 Data Servers, Databases, and Database Objects Guide



size of the container should be equivalent. If, for example, the device is allocated
with 5 000 pages, and the device container is defined to allocate 3 000 pages,
2 000 pages on the device will not be usable.

* By default, one extent in every container is reserved for overhead. Only full
extents are used, so for optimal space management, you can use the following
formula to determine an appropriate size to use when allocating a container:

extent_size * (n + 1)

where extent_size is the size of each extent in the table space, and 7 is the
number of extents that you want to store in the container.

¢ The minimum size of a DMS table space is five extents. Attempting to create a
table space smaller than five extents will result in an error (SQL1422N).

— Three extents in the table space are reserved for overhead.

— At least two extents are required to store any user table data. (These extents
are required for the regular data for one table, and not for any index, long
field or large object data, which require their own extents.)

* Device containers must use logical volumes with a “character special interface,”
not physical volumes.

* You can use files instead of devices with DMS table spaces. The default table
space attribute - NO FILE SYSTEM CACHING in Viper 2 allows files to perform
close to devices with the advantage of not requiring to set up devices. For more
information, see [“Table spaces without file system caching” on page 176

¢ If your workload involves LOBs or LONG VARCHAR data, you may derive
performance benefits from file system caching.

Note: LOBs and LONG VARCHARs are not buffered by the database manager’s
buffer pool.

* Some operating systems allow you to have physical devices greater than 2 GB in
size. You should consider dividing the physical device into multiple logical
devices, so that no container is larger than the size allowed by the operating
system.

Note: Like SMS table spaces, DMS file containers can take advantage of file system
prefetching and caching. However, DMS table spaces that use raw device
containers cannot.

There are two container options when working with DMS table spaces: raw
devices and files. When working with file containers, the database manager
allocates the entire container at table space creation time. A result of this initial
allocation of the entire table space is that the physical allocation is typically, but
not guaranteed to be, contiguous even though the file system is doing the
allocation. When working with raw device containers, the database manager takes
control of the entire device and always ensures the pages in an extent are
contiguous.

When working with DMS table spaces, you should consider associating each
container with a different disk. This allows for a larger table space capacity and the
ability to take advantage of parallel I/O operations.

The CREATE TABLESPACE statement creates a new table space within a database,
assigns containers to the table space, and records the table space definition and
attributes in the catalog. When you create a table space, the extent size is defined
as a number of contiguous pages. The extent is the unit of space allocation within
a table space. Only one table or object, such as an index, can use the pages in any

Chapter 9. Table spaces 157



single extent. All objects created in the table space are allocated extents in a logical
table space address map. Extent allocation is managed through space map pages.

The first extent in the logical table space address map is a header for the table
space containing internal control information. The second extent is the first extent
of SMP for the table space. SMP extents are spread at regular intervals throughout
the table space. Each SMP extent is a bit map of the extents from the current SMP
extent to the next SMP extent. The bit map is used to track which of the
intermediate extents are in use.

The next extent following the SMP is the object table for the table space. The object
table is an internal table that tracks which user objects exist in the table space and
where their first extent map page (EMP) extent is located. Each object has its own
EMPs which provide a map to each page of the object that is stored in the logical
table space address map. shows how extents are allocated in a logical
table space address map.

0 — Tablespace Header
1 _— First SMP Extent

2 _— Object Table

3 _— Extent Map for T1

First Extents of Data

Extent Pages for T1

Number ~| 5

6 — Extent Map for T2

| First Extent of Data
Pages for T2

| Another Extent of Data
Pages for T1

'— 31968 — Second SMP Extent

Figure 8. Logical table space address map

DMS table space maps:

A table space map is the database manager’s internal representation of a DMS
table space that describes the logical to physical conversion of page locations in a
table space. This topic describes why a table space map is useful, and where the
information in a table space map comes from.

158 Data Servers, Databases, and Database Objects Guide



In a partitioned database, pages in a DMS table space are logically numbered from
0 to (N-1), where N is the number of usable pages in the table space.

The pages in a DMS table space are grouped into extents, based on the extent size,
and from a table space management perspective, all object allocation is done on an
extent basis. That is, a table might use only half of the pages in an extent but the
whole extent is considered to be in use and owned by that object. By default, one
extent is used to hold the container tag, and the pages in this extent cannot be
used to hold data. However, if the DB2_USE_PAGE_CONTAINER_TAG registry
variable is turned on, only one page is used for the container tag.

shows the logical address map for a DMS table space.

Table space (logical) address map

Object

0 Header Table EMP Reserved
1 First Extent of SMPs
2 First Extent of Object Table

Maps object-relative
extent number within T1
to table space-relative
page number

o 16
— - —=20 Extent Map for T1
——=32

» First Extent of T1 Data Pages

5 Indirect Entries
» Second Extent of T1 Data Pages
Maps object-relative
extent number within T2

E Map for T2 )
6 xtent Map for to table space-relative
page humber

7 First Extent of T2 Data Pages
Double Indirect Entries

|8 » Third Extent of T1 Data Pages
31968 Second Extent of SMPs

Object ID for the table

[ FistEMP
|

T 12 —‘
T2 24 J

Figure 9. DMS table spaces

Within the table space address map there are two types of map pages: extent map
pages (EMP) and space map pages.

Chapter 9. Table spaces 159



The object table is an internal relational table that maps an object identifier to the
location of the first EMP extent in the table. This EMP extent, directly or indirectly,
maps out all extents in the object. Each EMP contains an array of entries. Each
entry maps an object-relative extent number to a table space-relative page number
where the object extent is located. Direct EMP entries directly map object-relative
addresses to table space-relative addresses. The last EMP page in the first EMP
extent contains indirect entries. Indirect EMP entries map to EMP pages which
then map to object pages. The last 16 entries in the last EMP page in the first EMP
extent contain double-indirect entries.

The extents from the logical table-space address map are striped in round-robin
order across the containers associated with the table space.

Because space in containers is allocated by extent, pages that do not make up a full
extent will not be used. For example, if you have a 205-page container with an
extent size of 10, one extent will be used for the tag, 19 extents will be available for
data, and the five remaining pages are wasted.

If a DMS table space contains a single container, the conversion from logical page
number to physical location on disk is a straightforward process where pages 0, 1,
2, are located in that same order on disk.

It is also a fairly straightforward process when there is more than one container
and each of the containers is the same size. The first extent in the table space,
containing pages 0 to (extent size - 1), is located in the first container, the second
extent will be located in the second container, and so on. After the last container,
the process repeats starting back at the first container. This cyclical process keeps
the data balanced.

For table spaces containing containers of different sizes, a simple approach that
proceeds through each container in turn cannot be used as it will not take
advantage of the extra space in the larger containers. This is where the table space
map comes in — it dictates how extents are positioned within the table space,
ensuring that all of the extents in the physical containers are available for use.

Note: In the following examples, the container sizes do not take the size of the
container tag into account. The container sizes are very small, and are just used for
the purpose of illustration, they are not recommended container sizes. The
examples show containers of different sizes within a table space, but you are
advised to use containers of the same size.

Example 1:

There are 3 containers in a table space, each container contains 80 usable pages,
and the extent size for the table space is 20. Each container therefore has 4 extents
(80 / 20) for a total of 12 extents. These extents are located on disk as shown in
[Figure 10 on page 161}

160 Data Servers, Databases, and Database Objects Guide



Table space

Container 0 Container 1
Extent O Extent 1
Extent 3 Extent 4
Extent 6 Extent 7
Extent 9 Extent 10

Container 2

Extent 2

Extent 5

Extent 8

Extent 11

Figure 10. Table space with three containers and 12 extents

To see a table space map, take a table space snapshot using the snapshot monitor.

In Example 1, where the three containers are of equal size, the table space map

looks like this:

Range  Stripe Stripe Max Max

Start End Adj.

Number Set Offset Extent Page Stripe Stripe

(o] [o] 0 11 239 0

30 3¢(0,1,2)

Containers

A range is the piece of the map in which a contiguous range of stripes all contain
the same set of containers. In Example 1, all of the stripes (0 to 3) contain the same

set of 3 containers (0, 1, and 2) and therefore this is considered a single range.

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,
Maximum extent number addressed by the range, Maximum page number
addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container

list. These will be explained in more detail for Example 2.

This table space can also be diagrammed as shown in [Figure 11 on page 162 in

which each vertical line corresponds to a container, each horizontal line is called a
stripe, and each cell number corresponds to an extent.

Chapter 9. Table spaces

161



l— Containers —|

0 1 2
0 Extent O Extent 1 Extent 2
1 Extent 3 Extent 4 Extent 5
Stripes
2 Extent 6 Extent 7 Extent 8
3 Extent 9 Extent 10 Extent 11

Figure 11. Table space with three containers and 12 extents, with stripes highlighted
Example 2:

There are two containers in the table space: the first is 100 pages in size, the
second is 50 pages in size, and the extent size is 25. This means that the first
container has four extents and the second container has two extents. The table
space can be diagrammed as shown in

Containers
[ e

0 1
0 Extent O Extent 1
Range 0
1 Extent 2 Extent 3
Stripes =
2 Extent 4
Range 1
3 Extent 5

Figure 12. Table space with two containers, with ranges highlighted

Stripes 0 and 1 contain both of the containers (0 and 1) but stripes 2 and 3 only
contain the first container (0). Each of these sets of stripes is a range. The table
space map, as shown in a table space snapshot, looks like this:

Range  Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 3 99 0 1 0 2 (0, 1)

[1] [o] 0 5 149 2 30 1(0)

There are four extents in the first range, and therefore the maximum extent
number addressed in this range (Max Extent) is 3. Each extent has 25 pages and
therefore there are 100 pages in the first range. Since page numbering also starts at
0, the maximum page number addressed in this range (Max Page) is 99. The first

162 Data Servers, Databases, and Database Objects Guide



stripe (Start Stripe) in this range is 0 and the last stripe (End Stripe) in the range is
stripe 1. There are two containers in this range and those are 0 and 1. The stripe
offset is the first stripe in the stripe set, which in this case is 0 because there is only
one stripe set. The range adjustment (Adj.) is an offset used when data is being
rebalanced in a table space. (A rebalance may occur when space is added or
dropped from a table space.) When a rebalance is not taking place, this is always 0.

There are two extents in the second range and because the maximum extent
number addressed in the previous range is 3, the maximum extent number
addressed in this range is 5. There are 50 pages (2 extents * 25 pages) in the second
range and because the maximum page number addressed in the previous range is
99, the maximum page number addressed in this range is 149. This range starts at
stripe 2 and ends at stripe 3.

Automatic storage table spaces

When you create a table space in a database that is not enabled for automatic
storage, you must specify the MANAGED BY SYSTEM or MANAGED BY
DATABASE clause. Using these clauses results in the creation of a system-managed
space (SMS) table space or database-managed space (DMS) table space,
respectively. You must provide an explicit list of containers in both cases.

If a database is enabled for automatic storage, other choices exist: you can specify
the MANAGED BY AUTOMATIC STORAGE clause or omit the MANAGED BY
clause (which implies the use of automatic storage) . You do not need to provide
container definitions in this case because the database manager assigns the
containers automatically.

Following are some examples of statements that create automatic storage table
spaces:

CREATE TABLESPACE TS1

CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE

CREATE TEMPORARY TABLESPACE TEMPTS

CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE

CREATE LONG TABLESPACE LONGTS

Although the automatic storage table space type appears to be a different table
space type, it is really just an extension of the existing SMS and DMS types. If you
create a table space as a regular or large table space, it is created as a DMS table
space with file containers. If you create a table space as a user or system temporary
table space, it is created as an SMS table space with directory containers.

Note: This behavior might change in future versions of the database manager.

The names associated with these containers have the following format:
storage path/instance name/NODE####/database name/T#######/CH###### . EXT

where:

storage path
Is a storage path associated with the database

instance name
Is the instance under which the database was created

database name
Is the name of the database

Chapter 9. Table spaces 163



NODE#i##H#
Is the database partition number (for example, NODE000O)

TH#HH#HH
Is the table space ID (for example, TO000003)

CHHHHHH
Is the container ID (for example, C0000012)

EXT Is an extension based on the type of data being stored:
CAT  System catalog table space
TMP System temporary table space
UTM User temporary table space
USR  User or regular table space
LRG Large table space

Differences between regular and large automatic storage table spaces
and DMS table spaces

Regular and large automatic storage table spaces are created as DMS table spaces,
and all of the rules and behaviors associated with DMS table spaces
apply.However, there are differences with respect to how storage is managed, as
shown in the following table:

Table 45. Differences between managing non-automatic storage and automatic storage
table spaces

Non-automatic storage Automatic storage
You must explicitly provide a list of You cannot provide a list of containers when
containers when creating the table space. creating the table space; instead, the

database manager automatically assigns and
allocates containers.

Automatic resizing of table spaces is off Automatic resizing of table spaces is on
(AUTORESIZE is set to NO) by default. (AUTORESIZE is set to YES) by default.
You cannot use the INITIALSIZE clause to | You can use the INITIALSIZE clause to
specify the initial size for the table space. specify the initial size for the table space.
You can perform container operations using | You cannot perform container operations
the ALTER TABLESPACE statement because the database manager manages
(specifying ADD, DROP, BEGIN NEW space.

STRIPE SET, and so on).

You can use a redirected restore operation to | You cannot use a redirected restore
redefine the containers associated with the operation to redefine the containers

table space. associated with the table space because the
database manager manages space.

As mentioned in the previous table, when you create a regular or large automatic
storage table space, you can specify an initial size as part of the CREATE
TABLESPACE statement, as shown in the following example:

CREATE TABLESPACE TS1 INITIALSIZE 100 M

If you do not specify an initial size, the database manager uses a default value of
32 megabytes.

164 Data Servers, Databases, and Database Objects Guide



To create a table space with a given size, the database manager creates file
containers within the storage paths. If there is an uneven distribution of space
among the paths, containers might be created with different sizes. As a result, it is
important that all of the storage paths have a similar amount of free space on
them.

If you enable automatic resizing for a table space, as space is used within it, the
database manager automatically extends existing containers and adds new ones
(using stripe sets). Whether containers are extended or added, no rebalancing takes
place.

Temporary table spaces
System temporary table spaces hold temporary data required by the database
manager while performing operations such as sorts or joins.

These types of operations require extra space to process the results set. A database
must have at least one system temporary table space with the same page size as
the catalog table space; by default, one system temporary table space called
TEMPSPACETL is created at database creation time. IBMTEMPGROUP is the default
database partition group for this table space.

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE statement. To allow the definition of
declared temporary tables, at least one user temporary table space should be
created with the appropriate USE privileges. USE privileges are granted using the
GRANT statement. A user temporary table space is not created by default at
database creation time.

It is recommended that you define a single temporary table space with a page size
equal to the page size used in the majority of your user table spaces. This should
be suitable for typical environments and workloads. However, it can be
advantageous to experiment with different temporary table space configurations
and workloads. The following points should be considered:

* Temporary tables are in most cases accessed in batches and sequentially. That is,
a batch of rows are inserted, or a batch of sequential rows are fetched. Therefore,
a larger page size typically results in better performance, because fewer logical
and physical page requests are required to read a given amount of data.

* When reorganizing a table using a temporary table space, the page size of the
temporary table space must match that of the table. For this reason, you should
ensure that there are temporary table spaces defined for each different page size
used by existing tables that you may reorganize using a temporary table space.

You can also reorganize without a temporary table space by reorganizing the
table directly in the same table space. Of course, this type of reorganization
requires that there be extra space in the table space(s) of the table for the
reorganization process.

* When using SMS system temporary table spaces, you may want to consider
using the registry variable DB2_SMS_TRUNC_TMPTABLE_THRESH. When
dropped, files created for the system temporary tables are truncated to a size of
0. The DB2_SMS_TRUNC_TMPTABLE_THRESH can be used to avoid visiting
the file systems and potentially leave the files at a non-zero size to avoid the
performance cost of repeated extensions and truncations of the files.

* In general, when temporary table spaces of different page sizes exist, the
optimizer will choose the temporary table space whose buffer pool can hold the
most number of rows (in most cases that means the largest buffer pool). In such
cases, it is often wise to assign an ample buffer pool to one of the temporary

Chapter 9. Table spaces 165



table spaces, and leave any others with a smaller buffer pool. Such a buffer pool
assignment will help ensure efficient utilization of main memory. For example, if
your catalog table space uses 4 KB pages, and the remaining table spaces use 8
KB pages, the best temporary table space configuration may be a single 8 KB
temporary table space with a large buffer pool, and a single 4 KB table space
with a small buffer pool.

* There is generally no advantage to defining more than one temporary table
space of any single page size.

Ensuring system temporary table spaces page sizes meet requirements:

The use of larger record identifiers (RID) increases the row size in your result sets
from queries or positioned updates. If the row size in your result sets is close to
the maximum row length limit for your existing system temporary table spaces,
you might need to create a system temporary table space with a larger page size.

Prerequisite

Ensure that you have SYSCTRL or SYSADM authority to create a system
temporary table space if required.

Procedure

To ensure that the maximum page size of your system temporary table space is
large enough for your queries or positioned updates:

1. Determine the maximum row size in your result sets from queries or positioned
updates. Monitor your queries or calculate the maximum row size using the
DDL statement that you used to create your tables.

2. List your table spaces using the LIST TABLESPACES command, as shown in
the following example:

db2 LIST TABLESPACES SHOW DETAIL

Tablespace ID

=1
Name = TEMPSPACE1
Type = System managed space
Contents = System Temporary data
State = 0x0000
Detailed explanation:
Normal
Total pages =10
Useable pages =10
Used pages 10
Free pages Not applicable

High water mark (pages) Not applicable

Page size (bytes) 4096
Extent size (pages) 32
Prefetch size (pages) 320
Number of containers 10

You can identify the system temporary table spaces in the output by looking
for table spaces whose Contents fields have a value of System Temporary data.
Take note of the page size for each of your system temporary table spaces and
the page size of the table spaces where the tables referenced in the queries or
updates were created.

3. Check whether the largest row size in your result sets fits into your system
temporary table space page size:

maximum_row_size > maximum_row_length - 8 bytes (structure overhead in
single partition)
maximum_row_size > maximum_row_length - 16 bytes (structure overhead in DPF)

166 Data Servers, Databases, and Database Objects Guide



where maximum_row_size is the maximum row size for your result sets, and
maximum_row_length is the maximum length allowed based on the largest
page size of all of your system temporary table spaces. Review the "SQL and
XML limits” in SQL Reference, Volume 1 to determine the maximum row length
per table space page size.

If the maximum row size is less than the calculated value then your queries
will run in the same manner that they did in DB2 UDB Version 8, and you do
not need to continue with this task.

Create a system temporary table space that is at least one page size larger than
the table space page size where the tables were created if you do not already
have a system temporary table with that page size. For example, on the
Windows operating systems, if you created your table in a table space with 4
KB page size , create the additional system temporary table space using an 8
KB page size:

db2 CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp

PAGESIZE 8K

MANAGED BY SYSTEM
USING ('d:\tmp_tbsp','e:\tmp_tbsp")

If your table space page size is 32 KB, you can reduce the information that you
are selecting in your queries or split the queries to fit in the system temporary
table space page. For example, if you select all columns from a table, you can
instead select only the columns that you really required or a substring of
certain columns to avoid exceeding the page size limitation.

Comparison of SMS and DMS table spaces

There are a number of trade-offs to consider when determining which type of table
space you should use to store your data.

Advantages of an SMS Table Space:

Space is not allocated by the system until it is required

Creating a table space requires less initial work, because you do not have to
predefine the containers

Indexes created on range partitioned data can be stored in a different table space
than the table data

Advantages of a DMS Table Space:

The size of a table space can be increased by adding or extending containers,
using the ALTER TABLESPACE statement. Existing data can be automatically
rebalanced across the new set of containers to retain optimal I/O efficiency.

A table can be split across multiple table spaces, based on the type of data being
stored:

— Long field (LF) and large object (LOB) data
— Indexes
— Regular table data

You might want to separate your table data for performance reasons, or to
increase the amount of data stored for a table. For example, if you are using
large table spaces with a 4-KB page size, you can have a table with 2 TB of
regular table data, a separate table space with 2 TB of index data, and another
separate table space with 2 TB of long data. If these three types of data were
stored in one table space instead, the total space would be limited to 2 TB. Using
larger page sizes allows you to store even more data. See the related links for
the complete list of database manager page size limits.

Chapter 9. Table spaces 167



* Indexes created on range partitioned data can be stored in a different table space
than the table data.

* The location of the data on the disk can be controlled, if this is allowed by the
operating system.

* In general, a well-tuned set of DMS table spaces will outperform SMS table
spaces.

Note: For performance-sensitive applications, particularly those involving a large
number of insert operations, it is suggested that you use DMS table spaces.

Also, placement of data can differ on the two types of table spaces. For example,
consider the need for efficient table scans: it is important that the pages in an
extent are physically contiguous. With SMS, the file system of the operating system
decides where each logical file page is physically placed. The pages might be
allocated contiguously depending on the level of other activity on the file system
and the algorithm used to determine placement. With DMS, however, the database
manager can ensure the pages are physically contiguous because it interfaces with
the disk directly.

In general, small personal databases are easiest to manage with SMS table spaces.
On the other hand, for large, growing databases you will probably only want to
use SMS table spaces for the temporary table spaces and catalog table space, and
separate DMS table spaces, with multiple containers, for each table. In addition,
you will probably want to store long field (LF) data and indexes on their own table
spaces.

If you choose to use DMS table spaces with device containers, you must be willing
to tune and administer your environment.

SMS and DMS workload considerations

The primary type of workload being managed by the database manager in your
environment can affect your choice of what table space type to use, and what page
size to specify.

An online transaction processing (OLTP) workload is characterized by transactions
that need random access to data, often involve frequent insert or update activity
and queries which usually return small sets of data. Given that the access is
random, and involves one or a few pages, prefetching is less likely to occur.

DMS table spaces using device containers perform best in this situation. DMS table
spaces with file containers, or SMS table spaces, are also reasonable choices for
OLTP workloads if maximum performance is not required. Note that using DMS
table spaces with file containers, where FILE SYSTEM CACHING is turned off, can
perform at a level comparable to DMS raw table space containers. With little or no
sequential I/O expected, the settings for the EXTENTSIZE and the PREFETCHSIZE
parameters on the CREATE TABLESPACE statement are not important for I/O
efficiency. However, setting a sufficient number of page cleaners, using the
chngpgs_thresh configuration parameter, is important.

A query workload is characterized by transactions that need sequential or partially
sequential access to data, which usually return large sets of data. A DMS table
space using multiple device containers (where each container is on a separate disk)
offers the greatest potential for efficient parallel prefetching. The value of the
PREFETCHSIZE parameter on the CREATE TABLESPACE statement should be set
to the value of the EXTENTSIZE parameter, multiplied by the number of device
containers. Alternatively, you can specify a prefetch size of -1 and the database

168 Data Servers, Databases, and Database Objects Guide



manager automatically chooses an appropriate prefetch size. This allows the
database manager to prefetch from all containers in parallel. If the number of
containers changes, or there is a need to make prefetching more or less aggressive,
the PREFETCHSIZE value can be changed accordingly by using the ALTER
TABLESPACE statement.

A reasonable alternative for a query workload is to use files, if the file system has
its own prefetching. The files can be either of DMS type using file containers, or of
SMS type. Note that if you use SMS, you need to have the directory containers
map to separate physical disks to achieve I/O parallelism.

Your goal for a mixed workload is to make single I/O requests as efficient as
possible for OLTP workloads, and to maximize the efficiency of parallel I/O for
query workloads.

The considerations for determining the page size for a table space are as follows:

* For OLTP applications that perform random row read and write operations, a
smaller page size is usually preferable because it does not waste buffer pool
space with unwanted rows.

* For decision-support system (DSS) applications that access large numbers of
consecutive rows at a time, a larger page size is usually better because it reduces
the number of I/0 requests that are required to read a specific number of rows.

* Larger page sizes may allow you to reduce the number of levels in the index.
* Larger pages support rows of greater length.

* On default 4 KB pages, tables are restricted to 500 columns, while the larger
page sizes (8 KB, 16 KB, and 32 KB) support 1012 columns.

¢ The maximum size of the table space is proportional to the page size of the table
space.

SMS and DMS device considerations
There are a few options to consider when choosing to use file system files versus

devices for table space containers: the buffering of data and whether to use LOB or
LOG data.

* Buffering of data

Table data read from disk is usually available in the database buffer pool. In
some cases, a data page might be freed from the buffer pool before the
application has actually used the page, particularly if the buffer pool space is
required for other data pages. For table spaces that use system managed space
(SMS) or database managed space (DMS) file containers, file system caching
above can eliminate I/O that would otherwise have been required.

Table spaces using database managed space (DMS) device containers do not use
the file system or its cache. As a result, you might increase the size of the
database buffer pool and reduce the size of the file system cache to offset the
fact DMS table spaces that use device containers do not use double buffering.

If system-level monitoring tools show that I/O is higher for a DMS table space
using device containers compared to the equivalent SMS table space, this
difference might be because of double buffering.

* Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database manager
does not cache the data in its buffers, Each time an application needs one of
these pages, the database manager must retrieve it from disk. However, if LOB
or LONG data is stored in SMS or DMS file containers, file system caching
might provide buffering and, as a result, better performance.

Chapter 9. Table spaces 169



Because system catalogs contain some LOB columns, you should keep them in
SMS table spaces or in DMS-file table spaces.

Considerations when choosing table spaces for your tables

When determining how to map tables to tables spaces, you should consider the
distribution of your tables, the amount and type of data in the table, and
administritive issues.

The distribution of your tables

At a minimum, you should ensure that the table space you choose is in a
database partition group with the distribution you want.

The amount of data in the table

If you plan to store many small tables in a table space, consider using SMS
for that table space. The DMS advantages with I/O and space management
efficiency are not as important with small tables. The SMS advantages, and
only when needed, are more attractive with smaller tables. If one of your
tables is larger, or you need faster access to the data in the tables, a DMS
table space with a small extent size should be considered.

You may wish to use a separate table space for each very large table, and
group all small tables together in a single table space. This separation also
allows you to select an appropriate extent size based on the table space
usage.

The type of data in the table

You may, for example, have tables containing historical data that is used
infrequently; the end-user may be willing to accept a longer response time
for queries executed against this data. In this situation, you could use a
different table space for the historical tables, and assign this table space to
less expensive physical devices that have slower access rates.

Alternatively, you may be able to identify some essential tables for which
the data has to be readily available and for which you require fast response
time. You may want to put these tables into a table space assigned to a fast
physical device that can help support these important data requirements.

Using DMS table spaces, you can also distribute your table data across
three different table spaces: one for index data; one for large object (LOB)
and long field (LF) data; and one for regular table data. This allows you to
choose the table space characteristics and the physical devices supporting
those table spaces to best suit the data. For example, you could put your
index data on the fastest devices you have available, and as a result, obtain
significant performance improvements. If you split a table across DMS
table spaces, you should consider backing up and restoring those table
spaces together if roll-forward recovery is enabled. SMS table spaces do
not support this type of data distribution across table spaces.

Administrative issues

Some administrative functions can be performed at the table space level
instead of the database or table level. For example, taking a backup of a
table space instead of a database can help you make better use of your
time and resources. It allows you to frequently back up table spaces with
large volumes of changes, while only occasionally backing up tables spaces
with very low volumes of changes.

170 Data Servers, Databases, and Database Objects Guide



You can restore a database or a table space. If unrelated tables do not share
table spaces, you have the option to restore a smaller portion of your
database and reduce costs.

A good approach is to group related tables in a set of table spaces. These
tables could be related through referential constraints, or through other
defined business constraints.

If you need to drop and redefine a particular table often, you may want to
define the table in its own table space, because it is more efficient to drop a
DMS table space than it is to drop a table.

Automatic re-sizing of table spaces

Enabling automatic storage table spaces for automatic resizing allows the database
manager to handle the full file system condition automatically by adding a new
stripe set of containers.

Two table space types can exist within a database system: system-managed space
(SMS) and database-managed space (DMS). The containers associated with SMS
table spaces are file system directories, and the files within these directories grow
as the objects in the table space grow. .The files grow until a file system limit is
reached for one of the containers or until the table space size limit of the database
is reached (see [SQL and XML limits).

DMS table spaces are made up of file containers or raw device containers, and
their sizes are set when the containers are assigned to the table space. The table
space is considered to be full when all of the space within the containers has been
used. However, unlike for SMS table spaces, you can add or extend containers
using the ALTER TABLESPACE statement, allowing more storage space to be given
to the table space. DMS table spaces also have a feature called auto-resize: as space
is consumed in a DMS table space that can be automatically resized, the database
system might extend the table space by one or more file containers. SMS table
spaces have similar capabilities for growing automatically, but the term auto-resize
is used exclusively for DMS.

Automatic resizing of table spaces has the following implications:

* Table spaces that are enabled for automatic resizing have metadata associated
with them that is not recognized by Version 8.2.1 or earlier releases. Any attempt
to use a database with table spaces enabled for automatic resizing with these
versions results in a failure (most likely, returning an SQL0980C or SQL0902C
error). An error might be sent if you try to connect to a database or try to restore
a database. If you enabled table spaces for automatic resizing, disabling the
auto-resize feature for these table spaces removes the metadata, allowing the
database to be used with Version 8.2.1 or earlier releases.

 If you disable the auto-resize feature, the values that are associated with
INCREASESIZE and MAXSIZE are lost if you subsequently enable this feature.

* You cannot this feature for table spaces that use raw device containers, and you
cannot add raw device containers to a table space that can be automatically
resized. Attempting these operations results in errors (SQLO109N). If you need to
add raw device containers, you must disable the feature first.

* A redirected restore operation cannot change the container definitions to include
a raw device container. Attempting this kind of operation results in an error
(SQLO109N).

* Because the maximum size limits how the database manager automatically
increases a table space, the maximum size also limits how you can increase a

Chapter 9. Table spaces 171



table space. That is, when you perform an operation that adds space to a table
space, the resulting size must be less than or equal to the maximum size. You
can add space by using the ADD, EXTEND, RESIZE, or BEGIN NEW STRIPE
SET clause of the ALTER TABLESPACE statement.

Enabling and disabling the auto-resize feature

By default, the auto-resize feature is not enabled for a DMS table space. The
following statement creates a DMS table space without enabling auto-resize:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE '/db2files/DMS1' 10 M)

To enable the auto-resize feature, specify the AUTORESIZE YES clause for the
CREATE TABLESPACE statement:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE '/db2files/DMS1' 10 M) AUTORESIZE YES

You can also enable or disable the auto-resize feature after creating a DMS table
space by using ALTER TABLESPACE statement with the AUTORESIZE clause:

ALTER TABLESPACE DMS1 AUTORESIZE YES
ALTER TABLESPACE DMS1 AUTORESIZE NO

Two other attributes, MAXSIZE and INCREASESIZE, are associated with
auto-resize table spaces:

Maximum size (MAXSIZE)

The MAXSIZE clause of the CREATE TABLESPACE statement defines the
maximum size for the table space. For example, the following statement creates a
table space that can grow to 100 megabytes (per database partition if the database
has multiple database partitions):

CREATE TABLESPACE DMS1 MANAGED BY DATABASE

USING (FILE '/db2files/DMS1' 10 M)
AUTORESIZE YES MAXSIZE 100 M

The MAXSIZE NONE clause specifies that there is no maximum limit for the table
space. The table space can grow until a file system limit or table space limit is
reached (see [SQL and XML limits). If you do not specify the MAXSIZE clause,
there is no maximum limit when the auto-resize feature is enabled.

Use the ALTER TABLESPACE statement to change the value of MAXSIZE for a
table space that has auto-resize already enabled, as shown in the following
examples:

ALTER TABLESPACE DMS1 MAXSIZE 1 G

ALTER TABLESPACE DMS1 MAXSIZE NONE
If you specify a maximum size, the actual value that the database manager
enforces might be slightly smaller than the value specified because the database
manager attempts to keep container growth consistent.

Increase size INCREASESIZE)

The INCREASESIZE clause of the CREATE TABLESPACE statement defines the
amount of space used to increase the table space when there are no free extents

172  Data Servers, Databases, and Database Objects Guide



within the table space but a request for one or more extents was made. You can
specify the value as an explicit size or as a percentage, as shown in the following
examples:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE

USING (FILE '/db2files/DMS1' 10 M)
AUTORESIZE YES INCREASESIZE 5 M

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE '/db2files/DMS1' 10 M)
AUTORESIZE YES INCREASESIZE 50 PERCENT

A percentage value means that the amount by which to increase, as specified by
the INCREASESIZE value, is calculated every time that the table space needs to
grow and that growth is based on a percentage of the table space size at that time.
For example, if the table space is 20 MB in size and the INCREASESIZE value is
50% , the table space grows by 10 MB the first time (to a size of 30 MB) and by 15
MB the next time.

If you do not specify the INCREASESIZE clause when you enable the auto-resize
feature, the database manager determines an appropriate value to use, which
might change over the life of the table space. As with AUTORESIZE and
MAXSIZE, you can change the value of INCREASESIZE using the ALTER
TABLESPACE statement.

If you specify a size increase, the actual value that the database manager will use
might be slightly different than the value that you provide. This adjustment in the
value used is done to keep growth consistent across the containers in the table
space.

How table spaces are extended

For table spaces that can be automatically resized, the database manager attempts
to increase the size of the table space when all of the existing space has been used
and a request for more space is made. The database manager determines which of
the containers can be extended in the table space so that a rebalance does not
occur. The database manager extends only those containers that exist within the
last range of the table space map (the map describes the storage layout for the
table space) and extends them by an equal amount.

For example, consider the following statement:

CREATE TABLESPACE TS1 MANAGED BY DATABASE
USING (FILE 'C:\TS1CONT' 1000, FILE 'D:\TS1CONT' 1000,
FILE 'E:\TS1CONT' 2000, FILE 'F:\TS1CONT' 2000)
EXTENTSIZE 4
AUTORESIZE YES

Keeping in mind that the database manager uses a small portion (one extent) of
each container for metadata, following is the table space map that is created for the
table space based on the CREATE TABLESPACE statement. (The table space map is
part of the output from a table space snapshot.)

Table space map:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[ o] [ o] 0 995 3983 0 248 0 4 (0,1,2,3)
[ 11 [ o] 0 1495 5983 249 498 0 2 (2,3)

Chapter 9. Table spaces 173



The table space map shows that the containers with an identifier of 2 or 3
(E:\TSICONT and F:\TSICONT) are the only containers in the last range of the map.
Therefore, when the database manager automatically extends the containers in this
table space, it extends only those two containers.

Note: If you create a table space with all of the containers having the same size,
there is only one range in the map. In such a case, the database manager extends
each of the containers. To prevent restricting extensions to only a subset of the
containers, create a table space with containers of equal size.

As discussed previously, you can specify a limit on the maximum size of the table
space, or you can specify a value of NONE, which does not limit growth. If you
specify NONE or no limit, the upper limit is defined by the file system limit or by
the table space limit; the database manager does not attempt to increase the table
space size past the upper limit. However, before that limit is reached, an attempt to
increase a container might fail due to a full file system. In this case, the database
manager does not increase the table space size any further and returns an
out-of-space condition to the application. There are two ways to resolve this
situation:

* Increase the amount of space available on the file system that is full.

* Perform container operations on the table space such that the container in
question is no longer in the last range of the table space map. The easiest way to
do this is to add a new stripe set to the table space with a new set of containers,
and the best practice is to ensure that the containers are all the same size. You
can add new stripe sets by using the ALTER TABLESPACE statement with the
BEGIN NEW STRIPE SET clause. By adding a new stripe set, a new range is
added to the table space map. With a new range, the containers that the
database manager automatically attempts to extend are within this new stripe
set, and the older containers remain unchanged.

Note: When a user-initiated container operation is pending or a subsequent
rebalance is in progress, the auto-resize feature is disabled until the operation is
committed or the rebalance is complete.

For example, for DMS table spaces, suppose that a table space has three containers
that are the same size and that each resides on its own file system. As work is
done on the table space, the database manager automatically extends these three
containers. Eventually, one of the file systems becomes full, and the corresponding
container can no longer grow. If more free space cannot be made available on the
file system, you must perform container operations on the table space such that the
container in question is no longer in the last range of the table space map. In this
case, you could add a new stripe set specifying two containers (one on each of the
file systems that still has space), or you could specify more or fewer containers
(again, making sure that each container being added is the same size and that
there is sufficient room for growth on each of the file systems being used). When
the database manager attempts to increase the size of the table space, it now
attempts to extend the containers in this new stripe set instead of attempting to
extend the older containers.

Monitoring
Information about automatic resizing for DMS table spaces is displayed as part of

the table space monitor snapshot output. The increase size and maximum size
values are included in the output, as shown in the following sample:

174 Data Servers, Databases, and Database Objects Guide



Auto-resize enabled = Yes or No

Current tablespace size (bytes) = ###

Maximum tablespace size (bytes) = ### or NONE

Increase size (bytes) = #H#

Increase size (percent) = ###

Time of last successful resize = DD/MM/YYYY HH:MM:SS.SSSSSS
Last resize attempt failed = Yes or No

Automatic prefetchsize adjustment after adding or dropping
containers

The database manager is set up so that the automatic prefetch size is the default
for any table spaces created using Version 8.2 (and later).

You should not have to worry about remembering to adjust the prefetch size after
you add or drop containers. The default for the database manager to automatically
adjust the prefetch size removes this worry from you. If there is the possibility that
you might forget to update the prefetch size of a table space after either adding or
dropping containers, do not change the default but allow the prefetch size to be
determined by the database manager automatically. If you do not allow automatic
prefetch size adjustment by changing the default and you forget to update the
prefetch size, then there might be a noticeable degradation in the performance of
the database.

There are three ways not to have the prefetch size of the table space set at
AUTOMATIC:

* Create the table space with a specific prefetch size. Manually choosing a value
for the prefetch size indicates that you will remember to adjust, if necessary, the
prefetch size whenever there is an adjustment in the number of containers
associated with the table space.

* Do not use prefetch size when creating the table space, and have the
dft_prefetch_sz database configuration parameter set to a non-AUTOMATIC
value. The database manager checks this parameter when there is no explicit
mention of the prefetch size when creating the table space. If a value other than
AUTOMATIC is found, then that value is what is used as the default prefetch
size. And you will need to remember to adjust, if necessary, the prefetch size
whenever there is an adjustment in the number of containers associated with the
table space.

* Alter the prefetch size manually by using the ALTER TABLESPACE statement.
Use of DB2_PARALLEL_IO

Prefetch requests are broken down into several smaller prefetch requests
based on the parallelism of a table space, and before the requests are
submitted to the prefetch queues. The DB2_PARALLEL_IO registry
variable is used to define the number of physical spindles per container as
well as influencing the parallel I/O on the table space. With parallel 1/0O
off, the parallelism of a table space is equal to the number of containers.
With parallel I/O on, the parallelism of a table space is equal to the
number of container multiplied by the value given in the
DB2_PARALLEL_IO registry variable. (Another way of saying this is, the
parallelism of the table space is equal to the prefetch size divided by the
extent size of the table space.)

Here are several examples of how the DB2_PARALLEL_IO registry
variable influences the prefetch size. (Assume all of the following table
spaces have been defined with an AUTOMATIC prefetch size.)

Chapter 9. Table spaces 175



 DB2_PARALLEL_IO=*

— All table spaces will use the default where the number of spindles
equals 6 for each container. The prefetch size will be 6 times larger
with parallel I/O on.

— All table spaces will have parallel I/O on. The prefetch request is
broken down to several smaller requests, each equal to the prefetch
size divided by the extent size (or equal to the number of containers
times the number of spindles).

» DB2 PARALLEL_IO=*:3
— All table spaces will use 3 as the number of spindles per container.
— All table spaces will have parallel I/O on.

» DB2 PARALLEL_IO=*:3,1:1

— All table spaces will use 3 as the number of spindles per container
except for table space 1 which will use 1.

— All table spaces will have parallel I/O on.

Table spaces without file system caching

The recommended method of enabling or disabling non-buffered 1/O on UNIX,
Linux, and Windows is at the table space level.

This allows you to enable or disable non-buffered 1/O on specific table spaces
while avoiding any dependency on the physical layout of the database. It also
allows the database manager to determine which I/O is best suited for each file,
buffered or non-buffered.

The NO FILE SYSTEM CACHING clause is used to enable non-buffered 1/0, thus
disabling file caching for a particular table space. Once enabled, based on platform,
the database manager automatically determines which of the Direct I/O (DIO) or
Concurrent 1/0 (CIO) is to be used. Given the performance improvement in CIO,
the database manager uses it whenever it is supported; there is no user interface to
specify which one is to be used.

In order to obtain the maximum benefits of non-buffered 1/0, it might be
necessary to increase the size of buffer pools. However, if the self-tuning memory
manager is enabled and the buffer pool size is set to AUTOMATIC, the database
manager will self-tune the buffer pool size for optimal performance. Note that this
feature is not available prior to Version 9.

To disable or enable file system caching, specify the NO FILE SYSTEM CACHING
or the FILE SYSTEM CACHING clause in the CREATE TABLESPACE or ALTER
TABLESPACE statement, respectively. The default setting is used if neither clause
is specified. In the case of ALTER TABLESPACE, existing connections to the
database must be terminated before the new caching policy takes effect.

Note: If an attribute is altered from the default to either FILE SYSTEM CACHING
or NO FILE SYSTEM CACHING, there is no mechanism to change it back to the
default.

This method of enabling and disabling file system caching provides control of the
I/0 mode, buffered or non-buffered, at the table space level.

176 Data Servers, Databases, and Database Objects Guide



Note: I/0 access to long field (LF) data and large object (LOB) data will be
buffered for both SMS and DMS containers, regardless of the setting for the table
space in question.

The GET SNAPSHOT FOR TABLESPACES command can be used to query the
current setting of the file system caching clause. For example, the following is a
snippet from the DB2 GET SNAPSHOT FOR TABLEPSACES ON dbl output:

USERSPACE1

2

database managed space

A1l permanent data. Large table space.

TabTespace name
Tablespace ID
Tablespace Type
Tablespace Content Type

Tablespace Page size (bytes) = 4096
Tablespace Extent size (pages) = 32
Automatic Prefetch size enabled = Yes
Buffer pool ID currently in use =1
Buffer pool ID next startup =1
Using automatic storage = Yes
Auto-resize enabled = Yes
File system caching = No

TabTespace State 0x'00000000"

Detailed explanation:

Normal
Tablespace Prefetch size (pages)
Total number of pages

Alternate methods to enable/disable non-buffered I/O on UNIX, Linux, and

Windows
Some UNIX platforms support the disabling of file system caching at a file
system level by using the MOUNT option. Consult your operating system
documentation for more information. However, it is important to
understand the difference between disabling file system caching at the
table space level and at the file system level. At the table space level, the
database manager controls which files are to be opened with and without
file system caching. At the file system level, every file residing on that
particular file system will be opened without file system caching. Some
platforms such as AIX have certain requirements before you can use this
feature, such as serialization of read and write access. While the database
manager adheres to these requirements, if the target file system contains
non-DB2 files, before enabling this feature, consult your operating system
documentation for any requirements.

32
256

Note: The now-deprecated registry variable DB2_DIRECT_IO, introduced
in Version 8.1 FixPak 4, enables no file system caching for all SMS
containers except for long field data, large object data, and temporary table
spaces on AIX JFS2. Setting this registry variable in Version 9.1 or later is
equivalent to altering all table spaces, SMS and DMS, with the NO FILE
SYSTEM CACHING clause. However, using DB2_DIRECT_IO is not
recommended, and this variable will be removed in a later release. Instead,
you should enable NO FILE SYSTEM CACHING at the table space level.

Alternate methods to enable/disable non-buffered I/O on Windows
In previous releases, the performance registry variable DB2NTNOCACHE
could be used to disable file system caching for all DB2 files in order to
make more memory available to the database so that the buffer pool or
sortheap can be increased. In Version 9.5, DB2NTNOCACHE is deprecated
and might be removed in a future release. The difference between
DB2NTNOCACHE and using the NO FILE SYSTEM CACHING clause is
the ability to disable caching for selective table spaces. Starting in Version
9.5, since the NO FILE SYSTEM CACHING is used as the default, unless

Chapter 9. Table spaces 177



FILE SYSTEM CACHING is specified explicitly, there is no need to set this
registry variable to disable file system caching across the entire instance if
the instance includes only newly created table spaces.

Performance considerations

Non-buffered 1/0 is essentially used for performance improvements. In

some cases, however, performance degradation might be due to, but is not

limited to, a combination of a small buffer pool size and a small file system
cache. Suggestions for improving performance include:

e If self-tuning memory manager is not enabled, enable it and set the
buffer pool size to automatic using ALTER BUFFERPOOL <name> SIZE
AUTOMATIC. This allows the database manager to self-tune the buffer pool
size.

* If self-tuning memory manager is not to be enabled, increase the buffer
pool size in increments of 10 or 20 percent until performance is
improved.

* If self-tuning memory manager is not to be enabled, alter the table space
to use “FILE SYSTEM CACHING”. This essentially disables the
non-buffered I/O and reverts back to buffered I/O for container access.

Performance tuning should be tested in a controlled environment before
implementing it on the production system.

When choosing to use file system files versus devices for table space containers,
you should consider file system caching, which is performed as follows:

* For DMS file containers (and all SMS containers), the operating system might
cache pages in the file system cache (unless the table space is defined with NO
FILESYSTEM CACHING).

* For DMS device container table spaces, the operating system does not cache
pages in the file system cache.

Using CIO/DIO as the default file system caching mechanism for
new table space containers

The default I/O mechanism for newly created table space containers on most AIX,
Linux, Solaris, and Windows platforms is CIO/DIO (concurrent I/O or Direct 1/0).
This default provides an increase of throughput over buffered I/O on heavy
transaction processing workloads and rollbacks.

The FILE SYSTEM CACHING or NO FILE SYSTEM CACHING attribute specifies
whether or not I/O operations are to be cached at the file system level:

* FILE SYSTEM CACHING specifies that all I/O operations in the target table
space are to be cached at the file system level.

* NO FILE SYSTEM CACHING specifies that all I/O operations are to bypass the
file system-level cache.

Note: When using DMS table spaces, you should use a separate table space for
long field (LF) data and for large object (LOB) data so that the regular table spaces
are not affected. (For SMS table spaces, the CIO/DIO (NO FILE SYSTEM
CACHING) attribute is disabled.)

The following interfaces contain the FILE SYSTEM CACHING attribute:

* CREATE TABLESPACE statement

* CREATE DATABASE command

* sqlecrea() API (using the sqlfscaching field of the SQLETSDESC structure)

178 Data Servers, Databases, and Database Objects Guide



When this attribute is not specified on the CREATE TABLESPACE statement, or on
the CREATE DATABASE command, the database manager processes the request
using the default behaviour based on the platform and file system type. See
[system caching configurations”| for the exact behavior. For the sqlecrea() APL a
value of 0x2 for the field sqlfscaching field, instructs the database manager to use
the default setting.

Note that the following tools currently interpret the value for FILE SYSTEM
CACHING attribute:

* GET SNAPSHOT FOR TABLESPACES command
¢ db2pd —tablespaces command
e db2look —d <dbname> -1 command

For db2look, if the FILE SYSTEM CACHING attribute is not specified, the output
does not contain this attribute.

Example

Suppose that the database and all related table space containers reside on an AIX
JES file system and the following statement was issued:

DB2 CREATE TABLESPACE JFS2

In previous versions, if the attribute was not specified, the database manager
would have used buffered I/0 (FILE SYSTEM CACHING) for the I/O mechanism;
with Version 9.5, the database manager uses NO FILE SYSTEM CACHING.

File system caching configurations

The operating system, by default, caches file data that is read from and written to
disk.

A typical read operation involves physical disk access to read the data from disk
into the file system cache, and then to copy the data from the cache to the
application buffer. Similarly, a write operation involves physical disk access to copy
the data from the application buffer into the file system cache, and then to copy it
from the cache to the physical disk. This behavior of caching data at the file system
level is reflected in the FILE SYSTEM CACHING clause of the CREATE
TABLESPACE statement. Since the database manager manages its own data
caching using buffer pools, the caching at the file system level is not needed if the
size of the buffer pool is tuned appropriately.

Note: The database manager already prevents caching of most DB2 data, except
temporary data and LOBs on AIX, by invalidating the pages from the cache.

In some cases, caching at the file system level and in the buffer pools causes
performance degradation because of the extra CPU cycles required for the double
caching. To avoid this double caching, most file systems have a feature that
disables caching at the file system level. This is generically referred to as
non-buffered 1/O. On UNIX, this feature is commonly known as Direct I/O (or DIO).
On Windows, this is equivalent to opening the file with the
FILE_FLAG_NO_BUFFERING flag. In addition, some file systems such as IBM
JES2 or Symantec VERITAS VxFS also support enhanced Direct /0O, that is, the
higher-performing Concurrent 1/O (CIO) feature. The database manager supports
this feature with the NO FILE SYSTEM CACHING table space clause. When this is
set, the database manager automatically takes advantage of CIO on file systems

Chapter 9. Table spaces 179



where this feature exists. This feature might help to reduce the memory
requirements of the file system cache, thus making more memory available for
other uses.

Prior to Version 9.5, the keyword FILE SYSTEM CACHING was implied if neither

NO FILE SYSTEM CACHING nor FILE SYSTEM CACHING was specified. With

Version 9.5, if neither keyword is specified, the default, NO FILE SYSTEM

CACHING, is used. This change affects only newly created table spaces. Existing

table spaces created prior to Version 9.5 are not affected. This change applies to

AIX, Linux, Solaris, and Windows with the following exceptions, where the default

behavior remains to be FILE SYSTEM CACHING:

* AIXJFS

* Solaris non-VxFS

* Linux for System z

* All SMS temporary table space files

* Long Field (LF) and Large object (LOB) data files in SMS permanent table space
files

To override the default setting, specify FILE SYSTEM CACHING or NO FILE
SYSTEM CACHING.

Supported configurations

shows the supported configuration for using table spaces without file
system caching. It also indicates: (a) whether DIO or enhanced DIO will be used in
each case, and (b) the default behavior when neither NO FILE SYSTEM CACHING
nor FILE SYSTEM CACHING is specified for a table space based on the platform
and file system type.

Table 46. Supported configurations for table spaces without file system caching

Foundation for DB2 4.1
(VXFS)

Platforms File system type and DIO or CIO requests Default behavior when
minimum level required submitted by the database |neither NO FILE SYSTEM
manager when NO FILE CACHING nor FILE
SYSTEM CACHING is SYSTEM CACHING is
specified specified
AIX 5.3+ Journal File System (JES) DIO FILE SYSTEM CACHING
(See Note 1.)
AIX 5.3+ Concurrent Journal File CIO NO FILE SYSTEM
System (JFS2) CACHING
AIX 5.3+ VERITAS Storage CIO NO FILE SYSTEM
Foundation for DB2 4.1 CACHING
(VXFS)
HP-UX 11i (PA-RISC) VERITAS Storage CIO FILE SYSTEM CACHING
Foundation 4.1 (VXFS)
HP-UX Version 11i v2 VERITAS Storage CIO FILE SYSTEM CACHING
(Itanium®) Foundation 4.1 (VXFS)
Solaris 9 UNIX File System (UFS) DIO FILE SYSTEM CACHING
(See Note 2.)
Solaris 10 UNIX File System (UFS) CIO FILE SYSTEM CACHING
(See Note 2.)
Solaris 9, 10 VERITAS Storage CIO NO FILE SYSTEM

CACHING

180 Data Servers, Databases, and Database Objects Guide




Table 46. Supported configurations for table spaces without file system caching (continued)

Platforms File system type and DIO or CIO requests Default behavior when
minimum level required submitted by the database |neither NO FILE SYSTEM
manager when NO FILE CACHING nor FILE
SYSTEM CACHING is SYSTEM CACHING is
specified specified
Linux distributions SLES 9+ | ext2, ext3, reiserfs DIO NO FILE SYSTEM
and RHEL 4+ CACHING
(on these architectures: x86,
x86_64, IA64, POWER"™)
Linux distributions SLES 9+ | VERITAS Storage CIO NO FILE SYSTEM
and RHEL 4+ Foundation 4.1 (VXFS) CACHING
(on these architectures: x86,
x86_64, IA64, POWER)
Linux distributions SLES 9+ | ext2, ext3 or reiserfs on a DIO FILE SYSTEM CACHING
and RHEL 4+ Small Computer System
. ) Interface (SCSI) disks using
(on this architecture: Fibre Channel Protocol
zSeries®) (ECP)
Windows No specific requirement, DIO NO FILE SYSTEM
works on all DB2 CACHING
supported file systems

Note:

1. On AIX JFS, FILE SYSTEM CACHING is the default.

2. On Solaris UFS, NO FILE SYSTEM CACHING is the default.

3. The VERITAS Storage Foundation for the database manager might have
different operating system prerequisites. The platforms listed above are the

supported platforms for the current release. Consult the VERITAS Storage
Foundation for DB2 support for prerequisite information.

4. If SFDB2 5.0 is used instead of the above minimum levels, the SFDB2 5.0 MP1
RP1 release must be used. This release includes fixes that are specific to the 5.0
version.

5. If you do not want the database manager to choose NO FILE SYSTEM
CACHING for the default setting, specify FILE SYSTEM CACHING in the
relevant SQL, commands, or APIs.

Examples

Example 1: By default, this new table space will be created using non-buffered
I/0; the NO FILE SYSTEM CACHING clause is implied:

CREATE TABLESPACE table space name ...

Example 2: On the following statement, the NO FILE SYSTEM CACHING clause
indicates that file system level caching will be OFF for this particular table space:

CREATE TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 3: The following statement disables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... NO FILE SYSTEM CACHING

Chapter 9. Table spaces 181



Example 4: The following statement enables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... FILE SYSTEM CACHING

Table space extent sizes

The extent size for a table space represents the number of pages of table data that
will be written to a container before data will be written to the next container.

When selecting an extent size, you should consider:
* The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As the
table is populated and an extent becomes full, a new extent is allocated. DMS
table space container storage is prereserved which means that new extents are
allocated until the container is completely used.

Space in SMS table spaces is allocated to a table either one extent at a time or
one page at a time. As the table is populated and an extent or page becomes
full, a new extent or page is allocated until all of the extents or pages in the file
system are used. When using SMS table spaces, multipage file allocation is
allowed. Multipage file allocation allows extents to be allocated instead of a
page at a time.

Multipage file allocation is enabled by default. The value of the multipage_alloc

database configuration parameter will indicate if multipage file allocation is
enabled.

Note: Multipage file allocation is not applicable to temporary table spaces.
A table is made up of the following separate table objects:

— A data object. This is where the regular column data is stored.

— An index object. This is where all indexes defined on the table are stored.

— Along field (LF) data object. This is where long field data, if your table has
one or more LONG columns, is stored.

— Two large object (LOB) data objects. If your table has one or more LOB
columns, they are stored in these two table objects:

- One table object for the LOB data

- A second table object for metadata describing the LOB data.
— A block map object for multidimensional clustering (MDC) tables.
— An extra XDA object, which stores XML documents.

Each table object is stored separately, and each object allocates new extents as
needed. Each DMS table object is also paired with a metadata object called an
extent map, which describes all of the extents in the table space that belong to
the table object. Space for extent maps is also allocated one extent at a time.
Therefore, the initial allocation of space for an object in a DMS table space is two
extents. (The initial allocation of space for an object in an SMS table space is one
page.)

If you have many small tables in a DMS table space, you may have a relatively
large amount of space allocated to store a relatively small amount of data. In
such a case, you should specify a small extent size. On the other hand, if you
have a very large table that has a high growth rate, and you are using a DMS
table space with a small extent size, you could have unnecessary overhead
related to the frequent allocation of additional extents.

* The type of access to the tables.

182 Data Servers, Databases, and Database Objects Guide



If access to the tables includes many queries or transactions that process large
quantities of data, prefetching data from the tables may provide significant
performance benefits.

¢ The minimum number of extents required.

If there is not enough space in the containers for five extents of the table space,
the table space will not be created.

Table space page sizes

When designing table spaces, you need to consider page sizes.

You can use a 4K, 8K, 16K or 32K page size limit. Each of these page sizes also has
maximums for each of the table space types that you must adhere to.

shows the page size-specific limits for the different types of table spaces:

Table 47. Table space page size-specific limits

Table space type 4K page size 8K page size 16K page size |32K page size
(in gigabytes) limit limit limit limit
SMS table spaces |64 128 256 512
DMS table spaces |64 128 256 512
(regular)

DMS table spaces | 2048 4096 8192 16 384
(large)

Automatic storage |64 128 256 512
table spaces

(regular)

Automatic storage |2048 4096 8192 16 384
table spaces (large)

Temporary table 64 128 256 512
spaces

For database and index page size limits for the different types of table spaces, see
the database manager page size-specific limits in [SQL and XML limits]
To ensure that the maximum page size of your system temporary table space is

large enough for your queries or positioned updates, see “Ensuring system
temporary table space page sizes meet requirements” in Migration Guide.

Table space disk I/O

The type and design of your table space determines the efficiency of the I/O
performed against that table space.

You should understand the following concepts before considering other issues
concerning table space design and use:

Big-block reads
A read where several pages (usually an extent) are retrieved in a single
request. Reading several pages at once is more efficient than reading each
page separately.

Prefetching
The reading of pages in advance of those pages being referenced by a
query. The overall objective is to reduce response time. This can be
achieved if the prefetching of pages can occur asynchronously to the

Chapter 9. Table spaces 183



execution of the query. The best response time is achieved when either the
CPU or the I/0O subsystem is operating at maximum capacity.

Page cleaning
As pages are read and modified, they accumulate in the database buffer
pool. When a page is read in, it is read into a buffer pool page. If the
buffer pool is full of modified pages, one of these modified pages must be
written out to the disk before the new page can be read in. To prevent the
buffer pool from becoming full, page cleaner agents write out modified
pages to guarantee the availability of buffer pool pages for future read
requests.

Whenever it is advantageous to do so, the database manager performs big-block
reads. This typically occurs when retrieving data that is sequential or partially
sequential in nature. The amount of data read in one read operation depends on
the extent size — the bigger the extent size, the more pages can be read at one
time.

Sequential prefetching performance can be further enhanced if pages can be read
from disk into contiguous pages within a buffer pool. Since buffer pools are
page-based by default, there is no guarantee of finding a set of contiguous pages
when reading in contiguous pages from disk. Block-based buffer pools can be used
for this purpose because they not only contain a page area, they also contain a
block area for sets of contiguous pages. Each set of contiguous pages is named a
block and each block contains a number of pages referred to as blocksize. The size
of the page and block area, as well as the number of pages in each block is
configurable.

How the extent is stored on disk affects I/O efficiency. In a DMS table space using
device containers, the data tends to be contiguous on disk, and can be read with a
minimum of seek time and disk latency. If files are being used, a large file that has
been pre-allocated for use by a DMS table space also tends to be contiguous on
disk, especially if the file was allocated in a clean file space. However, the data
may have been broken up by the file system and stored in more than one location
on disk. This occurs most often when using SMS table spaces, where files are
extended one page at a time, making fragmentation more likely.

You can control the degree of prefetching by changing the PREFETCHSIZE option
on the CREATE TABLESPACE or ALTER TABLESPACE statements, or you can set
the prefetch size to AUTOMATIC to have the database manager automatically
choose the best size to use. (The default value for all table spaces in the database is
set by the dft_prefetch_sz database configuration parameter.) The PREFETCHSIZE
parameter tells the database manager how many pages to read whenever a
prefetch is triggered. By setting PREFETCHSIZE to be a multiple of the
EXTENTSIZE parameter on the CREATE TABLESPACE statement, you can cause
multiple extents to be read in parallel. (The default value for all table spaces in the
database is set by the dft_extent_sz database configuration parameter.) The
EXTENTSIZE parameter specifies the number of 4 KB pages that will be written to
a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set the
PREFETCHSIZE to be three times the EXTENTSIZE, the database manager can do
a big-block read from each device in parallel, thereby significantly increasing 1/0O
throughput. This assumes that each device is a separate physical device, and that
the controller has sufficient bandwidth to handle the data stream from each device.

184 Data Servers, Databases, and Database Objects Guide



Note that the database manager may have to dynamically adjust the prefetch
parameters at run time based on query speed, buffer pool utilization, and other
factors.

Some file systems use their own prefetching method (such as the Journaled File
System on AIX). In some cases, file system prefetching is set to be more aggressive
than the database manager prefetching. This may cause prefetching for SMS and
DMS table spaces with file containers to appear to outperform prefetching for DMS
table spaces with devices. This is misleading, because it is likely the result of the
additional level of prefetching that is occurring in the file system. DMS table
spaces should be able to outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean buffer
pool pages must exist. For example, there could be a parallel prefetch request that
reads three extents from a table space, and for each page being read, one modified
page is written out from the buffer pool. The prefetch request may be slowed
down to the point where it cannot keep up with the query. Page cleaners should
be configured in sufficient numbers to satisfy the prefetch request.

Defining initial table spaces

When a database is created, three table spaces are defined: (1) SYSCATSPACE for
the system catalog tables, (2) TEMPSPACEI1 for system temporary tables created
during database processing, and (3) USERSPACEI1 for user-defined tables and
indexes.

Note: When you first create a database no user temporary table space is created.

Unless otherwise specified, the three default table spaces are managed by
Automatic Storage.

Using the CREATE DATABASE command, you can specify the page size for the
default buffer pool and the initial table spaces. This default also represents the
default page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB.

To define initial table spaces using the command line, enter:

CREATE DATABASE <name>
CATALOG TABLESPACE
MANAGED BY SYSTEM USING ('<path>')
EXTENTSIZE <value> PREFETCHSIZE <value>
USER TABLESPACE
MANAGED BY DATABASE USING (FILE'<path>' 5000,
FILE'<path>' 5000)
EXTENTSIZE <value> PREFETCHSIZE <value>
TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING ('<path>')
WITH "<comment>"

If you do not want to use the default definition for these table spaces, you might
specify their characteristics on the CREATE DATABASE command. For example,
the following command could be used to create your database on Windows:

CREATE DATABASE PERSONL
CATALOG TABLESPACE
MANAGED BY SYSTEM USING ('d:\pcatalog','e:\pcatalog')
EXTENTSIZE 16 PREFETCHSIZE 32
USER TABLESPACE

Chapter 9. Table spaces 185



MANAGED BY DATABASE USING (FILE'd:\db2data\personl' 5000,
FILE'd:\db2data\personl' 5000)
EXTENTSIZE 32 PREFETCHSIZE 64
TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING ('f:\db2temp\personl"')
WITH "Personnel DB for BSchiefer Co"

In this example, the definition for each of the initial table spaces is explicitly
provided. You only need to specify the table space definitions for those table
spaces for which you do not want to use the default definition.

Note: When working in a partitioned database environment, you cannot create or
assign containers to specific database partitions. First, you must create the database
with default user and temporary table spaces. Then you should use the CREATE
TABLESPACE statement to create the required table spaces. Finally, you can drop
the default table spaces.

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE
TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot
drop the catalog table space SYSCATSPACE, or create another one; and there must
always be at least one system temporary table space with a page size of 4 KB. You
can create other system temporary table spaces. You also cannot change the page
size or the extent size of a table space after it has been created.

Attaching DMS direct disk access devices

When working with containers to store data, the database manager supports direct
disk access (raw 1/0).

This type of support allows you to attach a direct disk access (raw) device to any
DB2 database system.

You must know the device or file names of the containers you are going to
reference when creating your table spaces. You must know the amount of space
associated with each device or file name that is to be allocated to the table space.
You will need the correct permissions to read and write to the container.

The physical and logical methods for identifying direct disk access differs based on
operating system:
* On the Windows operating systems:

To specify a physical hard drive, use the following syntax:

\\.\PhysicalDriveN

where N represents one of the physical drives in the system. In this case, N
could be replaced by 0, 1, 2, or any other positive integer:

\\.\PhysicalDrive5

To specify a logical drive, that is, an unformatted database partition, use the
following syntax:

A\NAN:

186 Data Servers, Databases, and Database Objects Guide



where N: represents a logical drive letter in the system. For example, N: could
be replaced by E: or any other drive letter. To overcome the limitation imposed
by using a letter to identify the drive, you can use a globally unique identifier
(GUID) with the logical drive.

For Windows, there is a new method for specifying DMS raw table space
containers. Volumes (that is, basic disk database partitions or dynamic volumes)
are assigned a globally unique identifier (GUID) when they are created. The
GUID can be used as a device identifier when specifying the containers in a
table space definition. The GUIDs are unique across systems which means that
in a multi-partition database, GUIDs are different for each database partition
even if the disk partition definitions are the same.

A tool called db2listvolumes.exe is available (only on Windows operating systems)
to make it easy to display the GUIDs for all the disk volumes defined on a
Windows system. This tool creates two files in the current directory where the
tool is run. One file, called volumes.xml, contains information about each disk
volume encoded in XML for easy viewing on any XML-enabled browser. The
second file, called tablespace.ddl, contains the required syntax for specifying
table space containers. This file must be updated to fill in the remaining
information needed for a table space definition. The db2listvolumes command
does not require any command line arguments.

¢ On Linux and UNIX platforms, a logical volume can appear to users and
applications as a single, contiguous, and extensible disk volume. Although it
appears this way, it can reside on noncontiguous physical database partitions or
even on more than one physical volume. The logical volume must also be
contained within a single volume group. There is a limit of 256 logical volumes
per volume group. There is a limit of 32 physical volumes per volume group.
You can create additional logical volumes using the mklv command. This
command allows you to specify the name of the logical volume and to define its
characteristics, including the number and location of logical partitions to allocate
for it.

After you create a logical volume, you can change its name and characteristics
with the chlv command, and you can increase the number of logical partitions
allocated to it with the extendlv command. The default maximum size for a
logical volume at creation is 512 logical partitions, unless specified to be larger.
The chlv command is used to override this limitation.

Within AIX, the set of operating system commands, library subroutines, and
other tools that allow you to establish and control logical volume storage is
called the Logical Volume Manager (LVM). The LVM controls disk resources by
mapping data between a simpler and flexible logical view of storage space and
the actual physical disks.

For more information on the mklv and other logical volume commands, and the

LVM, refer to AIX 5L Version 5.2 System Management Concepts: Operating System
and Devices.

Configuring and setting up DMS direct disk access (Linux)

When working with containers to store data, the database manager supports direct
disk (raw) access using the block device interface (that is, raw 1/0).

Before setting up raw 1/O on Linux, one or more free IDE or SCSI disk database
partitions are required. In order to reference the disk partition when creating the
table space, you must know the name of the disk partition and the amount of

space associated with the disk partition that is to be allocated to the table space.

Chapter 9. Table spaces 187



The following information should be used when working in a Linux environment.
On Linux/390, the database manager does not support direct disk access devices.

To configure or raw 1/O on Linux:

In this example, the raw database partition to be used is /dev/sda5. It should not
contain any valuable data.

1. Calculate the number of 4 096-byte pages in this database partition, rounding
down if necessary. For example:

# fdisk /dev/sda
Command (m for help): p

Disk /dev/sda: 255 heads, 63 sectors, 1106 cylinders
Units = cylinders of 16065 * 512 bytes

Table 48. Linux raw I/O calculations.

Device boot | Start End Blocks Id System
/dev/sdal 1 523 4200997 83 Linux
/dev/sda2 524 1106 4682947+ 5 Extended
/dev/sdab 524 1106 4682947 83 Linux

Command (m for help): q
#

The number of pages in /dev/sda5 is:

num_pages = floor( (4682947 * 1024)/4096 )
num_pages = 1170736

2. Create the table space by specifying the disk partition name. For example:

CREATE TABLESPACE dmsl
MANAGED BY DATABASE
USING (DEVICE '/dev/sda5' 1170736)

3. To specify logical partitions by using junction points (or volume mount points),
mount the RAW partition to another NTFS-formatted volume as a junction
point, then specify the path to the junction point on the NTFES volume as the
container path. For example:

CREATE TABLESPACE TS4

MANAGED BY DATABASE USING (DEVICE 'C:\JUNCTION\DISK 1' 10000,
DEVICE 'C:\JUNCTION\DISK 2' 10000)

The database manager first queries the partition to see whether there is a file
system R on it; if yes, the partition is not treated as a RAW device, and
performs normal file system I/O operations on the partition.

Table spaces on raw devices are also supported for all other page sizes supported
by the database manager.

Prior to Version 9, direct disk access using a raw controller utility on Linux was
used. This method is now deprecated, and its use is discouraged. The database
manager will still allow you to use this method if the Linux operating system still
supports it, however, there will be a message in the db2diag.log that will indicate
that its use is deprecated.

The prior method would have required you to "bind” a disk partition to a raw

controller, then specify that raw controller to the database manager using the
CREATE TABLESPACE command:

188 Data Servers, Databases, and Database Objects Guide



CREATE TABLESPACE dmsl
MANAGED BY DATABASE
USING (DEVICE '/dev/raw/rawl' 1170736)

Creating table spaces

For non-automatic storage table spaces you must know the device or file names of
the containers that you will reference when creating your table spaces.

In addition, you must know the space associated with each device or file name
that you will allocate to the table space. For automatic storage table spaces, the
database manager assigns containers to the table space based on the storage paths
associated with the database.

Table spaces establish the relationship between the physical storage devices used
by your database system and the logical containers or tables used to store data.

Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog. You can then
create tables within this table space. You must know the device or file names of the
containers that you will reference when creating your table spaces. In addition, you
must know the space associated with each device or file name that you will
allocate to the table space.

When you create a database, three initial table spaces are created. The page size for
the three initial table spaces is based on the default that is established or accepted
when you use the CREATE DATABASE command. This default also represents the
default page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB. If you do not specify the page size when creating a table
space, the default page size is the one set when you created the database.

To create an SMS table space using the command line, enter:

CREATE TABLESPACE <NAME>
MANAGED BY SYSTEM
USING ('<path>")

To create a DMS table space using the command line, enter:

CREATE TABLESPACE <NAME>
MANAGED BY DATABASE
USING (FILE'<path>' <size>)

To create an automatic storage table space using the command line, enter either of
the following statements:
CREATE TABLESPACE <NAME>

CREATE TABLESPACE <NAME>
MANAGED BY AUTOMATIC STORAGE

The following SQL statement creates an SMS table space on Windows using three
directories on three separate drives:
CREATE TABLESPACE RESOURCE

MANAGED BY SYSTEM
USING ('d:\acc_tbsp', 'e:\acc_tbsp', 'f:\acc_tbsp"')

The following SQL statement creates a DMS table space using two file containers,
each with 5,000 pages:

Chapter 9. Table spaces 189



CREATE TABLESPACE RESOURCE
MANAGED BY DATABASE
USING (FILE'd:\db2data\acc_tbsp' 5000,
FILE'e:\db2data\acc_tbsp' 5000)

In the previous two examples, explicit names are provided for the containers.
However, if you specify relative container names, the container is created in the
subdirectory created for the database.

When creating table space containers, the database manager creates any directory
levels that do not exist. For example, if a container is specified as
/project/user_data/containerl, and the directory /project does not exist, then the
database manager creates the directories /project and /project/user_data.

Any directories created by the database manager are created with PERMISSION
700. This means that only the instance owner has read, write, and execute access.
Because only the instance owner has this access, the following scenario might
occur when multiple instances are being created:

* Using the same directory structure as described above, suppose that directory
levels /project/user_data do not exist.

* userl creates an instance, named userl by default, then creates a database, and
then creates a table space with /project/user_data/containerl as one of its
containers.

* user?2 creates an instance, named user2 by default, then creates a database, and
then attempts to create a table space with /project/user_data/container2 as one
of its containers.

Because the database manager created directory levels /project/user_data with
PERMISSION 700 from the first request, user2 does not have access to these
directory levels and cannot create container2 in those directories. In this case, the
CREATE TABLESPACE operation fails.

There are two methods to resolve this conflict:

1. Create the directory /project/user_data before creating the table spaces and set
the permission to whatever access is needed for both userl and user2 to create
the table spaces. If all levels of table space directory exist, the database
manager does not modify the access.

2. After userl creates /project/user_data/containerl, set the permission of
/project/user_data to whatever access is needed for user2 to create the table
space.

If a subdirectory is created by the database manager, it might also be deleted by
the database manager when the table space is dropped.

The assumption in this scenario is that the table spaces are not associated with a
specific database partition group. The default database partition group
IBMDEFAULTGROUP is used when the following parameter is not specified in the
statement:

IN database_partition_group_name

The following SQL statement creates a DMS table space on an AIX system using
three logical volumes of 10 000 pages each, and specifies their I/O characteristics:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (DEVICE '/dev/rdblvé6' 10000,

190 Data Servers, Databases, and Database Objects Guide



DEVICE '/dev/rdblv7' 10000,
DEVICE '/dev/rdb1v8' 10000)
OVERHEAD 7.5
TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist, and the
instance owner and the SYSADM group must be able to write to them.

The following example creates a DMS table space on a database partition group
called ODDGROUP in a UNIX multi-partition database. ODDGROUP must be
previously created with a CREATE DATABASE PARTITION GROUP statement. In
this case, the ODDGROUP database partition group is assumed to be made up of
database partitions numbered 1, 3, and 5. On all database partitions, use the device
/dev/hdisk0 for 10 000 4 KB pages. In addition, declare a device for each database
partition of 40 000 4 KB pages.
CREATE TABLESPACE PLANS IN ODDGROUP
MANAGED BY DATABASE
USING (DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/nlhd01' 40000)
ON DBPARTITIONNUM 1
(DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/n3hd03' 40000)
ON DBPARTITIONNUM 3

(DEVICE '/dev/HDISKO' 10000, DEVICE '/dev/n5hd05' 40000)
ON DBPARTITIONNUM 5

The database manager can greatly improve the performance of sequential I/O
using the sequential prefetch facility, which uses parallel 1/0O.

You can also create a table space that uses a page size larger than the default 4 KB
size. The following SQL statement creates an SMS table space on a Linux and
UNIX system with an 8 KB page size.
CREATE TABLESPACE SMS8K

PAGESIZE 8192

MANAGED BY SYSTEM

USING ('FSMS_8K_1')

BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page size.

The created table space cannot be used until the buffer pool it references is
activated.

You can use the ALTER TABLESPACE statement to add, drop, or resize containers
to a DMS table space and modify the PREFETCHSIZE, OVERHEAD, and
TRANSFERRATE settings for a table space. You should commit the transaction
issuing the table space statement as soon as possible following the ALTER
TABLESPACE SQL statement to prevent system catalog contention.

Note: The PREFETCHSIZE value should be a multiple of the EXTENTSIZE value.
For example if the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or 30. You
should use the following equation to set your prefetch size manually when
creating a table space:

prefetch size = (number of containers) X (number of physical spindles per
container) X extent size

You should also consider letting the database manager automatically determine the
prefetch size, by setting PREFETCHSIZE to AUTOMATIC.

Chapter 9. Table spaces 191



Direct I/O (DIO) improves memory performance because it bypasses caching at
the file system level. This process reduces CPU overhead and makes more memory
available to the database instance.

Concurrent I/0 (CIO) includes the advantages of DIO and also relieves the
serialization of write accesses.

DIO and CIO are supported on AIX; DIO is supported on HP-UX, Solaris, Linux,
and Windows operating systems.

The keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING are
part of the CREATE and ALTER TABLESPACE SQL statements to allow you to
specify whether DIO or CIO is to be used with each table space. When NO FILE
SYSTEM CACHING is in effect, the database manager attempts to use Concurrent
I/0 (CIO) wherever possible. In cases where CIO is not supported (for example, if
JES is used), DIO is used instead.

When you issue the CREATE TABLESPACE statement, the dropped table recovery
feature is turned on by default. This feature lets you recover dropped table data
using table space-level restore and rollforward operations. This is useful because it
is faster than database-level recovery, and your database can remain available to
users.

However, the dropped table recovery feature can have some performance impact
on forward recovery when there are many drop table operations to recover or
when the history file is very large.

You might want to disable this feature if you plan to run numerous drop table
operations, and you either use circular logging or you do not think you will want
to recover any of the dropped tables. To disable this feature, you can explicitly set
the DROPPED TABLE RECOVERY option to OFF when you issue the CREATE
TABLESPACE statement. Alternatively, you can turn off the dropped table recovery
feature for an existing table space using the ALTER TABLESPACE statement.

Creating system temporary table spaces
A system temporary table space is used to store system temporary tables.
A database must always have at least one system temporary table space
since system temporary tables can only be stored in such a table space.

When a database is created, one of the three default table spaces defined is
a system temporary table space called "TEMPSPACE1".

To create another system temporary table space, use the CREATE
TABLESPACE statement. For example,
CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp

MANAGED BY SYSTEM
USING ('d:\tmp_tbsp','e:\tmp_tbsp"')

You should have at least one table space of each page size.

The only database partition group that can be specified when creating a
system temporary table space is IBMTEMPGROUP.

Creating user temporary table spaces
User temporary table spaces are not created by default when a database is
created. If your application programs need to use temporary tables, you
need to create a user temporary table space where the temporary tables
will reside.

192  Data Servers, Databases, and Database Objects Guide



Like regular table spaces, user temporary table spaces can be created in
any database partition group other than IBMTEMPGROUP.
IBMDEFAULTGROUP is the default database partition group that is used
when creating a user temporary table.

The DECLARE GLOBAL TEMPORARY TABLE statement defines declared
temporary tables for use within a user temporary table space.

To create a user temporary table space, use the CREATE TABLESPACE
statement:

CREATE USER TEMPORARY TABLESPACE usr_tbsp
MANAGED BY DATABASE
USING (FILE 'd:\db2data\user_ tbsp' 5000,
FILE 'e:\db2data\user tbhsp' 5000)

Altering table spaces

To alter a table space using the command line, use the ALTER TABLESPACE
statement.

You can alter SMS, DMS, and automatic storage containers. You can also rename a
table space, and switch it from offline to online mode.

Altering SMS table spaces

For SMS table spaces, you can only add one containers to single-partitioned
databases, or one or more containers to partitioned databases.

The process for doing this is the same as described in: [“Adding or extending DMS|

Altering DMS table spaces

For DMS table spaces, you can add, extend, rebalance, resize, drop or reduce
containers.

Adding or extending DMS containers

You can increase the size of a DMS table space (that is, one created with the
MANAGED BY DATABASE clause) by adding one or more containers to the table
space.

When new containers are added to a table space, or existing containers are
extended, a rebalance of the table space might occur. The process of rebalancing
involves moving table space extents from one location to another. During this
process, an attempt is made to keep data striped within the table space.
Rebalancing does not necessarily occur across all containers but depends on many
factors, such as the existing container configuration, the size of the new containers,
and how full the table space is.

When containers are added to an existing table space, they might be added such
that they do not start in stripe 0, as described in ["DMS table space maps” on page]
Where they start in the map is determined by the database manager and is
based on the size of the containers being added. If the container being added is not
large enough, it is positioned such that it ends in the last stripe of the map. If it is
large enough, it is positioned to start in stripe 0.

No rebalancing occurs if you are adding new containers and creating a new stripe
set. A new stripe set is created using the BEGIN NEW STRIPE SET clause on the

Chapter 9. Table spaces 193



ALTER TABLESPACE statement. You can also add containers to existing stripe sets
using the ADD TO STRIPE SET clause on the ALTER TABLESPACE statement.

Access to the table space is not restricted during the rebalancing. If you need to
add more than one container, you should add them at the same time.

To add a container to a DMS table space using the command line, enter:

ALTER TABLESPACE <name>
ADD (DEVICE '<path>' <size>, FILE '<filename>' <size>)

The following example illustrates how to add two new device containers (each
with 10 000 pages) to a table space on a Linux and UNIX system:
ALTER TABLESPACE RESOURCE

ADD (DEVICE '/dev/rhd9' 160000,
DEVICE '/dev/rhd10' 10000)

Note that the ALTER TABLESPACE statement allows you to change other
properties of the table space that can affect performance.

Rebalancing DMS containers
The ALTER TABLESPACE statement lets you add a container to an existing table
space or extend a container to increase its storage capacity.

Containers cannot be manually added to automatic storage table spaces. The
database manager will automatically extend or add containers as necessary.

When a table space is created, its table space map is created and all of the initial
containers are lined up such that they all start in stripe 0. This means that data is
striped evenly across all of the table space containers until the individual

containers fill up. (See )

Adding a container that is smaller than existing containers results in a uneven
distribution of data. This can cause parallel I/O operations, such as prefetching
data, to perform less efficiently than they could on containers of equal size.

When new containers are added to a table space or existing containers are
extended, a rebalance of the table space data may occur.

Rebalancing

The process of rebalancing when adding or extending containers involves moving
table space extents from one location to another, and it is done in an attempt to
keep data striped within the table space.

Access to the table space is not restricted during rebalancing; objects can be
dropped, created, populated, and queried as usual. However, the rebalancing
operation can have a significant impact on performance. If you need to add more
than one container, and you plan to rebalance the containers, you should add them
at the same time within a single ALTER TABLESPACE statement to prevent the
database manager from having to rebalance the data more than once.

The table space high-water mark plays a key part in the rebalancing process. The
high-water mark is the page number of the highest allocated page in the table
space. For example, a table space has 1000 pages and an extent size of 10, resulting
in 100 extents. If the 42nd extent is the highest allocated extent in the table space,
then the high-water mark is 42 * 10 = 420 pages. This is not the same as used

194 Data Servers, Databases, and Database Objects Guide



pages because some of the extents below the high-water mark may have been
freed up so that they are available for reuse.

Before the rebalance starts, a new table space map is built based on the container
changes made. The rebalancer moves extents from their location determined by the
current map into the location determined by the new map. The rebalancer starts at
extent 0, moving one extent at a time until the extent holding the high-water mark
has been moved. As each extent is moved, the current map is altered, one piece at
a time, to look like the new map. When the rebalance is complete, the current map
and new map should look identical up to the stripe holding the high-water mark.
The current map is then made to look completely like the new map and the
rebalancing process is complete. If the location of an extent in the current map is
the same as its location in the new map, then the extent is not moved and no 1/0O
takes place.

When adding a new container, the placement of that container within the new map
depends on its size and the size of the other containers in its stripe set. If the
container is large enough such that it can start at the first stripe in the stripe set

and end at (or beyond) the last stripe in the stripe set, then it will be placed that
way (see . If the container is not large enough to do this, it will be
positioned in the map such that it ends in the last stripe of the stripe set (see
) This is done to minimize the amount of data that needs to be
rebalanced.

Note: In the following examples, the container sizes do not take the size of the
container tag into account. The container sizes are very small, and are just used for
the purpose of illustration, they are not recommended container sizes. The
examples show containers of different sizes within a table space, but you are
advised to use containers of the same size.

Example 1:
If you create a table space with three containers and an extent size of 10, and the

containers are 60, 40, and 80 pages respectively (6, 4, and 8 extents), the table space
is created with a map that can be diagrammed as shown in [Figure 13 on page 196}

Chapter 9. Table spaces 195



I— Containers —I

0 1 2
0 Extent 0 Extent 1 Extent 2
1 Extent 3 Extent 4 Extent 5
2 Extent 6 Extent 7 Extent 8
3 Extent 9 Extent 10 Extent 11
Stripes
4 Extent 12 Extent 13
5 Extent 14 Extent 15
6 Extent 16
7 Extent 17

Figure 13. Table space with three containers and 18 extents

The corresponding table space map, as shown in a table space snapshot, looks like

this:
Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page  Stripe Stripe
[o] [o] 0 11 119 0 3 06 3 (0,1, 2)
[1] [o] 0 15 159 4 5 06 2 (0, 2)
[2] [o] 0 17 179 6 7 0 1 (2)

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,
Maximum extent number addressed by the range, Maximum page number
addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container
list.

Example 2:

If an 80-page container is added to the table space in Example 1, the container is
large enough to start in the first stripe (stripe 0) and end in the last stripe (stripe
7). It is positioned such that it starts in the first stripe. The resulting table space can
be diagrammed as shown in [Figure 14 on page 197}

196 Data Servers, Databases, and Database Objects Guide



Range

Number
(o]
[1]
(2]

Containers

0 1 2 3
0 Extent O Extent 1 Extent 2 Extent 3
1 Extent 4 Extent 5 Extent 6 Extent 7
2 Extent 8 Extent 9 Extent 10 Extent 11
3 Extent 12 Extent 13 Extent 14 Extent 15
Stripes
4 Extent 16 Extent 17 Extent 18
5 Extent 19 Extent 20 Extent 21
6 Extent 22 Extent 23
7 Extent 24 Extent 25

Figure 14. Table space with four containers and 26 extents

The corresponding table space map, as shown in a table space snapshot, will look
like this:

Stripe Stripe Max Max Start End Adj. Containers

Set 0ffset Extent Page  Stripe Stripe
[0] 0 15 159 0 3 0 4 (0, 1, 2, 3)
[0] 0 21 219 4 5 0 3 (0, 2, 3)
[0] 0 25 259 6 7 0 2 (2, 3)

If the high-water mark is within extent 14, the rebalancer starts at extent 0 and
moves all of the extents up to and including 14. The location of extent 0 within
both of the maps is the same so this extent does not need to move. The same is
true for extents 1 and 2. Extent 3 does need to move so the extent is read from the
old location (second extent within container 0) and is written to the new location
(first extent within container 3). Every extent after this up to and including extent
14 is moved. Once extent 14 is moved, the current map looks like the new map
and the rebalancer terminates.

If the map is altered such that all of the newly added space comes after the
high-water mark, then a rebalance is not necessary and all of the space is available
immediately for use. If the map is altered such that some of the space comes after
the high-water mark, then the space in the stripes above the high-water mark is
available for use. The rest is not available until the rebalance is complete.

If you decide to extend a container, the function of the rebalancer is similar. If a
container is extended such that it extends beyond the last stripe in its stripe set,
the stripe set will expand to fit this and the following stripe sets will be shifted out
accordingly. The result is that the container will not extend into any stripe sets
following it.

Chapter 9. Table spaces 197



Example 3:

Consider the table space from Example 1. If you extend container 1 from 40 pages
to 80 pages, the new table space looks like

I— Containers —|

0 1 2
0 Extent O Extent 1 Extent 2
1 Extent 3 Extent 4 Extent 5
2 Extent 6 Extent 7 Extent 8
3 Extent 9 Extent 10 Extent 11
Stripes
4 Extent 12 Extent 13 Extent 14
5 Extent 15 Extent 16 Extent 17
6 Extent 18 Extent 19
7 Extent 20 Extent 21

Figure 15. Table space with three containers and 22 extents

The corresponding table space map, as shown in a table space snapshot, looks like

this:
Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page  Stripe Stripe
[o] [o] 0 17 179 0 5 06 3 (0,1, 2)
[1] [o] 0 21 219 6 7 0o 2 (1, 2)
Example 4:

Consider the table space from If a 50-page (5-extent) container is added
to it, the container will be added to the new map in the following way. The
container is not large enough to start in the first stripe (stripe 0) and end at or
beyond the last stripe (stripe 7), so it is positioned such that it ends in the last
stripe. (See [Figure 16 on page 199})

198 Data Servers, Databases, and Database Objects Guide



Containers

0 1 2 3
0 Extent O Extent 1 Extent 2
1 Extent 3 Extent 4 Extent 5
2 Extent 6 Extent 7 Extent 8
3 Extent 9 Extent 10 Extent 11 Extent 12
Stripes
4 Extent 13 Extent 14 Extent 15
5 Extent 16 Extent 17 Extent 18
6 Extent 19 Extent 20
7 Extent 21 Extent 22

Figure 16. Table space with four containers and 23 extents

The corresponding table space map, as shown in a table space snapshot, will look

like this:
Range Stripe Stripe Max Max Start End Adj. Containers
Number Set 0ffset Extent Page  Stripe Stripe
[o] [o] 0 8 89 0 2 0 3 (0,1, 2)
[1] [o] 0 12 129 3 3 06 4 (0,1, 2, 3)
[2] [o] 0 18 189 4 5 0 3 (0, 2, 3)
[3] [o] 0 22 229 6 7 0 2 (2, 3)

To extend a container, use the EXTEND or RESIZE clause on the ALTER
TABLESPACE statement. To add containers and rebalance the data, use the ADD
clause on the ALTER TABLESPACE statement. If you are adding a container to a
table space that already has more than one stripe set, you can specify which stripe
set you want to add to. To do this, you use the ADD TO STRIPE SET clause on the
ALTER TABLESPACE statement. If you do not specify a stripe set, the default
behavior will be to add the container to the current stripe set. The current stripe
set is the most recently created stripe set, not the one that last had space added to
it.

Any change to a stripe set may cause a rebalance to occur to that stripe set and
any others following it.

You can monitor the progress of a rebalance by using table space snapshots. A
table space snapshot can provide information about a rebalance such as the start
time of the rebalance, how many extents have been moved, and how many extents
need to move.

Chapter 9. Table spaces 199



Without rebalancing (using stripe sets)

If you add or extend a container, and the space added is above the table space
high-water mark, a rebalance will not occur.

Adding a container will almost always add space below the high-water mark. In
other words, a rebalance is often necessary when you add a container. There is an
option to force new containers to be added above the high-water mark, which
allows you to choose not to rebalance the contents of the table space. An
advantage of this method is that the new container will be available for immediate
use. The option not to rebalance applies only when you add containers, not when
you extend existing containers. When you extend containers you can only avoid
rebalancing if the space you add is above the high-water mark. For example, if you
have a number of containers that are the same size, and you extend each of them
by the same amount, the relative positions of the extents will not change, and a
rebalance will not occur.

Adding containers to a table space without rebalancing is done by adding a new
stripe set. A stripe set is a set of containers in a table space that has data striped
across it separately from the other containers that belong to that table space. The
existing containers in the existing stripe sets remain untouched, and the containers
you add become part of a new stripe set.

To add containers without rebalancing, use the BEGIN NEW STRIPE SET clause on
the ALTER TABLESPACE statement.

Example 5:
If you have a table space with three containers and an extent size of 10, and the

containers are 30, 40, and 40 pages (3, 4, and 4 extents respectively), the table space

can be diagrammed as shown in

l— Containers —|

0 1 2
0 Extent O Extent 1 Extent 2
1 Extent 3 Extent 4 Extent 5
Stripes
2 Extent 6 Extent 7 Extent 8
3 Extent 9 Extent 10

Figure 17. Table space with three containers and 11 extents

The corresponding table space map, as shown in a table space snapshot, will look

like this:
Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page  Stripe Stripe
[0] [0] 0 8 89 0 2 0 3 (0,1, 2)
[1] [o] 0 10 109 3 3 0 2 (1, 2)

200 Data Servers, Databases, and Database Objects Guide



Range

Number
(o]
[1]
[2]
(3]

Example 6:

When you add two new containers that are 30 pages and 40 pages (3 and 4 extents
respectively) with the BEGIN NEW STRIPE SET clause, the existing ranges are not
affected; instead, a new set of ranges is created. This new set of ranges is a stripe
set and the most recently created one is called the current stripe set. After the two
new containers is added, the table space looks like

| Containers
0 1 2 3 4

0 Extent 0 Extent 1 Extent 2

1 Extent 3 Extent 4 Extent 5 .
Stripe
set #0

2 Extent 6 Extent 7 Extent 8

3 Extent 9 Extent 10

Stripes -

4 Extent 11 Extent 12

5 Extent 13 Extent 14
Stripe
set #1

6 Extent 15 Extent 16

7 Extent 17

Figure 18. Table space with two stripe sets

The corresponding table space map, as shown in a table space snapshot, looks like
this:

Stripe Stripe Max Max Start End Adj. Containers
Set 0ffset Extent Page  Stripe Stripe
[o] 0 8 89 0 2 0 3 (0,1, 2)
[o] 0 10 109 3 3 0 2 (1, 2)
[1] 4 16 169 4 6 0 2 (3, 4)
[1] 4 17 179 7 7 0 1 (4)

If you add new containers to a table space, and you do not use the TO STRIPE SET
clause with the ADD clause, the containers are added to the current stripe set (the
highest stripe set). You can use the ADD TO STRIPE SET clause to add containers
to any stripe set in the table space. You must specify a valid stripe set.

The database manager tracks the stripe sets using the table space map, and adding
new containers without rebalancing generally causes the map to grow faster than
when containers are rebalanced. When the table space map becomes too large, you
will receive error SQL0259N when you try to add more containers.

Resizing DMS containers
Containers cannot be manually resized in automatic storage table spaces.

Chapter 9. Table spaces 201



The database manager will automatically extend or add containers as necessary.
However, you can resize the containers in a DMS table space (that is, one created
with the MANAGED BY DATABASE clause).

Each raw device can only be used as one container. The raw device size is fixed
after its creation. When you are considering to use the RESIZE or EXTEND options
to increase a raw device container, you should check the raw device size first to
ensure that you do not attempt to increase the device container size larger than the
raw device size.

You can also drop existing containers from a DMS table space, reduce the size of
existing containers in a DMS table space, and add new containers to a DMS table
space without requiring a rebalance of the data across all of the containers.

The dropping of existing table space containers as well as the reduction in size of
existing containers is only allowed if the number of extents being dropped or
reduced in size is less than or equal to the number of free extents above the
“high-water mark” in the table space. The high-water mark is the page number of
the highest allocated page in the table space. This mark is not the same as the
number of used pages in the table space because some of the extents below the
high-water mark might have been made available for reuse.

The number of free extents above the high-water mark in the table space is
important because all extents up to and including the high-water mark must sit in
the same logical position within the table space. The resulting table space must
have enough space to hold all of the data. If there is not enough free space, an
error message (SQL20170N, SQLSTATE 57059) will result.

To drop containers, the DROP option is used on the ALTER TABLESPACE
statement. For example:

ALTER TABLESPACE TS1 DROP (FILE 'filel', DEVICE '/dev/rdiskl')

To reduce the size of existing containers, you can use either the RESIZE option or
the REDUCE option. When using the RESIZE option, all of the containers listed as
part of the statement must either be increased in size, or decreased in size. You
cannot increase some containers and decrease other containers in the same
statement. You should consider the resizing method if you know the new lower
limit for the size of the container. You should consider the reduction method if you
do not know (or care about) the current size of the container.

To decrease the size of one or more containers in a DMS table space using the
command line, enter:

ALTER TABLESPACE <name>
REDUCE (FILE '<filename>' <size>)

The following example illustrates how to reduce a file container (which already
exists with 1 000 pages) in a table space on a Windows-based system:

ALTER TABLESPACE PAYROLL
REDUCE (FILE 'd:\hldr\finance' 200)

Following this action, the file is decreased from 1 000 pages in size to 800 pages.

To increase the size of one or more containers in a DMS table space using the
command line, enter:

ALTER TABLESPACE <name>
RESIZE (DEVICE '<path>' <size>)

202 Data Servers, Databases, and Database Objects Guide



The following example illustrates how to increase two device containers (each
already existing with 1 000 pages) in a table space on a Linux and UNIX system:
ALTER TABLESPACE HISTORY

RESIZE (DEVICE '/dev/rhd7' 2000,
DEVICE '/dev/rhd8' 2000)

Following this action, the two devices have increased from 1 000 pages in size to
2 000 pages. The contents of the table space might be rebalanced across the
containers. Access to the table space is not restricted during the rebalancing.

To extend one or more containers in a DMS table space using the command line,
enter:

ALTER TABLESPACE <name>
EXTEND (FILE '<filename>' <size>)

The following example illustrates how to increase file containers (each already
existing with 1 000 pages) in a table space on a Windows-based system:
ALTER TABLESPACE PERSNEL

EXTEND (FILE 'e:\wrkhistl' 200
FILE 'f:\wrkhist2' 200)

Following this action, the two files have increased from 1 000 pages in size to
1 200 pages. The contents of the table space might be rebalanced across the
containers. Access to the table space is not restricted during the re-balancing.

The addition or modification of DMS containers (both file and raw device
containers) is performed in parallel through prefetchers. To achieve an increase in
parallelism of these create or resize container operations, you can increase the
number of prefetchers running in the system. The only process which is not done
in parallel is the logging of these actions and, in the case of creating containers, the
tagging of the containers.

Note: To maximize the parallelism of the CREATE TABLESPACE or ALTER
TABLESPACE statements (with respect to adding new containers to an existing
table space) ensure the number of prefetchers is greater than or equal to the
number of containers being added. The number of prefetchers is controlled by the
num_ioservers database configuration parameter. The database has to be stopped for
the new parameter value to take effect. In other words, all applications and users
must disconnect from the database for the change to take affect.

Note that the ALTER TABLESPACE statement allows you to change other
properties of the table space that can affect performance.

Dropping or reducing DMS containers
With a DMS table space, you can drop a container from the table space or reduce
the size of a container using the ALTER TABLESPACE statement.

Dropping or reducing a container will only be allowed if the number of extents
being dropped by the operation is less than or equal to the number of free extents
above the high-water mark in the table space. This is necessary because page
numbers cannot be changed by the operation and therefore all extents up to and
including the high-water mark must sit in the same logical position within the
table space. Therefore, the resulting table space must have enough space to hold all
of the data up to and including the high-water mark. In the situation where there
is not enough free space, you will receive an error immediately upon execution of
the statement.

Chapter 9. Table spaces 203



The high-water mark is the page number of the highest allocated page in the table
space. For example, a table space has 1000 pages and an extent size of 10, resulting
in 100 extents. If the 42nd extent is the highest allocated extent in the table space
that means that the high-water mark is 42 * 10 = 420 pages. This is not the same as
used pages because some of the extents below the high-water mark may have been
freed up such that they are available for reuse.

When containers are dropped or reduced, a rebalance will occur if data resides in
the space being dropped from the table space. Before the rebalance starts, a new
table space map is built based on the container changes made. The rebalancer will
move extents from their location determined by the current map into the location
determined by the new map. The rebalancer starts with the extent that contains the
high-water mark, moving one extent at a time until extent 0 has been moved. As
each extent is moved, the current map is altered one piece at a time to look like the
new map. If the location of an extent in the current map is the same as its location
in the new map, then the extent is not moved and no I/0O takes place. Because the
rebalance moves extents starting with the highest allocated one, ending with the
first extent in the table space, it is called a reverse rebalance (as opposed to the
forward rebalance that occurs when space is added to the table space after adding or
extending containers).

When containers are dropped, the remaining containers are renumbered such that
their container IDs start at 0 and increase by 1. If all of the containers in a stripe
set are dropped, the stripe set will be removed from the map and all stripe sets
following it in the map will be shifted down and renumbered such that there are
no gaps in the stripe set numbers.

Note: In the following examples, the container sizes do not take the size of the
container tag into account. The container sizes are very small, and are just used for
the purpose of illustration, they are not recommended container sizes. The
examples show containers of different sizes within a table space, but this is just for
the purpose of illustration; you are advised to use containers of the same size.

For example, consider a table space with three containers and an extent size of 10.
The containers are 20, 50, and 50 pages respectively (2, 5, and 5 extents). The table
space diagram is shown in [Figure 19 on page 205}

204 Data Servers, Databases, and Database Objects Guide



l— Containers —|

0
0 Extent O
1 Extent 3

Stripes 2

1

Extent 1

Extent 4

Extent 6

2

Extent 2

Extent 5

Extent 7

Figure 19. Table space with 12 extents, including four extents with no data

An X indicates that there is an extent but there is no data in it.

If you want to drop container 0, which has two extents, there must be at least two
free extents above the high-water mark. The high-water mark is in extent 7,
leaving four free extents, therefore you can drop container 0.

The corresponding table space map, as shown in a table space snapshot, will look

like this:

Range Stripe Stripe Max
Number Set Offset Extent

(o] (o]
(1] (o]

After the drop, the table space will have just Container 0 and Container 1. The

0 5
0 11

59 0
119 2

1 0 3 (o,
4 0 2(1

new table space diagram is shown in [Figure 20 on page 206|

Chapter 9. Table spaces

1
s 2)

Max Start End Adj. Containers
Page  Stripe Stripe

205



Containers
[ ]

0 1
0 Extent 0 Extent 1
1 Extent 2 Extent 3
Stripes 2 Extent 4 Extent 5
3 Extent 6 Extent 7
4 X X

Figure 20. Table space after a container is dropped

The corresponding table space map, as shown in a table space snapshot, will look

like this:
Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe
(o] (o] 0 9 99 0 4 0 2(0,1)

If you want to reduce the size of a container, the rebalancer works in a similar
way.

To reduce a container, use the REDUCE or RESIZE option on the ALTER
TABLESPACE statement. To drop a container, use the DROP option on the ALTER
TABLESPACE statement.

Altering automatic storage table spaces

For automatic storage table spaces, you can only reduce the size of the containers.

The i rocess for doing this is the same as described in: [“Resizing DMS containers”]

Renaming a table space
Use the RENAME TABLESPACE statement to rename a table space.

You cannot rename the SYSCATSPACE table space. You cannot rename a table
space that is in a rollforward pending or rollforward-in-progress state.

When restoring a table space that has been renamed since it was backed up, you
must use the new table space name in the RESTORE DATABASE command. If you
use the previous table space name, it will not be found. Similarly, if you are rolling
forward the table space with the ROLLFORWARD DATABASE command, ensure
that you use the new name. If the previous table space name is used, it will not be
found.

206 Data Servers, Databases, and Database Objects Guide



You can give an existing table space a new name without being concerned with the
individual objects within the table space. When renaming a table space, all the
catalog records referencing that table space are changed.

Switching table spaces from offline to online

The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be used
to remove the OFFLINE state from a table space if the containers associated with
that table space have become accessible.

The table space has the OFFLINE state removed while the rest of the database is
still up and being used.

An alternative to the use of this clause is to disconnect all applications from the
database and then to have the applications connect to the database again. This
removes the OFFLINE state from the table space.

To remove the OFFLINE state from a table space using the command line, enter:

db2 ALTER TABLESPACE <name>
SWITCH ONLINE

Optimizing table space performance when data is on RAID devices

Follow these guidelines to optimize performance when data is stored on
Redundant Array of Independent Disks (RAID) devices.

1.

When creating a table space on a set of RAID devices, create the containers for
a given table space (SMS or DMS) on separate devices.

Consider an example where you have fifteen 146 GB disks configured as three
RAID-5 arrays with five disks in each array. After formatting, each disk can
hold approximately 136 GB of data. Each array can therefore store
approximately 544 GB (4 active disks x 136 GB). If you have a table space that
requires 300 GB of storage, create three containers, and put each container on a
separate device. Each container uses 100 GB (300 GB/3) on a device, and there
are 444 GB (544 GB - 100 GB) left on each device for additional table spaces.

Select an appropriate extent size for the table spaces. The extent size for a table
space is the amount of data that the database manager writes to a container
before writing to the next container. Ideally, the extent size should be a multiple
of the underlying segment size of the disks, where the segment size is the
amount of data that the disk controller writes to one physical disk before
writing to the next physical disk. Choosing an extent size that is a multiple of
the segment size ensures that extent-based operations, such as parallel
sequential read in prefetching, do not compete for the same physical disks.
Also, choose an extent size that is a multiple of the page size.

In the example, if the segment size is 64 KB and the page size is 16 KB, an
appropriate extent size might be 256 KB.

Use the DB2_PARALLEL_IO registry variable to enable parallel I/O for all
table spaces and to specify the number of physical disks per container.

For the situation in the example, set DB2_PARALLEL_IO = *:4.

If you set the prefetch size of a table space to AUTOMATIC, the database
manager uses the number of physical disks value that you specified for
DB2_PARALLEL_IO to determine the prefetch size value. If the prefetch size is
not set to AUTOMATIC, you can set it manually, taking into account the RAID
stripe size, which is the value of the segment size multiplied by the number of
active disks. Choose a prefetch size value that meets the following conditions:

Chapter 9. Table spaces 207



* It is equal to the RAID stripe size multiplied by the number of RAID parallel
devices (or a whole number representation of this product).

¢ It is a whole number representation of the extent size.

In the example, you might set the prefetch size to 768 KB. This value is equal
to the RAID stripe size (256 KB) multiplied by the number of RAID parallel
devices (3). It is also a multiple of the extent size (256 KB). Choosing this
prefetch size means that a single prefetch will engage all the disks in all the
arrays. If you want the prefetchers to work more aggressively because your
workload involves mainly sequential scans, you can instead use a multiple of
this value, such as 1536 KB (768 KB x 2).

4. Do not set the DB2_USE_PAGE_CONTAINER_TAG registry variable. As
described earlier, you should create a table space with an extent size that is
equal to, or a multiple of, the RAID stripe size. However, when you set
DB2_USE_PAGE_CONTAINER_TAG to ON, a one-page container tag is used,
and the extents do not line up with the RAID stripes. As a result, it might be
necessary during an I/O request to access more physical disks than would be
optimal.

Dropping table spaces

When you drop a table space, you delete all the data in that table space, free the
containers, remove the catalog entries, and cause all objects defined in the table
space to be either dropped or marked as invalid.

You can reuse the containers in an empty table space by dropping the table space,
but you must commit the DROP TABLESPACE statement before attempting to
reuse the containers.

Note: You cannot drop a table space without dropping all table spaces that are
associated with it. Example, if you have a table in one table space and its index
created in another table space, you need to drop both index and data table spaces
in one DROP TABLESPACE command.

Dropping user table spaces

You can drop a user table space that contains all of the table data including
index and LOB data within that single user table space. You can also drop
a user table space that might have tables spanned across several table
spaces. That is, you might have table data in one table space, indexes in
another, and any LOBs in a third table space. You must drop all three table
spaces at the same time in a single statement. All of the table spaces that
contain tables that are spanned must be part of this single statement or the
drop request will fail.

To drop a user table space using the command line, enter:
DROP TABLESPACE <name>

The following SQL statement drops the table space ACCOUNTING:
DROP TABLESPACE ACCOUNTING

Dropping user temporary table spaces
You can only drop a user temporary table space if there are no declared
temporary tables currently defined in that table space. When you drop the
table space, no attempt is made to drop all of the declared temporary
tables in the table space.

208 Data Servers, Databases, and Database Objects Guide



Note: A declared temporary table is implicitly dropped when the
application that declared it disconnects from the database.

Dropping system temporary table spaces
You cannot drop a system temporary table space that has a page size of 4
KB without first creating another system temporary table space. The new
system temporary table space must have a page size of 4 KB because the
database must always have at least one system temporary table space that
has a page size of 4 KB. For example, if you have a single system
temporary table space with a page size of 4 KB, and you want to add a
container to it, and it is an SMS table space, you must first add a new 4 KB
page size system temporary table space with the proper number of
containers, and then drop the old system temporary table space. (If you
were using DMS, you could add a container without having to drop and
recreate the table space.)

The default table space page size is the page size that the database was
created with (which is 4 KB by default, but could also be 8 KB, 16 KB, or
32 KB).

This is the statement to create a system temporary table space:
CREATE SYSTEM TEMPORARY TABLESPACE <name>
MANAGED BY SYSTEM USING ('<directories>")
Then, to drop a system table space using the command line, enter:
DROP TABLESPACE <name>
The following SQL statement creates a new system temporary table space
called TEMPSPACE2:
CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING ('d:\systemp2')
Once TEMPSPACE?2 is created, you can then drop the original system
temporary table space TEMPSPACE1 with the command:
DROP TABLESPACE TEMPSPACE1

Chapter 9. Table spaces 209



210 Data Servers, Databases, and Database Objects Guide



Chapter 10. Schemas

A schema is a collection of named objects; it provides a way to group those objects
logically. A schema is also a name qualifier; it provides a way to use the same
natural name for several objects, and to prevent ambiguous references to those
objects.

For example, the schema names INTERNAL’ and 'TEXTERNAL’ make it easy to
distinguish two different SALES tables INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database
without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,
which is a standard that describes the structure and validates the content of XML
documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and
other objects. A schema is itself a database object. It is explicitly created using the
CREATE SCHEMA statement, with the current user or a specified authorization ID
recorded as the schema owner. It can also be implicitly created when another
object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is created,
the default schema name is used (specified in the CURRENT SCHEMA special
register).

For example, a user with DBADM authority creates a schema called C for user A:
CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema
C (provided that user A has the CREATETAB database authority):

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the
SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all
users have IMPLICIT_SCHEMA authority. With this authority, users implicitly
create a schema whenever they create an object with a schema name that does not
already exist. When schemas are implicitly created, CREATEIN privileges are
granted which allows any user to create other objects in this schema. The ability to
create objects such as aliases, distinct types, functions, and triggers is extended to
implicitly-created schemas. The default privileges on an implicitly-created schema
provide backward compatibility with previous versions.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created by
users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority

© Copyright IBM Corp. 1993, 2009 211



from PUBLIC increases control over the use of schema names, it can result in
authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users
have the privilege to create, alter, copy, and drop objects in the schema. This
provides a way to control the manipulation of a subset of objects in the database.
A schema owner is initially given all of these privileges on the schema, with the
ability to grant the privileges to others. An implicitly-created schema is owned by
the system, and all users are initially given the privilege to create objects in such a
schema. A user with SYSADM or DBADM authority can change the privileges that
are held by users on any schema. Therefore, access to create, alter, copy, and drop
objects in any schema (even one that was implicitly created) can be controlled.

Designing schemas

While organizing your data into tables, it might be beneficial to group the tables
and other related objects together. This is done by defining a schema through the
use of the CREATE SCHEMA statement.

Information about the schema is kept in the system catalog tables of the database
to which you are connected. As other objects are created, they can be placed within
the schemas you create, however, note that an object can exist in only one schema.

Schemas can be compared to directories, with the current schema being the current
directory. Using this analogy, SET SCHEMA is equivalent to the change directory
command.

Important: It is important to understand that there is no relation between
authorization IDs and schemas except for the default CURRENT SCHEMA setting
(described below).

While designing your databases and tables, you should also consider the schemas
in your system, including their names and the objects that will be associated with
each of them.

Most objects in a database are assigned a unique name that consists of two parts.
The first (leftmost) part is called the qualifier or schema, and the second
(rightmost) part is called the simple (or unqualified) name. Syntactically, these two
parts are concatenated as a single string of characters separated by a period. When
any object that can be qualified by a schema name (such as a table, index, view,
user-defined data type, user-defined function, nickname, package, or trigger) is
first created, it is assigned to a particular schema based on the qualifier in its
name.

For example, the following diagram illustrates how a table is assigned to a
particular schema during the table creation process:

212  Data Servers, Databases, and Database Objects Guide



Payroll (Schema) Sales (Schema)

4----

Table Table

%_4] Index

%_4] Index

'CREATE TABLE PAYROLL.STAFF'
Staff =~ —------ ! Table Name
Schema Name

You should also be familiar with how schema access is granted, in order to give
your users the correct authority and instructions:

Schema names
When creating a new schema, the name must not identify a schema name
already described in the catalog and the name cannot begin with "SYS".
For other restrictions and recommendations, see [’Schema name restrictions|
land recommendations” on page 215

Access to schemas

Unqualified access to objects within a schema is not allowed since the
schema is used to enforce uniqueness in the database. This becomes clear
when considering the possibility that two users could create two tables (or
other objects) with the same name. Without a schema to enforce
uniqueness, ambiguity would exist if a third user attempted to query the
table. It is not possible to determine which table to use without some
further qualification.

The definer of any objects created as part of the CREATE SCHEMA
statement is the schema owner. This owner can GRANT and REVOKE
schema privileges to other users.

If a user has SYSADM or DBADM authority, then that user can create a
schema with any valid name. When a database is created,
IMPLICIT_SCHEMA authority is granted to PUBLIC (that is, to all users).

If users do not have IMPLICIT_SCHEMA or DBADM authority, the only
schema they can create is one that has the same name as their own
authorization ID.

Default schema

If a schema or qualifier is not specified as part of the name of the object to
be created, that object is assigned to the default schema as indicated in the
CURRENT SCHEMA special register. The default value of this special
register is the value of the session authorization ID.

Chapter 10. Schemas 213



A default schema is needed by unqualified object references in dynamic
statements. You can set a default schema for a specific DB2 connection by
setting the CURRENT SCHEMA special register to the schema that you
want as the default. No designated authorization is required to set this
special register, so any user can set the CURRENT SCHEMA.

The syntax of the SET SCHEMA statement is:
SET SCHEMA = <schema-name>

You can issue this statement interactively or from within an application.
The initial value of the CURRENT SCHEMA special register is equal to the
authorization ID of the current session user. For more information, see the
SET SCHEMA statement.

Note:

* There are other ways to set the default schema upon connection. For
example, by using the cli.ini file for CLI/ODBC applications, or by using
the connection properties for the JDBC application programming
interface.

* The default schema record is not created in the system catalogs, but it
exists only as a value that the database manager can obtain (from the
CURRENT SCHEMA special register) whenever a schema or qualifier is
not specified as part of the name of the object to be created.

Implicit creation

You can implicitly create schemas if you have IMPLICIT_SCHEMA
authority. With this authority, you can implicitly create a schema whenever
you create an object with a schema name that does not already exist. Often
schemas are implicitly created the first time a data object in the schema is
created, provided the user creating the object holds the
IMPLICIT_SCHEMA authority.

Explicit creation

Schemas can also be explicitly created and dropped by executing the
CREATE SCHEMA and DROP SCHEMA statements from the command
line or from an application program. For more information, see the
CREATE SCHEMA and DROP SCHEMA statements.

Table and view aliases by schema

To allow another user to access a table or view without entering the
schema name as part of the qualification on the table or view name
requires that a an alias be established for that user. The definition of the
alias would define the fully-qualified table or view name including the
user’s schema; then the user simply queries using the alias name. The alias
would be fully-qualified by the user’s schema as part of the alias
definition.

Grouping objects by schema

Database object names might be made up of a single identifier or they might be
schema-qualified objects made up of two identifiers. The schema, or high-order part,
of a schema-qualified object provides a means to classify or group objects in the
database. When an object such as a table, view, alias, distinct type, function, index,
package or trigger is created, it is assigned to a schema. This assignment is done
either explicitly or implicitly.

214 Data Servers, Databases, and Database Objects Guide



Explicit use of the schema occurs when you use the high-order part of a two-part
object name when referring to that object in a statement. For example, USER A
issues a CREATE TABLE statement in schema C as follows:

CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of a
two-part object name. When this happens, the CURRENT SCHEMA special register
is used to identify the schema name used to complete the high-order part of the
object name. The initial value of CURRENT SCHEMA is the authorization ID of
the current session user. If you want to change this during the current session, you
can use the SET SCHEMA statement to set the special register to another schema
name.

Some objects are created within certain schemas and stored in the system catalog
tables when the database is created.

You do not have to explicitly specify in which schema an object is to be created; if
not specified, the authorization ID of the statement is used. For example, for the
following CREATE TABLE statement, the schema name defaults to the
authorization ID that is currently logged on (that is, the CURRENT SCHEMA
special register value):

CREATE TABLE X (COL1 INT)

Dynamic SQL and XQuery statements typically use the CURRENT SCHEMA
special register value to implicitly qualify any unqualified object name references.

Before creating your own objects, you need to consider whether you want to create
them in your own schema or by using a different schema that logically groups the
objects. If you are creating objects that will be shared, using a different schema
name can be very beneficial.

Schema name restrictions and recommendations

There are some restrictions and recommendations that you need to be aware of
when naming schemas.

+ User-defined types (UDTs) cannot have schema names longer than the schema
length listed in: [SQL and XML limits}

* The following schema names are reserved words and must not be used:
SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPROC.

* To avoid potential migration problems in the future, do not use schema names
that begin with SYS. The database manager will not allow you to create triggers,
user-defined types or user-defined functions using a schema name beginning
with SYS.

¢ It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

Chapter 10. Schemas 215



Creating schemas

You can use schemas to group objects as you create those objects. An object can
belong to only one schema. Use the CREATE SCHEMA statement to create
schemas. Information about the schemas is kept in the system catalog tables of the
database to which you are connected.

To create a schema and optionally make another user the owner of the schema,
you need SYSADM or DBADM authority. If you do not hold either of these two
authorities, you can still create a schema using your own authorization ID.The
definer of any objects created as part of the CREATE SCHEMA statement is the
schema owner. This owner can GRANT and REVOKE schema privileges to other
users.

To create a schema from the command line, enter the following statement:
CREATE SCHEMA <schema-name> [ AUTHORIZATION <schema-owner-name> ]

Where <schema-name> is the name of the schema. This name must be unique within
the schemas already recorded in the catalog, and the name cannot begin with SYS.
If the optional AUTHORIZATION clause is specified, the <schema-owner-name>
becomes the owner of the schema. If this clause is not specified, the authorization
ID that issued this statement becomes the owner of the schema.

For more information, see the CREATE SCHEMA statement. See also
[name restrictions and recommendations” on page 215|

Copying schemas

The db2move utility and the ADMIN_COPY_SCHEMA procedure allow you to
quickly make copies of a database schema. Once a model schema is established,
you can use it as a template for creating new versions.

Use the ADMIN_COPY_SCHEMA procedure to copy a single schema within the
same database or the db2move utility with the -co COPY action to copy a single
schema or multiple schemas from a source database to a target database. Most
database objects from the source schema are copied to the target database under
the new schema.

Troubleshooting tips

Both the ADMIN_COPY_SCHEMA procedure and the db2move utility invoke the
LOAD command. While the load is processing, the table spaces wherein the
database target objects reside are put into backup pending state.

ADMIN_COPY_SCHEMA procedure
Using this procedure with the COPYNO option places the table spaces
wherein the target object resides into backup pending state, as described in
the note above. To get the table space out of the set integrity pending state,
this procedure issues a SET INTEGRITY statement. In situations where a
target table object has referential constraints defined, the target table is also
placed in the set integrity pending state. Because the table spaces are
already in backup pending state, the ADMIN_COPY_SCHEMA procedure’s
attempt to issue a SET INTEGRITY statement will fail.

To resolve this situation, issue a BACKUP DATABASE command to get the
affected table spaces out of backup pending state. Next, look at the
Statement_text column of the error table generated by this procedure to

216 Data Servers, Databases, and Database Objects Guide



find a list of tables in the set integrity pending state. Then issue the SET
INTEGRITY statement for each of the tables listed to take each table out of
the set integrity pending state.

db2move utility
This utility attempts to copy all allowable schema objects with the
exception of the following types:

* table hierarchy

* staging tables (not supported by the load utility in multiple partition
database environments)

* jars (Java" routine archives)

* nicknames

* packages

* view hierarchies

* object privileges (All new objects are created with default authorizations)
* statistics (New objects do not contain statistics information)

* index extensions (user-defined structured type related)

* user-defined structured types and their transform functions

Unsupported type errors
If an object of one of the unsupported types is detected in the source
schema, an entry is logged to an error file, indicating that an unsupported
object type is detected. The COPY operation will still succeed—the logged
entry is meant to inform you of objects not copied by this operation.

Objects not coupled with schemas
Objects that are not coupled with a schema, such as table spaces and event
monitors, are not operated on during a copy schema operation. You should
create them on the target database before the copy schema operation is
invoked.

Replicated tables
When copying a replicated table, the new copy of the table is not enabled
for replication. The table is re-created as a regular table.

Different instances
The source database must be cataloged if it does not reside in the same
instance as the target database.

SCHEMA_MATP option
When using the SCHEMA_MAP option to specify a different schema name
on the target database, the copy schema operation will perform only
minimal parsing of the object definition statements to replace the original
schema name with the new schema name. For example, any instances of
the original schema that appear inside the contents of an SQL procedure
are not replaced with the new schema name. Thus the copy schema
operation may fail to recreate these objects. You can use the DDL in the
error file to manually recreate these failed objects after the copy operation
completes.

Interdependencies between objects
The copy schema operation attempts to recreate objects in an order that
satisfies the interdependencies between these objects. For example, if a
table T1 contains a column that references a user-defined function U1, then
it will recreate U1 before recreating T1. However, dependency information
for procedures is not readily available in the catalogs, so when recreating
procedures, the copy schema operation will first attempt to recreate all

Chapter 10. Schemas 217



procedures, then retry to recreate those that failed (on the assumption that
if they depended on a procedure that was successfully created during the
previous attempt, then during a subsequent attempt they will be recreated
successfully). The operation will continually try to recreate these failed
procedures as long as it is able to successfully recreate one or more during
a subsequent attempt. During every attempt at recreating a procedure, an
error (and DDL) is logged into the error file. You might see many entries in
the error file for the same procedures, but these procedures might have
even been successfully recreated during a subsequent attempt. You should
query the SYSCAT.PROCEDURES table upon completion of the copy
schema operation to determine if these procedures listed in the error file
were successfully recreated.

For more information, see the ADMIN_COPY_SCHEMA procedure and the
db2move utility.

Example of schema copy using the ADMIN_COPY_SCHEMA
procedure

Use the ADMIN_COPY SCHEMA procedure as shown below to copy a single
schema within the same database.
DB2 "SELECT SUBSTR(OBJECT_SCHEMA,1, 8)
AS OBJECT_SCHEMA, SUBSTR(OBJECT_NAME,1, 15)
AS OBJECT_NAME, SQLCODE, SQLSTATE, ERROR_TIMESTAMP, SUBSTR(DIAGTEXT,1, 80)
AS DIAGTEXT, SUBSTR(STATEMENT,1, 80)
AS STATEMENT FROM COPYERRSCH.COPYERRTAB"

CALL SYSPROC.ADMIN_COPY_SCHEMA('SOURCE_SCHEMA', 'TARGET_SCHEMA',
"COPY', NULL, 'SOURCETS1 , SOURCETS2', 'TARGETTS1, TARGETTSZ,
SYS_ANY', 'ERRORSCHEMA', 'ERRORNAME')

The output from this SELECT statement is shown below:
OBJECT_SCHEMA OBJECT_NAME SQLCODE SQLSTATE ERROR_TIMESTAMP

SALES EXPLAIN_STREAM -290 55039 2006-03-18-03.22.34.810346

[1BM] [CLI Driver] [DB2/LINUXX8664] SQLO29ON Table space access is not allowed.

STATEMENT

set integrity for "SALES "."ADVISE_INDEX" , "SALES"."ADVISE_MQT" , "SALES"."

1 record(s) selected.

Examples of schema copy using the db2move utility

Use the db2move utility with the -co COPY action to copy one or more schemas
from a source database to a target database. Once a model schema is established,
you can use it as a template for creating new versions.

Example 1: Using the -c COPY options
The following example of the db2move -co COPY options copies the
schema BAR and renames it FOO from the sample database to the target
database:

dbZmove sample COPY -sn BAR -co target_db target schema_map
"((BAR,F00))" -u userid -p password

218 Data Servers, Databases, and Database Objects Guide



The new (target) schema objects are created using the same object names as
the objects in the source schema, but with the target schema qualifier. It is
possible to create copies of tables with or without the data from the source
table. The source and target databases can be on different systems.

Example 2: Specifying table space name mappings during the COPY operation
The following example shows how to specify specific table space name
mappings to be used instead of the table spaces from the source system
during a db2move COPY operation. You can specify the SYS_ANY
keyword to indicate that the target table space should be chosen using the
default table space selection algorithm. In this case, the db2move utility
chooses any available table space to be used as the target:

db2move sample COPY -sn BAR -co target db target schema map
"((BAR,F00))" tablespace_map "(SYS_ANY)" -u userid -p password

The SYS_ANY keyword can be used for all table spaces, or you can specify
specific mappings for some table spaces, and the default table space
selection algorithm for the remaining;:

dbZmove sample COPY -sn BAR -co target_db target schema_map "

((BAR,F00))" tablespace map "((TS1, TS2),(TS3, TS4), SYS ANY)"
-u userid -p password

This indicates that table space TS1 is mapped to TS2, TS3 is mapped to
TS4, but the remaining table spaces use a default table space selection
algorithm.

Example 3: Changing the object owners after the COPY operation
You can change the owner of each new object created in the target schema
after a successful COPY. The default owner of the target objects is the
connect user. If this option is specified, ownership is transferred to a new
owner as demonstrated:
dbZmove sample COPY -sn BAR -co target_db target schema_map

"((BAR,F00))" tablespace_map "(SYS_ANY)" owner jrichards
-u userid -p password

The new owner of the target objects is jrichards.

The db2move utility must be invoked on the target system if source and
target schemas reside on different systems. For copying schemas from one
database to another, this action requires a list of schema names to be
copied from a source database, separated by commas, and a target
database name.

To copy a schema, issue db2move from an OS command prompt as
follows:

db2move <dbname> COPY -co <COPY- options>
-u <userid> -p <password>

Restarting a failed copy schema operation

Errors occurring during a db2move COPY operation can be handled in various
ways depending on the type of object being copied, or the phase during which the
COPY operation failed (that is, either the recreation of objects phase, or the loading
of data phase).

The db2move utility reports errors and messages to the user using message and
error files. Copy schema operations use the COPYSCHEMA _<timestamp>.MSG
message file, and the COPYSCHEMA _<timestamp>.err error file. These files are

Chapter 10. Schemas 219



created in the current working directory. The current time is appended to the
filename to ensure uniqueness of the files. It is up to the user to delete these
message and error files when they are no longer required.

Note: It is possible to have multiple db2move instances running simultaneously.
The COPY option does not return any SQLCODES. This is consistent with
db2move behavior.

Object types

The type of object being copied can be categorized as one of two types : physical
objects and business objects.

A physical object refers to an object that physically resides in a container, such as
tables, indexes and user-defined structured types. A business object refers to
cataloged objects that do not reside in containers, such as views, user-defined
structured types (UDTs), and aliases.

Errors occurring during the recreation of a physical object cause the utility to
rollback, whereas, errors during the recreation of a logical object do not.

Restarting the copy schema operation

After addressing the issues causing the load operations to fail (described in the
error file), you can reissue the db2move -COPY command using the -tf option to
specify which tables to copy and to populate with data (passing in the
LOADTABLE.err filename) as shown in the following syntax:

db2move sourcedb COPY -tf LOADTABLE.err -co TARGET_DB mytarget_db
-mode load_only

You can also input the table names manually using the -tn option, as shown in the
following syntax:

db2move sourcedb COPY -tn "FOO"."TABLE1","FOO 1"."TAB 444",
-co TARGET_DB mytarget_db -mode load_only

Note: The load_only mode requires inputting at least one table using the -tn or -tf
option.

Examples

Errors occurring during a db2move COPY schema operation can be handled in
various ways depending on the type of object being copy copied, or the phase of
the COPY operation failure.

The db2move utility reports schema copy errors and messages in the following
message and error files:

* COPYSCHEMA <timestamp>.MSG message file
e COPYSCHEMA _<timestamp>.err error file
These files are created in the current working directory. The current time is

appended to the filename to ensure uniqueness of the files. These message and
error files should be deleted when they are no longer required.

Note: It is possible to have multiple db2move instances running simultaneously.
The COPY option does not return any SQLCODES. This is consistent with

db2move behavior.

220 Data Servers, Databases, and Database Objects Guide



Example 1: Schema copy errors related to physical objects
Failures which occur during the recreation of physical objects on the target
database, are logged in the error file COPYSCHEMA _<timestamp>.err. For
each failing object, the error file contains information such as object name,
object type, DDL text, time stamp, and a string formatted sqlca (sqlca field
names, followed by their data values).

Sample output for the COPYSCHEMA _<timestamp>.err error file:

1. schema: F00.T1

Type: TABLE

Error Msg: SQLO104N An unexpected token 'F00.T1'...
Timestamp: 2005-05-18-14.08.35.65

DDL: create view F0O.v1

2. schema: F00.T3

Type: TABLE

Error Msg: SQLO204N F00.V1 is an undefined name.
Timestamp: 2005-05-18-14.08.35.68

DDL: create table F00.T3

If any errors creating physical objects are logged at the end of the
recreation phase and before attempting the load phase, the db2move utility
fails and an error is returned. All object creation on the target database is
rolled back, and all internally created tables are cleaned up on the source
database. The rollback occurs at the end of the recreation phase after
attempting to recreate each object, rather than after the first failure, in
order to gather all possible errors into the error file. This allows you the
opportunity to fix any problems before restarting the db2move operation.
If there are no failures, the error file is deleted.

Example 2: Schema copy errors related to business objects
Failures that occur during the recreation of business objects on the target
database, do not cause the db2move utility to fail. Instead, these failures
are logged in the COPYSCHEMA _<timestamp>.err error file. Upon
completion of the db2move utility, you can examine the failures, address
any issues, and manually recreate each failed object (the DDL is provided
in the error file for convenience).

If an error occurs while db2move is attempting to repopulate table data
using the load utility, the db2move utility will not fail. Rather, generic
failure information is logged to the COPYSCHEMA _<timestamp>.err file
(object name, object type, DDL text, time stamp, sqlca, and so on), and the
fully qualified name of the table is logged into another file,
LOADTABLE_<timestamp>.err. Each table is listed per line to satisfy the
db2move -tf option format, similar to the following:

"FOO"."TABLE1"
"FOO 1"."TAB 444"

Example 3: Other types of db2move failures
Internal operations such as memory errors, or file system errors can cause
the db2move utility to fail.

Should the internal operation failure occur during the ddl recreation phase,
all successfully created objects are rolled back from the target schema, and
all internally created tables such as the DMT table and the db2look table,
are cleaned up on the source database.

Should the internal operation failure occur during the load phase, all
successfully created objects remain on the target schema. All tables that
experience a failure during a load operation, and all tables, which have not

Chapter 10. Schemas 221



yet been loaded are logged in the LOADTABLE.err error file. You can then
issue the db2move COPY command using the LOADTABLE.err as
discussed in Example 2. If the db2move utility abends (for example a
system crash, the utility traps, the utility is killed, and so on), then the
information regarding which tables still need to be loaded is lost. In this
case, you can drop the target schema using the ADMIN_DROP_SCHEMA
procedure and reissue the db2move COPY command.

Regardless of what error you might encounter during an attempted copy
schema operation, you always have the option of dropping the target
schema using the ADMIN_DROP_SCHEMA procedure and reissuing the
db2move COPY command.

Dropping schemas

Before dropping a schema, all objects that were in that schema must be dropped or
moved to another schema. The schema name must be in the catalog when
attempting the DROP statement; otherwise an error is returned.

To drop a schema using the command line, enter:
DROP SCHEMA <name> RESTRICT

In the following example, the schema "joeschma” is dropped:
DROP SCHEMA joeschma RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the

specified schema for the schema to be deleted from the database, and it must be
specified.

222 Data Servers, Databases, and Database Objects Guide



Part 3. Database objects

Logical database design consists of defining database objects.

The following database objects can be created within a DB2 database:

Tables
Constraints
Indexes
Triggers
Sequences
Views

These database objects can be created using graphical user interfaces or by
explicitly executing statements. The statements used to create these database
objects are called Data Definition Language (DDL) statements and are generally
prefixed by the keywords CREATE or ALTER.

Understanding the features and functionality that each of these database objects
provides is important to implement a good database design that meets your
current business’s data storage needs while remaining flexible enough to
accommodate expansion and growth over time.

© Copyright IBM Corp. 1993, 2009

223



224  Data Servers, Databases, and Database Objects Guide



Chapter 11. Tables

Tables are logical structures maintained by the database manager. Tables are made
up of columns and rows.

At the intersection of every column and row is a specific data item called a value.
A column is a set of values of the same type or one of its subtypes. A row is a
sequence of values arranged so that the nth value is a value of the nth column of
the table.

An application program can determine the order in which the rows are populated
into the table, but the actual order of rows is determined by the database manager,
and typically cannot be controlled. Multidimensional clustering (MDC) provides
some sense of clustering, but not actual ordering between the rows.

Types of tables

Depending on your environment, you will need to create one or more tables in
your DB2 databases to store your data. When you create tables, you specify the
type of content in each of the columns in the tables, and you define other
characteristics, such as the primary key and check constraints for the enforcement
of business rules. When you create tables, you also need to consider the type that
is best suited for your needs.

You can create all of the following types of tables using the CREATE TABLE
statement, except for (Declared) Global temporary tables:

Base tables
These types of tables hold persistent data.

Regular tables
These types of tables are implemented as a heap. Regular tables with
indexes are the "general purpose” table choice.

Append mode tables
These types of tables are regular tables that are optimized primarily for
INSERTs. Regular tables are placed into append mode through an ALTER
TABLE statement. Append mode is best used for tables where clustering to
any specific index is not important, and the insert rate is both high and
also there are not many or no deletes to the table.

Result tables
These types of tables are made up of sets of rows that the database
manager selects or generates from one or more tables to satisfy a query.

Summary tables
These types of tables are defined by a query that is also used to determine
the data in the table. Summary tables can be used to improve the
performance of queries. If the database manager determines that a portion
of a query can be resolved using a summary table, the database manager
can rewrite the query to use the summary table. This decision is based on
database configuration settings, such as the CURRENT REFRESH AGE and
the CURRENT QUERY OPTIMIZATION special registers.

Typed tables
A table can define the data type of each column separately, or base the

© Copyright IBM Corp. 1993, 2009 225



types on the attributes of a user-defined structured type. This is called a
typed table. A user-defined structured type may be part of a type hierarchy.
A subtype inherits attributes from its supertype. Similarly, a typed table can
be part of a table hierarchy. A subtable inherits columns from its supertable.
Note that the term subtype applies to a user-defined structured type and all
user-defined structured types that are below it in the type hierarchy. A
proper subtype of a structured type T is a structured type below T in the
type hierarchy. Similarly, the term subtable applies to a typed table and all
typed tables that are below it in the table hierarchy. A proper subtable of a
table T is a table below T in the table hierarchy.

(Declared) Global temporary tables
These types of tables, also referred to as user-defined temporary tables, are
used by applications that work with data in the database. Results from
manipulation of the data need to be stored temporarily in a table. A user
temporary table space must exist before creating global temporary tables.

Note: The description of global temporary tables does not appear in the
system catalog thus making it not persistent for, and not able to be shared
with, other applications. When the application using this table terminates
or disconnects from the database, any data in the table is deleted and the
table is implicitly dropped.

Global temporary tables do not support:

¢ LOB-type columns (or distinct-type columns based on LOBs)
* User-defined type columns

¢ LONG VARCHAR columns

¢ XML columns

These types of tables are created with a DECLARE GLOBAL TEMPORARY
TABLE statement and are used to hold temporary data on behalf of a
single application. This table is dropped implicitly when the application
disconnects from the database.

Multidimensional clustering (MDC) tables
These types of tables are implemented as tables that are physically
clustered on more than one key, or dimension, at the same time. MDC
tables are used in data warehousing and large database environments.
Clustering indexes on regular tables support single-dimensional clustering
of data. MDC tables provide the benefits of data clustering across more
than one dimension.

Note: MDC is a type of table, but can coexist with a partitioned table or
can be partitioned table as well. Thus, it is not mutually exclusive to other
types of tables. A partitioned table can also be an APPEND table. Some
other combinations are not allowed, for example, MDC and APPEND, RCT
and any other table, or other combinations). Also, MDC provides
guaranteed clustering within the composite dimension, while for regular
tables with a clustering index, clustering is attempted by the database
manager, but not guaranteed and it typically degrades over time.

Range-clustered tables (RCT)
These types of tables are implemented as sequential clusters of data that
provide fast, direct access. Each record in the table has a predetermined
record ID (RID) which is an internal identifier used to locate a record in a
table. RTC tables are used where the data is tightly clustered across one or
more columns in the table. The largest and smallest values in the columns

226 Data Servers, Databases, and Database Objects Guide



define the range of possible values. You use these columns to access
records in the table; this is the most optimal method of utilizing the
predetermined record identifier (RID) aspect of RCT tables.

Partitioned tables
These types of tables are implemented with data divided across multiple
data partitions according to values in the table partitioning key columns
for the table. Partitioned tables allow easier roll-in and rollout of table
data, easier administration, flexible index placement, and better query
processing than regular tables.

For each table that holds your data, consider which of the possible table types
would best suit your needs. For example, if you have data records that will be
loosely clustered (not monotonically increasing), consider using a regular table and
indexes. If you have data records that will have duplicate (not unique) values in
the key, you should not use a range-clustered table. If you cannot afford to
preallocate a fixed amount of storage on disk for the range-clustered tables you
might want, you should not use this type of table. These factors will help you to
determine whether you have data that can be used as a range-clustered table.

Designing tables

When designing tables, you need to be familiar with certain concepts, determine
the space requirements for tables and user data, and determine whether you will
take advantage of certain features, such as space compression and optimistic
locking.

When designing partitioned tables, you need to be familiar with the partitioning
concepts, such as:

 Data organization schemes

* Table partitioning keys

¢ Keys used for distributing data across data partitions
* Keys used for MDC dimensions

For these and other partitioning concepts, see [“Table partitioning and datal
[oreanization schemes” on page 253

Table design concepts

When designing tables, you need to be familiar with some related concepts.

Specifying column data types

When defining columns, you need to name the columns, define the type of data
that will be included in those columns (called data types), and define the length of
the data for each column in the table you are creating.

Character data stored as binary data

Small integer
This data type is used to store binary integer values that have a
precision of 15 bits. The range for a small integer value is -32 768
to +32 767. The small integer data type uses the smallest amount
of storage space possible to store numerical values (2 bytes of
space is required for each value stored). The term SMALLINT is
used to declare a small integer column in a table definition.

Integer
This data type is used to store binary integer values that have a

Chapter 11. Tables 227



precision of 31 bytes. Although the integer data type requires twice
as much storage space as the small integer data type (4 bytes of
space is required for each value stored), its range of values is much
greater. The range for an integer value is -2 147 483 648 to +2 147
483 647. The terms INTEGER and INT can be used to declare an
integer column in a table definition.

Big integer
This data type is used to store binary integer values that have a
precision of 63 bits on platforms that provide support for 64 bit
integers. Processing large numbers that are stored as big integers is
more efficient than processing similar numbers that have been
stored as decimal values. In addition, calculations performed with
big integer values are more precise than calculations performed
with real or double values.

This data type requires four times as much storage space as the
small integer data type (8 bytes of space is required for each value
stored.) The range for a big integer is -9 223 372 036 854 775 808
to +9 223 372 036 854 775 807. The term BIGINT is used to
declare a big integer column in a table definition.

Decimal
This data type is used to store numbers that contain both whole
and fractional parts; the parts are combined and stored in packed
decimal format. A precision (the total number of digits) and a scale
(the number of digits to use for the fractional part of the number)
must be specified whenever a decimal data type is declared. The
range for the precision of a decimal is 1 to 31. The amount of
storage space needed to store a decimal value can be calculated by
using the following equation: precision divided by 2 (truncated) + 1
= bytes of space required.

For example, a DECIMAL(8,2) value would require 5 bytes of
storage space (8 divided by 2 = 4; 4 + 1 = 5), whereas a
DECIMAL(7,2) value would require 4 bytes of storage space (7
divided by 2 = 3.5 (truncated to 3); 3 + 1 = 4).

The terms DECIMAL, DEC, NUMERIC, and NUM can all be used
to declare a decimal column in a table definition.

Note: If the precision and scale values are not provided for a
decimal column definition, by default, a precision value of 5 and a
scale value of 0 are used (therefore, 3 bytes of storage space is
needed).

Single-precision floating point
This data type is used to store a 32-bit approximation of a real
number. Although the single-precision floating-point data type and
the integer data type require the same amount of storage space (4
bytes of space is required for each value stored), the range for a
single-precision floating-point number is much greater: 10E™ to
10E*.

The terms REAL and FLOAT can be used to declare a
single-precision floating-point column in a table definition.
However, if the term FLOAT is used, the length specified for the
column must be between 1 and 24-the FLOAT can be used to

228  Data Servers, Databases, and Database Objects Guide



represent both single- and double-precision floating-point data
types; the length specified determines which actual data type is to
be used.

Double-precision floating point
The double-precision floating-point data type is used to store a
64-bit approximation of a real number. Although the
double-precision floating-point data type requires the same amount
of storage space as the big integer data type (8 bytes of space is
required for each value stored), the range for a double-precision
floating-point number is the largest possible: -1.79760*** to
-2.225E3% 0, and 2.225E> to -1.79769E "%,

Fixed-length character string
This data type is used to store character and character string data
that has a specific length that does not exceed 254 characters. The
terms CHARACTER and CHAR can be used to declare a
fixed-length character string column in a table definition; the
length of the character string data to be stored must be specified
whenever a fixed-length character string data type is declared. The
amount of storage space needed to store a fixed-length character
string value can be determined by using the following equation:
fixed length x 1 = bytes of space required. For example, a CHAR(8)
value would require 8 bytes of storage.

Note: When fixed-length character string data types are used,
storage space can be wasted if the actual length of the data is
significantly smaller than the length specified when the column
was defined. For example, if the values YES and NO were to be
stored in a column that was defined as CHAR(20). Therefore, the
fixed length specified for a fixed-length character string column
should be as close as possible to the actual length of the data that
will be stored in the column.

Variable length character data
This data type is used to store character string data that varies in length.
Varying-length character string data can be up to 32 672 characters long;
however, the actual length allowed is governed by one restriction: the data
must fit on a single table space page. This means that for a table that
resides in a table space that used 4K pages, varying-length character string
data cannot be more than 4 092 characters long; for a table that resides in a
table space that used 8K pages, varying-length character string data cannot
be more than 8 188 characters long and so on, up to 32K. Because table
spaces are created with 4K pages by default, you must explicitly create a
table space with a larger page size if you want to use a varying length
character string data type to store strings that contain more than 4 092
characters.

Note:

* You must also have sufficient space in the table row to accommodate the
character string data. In other words, the storage requirements for other
columns in the table must be added to the storage requirements of the
character string data and the total amount of storage space needed must
not exceed the size of the table space’s page.

* When a varying-length string data value is updated and the new value
is larger than the original value, the record containing the value will be
moved to another page in the table. Such records are known as pointer

Chapter 11. Tables 229



records. Too many pointer records can cause a significant decrease in
performance because multiple pages must be retrieved in order to
process a single data record.

The terms CHARACTER VARYING, CHAR VARYING, and VARCHAR can
be used to declare a varying-length character string column in a table
definition. When a varying length character string column is defined, the
maximum number of characters that are expected to be stored in that
column must be specified as part of the declaration. Subsequent character
string data values that are stored in the column can be shorter than or
equal to the maximum length specified; if they are longer, they will not be
stored and error is returned.

The amount of storage space needed to store a varying-length character
string value can be determined by using the following equation: (string
length x 1) + 4 = bytes of space required. Thus, if a character string containing
30 characters were stored using a VARCHAR(30) data type, that particular
value would require 34 bytes of storage space. (All character strings using
this data type would have to be less than or equal to 30 characters in
length.)

Variable length long character data
The varying-length long character string data type is also used to store
string data that varies in length. This data type is used to store character
string data that is less than or equal to 32 700 characters long in a table
that resides in a table space that uses 4K pages. In other words, when the
varying-length long character string is used, the page size/character string
data length restrictions that apply to varying-length character string data
are not applicable.

The term LONG VARCHAR is used to declare a varying-length long
character string column in a table definition. The amount of storage space
needed to store a varying-length character string value can be determined
by using this equation: (string length x 1) + 24 = bytes of space required. The
LONG VARCHAR and LONG VARGRAPHIC data types are deprecated
and might be removed in a future release. When choosing a data type for a
column, use data types such as VARCHAR, VARGRAPHIC, CLOB, or
DBCLOB since these will continue to be supported in future releases and
are recommended for portable applications.

Note: The FOR BIT DATA clause can be used with any character string
data type when declaring a column in a table definition. If this clause is
used, code page conversions will not be performed during data exchange
operations and the data itself will be treated and compared as binary (bit)
data.

Character large objects (CLOBS)
A CLOB (character large object) value can be up to 2 gigabytes (2 147 483
647 bytes) long. A CLOB is used to store large SBCS or mixed (SBCS and
MBCS) character-based data (such as documents written with a single
character set) and, therefore, has an SBCS or mixed code page associated
with it.

Variable length character stored as binary data (Large objects-LOBS and Binary

large objects—BLOBs)
The term large object and the generic acronym LOB refer to the BLOB,
CLOB, or DBCLOB data type. LOB values are subject to restrictions that
apply to LONG VARCHAR values, as described in the section “Variable
length character data”. These restrictions apply even if the length attribute

230 Data Servers, Databases, and Database Objects Guide



of the LOB string is 254 bytes or less. This data type is used to store binary
string data that varies in length. It is frequently used to store
nontraditional data such as documents, graphic images, pictures, audio,
and video.

Note: Binary large objects data cannot be manipulated by SQL the same
way that other data can. For example, binary large object values cannot be
sorted.

Unicode data
All data types supported are also supported in a Unicode database. In
particular, graphic string data is supported for a Unicode database, and is
stored in UCS-2 encoding. Every client, including SBCS clients, can work
with graphic string data types in UCS-2 encoding when connected to a
Unicode database.

Date and time data (Timestamps)
The date data type is used to store a three-part value (year, month, and
day) that designates a valid calendar data. The range for the year part is
0001 to 9999; the range for the month part is 1 to 12; and the range for the
day part is 1 to n (28, 29, 30, or 31) where n is dependent upon the month
part and whether the year part corresponds to a leap year. Externally, the
date data type appears to be a fixed-length character string data type that
has a length of 10. However, internally, the date data type requires much
less storage space—4 bytes of space is required for each value stored,
because date values are stored as packed strings. The term DATE is used
to declare a date column in a table definition.

The time data type is used to store a three-part value (hours, minutes, and
seconds) that designates a valid time of day under a 24-hour clock. The
range for the hours part is 0 to 24; the range for the minutes part is 0 to 59;
and the range for the seconds part is also 0 to 59. (If the hours part is set
to 24, the minutes and seconds parts must be set to 0.) Externally, the time
data type appears to be a fixed-length character string data type that has a
length of 8. However, like date values, time values are stored as packed
strings—in this case, 3 bytes of space is required for each time value stored.
The term TIME is used to declare a time column in a table definition.

Like dates, the representation of time varies in different parts of the world.
Thus the format of a time value is also determined by the territory code
associated with the database being used. shows the time formats
that are available, along with an example of their string representation:

Table 49. Date formats (YYYY = Year, MM = Month, DD = Day)

Format name Abbreviation Date string format

International Standards ISO YYYY-MM-DD

Organization

IBM USA Standard USA MM/DD/YYYY

IBM European Standard EUR MM/DD/YYYY

Japanese Industrial Standard |JIS YYYY-MM-DD

Site specific LOC Based on database’s territory
code

Numeric data
All numbers have a sign and a precision. The sign is considered positive if

Chapter 11. Tables 231



the value of a number is zero. The precision is the number of bits or digits
excluding the sign. See the data type section in the description of the
CREATE TABLE statement.

Monetary data
Version 9.5 introduces DECFLOAT, a decimal floating-point data type that
is useful in business applications (for example, financial applications) that
deal with exact decimal values. Binary floating-point data types (REAL and
DOUBLE), which provide binary approximations for decimal data, are not
appropriate in such applications. DECFLOAT combines the accuracy of
DECIMAL with some of the performance advantage of FLOAT, which is
beneficial in applications where monetary values are being manipulated.

XML data
The XML data type is used to define columns of a table that store XML
values, where all stored XML values must be well-formed XML documents.
The introduction of this native XML data type provides the ability to store
well-formed XML documents in their native hierarchical format in the
database alongside other relational data.

Generated columns
A generated column is defined in a table where the stored value is computed using
an expression, rather than being specified through an insert or update operation.

When creating a table where it is known that certain expressions or predicates will
be used all the time, you can add one or more generated columns to that table. By
using a generated column there is opportunity for performance improvements
when querying the table data.

For example, there are two ways in which the evaluation of expressions can be
costly when performance is important:

1. The evaluation of the expression must be done many times during a query.
2. The computation is complex.

To improve the performance of the query, you can define an additional column
that would contain the results of the expression. Then, when issuing a query that
includes the same expression, the generated column can be used directly; or, the
query rewrite component of the optimizer can replace the expression with the
generated column.

Where queries involve the joining of data from two or more tables, the addition of
a generated column can allow the optimizer a choice of possibly better join
strategies.

Generated columns will be used to improve performance of queries. As a result,
generated columns will likely be added after the table has been created and
populated.

Examples

The following is an example of defining a generated column on the CREATE
TABLE statement:

CREATE TABLE t1 (cl INT,
c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (cl + c2)
c4 GENERATED ALWAYS AS
(CASE WHEN cl1 > c2 THEN 1 ELSE NULL END))

232  Data Servers, Databases, and Database Objects Guide



After creating this table, indexes can be created using the generated columns. For
example,

CREATE INDEX il ON t1(c4)

Queries can take advantage of the generated columns. For example,
SELECT COUNT(*) FROM t1 WHERE cl > c2

can be written as:
SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:
SELECT cl + c2 FROM t1 WHERE (cl + c2) * cl > 100

can be written as:
SELECT c3 FROM t1 WHERE c3 * cl1 > 100

Auto numbering and identifier columns
An identity column provides a way for DB2 to automatically generate a unique
numeric value for each row that is added to the table.

When creating a table in which you need to uniquely identify each row that will
be added to the table, you can add an identity column to the table. To guarantee a
unique numeric value for each row that is added to a table, you should define a
unique index on the identity column or declare it a primary key.

Other uses of an identity column are an order number, an employee number, a
stock number, or an incident number. The values for an identity column can be
generated by the DB2 database manager: ALWAYS or BY DEFAULT.

An identity column defined as GENERATED ALWAYS is given values that are
always generated by the DB2 database manager. Applications are not allowed to
provide an explicit value. An identity column defined as GENERATED BY
DEFAULT gives applications a way to explicitly provide a value for the identity
column. If the application does not provide a value, then DB2 will generate one.
Since the application controls the value, DB2 cannot guarantee the uniqueness of
the value. The GENERATED BY DEFAULT clause is meant for use for data
propagation where the intent is to copy the contents of an existing table; or, for the
unload and reloading of a table.

Once created, you cannot alter the table description to include an identity column.
If rows are inserted into a table with explicit identity column values specified, the
next internally generated value is not updated, and might conflict with existing
values in the table. Duplicate values will generate an error message if the
uniqueness of the values in the identity column is being enforced by a primary-key

or a unique index that has been defined on the identity column.

To define an identity column on a new table, use the AS IDENTITY clause on the
CREATE TABLE statement.

Example
The following is an example of defining an identity column on the CREATE

TABLE statement:

Chapter 11. Tables 233



CREATE TABLE table (coll INT,
col2 DOUBLE,
col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY
(START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify the
value used in the column to uniquely identify each row when added. Here the first
row entered has the value of “100” placed in the column; every subsequent row
added to the table has the associated value increased by five.

Constraining column data with constraints, defaults, and null
settings

Data often must adhere to certain restrictions or rules. Such restrictions may apply
to single pieces of information, such as the format and sequence numbers, or they
may apply to several pieces of information.

Nullability of column data values
Null values represent unknown states. By default, all of the built-in data
types support the presence of null values. However, some business rules
might dictate that a value must always be provided for some columns, for
example, emergency information. For this condition, you can use the NOT
NULL constraint to ensure that a given column of a table is never assigned
the null value. Once a NOT NULL constraint has been defined for a
particular column, any insert or update operation that attempts to place a
null value in that column will fail.

Default column data values
Just as some business rules dictate that a value must always be provided,
other business rules may dictate what that value should be, for example,
the gender of an employee must be either M or F. The column default
constraint is used to ensure that a given column of a table is always
assigned a predefined value whenever a row that does not have a specific
value for that column is added to the table. The default value provided for
a column can be null, a constraint value that is compatible with the data
type of the column, or a value that is provided by the database manager.
For more information, see: [“Default column and data type definitions” on|

Keys A key is a single column or a set of columns in a table or index that can be
used to identify or access a specific row of data. Any column can be part
of a key and the same column can be part of more than one key. A key
that consists of a single column is called an atomic key; a key that is
composed of more than one column is called a composite key. In addition
to having atomic or composite attributes, keys are classified according to
how they are used to implement constraints:

* A unique key is used to implement unique constraints.

e A primary key is used to implement entity integrity constraints. (A
primary key is a special type of unique key that does not support null
values.)

* A foreign key is used to implement referential integrity constraints.
(Foreign keys must reference primary keys or unique keys; foreign keys
do not have corresponding indexes.)

Keys are normally specified during the declaration of a table, an index, or
a referential constraint definition.

Constraints
Constraints are rules that limit the values that can be inserted, deleted, or

234  Data Servers, Databases, and Database Objects Guide



updated in a table. There are check constraints, primary key constraints,
referential constraints, unique constraints, unique key constraints, foreign
key constraints, and informational constraints. For details about each of
these types of constraints, see: [Chapter 12, “Constraints,” on page 267 or
[“Types of constraints” on page 267

Default column and data type definitions:
Certain columns and data types have predefined or assigned default values.

For example, default column values for the various data types are as follows:
* NULL

* 0 Used for small integer, integer, decimal, single-precision floating point, and
double-precision floating point.

* Blank: Used for fixed-length and fixed-length double-byte character strings.

 Zero-length string: Used for varying-length character strings, binary large objects,
character large objects, and double-byte character large objects.

* Date: This the system date at the time the row is inserted (obtained from the
CURRENT_DATE special register). When a date column is added to an existing
table, existing rows are assigned the date January, 01, 0001.

* Time or Timestamp: This is the system time or system date/time of the at the time
the statement is inserted (obtained from the CURRENT_TIME special register).
When a time column is added to an existing table, existing rows are assigned
the time 00:00:00 or a timestamp that contains the date January, 01, 0001 and the
time 00:00:00.

Note: All the rows get the same default time/timestamp value for a given
statement.

e Distinct user-defined data type: This is the system-defined default value for the
base data type of the distinct user-defined data type (cast to the distinct
user-defined data type.

Primary key, referential integrity, check, and unique constraints
Constraints are rules that limit the values that can be inserted, deleted, or updated
in a table.

Primary key constraints
A primary key constraint is a column or combination of columns that has
the same properties as a unique constraint. You can use a primary key and
foreign key constraints to define relationships between tables.

Referential integrity (or foreign key) constraints
A foreign key constraint (also referred to as a referential constraint or a
referential integrity constraint) is a logical rule about values in one or more
columns in one or more tables. For example, a set of tables shares
information about a corporation’s suppliers. Occasionally, a supplier’s
name changes. You can define a referential constraint stating that the ID of
the supplier in a table must match a supplier ID in the supplier
information. This constraint prevents insert, update, or delete operations
that would otherwise result in missing supplier information.

Check constraints
A (table) check constraint sets restrictions on data added to a specific table.

Unique constraints
A unique constraint (also referred to as a unique key constraint) is a rule

Chapter 11. Tables 235



that forbids duplicate values in one or more columns within a table.
Unique and primary keys are the supported unique constraints.

Unicode table and data considerations

The Unicode character encoding standard is a fixed-length, character encoding
scheme that includes characters from almost all of the living languages of the
world.

For more information on Unicode table and data considerations, see:
* “Unicode character encoding” in Internationalization Guide

* “Character comparisons based on collating sequences” in Internationalization
Guide

e “Date and time formats by territory code” in Internationalization Guide

* “Conversion table files for euro-enabled code pages” in Internationalization Guide

Additional information on Unicode can be found in the latest edition of The
Unicode Standard , and from the Unicode Consortium web site at [www.unicode.org|

Space requirements for tables

When designing tables, you need to take space requirements into considerations

Long field (LF) data
Long field (LF) data is stored in a separate table object that is structured
differently than the storage space for other data types.

Data is stored in 32-KB areas that are broken up into segments whose sizes
are "powers of two” times 512 bytes. (Hence these segments can be 512
bytes, 1024 bytes, 2048 bytes, and so on, up to 32 768 bytes.)

Long field data types (LONG VARCHAR or LONG VARGRAPHIC) are
stored in a way that enables free space to be reclaimed easily. Allocation
and free space information is stored in 4 KB allocation pages, which appear
infrequently throughout the object.

The amount of unused space in the object depends on the size of the long
field data, and whether this size is relatively constant across all occurrences
of the data. For data entries larger than 255 bytes, this unused space can be
up to 50 percent of the size of the long field data.

If character data is less than the page size, and it fits into the record along
with the rest of the data, the CHAR, GRAPHIC, VARCHAR, or
VARGRAPHIC data types should be used instead of LONG VARCHAR or
LONG VARGRAPHIC.

Large object (LOB) data
Large object (LOB) data is stored in two separate table objects that are
structured differently than the storage space for other data types. To
estimate the space required by LOB data, you need to consider the two
table objects used to store data defined with these data types:

* LOB Data Objects: Data is stored in 64 MB areas that are broken up into
segments whose sizes are "powers of two” times 1024 bytes. (Hence
these segments can be 1024 bytes, 2048 bytes, 4096 bytes, and so on, up
to 64 MB.)

To reduce the amount of disk space used by LOB data, you can specify
the COMPACT option on the lob-options clause of the CREATE TABLE
and the ALTER TABLE statements. The COMPACT option minimizes the
amount of disk space required by allowing the LOB data to be split into

236 Data Servers, Databases, and Database Objects Guide


http://www.unicode.org

smaller segments. This process does not involve data compression, but
simply uses the minimum amount of space, to the nearest 1 KB
boundary. Using the COMPACT option may result in reduced
performance when appending to LOB values.

The amount of free space contained in LOB data objects is influenced by
the amount of update and delete activity, as well as the size of the LOB
values being inserted.

* LOB Allocation Objects:Allocation and free space information is stored in
4 KB allocation pages that are separated from the actual data. The
number of these 4 KB pages is dependent on the amount of data,
including unused space, allocated for the large object data. The overhead
is calculated as follows: one 4 KB page for every 64 GB, plus one 4 KB
page for every 8 MB.

If character data is less than the page size, and it fits into the record
along with the rest of the data, the CHAR, GRAPHIC, VARCHAR, or
VARGRAPHIC data types should be used instead of BLOB, CLOB, or
DBCLOB.

System catalog tables
System catalog tables are created when a database is created. The system
tables grow as database objects and privileges are added to the database.

Initially, they use approximately 3.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type
of table space, and the extent size of the table space containing the catalog
tables. For example, if a DMS table space with an extent size of 32 is used,
the catalog table space is initially allocated 20 MB of space. Note: For
databases with multiple partitions, the catalog tables reside only on the
database partition from which the CREATE DATABASE command was
issued. Disk space for the catalog tables is only required for that database
partition.

Temporary tables
Some statements require temporary tables for processing (such as a work
file for sorting operations that cannot be done in memory). These
temporary tables require disk space; the amount of space required is
dependent upon the size, number, and nature of the queries, and the size
of returned tables.

Your work environment is unique which makes the determination of your
space requirements for temporary tables difficult to estimate. For example,
more space may appear to be allocated for system temporary table spaces
than is actually in use due to the longer life of various system temporary
tables. This could occur when DB2_SMS_TRUNC_TMPTABLE_THRESH
registry variable is used.

You can use the database system monitor and the table space query APIs
to track the amount of work space being used during the normal course of
operations.

You can use the DB2_OPT_MAX_TEMP_SIZE registry variable to limit the
amount of temporary table space used by queries.

Table page sizes
Rows of table data are organized into blocks called pages. Pages can be four sizes:
4, 8, 16, and 32 kilobytes. Table data pages do not contain the data for columns

Chapter 11. Tables 237



defined with LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB or DCLOB
data types. The rows in a table data page do, however, contain a descriptor of
these columns.

You can create buffer pools or table spaces that have page sizes of 4 KB, 8 KB, 16
KB, or 32 KB. All tables created within a table space of a particular size have a
matching page size. A single table or index object can be as large as 512 GB,
assuming a 32 KB page size.

You can have a maximum of 1012 columns when you are using an 8 KB, 16 KB, or
32 KB page size. You can have a maximum of 500 columns for a 4 KB page size.
Larger record identifiers (RIDs), which allow more data pages per table object and
more records per page, change the required amount of memory and space used by
log files and system temporary table spaces. The maximum possible number of
rows you can have for a 32KB page size is approximately 2335, if the minimum
row size (12) is being used.

Maximum row lengths vary, depending on page size used:

* When the page size is 4 KB, the row length can be up to 4 005 bytes.

* When the page size is 8 KB, the row length can be up to 8 101 bytes.

* When the page size is 16 KB, the row length can be up to 16 293 bytes.
* When the page size is 32 KB, the row length can be up to 32 677 bytes.

To determine the page size for a table space you must consider the following:

* For OLTP applications that perform random row read and write operations, a
smaller page size is usually preferable, because it wastes less buffer pool space
with unwanted rows.

* For DSS applications that access large numbers of consecutive rows at a time, a
larger page size is usually better, because it reduces the number of I/O requests
that are required to read a specific number of rows. There is, however, an
exception to this. If your row size is smaller than pagesize / maximum rows,
there will be wasted space on each page. In this situation, a smaller page size
may be more appropriate.

Larger page sizes may allow you to reduce the number of levels in the index.
Larger pages support rows of greater length. Using the default of 4 KB pages,
tables are restricted to 500 columns. Larger page sizes (8 KB, 16 KB, and 32 KB)
support 1012 columns. The maximum size of the table space is proportional to the
page size of the table space.

Space requirements for user table data

By default, table data is stored on 4-KB pages. Each page (regardless of page size)
contains 68 bytes of overhead for the database manager. This leaves 4028 bytes to
hold user data (or rows), although no row on a 4-KB page can exceed 4005 bytes in
length. A row will not span multiple pages. You can have a maximum of 500
columns when using a 4-KB page size.

Table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB data types. The
rows in a table data page do, however, contain a descriptor for these columns.

Rows are usually inserted into a regular table in first-fit order. The file is searched
(using a free space map) for the first available space that is large enough to hold

the new row. When a row is updated, it is updated in place, unless there is

238 Data Servers, Databases, and Database Objects Guide



insufficient space left on the page to contain it. If this is the case, a record is
created in the original row location that points to the new location in the table file
of the updated row.

If the ALTER TABLE APPEND ON statement is issued, data is always appended,
and information about any free space on the data pages is not kept.

If the table has a clustering index defined on it, the database manager will attempt
to physically cluster the data according to the key order of that clustering index.
When a row is inserted into the table, the database manager will first look up its
key value in the clustering index. If the key value is found, the database manager
attempts to insert the record on the data page pointed to by that key; if the key
value is not found, the next higher key value is used, so that the record is inserted
on the page containing records having the next higher key value. If there is
insufficient space on the target page in the table, the free space map is used to
search neighboring pages for space. Over time, as space on the data pages is
completely used up, records are placed further and further from the target page in
the table. The table data would then be considered unclustered, and a table
reorganization can be used to restore clustered order.

If the table is a multidimensional clustering (MDC) table, the database manager
will guarantee that records are always physically clustered along one or more
defined dimensions, or clustering indexes. When an MDC table is defined with
certain dimensions, a block index is created for each of the dimensions, and a
composite block index is created which maps cells (unique combinations of
dimension values) to blocks. This composite block index is used to determine to
which cell a particular record belongs, and exactly which blocks or extents in the
table contains records belonging to that cell. As a result, when inserting records,
the database manager searches the composite block index for the list of blocks
containing records having the same dimension values, and limits the search for
space to those blocks only. If the cell does not yet exist, or if there is insufficient
space in the cell’s existing blocks, then another block is assigned to the cell and the
record is inserted into it. A free space map is still used within blocks to quickly
find available space in the blocks.

The number of 4-KB pages for each user table in the database can be estimated by
calculating:

ROUND DOWN(4028/(average row size + 10)) = records_per_page

and then inserting the result into:
(number_of_records/records_per _page) * 1.1 = number_of_pages

where the average row size is the sum of the average column sizes, and the factor
of "1.1" is for overhead.

Note: This formula provides only an estimate. The estimate’s accuracy is reduced
if the record length varies because of fragmentation and overflow records.

You also have the option to create buffer pools or table spaces that have an 8 KB,
16 KB, or 32 KB page size. All tables created within a table space of a particular
size have a matching page size. A single table or index object can be as large as 512
GB, assuming a 32 KB page size. You can have a maximum of 1012 columns when
using an 8 KB, 16 KB, or 32 KB page size. The maximum number of columns is
500 for a 4-KB page size. Maximum row lengths also vary, depending on page size:

* When the page size is 4-KB, the row length can be up to 4005 bytes.

Chapter 11. Tables 239



* When the page size is 8 KB, the row length can be up to 8101 bytes.
* When the page size is 16 KB, the row length can be up to 16 293 bytes.
* When the page size is 32 KB, the row length can be up to 32 677 bytes.

A larger page size facilitates a reduction in the number of levels in any index. If
you are working with OLTP (online transaction processing) applications, that
perform random row reads and writes, a smaller page size is better, because it
wastes less buffer space with undesired rows. If you are working with DSS
(decision support system) applications, which access large numbers of consecutive
rows at a time, a larger page size is better because it reduces the number of 1/O
requests required to read a specific number of rows.

You cannot restore a backup image to a different page size.
You cannot import IXF data files that represent more than 755 columns.

Declared temporary tables can be created only in their own user temporary table
space type. There is no default user temporary table space. Temporary tables
cannot have LONG data. The tables are dropped implicitly when an application
disconnects from the database, and estimates of the space requirements for their
tables should take this into account.

Space compression for tables

It might be possible for tables to occupy less space when stored on disk by
utilizing such features as compression for data rows, NULL values, and system
default values. Through data compression, you might be able to save disk storage
space by using fewer database pages to store data. Since more logical data can be
stored per page, fewer pages will need to be read in order to access the same
amount of logical data. This means that compression can also result in disk 1/O
savings. I/O speed might also increase because more logical data can be cached in
the buffer pool.

To implement data compression in a database system, there are two methods you
can employ:

(Space) Value compression
This method optimizes space usage for the representation of data, and the
storage structures used internally by the database management system
(DBMS) to store data. Value compression involves removing duplicate
entries for a value, and only storing one copy. The stored copy keeps track
of the location of any references to the stored value.

When creating a table, you can use the optional VALUE COMPRESSION
clause to specify that the table is using the space saving row format at the
table level and possibly at the column level.

When VALUE COMPRESSION is used, NULLs and zero-length data that
has been assigned to defined variable-length data types (VARCHAR,
VARGRAPHICS, LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB,
and DBCLOB) will not be stored on disk. Only overhead values associated
with these data types will take up disk space.

If VALUE COMPRESSION is used then the optional COMPRESS SYSTEM
DEFAULT option can also be used to further reduce disk space usage.
Minimal disk space is used if the inserted or updated value is equal to the
system default value for the data type of the column. The default value
will not be stored on disk. Data types that support COMPRESS SYSTEM

240 Data Servers, Databases, and Database Objects Guide



DEFAULT include all numerical type columns, fixed-length character, and
fixed-length graphic string data types. This means that zeros and blanks
can be compressed.

(Data) Row compression
This method compresses data rows by replacing repeating patterns that
span multiple column values within a row with shorter symbol strings.
Data row compression aims to achieve disk storage space savings. It can
also lead to disk I/O savings. Also, more data can be cached in the buffer
pool, thereby leading to increased bufferpool hit ratios. However, there is
an associated cost in the form of extra CPU cycles needed to compress and
decompress data. The storage savings and performance impact of data row
compression are tied to the characteristics of the data within the database,
the layout and tuning of the database, and application workload. Only the
data on a data page or in log records is compressed.

Data row compression uses a static dictionary-based compression
algorithm to compress data by row. Compressing data at the row level
allows repeating patterns that span multiple column values within a row
to be replaced with shorter symbol strings. In order to compress table data,
the table COMPRESS attribute must be set to YES and a compression
dictionary must exist for the table.

To build a compression dictionary (and subsequently compress a table),
perform a classic (offline) table reorganization. A compression dictionary is
also built with the following operations: INSERT, including IMPORT,
LOAD INSERT and LOAD REPLACE, and also from some REDISTRIBUTE
operations. All the data rows that exist in a table participate in the building
of the compression dictionary. The dictionary is stored along with the table
data rows in the data object portions of the table.

To decompress a table, set the table COMPRESS attribute to NO and then
perform a classic (offline) table reorganization.

A data row that is inserted into a page may be compressed if the
COMPRESS attribute for the table is YES and a dictionary exists. This
applies to any insert row operation, including an insert through the import
or LOAD operations. Compression is enabled for an entire table, however,
each row is compressed individually. Therefore, a table could contain both
compressed and non-compressed rows at the same time.

Data row compression is not applicable to index, long, LOB, and XML data
objects.

Row compression is not compatible with table data replication support.

Row compression statistics can be generated using the RUNSTATS
command and are stored in the system catalog table SYSCAT.TABLES. A
compression estimation option is available with the INSPECT utility. The
query optimizer includes decompression cost in its costing model.

Depending upon UPDATE activity and the positioning of update changes
within a data row, there could be an increase in log consumption. For
information about update logging and column ordering, see
lcolumns to minimize update logging” on page 242

For rows undergoing a size-increasing update, the new version of the row
might not fit on the current data page. Rather, the new image of the row is
stored on an overflow page. To minimize the creation of such
pointer-overflow records, more free space can be added within a data page.
For example, if 5% free space was used without compression, then allocate

Chapter 11. Tables 241



10% free space with compression. This recommendation is especially
important for data that is heavily updated.

Space compression for existing tables

By specifying VALUE COMPRESSION clause, the row format of existing
table can be changed to allow space compression. Note that the sum of the
byte counts of the columns allowing space compression might exceed the
sum of the byte counts of the columns that do not allow space
compression. This is acceptable as long as the sum of the byte counts does
not exceed allowable row length of the table in the table space. For
example, the allowable row length is 4005 bytes in a table space with 4 KB
page size. If the allowable row length is exceeded, the error message
SQL0670N is returned. The byte count formula is documented as part of
the CREATE TABLE statement.

Similarly, by removing the VALUE COMPRESSION clause, table rows that
previously allowed space compression can be changed to no longer allow
space compression. The same condition regarding the sum of the byte
counts of the columns applies; and the error message SQL0670N is
returned as necessary.

To determine if you should consider space compression for your table, you
should know that a table with the majority of values equal to the system
default values, or NULL, would benefit from the new row format. For
example, where there is an INTEGER column and 90% of the column has
values of 0 (the default value for the data type INTEGER), or NULL,
compressing this table plus this column would benefit from the new row
format and save a lot of disk space.

When altering a table, you can use the VALUE COMPRESSION clause to
specify that the table is using the space row format at the table level and
possibly at the column level. You would use ACTIVATE VALUE
COMPRESSION to specify that the table will use the space saving
techniques or you would use DEACTIVATE VALUE COMPRESSION to
specify that the table will no longer use space saving techniques for data in
the table.

If you use DEACTIVATE VALUE COMPRESSION, this will implicitly
disable any COMPRESS SYSTEM DEFAULT options associated with
columns in that table.

After modifying the table to a new row format, all subsequent rows
inserted, loaded, or updated will have the new row format. To have every
row modified to the new row format, you should run a reorganization of
the table or perform an update operation on existing rows before changing
the row format.

Ordering columns to minimize update logging

When you define columns using the CREATE TABLE statement, consider the order
of the columns, particularly for update-intensive workloads. Columns which are
updated frequently should be grouped together, and defined towards or at the end
of the table definition. This results in better performance, fewer bytes logged, and
fewer log pages written, as well as a smaller active log space requirement for
transactions performing a large number of updates.

The database manager does not automatically assume that columns specified in the
SET clause of an UPDATE statement are changing in value. In order to limit index
maintenance and the amount of the row which needs to be logged, the database
compares the new column value against the old column value to determine if the

242  Data Servers, Databases, and Database Objects Guide



column is changing. Only the columns that are changing in value are treated as
being updated. Exceptions to this UPDATE behavior occur for columns where the
data is stored outside of the data row (long, LOB, ADT, and XML column types),
or for fixed-length columns when the registry variable DB2ASSUMEUPDATE is
enabled. For these exceptions, the column value is assumed to be changing so no
comparison will be made between the new and old column value.

There are three different types of UPDATE log records.

* Full before and after row image logging. The entire before and after image of the
row is logged. This is the only type of logging performed on tables enabled with
DATA CAPTURE CHANGES, and results in the most number of bytes being
logged for an update to a row.

* Full XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the end of the smaller row, then
any residual bytes in the longer row. This results in less logged bytes than the
full before and after image logging, with the number of bytes of data beyond the
log record header information being the size of the largest row image.

* Partial XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the last byte that is changing.
Byte positions may be first or last bytes of a column. This results in the least
number of bytes being logged and the most efficient type of log record for an
update to a row.

When DATA CAPTURE CHANGES is not enabled on the table, the amount of data
that is logged for an update depends on:

* the proximity of the updated columns (COLNO)
* whether the updated columns are fixed in length or variable length
* whether row compression (COMPRESS YES) is enabled

When the total length of the row is not changing, even when row compression is
enabled, the database manager computes and writes the optimal partial XOR log
record.

When the total length of the row is changing, which is common when
variable-length columns are updated and row compression is enabled, the database
manager determines which byte is first to be changed and write a full XOR log
record.

Data row compression

The purpose of data row compression is to achieve disk storage space savings, and
it can also lead to disk I/O savings. Also, more data can be cached in the buffer
pool, thereby increasing bufferpool hit ratios. Data row compression uses a static
dictionary-based compression algorithm to compress data by row.

Compressing data at the row level allows repeating patterns that span multiple
column values within a row to be replaced with shorter symbol strings.

Note: There is an associated cost in the form of extra CPU cycles needed to
compress and decompress data. The storage savings and performance impact of
data row compression are tied to the characteristics of the data within the
database, the layout and tuning of the database, and the application workload.
Only the data on a data page or in log records is compressed.

To compress table data, a compression dictionary must exist for the table, you
must set the COMPRESS attribute of the CREATE TABLE or ALTER TABLE

Chapter 11. Tables 243



statement to YES, and there needs to be sufficient data in the table. If these
compression conditions exist for the table, then when you issue an INSERT
statement or a LOAD INSERT, IMPORT INSERT, or REDISTRIBUTE command,
data added to the table is compressed.

In Version 9.5, data row compression is automatically enabled if a table has the
COMPRESS attribute set to YES and after the data compression dictionary has
been created. If you created or altered a table with a COMPRESS attribute set to
YES, no manual operation or database request is required on your part: that is, you
do not need to perform an explicit classic (offline) table reorganization to create the
data compression dictionary.

Note: If you set the COMPRESS attribute to YES and a compression dictionary
exists, compression applies to any insert row operation, including an insert
through an import or a load operation. Compression is enabled for an entire table;
however, each row is compressed individually. Therefore, a table could contain
both compressed and non-compressed rows at the same time.

To explicitly build a compression dictionary (and subsequently compress a table),
perform a classic (offline) table reorganization. All of the data rows that exist in a
table participate in the building of the compression dictionary. The dictionary is
stored with the table data rows in the data object portions of the table.

To decompress a table, set the table COMPRESS attribute to NO, and then perform
a classic (offline) table reorganization.

Restrictions

» Data row compression is not applicable to index, long, LOB, and XML data
objects.

* Row compression is not compatible with table data replication support.

* You can generate row compression statistics by using the RUNSTATS command.
These are stored in the system catalog table SYSCAT.TABLES. A compression
estimation option, which estimates the effectiveness of row compression for a
table, is available with the INSPECT utility. The query optimizer includes
decompression cost in its costing model.

* Depending upon update activity and the positioning of update changes within a
data row, there might be an increase in log space consumption.

* If a row is increasing in size, the new version of the row might not fit on the
current data page. In that case, the new image of the row is stored on an
overflow page. To minimize the creation of such pointer-overflow records, you
can add more free space within a data page. For example, if 5% free space was
used without compression, allocate 10% free space with compression. This
recommendation is especially important for data that is heavily updated.

Optimistic locking
With Version 9.5, enhanced optimistic locking support provides a technique for

SQL database applications that does not hold row locks between selecting, and
updating or deleting rows.

Applications can be written to optimistically assume that unlocked rows are
unlikely to change before the update or delete. If the rows do change, the updates
or deletes will fail and the application’s logic can handle such failures, for
example, by retrying the select.

244  Data Servers, Databases, and Database Objects Guide



The advantage of this enhanced optimistic locking is improved concurrency, since
other applications can read and write those same rows. In three-tier environments
where business transactions have no correlation to database transactions, this
optimistic locking technique is used, since locks cannot be maintained across
business transactions.

Optimistic locking
Optimistic locking is a technique for SQL database applications that does not hold
row locks between selecting and updating or deleting a row.

The application is written to optimistically assume that unlocked rows are unlikely
to change before the update or delete operation. If the row does change, the
update or delete will fail and the application logic handles such failures by, for
example, retrying the select. One advantage of optimistic locking is improved
concurrency, because other applications can read and write that row. In a three tier
environment where business transactions have no correlation to database
transaction, the optimistic locking technique is used, because locks cannot be
maintained across the business transaction.

However, optimistic locking by values has some disadvantages:

* Can result in false positives without additional data server support, a condition
when using optimistic locking whereby a row that is changed since it was
selected cannot be updated without first being selected again. (This can be
contrasted with false negatives, the condition whereby a row that is unchanged
since it was selected cannot be updated without first being selected again.)

* Requires more retry logic in applications
* It is complicated for applications to build the UPDATE search conditions
e It is inefficient for the DB2 server to search for the target row based on values

* Data type mismatches between some client types and database types, for
example, timestamps, prevent all columns from being used in the searched
update

Version 9.5 adds support for easier and faster optimistic locking with no false
positives. This support is added using the following new SQL functions,
expressions, and features:

* Row Identifier (RID_BIT or RID) built-in function
* ROW CHANGE TOKEN expression
* Time-based update detection

 Implicitly hidden columns

DB2 applications can enable optimistic locking by values by building a searched
UPDATE statement that finds the row with the exact same values that were
selected. The searched UPDATE fails if the row’s column values have changed.

Applications using this programming model will benefit from the enhanced
optimistic locking feature. Note that applications that do not use this programming
model are not considered optimistic locking applications, and they will continue to
work as before.

Row Identifier (RID_BIT or RID) built-in function
This built-in function can be used in the SELECT list or predicates
statement. In a predicate, for example, WHERE RID_BIT(tab)=?, the
RID_BIT equals predicate is implemented as a new direct access method in
order to to efficiently locate the row. Previously, so called values optimistic

Chapter 11. Tables 245



locking with values was done by adding all the selected column values to
the predicates and relying on some unique column combinations to qualify
only a single row, with a less efficient access method.

ROW CHANGE TOKEN expression

This new expression returns a token as BIGINT. The token represents a
relative point in the modification sequence of a row. An application can
compare the current row change token value of a row with the row change
token value that was stored when the row was last fetched to determine
whether the row has changed.

Time-based update detection:

This feature is added to SQL using the ROW CHANGE TIMESTAMP
expression. To support this feature, the table needs to have a new
generated row change timestamp column defined to store the timestamp
values. This can be added to existing tables using the ALTER TABLE
statement, or the row change timestamp column can defined when creating
a new table. The row change timestamp column’s existence also affects the
behavior of optimistic locking in that the column is used to improve the
granularity of the row change token from page level to row level, which
could greatly benefit optimistic locking applications. This feature has also
been added to DB2 for z/OS®.

Implicitly hidden columns:

For compatibility, this feature eases the adoption of the row change

timestamp columns to existing tables and applications. Implicitly hidden

columns are not externalized when implicit column lists are used. For

example:

* A SELECT * against the table does not return a implicitly hidden
columns in the result table

* An INSERT statement without a column list does not expect a value for

implicitly hidden columns, but the column should be defined to allow
nulls or have another default value.

Note: Refer to the DB2 Glossary for the definition of optimistic locking terms, such
as optimistic concurrency control, pessimistic locking, ROWID, and update detection.

Optimistic locking restrictions and considerations
This topic lists optimistic locking restrictions that you need to be aware of.

* ROW CHANGE TIMESTAMP columns are not supported in the following keys,
columns, and names (sqlstate 429BV is returned if used):

Primary keys

Foreign keys

Multidimensional clustered (MDC) columns
Range partition columns

Database hashed partitioning keys
DETERMINED BY constraint columns
Nicknames

e The RID() function is not supported in Database Partitioning Feature (DPF)
configurations.

* Online or offline table reorg performed between the fetch and update operations
in an optimistic locking scenario may cause the update to fail, but this should be
handled by normal application retry logic.

246 Data Servers, Databases, and Database Objects Guide



* In Version 9.5, the IMPLICITLY HIDDEN attribute is restricted to only ROW
CHANGE TIMESTAMP columns for optimistic locking.

* Inplace reorg is restricted for tables where a ROW CHANGE TIMESTAMP
column was added to an existing table until all rows are guaranteed to have
been materialized (SQL2219, reason code 13, is returned for this error). This can
be accomplished with a LOAD REPLACE command or with a classic table reorg.
This will prevent false positives. Tables created with the ROW CHANGE
TIMESTAMP column have no restrictions.

Considerations for implicitly hidden columns

A column defined as IMPLICITLY HIDDEN is not part of the result table of a
query that specifies * in a SELECT list. However, an implicitly hidden column can
be explicitly referenced in a query.

If a column list is not specified on the insert, then the VALUES clause or the
SELECT LIST for the insert should not include this column (in general, it must be
a generated, defaultable, or nullable column).

For example, an implicitly hidden column can be referenced in the SELECT list, or
in a predicate in a query. Additionally, an implicitly hidden column can be
explicitly referenced in a CREATE INDEX statement, ALTER TABLE statement,
INSERT statement, MERGE statement, or UPDATE statement. An implicitly hidden
column can be referenced in a referential constraint. A REFERENCES clause that
does not contain a column list refers implicitly to the primary key of the parent
table. It is possible that the primary key of the parent table includes a column
defined as implicitly hidden. Such a referential constraint is allowed.

 If the SELECT list of the fullselect of the materialized query definition explicitly
refers to an implicitly hidden column, that column will be part of the
materialized query table. Otherwise, an implicitly hidden column is not part of a
materialized query table that refers to a table containing an implicitly hidden
column.

e If the SELECT list of the fullselect of a view definition (CREATE VIEW
statement) explicitly refers to an implicitly hidden column, that column will be
part of the view, (however the view column is not considered to be “hidden’).
Otherwise, an implicitly hidden column is not part of a view that refers to a
table containing an implicitly hidden column.

Considerations for Label Based Access Control (LBAC)

When a column is protected under LBAC, access by a user to that column is
determined by the LBAC policies and the security label of the user. This protection,
if applied to a row change timestamp column, extends to the reference to that
column via both the ROW CHANGE TIMESTAMP and ROW CHANGE TOKEN
expressions which are derived from that column.

Therefore when determining the security policies for a table, ensure that the access
to the row change timestamp column is available for all users which need to use
optimistic locking or time based update detection as appropriate. Note that if there
is no row change timestamp column then the ROW CHANGE TOKEN expression
cannot be blocked by LBAC. However, if the table is altered to add a row change
timestamp column then any LBAC considerations will then apply.

Chapter 11. Tables 247



Granularity of row change tokens and false negatives

The RID_BIT() built-in function and the row change token are the only
requirements for optimistic locking. However, the schema of the table also affects
the behavior of optimistic locking.

For example, a row change timestamp column, defined using either of the
following statement clauses shown below, causes the DB2 server to store the time
when a row is last changed (or initially inserted). This provides a way to capture
the timestamp of the most recent change to a row. This is a timestamp column and
it is maintained by the database manager, unless the GENERATED BY DEFAULT
clause is used to accept a user-provided input value.

GENERATED ALWAYS FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
GENERATED BY DEFAULT FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Therefore, when an application uses the new ROW CHANGE TOKEN expression
on a table, there are two possibilities to consider:

* The table does not have a row change timestamp column: A ROW CHANGE TOKEN
expression returns a derived BIGINT value that is shared by all rows located on
the same page. If one row on a page is updated, the row change token is
changed for all the rows on the same page. This means an update can fail when
changes are made to other rows, a property referred to as a false negative.

Note: Use this mode only if the application can tolerate false negatives and does
not want to add additional storage to each row for a ROW CHANGE
TIMESTAMP column.

* The table has a row change timestamp column: A ROW CHANGE TOKEN
expression returns a BIGINT value derived from the timestamp value in the
column. In this case, false negatives may occur but are more infrequent: If the
table is reorganized or redistributed, false negatives can occur if the row is moved
and an application uses the prior RID_BIT() value.

Time-based update detection
Some applications need to know database updates for certain time ranges, which

may be used for replication of data, auditing scenarios, and so forth. The new
ROW CHANGE TIMESTAMP expression provides this information.

It returns a timestamp representing the time when a row was last changed,
expressed in local time similar to CURRENT TIMESTAMP. For a row that has been
updated, this reflects the most recent update to the row. Otherwise, the value
corresponds to the original insert of the row.

The value of the ROW CHANGE TIMESTAMP is unique for every row per table of
a database or table partition, that is, not all rows per database partition are unique,
only the rows in the same table. The value represents the modification sequence of
the row. Rows which are more lately modified always have later values than rows
which were earlier modified. Since the value is always growing from earlier to
later, it may become out of sync with the system clock if:

¢ The system clock is changed

* The row change timestamp column is GENERATED BY DEFAULT (intended for
data propagation only) and a row is provided with an out of sync value

The prerequisite for using the ROW CHANGE TIMESTAMP expression is that the
table must have a row change timestamp column defined. Every row returns the
timestamp of when it was inserted or last updated.There are two methods in
which the row change timestamp column can be part of the table:

248 Data Servers, Databases, and Database Objects Guide



* The table was created with a row change timestamp column. A ROW CHANGE
TIMESTAMP expression returns the value of the column. For this category, the
timestamp is precise. The row change timestamp in general when generated by
the database is limited by speed of inserts and possible clock manipulations
including DST adjustment.

e The table was not created with a row change timestamp column, but one was later
added through an ALTER TABLE statement. A ROW CHANGE TIMESTAMP
expression returns the value of the column. For this category, the old (pre-alter)
rows do not contain the actual timestamp until they are first updated or an
offline table reorganization is performed.

Note: The timestamp is an approximate time that the actual update occurred in
the database, as of the system clock at the time and taking into account the
limitation that no timestamps can be repeated within a database/table partition.
In practice this is normally a very accurate representation of the time of the
update. The row change timestamp, in general, when generated by the database,
is limited by speed of inserts and possible clock manipulations including DST
adjustments.

Rows that have not been updated since the ALTER TABLE statement will return
the type default value for the column, which is midnight Jan 01, year 1. Only
rows that have been updated will have a unique timestamp. Rows which have
the timestamp materialized via an offline table reorganization will return a
unique timestamp generated during the reorganization of the table. Reorg using
the INPLACE option is not sufficient as it does not materialize schema changes.

In either case, the timestamp of a row may also be updated if a redistribute is
performed. If the row is moved from one database partition to another during a
redistribute then a new timestamp must be generated which is guaranteed to be
unique at the target.

Time values generated for ROW CHANGE TIMESTAMPs

There are some boundary conditions on the exact values generated for the row
change timestamp columns due to the enforcement of unique values per partition.

Whenever the system clock is adjusted into the past for clock correction or for a
daylight saving time policy on the DB2 server, it is possible that timestamps will
appear to be in the future relative to the current value of the system clock, or the
value of the CURRENT TIMESTAMP special register. This occurs when a
timestamp was generated prior to the system clock adjustment, that is, later than
the adjusted time, as the timestamps are always generated in an ascending fashion
to maintain uniqueness.

When timestamps are generated for columns which were added to the table by a
REORG operation or as part of a LOAD operation, the timestamps will be
sequentially generated at some point in the processing of the utility starting from
an initial timestamp value. If the utility is able to process rows faster than the
timestamp granularity (that is, more than 1 million rows per second), then the
values generated for some of the rows may also appear to be in the future relative
to the system clock or the CURRENT TIMESTAMP special register.

In each case, once the system clock catches up to the row change timestamp
values, there will be a close approximation of the time that the row was inserted.
Until such time, timestamps will be generated in ascending sequence by the finest
granularity allowed by the timestamp type.

Chapter 11. Tables 249



RID_BIT() and RID() built-in function

The RID_BIT() and row change token can be selected for every row in a table. The
SELECT can occur at any isolation level that the application requires.

The application can UPDATE the same (unchanged) row with optimistic locking by
searching on:

* The RID_BIT() to directly access (not scan) the update target row
* The row change token to ensure this is the same unchanged row

This update (or delete) can occur at any point after the select, within the same unit
of work, or even across connection boundaries; the only requirement is having
obtained the two values above for a given row at some point in time.

Optimistic locking is used in the “WebSphere-Oriented Programming Model”. For
example, Microsoft .NET uses this model to process SELECT statements followed
by UPDATE or DELETE statements as follows:

e Connect to the database server and SELECT the desired rows from a table

* Disconnect from the database, or release the row locks so that other applications
can read, update, delete, and insert data without any concurrency conflicts due
to locks and resources held by the application (isolation “Uncommited Read”
allows higher concurrency AND assuming other applications COMMIT their
update and delete transactions, then this optimistic locking application will read
the updated values and the optimistic searched update/delete will succeed)

e Perform some local calculations on the SELECTed row data

¢ Reconnect to the database server, and search for UPDATE or DELETE on one or
more particular targeted rows (and, if the target row has changed, handle failed
UPDATE or DELETE statements)

Applications using this programming model will benefit from the enhanced
optimistic locking feature. Note that applications that do not use this programming
model are not considered optimistic locking applications, and they will continue to
work as before.

RID_BIT() and RID() built-in function features

Following are the new features that will be implemented for enhanced optimistic
locking and for update detection:

RID_BIT( <table designator>)
A new built-in function that returns the Record identifier (RID) of a row as
VARCHAR(16) FOR BIT DATA.

Note: DB2 for z/OS implements a built-in function RID with a return type
of BIGINT, but that is not large enough for Linux, UNIX, and Windows
RIDs. For compatibility, this RID() built-in function returns BIGINT, in
addition to RID_BIT().

This RID() built-in function does not work in DPF environments, and does
not include table version information. Otherwise, it works the same as
RID_BIT. You should use it only when coding applications that will be
ported to z/OS servers. Except where necessary, this topic refers only to
RID_BIT.

RID_BIT() built-in function
This built-in function can be used in the SELECT list or predicates
statement. In a predicate, for example, WHERE RID_BIT(tab)=?, the RID_BIT

250 Data Servers, Databases, and Database Objects Guide



equals predicate is implemented as a new direct access method in order to
to efficiently locate the row. Previously, so called values optimistic locking
with values was done by adding all the selected column values to the
predicates and relying on some unique column combinations to qualify
only a single row, with a less efficient access method.

ROW CHANGE TOKEN FOR <table designator>
A new expression that returns a token as BIGINT. The token represents a
relative point in the modification sequence of a row. An application can
compare the current row change token value of a row with the row change
token value that was stored when the row was last fetched to determine
whether the row has changed.

ROW CHANGE TIMESTAMP column
A GENERATED column with default type of TIMESTAMP which can be
defined as either:

GENERATED ALWAYS FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP

or (suggested only for data propagation or unload and reload operations):

GENERATED BY DEFAULT FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP

The data in this column changes every time the row is changed. When this
column is defined, the ROW CHANGE TOKEN value will be derived from
it. Note that when GENERATED ALWAYS is used, the database manager
ensures that this value is unique within a database partition or within table
partition to ensure that no false positives are possible.

To use the first two elements, RID_BIT and ROW CHANGE TOKEN, no other
changes are need to the database schema. Note, however, that without the ROW
CHANGE TIMESTAMP column, the row change token is shared by every row on
the same page. Updates to any row on the page may cause false negatives for other
rows stored on the same page. With this column, the ROW CHANGE TOKEN is
derived from the timestamp and is not shared with any other rows in the table or
database r artition. See [“Granularity of row change tokens and false negatives” on|
page 248

Time-based update detection feature

A new expression that returns a timestamp value that represents the time when the
row in the table identified by the table designator was last changed.

ROW CHANGE TIMESTAMP FOR <table designator>

The ROW CHANGE TIMESTAMP expression is not supported for tables that do
not have a ROW CHANGE TIMESTAMP column.

The ROW CHANGE TIMESTAMP expression is used for time-based update
detection scenarios only, and requires that a row change timestamp column is
defined for the table identified by the table designator. This column is managed by
the database manager and is used to store the timestamp value that will be
returned by the ROW CHANGE TIMESTAMP expression. This timestamp differs
from the CURRENT TIMESTAMP in that it is guaranteed unique when assigned
by the database per row per database partition. It is a local timestamp
approximation of the modification time of each individual row inserted or
updated.

Chapter 11. Tables 251



Note: Despite the inter-relation of these two features, that is, the RID_BIT() and
RID() built-in function and the time-based update detection feature, it is important
to note that the usage of ROW CHANGE TOKEN and ROW CHANGE
TIMESTAMP expressions are not interchangeable; specifically, that ROW CHANGE
TIMESTAMP expression is not part of the optimistic locking usage.

Planning the enablement of optimistic locking

Since the new SQL expressions and attributes for optimistic locking can be used
with no DDL changes to the tables involved, you can easily try optimistic locking
in your test applications.

Note that without DDL changes, optimistic locking applications may get more false
negatives than with DDL changes. An application that does get false negatives may
not scale well in a production environment because the false negatives may cause
too many retries. Therefore, to avoid false negatives, optimistic locking target
table(s) should be either:

¢ Created with a ROW CHANGE TIMESTAMP column
e Altered to contain the ROW CHANGE TIMESTAMP column

If the recommended DDL changes are done, there will be many fewer false
negatives. The only false negatives will occur due to table level operations like
reorg, not concurrent applications operating on different rows.

In general, the database manager allows false negatives (online or offline reorg, for
example) and the presence of a row change timestamp column is sufficient to
determine whether page or row level granularity is being used. You can also query
the SYSCAT.COLUMNS for a table that has rows with a YES in the
ROWCHANGETIMESTAMP column.

A thorough analysis of the application and database may indicate that this DDL is
not required, for example, if there is one row per page, or if the update and delete
operations are very infrequent and rarely, or never, on the same data page. Such
analysis is the exception.

For the update timestamp detection usage, you must make changes to the DDL for
the table, and possibly reorganize the table to materialize the values. If there is
concern that these changes could have a negative impact on the production
database, you should first prototype the changes in a test environment. For
instance, the extra columns can affect the row size limitations and plan selection.

Conditions to be aware of

* You should be aware of conditions relating to the system clock and the
granularity of the timestamp values. If a table has a ROW CHANGE
TIMESTAMP column, after an insert or update, the new row will have a unique
ROW CHANGE TIMESTAMP value in that table on that database partition.

* To ensure uniqueness, the generated timestamp of a row will always increase,
regardless if the system clock is adjusted backwards or if the update or insertion
of data is happening faster than timestamp granularity. Therefore, the ROW
CHANGE TIMESTAMP may be in the future compared with the system time
and DB2’s CURRENT TIMESTAMP special register. Unless the system clock is
gets completely out of sync, or the database manager is inserting or updating at
more than one million rows per second, then this should normally be very close
to the actual time. In contrast to the CURRENT TIMESTAMP, this value is also
generated per row at the time of the update, therefore, it is normally much
closer than the CURRENT TIMESTAMP, which is generated once for an entire

252  Data Servers, Databases, and Database Objects Guide



statement that could take a very long time to complete, depending on the
complexity and number of rows affected.

Enabling optimistic locking in applications
There are a number of steps that you need to perform in order to enable optimistic
locking support in your applications.

1. In the initial query, SELECT the row identifier (using the [“RID_BIT() and RID()|
[puilt-in function” on page 250) and row change token for each row that you
need to process.

2. Release the row locks so that other applications can SELECT, INSERT, UPDATE
and DELETE from the table.

3. Perform a searched UPDATE or DELETE on the target rows, using the row
identifier and row change token in the search condition, optimistically
assuming that the unlocked row has not changed since the original SELECT
statement

4. If the row has changed, the UPDATE operation will fail and the application
logic must handle the failure. For instance, the application retries the SELECT
and UPDATE operations.

After running the above steps:

¢ If the number of retries performed by your application seems higher than
expected or is desired, then adding a row change timestamp column to your
table to ensure that only changes to the row identified by the RID_BIT function
will invalidate only the row change token, and not other activity on the same
data page.

* To see rows which have been inserted or updated in a given time range, create
or alter the table to contain a row change timestamp column. This column will

be maintained by the database manager automatically and can be queried using
either the column name or the ROW CHANGE TIMESTAMP expression.

* For row change timestamp columns only, if the column is defined with the
IMPLICTLY HIDDEN attribute, then it is not externalized when there is an
implicit reference to the columns of the table. However, an implicitly hidden
column can always be referenced explicitly in SQL statements. This can be useful
when adding a column to a table can cause existing applications using implicit
column lists to fail.

Table partitioning and data organization schemes

Table partitioning is a data organization scheme in which table data is divided
across multiple data partitions according to values in one or more partitioning
columns of the table. Data from a given table is partitioned into multiple storage
objects, which can be in different table spaces.

For complete details about table partitioning and data organization schemes, see
the Partitioning and Clustering Guide.

Creating tables

The database manager controls changes and access to the data stored in the tables.
You can create tables using the CREATE TABLE statement. Complex statements
can be used to define all the attributes and qualities of tables. However, if all the
defaults are used, the statement to create a table is quite simple.

CREATE TABLE <table name> (<column name> <data type> <column options>,
(<column name> <data type> <column options>, ...)

Chapter 11. Tables 253



The <table name> may or may not include a qualifier. The name must be unique
when compared to all table, view, and alias names in the system catalog. The name
must also not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT.

The <column name> names the columns in the table. This name cannot be qualified
and must be unique within the other columns of the table.

Any <column options> that exist for a column further define the attributes of the
column. The options include NOT NULL in order to prevent the column from
containing null values, specific options for LOB data types, and the SCOPE of the
reference type columns, any constraints on the columns, and any defaults for the
columns. For more information, see the CREATE TABLE statement.

Declaring global temporary tables

To create global temporary tables from within your applications, use the DECLARE
GLOBAL TEMPORARY TABLE statement.

Global temporary tables, also referred to as user-defined temporary tables, are used
by applications that work with data in the database. Results from manipulation of
the data need to be stored temporarily in a table. A user temporary table space
must exist before creating global temporary tables.

Note: The description of global temporary tables does not appear in the system
catalog thus making it not persistent for, and not able to be shared with, other
applications. When the application using this table terminates or disconnects from
the database, any data in the table is deleted and the table is implicitly dropped.
Global temporary tables do not support:

* LOB-type columns (or distinct-type columns based on LOBs)
* User-defined type columns

* LONG VARCHAR columns

¢ XML columns

Example

DECLARE GLOBAL TEMPORARY TABLE gbl_temp
LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement creates a global temporary table called gbl_temp. This table is
defined with columns that have exactly the same name and description as the
columns of the empltabl. The implicit definition only includes the column name,
data type, nullability characteristic, and column default value attributes. All other
column attributes including unique constraints, foreign key constraints, triggers,
and indexes are not defined. When a COMMIT operation is performed, all data in
the table is deleted if no WITH HOLD cursor is open on the table. Changes made
to the user temporary table are not logged. The global temporary table is placed in
the specified user temporary table space. This table space must exist or the
declaration of this table will fail.

If a ROLLBACK or ROLLBACK TO SAVEPOINT is specified when creating this
table, either you can specify to delete all the rows in the table (DELETE ROWS,
which is the default), or you can specify that the rows of the table are to be
preserved (PRESERVE ROWS).

254  Data Servers, Databases, and Database Objects Guide



The table is dropped implicitly when the application disconnects from the
database.

Creating tables like existing tables

Creating a new source table might be necessary when the characteristics of the
target table do not sufficiently match the characteristics of the source when issuing
the ALTER TABLE statement with the ATTACH PARTITION clause. Before creating
a new source table, you can attempt to correct the mismatch between the existing
source table and the target table.

To create a table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities and privileges:
* CREATETAB authority on the database and USE privilege on the table space, as
well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit
schema name of the table does not exist
— CREATEIN privilege on the schema, if the schema name of the table refers to
an existing schema
* SYSADM or DBADM authority

If attempts to correct the mismatch fail, error SQL20408N or SQL20307N is
returned.

To create a new source table:

1. Use the db2look command to produce the CREATE TABLE statement to create
a table identical to the target table:

db21ook -d <source database name> -t <target database name> -e -p

2. Remove the partitioning clause from the db2look output and change the name
of the table created to a new name (in this example, referred to here as
sourceC).

3. Next, load all of the data from the original source table to the newly created
source table, sourceC using a LOAD FROM CURSOR command:

DECLARE mycurs CURSOR FOR SELECT * FROM source
LOAD FROM mycurs OF CURSOR REPLACE INTO sourceC

If this command fails because the original data is incompatible with the
definition of table sourceC, you must transform the data in the original table as
it is being transferred to sourceC.

4. After the data has been successfully copied to sourceC, submit the ALTER
TABLE target ... ATTACH sourceC statement.

Creating tables for staging data

A staging table allows incremental maintenance support for deferred materialized
query table. The staging table collects changes that need to be applied to the
materialized query table to synchronize it with the contents of underlying tables.
The use of staging tables eliminates the high lock contention caused by immediate
maintenance content when an immediate refresh of the materialized query table is
requested. Also, the materialized query tables no longer need to be entirely
regenerated whenever a REFRESH TABLE is performed.

Chapter 11. Tables 255



Materialized query tables are a powerful way to improve response time for
complex queries, especially queries that might require some of the following
operations:

+ Aggregated data over one or more dimensions
* Joins and aggregates data over a group of tables
e Data from a commonly accessed subset of data

* Repartitioned data from a table, or part of a table, in a partitioned database
environment

Here are some of the key restrictions regarding staging tables:

1. The query used to define the materialized query table, for which the staging
table is created, must be incrementally maintainable; that is, it must adhere to
the same rules as a materialized query table with an immediate refresh option.

2. Only a deferred refresh can have a supporting staging table. The query also
defines the materialized query table associated with the staging table. The
materialized query table must be defined with REFRESH DEFERRED.

3. When refreshing using the staging tables, only a refresh to the current point in
time is supported.

4. Partitioned hierarchy tables and partitioned typed tables are not supported.
(Partitioned tables are tables where data is partitioned into multiple storage
objects based on the specifications provided in the PARTITION BY clause of the
CREATE TABLE statement.)

An inconsistent, incomplete, or pending state staging table cannot be used to
incrementally refresh the associated materialized query table unless some other
operations occur. These operations will make the content of the staging table
consistent with its associated materialized query table and its underlying tables,
and to bring the staging table out of pending. Following a refresh of a materialized
query table, the content of its staging table is cleared and the staging table is set to
a normal state. A staging table might also be pruned intentionally by using the SET
INTEGRITY statement with the appropriate options. Pruning will change the
staging table to an inconsistent state. For example, the following statement forces
the pruning of a staging table called STAGTABI:

SET INTEGRITY FOR STAGTAB1 PRUNE;

When a staging table is created, it is put in a pending state and has an indicator
that shows that the table is inconsistent or incomplete with regard to the content of
underlying tables and the associated materialized query table. The staging table
needs to be brought out of the pending and inconsistent state in order to start
collecting the changes from its underlying tables. While in a pending state, any
attempts to make modifications to any of the staging table’s underlying tables will
fail, as will any attempts to refresh the associated materialized query table.

There are several ways a staging table might be brought out of a pending state; for
example:

* SET INTEGRITY FOR <staging table name> STAGING IMMEDIATE
UNCHECKED

e SET INTEGRITY FOR <staging table name> IMMEDIATE CHECKED

Modifying tables

This section provides topics on how you can modify tables.

256 Data Servers, Databases, and Database Objects Guide



Altering materialized query table properties

With some restrictions, you can change a materialized query table to a regular
table or a regular table to a materialized query table. You cannot change other
table types; only regular and materialized query tables can be changed. For
example, you cannot change a replicated materialized query table to a regular
table, nor the reverse.

Once a regular table has been altered to a materialized query table, the table is
placed in a set integrity pending state. When altering in this way, the fullselect
in the materialized query table definition must match the original table definition,
that is:

e The number of columns must be the same.
¢ The column names and positions must match.

e The data types must be identical.

If the materialized query table is defined on an original table, then the original
table cannot itself be altered into a materialized query table. If the original table
has triggers, check constraints, referential constraints, or a defined unique index,
then it cannot be altered into a materialized query table. If altering the table
properties to define a materialized query table, you are not allowed to alter the
table in any other way in the same ALTER TABLE statement.

When altering a regular table into a materialized query table, the fullselect of the
materialized query table definition cannot reference the original table directly or
indirectly through views, aliases, or materialized query tables.

To change a materialized query table to a regular table, use the following:

ALTER TABLE sumtable
SET SUMMARY AS DEFINITION ONLY

To change a regular table to a materialized query table, use the following:

ALTER TABLE regtable
SET SUMMARY AS <fullselect>

The restrictions on the fullselect when altering the regular table to a materialized
query table are very much like the restrictions when creating a summary table
using the CREATE SUMMARY TABLE statement.

Refreshing the data in a materialized query table

You can refresh the data in one or more materialized query tables by using the
REFRESH TABLE statement. The statement can be embedded in an application
program, or issued dynamically. To use this statement, you must have either
SYSADM or DBADM authority, or CONTROL privilege on the table to be
refreshed.

The following example shows how to refresh the data in a materialized query
table:

REFRESH TABLE SUMTAB1

Changing column properties

Use the ALTER TABLE statement to change column properties, such as nullability,
LOB options, scope, constraints and compression attributes, data types and so
forth. For complete details, see the ALTER TABLE statement.

Chapter 11. Tables 257



To alter a table, you must have at least one of the following privileges on the table
to be altered:

* ALTER privilege

e CONTROL privilege

¢ SYSADM or DBADM authority

* ALTERIN privilege on the schema of the table

To change the definition of a existing column, to edit and test SQL when changing
table columns, or to validate related objects when changing table columns, you
must have DBADM authority.

For example, from the command line, enter:

ALTER TABLE EMPLOYEE
ALTER COLUMN WORKDEPT
SET DEFAULT '123'

Adding and dropping columns

To add columns to existing tables, or to drop columns from existing tables, use the
ALTER TABLE statement with the ADD COLUMN, or DROP COLUMN, clause,
respectively. The table must not be a typed table.

For all existing rows in the table, the value of the new column is set to its default
value. The new column is the last column of the table; that is, if initially there are
n columns, the added column is column n+1. Adding the new column must not
make the total byte count of all columns exceed the row size limit.

To add a column, issue the following statement:

ALTER TABLE SALES
ADD COLUMN SOLD_QTY
SMALLINT NOT NULL DEFAULT 0

To delete or drop a column, issue the following statement:

ALTER TABLE SALES
DROP COLUMN SOLD_QTY

Modifying DEFAULT clause column definitions

The DEFAULT clause provides a default value for a column in the event that a
value is not supplied on INSERT or is specified as DEFAULT on INSERT or
UPDATE. If a specific default value is not specified following the DEFAULT
keyword, the default value depends on the data type. If a column is defined as an
XML or structured type, then a DEFAULT clause cannot be specified.

Omission of DEFAULT from a column-definition results in the use of the null
value as the default for the column, as described in: [“Default column and datal
[type definitions” on page 235.|

Specific types of values that can be specified with the DEFAULT keyword, see the
ALTER TABLE statement.

Modifying the generated or identity property of a column
You can add and drop the generated or identity property of a column in a table
using the ALTER COLUMN clause in the ALTER TABLE statement.

You can do one of the following actions:

258 Data Servers, Databases, and Database Objects Guide



* When working with an existing non-generated column, you can add a generated
expression attribute. The modified column then becomes a generated column.

* When working with an existing generated column, you can drop a generated
expression attribute. The modified column then becomes a normal,
non-generated column.

* When working with an existing non-identity column, you can add a identity
attribute. The modified column then becomes an identity column.

* When working with an existing identity column, you can drop the identity
attribute. The modified column then becomes a normal, non-generated,
non-identity column.

* When working with an existing generated column, you can alter a generated
column from being GENERATED ALWAYS to GENERATED BY DEFAULT. The
reverse is also true; that is, you can alter a generated column from being
GENERATED BY DEFAULT to GENERATED ALWAYS. This is only possible
when working with a generated column.

* You can drop the default attribute from the user-defined default column. When
you do this, the new default value is null.

* You can drop the default, identity, or generation attribute and then set a new
default, identity, or generation attribute in the same ALTER COLUMN
statement.

e For both the CREATE TABLE and ALTER TABLE statements, the “ALWAYS” is
an optional word in the GENERATED clause. This means that GENERATED
ALWAYS is equivalent to GENERATED when used in the ALTER TABLE
statement.

Modifying column definitions

Use the ALTER TABLE statement to drop columns, or change their types and
attributes. For example, you can increase the length of an existing VARCHAR or
VARGRAPHIC column. The number of characters might increase up to a value
dependent on the page size used.

To modify the default value associated with a column, once you have defined the
new default value, the new value is used for the column in any subsequent SQL
operations where the use of the default is indicated. The new value must follow
the rules for assignment and have the same restrictions as documented under the
CREATE TABLE statement.

Note: Generate columns cannot have their default value altered by this statement.

When changing these table attributes using SQL, it is no longer necessary to drop
the table and then recreate it, a time consuming process that can be complex when
object dependencies exist.

To modify the length and type of a column of an existing table using the command
line, enter:
ALTER TABLE <table_name>

ALTER COLUMN <column_name>
<modification_type>

For example, to increase a column up to 4000 characters, use something similar to
the following:
ALTER TABLE t1

ALTER COLUMN colnaml
SET DATA TYPE VARCHAR(4000)

Chapter 11. Tables 259



In another example, to allow a column to have a new VARGRAPHIC value, use an
statement similar to the following;:
ALTER TABLE t1

ALTER COLUMN colnam2
SET DATA TYPE VARGRAPHIC(2000)

You cannot alter the column of a typed table. However, you can add a scope to an
existing reference type column that does not already have a scope defined. For
example:

ALTER TABLE tl

ALTER COLUMN colnamtl
ADD SCOPE typtabl

To modify the default value of a column of an existing table using the command
line, enter:
ALTER TABLE <table_name>

ALTER COLUMN <column_name>
SET DEFAULT 'new_default_value'

For example, to change the default value for a column, use something similar to
the following:
ALTER TABLE tl

ALTER COLUMN colnaml
SET DEFAULT '123'

Renaming tables

You can use the RENAME statement to rename an existing table.

When renaming tables, the source table must not be referenced in any existing
definitions (view or materialized query table), triggers, SQL functions, or
constraints. It must also not have any generated columns (other than identity
columns), or be a parent or dependent table. Catalog entries are updated to reflect
the new table name. For more information and examples, see the RENAME
statement.

To change the definition of existing columns, see [“Changing column properties” on|
and the ALTER TABLE statement.

Recovering inoperative summary tables

Summary tables can become inoperative as a result of a revoked SELECT privilege
on an underlying table.

The following steps can help you recover an inoperative summary table:

* Determine the statement that was initially used to create the summary table. You
can obtain this information from the TEXT column of the SYSCAT.VIEW catalog
view.

* Re-create the summary table by using the CREATE SUMMARY TABLE
statement with the same summary table name and same definition.

* Use the GRANT statement to re-grant all privileges that were previously granted
on the summary table. (Note that all privileges granted on the inoperative
summary table are revoked.)

260 Data Servers, Databases, and Database Objects Guide



If you do not want to recover an inoperative summary table, you can explicitly
drop it with the DROP TABLE statement, or you can create a new summary table
with the same name but a different definition.

An inoperative summary table only has entries in the SYSCAT.TABLES and
SYSCAT.VIEWS catalog views; all entries in the SYSCAT.TABDEP,
SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views
are removed.

Viewing table definitions

You can use the SYSCAT.COLUMNS catalog view, to view table definitions. Each
row represents a column defined for a table, view, or nickname. To see the data in
the columns, use the SELECT statement.

Table or view aliases

An alias is an alternative name for a table or a view. It can be used to reference a
table or a view if an existing table or view can be referenced.

An alias cannot be used in all contexts; for example, it cannot be used in the check
condition of a check constraint. An alias cannot reference a declared temporary
table.

Like tables or views, an alias can be created, dropped, and have comments
associated with it. However, unlike tables, aliases can refer to each other in a
process called chaining. Aliases are publicly referenced names, so no special
authority or privilege is required to use them. Access to the table or the view
referred to by an alias, however, does require the authorization associated with
these objects.

There are other types of aliases, such as database and network aliases. Aliases can
also be created for nicknames that refer to data tables or views located on federated
systems.

Dropping tables

A table can be dropped with a DROP TABLE statement. When a table is dropped,
the row in the SYSCAT.TABLES system catalog view that contains information
about that table is dropped, and any other objects that depend on the table are
affected.

For example:

* All column names are dropped.

* Indexes created on any columns of the table are dropped.

* All views based on the table are marked inoperative.

 All privileges on the dropped table and dependent views are implicitly revoked.

* All referential constraints in which the table is a parent or dependent are
dropped.

 All packages and cached dynamic SQL and XQuery statements dependent on
the dropped table are marked invalid, and remain so until the dependent objects
are re-created. This includes packages dependent on any supertable above the
subtable in the hierarchy that is being dropped.

* Any reference columns for which the dropped table is defined as the scope of
the reference become “unscoped”.

Chapter 11. Tables 261



e An alias definition on the table is not affected, because an alias can be undefined
* All triggers dependent on the dropped table are marked inoperative.

To drop a table using the command line, enter:
DROP TABLE <table_name>

The following statement drops the table called DEPARTMENT:
DROP TABLE DEPARTMENT

An individual table cannot be dropped if it has a subtable. However, all the tables
in a table hierarchy can be dropped by a single DROP TABLE HIERARCHY
statement, as in the following example:

DROP TABLE HIERARCHY person

The DROP TABLE HIERARCHY statement must name the root table of the
hierarchy to be dropped.

There are differences when dropping a table hierarchy compared to dropping a

specific table:

e DROP TABLE HIERARCHY does not activate deletion-triggers that would be
activated by individual DROP table statements. For example, dropping an
individual subtable would activate deletion-triggers on its supertables.

e DROP TABLE HIERARCHY does not make log entries for the individual rows of
the dropped tables. Instead, the dropping of the hierarchy is logged as a single
event.

Dropping materialized query or staging tables

You cannot alter a materialized query or staging table, but you can drop it. All
indexes, primary keys, foreign keys, and check constraints referencing the table are
dropped. All views and triggers that reference the table are made inoperative. All
packages depending on any object dropped or marked inoperative will be
invalidated.

To drop a materialized query or staging table using the command line, enter:
DROP TABLE <table_name>

The following statement drops the materialized query table XT:
DROP TABLE XT

A materialized query table might be explicitly dropped with the DROP TABLE
statement, or it might be dropped implicitly if any of the underlying tables are
dropped.

A staging table might be explicitly dropped with the DROP TABLE statement, or it
might be dropped implicitly when its associated materialized query table is
dropped.

Scenarios and examples of tables

This section provides scenarios and examples of tables.

262 Data Servers, Databases, and Database Objects Guide



Scenarios: Optimistic locking and time-based detection

Three scenarios are provided that show you how to enable and implement
optimistic locking in your applications, with and without time-based detection, and
with and without implicitly hidden columns.

Scenario: Using optimistic locking in an application program
This scenario demonstrates how optimistic locking is implemented in an
application program, covering six different scenarios.

Consider the following sequence of events in an application designed and enabled
for optimistic locking:
SELECT QUANTITY, row change token FOR STOCK, RID_BIT(STOCK)
INTO :h_quantity, :h_rct, :h_rid
FROM STOCK WHERE PARTNUM = 3500

In this scenario, the application logic reads each row. Since this application is
enabled for optimistic locking as described in [“Enabling optimistic locking in|
[applications” on page 253 the select list includes the RID_BIT() value saved in the
:h_rid host variable and the row change token value saved in the :h_rct host
variable.

With optimistic locking enabled, the application optimistically assumes any rows
targeted for update or delete will remain unchanged, even if they are unprotected
by locks. To improve database concurrency, the application removes the row lock(s)
using one of the following methods:
¢ Committing the unit of work, in which case the row locks are removed
* Closing the cursor using the WITH RELEASE clause, in which case the row
locks are removed
* Using a lower isolation level:
— CURSOR STABILITY (CS) in which case the row is not locked after the
cursor fetches to the next row, or to the end of the result table.

- UNCOMMITED READ (UR) in which case any uncommitted data has a new
(uncommitted) row change token value. If the uncommitted data is rolled
back, then the old committed row change token will be a different value.

Note: Assuming updates are not normally rolled back, using UR allows the
most concurrency.

¢ Disconnecting from the database, thus releasing all DB2 server resources for the
application. (.(NET applications often use this mode).

The application processes the rows and decides it wants to optimistically update
one of them:

UPDATE STOCK SET QUANTITY = QUANTITY -1
WHERE row change token FOR STOCK = :h_rct AND
RID_BIT(STOCK) = :h_rid

The UPDATE statement updates the row identified in the SELECT statement
shown above.

The searched UPDATE predicate is planned as a direct fetch to the table:
RID BIT(STOCK) = :h_rid

Chapter 11. Tables 263



Direct fetch is a very efficient access plan, that is simple for the DB2 optimizer to
cost. If the RID_BIT() predicate does not find a row, the row was deleted and the
update fails with row not found.

Assuming that the RID_BIT() predicate finds a row, the predicate row change
token FOR STOCK = :h_rct will find the row if the row change token has not
changed. If the row change token has changed since the SELECT, the searched
UPDATE fails with row not found.

able 50| lists the possible scenarios that could occur when optimistic locking is

enabled.
Table 50. Scenarios that could occur when optimistic locking is enabled
Scenario ID | Action Result
Scenario 1 | There is a row change timestamp The update succeeds as the row
column defined on the table and no |change token predicate succeeds for
other application has changed the the row identified by :h_rid.
row.
Scenario 2 | There is a ROW CHANGE The row change token predicate fails
TIMESTAMP defined on the table. comparing the token generated from
Another application updates the row | the timestamp in the row at the time
after the select and before the update | of the select and the token value of
(and commits), updating the row the timestamp currently in the row. So
change timestamp column. the UPDATE statement fails to find a
row.
Scenario 3 | There is a ROW CHANGE This application runs the UPDATE,
TIMESTAMP defined on the table. which will lock wait until the other
Another application updates the row | application releases its row lock. The
and so the row has a new row row change token predicate will
change token. This application succeed if the other application
selects the row at isolation UR and | commits the change with the new
gets the new uncommitted row token, so the UPDATE succeeds. The
change token. row change token predicate will fail if
the other application rolls back to the
old token, so the UPDATE fails to find
a row.
Scenario 4 |There is no row change timestamp | The row change token predicate fails
column defined on the table. comparing the token because the row
Another row is updated, deleted or |change token value for all rows on the
inserted on the same page, after the |page has changed, so the UPDATE
select and before the update. statement fails to find a row even
though our row has not actually
changed.
This false negative scenario would not
result in an UPDATE failure if a row
change timestamp column was added.
Scenario 5 |The table has been altered to contain | The row change token predicate fails
a row change timestamp column, comparing the token generated from
and the row returned in the select before with the token value created
has not been modified since the time |from the row change timestamp
of the alter. Another application column so the UPDATE statement
updates the row, adding the row fails to find a row. Since the row of
change timestamp column to that interest has actually been changed this
row in the process with the current |is not a false negative scenario.
timestamp.

264 Data Servers, Databases, and Database Objects Guide




Table 50. Scenarios that could occur when optimistic locking is enabled (continued)

Scenario ID | Action Result

Scenario 6 |The table is reorganized after the The row itself is not updated by the
select and before the update. The reorganization but the RID_BIT

row ID identified by :h_rid does not |portion of the predicate cannot

find a row, or contains a row with a |identify the original row after the
different token so the update fails. reorganization.

This is the form of false negative
that cannot be avoided even with the
existence of a row change timestamp
column in the row.

Scenarios: Optimistic locking using implicitly hidden columns
The following scenarios demonstrate how optimistic locking is implemented in an

application program using implicitly hidden columns, that is, a column defined
with the IMPLICITLY HIDDEN attribute.

For these scenarios, assume that table SALARY_INFO is defined with three
columns, and the first column is an implicitly hidden ROW CHANGE
TIMESTAMP column whose values are always generated.

Scenario 1:
In the following statement, the implicitly hidden column is explicitly
referenced in the column list and a value is provided for it in the VALUES
clause:

INSERT INTO SALARY_INFO (UPDATE_TIME, LEVEL, SALARY)
VALUES (DEFAULT, 2, 30000)

Scenario 2:
The following INSERT statement uses an implicit column list. An implicit
column list does not include implicitly hidden columns, therefore, the
VALUES clause only contains values for the other two columns:

INSERT INTO SALARY_INFO
VALUES (2, 30000)

In this case, column UPDATE_TIME must be defined to have a default
value, and that default value is used for the row that is inserted.

Scenario 3:
In the following statement, the implicitly hidden column is explicitly
referenced in the select list and a value for it appears in the result set:

SELECT UPDATE_TIME, LEVEL, SALARY FROM SALARY_INFO
WHERE LEVEL = 2

UPDATE_TIME LEVEL SALARY

2006-11-28-10.43.27.560841 2 30000

Scenario 4:
In the following statement the column list is generated implicitly through
use of the * notation, and the implicitly hidden column does not appear in
the result set:

SELECT *~ FROM SALARY_INFO
WHERE LEVEL = 2

LEVEL SALARY

Chapter 11. Tables 265



Scenario 5:
In the following statement, the column list is generated implicitly through
use of the * notation, and the implicitly hidden column value also appears
by using the ROW CHANGE TIMESTAMP FOR expression:
SELECT ROW CHANGE TIMESTAMP FOR SALARY_INFO

AS ROW_CHANGE_STAMP, SALARY_INFO.=*
FROM SALARY_INFO WHERE LEVEL = 2

The result table will be similar to scenario 3 (column UPDATE_TIME will
be ROW_CHANGE_STAMP).

Scenario: Time-based update detection

This scenario demonstrates how optimistic locking is implemented in an
application program using update detection by timestamp, covering three different
scenarios.

In this scenario, the application selects all rows that have changed in the last 30
days.
SELECT * FROM TAB WHERE
ROW CHANGE TIMESTAMP FOR TAB <=
CURRENT TIMESTAMP AND
ROW CHANGE TIMESTAMP FOR TAB >=
CURRENT TIMESTAMP - 30 days;

Scenario 1:
No row change timestamp column is defined on the table. Statement fails
with SQL20431N. This SQL expression is only supported for tables with a
row change timestamp column defined.

Note: This scenario will work on z/OS.

Scenario 2:
A row change timestamp column was defined when the table was created:
CREATE TABLE TAB ( ..., RCT TIMESTAMP NOT NULL
GENERATED ALWAYS

FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP)

This statement returns all rows inserted or updated in the last 30 days.

Scenario 3:
A row change timestamp column was added to the table using the ALTER
TABLE statement at some point in the last 30 days:
ALTER TABLE TAB ADD COLUMN RCT TIMESTAMP NOT NULL
GENERATED ALWAYS

FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP

This statement returns all the rows in the table. Any rows that have not
been modified since the ALTER TABLE statement will use the default
value of the timestamp of the ALTER TABLE statement itself, and all other
rows that have been modified since then will have a unique timestamp.

266 Data Servers, Databases, and Database Objects Guide



Chapter 12. Constraints

Within any business, data must often adhere to certain restrictions or rules. For
example, an employee number must be unique. The database manager provides
constraints as a way to enforce such rules.

The following types of constraints are available:

* NOT NULL constraints

* Unique (or unique key) constraints

* Primary key constraints

* Foreign key (or referential integrity) constraints
* (Table) Check constraints

¢ Informational constraints

Constraints are only associated with tables and are either defined as part of the
table creation process (using the CREATE TABLE statement) or are added to a
table’s definition after the table has been created (using the ALTER TABLE
statement). You can use the ALTER TABLE statement to modify constraints. In
most cases, existing constraints can be dropped at any time; this action does not
affect the table’s structure or the data stored in it.

Note: Unique and primary constraints are only associated with table objects, they
are often enforced through the use of one or more unique or primary key indexes.

Types of constraints

A constraint is a rule that is used for optimization purposes.

There are five types of constraints:

* A NOT NULL constraint is a rule that prevents null values from being entered
into one or more columns within a table.

* A unique constraint (also referred to as a unique key constraint) is a rule that
forbids duplicate values in one or more columns within a table. Unique and
primary keys are the supported unique constraints. For example, a unique
constraint can be defined on the supplier identifier in the supplier table to
ensure that the same supplier identifier is not given to two suppliers.

* A primary key constraint is a column or combination of columns that has the
same properties as a unique constraint. You can use a primary key and foreign
key constraints to define relationships between tables.

A foreign key constraint (also referred to as a referential constraint or a referential
integrity constraint) is a logical rule about values in one or more columns in one
or more tables. For example, a set of tables shares information about a
corporation’s suppliers. Occasionally, a supplier’s name changes. You can define
a referential constraint stating that the ID of the supplier in a table must match a
supplier ID in the supplier information. This constraint prevents insert, update,
or delete operations that would otherwise result in missing supplier information.

* A (table) check constraint (simply called a check constraint) sets restrictions on data
added to a specific table. For example, a table check constraint can ensure that
the salary level for an employee is at least $20,000 whenever salary data is
added or updated in a table containing personnel information.

© Copyright IBM Corp. 1993, 2009 267



An informational constraint is an attribute of a certain type of constraint, but one
that is not enforced by the database manager.

NOT NULL constraints

NOT NULL constraints prevent null values from being entered into a column.

The null value is used in databases to represent an unknown state. By default, all
of the built-in data types provided with the database manager support the
presence of null values. However, some business rules might dictate that a value
must always be provided (for example, every employee is required to provide
emergency contact information). The NOT NULL constraint is used to ensure that
a given column of a table is never assigned the null value. Once a NOT NULL
constraint has been defined for a particular column, any insert or update operation
that attempts to place a null value in that column will fail.

Because constraints only apply to a particular table, they are usually defined along
with a table’s attributes, during the table creation process. The following CREATE
TABLE statement shows how the NOT NULL constraint would be defined for a
particular column:

CREATE TABLE EMPLOYEES (. ..
EMERGENCY_PHONE CHAR(14) NOT NULL,

s

Unique constraints

Unique constraints ensure that the values in a set of columns are unique and not
null for all rows in the table. The columns specified in a unique constraint must be
defined as NOT NULL. The database manager uses a unique index to enforce the
uniqueness of the key during changes to the columns of the unique constraint.

Unique constraints can be defined in the CREATE TABLE or ALTER TABLE
statement using the UNIQUE clause. For example, a typical unique constraint in a
DEPARTMENT table might be that the department number is unique and not null.

shows that a duplicate record is prevented from being added to a table
when a unique constraint exists for the table:

Department
number

001

002 Invalid record

003 «—>— o3

004

005

Figure 21. Unique constraints prevent duplicate data

The database manager enforces the constraint during insert and update operations,
ensuring data integrity.

268 Data Servers, Databases, and Database Objects Guide



A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as the primary key. A table cannot have more than one
unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint
is called the parent key.

* When a unique constraint is defined in a CREATE TABLE statement, a unique
index is automatically created by the database manager and designated as a
primary or unique system-required index.

* When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same columns, that index is designated as unique and
system-required. If such an index does not exist, the unique index is
automatically created by the database manager and designated as a primary or
unique system-required index.

Note: There is a distinction between defining a unique constraint and creating a
unique index. Although both enforce uniqueness, a unique index allows nullable
columns and generally cannot be used as a parent key.

Primary key constraints

You can use primary key and foreign key constraints to define relationships
between tables.

A primary key is a column or combination of columns that has the same properties
as a unique constraint. Because the primary key is used to identify a row in a
table, it must be unique, and must have the NOT NULL attribute. A table cannot
have more than one primary key, but it can have multiple unique keys. Primary
keys are optional, and can be defined when a table is created or altered. They are
also beneficial, because they order the data when data is exported or reorganized.

(Table) Check constraints

A check constraint (also referred to as a table check constraint) is a database rule that
specifies the values allowed in one or more columns of every row of a table.
Specifying check constraints is done through a restricted form of a search
condition.

Foreign key (referential) constraints

Foreign key constraints (also known as referential constraints or referential integrity
constraints) enable you to define required relationships between and within tables.

For example, a typical foreign key constraint might state that every employee in
the EMPLOYEE table must be a member of an existing department, as defined in
the DEPARTMENT table.

Referential integrity is the state of a database in which all values of all foreign keys
are valid. A foreign key is a column or a set of columns in a table whose values are
required to match at least one primary key or unique key value of a row in its
parent table. A referential constraint is the rule that the values of the foreign key are
valid only if one of the following conditions is true:

¢ They appear as values of a parent key.

* Some component of the foreign key is null.

Chapter 12. Constraints 269



To establish this relationship, you would define the department number in the
EMPLOYEE table as the foreign key, and the department number in the
DEPARTMENT table as the primary key.

shows how a record with an invalid key is prevented from being added
to a table when a foreign key constraint exists between two tables:

Employee table

Foreign
—>| key |

Department Employee
number name

001 John Doe
002 Barb Smith
003 Fred Vickers

J( Invalid
| record
027 Jane Doe
Department table
—— Primary
> key |

Department Department
number name

001 Sales

002 Training

003 Communications

Program

015 development

Figure 22. Foreign and primary key constraints

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of that
table.

Referential constraints can be defined in the CREATE TABLE statement or the
ALTER TABLE statement. Referential constraints are enforced by the database
manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE,
MERGE, ADD CONSTRAINT, and SET INTEGRITY statements.

270 Data Servers, Databases, and Database Objects Guide



Referential integrity rules involve the following terms:

Table 51. Referential integrity terms

Concept Terms

Parent key A primary key or a unique key of a referential constraint.

Parent row A row that has at least one dependent row.

Parent table A table that contains the parent key of a referential constraint. A table

can be a parent in an arbitrary number of referential constraints. A table
that is the parent in a referential constraint can also be the dependent in
a referential constraint.

Dependent table | A table that contains at least one referential constraint in its definition. A
table can be a dependent in an arbitrary number of referential
constraints. A table that is the dependent in a referential constraint can
also be the parent in a referential constraint.

Descendent A table is a descendent of table T if it is a dependent of T or a
table descendent of a dependent of T.

Dependent row | A row that has at least one parent row.

Descendent row | A row is a descendent of row r if it is a dependent of r or a descendent
of a dependent of r.

Referential cycle | A set of referential constraints such that each table in the set is a
descendent of itself.

Self-referencing | A table that is a parent and a dependent in the same referential
table constraint. The constraint is called a self-referencing constraint.

Self-referencing | A row that is a parent of itself.
row

The purpose of a referential constraint is to guarantee that table relationships are
maintained and that data entry rules are followed. This means that as long as a
referential constraint is in effect, the database manager guarantees that for each
row in a child table that has a non-null value in its foreign key columns, a row
exists in a corresponding parent table that has a matching value in its parent key.

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a foreign key (or referential) constraint could be
violated. The database manager handles these types of situations by enforcing a set
of rules that are associated with each referential constraint. This set of rules consist
of:

¢ An insert rule
* An update rule
e A delete rule

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a referential constraint could be violated. For
example,

* An insert operation could attempt to add a row of data to a child table that has

a value in its foreign key columns that does not match a value in the
corresponding parent table’s parent key.

* An update operation could attempt to change the value in a child table’s foreign
key columns to a value that has no matching value in the corresponding parent
table’s parent key.

Chapter 12. Constraints 271



* An update operation could attempt to change the value in a parent table’s
parent key to a value that does not have a matching value in a child table’s
foreign key columns.

* A delete operation could attempt to remove a record from a parent table that has
a matching value in a child table’s foreign key columns.

The database manager handles these types of situations by enforcing a set of rules
that are associated with each referential constraint. This set of rules consists of:

¢ An insert rule
* An update rule
e A delete rule

Insert rule

The insert rule of a referential constraint is that a non-null insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null. This
rule is implicit when a foreign key is specified.

Update rule

The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The update rule
applies when a row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is
updated, the following rules apply:

* If any row in the dependent table matches the original value of the key, the
update is rejected when the update rule is RESTRICT.

 If any row in the dependent table does not have a corresponding parent key
when the update statement is completed (excluding AFTER triggers), the update
is rejected when the update rule is NO ACTION.

The value of the parent unique keys cannot be changed if the update rule is
RESTRICT and there are one or more dependent rows. However, if the update rule
is NO ACTION, parent unique keys can be updated as long as every child has a
parent key by the time the update statement completes. A non-null update value of
a foreign key must be equal to a value of the primary key of the parent table of the
relationship.

Also, the use of NO ACTION or RESTRICT as update rules for referential
constraints determines when the constraint is enforced. An update rule of
RESTRICT is enforced before all other constraints, including those referential
constraints with modifying rules such as CASCADE or SET NULL. An update rule
of NO ACTION is enforced after other referential constraints. Note that the
SQLSTATE returned is different depending on whether the update rule is
RESTRICT or NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when a
foreign key is specified. NO ACTION means that a non-null update value of a
foreign key must match some value of the parent key of the parent table when the
update statement is completed.

The value of a composite foreign key is null if any component of the value is null.

272  Data Servers, Databases, and Database Objects Guide



Delete rule

The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET
NULL. SET NULL can be specified only if some column of the foreign key allows
null values.

If the identified table or the base table of the identified view is a parent, the rows
selected for delete must not have any dependents in a relationship with a delete
rule of RESTRICT, and the DELETE must not cascade to descendent rows that
have dependents in a relationship with a delete rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected
rows are deleted. Any rows that are dependents of the selected rows are also
affected:

* The nullable columns of the foreign keys of any rows that are their dependents
in a relationship with a delete rule of SET NULL are set to the null value.

* Any rows that are their dependents in a relationship with a delete rule of
CASCADE are also deleted, and the above rules apply, in turn, to those rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign key
refers to an existing parent row after the other referential constraints have been
enforced.

The delete rule of a referential constraint applies only when a row of the parent
table is deleted. More precisely, the rule applies only when a row of the parent
table is the object of a delete or propagated delete operation (defined below), and
that row has dependents in the dependent table of the referential constraint.
Consider an example where P is the parent table, D is the dependent table, and p
is a parent row that is the object of a delete or propagated delete operation. The
delete rule works as follows:

e With RESTRICT or NO ACTION, an error occurs and no rows are deleted.

* With CASCADE, the delete operation is propagated to the dependents of p in
table D.

* With SET NULL, each nullable column of the foreign key of each dependent of p
in table D is set to null.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P, or a dependent of a table to which delete operations from P cascade.

The following restrictions apply to delete-connected relationships:

* When a table is delete-connected to itself in a referential cycle of more than one
table, the cycle must not contain a delete rule of either RESTRICT or SET NULL.

* A table must not both be a dependent table in a CASCADE relationship
(self-referencing or referencing another table) and have a self-referencing
relationship with a delete rule of either RESTRICT or SET NULL.

* When a table is delete-connected to another table through multiple relationships
where such relationships have overlapping foreign keys, these relationships must
have the same delete rule and none of these can be SET NULL.

* When a table is delete-connected to another table through multiple relationships
where one of the relationships is specified with delete rule SET NULL, the
foreign key definition of this relationship must not contain any distribution key
or MDC key column, or add data partitioning key column, or RCT key column.

Chapter 12. Constraints 273



* When two tables are delete-connected to the same table through CASCADE
relationships, the two tables must not be delete-connected to each other where
the delete connected paths end with delete rule RESTRICT or SET NULL.

Informational constraints

An informational constraint is a constraint attribute that can be used by the SQL
compiler to improve the access to data. Informational constraints are not enforced
by the database manager, and are not used for additional verification of data;
rather, they are used to improve query performance.

Informational constraints are defined using the CREATE TABLE or ALTER TABLE
statements. You first add referential integrity or check constraints and then
associate constraint attributes to them specifying whether the database manager is
to enforce the constraint or not; and, whether the constraint is to be used for query
optimization or not.

Designing constraints

When designing and creating constraints, it is a good idea to use a naming
convention that properly identifies the different types constraints. This is
particularly important for diagnosing errors that might occur.

You can design the following types of constraints:
* NOT NULL constraints

* Unique constraints

* Primary key constraints

* (Table) Check constraints

* Foreign key (referential) constraints

¢ Information constraints

Designing unique constraints

Unique constraints ensure that every value in the specified key is unique. A table
can have any number of unique constraints, with one unique constraint defined as
a primary key.

Restrictions
* A unique constraint might not be defined on a subtable.
* There can be only one primary key per table.

You define a unique constraint with the UNIQUE clause in the CREATE TABLE or
ALTER TABLE statements. The unique key can consist of more than one column.
More than one unique constraint is allowed on a table.

Once established, the unique constraint is enforced automatically by the database
manager when an INSERT or UPDATE statement modifies the data in the table.
The unique constraint is enforced through a unique index.

When a unique constraint is defined in an ALTER TABLE statement and an index
exists on the same set of columns of that unique key, that index becomes the

unique index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The primary
key can be used as the parent key in a referential constraint (along with other

274  Data Servers, Databases, and Database Objects Guide



unique constraints). You define a primary key with the PRIMARY KEY clause in
the CREATE TABLE or ALTER TABLE statement. The primary key can consist of
more than one column.

A primary index forces the value of the primary key to be unique. When a table is
created with a primary key, the database manager creates a primary index on that
key.

Some performance tips for indexes used as unique constraints include:

When performing an initial load of an empty table with indexes, LOAD gives
better performance than IMPORT. This is true no matter whether you are using the
INSERT or REPLACE modes of LOAD. When appending a substantial amount of
data to an existing table with indexes (using IMPORT INSERT, or LOAD INSERT),
LOAD gives slightly better performance than IMPORT. If you are using the
IMPORT command for an initial large load of data, create the unique key after the
data has been imported or loaded. This avoids the overhead of maintaining the
index while the table is being loaded. It also results in the index using the least
amount of storage. If you are using the load utility in REPLACE mode, create the
unique key before loading the data. In this case, creation of the index during the
load is more efficient than using the CREATE INDEX statement after the load.

Designing primary key constraints

Each table can have one primary key. A primary key is a column or combination of
columns that has the same properties as a unique constraint. You can use a
primary key and foreign key constraints to define relationships between tables.

Because the primary key is used to identify a row in a table, it should be unique
and have very few additions or deletions. A table cannot have more than one
primary key, but it can have multiple unique keys. Primary keys are optional, and
can be defined when a table is created or altered, using the PRIMARY KEY clause.
They are also beneficial, because they order the data when data is exported or
reorganized.

Primary key constraints are designed like unique constraints, as described in
[‘Designing unique constraints” on page 274 The only difference is that you can
have only one primary key constraint per table, whereas, you can have many
unique constraints.

Note: You can have primary key constraints based on composite primary keys.

Designing check constraints

When creating check constraints, one of two things can happen: (i) all the rows
meet the check constraint, or (ii) some or all the rows do not meet the check
constraint.

All the rows meet the check constraint
When all the rows meet the check constraint, the check constraint will be
created successfully. Future attempts to insert or update data that does not
meet the constraint business rule will be rejected.

Some or all the rows do not meet the check constraint
When there are some rows that do not meet the check constraint, the check
constraint will not be created (that is, the ALTER TABLE statement will
fail). The ALTER TABLE statement, which adds a new constraint to the
EMPLOYEE table, is shown below. The check constraint is named

Chapter 12. Constraints 275



CHECK_JOB. The database manager will use this name to inform you
about which constraint was violated if an INSERT or UPDATE statement
fails. The CHECK clause is used to define a table-check constraint.

ALTER TABLE EMPLOYEE

ADD CONSTRAINT check_job
CHECK (JOB IN ('Engineer', 'Sales', 'Manager'));

An ALTER TABLE statement was used because the table had already been
defined. If there are values in the EMPLOYEE table that conflict with the
constraint being defined, the ALTER STATEMENT will not be completed
successfully.

As check constraints and other types of constraints are used to implement business
rules, you may need to change them from time to time. This could happen when
the business rules change in your organization. Whenever a check constraint needs
to be changed, you must drop it and recreate a new one. Check constraints can be
dropped at any time, and this action will not affect your table or the data within it.
When you drop a check constraint, you must be aware that data validation
performed by the constraint will no longer be in effect.

Comparison of check constraints and BEFORE triggers
You need to consider the difference between check constraints when considering
whether to use triggers or check constraints to preserve the integrity of your data.

The integrity of the data in a relational database must be maintained as multiple
users access and change the data. Whenever data is shared, there is a need to
ensure the accuracy of the values within databases.

Check constraints
A (table) check constraint sets restrictions on data added to a specific table.
You can use a table check constraint to define restrictions, beyond those of
the data type, on the values that are allowed for a column in the table.
Table check constraints take the form of range checks or checks against
other values in the same row of the same table.

If the rule applies for all applications that use the data, use a table check
constraint to enforce your restriction on the data allowed in the table. Table
check constraints make the restriction generally applicable and easier to
maintain.

The enforcement of check constraints is important for maintaining data
integrity, but it also carries a certain amount of overhead that can impact
performance whenever large volumes of data are modified.

BEFORE triggers
By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually
modified. These can be used to transform input from the application (user
view of the data) to an internal database format where desired. BEFORE
triggers can also be used to cause other non-database operations to be
activated through user-defined functions.

In addition to modification, a common use of the BEFORE triggers is for
data verification using the SIGNAL clause.

There are two differences between BEFORE triggers and check constraints
when used for data verification:

1. BEFORE triggers, unlike check constraints, are not restricted to access
other values in the same row of the same table.

276 Data Servers, Databases, and Database Objects Guide



2. During a SET INTEGRITY operation on a table after a LOAD operation,
triggers (including BEFORE triggers) are not executed. Check
constraints, however, are verified.

Designing foreign key (referential) constraints

Referential integrity is imposed by adding foreign key (or referential) constraints to
table and column definitions, and to create an index on all the foreign key
columns. Once the index and foreign key constraints are defined, changes to the
data within the tables and columns is checked against the defined constraint.
Completion of the requested action depends on the result of the constraint
checking.

Referential constraints are established with the FOREIGN KEY clause, and the
REFERENCES clause in the CREATE TABLE or ALTER TABLE statements. There
are effects from a referential constraint on a typed table or to a parent table that is
a typed table that you should consider before creating a referential constraint.

The identification of foreign keys enforces constraints on the values within the
rows of a table or between the rows of two tables. The database manager checks
the constraints specified in a table definition and maintains the relationships
accordingly. The goal is to maintain integrity whenever one database object
references another, without performance degradation.

For example, primary and foreign keys each have a department number column.
For the EMPLOYEE table, the column name is WORKDEPT, and for the
DEPARTMENT table, the name is DEPTNO. The relationship between these two
tables is defined by the following constraints:

* There is only one department number for each employee in the EMPLOYEE
table, and that number exists in the DEPARTMENT table.

e Each row in the EMPLOYEE table is related to no more than one row in the
DEPARTMENT table. There is a unique relationship between the tables.

e Each row in the EMPLOYEE table that has a non-null value for WORKDEPT is
related to a row in the DEPTNO column of the DEPARTMENT table.

¢ The DEPARTMENT table is the parent table, and the EMPLOYEE table is the
dependent table.

The statement defining the parent table, DEPARTMENT, is:

CREATE TABLE DEPARTMENT
(DEPTNO  CHAR(3) NOT NULL,
DEPTNAME  VARCHAR(29) NOT NULL,
MGRNO CHAR(6) ,
ADMRDEPT ~ CHAR(3) NOT NULL,
LOCATION CHAR(16),
PRIMARY KEY (DEPTNO))
IN RESOURCE

The statement defining the dependent table, EMPLOYEE, is:

CREATE TABLE EMPLOYEE
(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME  VARCHAR(15) NOT NULL,
WORKDEPT ~CHAR(3),
PHONENO  CHAR(4),
PHOTO BLOB(16m)  NOT NULL,
FOREIGN KEY DEPT (WORKDEPT)
REFERENCES DEPARTMENT ON DELETE NO ACTION)
IN RESOURCE

Chapter 12. Constraints 277



By specifying the DEPTNO column as the primary key of the DEPARTMENT table
and WORKDEPT as the foreign key of the EMPLOYEE table, you are defining a
referential constraint on the WORKDEPT values. This constraint enforces
referential integrity between the values of the two tables. In this case, any
employees that are added to the EMPLOYEE table must have a department
number that can be found in the DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO ACTION,
which means that a department cannot be deleted from the DEPARTMENT table if
there are any employees in that department.

Although the previous examples use the CREATE TABLE statement to add a
referential constraint, the ALTER TABLE statement can also be used.

Another example: The same table definitions are used as those in the previous
example. Also, the DEPARTMENT table is created before the EMPLOYEE table.
Each department has a manager, and that manager is listed in the EMPLOYEE
table. MGRNO of the DEPARTMENT table is actually a foreign key of the
EMPLOYEE table. Because of this referential cycle, this constraint poses a slight
problem. You could add a foreign key later. You could also use the CREATE
SCHEMA statement to create both the EMPLOYEE and DEPARTMENT tables at
the same time.

See also, [“Foreign keys in referential constraints” on page 280

Examples of interaction between triggers and referential
constraints

Update operations may cause the interaction of triggers with referential constraints
and check constraints.

and the associated description are representative of the processing that is
performed for an statement that updates data in the database.

SQL statement S1 Determine set of
affected rows (SAR)

[

Process error g
BEFORE triggers

Apply SAR to error e

the target table

I

Apply violation
Constraints Q

|

Process

AFTER triggers M

— cascaded SQL statement

@ = roliback changes to before S1
Figure 23. Processing an statement with associated triggers and constraints

shows the general order of processing for an statement that updates a
table. It assumes a situation where the table includes BEFORE triggers, referential

278  Data Servers, Databases, and Database Objects Guide



constraints, check constraints and AFTER triggers that cascade. The following is a
description of the boxes and other items found in [Figure 23 on page 278

* statement S,

This is the DELETE, INSERT, or UPDATE statement that begins the process. The
statement S; identifies a table (or an updatable view over some table) referred to
as the subject table throughout this description.

¢ Determine set of affected rows
This step is the starting point for a process that repeats for referential constraint

delete rules of CASCADE and SET NULL and for cascaded statements from
AFTER triggers.

The purpose of this step is to determine the set of affected rows for the statement.
The set of rows included is based on the statement:

— for DELETE, all rows that satisfy the search condition of the statement (or the
current row for a positioned DELETE)
— for INSERT, the rows identified by the VALUES clause or the fullselect

— for UPDATE, all rows that satisfy the search condition (or the current row for
a positioned UPDATE).

If the set of affected rows is empty, there will be no BEFORE triggers, changes to
apply to the subject table, or constraints to process for the statement.

* Process BEFORE triggers
All BEFORE triggers are processed in ascending order of creation. Each BEFORE

trigger will process the triggered action once for each row in the set of affected
TOWs.

An error may occur during the processing of a triggered action in which case all
changes made as a result of the original statement S, (so far) are rolled back.
If there are no BEFORE triggers or the set of affected is empty, this step is
skipped.

* Apply the set of affected rows to the subject table
The actual delete, insert, or update is applied using the set of affected rows to
the subject table in the database.

An error may occur when applying the set of affected rows (such as attempting
to insert a row with a duplicate key where a unique index exists) in which case
all changes made as a result of the original statement S; (so far) are rolled back.
* Apply Constraints

The constraints associated with the subject table are applied if set of affected
rows is not empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK OPTION
on views. Referential constraints with delete rules of cascade or set null may
cause additional triggers to be activated.

A violation of any constraint or WITH CHECK OPTION results in an error and
all changes made as a result of S; (so far) are rolled back.

e Process AFTER triggers
All AFTER triggers activated by S; are processed in ascending order of creation.

FOR EACH STATEMENT triggers will process the triggered action exactly once,
even if the set of affected rows is empty. FOR EACH ROW triggers will process
the triggered action once for each row in the set of affected rows.

An error may occur during the processing of a triggered action in which case all
changes made as a result of the original S; (so far) are rolled back.

Chapter 12. Constraints 279



The triggered action of a trigger may include triggered statements that are
DELETE, INSERT or UPDATE statements. For the purposes of this description,
each such statement is considered a cascaded statement.

A cascaded statement is a DELETE, INSERT, or UPDATE statement that is
processed as part of the triggered action of an AFTER trigger. This statement
starts a cascaded level of trigger processing. This can be thought of as assigning
the triggered statement as a new S; and performing all of the steps described
here recursively.

Once all triggered statements from all AFTER triggers activated by each S; have
been processed to completion, the processing of the original S; is completed.

* R = roll back changes to before S,

Any error (including constraint violations) that occurs during processing results
in a roll back of all the changes made directly or indirectly as a result of the
original statement S;. The database is therefore back in the same state as
immediately prior to the execution of the original statement S,

Foreign keys in referential constraints

A foreign key references a primary key or a unique key in the same or another
table. A foreign key assignment indicates that referential integrity is to be
maintained according to the specified referential constraints.

You define a foreign key with the FOREIGN KEY clause in the CREATE TABLE or
ALTER TABLE statement. A foreign key makes its table dependent on another
table called a parent table. The values in the column or set of columns that make
up the foreign key in one table must match the unique key or primary key values
of the parent table.

The number of columns in the foreign key must be equal to the number of
columns in the corresponding primary or unique constraint (called a parent key) of
the parent table. In addition, corresponding parts of the key column definitions
must have the same data types and lengths. The foreign key can be assigned a
constraint name. If you do not assign a name, one is automatically assigned. For
ease of use, it is recommended that you assign a constraint name and do not use the
system-generated name.

The value of a composite foreign key matches the value of a parent key if the
value of each column of the foreign key is equal to the value of the corresponding
column of the parent key. A foreign key containing null values cannot match the
values of a parent key, since a parent key by definition can have no null values.
However, a null foreign key value is always valid, regardless of the value of any of
its non-null parts.

The following rules apply to foreign key definitions:
* A table can have many foreign keys

* A foreign key is nullable if any part is nullable

* A foreign key value is null if any part is null.

When working with foreign keys you can do the following:
* Create a table with zero or more foreign keys.

* Define foreign keys when a table is created or altered.

* Drop foreign keys when a table is altered.

280 Data Servers, Databases, and Database Objects Guide



Table constraint implications for utility operations

If the table being loaded into has referential integrity constraints, the load utility
places the table into the set integrity pending state to inform you that the SET
INTEGRITY statement is required to be run on the table, in order to verify the
referential integrity of the loaded rows. After the load utility has completed, you
will need to issue the SET INTEGRITY statement to carry out the referential
integrity checking on the loaded rows and to bring the table out of the set integrity
pending state.

For example, if the DEPARTMENT and EMPLOYEE tables are the only tables that
have been placed in set integrity pending state, you can execute the following
statement:
SET INTEGRITY FOR DEPARTMENT ALLOW WRITE ACCESS,

EMPLOYEE ALLOW WRITE ACCESS,

IMMEDIATE CHECKED FOR EXCEPTION IN DEPARTMENT,

USE DEPARTMENT_EX,

IN EMPLOYEE USE EMPLOYEE_EX

The import utility is affected by referential constraints in the following ways:

¢ The REPLACE and REPLACE CREATE functions are not allowed if the object
table has any dependents other than itself.

To use these functions, first drop all foreign keys in which the table is a parent.
When the import is complete, re-create the foreign keys with the ALTER TABLE
statement.

* The success of importing into a table with self-referencing constraints depends
on the order in which the rows are imported.

Statement dependencies when changing objects

Statement dependencies include package and cached dynamic SQL and XQuery
statements. A package is a database object that contains the information needed by
the database manager to access data in the most efficient way for a particular
application program. Binding is the process that creates the package the database
manager needs in order to access the database when the application is executed.

Packages and cached dynamic SQL and XQuery statements can be dependent on
many types of objects.

These objects could be explicitly referenced, for example, a table or user-defined
function that is involved in an SQL SELECT statement. The objects could also be
implicitly referenced, for example, a dependent table that needs to be checked to
ensure that referential constraints are not violated when a row in a parent table is
deleted. Packages are also dependent on the privileges which have been granted to
the package creator.

If a package or cached dynamic query statement depends on an object and that
object is dropped, the package or cached dynamic query statement is placed in an
“invalid” state. If a package depends on a user-defined function and that function
is dropped, the package is placed in an “inoperative” state, with the following
conditions:

* A cached dynamic SQL or XQuery statement that is in an invalid state is
automatically re-optimized on its next use. If an object required by the statement
has been dropped, execution of the dynamic SQL or XQuery statement might
fail with an error message.

Chapter 12. Constraints 281



* A package that is in an invalid state is implicitly rebound on its next use. Such a
package can also be explicitly rebound. If a package was marked invalid because
a trigger was dropped, the rebound package no longer invokes the trigger.

* A package that is in an inoperative state must be explicitly rebound before it can
be used.

Federated database objects have similar dependencies. For example, dropping a
server invalidates any packages or cached dynamic SQL referencing nicknames
associated with that server.

In some cases, it is not possible to rebind the package. For example, if a table has
been dropped and not re-created, the package cannot be rebound. In this case, you
need to either re-create the object or change the application so it does not use the
dropped object.

In many other cases, for example if one of the constraints was dropped, it is
possible to rebind the package.

The following system catalog views help you to determine the state of a package
and the package’s dependencies:

* SYSCAT.PACKAGEAUTH
* SYSCAT.PACKAGEDEP
* SYSCAT.PACKAGES

Designing informational constraints

Constraints that are enforced by the database manager when records are inserted
or updated can lead to high amounts of system overhead, especially when loading
large quantities of records that have referential integrity constraints. If an
application has already verified information before inserting a record into the table,
it may be more efficient to use informational constraints, rather than normal
constraints.

Informational constraints tell the database manager what rules the data conforms
to, but the rules are not enforced by the database manager. However, this
information can be used by the DB2 optimizer and could result in better
performance of SQL queries.

The following example illustrates the use of information constraints and how they
work. This simple table contains information on applicants” age and gender:

CREATE TABLE APPLICANTS

AP_NO INT NOT NULL,
GENDER CHAR(1) NOT NULL,

CONSTRAINT GENDEROK

CHECK (GENDER IN ('M', 'F'))

NOT ENFORCED

ENABLE QUERY OPTIMIZATION,

AGE INT NOT NULL,

CONSTRAINT AGEOK
CHECK (AGE BETWEEN 1 AND 80)
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,
)s

282  Data Servers, Databases, and Database Objects Guide



This example contains two clauses that change the behavior of the column
constraints. The first option is NOT ENFORCED, which instructs the database
manager not to enforce the checking of this column when data is inserted or
updated.

The second option is ENABLE QUERY OPTIMIZATION which is used by the
database manager when SELECT statements are run against this table. When this
value is specified, the database manager will use the information in the constraint
when optimizing the SQL.

If the table contains the NOT ENFORCED option, the behavior of insert statements
may appear odd. The following SQL will not result in any errors when run against
the APPLICANTS table:

INSERT INTO APPLICANTS VALUES

(1, 'M", 54),
(2, 'F", 38),
(3, 'm', 21),
(4’ IFI’ 89)’
(5, 'c', 10),

(6, 'S',100),

Applicant number five has a gender (C), for child, and applicant number six has
both an unusual gender and exceeds the age limits of the AGE column. In both
cases the database manager will allow the insert to occur since the constraints are
NOT ENFORCED. The result of a select statement against the table is shown
below:

SELECT * FROM APPLICANTS
WHERE GENDER = 'C';

APPLICANT GENDER AGE

0 record(s) selected.

The database manager returned the incorrect answer to the query, even though the
value 'C’ is found within the table, but the constraint on this column tells the
database manager that the only valid values are either ‘"M’ or 'F’. The ENABLE
QUERY OPTIMIZATION keyword also allowed the database manager to use this
constraint information when optimizing the statement. If this is not the behavior
that you want, then the constraint needs to be changed through the use of the
ALTER TABLE statement, as shown below:

ALTER TABLE APPLICANTS
ALTER CHECK AGEOK DISABLE QUERY OPTIMIZATION

If the query is reissued, the database manager will return the following correct
results:

SELECT = FROM APPLICANTS
WHERE SEC = 'C';

APPLICANT GENDER AGE

5 C 10

1 record(s) selected.

The best scenario for using informational constraints occurs when you can
guarantee that the application program is the only application inserting and
updating the data. If the application already checks all of the information
beforehand (like gender and age) then using informational constraints can result in

Chapter 12. Constraints 283



faster performance and no duplication of effort. Another possible use of
informational constraints is in the design of data warehouses.

Creating and modifying constraints
Constraints can be added to existing tables with the ALTER TABLE statement.

The constraint name cannot be the same as any other constraint specified within an
ALTER TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing data is
checked against the new condition before the statement succeeds.

Creating and modifying unique constraints
Unique constraints can be added to an existing table. The constraint name
cannot be the same as any other constraint specified within the ALTER
TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing
data is checked against the new condition before the statement succeeds.

To define unique constraints using the command line, use the ADD
CONSTRAINT option of the ALTER TABLE statement. For example, the
following statement adds a unique constraint to the EMPLOYEE table that
represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

To modify this constraint, you would have to drop it, and then recreate it.

Creating and modifying primary key constraints
A primary key constraint can be added to an existing table. The constraint
name must be unique within the table (this includes the names of any
referential integrity constraints that are defined). Existing data is checked
against the new condition before the statement succeeds.

To add primary keys using the command line, enter:

ALTER TABLE <name>
ADD CONSTRAINT <column_name>
PRIMARY KEY <column_name>

An existing constraint cannot be modified. To define another column, or
set of columns, as the primary key, the existing primary key definition
must first be dropped, and then recreated.

Creating and modifying check constraints
When a table check constraint is added, packages and cached dynamic
SQL that insert or update the table might be marked as invalid.
To add a table check constraint using the command line, enter:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To modify this constraint, you would have to drop it, and then recreate it.

Creating and modifying foreign key (referential) constraints
A foreign key is a reference to the data values in another table. There are
different types of foreign key constraints.

When a foreign key is added to a table, packages and cached dynamic SQL
containing the following statements might be marked as invalid:

 Statements that insert or update the table containing the foreign key

284  Data Servers, Databases, and Database Objects Guide



 Statements that update or delete the parent table.

To add foreign keys using the command line, enter:

ALTER TABLE <name>
ADD CONSTRAINT <column_name>
FOREIGN KEY <column_name>
ON DELETE <action_type>
ON UPDATE <action_type>

The following examples show the ALTER TABLE statement to add primary
keys and foreign keys to a table:
ALTER TABLE PROJECT
ADD CONSTRAINT PROJECT_KEY
PRIMARY KEY (PROJNO)
ALTER TABLE EMP_ACT
ADD CONSTRAINT ACTIVITY_KEY
PRIMARY KEY (EMPNO, PROJNO, ACTNO)
ADD CONSTRAINT ACT_EMP_REF
FOREIGN KEY (EMPNO)
REFERENCES EMPLOYEE
ON DELETE RESTRICT
ADD CONSTRAINT ACT_PROJ_REF
FOREIGN KEY (PROJNO)
REFERENCES PROJECT
ON DELETE CASCADE

To modify this constraint, you would have to drop it and then recreate it.

Creating and modifying informational constraints
To improve the performance of queries, you can add informational
constraints to your tables. You add informational constraints using the
CREATE TABLE or ALTER TABLE statement when you specify the NOT
ENFORCED option on the DDL.

Restriction: After you define informational constraints on a table, you can
only alter the column names for that table after you remove the
informational constraints.

To specify informational constraints on a table using the command line,
enter the following command for a new table:

ALTER TABLE <name> <constraint attributes> NOT ENFORCED
ENFORCED or NOT ENFORCED: Specifies whether the constraint is

enforced by the database manager during normal operations such as insert,
update, or delete.

¢ ENFORCED cannot be specified for a functional dependency (SQLSTATE
42621).

¢ NOT ENFORCED should only be specified if the table data is
independently known to conform to the constraint. Query results might
be unpredictable if the data does not actually conform to the constraint.

To modify this constraint, you would have to drop it and then recreate it.

Viewing constraint definitions for a table

Constraint definitions on a table can be found in the SYSCAT.INDEXES and
SYSCAT.REFERENCES catalog views.

The UNIQUERULE column of the SYSCAT.INDEXES view indicates the
characteristic of the index. If the value of this column is P, the index is a primary
key, and if it is U, the index is a unique index (but not a primary key).

Chapter 12. Constraints 285



The SYSCAT.REFERENCES catalog view contains referential integrity (foreign key)
constraint information.

Dropping constraints

You can explicitly drop a table check constraint using the ALTER TABLE statement,
or implicitly drop it as the result of a DROP TABLE statement.

To drop constraints, use the ALTER TABLE statement with the DROP or DROP
CONSTRAINT clauses. This allows allow you to BIND and continue accessing the
tables that contain the affected columns. The name of all unique constraints on a
table can be found in the SYSCAT.INDEXES system catalog view.

Dropping unique constraints
You can explicitly drop a unique constraint using the ALTER TABLE
statement.

The DROP UNIQUE clause of the ALTER TABLE statement drops the
definition of the unique constraint constraint-name and all referential
constraints that are dependent upon this unique constraint. The
constraint-name must identify an existing unique constraint.

ALTER TABLE <table-name>
DROP UNIQUE <constraint-name>

Dropping this unique constraint invalidates any packages or cached
dynamic SQL that used the constraint.

Dropping primary key constraints
Use the DROP PRIMARY KEY clause of the ALTER TABLE statement to
drop primary key constraints.

The DROP PRIMARY KEY clause of the ALTER TABLE statement drops
the definition of the primary key and all referential constraints that are
dependent upon this primary key. The table must have a primary key. To
drop a primary key using the command line, enter:

ALTER TABLE <table-name>
DROP PRIMARY KEY

Dropping (table) check constraints
When you drop a check constraint, all packages and cached dynamic
statements with INSERT or UPDATE dependencies on the table are
invalidated. The name of all check constraints on a table can be found in
the SYSCAT.CHECKS catalog view. Before attempting to drop a table check
constraint having a system-generated name, look for the name in the
SYSCAT.CHECKS catalog view.

The following statement drops the check constraint constraint-name. The
constraint-name must identify an existing check constraint defined on the
table. To drop a table check constraint using the command line:

ALTER TABLE <table_name>
DROP <check_constraint_name>

Dropping foreign key (referential) constraints
Use the DROP CONSTRAINT clause of the ALTER TABLE statement to
drop foreign key constraints.

The DROP CONSTRAINT clause of the ALTER TABLE statement drops the
constraint constraint-name. The constraint-name must identify an existing
foreign key constraint, primary key, or unique constraint defined on the
table. To drop foreign keys using the command line, enter:

286 Data Servers, Databases, and Database Objects Guide



ALTER TABLE <table-name>
DROP FOREIGN KEY <foreign_key_name>

The following examples use the DROP PRIMARY KEY and DROP
FOREIGN KEY clauses in the ALTER TABLE statement to drop primary
keys and foreign keys on a table:
ALTER TABLE EMP_ACT
DROP PRIMARY KEY
DROP FOREIGN KEY ACT_EMP_REF
DROP FOREIGN KEY ACT_PROJ_REF
ALTER TABLE PROJECT
DROP PRIMARY KEY

When a foreign key constraint is dropped, packages or cached dynamic
statements containing the following might be marked as invalid:

+ Statements that insert or update the table containing the foreign key
* Statements that update or delete the parent table.

Chapter 12. Constraints 287



288  Data Servers, Databases, and Database Objects Guide



Chapter 13. Indexes

An index is a set of one or more keys, each key pointing to a row in a table. The
SQL optimizer automatically chooses the most efficient way to access data in tables.
The optimizer takes indexes into consideration when determining the fastest access
path to data.

Note: Not all indexes point to rows in a table. MDC block indexes point to extents
(or blocks) of the data. XML indexes for XML data use particular XML pattern
expressions to index paths and values in XML documents stored within a single
column. The data type of that column must be XML. Both MDC block indexes and
XML indexes are system generated indexes.

Indexes are used by the database manager to:

* Improve performance. In most cases, access to data is faster with an index.
Although an index cannot be created for a view, an index created for the table
on which a view is based can sometimes improve the performance of operations
on that view.

* Ensure uniqueness. A table with a unique index cannot have rows with identical
keys.

As data is added to a table, unless other actions have been carried out on the table
or the data being added, the data is simply appended to the bottom of the table.
There is no order to the data. When searching for a particular row of data, each
row of the table from first to last must be checked. Indexes are used as a means to
access the data within the table in an order that might otherwise not be available.

A column value in a row of data can be used to identify the entire row. One or
more columns might be needed to identify the row. Such columns are known as a
key. A column can be used in more than one key.

An index is ordered by the values within a key. Keys can be unique or non-unique.
Each table should have at least one unique key; but can also have other,
non-unique keys. Each index has exactly one key. For example, you might use the
employee ID number (unique) as the key for one index and the department
number (non-unique) as the key for a different index.

Example

Table A in [Figure 24 on page 290 has an index based on the employee numbers in
the table. This key value provides a pointer to the rows in the table. For example,
employee number 19 points to employee KMP. An index allows efficient access to
rows in a table by creating a path to the data through pointers.

Unique indexes can be created to ensure uniqueness of the index key. An index key
is a column or an ordered collection of columns on which an index is defined.
Using a unique index will ensure that the value of each index key in the indexed
column or columns is unique.

[Figure 24 on page 290 shows the relationship between an index and a table.

© Copyright IBM Corp. 1993, 2009 289



Database

Index A l_TabIe A |_ Column—l

17 —lﬂ_, 47 | ABC
19 - 17 | QRS
47 85 FCP
81 81 | MLI

85 93 | CJP
87 87 @ DJS
93 = 19  KMP

Figure 24. Relationship between an index and a table

illustrates the relationships among some database objects. It also shows
that tables, indexes, and long data are stored in table spaces.

System

% Instance
D Database

Database partition group

&= Table spaces

* Tables
* Indexes
* Long data

Figure 25. Relationships among selected database objects

Types of indexes

There are five types of indexes: unique and non-unique indexes, and clustered and
non-clustered indexes, and system generated block indexes for multidimensional
clustered (MDC) tables .

Unique and non-unique indexes

Unique indexes are indexes that help maintain data integrity by ensuring that no
two rows of data in a table have identical key values.

When attempting to create a unique index for a table that already contains data,
values in the column or columns that comprise the index are checked for
uniqueness; if the table contains rows with duplicate key values, the index creation
process fails. Once a unique index has been defined for a table, uniqueness is

290 Data Servers, Databases, and Database Objects Guide



enforced whenever keys are added or changed within the index. (This includes
insert, update, load, import, and set integrity, to name a few.) In addition to
enforcing the uniqueness of data values, a unique index can also be used to
improve data retrieval performance during query processing.

Non-unique indexes, on the other hand, are not used to enforce constraints on the
tables with which they are associated. Instead, non-unique indexes are used solely
to improve query performance by maintaining a sorted order of data values that
are used frequently.

Clustered and non-clustered indexes

Index architectures are classified as clustered or non-clustered. Clustered indexes
are indexes whose order of the rows in the data pages correspond to the order of
the rows in the index. This is why only one clustered index can exist in a given
table, whereas, many non-clustered indexes can exist in the table. In some
relational database management systems, the leaf node of the clustered index
corresponds to the actual data, not a pointer to data that resides elsewhere.

Both clustered and non-clustered indexes contain only keys and record IDs in the
index structure. The record IDs always point to rows in the data pages. The only
difference between clustered and non-clustered indexes is that the database
manager attempts to keep the data in the data pages in the same order as the
corresponding keys appear in the index pages. Thus the database manager will
attempt to insert rows with similar keys onto the same pages. If the table is
reorganized, it will be inserted into the data pages in the order of the index keys.

Reorganizing a table with respect to a chosen index re-clusters the data. A
clustered index is most useful for columns that have range predicates because it
allows better sequential access of data in the table. This results in fewer page
fetches, since like values are on the same data page.

In general, only one of the indexes in a table can have a high degree of clustering.
Improving performance with clustering indexes

Clustering indexes can improve the performance of most query operations because
they provide a more linear access path to data, which has been stored in pages. In
addition, because rows with similar index key values are stored together,
prefetching is usually more efficient when clustering indexes are used.

However, clustering indexes cannot be specified as part of the table definition used
with the CREATE TABLE statement. Instead, clustering indexes are only created by
executing the CREATE INDEX statement with the CLUSTER option specified. Then
the ALTER TABLE statement should be used to add a primary key that
corresponds to the clustering index created to the table. This clustering index will
then be used as the table’s primary key index.

Note: Setting PCTFREE in the table to an appropriate value using the ALTER
TABLE statement can help the table remain clustered by leaving adequate free
space to insert rows in the pages with similar values. For more information, see the
ALTER TABLE statement and “Reducing the need to reorganize tables and
indexes” in Tuning Database Performance.

Generally, clustering is more effectively maintained if the clustering index is
unique.

Chapter 13. Indexes 291



Differences between primary key or unique key constraints and
unique indexes

It is important to understand that there is no significant difference between a
primary unique key constraint and a unique index. The database manager uses a
combination of a unique index and the NOT NULL constraint to implement the
relational database concept of primary and unique key constraints. Therefore,
unique indexes do not enforce primary key constraints by themselves because they
allow null values. (Although null values represent unknown values, when it comes
to indexing, a null value is treated as being equal to other null values.)

Therefore, if a unique index consists of a single column, only one null value is
allowed—more than one null value would violate the unique constraint. Similarly, if
a unique index consists of multiple columns, a specific combination of values and
nulls can be used only once.

Bi-directional indexes

By default, bi-directional indexes allow scans in both the forward and reverse
directions. The ALLOW REVERSE SCANS clause of the CREATE INDEX statement
enables both forward and reverse index scans, that is, in the order defined at index
creation time and in the opposite (or reverse) order. This option allows you to:

e Facilitate MIN and MAX functions
* Fetch previous keys

 Eliminate the need for the database manager to create a temporary table for the
reverse scan

¢ Eliminate redundant reverse order indexes
If DISALLOW REVERSE SCANS is specified then the index cannot be scanned in

reverse order. (But physically it will be exactly the same as an ALLOW REVERSE
SCANS index.)

Designing indexes

Indexes are typically used to speed up access to a table. However, they can also
serve a logical data design purpose.

For example, a unique index does not allow entry of duplicate values in the
columns, thereby guaranteeing that no two rows of a table are the same. Indexes
can also be created to order the values in a column in ascending or descending
sequence.

Note: When creating indexes, keep in mind that while they may improve read
performance, they will negatively impact write performance. This is because for
every row that the database manager writes to a table, it must also update any
affected indexes. Therefore, you should create indexes only when there is a clear
overall performance advantage.

When creating indexes, you must also take into account the structure of the tables
and the type of queries that are most frequently performed on them. For example,
columns appearing in the WHERE clause of a frequently issued query are good
candidates for indexes. In less frequently run queries, however, the cost that an
index incurs for performance in INSERT and UPDATE statement might outweigh
the benefits.

292  Data Servers, Databases, and Database Objects Guide



Similarly, columns that figure in a GROUP BY clause of a frequent query might
benefit from the creation of an index, particularly if the number of values used to
group the rows is small relative to the number of rows being grouped.

Guidelines and considerations when designing indexes

An index is defined by columns in the table. It can be defined by the creator of a
table, or by a user who knows that certain columns require direct access. A
primary index key is automatically created on the primary key, unless a
user-defined index already exists.

An index key is a column or collection of columns on which an index is defined,
and determines the usefulness of an index. Although the order of the columns
making up an index key does not make a difference to index key creation, it
might make a difference to the optimizer when it is deciding whether or not to
use an index.

Any number of indexes can be defined on a particular table, and they can have
a beneficial effect on the performance of queries. The index manager must
maintain the indexes during update, delete and insert operations. Creating a
large number of indexes for a table that receives many updates can slow down
processing of requests. Similarly, large index keys can also slow down processing
of requests. Therefore, use indexes only where a clear advantage for frequent
access exists.

Column data which is not part of the unique index key but which is to be stored
or maintained in the index is called an include column. Include columns can be
specified for unique indexes only. When creating an index with include columns,
only the unique key columns are sorted and considered for uniqueness. The use
of include columns may enable index only access for data retrieval, thus
improving performance.

If the table being indexed is empty, an index is still created, but no index entries
are made until the table is loaded or rows are inserted. If the table is not empty,
the database manager creates the index entries while processing the CREATE
INDEX statement.

For a clustering index, the database manager attempts to place new rows for the
table physically close to existing rows with similar key values (as defined by the
index).

If you want a primary key index to be a clustering index, a primary key should
not be specified on the CREATE TABLE statement. Once a primary key is
created, the associated index cannot be modified. Instead, issue a CREATE
TABLE without a primary key clause. Then issue a CREATE INDEX statement,
specifying clustering attributes. Finally, use the ALTER TABLE statement to add
a primary key that corresponds to the index just created. This index will be used
as the primary key index.

Indexes consume disk space. The amount of disk space varies depending on the
length of the key columns and the number of rows being indexed. The size of
the index increases as more data is inserted into the table. Therefore, consider
the amount of data being indexed when planning the size of the database. Some
of the indexing sizing considerations include:

— Primary and unique key constraints will always create a system-generated
unique index.

— The creation of an MDC table will also create system-generated block indexes.
— XML columns will always cause system-generated indexes to be created.

— It is usually beneficial to create indexes on foreign key constraint columns.

Chapter 13. Indexes 293



Note: The maximum number of columns in an index is 64. However, if you are
indexing a typed table, the maximum number of columns in an index is 63. The
maximum length of an index key, including all overhead, is indexpagesize/4. The
maximum indexes allowed on a table is 32 767. The maximum length of an
index key must not be greater than the index key length limit for the page size.
For column stored lengths, see the “CREATE TABLE statement”. For the key
length limits, see the “SQL and XQuery limits” topic.

Note:

Tools for designing indexes

Once you have created your tables, you need to consider how rapidly the database
manager will be able to retrieve data from them. You can use the Design Advisor
or the db2advis command to help you design your indexes.

Creating useful indexes on your tables can significantly improve query
performance. Like indexes of a book, indexes on tables allow specific information
to be located rapidly, with minimal searching. Using an index to retrieve particular
rows from a table can reduce the number of expensive input/output operations
that the database manager needs to perform. This is because an index allows the
database manager to locate a row by reading in a relatively small number of data
pages, rather than by performing an exhaustive search of all data pages until all
matches are found.

The DB2 Design Advisor is a tool that can help you significantly improve your
workload performance. The task of selecting which indexes, MQTs, clustering
dimensions, or database partitions to create for a complex workload can be quite
daunting. The Design Advisor identifies all of the objects needed to improve the
performance of your workload. Given a set of SQL statements in a workload, the
Design Advisor will generate recommendations for:

* New indexes

* New materialized query tables (MQTs)

* Conversion to multidimensional clustering (MDC) tables
* Redistribution of tables

* Deletion of indexes and MQTs unused by the specified workload (through the
GUI tool)

You can have the Design Advisor implement some or all of these recommendations
immediately or schedule them for a later time.

Using either the Design Advisor GUI or the command-line tool, the Design
Adpvisor can help simplify the following tasks:

* Planning for or setting up a new database
* Workload performance tuning

Space requirements for indexes

When designing indexes, you need to be aware of their space requirements.

For each index, the space needed can be estimated as:

(average index key size + index key overhead) * number of rows * 2

where:

294  Data Servers, Databases, and Database Objects Guide



¢ The “average index key size” is the byte count of each column in the index key.
(When estimating the average column size for VARCHAR and VARGRAPHIC
columns, use an average of the current data size, plus two bytes. Do not use the
maximum declared size.)

* The “index key overhead” depends on the type of table on which the index is
created. For large tables (with or without XML indexes), the value is 11, unless
the table is partitioned in which case the value is 13. For regular tables, the
value is 9 without XML indexes and 11 with XML indexes. For all regular tables
that are partitioned, the value is 11.

* The factor of “2” is for overhead, such as non-leaf pages and free space.

Note:
1. For every column that allows null values, add one extra byte for the null
indicator.

2. For block indexes created internally for multidimensional clustering (MDC)

tables, the “number of rows” would be replaced by the “number of blocks”.
For each index on an XML column, the space needed can be estimated as:
(average index key size + index key overhead) * number of indexed nodes * 2

where:

* The “average index key size” is the sum of the key parts that make up the
index. The XML index is made up of several XML key parts plus a value
(sql-data-type):

fixed overhead + variable overhead + byte count of sql-data-type

where:
— The "fixed overhead” is 14 bytes.
— The "variable overhead” is the average depth of the indexed node plus 4
bytes.
— The byte count of the sql-data-type value follows the same rules as SQL.
* The “number of indexed nodes” is the number of documents to be inserted

multiplied by the number of nodes in a sample document that satisfy the XML
pattern expression (XMLPATTERN) in the index definition.

Indexes created before Version 8 (type-1 indexes) are different from those created at
version 8 (type-2 indexes) and following. To find out what type of index exists for
a table, use the ADMIN_GET_TAB_INFO table function. To convert type-1 indexes
to type-2 indexes, use the REORG INDEXES .... CONVERT command.

When using the REORG INDEXES command, ensure that you have sufficient free
space in the table space where the indexes are stored. The amount of free space
should be equal to the current size of the index. Additional space may be required
if you choose to reorganize the indexes with the ALLOW WRITE ACCESS option.
The additional space is for the logs of the activity affecting the indexes during the
reorganization of the indexes.

Temporary space is required when creating the index. The maximum amount of
temporary space required during index creation can be estimated as:

(average index key size + index key overhead) * number of rows * 3.2

or
(average index key size + index key overhead) * number of indexed nodes * 3.2

Chapter 13. Indexes 295



where the factor of “3.2” is for index overhead, and space required for sorting
during index creation.

Note: In the case of non-unique indexes, only five bytes are required to store
duplicate key entries. The estimate shown above assumes no duplicates. The space
required to store an index may be over-estimated by the formula shown above.

Temporary space is required when inserting if the number of index nodes exceeds
64 KB of data. The amount of temporary space can be estimated as:

(average index key size) * number of indexed nodes * 1.2

The following two formulas can be used to estimate the number of keys per leaf
page (the second provides a more accurate estimate). The accuracy of these
estimates depends largely on how well the averages reflect the actual data.

Note: For SMS table spaces, the minimum required space for leaf pages is 12 KB.
For DMS table spaces, the minimum is an extent.

* A rough estimate of the average number of keys per leaf page is:
(.9 % (U- (Mx2))) * (D + 1)

K+7+ (5*0D)

where:

— U, the usable space on a page, is approximately equal to the page size minus
100. For a page size of 4096, U is 3996.

- M =U / (9 + minimumKeySize)
— D = average number of duplicates per key value
— K = averageKeySize

Remember that minimumKeySize and averageKeysize must have an extra byte for
each nullable key part, and an extra two bytes for the length of each variable
length key part.

If there are include columns, they should be accounted for in minimumKeySize
and averageKeySize.

The “minimumKeySize” is the sum of the key parts that make up the index:
fixed overhead + variable overhead + byte count of sql-data-type

where:
— The "fixed overhead” is 13 bytes.

— The "variable overhead” is the minimum depth of the indexed node plus 4
bytes.

— The byte count of the sql-data-type value follows the same rules as SQL.

The .9 can be replaced by any (100 - pctfree)/100 value, if a percent free value
other than the default value of ten percent is specified during index creation.

* A more accurate estimate of the average number of keys per leaf page is:
L = number of leaf pages = X / (avg number of keys on leaf page)

where X is the total number of rows in the table.

For the index on an XML column, X is the total number of indexed nodes in the
column.

You can estimate the original size of an index as:
(L + 2L/(average number of keys on leaf page)) * pagesize

296 Data Servers, Databases, and Database Objects Guide



For DMS table spaces, add the sizes of all indexes on a table and round up to a
multiple of the extent size for the table space on which the index resides.

You should provide additional space for index growth due to INSERT/UPDATE
activity, from which page splits may result.

Use the following calculation to obtain a more accurate estimate of the original
index size, as well as an estimate of the number of levels in the index. (This may
be of particular interest if include columns are being used in the index
definition.) The average number of keys per non-leaf page is roughly:

(.9 % (U - (Mx2))) * (D + 1)

where:

— U, the usable space on a page, is approximately equal to the page size minus
100. For a page size of 4096, U is 3996.

— D is the average number of duplicates per key value on non-leaf pages (this
will be much smaller than on leaf pages, and you may want to simplify the
calculation by setting the value to 0).

- M =U / (9 + minimumKeySize for non-leaf pages)
— K = averageKeySize for non-leaf pages

The minimumKeySize and the averageKeySize for non-leaf pages will be the same
as for leaf pages, except when there are include columns. Include columns are
not stored on non-leaf pages.

You should not replace .9 with (100 - pctfree)/100, unless this value is greater
than .9, because a maximum of 10 percent free space will be left on non-leaf
pages during index creation.

The number of non-leaf pages can be estimated as follows:

if L > 1 then {P++; Z++}

While (Y > 1)

{
p
Y
7++

}

P
Y

+Y
/N

where:
— P is the number of pages (0 initially).
— L is the number of leaf pages.
— N is the number of keys for each non-leaf page.
-Y=L/N
— Z is the number of levels in the index tree (1 initially).
Total number of pages is:
T=(L+P+2)*1.0002

The additional 0.02 percent is for overhead, including space map pages.
The amount of space required to create the index is estimated as:

T * pagesize

Creating indexes

Indexes can be created to order the values in a column in ascending or descending
sequence. You can use the CREATE INDEX statement, the DB2 Design Advisor, or
the db2advis Design Advisor command to create the indexes.

Chapter 13. Indexes 297



For example, to create an index using the CREATE INDEX statement from the
command line, enter:
CREATE UNIQUE INDEX EMP_IX

ON EMPLOYEE (EMPNO)
INCLUDE (FIRSTNAME, JOB)

The INCLUDE clause, applicable only on unique indexes, specifies additional
columns to be appended to the set of index key columns. Any columns included
with this clause are not used to enforce uniqueness. These included columns may
improve the performance of some queries through index only access. This option
might:

 Eliminate the need to access data pages for more queries

* Eliminate redundant indexes

If SELECT EMPNO, FIRSTNAME, JOB FROM EMPLOYEE is issued to the table on
which this index resides, all of the required data can be retrieved from the index
without reading data pages. This improves performance.

Note: In indexes created in Version 8 or later, known as type 2 indexes, keys are
just marked as deleted when a row is deleted or updated. There are referred to as
pseudo-deleted keys. These keys are not physically removed from a page until
clean up is done some time after the deletion or update has commited. Such a
clean up might be done by a subsequent transaction which is changing the page
where the key is marked deleted. Clean up of pseudo-deleted keys can be
explicitly triggered using the CLEANUP ONLY ALL option of the REORG
INDEXES utility.

Indexes for tables in a partitioned database environment are built using the same
CREATE INDEX statement. Data in the indexes is distributed based on the
distribution key of the table. When this is done, a B+ tree is created on each
database partition in the database partition group. Each B+ tree indexes the part of
the table belonging to that database partition. Columns in a unique index defined
on a multi-partition database must be a superset of the columns in the distribution
key.

Note: In Version 9.5, on Solaris platforms, the CREATE INDEX statement will hang
if a RAW device is used. Sun will be fixing this problem and releasing the fix in a
kernel patch.

Modifying indexes

If you want to modify your index, you have to drop the index first and then create
the index again. There is no ALTER INDEX statement.

For example, you cannot add a column to the list of key columns without
dropping the previous definition and creating a new index. You can add a
comment to describe the purpose of the index using the COMMENT statement.

Renaming indexes
You can use the RENAME statement to rename an existing index.
To rename an existing index, issue the following statement from the command line:

RENAME INDEX <source index name> TO <target index name>

* <source index name> is the name of the existing index that is to be renamed.
The name, including the schema name, must identify an index that already

298 Data Servers, Databases, and Database Objects Guide



exists in the database. It must not be the name of an index on a declared global
temporary table. The schema name must not be SYSIBM, SYSCAT, SYSFUN, or
SYSSTAT.

* <target index name> specifies the new name for the index without a schema
name. The schema name of the source object is used to qualify the new name for
the object. The qualified name must not identify an index that already exists in
the database.

When renaming an index, the source index must not be a system-generated index.
If the statement is successful, the system catalog tables are updated to reflect the
new index name.

Rebuilding indexes

Certain database operations, such as a rollforward through a create index that was
not fully logged, can cause an index object to become invalid because the index is

not created during the rollforward operation. The index object can be recovered by
recreating the indexes in it.

When the database manager detects that an index is no longer valid, it
automatically attempts to rebuild it. When the rebuild takes place, it is controlled
by the indexrec parameter of the database or database manager configuration file.
There are five possible settings for this:

* SYSTEM

e RESTART

* RESTART_NO_REDO
* ACCESS

* ACCESS_NO_REDO

RESTART_NO_REDO and ACCESS_NO_REDO are similar to RESTART and
ACCESS.

The NO_REDO options mean that even if the index was fully logged during the
original operation, such as CREATE INDEX, the index will not be recreated during
rollforward, but will instead be created either at restart time or first access. See the
indexrec parameter for more information.

If database restart time is not a concern, it is better for invalid indexes to be rebuilt
as part of the process of returning a database to a consistent state. When this
approach is used, the time needed to restart a database will be longer due to the
index recreation process; however, normal processing will not be impacted once
the database has been returned to a consistent state.

On the other hand, when indexes are rebuilt as they are accessed, the time taken to
restart a database is faster, but an unexpected degradation in response time may
occur as a result of an index being recreated; for example, users accessing a table
that has an invalid index would have to wait for the index to be rebuilt. In
addition, unexpected locks may be acquired and held long after an invalid index
has been recreated, especially if the transaction that caused the index recreation to
occur never terminates (that is, commits or rolls back the changes made).

Chapter 13. Indexes 299



Dropping indexes

You cannot change any clause of an index definition; you must drop the index and
create it again. (Dropping an index does not cause any other objects to be dropped
but might cause some packages to be invalidated.). Use the DROP statement to
drop indexes.

A primary key or unique key index cannot be explicitly dropped. You must use

one of the following methods to drop it:

* If the primary index or unique constraint was created automatically for the
primary key or unique key, dropping the primary key or unique key will cause
the index to be dropped. Dropping is done through the ALTER TABLE
statement.

* If the primary index or the unique constraint was user-defined, the primary key
or unique key must be dropped first, through the ALTER TABLE statement.
After the primary key or unique key is dropped, the index is no longer
considered the primary index or unique index, and it can be explicitly dropped.

To drop an index using the command line, enter:
DROP INDEX <index_name>

The following statement drops the index called PH:
DROP INDEX PH

Any packages and cached dynamic SQL and XQuery statements that depend on

the dropped indexes are marked invalid. The application program is not affected
by changes resulting from adding or dropping indexes.

300 Data Servers, Databases, and Database Objects Guide



Chapter 14. Triggers

A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional business
rules, which are rules that involve different states of the data (for example, a salary
that cannot be increased by more than 10 percent).

Using triggers places the logic that enforces business rules inside the database. This
means that applications are not responsible for enforcing these rules. Centralized
logic that is enforced on all of the tables means easier maintenance, because
changes to application programs are not required when the logic changes.

The following are specified when creating a trigger:
* The subject table specifies the table for which the trigger is defined.

* The trigger event defines a specific SQL operation that modifies the subject table.
The event can be an insert, update, or delete operation.

* The trigger activation time specifies whether the trigger should be activated before
or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected rows.
These are the rows of the subject table that are being inserted, updated, or deleted.
The trigger granularity specifies whether the actions of the trigger are performed
once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of statements
that are executed whenever the trigger is activated. The statements are only
executed if the search condition evaluates to true. If the trigger activation time is
before the trigger event, triggered actions can include statements that select, set
transition variables, or signal SQL states. If the trigger activation time is after the
trigger event, triggered actions can include statements that select, insert, update,
delete, or signal SQL states.

The triggered action can refer to the values in the set of affected rows using
transition variables. Transition variables use the names of the columns in the subject
table, qualified by a specified name that identifies whether the reference is to the
old value (before the update) or the new value (after the update). The new value
can also be changed using the SET Variable statement in before, insert, or update
triggers.

Another means of referring to the values in the set of affected rows is to use

transition tables. Transition tables also use the names of the columns in the subject
table, but specify a name to allow the complete set of affected rows to be treated as

© Copyright IBM Corp. 1993, 2009 301



a table. Transition tables can only be used in AFTER triggers (that is, not with
BEFORE and INSTEAD OF triggers), and separate transition tables can be defined
for old and new values.

Multiple triggers can be specified for a combination of table, event (INSERT,
UPDATE, DELETE, INSTEAD OF), or activation time (BEFORE, AFTER). When
more than one trigger exists for a particular table, event, and activation time, the
order in which the triggers are activated is the same as the order in which they
were created. Thus, the most recently created trigger is the last trigger to be
activated.

The activation of a trigger might cause trigger cascading, which is the result of the
activation of one trigger that executes statements that cause the activation of other
triggers or even the same trigger again. The triggered actions might also cause
updates resulting from the application of referential integrity rules for deletions
that can, in turn, result in the activation of additional triggers. With trigger
cascading, a chain of triggers and referential integrity delete rules can be activated,
causing significant change to the database as a result of a single INSERT, UPDATE,
or DELETE statement.

When multiple triggers have insert, update, or delete actions against the same
object, conflict resolution mechanism, like temporary tables, are used to resolve
access conflicts, and this can have a noticeable impact on performance, particularly
in partitioned database environments.

Types of triggers

A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

The following types of triggers are supported:

BEFORE triggers
Run before an update, or insert. Values that are being updated or inserted
can be modified before the database is actually modified. You can use
triggers that run before an update or insert in several ways:

* To check or modify values before they are actually updated or inserted
in the database. This is useful if you need to transform data from the
way the user sees it to some internal database format.

* To run other non-database operations coded in user-defined functions.

BEFORE DELETE triggers
Run before a delete. Checks values (a raises an error, if necessary).

AFTER triggers
Run after an update, insert, or delete. You can use triggers that run after an
update or insert in several ways:

* To update data in other tables. This capability is useful for maintaining
relationships between data or in keeping audit trail information.

302 Data Servers, Databases, and Database Objects Guide



* To check against other data in the table or in other tables. This capability
is useful to ensure data integrity when referential integrity constraints
aren’t appropriate, or when table check constraints limit checking to the
current table only.

* To run non-database operations coded in user-defined functions. This
capability is useful when issuing alerts or to update information outside
the database.

INSTEAD OF triggers
Describe how to perform insert, update, and delete operations against
views that are too complex to support these operations natively. They
allow applications to use a view as the sole interface for all SQL operations
(insert, delete, update and select).

BEFORE triggers

By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually modified.
These can be used to transform input from the application (user view of the data)
to an internal database format where desired.

These BEFORE triggers can also be used to cause other non-database operations to
be activated through user-defined functions.

BEFORE DELETE triggers run before a delete operation. They check the values and
raise an error, if necessary.

Examples

The following example defines a DELETE TRIGGER with a complex default:

CREATE TRIGGER triggerl
BEFORE UPDATE ON tablel
REFERENCING NEW AS N
WHEN (N.expected delivery date IS NULL)
SET N.expected_delivery date = N.order_date + 5 days;

The following example defines a DELETE TRIGGER with a cross table constraint
that is not a referential integrity constraint:
CREATE TRIGGER trigger2
BEFORE UPDATE ON table2
REFERENCING NEW AS N

WHEN (n.salary > (SELECT maxsalary FROM salaryguide WHERE rank = n.position))
SIGNAL SQLSTATE '78000' SET MESSAGE TEXT = 'Salary out of range');

AFTER triggers

Triggers that run after an update, insert, or delete can be used in several ways.

 Triggers can update, insert, or delete data in the same or other tables. This is
useful to maintain relationships between data or to keep audit trail information.

 Triggers can check data against values of data in the rest of the table or in other
tables. This is useful when you cannot use referential integrity constraints or
check constraints because of references to data from other rows from this or
other tables.

 Triggers can use user-defined functions to activate non-database operations. This
is useful, for example, for issuing alerts or updating information outside the
database.

Chapter 14. Triggers 303



Example

The following example presents an AFTER trigger that increases the number of
employees when a new employee is hired.
CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE

FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

INSTEAD OF triggers

INSTEAD OF triggers describe how to perform insert, update, and delete
operations against complex views. INSTEAD OF triggers allow applications to use
a view as the sole interface for all SQL operations (insert, delete, update and
select).

Usually, INSTEAD OF triggers contain the inverse of the logic applied in a view
body. For example, consider a view that decrypts columns from its source table.
The INSTEAD OF trigger for this view encrypts data and then inserts it into the
source table, thus performing the symmetrical operation.

Using an INSTEAD OF trigger, the requested modify operation against the view
gets replaced by the trigger logic, which performs the operation on behalf of the
view. From the perspective of the application this happens transparently, as it
perceives that all operations are performed against the view. Only one INSTEAD
OF trigger is allowed for each kind of operation on a given subject view.

The view itself must be an untyped view or an alias that resolves to an untyped
view. Also, it cannot be a view that is defined using WITH CHECK OPTION (a
symmetric view) or a view on which a symmetric view has been defined directly
or indirectly.

Example

The following example presents three INSTEAD OF triggers that provide logic for
INSERTs, UPDATEs, and DELETEs to the defined view (EMPV). The view EMPV
contains a join in its from clause and therefore cannot natively support any modify
operation.

CREATE VIEW EMPV(EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME)
AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME
FROM EMPLOYEE, DEPARTMENT WHERE
EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV
REFERENCING NEW AS NEWEMP FOR EACH ROW
INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,
WORKDEPT, PHONENO, HIREDATE)
VALUES (EMPNO, FIRSTNME, MIDINIT, LASTNAME,
COALESCE ((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),
RAISE_ERROR('70001', 'Unknown dept name')),
PHONENO, HIREDATE)

CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV
REFERENCING NEW AS NEWEMP OLD AS OLDEMP
FOR EACH ROW
BEGIN ATOMIC
VALUES (CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0

304 Data Servers, Databases, and Database Objects Guide



ELSE RAISE_ERROR('70002', 'Must not change EMPNO') END);
UPDATE EMPLOYEE AS E
SET (FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)
= (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,
COALESCE ((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),
RAISE_ERROR ('70001', 'Unknown dept name')),
NEWEMP.PHONENO, NEWEMP.HIREDATE)
WHERE NEWEMP.EMPNO = E.EMPNO;
END

CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV
REFERENCING OLD AS OLDEMP FOR EACH ROW
DELETE FROM EMPLOYEE AS E WHERE E.EMPNO = OLDEMP.EMPNO

Designing triggers

When creating a trigger, you must associate it with a table; when creating an
INSTEAD OF trigger, you must associate it with a view. This table or view is
called the target table of the trigger. The term modify operation refers to any change
in the state of the target table.

A modify operation is initiated by:

* an INSERT statement

¢ an UPDATE statement, or a referential constraint which performs an UPDATE
* a DELETE statement, or a referential constraint which performs a DELETE

* a MERGE statement

You must associate each trigger with one of these three types of modify operations.
The association is called the trigger event for that particular trigger.

You must also define the action, called the triggered action, that the trigger performs
when its trigger event occurs. The triggered action consists of one or more
statements which can execute either before or after the database manager performs
the trigger event. Once a trigger event occurs, the database manager determines
the set of rows in the subject table that the modify operation affects and executes
the trigger.

Guidelines when creating triggers:
When creating a trigger, you must declare the following attributes and
behavior:

¢ The name of the trigger.
¢ The name of the subject table.

* The trigger activation time (BEFORE or AFTER the modify operation
executes).

* The trigger event (INSERT, DELETE, or UPDATE).

* The old transition variable value, if any.

* The new transition variable value, if any.

¢ The old transition table value, if any.

* The new transition table value, if any.

* The granularity (FOR EACH STATEMENT or FOR EACH ROW).

* The triggered action of the trigger (including a triggered action condition
and triggered statement(s)).

o If the trigger event is UPDATE a trigger-column list if the trigger should
only fire when specific columns are specified in the update statement.

Chapter 14. Triggers 305



Designing multiple triggers:
When triggers are defined using the CREATE TRIGGER statement, their
creation time is registered in the database in form of a timestamp. The
value of this timestamp is subsequently used to order the activation of
triggers when there is more than one trigger that should be run at the
same time. For example, the timestamp is used when there is more than
one trigger on the same subject table with the same event and the same
activation time. The timestamp is also used when there are one or more
AFTER or INSTEAD OF triggers that are activated by the trigger event and
referential constraint actions caused directly or indirectly (that is,
recursively by other referential constraints) by the triggered action.

Consider the following two triggers:

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
BEGIN ATOMIC

UPDATE COMPANY_STATS
SET NBEMP = NBEMP + 1;
END

CREATE TRIGGER NEW_HIRED_DEPT
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS EMP
FOR EACH ROW

BEGIN ATOMIC

UPDATE DEPTS

SET NBEMP = NBEMP + 1

WHERE DEPT_ID = EMP.DEPT_ID;
END

The above triggers are activated when you run an INSERT operation on
the employee table. In this case, the timestamp of their creation defines
which of the above two triggers is activated first.

The activation of the triggers is conducted in ascending order of the
timestamp value. Thus, a trigger that is newly added to a database runs
after all the other triggers that are previously defined.

Old triggers are activated before new triggers to ensure that new triggers
can be used as incremental additions to the changes that affect the database.
For example, if a triggered statement of trigger T1 inserts a new row into a
table T, a triggered statement of trigger T2 that is run after T1 can be used
to update the same row in T with specific values. Because the activation
order of triggers is predictable, you can have multiple triggers on a table
and still know that the newer ones will be acting on a table that has
already been modified by the older ones.

Trigger interactions with referential constraints:
A trigger event can occur as a result of changes due to referential
constraint enforcement. For example, given two tables DEPT and EMP, if
deleting or updating DEPT causes propagated deletes or updates to EMP
by means of referential integrity constraints, then delete or update triggers
defined on EMP become activated as a result of the referential constraint
defined on DEPT. The triggers on EMP are run either BEFORE or AFTER
the deletion (in the case of ON DELETE CASCADE) or update of rows in
EMP (in the case of ON DELETE SET NULL), depending on their
activation time.

306 Data Servers, Databases, and Database Objects Guide



Specifying what makes a trigger fire (triggering statement or
event)

Every trigger is associated with an event. Triggers are activated when their
corresponding event occurs in the database. This trigger event occurs when the
specified action, either an UPDATE, INSERT, or DELETE statement (including
those caused by actions of referential constraints), is performed on the target table.

For example:

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The above statement defines the trigger new_hire, which activates when you
perform an insert operation on table employee.

You associate every trigger event, and consequently every trigger, with exactly one
target table and exactly one modify operation. The modify operations are:

Insert operation
An insert operation can only be caused by an INSERT statement or the
insert operation of a MERGE statement. Therefore, triggers are not
activated when data is loaded using utilities that do not use INSERT, such
as the LOAD command.

Delete operation
A delete operation can be caused by a DELETE statement, or the delete
operation of a MERGE statement, or as a result of a referential constraint
rule of ON DELETE CASCADE.

Update operation
An update operation can be caused by an UPDATE statement, or the
update operation of a MERGE statement, or as a result of a referential
constraint rule of ON DELETE SET NULL.

If the trigger event is an update operation, the event can be associated with
specific columns of the target table. In this case, the trigger is only activated if the
update operation attempts to update any of the specified columns. This provides a
further refinement of the event that activates the trigger.

For example, the following trigger, REORDER, activates only if you perform an
update operation on the columns ON_HAND or MAX_STOCKED, of the table
PARTS:

CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

REFERENCING NEW AS N_ROW

FOR EACH ROW

WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)

BEGIN ATOMIC

VALUES (ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO) ) ;

END

When a trigger is activated, it runs according to its level of granularity as follows:

FOR EACH ROW
It runs as many times as the number of rows in the set of affected rows. If
you need to refer to the specific rows affected by the triggered action, use

Chapter 14. Triggers 307



FOR EACH ROW granularity. An example of this is the comparison of the
new and old values of an updated row in an AFTER UPDATE trigger.

FOR EACH STATEMENT
It runs once for the entire trigger event.

If the set of affected rows is empty (that is, in the case of a searched UPDATE or
DELETE in which the WHERE clause did not qualify any rows), a FOR EACH
ROW trigger does not run. But a FOR EACH STATEMENT trigger still runs once.

For example, keeping a count of number of employees can be done using FOR
EACH ROW.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

You can achieve the same affect with one update by using a granularity of FOR
EACH STATEMENT.
CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE

REFERENCING NEW_TABLE AS NEWEMPS

FOR EACH STATEMENT

UPDATE COMPANY_STATS

SET NBEMP = NBEMP + (SELECT COUNT(*) FROM NEWEMPS)

Note:

¢ A granularity of FOR EACH STATEMENT is not supported for BEFORE
triggers.

¢ The maximum nesting level for triggers is 16. That is, the maximum number of
cascading trigger activations is 16. A trigger activation refers to the activation of
a trigger upon a triggering event, such as insert, update, or delete of data in a
column of a table, or generally to a table.

Specifying when a trigger fires (BEFORE, AFTER, and
INSTEAD OF clauses)

The trigger activation time specifies when the trigger should be activated, relative to
the trigger event.

There are three activation times that you can specify: BEFORE, AFTER, or
INSTEAD OF:

e If the activation time is BEFORE, the triggered actions are activated for each row
in the set of affected rows before the trigger event executes. Hence, the subject
table will only be modified after the BEFORE trigger has completed execution
for each row. Note that BEFORE triggers must have a granularity of FOR EACH
ROW.

* If the activation time is AFTER, the triggered actions are activated for each row
in the set of affected rows or for the statement, depending on the trigger
granularity. This occurs after the trigger event has been completed, and after the
database manager checks all constraints that the trigger event might affect,
including actions of referential constraints. Note that AFTER triggers can have a
granularity of either FOR EACH ROW or FOR EACH STATEMENT.

For example, the activation time of the following trigger is AFTER the INSERT
operation on employee:

308 Data Servers, Databases, and Database Objects Guide



CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMPLOYEE

FOR EACH ROW

UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

e If the activation time is INSTEAD OF, the triggered actions are activated for each

row in the set of affected rows instead of executing the trigger event. INSTEAD
OF triggers must have a granularity of FOR EACH ROW, and the subject table
must be a view. No other triggers are able to use a view as the subject table.

The following diagram illustrates the execution model of BEFORE and AFTER
triggers:

A set-oriented
insert modification

<Joooo

Set of rows specified —>—< E-mail
for the insert modification 'A‘
on base table A

l Database tables
Before insert trigger-1 Base + T"ikggeé modifies
table
on table A table C Trigger invokes a function
(UDF) that contains complex
¢ logic, modifies table C,
and sends an e-mail.
Intermediate Base
result set tableB < Trigger modifies
¢ table B
Before insert trigger-2 LR
on table A
Trigger modifies
¢ li table A —“ S R
Tri |
Intermediate Base | agtgi,\g/]aetl;ad > After insert trigger-1
result set tableA | on table A
i $ |
Before insert trigger-3 Trigger — After insert trigger-2
on table A activated on table A
Intermediate The intermediate L Trigger — ! » After insert trigger-3
result set result set rows are activated on table A
inserted into table A.
|

Figure 26. Trigger execution model

For a given table with both before and AFTER triggers, and a modifying event that
is associated with these triggers, all the BEFORE triggers are activated first. The
first activated BEFORE trigger for a given event operates on the set of rows
targeted by the operation and makes any update modifications to the set that its
logic prescribes. The output of this BEFORE trigger is accepted as input by the
next before-trigger. When all of the BEFORE triggers that are activated by the

Chapter 14. Triggers 309



event have been fired, the intermediate result set, the result of the BEFORE trigger
modifications to the rows targeted by the trigger event operation, is applied to the
table. Then each AFTER trigger associated with the event is fired. The AFTER
triggers might modify the same table, another table, or perform an action external
to the database.

The different activation times of triggers reflect different purposes of triggers.
Basically, BEFORE triggers are an extension to the constraint subsystem of the
database management system. Therefore, you generally use them to:

* Perform validation of input data
* Automatically generate values for newly inserted rows
* Read from other tables for cross-referencing purposes

BEFORE triggers are not used for further modifying the database because they are
activated before the trigger event is applied to the database. Consequently, they are
activated before integrity constraints are checked.

Conversely, you can view AFTER triggers as a module of application logic that
runs in the database every time a specific event occurs. As a part of an application,
AFTER triggers always see the database in a consistent state. Note that they are
run after the integrity constraint validations. Consequently, you can use them
mostly to perform operations that an application can also perform. For example:

* Perform follow on modify operations in the database.

¢ Perform actions outside the database, for example, to support alerts. Note that
actions performed outside the database are not rolled back if the trigger is rolled
back.

In contrast, you can view an INSTEAD OF trigger as a description of the inverse
operation of the view it is defined on. For example, if the select list in the view
contains an expression over a table, the INSERT statement in the body of its
INSTEAD OF INSERT trigger will contain the reverse expression.

Because of the different nature of BEFORE, AFTER, and INSTEAD OF triggers, a
different set of SQL operations can be used to define the triggered actions of
BEFORE and AFTER, INSTEAD OF triggers. For example, update operations are
not allowed in BEFORE triggers because there is no guarantee that integrity
constraints will not be violated by the triggered action. Similarly, different trigger
granularities are supported in BEFORE, AFTER, and INSTEAD OF triggers.

The triggered SQL statement of all triggers can be a dynamic compound statement.
However, BEFORE triggers face some restrictions; they cannot contain the
following SQL statements:

* UPDATE
* DELETE
e INSERT
* MERGE

Defining conditions for when trigger-action will fire (WHEN
clause)

The activation of a trigger results in the running of its associated triggered action.
Every trigger has exactly one triggered action which, in turn, has two components:
an optional triggered action condition or WHEN clause, and a set of triggered
statement(s).

310 Data Servers, Databases, and Database Objects Guide



The triggered action condition is an optional clause of the triggered action which
specifies a search condition that must evaluate to true to run statements within the
triggered action. If the WHEN clause is omitted, then the statements within the
triggered action are always executed.

The triggered action condition is evaluated once for each row if the trigger is a
FOR EACH ROW trigger, and once for the statement if the trigger is a FOR EACH
STATEMENT trigger.

This clause provides further control that you can use to fine tune the actions
activated on behalf of a trigger. An example of the usefulness of the WHEN clause
is to enforce a data dependent rule in which a triggered action is activated only if
the incoming value falls inside or outside of a certain range.

The activation of a trigger results in the running of its associated triggered action.
Every trigger has exactly one triggered action which, in turn, has two components:

The triggered action condition defines whether or not the set of triggered
statements are performed for the row or for the statement for which the triggered
action is executing. The set of triggered statements define the set of actions
performed by the trigger in the database as a consequence of its event having
occurred.

For example, the following trigger action specifies that the set of triggered
statements should only be activated for rows in which the value of the on_hand
column is less than ten per cent of the value of the max_stocked column. In this
case, the set of triggered statements is the invocation of the issue_ship_request
function.
CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

REFERENCING NEW AS N_ROW
FOR EACH ROW

WHEN (N_ROW.ON_HAND < .10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC
VALUES (ISSUE_SHIP_REQUEST (N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO) ) ;
END

The set of triggered statements carries out the real actions caused by activating a
trigger. Not every SQL operation is meaningful in every trigger. Depending on
whether the trigger activation time is BEFORE or AFTER, different kinds of
operations might be appropriate as a triggered statement.

In most cases, if any triggered statement returns a negative return code, the
triggering statement together with all trigger and referential constraint actions are
rolled back. The trigger name, SQLCODE, SQLSTATE and many of the tokens from
the failing triggered statement are returned in the error message.

Supported SQL PL statements in triggers

The triggered SQL statement of all triggers can be a dynamic compound statement.

That is, triggered SQL statements can contain one or more of the following
elements:

¢ CALL statement

Chapter 14. Triggers 311



* DECLARE variable statement
* SET variable statement

* WHILE loop

* FOR loop

* [F statement

» SIGNAL statement

* ITERATE statement

* LEAVE statement

* GET DIGNOSTIC statement
 fullselect

However, only AFTER and INSTEAD OF triggers can contain one or more of the
following SQL statements:

* UPDATE statement
 DELETE statement
e INSERT statement
* MERGE statement

Accessing old and new column values in triggers using
transition variables

When you implement a FOR EACH ROW trigger, it might be necessary to refer to
the value of columns of the row in the set of affected rows, for which the trigger is
currently executing. Note that to refer to columns in tables in the database
(including the subject table), you can use regular SELECT statements.

A FOR EACH ROW trigger can refer to the columns of the row for which it is
currently executing by using two transition variables that you can specify in the
REFERENCING clause of a CREATE TRIGGER statement. There are two kinds of
transition variables, which are specified as OLD and NEW, together with a
correlation-name. They have the following semantics:

OLD AS correlation-name
Specifies a correlation name which captures the original state of the row,
that is, before the triggered action is applied to the database.

NEW AS correlation-name
Specifies a correlation name which captures the value that is, or was, used
to update the row in the database when the triggered action is applied to
the database.

Consider the following example:

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED
AND N_ROW.ORDER_PENDING = 'N')
BEGIN ATOMIC
VALUES (ISSUE_SHIP_REQUEST(N_ROW.MAX STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO) ) ;
UPDATE PARTS SET PARTS.ORDER PENDING = 'Y'
WHERE PARTS.PARTNO = N_ROW.PARTNO;
END

312 Data Servers, Databases, and Database Objects Guide



Based on the definition of the OLD and NEW transition variables given above, it is
clear that not every transition variable can be defined for every trigger. Transition
variables can be defined depending on the kind of trigger event:

UPDATE
An UPDATE trigger can refer to both OLD and NEW transition variables.

INSERT
An INSERT trigger can only refer to a NEW transition variable because
before the activation of the INSERT operation, the affected row does not
exist in the database. That is, there is no original state of the row that
would define old values before the triggered action is applied to the
database.

DELETE
A DELETE trigger can only refer to an OLD transition variable because
there are no new values specified in the delete operation.

Note: Transition variables can only be specified for FOR EACH ROW triggers. In a
FOR EACH STATEMENT trigger, a reference to a transition variable is not
sufficient to specify to which of the several rows in the set of affected rows the
transition variable is referring. Instead, refer to the set of new and old rows by
using the OLD TABLE and NEW TABLE clauses of the CREATE TRIGGER
statement. For more information on these clauses, see the CREATE TRIGGER
statement.

Referencing old and new table result sets using transition
tables

In both FOR EACH ROW and FOR EACH STATEMENT triggers, it might be
necessary to refer to the whole set of affected rows. This is necessary, for example,
if the trigger body needs to apply aggregations over the set of affected rows (for
example, MAX, MIN, or AVG of some column values).

A trigger can refer to the set of affected rows by using two transition tables that
can be specified in the REFERENCING clause of a CREATE TRIGGER statement.
Just like the transition variables, there are two kinds of transition tables, which are
specified as OLD_TABLE and NEW_TABLE together with a table-name, with the
following semantics:

OLD_TABLE AS table-name
Specifies the name of the table which captures the original state of the set
of affected rows (that is, before the triggering SQL operation is applied to
the database).

NEW_TABLE AS table-name
Specifies the name of the table which captures the value that is used to
update the rows in the database when the triggered action is applied to the
database.

For example:

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX STOCKED ON PARTS
REFERENCING NEW_TABLE AS N_TABLE
NEW AS N_ROW
FOR EACH ROW
WHEN ((SELECT AVG (ON_HAND) FROM N_TABLE) > 35)
BEGIN ATOMIC

Chapter 14. Triggers 313



VALUES (INFORM_SUPERVISOR(