
DB2 Version 9.5

for Linux, UNIX, and Windows

Data Servers, Databases, and Database Objects Guide
Updated April, 2009

SC23-5849-02

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Data Servers, Databases, and Database Objects Guide
Updated April, 2009

SC23-5849-02

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 617.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book ix

Part 1. Data servers 1

Chapter 1. DB2 data servers 3

Management of data server capacity 3

Enabling large page support in a 64-bit environment

(AIX) 4

Chapter 2. Multiple DB2 copies 7

Default IBM database client interface copy 7

Setting the DAS when running multiple DB2 copies 10

Setting the default instance when using multiple

DB2 copies (Windows) 11

Multiple instances of the database manager . . . 12

Multiple instances (Windows) 13

Updating DB2 copies (Windows) 13

Running multiple instances concurrently (Windows) 14

Working with instances on the same or different

DB2 copies 15

Chapter 3. Autonomic computing . . . 17

Automatic features 17

Automatic maintenance 19

Maintenance windows 19

Self-tuning memory 20

Memory allocation in DB2 21

Self tuning memory operational details and

limitations 24

Operational details, limitations, and interaction

between memory parameters 25

Enabling self tuning memory 27

Disabling self tuning memory 27

Determining which memory consumers are

enabled for self tuning 28

Self tuning memory in partitioned database

environments 29

Using self-tuning memory in partitioned

database environments 31

Configuring memory and memory heaps 32

Agent and process model configuration 35

Agent, process model, and memory configuration 36

Automatic storage 38

Automatic storage table spaces 38

Automatic storage databases 44

Automatic storage restrictions 47

Automatic (compression) dictionary creation (ADC) 47

Data row compression 49

Automatic statistics collection 50

Enabling automatic statistics collection 54

Configuration Advisor 55

Tuning configuration parameters using the

Configuration Advisor 55

Generating database configuration

recommendations 56

Example: Requesting configuration

recommendations using the Configuration

Advisor 56

Utility throttling 58

Asynchronous index cleanup 58

Asynchronous index cleanup for MDC tables . . 60

Chapter 4. Instances 63

Designing instances 64

Default instance 65

Instance directory 66

Multiple instances (Linux, UNIX) 66

Multiple instances (Windows) 67

Creating instances 68

Modifying instances 69

Updating the instance configuration (Linux,

UNIX) 69

Updating the instance configuration (Windows) 70

Working with instances 71

Auto-starting instances 71

Starting instances (Linux, UNIX) 71

Starting instances (Windows) 72

Attaching to and detaching from instances . . . 72

Working with instances on the same or different

DB2 copies 73

Stopping instances (Linux, UNIX) 73

Stopping instances (Windows) 74

Dropping instances 75

Chapter 5. Lightweight Directory

Access Protocol (LDAP) 77

Security considerations in an LDAP environment . . 77

LDAP object classes and attributes used by DB2 . . 78

Extending the LDAP directory schema with DB2

object classes and attributes 88

Supported LDAP client and server configurations 88

LDAP support and DB2 Connect 89

Extending the directory schema for IBM Tivoli

Directory Server 90

Netscape LDAP directory support and attribute

definitions 91

Extending the directory schema for Sun One

Directory Server 93

Windows Active Directory 95

Enabling LDAP support after DB2 installation is

complete 98

Registering LDAP entries 98

Registration of DB2 servers after installation . . 98

Catalog a node alias for ATTACH 100

Registration of databases in the LDAP directory 100

Deregistering LDAP entries 100

Deregistering the DB2 server 100

© Copyright IBM Corp. 1993, 2009 iii

Deregistering the database from the LDAP

directory 101

Configuring LDAP users 101

Creating an LDAP user 101

Configuring the LDAP user for DB2

applications 102

Setting DB2 registry variables at the user level

in the LDAP environment 102

Disabling LDAP support 102

Updating the protocol information for the DB2

server 102

Rerouting LDAP clients to another server 103

Attaching to a remote server in the LDAP

environment 104

Refreshing LDAP entries in local database and

node directories 104

Searching the LDAP servers 105

Part 2. Databases 107

Chapter 6. Databases 109

Designing databases 109

Database directories and files 110

Space requirements for database objects . . . 118

Space requirements for log files 118

Lightweight Directory Access Protocol (LDAP)

directory service 119

Creating databases 120

Automatic storage databases 121

Cataloging databases 128

Binding utilities to the database 129

Creating database aliases 130

Connecting to distributed relational databases . . 131

Remote unit of work for distributed relational

databases 131

Application-directed distributed unit of work 134

Application process connection states 135

Connection states 136

Options that govern unit of work semantics . . 137

Data representation considerations 138

Viewing the local or system database directory files 138

Dropping databases 138

Dropping aliases 139

Chapter 7. Database partitions 141

Chapter 8. Buffer pools 143

Designing buffer pools 143

Buffer pool memory protection (AIX running on

POWER6) 145

Creating buffer pools 146

Modifying buffer pools 147

Dropping buffer pools 148

Chapter 9. Table spaces 151

Designing table spaces 152

Types of table spaces 154

Comparison of SMS and DMS table spaces . . 167

Considerations when choosing table spaces for

your tables 170

Automatic re-sizing of table spaces 171

Automatic prefetchsize adjustment after adding

or dropping containers 175

Table spaces without file system caching . . . 176

Table space extent sizes 182

Table space page sizes 183

Table space disk I/O 183

Defining initial table spaces 185

Attaching DMS direct disk access devices . . . 186

Configuring and setting up DMS direct disk

access (Linux) 187

Creating table spaces 189

Altering table spaces 193

Altering SMS table spaces 193

Altering DMS table spaces 193

Altering automatic storage table spaces 206

Renaming a table space 206

Switching table spaces from offline to online . . . 207

Optimizing table space performance when data is

on RAID devices 207

Dropping table spaces 208

Chapter 10. Schemas 211

Designing schemas 212

Grouping objects by schema 214

Schema name restrictions and recommendations 215

Creating schemas 216

Copying schemas 216

Example of schema copy using the

ADMIN_COPY_SCHEMA procedure 218

Examples of schema copy using the db2move

utility 218

Restarting a failed copy schema operation 219

Dropping schemas 222

Part 3. Database objects 223

Chapter 11. Tables 225

Types of tables 225

Designing tables 227

Table design concepts 227

Space requirements for tables 236

Space requirements for user table data 238

Space compression for tables 240

Optimistic locking 244

Table partitioning and data organization schemes 253

Creating tables 253

Declaring global temporary tables 254

Creating tables like existing tables 255

Creating tables for staging data 255

Modifying tables 256

Altering materialized query table properties . . 257

Refreshing the data in a materialized query

table 257

Changing column properties 257

Renaming tables 260

Recovering inoperative summary tables 260

Viewing table definitions 261

iv Data Servers, Databases, and Database Objects Guide

Table or view aliases 261

Dropping tables 261

Dropping materialized query or staging tables 262

Scenarios and examples of tables 262

Scenarios: Optimistic locking and time-based

detection 263

Chapter 12. Constraints 267

Types of constraints 267

NOT NULL constraints 268

Unique constraints 268

Primary key constraints 269

(Table) Check constraints 269

Foreign key (referential) constraints 269

Informational constraints 274

Designing constraints 274

Designing unique constraints 274

Designing primary key constraints 275

Designing check constraints 275

Designing foreign key (referential) constraints 277

Designing informational constraints 282

Creating and modifying constraints 284

Viewing constraint definitions for a table 285

Dropping constraints 286

Chapter 13. Indexes 289

Types of indexes 290

Designing indexes 292

Tools for designing indexes 294

Space requirements for indexes 294

Creating indexes 297

Modifying indexes 298

Renaming indexes 298

Rebuilding indexes 299

Dropping indexes 300

Chapter 14. Triggers 301

Types of triggers 302

BEFORE triggers 303

AFTER triggers 303

INSTEAD OF triggers 304

Designing triggers 305

Specifying what makes a trigger fire (triggering

statement or event) 307

Specifying when a trigger fires (BEFORE,

AFTER, and INSTEAD OF clauses) 308

Defining conditions for when trigger-action will

fire (WHEN clause) 310

Supported SQL PL statements in triggers . . . 311

Accessing old and new column values in

triggers using transition variables 312

Referencing old and new table result sets using

transition tables 313

Creating triggers 314

Modifying and dropping triggers 316

Examples of triggers and trigger use 316

Examples of interaction between triggers and

referential constraints 316

Examples of defining actions using triggers . . 318

Example of defining business rules using

triggers 319

Example of preventing operations on tables

using triggers 320

Chapter 15. Sequences 321

Designing sequences 321

Managing sequence behavior 322

Application performance and sequences . . . 323

Sequences compared to identity columns . . . 324

Creating sequences 325

Generating sequential values 326

Determining when to use identity columns or

sequences 326

Modifying sequences 327

Viewing sequence definitions 328

Dropping sequences 328

Examples of how to code sequences 329

Sequence reference 330

Chapter 16. Views 335

Designing views 336

System catalog views 336

Views with the check option 337

Deletable views 339

Insertable views 340

Updatable views 340

Read-only views 341

Creating views 341

Creating views that use user-defined functions

(UDFs) 342

Modifying typed views 343

Recovering inoperative views 343

Dropping views 344

Part 4. Reference 345

Chapter 17. Conforming to naming

rules 347

Naming rules 347

DB2 object naming rules 348

Delimited identifiers and object names 349

User, user ID and group naming rules 350

Naming rules in an NLS environment 350

Naming rules in a Unicode environment 351

Chapter 18. SQL and XML limits . . . 353

Chapter 19. Registry and environment

variables 363

Environment variables and the profile registry . . 363

Declaring, showing, changing, resetting, and

deleting registry and environment variables . . . 365

Setting environment variables on Windows . . 367

Setting environment variables on Linux and

UNIX operating systems 369

Setting the current instance environment

variables 370

Aggregate registry variables 371

Contents v

DB2 registry and environment variables 372

General registry variables 377

System environment variables 385

Communications variables 394

Command-line variables 397

Partitioned database environment variables . . 398

Query compiler variables 399

Performance variables 404

Miscellaneous variables 421

Chapter 20. Configuration parameters 439

Configuring the DB2 database manager with

configuration parameters 440

Configuration parameters summary 443

Configuration parameters that affect the number of

agents 455

Configuration parameters that affect query

optimization 456

Restrictions and behavior when configuring

max_coordagents and max_connections 458

Database Manager configuration parameters . . . 460

agent_stack_sz - Agent stack size 460

agentpri - Priority of agents 461

aslheapsz - Application support layer heap size 463

audit_buf_sz - Audit buffer size 464

authentication - Authentication type 465

catalog_noauth - Cataloging allowed without

authority 466

clnt_krb_plugin - Client Kerberos plug-in . . . 467

clnt_pw_plugin - Client userid-password

plug-in 467

cluster_mgr - Cluster manager name 468

comm_bandwidth - Communications bandwidth 468

conn_elapse - Connection elapse time 469

cpuspeed - CPU speed 469

dft_account_str - Default charge-back account 470

dft_monswitches - Default database system

monitor switches 471

dftdbpath - Default database path 472

diaglevel - Diagnostic error capture level . . . 473

diagpath - Diagnostic data directory path . . . 474

dir_cache - Directory cache support 475

discover - Discovery mode 476

discover_inst - Discover server instance . . . 477

fcm_num_buffers - Number of FCM buffers . . 477

fcm_num_channels - Number of FCM channels 478

fed_noauth - Bypass federated authentication 479

federated - Federated database system support 479

federated_async - Maximum asynchronous TQs

per query configuration parameter 480

fenced_pool - Maximum number of fenced

processes 480

group_plugin - Group plug-in 482

health_mon - Health monitoring 482

indexrec - Index re-creation time 483

instance_memory - Instance memory 485

intra_parallel - Enable intra-partition parallelism 487

java_heap_sz - Maximum Java interpreter heap

size 487

jdk_path - Software Developer’s Kit for Java

installation path 488

keepfenced - Keep fenced process 489

local_gssplugin - GSS API plug-in used for local

instance level authorization 490

max_connections - Maximum number of client

connections 490

max_connretries - Node connection retries . . . 491

max_coordagents - Maximum number of

coordinating agents 491

max_querydegree - Maximum query degree of

parallelism 492

max_time_diff - Maximum time difference

among nodes 493

maxagents - Maximum number of agents . . . 493

maxcagents - Maximum number of concurrent

agents 494

mon_heap_sz - Database system monitor heap

size 495

nodetype - Machine node type 496

notifylevel - Notify level 496

num_initagents - Initial number of agents in

pool 497

num_initfenced - Initial number of fenced

processes 498

num_poolagents - Agent pool size 498

numdb - Maximum number of concurrently

active databases including host and System i

databases 499

query_heap_sz - Query heap size 500

release - Configuration file release level . . . 501

resync_interval - Transaction resync interval . . 501

rqrioblk - Client I/O block size 502

sheapthres - Sort heap threshold 503

spm_log_file_sz - Sync point manager log file

size 504

spm_log_path - Sync point manager log file

path 505

spm_max_resync - Sync point manager resync

agent limit 506

spm_name - Sync point manager name 506

srvcon_auth - Authentication type for incoming

connections at the server 506

srvcon_gssplugin_list - List of GSS API plug-ins

for incoming connections at the server 507

srvcon_pw_plugin - Userid-password plug-in

for incoming connections at the server 507

srv_plugin_mode - Server plug-in mode . . . 508

start_stop_time - Start and stop timeout . . . 508

svcename - TCP/IP service name 509

sysadm_group - System administration

authority group name 510

sysctrl_group - System control authority group

name 510

sysmaint_group - System maintenance authority

group name 511

sysmon_group - System monitor authority

group name 512

tm_database - Transaction manager database

name 512

tp_mon_name - Transaction processor monitor

name 513

trust_allclnts - Trust all clients 514

vi Data Servers, Databases, and Database Objects Guide

trust_clntauth - Trusted clients authentication 515

util_impact_lim - Instance impact policy . . . 516

Database configuration parameters 517

alt_collate - Alternate collating sequence . . . 517

app_ctl_heap_sz - Application control heap size 517

appgroup_mem_sz - Maximum size of

application group memory set 518

appl_memory - Application Memory

configuration parameter 519

applheapsz - Application heap size 520

archretrydelay - Archive retry delay on error 521

auto_del_rec_obj - Automated deletion of

recovery objects configuration parameter . . . 521

auto_maint - Automatic maintenance 522

autorestart - Auto restart enable 524

avg_appls - Average number of active

applications 524

backup_pending - Backup pending indicator 525

blk_log_dsk_ful - Block on log disk full . . . 525

catalogcache_sz - Catalog cache size 526

chngpgs_thresh - Changed pages threshold . . 527

codepage - Code page for the database 528

codeset - Codeset for the database 528

collate_info - Collating information 528

country/region - Database territory code . . . 529

database_consistent - Database is consistent . . 529

database_level - Database release level 530

database_memory - Database shared memory

size 530

db_mem_thresh - Database memory threshold 532

dbheap - Database heap 533

decflt_rounding - Decimal floating point

rounding configuration parameter 534

dft_degree - Default degree 536

dft_extent_sz - Default extent size of table

spaces 536

dft_loadrec_ses - Default number of load

recovery sessions 537

dft_mttb_types - Default maintained table types

for optimization 537

dft_prefetch_sz - Default prefetch size 538

dft_queryopt - Default query optimization class 539

dft_refresh_age - Default refresh age 539

dft_sqlmathwarn - Continue upon arithmetic

exceptions 540

discover_db - Discover database 541

dlchktime - Time interval for checking deadlock 541

dyn_query_mgmt - Dynamic SQL and XQuery

query management 542

enable_xmlchar - Enable conversion to XML

configuration parameter 543

failarchpath - Failover log archive path 543

groupheap_ratio - Percent of memory for

application group heap 544

hadr_db_role - HADR database role 544

hadr_local_host - HADR local host name . . . 544

hadr_local_svc - HADR local service name . . 545

hadr_peer_window - HADR peer window

configuration parameter 545

hadr_remote_host - HADR remote host name 546

hadr_remote_inst - HADR instance name of the

remote server 546

hadr_remote_svc - HADR remote service name 547

hadr_syncmode - HADR synchronization mode

for log write in peer state 547

hadr_timeout - HADR timeout value 548

indexrec - Index re-creation time 548

jdk_64_path - 64-Bit Software Developer’s Kit

for Java installation path DAS 550

locklist - Maximum storage for lock list . . . 551

locktimeout - Lock timeout 553

log_retain_status - Log retain status indicator 554

logarchmeth1 - Primary log archive method . . 555

logarchmeth2 - Secondary log archive method 556

logarchopt1 - Primary log archive options . . . 557

logarchopt2 - Secondary log archive options . . 557

logbufsz - Log buffer size 558

logfilsiz - Size of log files 558

loghead - First active log file 560

logindexbuild - Log index pages created . . . 560

logpath - Location of log files 560

logprimary - Number of primary log files . . . 560

logretain - Log retain enable 562

logsecond - Number of secondary log files . . 562

max_log - Maximum log per transaction . . . 564

maxappls - Maximum number of active

applications 564

maxfilop - Maximum database files open per

application 565

maxlocks - Maximum percent of lock list before

escalation 566

min_dec_div_3 - Decimal division scale to 3 . . 568

mincommit - Number of commits to group . . 569

mirrorlogpath - Mirror log path 570

multipage_alloc - Multipage file allocation

enabled 571

newlogpath - Change the database log path . . 571

num_db_backups - Number of database

backups 573

num_freqvalues - Number of frequent values

retained 573

num_iocleaners - Number of asynchronous page

cleaners 574

num_ioservers - Number of I/O servers . . . 576

num_log_span - Number log span 576

num_quantiles - Number of quantiles for

columns 577

numarchretry - Number of retries on error . . 578

numsegs - Default number of SMS containers 578

overflowlogpath - Overflow log path 579

pagesize - Database default page size 580

pckcachesz - Package cache size 580

priv_mem_thresh - Private memory threshold 582

rec_his_retentn - Recovery history retention

period 583

restore_pending - Restore pending 583

restrict_access - Database has restricted access

configuration parameter 583

rollfwd_pending - Roll forward pending

indicator 584

self_tuning_mem- Self-tuning memory 584

Contents vii

seqdetect - Sequential detection flag 585

sheapthres_shr - Sort heap threshold for shared

sorts 586

softmax - Recovery range and soft checkpoint

interval 587

sortheap - Sort heap size 589

stat_heap_sz - Statistics heap size 590

stmtheap - Statement heap size 591

territory - Database territory 591

trackmod - Track modified pages enable . . . 592

tsm_mgmtclass - Tivoli Storage Manager

management class 592

tsm_nodename - Tivoli Storage Manager node

name 592

tsm_owner - Tivoli Storage Manager owner

name 593

tsm_password - Tivoli Storage Manager

password 593

user_exit_status - User exit status indicator . . 594

userexit - User exit enable 594

util_heap_sz - Utility heap size 594

vendoropt - Vendor options 595

wlm_collect_int - Workload management

collection interval configuration parameter . . 595

DB2 Administration Server (DAS) configuration

parameters 596

authentication - Authentication type DAS . . . 596

contact_host - Location of contact list 597

das_codepage - DAS code page 597

das_territory - DAS territory 598

dasadm_group - DAS administration authority

group name 598

db2system - Name of the DB2 server system 599

discover - DAS discovery mode 599

exec_exp_task - Execute expired tasks 600

jdk_path - Software Developer’s Kit for Java

installation path DAS 600

sched_enable - Scheduler mode 601

sched_userid - Scheduler user ID 601

smtp_server - SMTP server 601

toolscat_db - Tools catalog database 602

toolscat_inst - Tools catalog database instance 602

toolscat_schema - Tools catalog database schema 602

Part 5. Appendixes 605

Appendix A. Overview of the DB2

technical information 607

DB2 technical library in hardcopy or PDF format 607

Ordering printed DB2 books 610

Displaying SQL state help from the command line

processor 611

Accessing different versions of the DB2 Information

Center 611

Displaying topics in your preferred language in the

DB2 Information Center 611

Updating the DB2 Information Center installed on

your computer or intranet server 612

DB2 tutorials 614

DB2 troubleshooting information 614

Terms and Conditions 614

Appendix B. Notices 617

Index 621

viii Data Servers, Databases, and Database Objects Guide

About this book

The Data Servers, Databases, and Database Objects Guide provides information

necessary to use and administer the DB2® relational database management system

(RDBMS) products. It contains information about database planning and design,

and implementation and management of database objects. This book also contains

reference information for database configuration and tuning.

Who should use this book

This book is intended primarily for database and system administrators who need

to design, implement and maintain a database to be accessed by local or remote

clients. It can also be used by programmers and other users who require an

understanding of the administration and operation of the DB2 relational database

management system.

How this book is structured

This book is structured in four parts, as follows:

Part 1. Data Servers

This section briefly describes DB2 data servers, including management of

their capacity and large page support in 64-bit environments on AIX®. In

addition, it also provides information on running multiple DB2 copies on a

single computer, information on the automatic features that assist you in

managing your database system, information on designing, creating, and

working with instances, and optional information on configuring

Lightweight Directory Access Protocol (LDAP) servers.

Part 2. Databases

This section describes the design, creation, and maintenance of databases,

buffer pools, table spaces, and schemas. Detailed information about

database partitions is found in the new Partitioning and Clustering Guide.

Part 3. Database objects

This section describes the design, creation, and maintenance of the

following database objects: tables, constraints, indexes, triggers, sequences

and views.

Part 4. Reference

This section contains reference information for configuring and tuning your

database system with environment and registry variables, and

configuration parameters. It also lists the various naming rules and SQL

and XML limits.

© Copyright IBM Corp. 1993, 2009 ix

x Data Servers, Databases, and Database Objects Guide

Part 1. Data servers

© Copyright IBM Corp. 1993, 2009 1

2 Data Servers, Databases, and Database Objects Guide

Chapter 1. DB2 data servers

Data servers provide software services for the secure and efficient management of

structured information. DB2 is a hybrid relational and XML data server.

A data server refers to a machine where the DB2 database engine is installed. The

DB2 engine is a full-function, robust database management system that includes

optimized SQL support based on actual database usage and tools to help manage

the data.

IBM offers a number data server products, including data server clients that can

access all the various data servers. For a complete list of DB2 data server products,

features available, and detailed descriptions and specifications, see:

http://www-306.ibm.com/software/data/db2/9/.

Management of data server capacity

If data server capacity does not meet your present or future needs, you can expand

its capacity by adding disk space and creating additional containers, or by adding

memory. If these simple strategies do not add the capacity you need, also consider

adding processors or physical partitions. When you scale your system by changing

the environment, you should be aware of the impact that such a change can have

on your database procedures such as loading data, or backing up and restoring

databases.

Adding processors

 If a single-partition database configuration with a single processor is used

to its maximum capacity, you might either add processors or add database

partitions. The advantage of adding processors is greater processing power.

In an SMP system, processors share memory and storage system resources.

All of the processors are in one system, so there are no additional overhead

considerations such as communication between systems and coordination

of tasks between systems. Utilities such as load, backup, and restore can

take advantage of the additional processors.

Note: Some operating systems, such as the Solaris operating system, can

dynamically turn processors on- and off-line.

If you add processors, review and modify some database configuration

parameters that determine the number of processors used. The following

database configuration parameters determine the number of processors

used and might need to be updated:

v Default degree (dft_degree)

v Maximum degree of parallelism (max_querydegree)

v Enable intra-partition parallelism (intra_parallel)

You should also evaluate parameters that determine how applications

perform parallel processing.

In an environment where TCP/IP is used for communication, review the

value for the DB2TCPCONNMGRS registry variable.

Adding physical partitions

© Copyright IBM Corp. 1993, 2009 3

If your database manager is currently in a partitioned database

environment, you can increase both data-storage space and processing

power by adding separate single-processor or multiple-processor physical

partitions. The memory and storage system resources on each database

partition are not shared with the other database partitions. Although

adding database partitions might result in communication and

task-coordination issues, this choice provides the advantage of balancing

data and user access across more than one system. The database manager

supports this environment.

You can add database partitions either while the database manager system

is running or while it is stopped. If you add database partitions while the

system is running, however, you must stop and restart the system before

databases migrate to the new database partition.

When you add a new database partition, you cannot drop or create a

database that takes advantage of the new database partition until the

procedure is complete, and the new server is successfully integrated into

the system.

Enabling large page support in a 64-bit environment (AIX)

In addition to the traditional page size of 4 KB, the POWER4™ processors (and

higher) in the IBM® eServer™ pSeries® systems also support a 16 MB page size.

Applications such as IBM DB2 Version 9.1 for AIX 64-bit Edition, that require

intensive memory access and that use large amounts of virtual memory can gain

performance improvements by using large pages.

Note: Enabling large pages prevents the self-tuning memory manager from

automatically tuning overall database memory consumption, so should only be

considered for well-defined workloads that have relatively static database memory

requirements.

1. For detailed instructions on how to run the vmo command, refer to your AIX

manuals.

2. You should be extremely cautious when configuring your system for pinning

memory and supporting large pages. Pinning too much memory results in

heavy paging activities for the memory pages that are not pinned. Allocating

too much physical memory to large pages will degrade system performance if

there is insufficient memory to support the 4 KB pages.

3. Setting the DB2_LARGE_PAGE_MEM registry variable also implies that the

memory is pinned.

You must have root authority to work with the AIX operating system commands.

1. Configure your AIX server for large page support by issuing the vmo

command with the following flags: :

 vmo -r -o lgpg_size=LargePageSize -o lgpg_regions=LargePages

where LargePageSize specifies the size in bytes of the hardware-supported large

pages, and LargePages specifies the number of large pages to reserve. For

example, if you need to allocate 25 GB for large page support, run the

command as follows:

 vmo -r -o lgpg_size=16777216 -o lgpg_regions=1600

2. Run the bosboot command so that the vmo command that you previously run

will take effect following the next system boot.

3. After the server comes up, enable it for pinned memory:

4 Data Servers, Databases, and Database Objects Guide

v Issue the vmo command with the following flags:

 vmo -o v_pinshm=1

v Use the db2set command to set the DB2_LARGE_PAGE_MEM registry

variable to DB, then start DB2:

 db2set DB2_LARGE_PAGE_MEM=DB

 db2start

Chapter 1. DB2 data servers 5

6 Data Servers, Databases, and Database Objects Guide

Chapter 2. Multiple DB2 copies

With Version 9 and later, you can install and run multiple DB2 copies on the same

computer. A DB2 copy refers to one or more installations of DB2 database products

in a particular location on the same computer. Each DB2 Version 9 copy can be at

the same or different code levels.

The benefits of doing this include:

v The ability to run applications that require different DB2 versions on the same

computer at the same time

v The ability to run independent copies of DB2 products for different functions

v The ability to test on the same computer before moving the production database

to the latter version of the DB2 product

v For independent software vendors, the ability to embed a DB2 server product

into your product and hide the DB2 database from your users. For COM+

applications, use and distribute the IBM Data Server Driver for ODBC and CLI

with your application instead of the Data Server Runtime Client as only one

Data Server Runtime Client can be used for COM+ applications at a time. The

IBM Data Server Driver for ODBC and CLI does not have this restriction.

Default IBM database client interface copy

You can have multiple DB2 copies on a single computer, as well as a default IBM

database client interface copy, which is the means by which a client application has

the ODBC driver, CLI driver, and .NET data provider code needed to interface

with the database by default.

In Version 9.1 (and later), the code for the IBM database client interface copy is

included with the DB2 copy. With Version 9.5 (and later) there is a new product

you can choose to install that has the needed code to allow a client application to

interface with a database. This product is IBM Data Server Driver Package

(DSDRIVER). With Version 9.5 (and later) you can install DSDRIVER on an IBM

data server driver copy separate from the installation of a DB2 copy.

Following Version 9.1, you can have multiple DB2 copies installed on your

computer; following Version 9.5, you can have multiple IBM database client

interface copies and multiple DB2 copies installed on your computer. During the

time of installation of a new DB2 copy or new IBM data server driver copy you

would have had the opportunity to change the default DB2 copy and the default

IBM database client interface copy.

The following diagram shows multiple DB2 copies installed on a DB2 server,

which can be any combination of the DB2 database products:

© Copyright IBM Corp. 1993, 2009 7

Production
environment

Test
environment

Database Database

instanceDB2 instanceDB201

Database

instanceDB202

DB2 Copy 1 ()dir1 DB2 Copy 2 ()dir2

DB2 server

Version 8 and Version 9 (or later) copies can coexist on the same computer,

however Version 8 must be the default DB2 and IBM database client interface copy.

You cannot change from the Version 8 copy to the Version 9 (or later) copy as the

default DB2 copy or default IBM database client interface copy during installation,

nor can you later run the switch default copy command, db2swtch, unless you first

migrate or uninstall Version 8 copy. If you run the db2swtch command when

Version 8 exists on the system, you will receive an error message indicating that

you cannot change the default copy because Version 8 is found on the system.

Sometime after installing multiple DB2 copies or multiple IBM data server driver

copies, you may want to change either the default DB2 copy or the default IBM®

database client interface copy. If you have Version 8 installed, you need to uninstall

the product or migrate it to at least Version 9 before you can change the default

DB2 copy or to at least Version 9.5 before you can change the default IBM database

client interface copy.

Client applications can always choose to go directly to a data server driver location

which is the directory where the DSDRIVER is installed.

When you uninstall either the DB2 copy or the IBM data server driver copy that

had been the default IBM database client interface copy, the defaults are managed

for you. Chosen default copies are removed and new defaults are selected for you.

When you uninstall the default DB2 copy which is not the last DB2 copy on the

system, you will be asked to switch the default to another DB2 copy first.

8 Data Servers, Databases, and Database Objects Guide

Choosing a default when installing a new IBM database client

interface copy

Following Version 9.5, consider the scenario where you have installed two DB2

copies (DB2COPY1 and DB2COPY2). DB2COPY2 is the default DB2 copy and the

default IBM database client interface copy.

Legend

Default DB2 copy

Default IBM database
client interface copy

Install DSDRIVER as a new
(IBMDBCL1)DS driver copy

DS driver copy = IBM Data Server
driver copy

= IBM Data Server
Driver Package

DSDRIVER

System environment

DB2COPY1

-ESE
-
-...
CLIENT

DB2COPY2

-ESE
-WSE
-...

IBMDBCL1

DSDRIVER

No
Make IBMDBCL1

the default IBM database
client interface copy?

Install IBM Data Server Driver Package (DSDRIVER) on a new IBM data server

driver copy.

During the install of the new IBM data server driver copy (IBMDBCL1) you are

asked if you want to make the new IBM data server driver copy the default IBM

database client interface copy.

If you respond “No”, then DB2COPY2 remains the default IBM database client

interface copy. (And it continues to be the default DB2 copy.)

However, consider the same scenario but you respond “Yes” when asked if you

want to make the new IBM data server driver copy the default IBM database client

interface copy.

Chapter 2. Multiple DB2 copies 9

Legend

Default DB2 copy

Default IBM database
client interface copy

Install DSDRIVER as a new
(IBMDBCL1)DS driver copy

DS driver copy = IBM Data Server
driver copy

= IBM Data Server
Driver Package

DSDRIVER

System environment

DB2COPY1

-ESE
-
-...
CLIENT

DB2COPY2

-ESE
-WSE
-...

IBMDBCL1

DSDRIVER

Make IBMDBCL1
the default IBM database

client interface copy?

Yes

In this case, IBMDBCL1 becomes the default IBM database client interface copy.

(DB2COPY2 remains the default DB2 copy.)

Setting the DAS when running multiple DB2 copies

Starting with Version 9, you can have multiple DB2 copies running on the same

computer. This affects how the DB2 Administration Server (DAS) operates. The

DAS is a unique component within the database manager that is limited to having

only one version active, despite how many DB2 copies are installed on the same

computer. For this reason the following restrictions and functional requirements

apply.

On the server, there can be only one DAS version and it administers instances as

follows:

v If the DAS is on Version 9.1 or Version 9.5, then it can administrator Version 8

and Version 9.1 or Version 9.5 instances.

v If the DAS is on Version 8, then it can administer only Version 8 instances. You

can migrate your Version 8 DAS, or drop it and create a new Version 9.5 DAS to

administer the Version 8 and Version 9.1 instances. This is required only if you

want to use the Control Center to administer the instances.

Only one DAS can be created on a given computer at any given time despite the

number of DB2 copies that are installed on the same computer. This DAS will be

10 Data Servers, Databases, and Database Objects Guide

used by all the DB2 copies that are on the same computer. In Version 9 or later, the

DAS can belong to any DB2 copy that is currently installed.

To move the DAS between one Version 9.5 copy to another Version 9.5 copy, use

the dasupdt command. To move the DAS between a Version 9.1 copy to a Version

9.5 copy, you cannot use dasupdt, you must migrate from Version 9.1 to Version

9.5.

On Windows operating systems, you can also use the dasupdt command when

you need to move the DAS to a new Default DB2 copy in the same version.

Note:

v The dasupdt command can only be used to move the DAS between various DB2

copies of the same release (that is, between different Fix Packs). It cannot be

used to setup DAS.

v For migration from Version 8 to Version 9.1 to Version 9.5 DAS, use the dasmigr

command.

v If DAS is not set up, then a regular DAS setup procedure should be followed to

set it up on one of the DB2 copies.

Setting the default instance when using multiple DB2 copies

(Windows)

Starting with Version 9.1, the DB2INSTANCE environment is set according to the

DB2 copy that your environment is currently set up to use. If you do not set it

explicitly to an instance in the current copy, it defaults to the default instance that

is specified with the DB2INSTDEF profile registry variable.

DB2INSTDEF is the default instance variable that is specific to the current DB2

copy in use. Every DB2 copy has its own DB2INSTDEF profile registry variable.

Instance names must be unique on the system; when an instance is created, the

database manager scans through existing copies to ensure its uniqueness.

Use the following guidelines to set the default instance when using multiple DB2

copies:

v If DB2INSTANCE is not set for a particular DB2 copy, then the value of

DB2INSTDEF is used for that DB2 copy. This means:

– If DB2INSTANCE=ABC and DB2INSTDEF=XYZ, ABC is the value that is

used

– If DB2INSTANCE is not set and DB2INSTDEF=XYZ, XYZ is used

– If DB2INSTANCE is not set and DB2INSTDEF is not set, then any application

or command that depends on a valid DB2INSTANCE will not work.
v You can use either the db2envar.bat command or the db2SelectDB2Copy API to

switch DB2 copies. Setting all the environment variables appropriately (for

example, PATH,INCLUDE,LIB and DB2INSTANCE) will also work, but you

need to ensure that they are set properly.

Note: Using the db2envar.bat command is not quite the same as setting the

environment variables. The db2envar.bat command determines which DB2 copy

it belongs to, and then adds the path of this DB2 copy to the front of the PATH

environment variable.

Chapter 2. Multiple DB2 copies 11

When there are multiple DB2 copies on the same machine, the PATH

environment variable can only point to one of them: the DEFAULT COPY. For

example, if DB2COPY1 is under c:\sqllib\bin and is the default copy; and

DB2COPY2 is under d:\sqllib\bin. If you want to use DB2COPY2 in a regular

command window, you would run d:\sqllib\bin\db2envar.bat in that command

window. This adjusts the PATH (and some other environment variables) for this

command window so that it will pick up binaries from d:\sqllib\bin.

v DB2INSTANCE is only valid for instances under the DB2 copy that you are

using. However, if you switch copies by running the db2envar.bat command,

DB2INSTANCE will be updated to the value of DB2INSTDEF for the DB2 copy

that you switched to initially.

v DB2INSTANCE is the current DB2 instance that will be used by applications that

are executing in that DB2 copy. When you switch between copies, by default,

DB2INSTANCE is changed to the value of DB2INSTDEF for that copy.

DB2INSTDEF is less meaningful on a one copy system because all the instances

are in the current copy; however, it is still applicable as being the default

instance, if another instance is not set.

v All global profile registry variables are specific to a DB2 copy, unless you specify

them using SET VARIABLE=<variable_name>.

Multiple instances of the database manager

Multiple instances of the database manager might be created on a single server.

This means that you can create several instances of the same product on a physical

computer, and have them running concurrently. This provides flexibility in setting

up environments.

Note: The same instance name cannot be used in two different DB2 copies.

You might want to have multiple instances to create the following environments:

v Separate your development environment from your production environment.

v Separately tune each environment for the specific applications it will service.

v Protect sensitive information from administrators. For example, you might want

to have your payroll database protected on its own instance so that owners of

other instances will not be able to see payroll data.

Note:

v (On UNIX® operating systems only:) To prevent environmental conflicts between

two or more instances, you should ensure that each instance home directory is

on a local file system.

v (On Windows® platforms only:) Instances are cataloged as either local or remote

in the node directory. Your default instance is defined by the DB2INSTANCE

environment variable. You can ATTACH to other instances to perform

maintenance and utility tasks that can only be done at an instance level, such as

creating a database, forcing off applications, monitoring a database, or updating

the database manager configuration. When you attempt to attach to an instance

that is not in your default instance, the node directory is used to determine how

to communicate with that instance.

v (On any platform:) DB2 database program files are physically stored at one

location and each instance points back to the copy to which that instance

belongs so that the program files are not duplicated for each instance that is

created. Several related databases can be located within a single instance.

12 Data Servers, Databases, and Database Objects Guide

Multiple instances (Windows)

It is possible to run multiple instances of the database manager on the same

computer. Each instance of the database manager maintains its own databases and

has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that

can be at different levels of the database manager.

An instance of the database manager consists of the following:

v A Windows service that represents the instance. The name of the service is same

as the instance name. The display name of the service (from the Services panel)

is the instance name, prefixed with the “DB2 - ” string. For example, for an

instance named “DB2”, there exists a Windows service called “DB2” with a

display name of “DB2 - <DB2 Copy Name> - DB2”.

Note: A Windows service is not created for client instances.

v An instance directory. This directory contains the database manager

configuration files, the system database directory, the node directory, the

Database Connection Services (DCS) directory, all the diagnostic log and dump

files that are associated with the instance. The instance directory is by default a

sub-directory inside the SQLLIB directory and has the same name as the

instance name. For example, the instance directory for instance “DB2” is

C:\SQLLIB\DB2, where C:\SQLLIB is where the database manager is installed. You

can use the registry variable DB2INSTPROF to change the default location of the

instance directory. If the DB2INSTPROF registry variable is set to another

location, then the instance directory is created under the directory pointed to by

DB2INSTPROF. For example, if DB2INSTPROF=D:\DB2PROFS, then the instance

directory will be D:\DB2PROFS\DB2.

– Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command

– Run DB2ICRT.exe command to create the instance.
v When you create an instance on Windows operating systems, the default

locations for user data files, such as instance directories and the db2cli.ini file,

are the following directories:

– Documents and Settings\All Users\Application Data\IBM\DB2\copy name

on the Windows XP and Windows 2003 operating systems

– ProgramData\IBM\DB2\copy name on the Windows Vista operating system

Updating DB2 copies (Windows)

When updating your DB2 product, you will be required to specify whether you

want to update an existing DB2 copy, or whether to install a new one. To update a

DB2 copy, you must select the Work with Existing option.

You will not be able to update more than one DB2 copy at the same time. In order

to update other DB2 copies that may be installed on the same computer, you need

to rerun the installation. The installation provides the option to migrate Version 8 -

or Version 9.1 copy (in the same path) or to install a new Version 9.1 or Version 9.5

copy without modifying the Version 8 installation.

v If you select to migrate, your Version 8 installation will be removed.

v If you select to install a new DB2 copy, you can later choose to migrate your

instances using the db2ckmig and db2imigr commands.

Chapter 2. Multiple DB2 copies 13

You can use the db2iupdt command to move a DB2 instance between different

Version 9.1 or Version 9.5 DB2 copies, and the db2imigr command to move a

Version 8 instance to Version 9.1 or Version 9.5.

Note:

v Coexistence of Version 7 and Version 9.1 or Version 9.5 is not supported.

v Coexistence of a 32-bit DB2 data server and a 64-bit DB2 data server on the

same Windows X64 computer is not supported.

It is not possible to migrate from a 32-bit X64 DB2 installation at Version 8 to a

64-bit installation at Version 9.1 or Version 9.5 Instead, you need to migrate to

Version 9.1 or Version 9.5 32-bit to use the X64 DB2 data server installation to

move to 64-bit. The 32-bit version will be removed. If you have more than one

32-bit DB2 copy installed, you will need to move all of your instances to one

DB2 copy and remove these copies from the computer.

v If you have multiple Version 9.1 or Version 9.5 copies, the installation options

are install a new copy or work with an existing DB2 copy, which you can

upgrade or add new features. The migrate action is available if you also have a

Version 8 copy in addition to the Version 9.1 or Version 9.5 copies.

v If Version 8 or Version 9.1 is installed, your installation options are to migrate

the existing Version 8 or Version 9.1 to Version 9.5 copy or install a new DB2

copy.

v If Version 7 or earlier is installed , the installation displays a message to indicate

that migration to Version 9.1 or Version 9.5 is not supported. You can only install

a new DB2 copy after uninstalling Version 7. In other words, Version 7 and

Version 9.1 or Version 9.5 cannot coexist.

v To move an instance from one Version 9.1 or Version 9.5 copy to another, you

can use the db2iupdt command.

v If you use the db2imigr command to migrate your instances from Version 8, you

will need to reconfigure any ODBC data sources.

Running multiple instances concurrently (Windows)

You can run multiple instances concurrently in the same DB2 copy, or in different

DB2 copies.

To run multiple instances concurrently in the same DB2 copy, using the command

line:

1. Set the DB2INSTANCE variable to the name of the other instance that you

want to start by entering:

 set db2instance=<another_instName>

2. Start the instance by entering the db2start command.

To run multiple instances concurrently in different DB2 copies, use either of the

following methods:

v Using the DB2 Command window from the Start → Programs → IBM DB2 → <DB2

Copy Name> → Command Line Tools → DB2 Command Window: the Command

window is already set up with the correct environment variables for the

particular DB2 copy chosen.

v Using db2envar.bat from a Command window:

1. Open a Command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy that

you want the application to use:

14 Data Servers, Databases, and Database Objects Guide

<DB2 Copy install dir>\bin\db2envar.bat

After you switch to a particular DB2 copy, use the method specified in the section

above, ″To run multiple instances concurrently in the same DB2 copy″, to start the

instances.

Working with instances on the same or different DB2 copies

You can run multiple instances concurrently, in the same DB2 copy or in different

DB2 copies.

To work with instances in the same DB2 copy, you need to:

1. Create or migrate all instances to the same DB2 copy.

2. Set the DB2INSTANCE environment variable to the name of the instance you

are working with before issuing commands against that instance.

To prevent one instance from accessing the database of another instance, the

database files for an instance are created under a directory that has the same name

as the instance name. For example, when creating a database on drive C: for

instance “DB2”, the database files are created inside a directory called C:\DB2.

Similarly, when creating a database on drive C: for instance TEST, the database

files are created inside a directory called C:\TEST. By default, its value is the drive

letter where DB2 product is installed. For more information, see the dftdbpath

database manager configuration parameter.

To work with an instance in a system with multiple DB2 copies, use either of the

following methods:

v Using the Command window from the Start → Programs → IBM DB2 → <DB2

Copy Name> → Command Line Tools → Command Window: the Command

window is already set up with the correct environment variables for the

particular DB2 copy chosen.

v Using db2envar.bat from a Command window:

1. Open a Command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy that

you want the application to use:

<DB2 Copy install dir>\bin\db2envar.bat

Chapter 2. Multiple DB2 copies 15

16 Data Servers, Databases, and Database Objects Guide

Chapter 3. Autonomic computing

The DB2 autonomic computing environment is self-configuring, self-healing,

self-optimizing, and self-protecting. By sensing and responding to situations that

occur, autonomic computing shifts the burden of managing a computing

environment from database administrators to technology.

The following automatic features can assist you in managing your database

system:

v Self-tuning memory

v Automatic storage

v Automatic (compression) dictionary creation (ADC)

v Automatic database backups

v Automatic statistics collection

v Configuration Advisor

v Health monitor

v Utility throttling

Automatic features

Automatic features assist you in managing your database system. They allow your

system to perform self-diagnosis and to anticipate problems before they happen by

analyzing real-time data against historical problem data. You can configure some of

the automatic tools to make changes to your system without intervention to avoid

service disruptions.

When you create a database, some of the following automatic features are enabled

by default, but others you need to enable manually:

Self-tuning memory (single-partition databases only)

The self-tuning memory feature simplifies the task of memory

configuration. This feature responds to significant changes in workload by

automatically and iteratively adjusting the values of several memory

configuration parameters and the sizes of the buffer pools, thus optimizing

performance. The memory tuner dynamically distributes available memory

resources among several memory consumers, including the sort function,

the package cache, the lock list, and buffer pools. You can disable

self-tuning memory after creating a database by setting the database

configuration parameter self_tuning_mem to OFF.

Automatic storage

The automatic storage feature simplifies storage management for table

spaces. When you create a database, you specify the storage paths where

the database manager will place your table space data. Then, the database

manager manages the container and space allocation for the table spaces as

you create and populate them.

Automatic (compression) dictionary creation (ADC)

Compression dictionaries are automatically created during data population

operations on tables for which you defined the COMPRESS attribute to

YES if a compression dictionary does not already exist within the physical

table or partition and after a table reaches approximately 1 MB in size as

the result of data being added (through insert or load processing, for

© Copyright IBM Corp. 1993, 2009 17

example), the dictionary is created and is inserted into the table. Provided

that the table COMPRESS attribute remains enabled, all data moved into

the table after creation of the compression dictionary is subject to

compression.

Automatic database backups

A database can become unusable due to a wide variety of hardware or

software failures. Ensuring that you have a recent, full backup of your

database is an integral part of planning and implementing a disaster

recovery strategy for your system. Use automatic database backups as part

of your disaster recovery strategy to enable the database manager to back

up your database both properly and regularly.

Automatic statistics collection

Automatic statistics collection helps improve database performance by

ensuring that you have up-to-date table statistics. The database manager

determines which statistics are required by your workload and which

statistics need to be updated. Statistics can be collected either

asynchronously (in the background) or synchronously, by gathering

runtime statistics when SQL statements are compiled. The DB2 optimizer

can then choose an access plan based on accurate statistics. You can disable

automatic statistics collection after creating a database by setting the

database configuration parameter auto_runstats to OFF. Real-time statistics

gathering can be enabled only when automatic statistics collection is

enabled. Real-time statistics gathering is controlled by the auto_stmt_stats

configuration parameter.

Configuration Advisor

When you create a database, this tool is automatically run to determine

and set the database configuration parameters and the size of the default

buffer pool (IBMDEFAULTBP). The values are selected based on system

resources and the intended use of the system. This initial automatic tuning

means that your database performs better than an equivalent database that

you could create with the default values. It also means that you will spend

less time tuning your system after creating the database. You can run the

Configuration Advisor at any time (even after your databases are

populated) to have the tool recommend and optionally apply a set of

configuration parameters to optimize performance based on the current

system characteristics.

Health monitor

The health monitor is a server-side tool that proactively monitors situations

or changes in your database environment that could result in a

performance degradation or a potential outage. A range of health

information is presented without any form of active monitoring on your

part. If a health risk is encountered, the database manager informs you and

advises you on how to proceed. The health monitor gathers information

about the system by using the snapshot monitor and does not impose a

performance penalty. Further, it does not turn on any snapshot monitor

switches to gather information.

Utility throttling

This feature regulates the performance impact of maintenance utilities so

that they can run concurrently during production periods. Although the

impact policy for throttled utilities is defined by default, you must set the

impact priority if you want to run a throttled utility. The throttling system

ensures that the throttled utilities run as frequently as possible without

18 Data Servers, Databases, and Database Objects Guide

violating the impact policy. Currently, you can throttle statistics collection,

backup operations, rebalancing operations, and asynchronous index

cleanup.

Automatic maintenance

The database manager provides automatic maintenance capabilities for performing

database backups, keeping statistics current, and reorganizing tables and indexes

as necessary. Performing maintenance activities on your databases is essential in

ensuring that they are optimized for performance and recoverability.

Maintenance of your database includes some or all of the following activities:

v Backups. When you back up a database, the database manager takes a copy of

the data in the database and stores it on a different medium in case of failure or

damage to the original. Automatic database backups help to ensure that your

database is backed up properly and regularly so that you don’t have to worry

about when to back up or know the syntax of the BACKUP command.

v Data defragmentation (table or index reorganization). This maintenance activity

can increase the efficiency with which the database manager accesses your

tables. Automatic reorganization manages an offline table and index

reorganization so that you don’t need to worry about when and how to

reorganize your data.

v Data access optimization (statistics collection). The database manager updates

the system catalog statistics on the data in a table, the data in indexes, or the

data in both a table and its indexes. The optimizer uses these statistics to

determine which path to use to access the data. Automatic statistics collection

attempts to improve the performance of the database by maintaining up-to-date

table statistics. The goal is to allow the optimizer to choose an access plan based

on accurate statistics.

v Statistics profiling. Automatic statistics profiling advises when and how to

collect table statistics by detecting outdated, missing, or incorrect statistics, and

by generating statistical profiles based on query feedback.

It can be time-consuming to determine whether and when to run maintenance

activities, but automatic maintenance removes the burden from you. You can

manage the enablement of the automatic maintenance features simply and flexibly

by using the automatic maintenance database configuration parameters. Using the

Configure Automatic Maintenance wizard, you can specify your maintenance

objectives The database manager uses these objectives to determine whether the

maintenance activities need to be done and runs only the required ones during the

next available maintenance window (a time period that you define).

Maintenance windows

A maintenance window is a time period that you define for the running of

automatic maintenance activities, which are backups, statistics collection, statistics

profiling, and reorganizations. An offline window might be the time period when

access to a database is unavailable. An online window might be the time period

when users are permitted to connect to a database.

A maintenance window is different from a task schedule. During a maintenance

window, each automatic maintenance activity is not necessarily run. Instead, the

database manager evaluates the system to determine the need for each

Chapter 3. Autonomic computing 19

maintenance activity to be run. If the maintenance requirements are not met, the

maintenance activity is run. If the database is already well maintained, the

maintenance activity is not run.

Think about when you want the automatic maintenance activities to be run.

Automatic maintenance activities consume resources on your system and might

affect the performance of your database when the activities are run. Some of these

activities also restrict access to tables, indexes, and databases. Therefore, you must

provide appropriate windows when the database manager can run maintenance

activities. You specify these periods as offline and online maintenance time

windows using the Automatic Maintenance wizard from the Control Center or

Health Center.

Offline maintenance activities

Offline maintenance activities (offline database backups and table and

index reorganizations) are maintenance activities that can occur only in the

offline maintenance window. The extent to which user access is affected

depends on which maintenance activity is running:

v During an offline backup, no applications can connect to the database.

Any currently connected applications are forced off.

v During an offline table or index reorganization (data defragmentation),

applications can access but not update the data in tables.

Offline maintenance activities run to completion even if they go beyond

the window specified. Over time, the internal scheduling mechanism learns

how to best estimate job completion times. If the offline maintenance

window is too small for a particular database backup or reorganization

activity, the scheduler will not start the job the next time and relies on the

health monitor to provide notification of the need to increase the offline

maintenance window.

Online maintenance activities

Online maintenance activities (automatic statistics collection and profiling,

online index reorganizations, and online database backups) are

maintenance activities that can occur only in the online maintenance

window. When online maintenance activities run, any currently connected

applications are allowed to remain connected, and new connections can be

established. To minimize the impact on the system, online database

backups and automatic statistics collection and profiling are throttled by

the adaptive utility throttling mechanism.

 Online maintenance activities run to completion even if they go beyond the

window specified.

Self-tuning memory

Starting in DB2 Version 9, a new memory-tuning feature simplifies the task of

memory configuration by automatically setting values for several memory

configuration parameters. When enabled, the memory tuner dynamically

distributes available memory resources among the following memory consumers:

buffer pools, package cache, locking memory and sort memory.

The tuner works within the memory limits defined by the database_memory

configuration parameter. The value of database_memory itself can be automatically

tuned as well. When self-tuning is enabled for database_memory (when you set it

to AUTOMATIC), the tuner determines the overall memory requirements for the

database and increases or decreases the amount of memory allocated for database

20 Data Servers, Databases, and Database Objects Guide

shared memory depending on the current database requirements. For example, if

the current database requirements are high and there is sufficient free memory on

the system, more memory will be consumed by database shared memory. If the

database memory requirements decrease or if the amount of free memory on the

system becomes too low, some database shared memory is released.

If you do not enable the database_memory parameter for self-tuning (you do not

set it to AUTOMATIC), the entire database uses the amount of memory that you

specify for the parameter, distributing it across the database memory consumers as

required. You can specify the amount of memory used by the database in two

ways: by setting database_memory to a numeric value or by setting it to

COMPUTED. In the second case, the total amount of memory is computed based

on the sum of the initial values of the database memory heaps at database startup

time.

In addition to tuning database shared memory by using the database_memory

configuration parameter, you can enable other memory consumers for self-tuning

as follows:

v For buffer pools, use the ALTER BUFFERPOOL and CREATE BUFFERPOOL

statements.

v For the package cache, use the pckcachesz configuration parameter.

v For locking memory, use the locklist and maxlocks configuration parameters.

v For sort memory, use the sheapthres_shr and sortheap configuration parameters.

Memory allocation in DB2

Memory allocation and de-allocation occurs at various times in DB2. Memory may

be allocated to a particular memory area when a specified event occurs, such as

when an application connects, or it may be re-allocated based on a change in a

configuration parameter setting.

The figure below shows the different areas of memory that the database manager

allocates for various uses and the configuration parameters that allow you to

control the size of this memory. Note that in an Enterprise Server Edition

environment that comprises multiple logical database partitions, each database

partition has its own Database Manager Shared Memory set.

Chapter 3. Autonomic computing 21

Memory is allocated for each instance of the database manager when the following

events occur:

v When the database manager is started (db2start): Database manager global

shared memory (also known as instance shared memory) is allocated and

remains allocated until the database manager is stopped (db2stop). This area

contains information that the database manager uses to manage activity across

all database connections. DB2 automatically controls the database manager

global shared memory size.

v When a database is activated or connected to for the first time: Database global

memory is allocated. Database global memory is used across all applications that

connect to the database. The size of the database global memory is specified by

the database_memory configuration parameter. By default, this parameter is set

to automatic, allowing DB2 to calculate the initial amount of memory allocated

for the database and to automatically configure the database memory size

during runtime based on the needs of the database. You can set

database_memory to allocate more memory than is needed initially so that the

additional memory can be dynamically distributed later.

The following memory areas can be dynamically adjusted, for example, to

decrease memory allocated to one area and increase memory in another area.

– Buffer pools (using the ALTER BUFFERPOOL DDL statement)

– Database heap (including log buffers)

– Utility heap

– Package cache

– Catalog cache

– Lock list (This memory area can only be increased dynamically, and not

decreased.)

Database Manager
Shared Memory

(1)

Application Global Memory

Application
Heap

Application
Heap

(1) (numdb)

(max_connections)

Database Global Memory

Application
Global Memory

Database
Global Memory

Figure 1. Types of memory used by the Database Manager

22 Data Servers, Databases, and Database Objects Guide

In an environment in which the database manager intra-partition parallelism

configuration parameter (intra_parallel) is enabled, in an environment in which

the connection concentrator is enabled, or in an environment where the database

partitioning feature (DPF) is enabled, the shared sort heap is also allocated as

part of the database global memory. Also, if the sheapthres database manager

configuration parameter is set to 0 (default), all sorts will use database global

memory.

v When an application connects to a database: An application heap is allocated.

Each application has its own application heap. If desired, you can limit the

amount of memory any one application can allocate using the applheapsz

configuration parameter, or limit overall application memory consumption using

the appl_memory configuration parameter.

The database manager configuration parameter max_connections sets an upper

limit on the number of applications that can attach to the instance or connect to

any databases that exist in the instance. Since each application that attaches to a

database involves the allocation of some memory, allowing a larger number of

concurrent applications will potentially use more memory.

v When an agent is created: Agent private memory is allocated for an agent when

the agent is assigned as the result of a connect request or a new SQL request in

a parallel environment. Agent private memory is allocated for the agent and

contains memory that is used only by this specific agent, such as the private sort

heap.

The figure also specifies the following configuration parameter settings, which

limit the amount of memory that is allocated for each type of memory area. Note

that in a partitioned database environment, this memory is allocated on each

database partition.

v numdb

This parameter specifies the maximum number of concurrent active databases

that different applications can use. Because each database has its own global

memory area, the amount of memory that might be allocated increases if you

increase the value of this parameter.

v maxappls

This parameter specifies the maximum number of applications that can

simultaneously connect to a single database. It affects the amount of memory

that might be allocated for agent private memory and application global

memory for that database. Note that this parameter can be set differently for

every database.

Two other parameters that need to be considered are max_coordagents and

max_connections both of which apply at the instance level (per node on a DPF

instance).

v max_connections

This parameter limits the number of connections or instance attachments that

can access the DB2 server at any one time (per node on a DPF instance).

v max_coordagents

This parameter limits the number of database manager coordinating agents that

can exist simultaneously across all active databases in an instance (per node on a

DPF instance). Together with maxappls and max_connections, this parameter

limits the amount of memory allocated for agent private memory and

application global memory.

Chapter 3. Autonomic computing 23

The memory tracker, invoked by the db2mtrk command, allows you to view the

current allocation of memory within the instance, including the following types of

information for each memory pool:

v Current size

v Maximum size (hard limit)

v Largest size (high water mark)

Self tuning memory operational details and limitations

Determining tuning requirements

In order to ensure a fair and relevant comparison between memory consumers, a

new common metric has been developed. Each tuned memory consumer calculates

the predicted benefit from additional memory, and reports this to the self tuning

memory process. Self tuning memory uses these figures as the basis for memory

tuning, taking memory from consumers with the least need and reallocating it to

those memory areas that will benefit the most.

Frequency of memory tuning

When enabled, self tuning memory will periodically check the variability of

database workload. If the workload is not constant (that is, if the queries being run

do not exhibit similar memory characteristics), the memory tuner will reallocate

memory less frequently - up to 10 minutes between tuning cycles - to achieve more

stable trend prediction. For workloads with more constant memory profiles, the

memory tuner will tune memory more frequently - as little as 30 seconds between

tuning cycles - in order to converge more quickly.

Tracking the progress of self tuning memory

Your current memory configuration can be obtained using the GET DATABASE

CONFIGURATION command, or using a snapshot. Changes made by self tuning

are recorded in the memory tuning log files in the stmmlog directory. The memory

tuning log files contain summaries of the resource demands for each memory

consumer at each tuning interval. These intervals can be determined based on the

timestamps in the log entries.

Expected time to converge on best configuration

Leaving this feature enabled should result in quick tuning of parameters to

optimize memory usage. A system can be tuned from an initial configuration in as

little as one hour. In most cases, tuning will usually be complete in at most 10

hours. This worst case occurs when queries run against the database exhibit

markedly different memory characteristics.

Limitations of self tuning memory

In cases where low amounts of memory are available (for example, because the

value of database_memory is set very low, or because multiple databases, instances

or other applications are running on the server) performance benefits of self tuning

memory will be limited.

Because self tuning memory bases tuning decisions on database workload,

workloads with changing memory characteristics limit the ability of self tuning

memory to tune effectively. If your workload’s memory characteristics are

constantly changing, self tuning memory will tune memory less frequently, and

24 Data Servers, Databases, and Database Objects Guide

will repeatedly tune towards shifting target conditions. In this case, self tuning

memory will not achieve absolute convergence, but will instead try to maintain a

memory configuration that is tuned to the current workload.

Operational details, limitations, and interaction between

memory parameters

While you can enable self-tuning memory and use the default AUTOMATIC

setting on most memory-related configuration parameters, it might be useful to

know the operational details, limitations, and interactions between the different

memory parameters, especially the interactions between instance_memory,

database_memory, and appl_memory parameters, in order to have more control

over their setting, and also to understand why “out of memory” errors are still

possible under certain conditions.

Purpose

Basically, the DB2 database manager uses two types of memory:

v Cache-based memory, controlled and distributed to the various performance heaps

by the self-tuning memory manager (STMM). The database_memory

configuration parameter can be used to limit the maximum amount of

cache-based memory that can be used, or can be set to AUTOMATIC to let the

self-tuning memory manager (STMM) manage the overall amount of

cache-based memory.

v Functional memory, used by application programs. The appl_memory

configuration parameter is used to control the maximum amount of application

memory, or functional memory, that is allocated by DB2 database agents to

service application requests. By default, its value is set to AUTOMATIC,

meaning that application memory requests are allowed if the total amount of

memory allocated by the database partition is within the instance_memory

limits.

Process

In previous releases, various operating system and DB2 tools were available to see

different parts of the memory, such as shared memory, private memory, buffer pool

memory, locklists, sortheaps, and so forth, but it was almost impossible to see the

total memory used by the DB2 database manager. When one of the heaps reached

the memory limit, a statement in an application would fail with an “out of

memory” error message. The DBA could increase the memory for that heap, and

rerun the application, only to get an “out of memory” error on another statement

for another heap. Now, individual hard upper limits on functional memory heaps

can be removed by using the default AUTOMATIC configuration parameter

setting.

If desired (for instance, to avoid scenarios where a poorly-behaving database

application requires extremely large amounts of memory), a limit on overall

application memory can be applied at the database level using the appl_memory

configuration parameter. Individual heap limits can also be applied if desired by

changing the appropriate database configuration parameter for that heap from the

AUTOMATIC setting to a fixed value. If all the functional memory heaps are left at

the default AUTOMATIC setting, and appl_memory is also left at the default

AUTOMATIC setting, then the only limit on application memory consumption is

the instance_memory setting. If instance_memory is also set to AUTOMATIC, then

DB2 will automatically determine an upper limit on memory consumption. DBAs

can easily see the total amount of instance_memory consumed, as well as the

Chapter 3. Autonomic computing 25

current instance_memory limit, using the admin_get_dbp_mem_usage table

function.

Interaction between the self_tuning_mem, instance_memory,

database_memory, and appl_memory configuration parameters

When self-tuning memory is fully enabled (self_tuning_mem set to ON, and all

the memory parameters set to AUTOMATIC), the self-tuning memory manager

checks the free memory available on the system and automatically determines how

much memory should be dedicated for cache-based heaps for optimal

performance. All the cached-based heaps contribute to the overall

database_memory size. In addition to the cache-based memory requirements, some

memory is also required to ensure the operation and integrity of the DB2 database

manager. The difference between instance_memory and these two memory

consumers is what is left available for application memory (appl_memory) use.

Functional memory for application programs is then allocated as needed, as long

as it falls within the instance_memory limit - there are no additional restrictions to

how much memory a single application can allocate.

The self-tuning memory manager will also periodically query how much free

system memory is remaining, and how much free instance_memory is remaining.

The self-tuning memory manager weighs application requirements more heavily

than performance criteria (to prevent application failures), so will sacrifice

performance by lowering cache-based heaps in order to ensure enough free system

memory and instance_memory is available for application memory requests. As

applications complete, the used memory is freed, ready to be re-used either by

other applications, or to be reclaimed for database_memory use by the self-tuning

memory manager. If performance of the database system becomes unacceptable

during periods of heavy application activity, it may be useful to either apply

controls on how many applications are allowed into the database manager (for

instance, using either the connection concentrator or the new Workload Manager

feature of DB2 9.5), or to consider adding additional memory resources to the

system.

Limitations (cases where “out of memory” errors are still

possible)

In some cases, you might still get “out of memory” errors if the self-tuning

memory manager does not have enough time to react to sudden spikes in memory

usage, for example, when an application suddenly requires a very large amount of

memory, or if there is a sudden spike in your database workload (i.e. many new

applications connecting to your database at the same time). In this case, or in cases

where a DBA knows that most applications use a set amount of memory, it might

be better to use a hard-coded value for appl_memory instead of the AUTOMATIC

setting. If appl_memory is set to a hard value, for instance 2GB, then DB2 will not

allow total application memory consumption to exceed that amount. Each

application is then allowed to consume as much memory as required as long as

total application memory consumption is less than the appl_memory limit. If either

the appl_memory limit or the instance_memory limit is reached, the application

request causing the database manager to hit the limit will fail, returning a suitable

SQL code (the actual error code returned depends on exactly where in the

operation of the application the “out of memory” failure was encountered). When

an “out of memory” error is encountered, the DBA can view the db2diag.log to

determine how much memory was being used when the error occurred, which can

help determine whether any memory parameters need to be adjusted.

26 Data Servers, Databases, and Database Objects Guide

Enabling self tuning memory

Self tuning memory simplifies the task of memory configuration by automatically

setting values for memory configuration parameters and sizing buffer pools. When

enabled, the memory tuner dynamically distributes available memory resources

between several memory consumers including sort, package cache and lock list

areas and buffer pools.

1. Enable self tuning for the database by setting self_tuning_mem to ON. You can

set self_tuning_mem to ON using the UPDATE DATABASE

CONFIGURATION command, the sqlfupd API, or through the Change

Database Configuration Parameter window in the Control Center.

2. To enable self tuning of memory areas controlled by memory configuration

parameters, set the relevant configuration parameters to AUTOMATIC using

the UPDATE DATABASE CONFIGURATION command, the sqlfupd API, or

through the Change Database Configuration Parameter window in the Control

Center.

3. To enable self tuning of buffer pools, set the buffer pool size to AUTOMATIC.

You can do this using the ALTER BUFFER POOL statement for existing buffer

pools or the CREATE BUFFER POOL statement for new buffer pools. If the size

of a buffer pool is set to AUTOMATIC in a partitioned database environment,

that buffer pool should not have any entries defined in

SYSIBM.SYSBUFFERPOOLNODES.

Note:

1. Because self tuning redistributes memory between different memory areas,

there must be at least two memory areas enabled for self tuning to occur, for

example the lock memory area and the database shared memory area. The only

exception to this is the memory controlled by the sortheap configuration

parameter. When sortheap alone is set to AUTOMATIC, self tuning of sortheap

is enabled.

2. In order to enable the locklist configuration parameter for self tuning,

maxlocks must also be enabled for self tuning, therefore maxlocks is set to

AUTOMATIC when locklist is set to AUTOMATIC. In order to enable the

sheapthres_shr configuration parameter for self tuning, sortheap must also be

enabled for self tuning, therefore sortheap is set to AUTOMATIC when

sheapthres_shr is set to AUTOMATIC.

3. Automatic tuning of sheapthres_shr or sortheap is allowed only when the

database manager configuration parameter sheapthres is set to 0.

4. Self tuning memory runs only on the HADR primary server. When self tuning

memory is activated on an HADR system, it will never run on the secondary

server and it will run on the primary server only if the configuration is set

properly. If a command is run that switches the HADR database roles, self

tuning memory operations will also switch so that they run on the new

primary server. After the primary database is started or the standby database is

converted to a primary database by takeover, the STMM EDU may not start

until the first client connection comes in.

Disabling self tuning memory

Self tuning can be disabled for the entire database by setting self_tuning_mem to

OFF. When self_tuning_mem is set to OFF, the memory configuration parameters

and buffer pools that are set to AUTOMATIC remain AUTOMATIC and the

memory areas remain at their current size.

Chapter 3. Autonomic computing 27

You can set self_tuning_mem to OFF using the UPDATE DATABASE

CONFIGURATION command, the sqlfupd API, or through the Change Database

Configuration Parameter window in the Control Center.

Self tuning can also be effectively deactivated for the entire database if only a

single memory consumer is enabled for self tuning. This is because memory cannot

be redistributed when only one memory area is enabled.

For example, to disable self tuning of the sortheap configuration parameter, you

could enter the following:

UPDATE DATABASE CONFIGURATION USING SORTHEAP MANUAL

To disable self tuning of the sortheap configuration parameter and change the

current value of sortheap to 2000 at the same time, enter the following:

UPDATE DATABASE CONFIGURATION USING SORTHEAP 2000

In some cases, one memory configuration parameter can only be enabled for self

tuning if another related memory configuration parameter is also enabled. For

example, self tuning of the maxlocks configuration parameter is only permitted

when the locklist configuration parameter is also enabled. Similarly, self tuning of

the sheapthres_shr configuration parameter can only be enabled if self tuning of

the sortheap configuration parameter is also enabled. This means that disabling

self tuning of the locklist or sortheap parameters disables self tuning of the

maxlocks or sheapthres_shr parameters, respectively.

Self tuning can be disabled for a buffer pool by setting the buffer pool to a specific

size. For example, the following statement will disable self tuning for bufferpool1:

ALTER BUFFERPOOL bufferpool1 SIZE 1000

Determining which memory consumers are enabled for self

tuning

To view the self tuning settings for memory consumers controlled by configuration

parameters, use one of the following methods.

v To view the self tuning settings for configuration parameters from the command

line, use the GET DATABASE CONFIGURATION command specifying the

SHOW DETAIL parameter.

The memory consumers that can be enabled for self tuning are grouped together

in the output as follows:

 Description Parameter Current Value Delayed Value

 --

 Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON

 Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)

 Max storage for lock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)

 Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)

 Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)

 Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)

 Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

v You can also use the db2CfgGet API to determine whether or not tuning is

enabled. The following values are returned:

SQLF_OFF 0

SQLF_ON_ACTIVE 2

SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE describes a situation where self tuning is enabled and active

while SQLF_ON_INACTIVE indicates that self tuning is enabled but is currently

inactive.

28 Data Servers, Databases, and Database Objects Guide

v You can also view the configuration settings in the Database Configuration

window in the Control Center.

To view the self tuning settings for buffer pools, use one of the following methods.

v To retrieve the list of buffer pools that are enabled for self tuning from the

command line, enter:

db2 "select BPNAME, NPAGES from sysibm.sysbufferpools"

When self tuning is enabled for a buffer pool, the NPAGES field in the

sysibm.sysbufferpools table for that particular buffer pool will be set to -2. When

self tuning is disabled, the NPAGES field will be set to the buffer pool’s current

size.

v To determine the current size of buffer pools that have been enabled for self

tuning, use the snapshot monitor as follows and examine the current size of the

buffer pool (the value of the bp_cur_buffsz monitor element):

db2 get snapshot for bufferpools on db_name

v To view the self tuning settings of your buffer pools using the Control Center,

right-click on a buffer pool and view the attributes of the buffer pools in the

object details pane.

It is important to note that responsiveness of the memory tuner is limited by the

time required to resize a memory consumer. For example, reducing the size of a

buffer pool can be a lengthy process and therefore the performance benefits of

trading buffer pool memory for sort area memory may not be immediately

realized.

Self tuning memory in partitioned database environments

When using the self tuning memory feature in partitioned database environments,

there are a few factors that determine whether the feature will tune the system

appropriately.

When self tuning memory is enabled in partitioned databases, a single database

partition is designated as the tuning partition, and all memory tuning decisions are

based on the memory and workload characteristics of that database partition. Once

tuning decisions are made on the tuning partition, the memory adjustments are

distributed to all other database partitions to ensure that all database partitions

maintain similar configurations.

The single tuning partition model necessitates that the feature be used only on

database partitions that have similar memory requirements. The following are

guidelines to use when determining whether to enable self tuning memory on your

partitioned database.

Cases where self tuning is recommended in partitioned

databases

When all database partitions have similar memory requirements and are running

on similar hardware, self tuning memory can be enabled without any

modifications. These types of environments share the following characteristics:

v All database partitions on identical hardware, including an even distribution of

multiple logical nodes to multiple physical nodes

v Perfect or near-perfect distribution of data

Chapter 3. Autonomic computing 29

v Workload running on the database partitions is distributed evenly across

database partitions. This means that no one database partition has elevated

memory requirements for one or more heaps.

In such an environment, it is desirable to have all database partitions configured

equally, and self tuning memory will properly configure the system.

Cases where self tuning is recommended in partitioned

databases with care

In cases where most of the database partitions in an environment have similar

memory requirements and are running on similar hardware, it is possible to use

self tuning memory as long as some care is taken with the initial configuration.

These systems might have a set of database partitions for data, and a much smaller

set of coordinator partitions and a catalog partitions. In such environments, it

might be beneficial to configure the coordinator partitions and catalog partitions

differently than the database partitions that contain your data.

In this environment, it is still possible to benefit from the self tuning memory

feature with some minor setup. Since the database partitions containing the data

comprise the bulk of the database partitions, self tuning should be enabled on all

of these database partitions and one of these database partitions should be

specified as the tuning partition. Additionally, since the catalog and coordinator

partitions might be configured differently, self tuning memory should be disabled

on these partitions. To disable self tuning on the catalog and coordinator partitions,

update the self_tuning_mem database configuration parameter on these partitions to

OFF.

Cases where self tuning is not recommended in partitioned

databases

In environments where the memory requirements of each database partition are

different or when different database partitions are running on dramatically

different hardware, it is advisable to disable the self tuning memory feature. This

can be done by setting the self_tuning_mem database configuration parameter to

OFF on all partitions.

Comparing memory requirements of different database partitions

The best way to determine if the memory requirements of different database

partitions are sufficiently similar is to consult the snapshot monitor. If the

following snapshot elements are similar on all partitions (differing by no more

than 20%), then the partitions can be considered similar.

Collect the following data by issuing the command get snapshot for database on

<dbname>.

Total Shared Sort heap allocated = 0

Shared Sort heap high water mark = 0

Post threshold sorts (shared memory) = 0

Sort overflows = 0

Package cache lookups = 13

Package cache inserts = 1

Package cache overflows = 0

Package cache high water mark (Bytes) = 655360

Number of hash joins = 0

Number of hash loops = 0

30 Data Servers, Databases, and Database Objects Guide

Number of hash join overflows = 0

Number of small hash join overflows = 0

Post threshold hash joins (shared memory) = 0

Locks held currently = 0

Lock waits = 0

Time database waited on locks (ms) = 0

Lock list memory in use (Bytes) = 4968

Lock escalations = 0

Exclusive lock escalations = 0

Collect the following data by issuing the command get snapshot for bufferpools

on <dbname>

Buffer pool data logical reads = 0

Buffer pool data physical reads = 0

Buffer pool index logical reads = 0

Buffer pool index physical reads = 0

Total buffer pool read time (milliseconds) = 0

Total buffer pool write time (milliseconds)= 0

Using self-tuning memory in partitioned database

environments

When self-tuning is enabled in partitioned database environments, there is a single

database partition, known as the tuning partition, that monitors the memory

configuration and propagates any configuration changes to all other database

partitions to maintain a consistent configuration across all the participating

database partitions.

The tuning partition is selected based on a number of characteristics, such as the

number of database partitions in the partition group and the number of buffer

pools defined.

v To determine which database partition is currently specified as the tuning

partition, use the following ADMIN_CMD:

CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

v To change the tuning partition, use the following ADMIN_CMD:

CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum <db_partition_num>’)

When you issue this command, the tuning partition will be updated

asynchronously or at the next database startup.

v To have the memory tuner automatically re-select the tuning partition, enter -1

for the <db_partition_num> value.

Starting the memory tuner on DPF systems

The memory tuner will only be started in a DPF environment if the database is

activated by an explicit ACTIVATE DATABASE command because self-tuning

requires all partitions to be active before it can properly tune the memory on a

multi-partition system.

Disabling self-tuning for a given database partition

v To disable self-tuning for a subset of database partitions, set the self_tuning_mem

configuration parameter to OFF for the database partitions you want to leave

untuned.

v

To disable self-tuning for a subset of the memory consumers controlled by

configuration parameters on a particular database partition, set the value of the

Chapter 3. Autonomic computing 31

relevant configuration parameter or buffer pool size to MANUAL or a specific

value on that database partition. However, it is recommended that self-tuning

configuration parameter values be consistent across all running partitions.

v To disable tuning for a particular buffer pool on a database partition, issue an

ALTER BUFFER POOL command specifying a size value and a value for the

PARTITIONNUM parameter for the partition where self-tuning is to be disabled.

An ALTER BUFFERPOOL statement that specifies the size on a particular

database partition using the PARTITIONNUM clause will create an exception

entry for the given buffer pool in the SYSCAT.SYSBUFFERPOOLNODES catalog,

or update the exception entry if one already exists. When an exception entry

exists for a buffer pool in this catalog, that buffer pool will not participate in

self-tuning when the default buffer pool size is set to AUTOMATIC. To remove

an exception entry so that a buffer pool can be re-enabled for self-tuning:

1. Disable tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement setting the buffer pool size to a specific value.

2. Issue another ALTER BUFFERPOOL statement with the PARTITIONNUM

clause specified to set the size of the buffer pool on this database partition to

the default buffer pool size.

3. Enable self-tuning by issuing another ALTER BUFFERPOOL statement

setting the size to AUTOMATIC.

Enabling self-tuning memory in non-uniform environments

Ideally, your data should be distributed evenly across all of your database

partitions and the workload run on each partition should have similar memory

requirements. If the data distribution is skewed so that one or more of your

database partitions contain significantly more or less data than other database

partitions, these anomalous database partitions should not be enabled for

self-tuning. The same is true if the memory requirements are skewed across the

database partitions, which can happen, for example, if resource-intensive sorts are

only performed on one partition, or if some database partitions are associated with

different hardware and more available memory than others. Self-tuning can still be

enabled on some database partitions in this type of environment. To take

advantage of self-tuning memory in environments with skew, identify a set of

database partitions that have similar data and memory requirements and enable

them for self-tuning. Memory configuration in the remaining partitions should be

configured manually.

Configuring memory and memory heaps

With the simplified memory configuration feature, you can configure memory and

memory heaps required by the DB2 data server by using the default AUTOMATIC

setting for most memory-related configuration parameters, thereby, requiring much

less tuning.

The simplified memory configuration feature provides the following benefits:

v You can use a single parameter, instance_memory, to specify all of the memory

that the database manager is allowed to allocate from its private and shared

memory heaps. Also, you can use the appl_memory configuration parameter to

control the maximum amount of application memory that is allocated by DB2

database agents to service application requests.

v You do not need to manually tune parameters used solely for functional

memory.

32 Data Servers, Databases, and Database Objects Guide

v You can query how much total memory is currently being consumed by the

private and shared memory heaps of the database manager by using the

Memory Visualizer. You can also use the db2mtrk command to monitor heap

usage and the ADMIN_GET_DBP_MEM_USAGE() table function to query

overall memory consumption.

v The default DB2 configuration requires much less tuning, a benefit for new

instances that you create.

The following table lists the memory configuration parameters whose values

default to the AUTOMATIC setting. These parameters can also be configured

dynamically, if necessary. Note that the meaning of the AUTOMATIC setting

differs with each parameter, as described in the rightmost column.

 Table 1. Memory configuration parameters whose values default to AUTOMATIC

Configuration parameter

name Description

Meaning of the

AUTOMATIC setting

appl_memory Controls the maximum

amount of application

memory that is allocated by

DB2 database agents to

service application requests.

The AUTOMATIC setting

allows all application

memory requests as long as

the total amount of memory

allocated by the database

partition is within the

instance_memory limits.

applheapsz Prior to Version 9.5, referred

to the amount of application

memory that each database

agent working for an

application could consume.

In Version 9.5, this parameter

refers to the total amount of

application memory that can

be consumed by the entire

application. For DPF,

Concentrator, or SMP

configurations, this means

that you might need to

increase the applheapsz

value used in previous

releases unless you use the

AUTOMATIC setting.

The AUTOMATIC setting

allows the application heap

size to increase as needed

until either the appl_memory

or the instance_memory

limit is reached.

database_memory (Prior to

Version 9.5, the default

setting of AUTOMATIC

applied only to Windows

and AIX platforms. As of

Version 9.5, AUTOMATIC is

the default setting for all

DB2 server products.)

Specifies the amount of

shared memory that is

reserved for the database

shared memory region.

When enabled, the memory

tuner determines the overall

memory requirements for the

database and increases or

decreases the amount of

memory allocated for

database shared memory

depending on the current

database requirements.

dbheap Determines the maximum

memory used by the

database heap.

The AUTOMATIC setting

allows the database heap to

increase as needed until

either the database_memory

or the instance_memory

limit is reached.

Chapter 3. Autonomic computing 33

Table 1. Memory configuration parameters whose values default to

AUTOMATIC (continued)

Configuration parameter

name Description

Meaning of the

AUTOMATIC setting

instance_memory Specifies the maximum

amount of memory that can

be allocated for a database

partition.

The AUTOMATIC setting

allows the overall memory

consumed by the entire

database manager instance to

increase to a limit of 75 -

95% of the physical RAM on

the machine. This limit is

calculated during db2start

processing.

mon_heap_sz Determines the amount of

the memory, in pages, to

allocate for database system

monitor data.

The AUTOMATIC setting

allows the monitor heap to

increase as needed until the

instance_memory limit is

reached.

stat_heap_sz Indicates the maximum size

of the heap used in collecting

statistics using the

RUNSTATS command.

The AUTOMATIC setting

allows the statistics heap size

to increase as needed until

either theappl_memory or

the instance_memory limit is

reached.

stmtheap Specifies the size of the

statement heap, which is

used as a work space for the

SQL or XQuery compiler to

compile an SQL or XQuery

statement.

The AUTOMATIC setting

allows the statement heap to

increase as needed until

either the appl_memory or

the instance_memory limit is

reached.

Note: The DBMCFG and DBCFG administrative views retrieve database manager

configuration parameter information for the currently connected database for all

database partitions. For the mon_heap_sz, stmtheap, and stat_heap_sz

configuration parameters, the DEFERRED_VALUE column on this view does not

persist across database activations. That is, when you issue the get dbm cfg show

detail or get db cfg show detail command, the output from the query shows

updated (in memory) values.

The following table shows whether configuration parameters are set to the default

AUTOMATIC value during instance migration or creation and during database

migration or creation.

 Table 2. Configuration parameters set to AUTOMATIC during instance and database

migration and creation

Configuration

parameters

Set to AUTOMATIC

upon instance

migration or

instance creation

Set to AUTOMATIC

upon database

migration

Set to AUTOMATIC

upon database

creation

applheapsz1 X X

dbheap X X

instance_memory X

mon_heap_sz1 X

stat_heap_sz1 X X

34 Data Servers, Databases, and Database Objects Guide

Table 2. Configuration parameters set to AUTOMATIC during instance and database

migration and creation (continued)

Configuration

parameters

Set to AUTOMATIC

upon instance

migration or

instance creation

Set to AUTOMATIC

upon database

migration

Set to AUTOMATIC

upon database

creation

stmtheap1 X

As part of the move to simplified memory configuration, the following elements

have been deprecated:

v Configuration parameters appgroup_mem_sz, groupheap_ratio, and

app_ctl_heap_sz. These configuration parameters are replaced with the new

appl_memory configuration parameter.

v The -p parameter of the db2mtrk memory tracker command. This option, which

lists private agent memory heaps, is replaced with the -a parameter, which lists

all application memory consumption.

The Memory Visualizer displays the maximum application memory consumption

by a database using the new appl_memory configuration parameter, and the

maximum memory consumption by an instance using the updated

instance_memory configuration parameter. The Memory Visualizer also displays

the values for all of the configuration parameters that allow the AUTOMATIC

setting. Values for the deprecated configuration parameters are not displayed in the

Memory Visualizer for Version 9.5 databases, but they are displayed for earlier

versions of the databases.

Attempts to update the instance_memory parameter to values larger than those

specified in this list will fail with a SQL5130N return code:

v 4 GB (1 048 576 * 4 KB pages) for DB2 Express Edition and DB2 Express-C

v 16 GB (4 194 304 * 4 KB pages) for DB2 Workgroup Server Edition

When fast communications manager (FCM) shared memory is allocated, each local

database partition’s share of the overall FCM shared memory size for the system is

accounted for in the instance_memory limit of that database partition. Due to the

nature of FCM memory (failure to allocate FCM buffers can bring down the

instance), FCM memory requests never fail due to the instance_memory limit.

However, they can fail if memory cannot be allocated from the operating system. If

an FCM memory request causes a database partition to exceed its

instance_memory limit, other memory requests will fail until the memory usage of

the partition returns to a level below the instance_memory limit.

Agent and process model configuration

Version 9.5 provides a less complex and more flexible mechanism for configuring

process model–related parameters. This simplified configuration eliminates the

need for regular adjustments to these parameters and reduces the time and effort

required to configure them. It also eliminates the need to shut down and restart

DB2 instances to have the new values take effect.

To allow for dynamic and automatic agent and memory configuration, slightly

more memory resources are required when an instance is activated.

Chapter 3. Autonomic computing 35

Agent, process model, and memory configuration

DB2 data servers exploit multithreaded architecture on both 32-bit and 64-bit

platforms to provide you with a number of benefits, such as enhanced usability,

better sharing of resources, memory footprint reduction, and consistent threading

architecture across all operating systems.

Configuring databases across multiple partitions

The database manager provides a single view of all database configuration

elements across multiple partitions. This means that you can update or reset a

database configuration across all database partitions without invoking the db2_all

command against each database partition.

You can update a database configuration across partitions by issuing only one SQL

statement or only one administration command from any partition on which the

database resides. By default, the method of updating or resetting a database

configuration is on all database partitions.

For backward compatibility of command scripts and applications, you have three

options:

v Use the db2set command to set the DB2_UPDDBCFG_SINGLE_DBPARTITION

registry variable to TRUE, as follows:

 DB2_UPDDBCFG_SINGLE_DBPARTITION=TRUE

Note: Setting the registry variable does not apply to UPDATE DATABASE

CONFIGURATION or RESET DATABASE CONFIGURATION requests that you

make using the ADMIN_CMD procedure.

v Use the DBPARTITIONNUM parameter with either the UPDATE DATABASE

CONFIGURATION or the RESET DATABASE CONFIGURATION command or

with the ADMIN_CMD procedure. For example, to update the database

configurations on all database partitions, call the ADMIN_CMD procedure as

follows:

 CALL SYSPROC.ADMIN_CMD

 (’UPDATE DB CFG USING sortheap 1000’)

To update a single database partition, call the ADMIN_CMD procedure as

follows:

 CALL SYSPROC.ADMIN_CMD

 (’UPDATE DB CFG DBPARTITIONNUM 10 USING sortheap 1000’)

v Use the DBPARTITIONNUM parameter with the db2CfgSet API. The flags in

the db2Cfg structure indicate whether the value for the database configuration is

to be applied to a single database partition. If you set a flag, you must also

provide the DBPARTITIONNUM value, for example:

 #define db2CfgSingleDbpartition 256

If you do not set the db2CfgSingleDbpartition value, the value for the database

configuration applies to all database partitions unless you set the

DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable to TRUE or you

set versionNumber to anything that is less than the version number for Version

9.5, for the db2CfgSet API that sets the database manager or database

configuration parameters.

When migrating your databases to Version 9.5, existing database configuration

parameters, as a general rule, retain their values after migration. However, new

parameters are added using their default values and some existing parameters are

set to their new Version 9.5 default values. Refer to the ″DB2 server behavior

36 Data Servers, Databases, and Database Objects Guide

changes″ topic in the Migration Guide for details about the changes to existing

database configuration parameters. Any subsequent update or reset database

configuration requests for the migrated databases will use the Version 9.5 method

of updating or resetting configuration requests.

For existing update or reset command scripts, the same rules mentioned previously

apply: you can use the pre-Version 9.5 method, you can modify your scripts to

include the DBPARTITIONNUM option of the UPDATE DATABASE

CONFIGURATION or RESET DATABASE CONFIGURATION command, or you

can set the DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable.

For existing applications that call the db2CfgSet API, you must use the Version 9.5

method. If you want the pre-Version 9.5 method, you can set the

DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable or modify your

applications to call the API with the Version 9.5 version number, including the new

db2CfgSingleDbpartition flag and the new dbpartitionnum field to update or reset

database configurations for a specific database partition.

Note: If you find that database configuration values are inconsistent, you can

update or reset each database partition individually.

Shared file handle table

The threaded database manager maintains a single shared file handle table for each

database and all agents working on each database so that I/O requests made on

the same file do not require the file to be reopened and closed.

Prior to Version 9.5, the file handle table was maintained separately by each DB2

agent, and the size of the per-agent file handle table was controlled by the

maxfilop configuration parameter. Starting in Version 9.5, the database manager

maintains a single shared file handle table for the entire database, such that the

same file handle can be shared among all agents working on the same database

file. As a result, the maxfilop configuration parameter is used to control the size of

the shared file handle table.

Because of this change, the maxfilop configuration parameter has a new default

value and new minimum and maximum values. During database migration, the

maxfilop configuration parameter is automatically set to the new default values.

Running vendor library functions in fenced-mode processes

The database manager supports vendor library functions in fenced-mode processes

that perform such tasks as data compression, TSM backups, and log data

archiving.

Prior to Version 9.5, vendor library functions, vendor utilities, or routines were run

inside agent processes. Since Version 9.5, because the DB2 database manager itself

is a multithreaded application, vendor library functions that are no longer

threadsafe and cause memory or stack corruption or, worse, data corruption in

DB2 databases. For these reasons, a new fenced-mode process is created for each

invocation of a vendor utility, and vendor library functions or routines run inside

this fenced-mode process. This does not result in significant performance

degradation.

Note: The fenced-mode feature is not available for Windows platforms.

Chapter 3. Autonomic computing 37

Automatic storage

Automatic storage simplifies storage management for table spaces. When you

create a database, you specify the storage paths where the database manager will

place your table space data. Then, the database manager will manage the container

and space allocation for the table spaces as you create and populate them.

Automatic storage table spaces

When you create a table space in a database that is not enabled for automatic

storage, you must specify the MANAGED BY SYSTEM or MANAGED BY

DATABASE clause. Using these clauses results in the creation of a system-managed

space (SMS) table space or database-managed space (DMS) table space,

respectively. You must provide an explicit list of containers in both cases.

If a database is enabled for automatic storage, other choices exist: you can specify

the MANAGED BY AUTOMATIC STORAGE clause or omit the MANAGED BY

clause (which implies the use of automatic storage) . You do not need to provide

container definitions in this case because the database manager assigns the

containers automatically.

Following are some examples of statements that create automatic storage table

spaces:

 CREATE TABLESPACE TS1

 CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE

 CREATE TEMPORARY TABLESPACE TEMPTS

 CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE

 CREATE LONG TABLESPACE LONGTS

Although the automatic storage table space type appears to be a different table

space type, it is really just an extension of the existing SMS and DMS types. If you

create a table space as a regular or large table space, it is created as a DMS table

space with file containers. If you create a table space as a user or system temporary

table space, it is created as an SMS table space with directory containers.

Note: This behavior might change in future versions of the database manager.

The names associated with these containers have the following format:

 storage path/instance name/NODE####/database name/T#######/C#######.EXT

where:

storage path

Is a storage path associated with the database

instance name

Is the instance under which the database was created

database name

Is the name of the database

NODE####

Is the database partition number (for example, NODE0000)

T#######

Is the table space ID (for example, T0000003)

C#######

Is the container ID (for example, C0000012)

38 Data Servers, Databases, and Database Objects Guide

EXT Is an extension based on the type of data being stored:

CAT System catalog table space

TMP System temporary table space

UTM User temporary table space

USR User or regular table space

LRG Large table space

 Differences between regular and large automatic storage table

spaces and DMS table spaces

Regular and large automatic storage table spaces are created as DMS table spaces,

and all of the rules and behaviors associated with DMS table spaces

apply.However, there are differences with respect to how storage is managed, as

shown in the following table:

 Table 3. Differences between managing non-automatic storage and automatic storage table

spaces

Non-automatic storage Automatic storage

You must explicitly provide a list of

containers when creating the table space.

You cannot provide a list of containers when

creating the table space; instead, the

database manager automatically assigns and

allocates containers.

Automatic resizing of table spaces is off

(AUTORESIZE is set to NO) by default.

Automatic resizing of table spaces is on

(AUTORESIZE is set to YES) by default.

You cannot use the INITIALSIZE clause to

specify the initial size for the table space.

You can use the INITIALSIZE clause to

specify the initial size for the table space.

You can perform container operations using

the ALTER TABLESPACE statement

(specifying ADD, DROP, BEGIN NEW

STRIPE SET, and so on).

You cannot perform container operations

because the database manager manages

space.

You can use a redirected restore operation to

redefine the containers associated with the

table space.

You cannot use a redirected restore

operation to redefine the containers

associated with the table space because the

database manager manages space.

As mentioned in the previous table, when you create a regular or large automatic

storage table space, you can specify an initial size as part of the CREATE

TABLESPACE statement, as shown in the following example:

 CREATE TABLESPACE TS1 INITIALSIZE 100 M

If you do not specify an initial size, the database manager uses a default value of

32 megabytes.

To create a table space with a given size, the database manager creates file

containers within the storage paths. If there is an uneven distribution of space

among the paths, containers might be created with different sizes. As a result, it is

important that all of the storage paths have a similar amount of free space on

them.

If you enable automatic resizing for a table space, as space is used within it, the

database manager automatically extends existing containers and adds new ones

Chapter 3. Autonomic computing 39

(using stripe sets). Whether containers are extended or added, no rebalancing takes

place.

Automatic re-sizing of table spaces

Enabling automatic storage table spaces for automatic resizing allows the database

manager to handle the full file system condition automatically by adding a new

stripe set of containers.

Two table space types can exist within a database system: system-managed space

(SMS) and database-managed space (DMS). The containers associated with SMS

table spaces are file system directories, and the files within these directories grow

as the objects in the table space grow. .The files grow until a file system limit is

reached for one of the containers or until the table space size limit of the database

is reached (see SQL and XML limits).

DMS table spaces are made up of file containers or raw device containers, and

their sizes are set when the containers are assigned to the table space. The table

space is considered to be full when all of the space within the containers has been

used. However, unlike for SMS table spaces, you can add or extend containers

using the ALTER TABLESPACE statement, allowing more storage space to be given

to the table space. DMS table spaces also have a feature called auto-resize: as space

is consumed in a DMS table space that can be automatically resized, the database

system might extend the table space by one or more file containers. SMS table

spaces have similar capabilities for growing automatically, but the term auto-resize

is used exclusively for DMS.

Automatic resizing of table spaces has the following implications:

v Table spaces that are enabled for automatic resizing have metadata associated

with them that is not recognized by Version 8.2.1 or earlier releases. Any attempt

to use a database with table spaces enabled for automatic resizing with these

versions results in a failure (most likely, returning an SQL0980C or SQL0902C

error). An error might be sent if you try to connect to a database or try to restore

a database. If you enabled table spaces for automatic resizing, disabling the

auto-resize feature for these table spaces removes the metadata, allowing the

database to be used with Version 8.2.1 or earlier releases.

v If you disable the auto-resize feature, the values that are associated with

INCREASESIZE and MAXSIZE are lost if you subsequently enable this feature.

v You cannot this feature for table spaces that use raw device containers, and you

cannot add raw device containers to a table space that can be automatically

resized. Attempting these operations results in errors (SQL0109N). If you need to

add raw device containers, you must disable the feature first.

v A redirected restore operation cannot change the container definitions to include

a raw device container. Attempting this kind of operation results in an error

(SQL0109N).

v Because the maximum size limits how the database manager automatically

increases a table space, the maximum size also limits how you can increase a

table space. That is, when you perform an operation that adds space to a table

space, the resulting size must be less than or equal to the maximum size. You

can add space by using the ADD, EXTEND, RESIZE, or BEGIN NEW STRIPE

SET clause of the ALTER TABLESPACE statement.

Enabling and disabling the auto-resize feature

By default, the auto-resize feature is not enabled for a DMS table space. The

following statement creates a DMS table space without enabling auto-resize:

40 Data Servers, Databases, and Database Objects Guide

CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

To enable the auto-resize feature, specify the AUTORESIZE YES clause for the

CREATE TABLESPACE statement:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M) AUTORESIZE YES

You can also enable or disable the auto-resize feature after creating a DMS table

space by using ALTER TABLESPACE statement with the AUTORESIZE clause:

 ALTER TABLESPACE DMS1 AUTORESIZE YES

 ALTER TABLESPACE DMS1 AUTORESIZE NO

Two other attributes, MAXSIZE and INCREASESIZE, are associated with

auto-resize table spaces:

Maximum size (MAXSIZE)

The MAXSIZE clause of the CREATE TABLESPACE statement defines the

maximum size for the table space. For example, the following statement creates a

table space that can grow to 100 megabytes (per database partition if the database

has multiple database partitions):

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES MAXSIZE 100 M

The MAXSIZE NONE clause specifies that there is no maximum limit for the table

space. The table space can grow until a file system limit or table space limit is

reached (see SQL and XML limits). If you do not specify the MAXSIZE clause,

there is no maximum limit when the auto-resize feature is enabled.

Use the ALTER TABLESPACE statement to change the value of MAXSIZE for a

table space that has auto-resize already enabled, as shown in the following

examples:

 ALTER TABLESPACE DMS1 MAXSIZE 1 G

 ALTER TABLESPACE DMS1 MAXSIZE NONE

If you specify a maximum size, the actual value that the database manager

enforces might be slightly smaller than the value specified because the database

manager attempts to keep container growth consistent.

Increase size (INCREASESIZE)

The INCREASESIZE clause of the CREATE TABLESPACE statement defines the

amount of space used to increase the table space when there are no free extents

within the table space but a request for one or more extents was made. You can

specify the value as an explicit size or as a percentage, as shown in the following

examples:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES INCREASESIZE 5 M

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES INCREASESIZE 50 PERCENT

Chapter 3. Autonomic computing 41

A percentage value means that the amount by which to increase, as specified by

the INCREASESIZE value, is calculated every time that the table space needs to

grow and that growth is based on a percentage of the table space size at that time.

For example, if the table space is 20 MB in size and the INCREASESIZE value is

50% , the table space grows by 10 MB the first time (to a size of 30 MB) and by 15

MB the next time.

If you do not specify the INCREASESIZE clause when you enable the auto-resize

feature, the database manager determines an appropriate value to use, which

might change over the life of the table space. As with AUTORESIZE and

MAXSIZE, you can change the value of INCREASESIZE using the ALTER

TABLESPACE statement.

If you specify a size increase, the actual value that the database manager will use

might be slightly different than the value that you provide. This adjustment in the

value used is done to keep growth consistent across the containers in the table

space.

How table spaces are extended

For table spaces that can be automatically resized, the database manager attempts

to increase the size of the table space when all of the existing space has been used

and a request for more space is made. The database manager determines which of

the containers can be extended in the table space so that a rebalance does not

occur. The database manager extends only those containers that exist within the

last range of the table space map (the map describes the storage layout for the

table space) and extends them by an equal amount.

For example, consider the following statement:

 CREATE TABLESPACE TS1 MANAGED BY DATABASE

 USING (FILE ’C:\TS1CONT’ 1000, FILE ’D:\TS1CONT’ 1000,

 FILE ’E:\TS1CONT’ 2000, FILE ’F:\TS1CONT’ 2000)

 EXTENTSIZE 4

 AUTORESIZE YES

Keeping in mind that the database manager uses a small portion (one extent) of

each container for metadata, following is the table space map that is created for the

table space based on the CREATE TABLESPACE statement. (The table space map is

part of the output from a table space snapshot.)

 Table space map:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 995 3983 0 248 0 4 (0,1,2,3)

 [1] [0] 0 1495 5983 249 498 0 2 (2,3)

The table space map shows that the containers with an identifier of 2 or 3

(E:\TS1CONT and F:\TS1CONT) are the only containers in the last range of the map.

Therefore, when the database manager automatically extends the containers in this

table space, it extends only those two containers.

Note: If you create a table space with all of the containers having the same size,

there is only one range in the map. In such a case, the database manager extends

each of the containers. To prevent restricting extensions to only a subset of the

containers, create a table space with containers of equal size.

42 Data Servers, Databases, and Database Objects Guide

As discussed previously, you can specify a limit on the maximum size of the table

space, or you can specify a value of NONE, which does not limit growth. If you

specify NONE or no limit, the upper limit is defined by the file system limit or by

the table space limit; the database manager does not attempt to increase the table

space size past the upper limit. However, before that limit is reached, an attempt to

increase a container might fail due to a full file system. In this case, the database

manager does not increase the table space size any further and returns an

out-of-space condition to the application. There are two ways to resolve this

situation:

v Increase the amount of space available on the file system that is full.

v Perform container operations on the table space such that the container in

question is no longer in the last range of the table space map. The easiest way to

do this is to add a new stripe set to the table space with a new set of containers,

and the best practice is to ensure that the containers are all the same size. You

can add new stripe sets by using the ALTER TABLESPACE statement with the

BEGIN NEW STRIPE SET clause. By adding a new stripe set, a new range is

added to the table space map. With a new range, the containers that the

database manager automatically attempts to extend are within this new stripe

set, and the older containers remain unchanged.

Note: When a user-initiated container operation is pending or a subsequent

rebalance is in progress, the auto-resize feature is disabled until the operation is

committed or the rebalance is complete.

For example, for DMS table spaces, suppose that a table space has three containers

that are the same size and that each resides on its own file system. As work is

done on the table space, the database manager automatically extends these three

containers. Eventually, one of the file systems becomes full, and the corresponding

container can no longer grow. If more free space cannot be made available on the

file system, you must perform container operations on the table space such that the

container in question is no longer in the last range of the table space map. In this

case, you could add a new stripe set specifying two containers (one on each of the

file systems that still has space), or you could specify more or fewer containers

(again, making sure that each container being added is the same size and that

there is sufficient room for growth on each of the file systems being used). When

the database manager attempts to increase the size of the table space, it now

attempts to extend the containers in this new stripe set instead of attempting to

extend the older containers.

Monitoring

Information about automatic resizing for DMS table spaces is displayed as part of

the table space monitor snapshot output. The increase size and maximum size

values are included in the output, as shown in the following sample:

 Auto-resize enabled = Yes or No

 Current tablespace size (bytes) = ###

 Maximum tablespace size (bytes) = ### or NONE

 Increase size (bytes) = ###

 Increase size (percent) = ###

 Time of last successful resize = DD/MM/YYYY HH:MM:SS.SSSSSS

 Last resize attempt failed = Yes or No

Chapter 3. Autonomic computing 43

Automatic storage databases

The database manager creates all databases as “automatic storage” databases, by

default. To create a database that is not an “automatic storage” database, specify

AUTOMATIC STORAGE NO when issuing the CREATE DATABASE command.

Databases that are enabled for automatic storage have a set of one or more storage

paths associated with them. A table space can be defined as managed by automatic

storage and its containers assigned and allocated by the database manager based on

those storage paths.

You can enable a database for automatic storage only when you create it; similarly,

you cannot disable automatic storage for a database that was originally designed

to use it.

All databases are created as automatic storage databases by default. To create a

database that is not an automatic storage database, specify AUTOMATIC

STORAGE NO when issuing the CREATE DATABASE command.

Examples of disabling automatic storage:

 CREATE DATABASE ASNODB1 AUTOMATIC STORAGE NO

 CREATE DATABASE ASNODB2 AUTOMATIC STORAGE NO ON X:

Examples of automatic storage being enabled either explicitly or implicitly:

 CREATE DATABASE DB1

 CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X:

 CREATE DATABASE DB3 ON /data/path1, /data/path2

 CREATE DATABASE DB4 ON D:\StoragePath DBPATH ON C:

Based on the syntax used, the database manager extracts the following two pieces

of information that pertain to storage locations:

v The database path (where the database manager stores various control files for

the database):

– If you specify DBPATH ON, this indicates the database path.

– If you do not specify DBPATH ON, the first path listed in ON indicates the

database path (and the storage path).

– If you specify neither DBPATH ON nor ON, the dftdbpath database manager

configuration parameter is used to determine the database path.
v The storage paths (where the database manager creates automatic storage table

space containers):

– If you specify ON, all of the listed paths are storage paths.

– If you do not specify ON, there is a single storage path that is set to the value

of the dftdbpath database manager configuration parameter.

For the examples shown previously, the following table summarizes the database

and storage paths used:

 Table 4. Automatic storage database and storage paths

CREATE DATABASE command Database path Storage paths

CREATE DATABASE DB1 AUTOMATIC STORAGE YES Value of the

dftdbpathconfiguration

parameter

Value of the

dftdbpathconfiguration

parameter

CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON

X:

X: X:

44 Data Servers, Databases, and Database Objects Guide

Table 4. Automatic storage database and storage paths (continued)

CREATE DATABASE command Database path Storage paths

CREATE DATABASE DB3 ON /data/path1,

/data/path2

/data/path1 /data/path1, /data/path2

CREATE DATABASE DB4 ON D:\StoragePath DBPATH

ON C:

C: D:\StoragePath

The storage paths provided must exist and be accessible. In a partitioned database

environment, the same storage paths are used on each database partition. You

cannot specify a unique set of storage paths for a particular database partition

unless you use database partition expressions as part of the storage path names.

Doing this allows the database partition number to be reflected in the storage

paths such that the resulting path names are different on each database partition.

Use the argument $N (that is, $N preceded by a blank) to indicate a database

partition expression. You can use a database partition expression anywhere in the

storage path, and you can specify multiple database partition expressions.

Terminate the database partition expression with a space character; whatever

follows the space is appended to the storage path after the database partition

expression is evaluated. If there is no space character in the storage path after the

database partition expression, it is assumed that the rest of the string is part of the

expression. The following table lists the only valid forms of the $N argument.

Operators are evaluated from left to right, and % represents the modulus operator.

The database partition number in the examples is 10.

 Table 5. Database partition expressions

Syntax Example Value

[blank]$N " $N" 10

[blank]$N+[number] " $N+100" 110

[blank]$N%[number] " $N%5" 0

[blank]$N+[number]%[number] " $N+1%5" 1

[blank]$N%[number]+[number] " $N%4+2" 4

The following is an example of using database partition expressions:

 CREATE DATABASE TESTDB ON "/path1ForNode $N",

 "/path2ForNode $N" DBPATH ON "/dbpathForNodes"

The following is an example of a database partition expression embedded in the

middle of a path:

 CREATE DATABASE TESTDB ON "/path1ForNode $N",

 "/path2ForNode $N suffix" DBPATH ON "/dbpathForNodes"

Note: Database partition expressions are not valid in database paths, whether you

specify them explicitly in DBPATH ON or implicitly by using a database partition

expression in the first storage path.

When free space is calculated for a storage path for a given database partition, the

database manager checks for the existence of the following directories or mount

points within the storage path and uses the first one that it finds:

Chapter 3. Autonomic computing 45

storage path/instance name/NODE####/database name

 storage path/instance name/NODE####

 storage path/instance name

 storage path

where:

storage path

Is a storage path associated with the database

instance name

Is the instance under which the database resides

NODE####

Is the database partition number (for example, NODE0000 or NODE0001)

database name

Is the name of the database

File systems can be mounted at a point beneath the storage path, and the database

manager recognizes that the actual amount of free space available for table space

containers might not be the same amount that is associated with the storage path

directory itself.

Consider the example where two logical database partitions exist on one physical

computer and there is a single storage path: /db2data. Each database partition can

use this storage path, but you might want to isolate the data from each database

partition by creating for each one a separate file system. The file system is

mounted at /db2data/instance/NODE####. When creating containers on the

storage path and determining free space, the database manager does not retrieve

free space information for /db2data but instead retrieves it for the corresponding

/db2data/instance/NODE#### directory.

There are three default table spaces created whenever you create a database. If you

do not provide explicit table space definitions as part of the CREATE DATABASE

command, the table spaces are created as automatic storage table spaces.

After you create a database, you can add new storage paths to it by using the

ADD STORAGE clause of the ALTER DATABASE statement, as shown in the

following example:

 ALTER DATABASE ADD STORAGE ON ’/data/path3’, ’/data/path4’

Adding automatic storage paths to databases enabled for

automatic storage

Using the ALTER DATABASE statement, you can add an automatic storage path to

a database that is enabled for automatic storage. You can enable a database for

automatic storage only when you create it.

When you add a storage path for a multi-partition database environment, the

storage path must exist on each database partition. If the specified path does not

exist on every database partition, the statement is rolled back.

To add a storage path to an existing database, issue the following ALTER

DATABASE statement:

 ALTER DATABASE PATH pathname

46 Data Servers, Databases, and Database Objects Guide

Automatic storage restrictions

When deciding whether to create a database using automatic storage, there are

some restrictions to consider.

v You cannot disable or enable automatic storage for a database after you created

it.

v Storage paths must be absolute path names. They can be paths or drive letters

on the Windows operating system.The database path must be a drive letter. The

maximum path length is 175 characters.

v For partitioned databases, you must use the same set of storage paths on each

database partition (unless you use database partition expressions).

v Database partition expressions are not valid in database paths, whether you

specify them explicitly by using the DBPATH ON option of the CREATE

DATABASE command, or implicitly by using a database partition expression in

the first storage path.

Automatic (compression) dictionary creation (ADC)

A compression dictionary is used to compress data moved into a table to free up

space so that more data can be added in the table. A compression dictionary is

automatically created and inserted or appended to a table during a data

population operation (such as a load or an insert operation) if certain conditions

are met.

Automatic (compression) dictionary creation (ADC) occurs for a table if you

defined the COMPRESS attribute on the table, if a compression dictionary does not

already exist within that physical table or partition, and if the table has sufficient

data. Data subsequently moved into the table is compressed using the compression

dictionary (if the table COMPRESS attribute remains enabled).

The following diagram shows the process by which the compression dictionary is

automatically created:

Chapter 3. Autonomic computing 47

1 2 33 4

6 75

EMPTY TABLE
Uncompressed
Row Data

Uncompressed
Row Data

Uncompressed
Row Data

INSERT INSERT INSERT

LOAD LOAD LOAD

Synchronous
Dictionary
Build

Uncompressed
Row Data

Dictionary

Compressed
Row Data

1. A compression dictionary is not created because the table is empty.

2. Data is inserted into the table using insert or load operations and remains

uncompressed.

3. As more data is inserted or loaded into the table, it remains uncompressed.

4. After a threshold is reached, dictionary creation is triggered automatically if the

COMPRESS attribute is set to YES.

5. The dictionary is created.

6. The dictionary is appended to the table.

7. From this point forward, the data is compressed.

The following table shows the compression dictionary creation differences by

release:

 Table 6. Compression dictionary creation differences by release

Commands and attributes Version 9.1 Version 9.5

LOAD REPLACE command

with the

RESETDICTIONARY option

Not applicable. When you set the table

COMPRESS attribute to YES,

any existing compression

dictionary is removed and a

new one is generated if at

least one row of data is

loaded or inserted into the

table.

CREATE or ALTER TABLE

statement with the

COMPRESS attribute set to

YES

Dictionary creation was not

automatic. To compress table

data, you had to explicitly

create a compression

dictionary using a table

reorganization process.

Setting the table COMPRESS

attribute to YES makes the

table eligible for ADC if at

least one row of data is

loaded or inserted into the

table.

48 Data Servers, Databases, and Database Objects Guide

Table 6. Compression dictionary creation differences by release (continued)

Commands and attributes Version 9.1 Version 9.5

INSERT, LOAD INSERT,

IMPORT INSERT, or

REDISTRIBUTE command

Not applicable. When you set the table

COMPRESS attribute to YES,

a table that does not already

have a compression

dictionary is subject to ADC,

if the table has enough data

(meaning that the threshold

is passed).

Note: The REDISTRIBUTE

command triggers ADC only

on newly added database

partitions.

REORG TABLE command

with the

KEEPDICTIONARY option

If you set the table

COMPRESS attribute to YES

and a compression dictionary

did not yet exist in the table,

an attempt was made to

build, insert, or append a

compression dictionary into

the table independent of the

volume of data in the table.

A dictionary is inserted into

a table only if the table size

is equal to the ADC table

size threshold and if enough

data exists in the table when

it passes the threshold.

Data row compression

The purpose of data row compression is to achieve disk storage space savings, and

it can also lead to disk I/O savings. Also, more data can be cached in the buffer

pool, thereby increasing bufferpool hit ratios. Data row compression uses a static

dictionary–based compression algorithm to compress data by row.

Compressing data at the row level allows repeating patterns that span multiple

column values within a row to be replaced with shorter symbol strings.

Note: There is an associated cost in the form of extra CPU cycles needed to

compress and decompress data. The storage savings and performance impact of

data row compression are tied to the characteristics of the data within the

database, the layout and tuning of the database, and the application workload.

Only the data on a data page or in log records is compressed.

To compress table data, a compression dictionary must exist for the table, you

must set the COMPRESS attribute of the CREATE TABLE or ALTER TABLE

statement to YES, and there needs to be sufficient data in the table. If these

compression conditions exist for the table, then when you issue an INSERT

statement or a LOAD INSERT, IMPORT INSERT, or REDISTRIBUTE command,

data added to the table is compressed.

In Version 9.5, data row compression is automatically enabled if a table has the

COMPRESS attribute set to YES and after the data compression dictionary has

been created. If you created or altered a table with a COMPRESS attribute set to

YES, no manual operation or database request is required on your part: that is, you

do not need to perform an explicit classic (offline) table reorganization to create the

data compression dictionary.

Note: If you set the COMPRESS attribute to YES and a compression dictionary

exists, compression applies to any insert row operation, including an insert

Chapter 3. Autonomic computing 49

through an import or a load operation. Compression is enabled for an entire table;

however, each row is compressed individually. Therefore, a table could contain

both compressed and non-compressed rows at the same time.

To explicitly build a compression dictionary (and subsequently compress a table),

perform a classic (offline) table reorganization. All of the data rows that exist in a

table participate in the building of the compression dictionary. The dictionary is

stored with the table data rows in the data object portions of the table.

To decompress a table, set the table COMPRESS attribute to NO, and then perform

a classic (offline) table reorganization.

Restrictions

v Data row compression is not applicable to index, long, LOB, and XML data

objects.

v Row compression is not compatible with table data replication support.

v You can generate row compression statistics by using the RUNSTATS command.

These are stored in the system catalog table SYSCAT.TABLES. A compression

estimation option, which estimates the effectiveness of row compression for a

table, is available with the INSPECT utility. The query optimizer includes

decompression cost in its costing model.

v Depending upon update activity and the positioning of update changes within a

data row, there might be an increase in log space consumption.

v If a row is increasing in size, the new version of the row might not fit on the

current data page. In that case, the new image of the row is stored on an

overflow page. To minimize the creation of such pointer-overflow records, you

can add more free space within a data page. For example, if 5% free space was

used without compression, allocate 10% free space with compression. This

recommendation is especially important for data that is heavily updated.

Automatic statistics collection

The DB2 optimizer uses catalog statistics to determine the most efficient access

plan for any given query. Having out-of-date or incomplete statistics for a table or

an index might lead the optimizer to select a plan that is not optimal, slowing

down query execution. However, deciding which statistics to collect for a given

workload is complex, and keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance

feature, you can let the DB2 database manager determine whether database

statistics need to be updated. Automatic statistics collection can occur at statement

compilation time using the real-time statistics (RTS) feature or can be collected by

running the RUNSTATS utility in the background. Background statistics collection

can be enabled while real-time statistics collection is disabled. Background statistics

collection must be enabled in order for real-time statistics collection to be enabled.

Background automatic statistics collection is enabled by default when you create a

new database. Real-time automated statistics are enabled by the dynamic

configuration parameter auto_stmt_stats.

Understanding asynchronous and real-time statistics collection

Automatic statistics can be collected synchronously or asynchronously by running

the RUNSTATS utility. Asynchronous collection occurs in the background. When the

real-time statistics feature is enabled, statistics can also be collected synchronously,

at statement compilation time. When real-time statistics collection is enabled,

50 Data Servers, Databases, and Database Objects Guide

statistics can also be fabricated using meta-data maintained by the index and data

manager. Fabrication means deriving or creating statistics, rather than collecting

them as part of normal RUNSTATS activity. For example, the number of rows in a

table can be derived from knowing the number of pages in the table, the page size,

and the average row width. In some cases, statistics are not actually derived, but

are maintained by the index and data manager and can be stored directly in the

catalog. For example, the index manager maintains a count of the number of leaf

pages and levels in each index.

The query optimizer determines how the statistics should be collected, based on

the needs of the query and the amount of table update activity. Table update

activity is measured by the number of update, insert, or delete operations.

Real-time statistics collection is determined by the needs of an SQL statement

before it is optimized. This provides more timely statistics collection and more

accurate statistics. Accurate statistics can result in better query execution plans and

improved performance. When real-time statistics collection is not enabled,

asynchronous statistics collection occurs at two-hour intervals. This might not be

frequent enough to provide accurate statistics for some applications.

When real-time statistics collection is enabled, asynchronous statistics collection

checking still occurs at two-hour intervals. Real-time statistics collection also

initiates asynchronous collection requests when:

v Table activity is not high enough to require synchronous collection, but is high

enough to require asynchronous collection

v Synchronous statistics collection used sampling because the table was large

v Synchronous statistics were fabricated

v Synchronous statistics collection failed because the collection time was exceeded

At most, two asynchronous requests can be processed at the same time, but only

for different tables. One request will have been initiated by real-time statistics, and

the other will have been initiated by asynchronous statistics collection checking.

The performance impact of automatic statistics collection is minimized in several

ways:

v Asynchronous statistics collection is performed using a throttled RUNSTATS

utility. Throttling controls the amount of resources consumed by the RUNSTATS

utility based on current database activity: as database activity increases, the

RUNSTATS utility runs more slowly, reducing its resource demands.

v Synchronous statistics collection is limited to five seconds per query. This value

can be controlled by the RTS optimization guideline. If synchronous collection

exceeds the time limit, an asynchronous collection request is submitted.

v Synchronous statistics collection does not store the statistics in the system

catalog. Instead, the statistics are stored in a statistics cache and are later stored

in the system catalog by an asynchronous operation. This avoids the overhead

and possible lock contention involved with updating the system catalog.

Statistics in the statistics cache are available for subsequent SQL compilation

requests.

v Only one synchronous statistics collection operation will occur per table. Other

agents requiring synchronous statistics collection will fabricate statistics, if

possible, and continue with statement compilation. This behavior is also

enforced in a partitioned database environment, where agents on different

database partitions might require synchronous statistics.

Chapter 3. Autonomic computing 51

v By default, statistics collected for synchronous and asynchronous operations are

basic table statistics with distribution information and detailed index statistics

using sampling. (The RUNSTATS command is issued specifying the WITH

DISTRIBUTION and SAMPLED DETAILED INDEXES ALL options.) You can

customize the type of statistics collected by enabling statistics profiling, which

uses information about previous database activity to determine which statistics

are required by the database workload. You can also customize the type of

statistics collected for a particular table by creating your own statistics profile for

that table.

v Only tables with missing statistics or high levels of activity (as measured by the

number of update, insert, or delete operations) are considered for statistics

collection. Even if a table meets the statistics collection criteria, synchronous

statistics are not collected unless query optimization requires them. In some

cases, the query optimizer can choose an access plan without statistics.

v For asynchronous statistics collection checking, large tables (with more than 4000

pages) are sampled to determine whether high table activity has changed the

statistics. Statistics for such large tables are collected only if warranted.

v For asynchronous statistics collection, the RUNSTATS utility is automatically

scheduled to run during the optimal maintenance window specified in your

maintenance policy definition. This policy also specifies the set of tables that are

within the scope of automatic statistics collection, further minimizing

unnecessary resource consumption.

v Synchronous statistics collection and fabrication do not follow the optimal

maintenance window specified in your maintenance policy definition, because

synchronous requests must occur immediately and have limited collection time.

Synchronous statistics collection and fabrication follow the policy that specifies

the set of tables that are within the scope of automatic statistics collection.

v While automatic statistics collection is being performed, the affected tables are

still available for regular database activity (update, insert, or delete operations).

v For asynchronous statistics collection, the SYSPROC.NNSTAT stored procedure

is run using the catalog-based collection method to refresh nickname statistics

automatically. Real-time statistics (synchronous or fabricated) are not collected

for nicknames.

Real-time synchronous statistics collection is performed for regular tables,

materialized query tables (MQTs), and declared global temporary tables (DGTTs).

Asynchronous statistics are not collected for DGTTs. This means that real-time

statistics processing will not initiate asynchronous requests for DGTTs.

Automatic statistics collection (synchronous or asynchronous) does not occur for:

v Statistical views

v Tables that are marked VOLATILE (tables with the VOLATILE field set in the

SYSCAT.TABLES catalog view)

v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views

When you modify the statistics manually for tables, the database manager

assumes that you are now responsible for maintaining their statistics. To allow

the database manager to reconsider and maintain statistics for a table that has

had its statistics manually updated, collect statistics using the RUNSTATS

command or specify to collect statistics when using the LOAD command. Tables

created prior to Version 9.5 that had their statistics updated manually prior to

migration are not affected and their statistics are automatically maintained by

the database manager until you manually update their statistics.

52 Data Servers, Databases, and Database Objects Guide

Statistics fabrication does not occur for:

v Statistical views

v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views. Note that if real-time

statistics collection is not enabled, some statistics fabrication will still occur for

tables that have had their statistics manually updated.

In a partitioned database environment, statistics are collected on a single database

partition and then extrapolated. The database manager always collects statistics

(both synchronous and asynchronous) on the first database partition of the

database partition group.

No real-time statistics collection activity will occur until at least five minutes after

database activation.

When real-time statistics are enabled, you should schedule a defined maintenance

window; the maintenance window is undefined by default. If there is no defined

maintenance window, only synchronous statistics collection will occur. In this case,

the collected statistics are only in-memory, and are typically collected using

sampling (except in the case of small tables).

Real-time statistics processing occurs for both static and dynamic SQL.

A table that has been truncated using the IMPORT command is automatically

recognized as having stale statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates

cached dynamic statements that reference tables for which statistics have been

collected. This is done so that cached dynamic statements can be re-optimized with

the latest statistics.

Real-time statistics and explain processing

There is no real-time processing for a query which is just explained (not executed)

using the explain facility. The following table summarizes the behavior for the

different values of the CURRENT EXPLAIN MODE special register.

 Table 7. Real-time statistics collection as a function of the value of the CURRENT EXPLAIN

MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered

YES Yes

EXPLAIN No

NO Yes

REOPT Yes

RECOMMEND INDEXES No

EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously-
collected statistics available to all queries. This cache is part of the catalog cache. In

a partitioned database environment, this cache resides only on the catalog database

partition. The catalog cache can store multiple entries for the same SYSTABLES

Chapter 3. Autonomic computing 53

object, which increases the size of the catalog cache on all database partitions.

Consider increasing the value of the catalogcache_sz database configuration

parameter when real-time statistics collection is enabled.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine

the initial configuration for new databases. The Configuration Advisor

recommends that the auto_stmt_stats database configuration parameter be set to

ON.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical

profile that is in effect for a table, with the following exceptions:

v To minimize the overhead of synchronous statistics collection, the database

manager might collect statistics using sampling. In this case, the sampling rate

and method might be different from those specified in the statistical profile.

v Synchronous statistics collection might choose to fabricate statistics, but it might

not be possible to fabricate all statistics specified in the statistical profile. For

example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY

cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics specified in the

statistical profile, an asynchronous collection request is submitted.

Although real-time statistics collection is designed to minimize statistics collection

overhead, try it in a test environment first to ensure that there is no negative

performance impact. This might be the case in some online transaction processing

(OLTP) scenarios, especially if there is an upper boundary for how long a query

can run.

Enabling automatic statistics collection

Having accurate and complete database statistics is critical to efficient data access

and optimal workload performance. Use the automatic statistics collection feature

of the automated table maintenance functionality to update and maintain relevant

database statistics. You can optionally enhance this functionality in environments

where a single database partition operates on a single processor (serial

environment) by collecting query data and generating statistics profiles that help

DB2 automatically collect the exact set of statistics that is required by your

workload. This option is not available in MPP environments, certain federated

environments, or environments in which intra-partition parallelism is enabled.

To enable automatic statistics collection:

1. Configure your database instance by using the Configure Automatic

Maintenance wizard or the command line:

v To use the Configure Automatic Maintenance wizard:

a. Open the wizard either from the Control Center by right-clicking a

database object or from the Health Center by right-clicking a database

instance.

b. Select Configure Automatic Maintenance from the pop-up window.

Within this wizard, you can enable automatic statistics collection, specify

the tables from which you want to automatically collect statistics, and

specify a maintenance window for the execution of the RUNSTATS utility.
v To use the command line, set each of the following configuration parameters

to ON:

54 Data Servers, Databases, and Database Objects Guide

– AUTO_MAINT

– AUTO_TBL_MAINT

– AUTO_RUNSTATS

2. Optional: To enable the automatic statistics profile generation, set the following

two configuration parameters to ON:

v AUTO_STATS_PROF

v AUTO_PROF_UPD

3. Optional: To enable real-time statistics gathering, set the AUTO_STMT_STATS

configuration parameter to ON. If this configuration parameter is set to ON,

table statistics are automatically compiled at statement compilation time,

whenever they are needed to optimize a query.

Configuration Advisor

You can use the Configuration Advisor to obtain recommendations for the initial

values of the buffer pool size, database configuration parameters, and database

manager configuration parameters.

To use the Configuration Advisor, specify the AUTOCONFIGURE command for an

existing database, or specify AUTOCONFIGURE as an option of the CREATE

DATABASE command. To configure your database, you must have SYSADM,

SYSCTRL, or SYSMAINT authority.

You can display the recommended values or apply them by using the APPLY

option of the CREATE DATABASE command. The recommendations are based on

input that you provide and system information that the advisor gathers.

The values suggested by the Configuration Advisor are relevant for only one

database per instance. If you want to use this advisor on more than one database,

each database must belong to a separate instance.

Tuning configuration parameters using the Configuration

Advisor

The Configuration Advisor helps you to tune performance and to balance memory

requirements for a single database per instance by suggesting which configuration

parameters to modify and suggesting values for them. The Configuration Advisor

is automatically run when you create a database.

To disable this feature or to explicitly enable it, use the db2set command before

creating a database, as follows:

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

To define values for several of the configuration parameters and to determine the

scope of the application of those parameters, use the AUTOCONFIGURE

command, specifying one of the following options:

v NONE, meaning that none of the values are applied

v DB ONLY, meaning that only database configuration and buffer pool values are

applied

v DB AND DBM, meaning that all parameters and their values are applied

Note: Even if you automatically enabled the Configuration Advisor when you ran

the CREATE DATABASE command, you can still specify AUTOCONFIGURE

Chapter 3. Autonomic computing 55

command options. If you did not enable the Configuration Advisor when you ran

the CREATE DATABASE command, you can run the Configuration Advisor

manually afterwards.

Generating database configuration recommendations

The Configuration Advisor is automatically run when you create a database. You

can also run the Configuration Advisor by specifying the AUTOCONFIGURE

command in the command line processor (CLP) or by calling the db2AutoConfig

API.

To request configuration recommendations using the CLP, enter the following

command:

 AUTOCONFIGURE

 USING input_keyword param_value

 APPLY value

Following is an example of an AUTOCONFIGURE command that requests

configuration recommendations based on input about how the database is used but

specifies that the recommendations not be applied:

 DB2 AUTOCONFIGURE USING

 MEM_PERCENT 60

 WORKLOAD_TYPE MIXED

 NUM_STMTS 500

 ADMIN_PRIORITY BOTH

 IS_POPULATED YES

 NUM_LOCAL_APPS 0

 NUM_REMOTE_APPS 20

 ISOLATION RR

 BP_RESIZEABLE YES

 APPLY NONE

Example: Requesting configuration recommendations using

the Configuration Advisor

This scenario demonstrates to run the Configuration Advisor from the command

line to generate recommendations and shows the output that the Configuration

Advisor produces.

To run the Configuration Advisor:

1. Connect to the PERSONL database by specifying the following command from

the command line:

DB2 CONNECT TO PERSONL

2. Issue the AUTOCONFIGURE command from the CLP, specifying how the

database is used. As shown in the following example, set a value of NONE for

the APPLY option to indicate that you want to view the configuration

recommendations but not apply them:

 DB2 AUTOCONFIGURE USING

 MEM_PERCENT 60

 WORKLOAD_TYPE MIXED

 NUM_STMTS 500

 ADMIN_PRIORITY BOTH

 IS_POPULATED YES

 NUM_LOCAL_APPS 0

 NUM_REMOTE_APPS 20

 ISOLATION RR

 BP_RESIZEABLE YES

 APPLY NONE

56 Data Servers, Databases, and Database Objects Guide

If you are unsure about the value of a parameter for the command, you can

omit it, and the default will be used. You can pass up to 10 parameters without

values: MEM_PERCENT, WORKLOAD_TYPE, and so on, as shown in the

previous example.

The recommendations generated by the AUTOCONFIGURE command are

displayed on the screen in table format:

 Table 8. Configuration Advisor sample output: Part 1

 Former and Applied Values for Database Manager Configuration

Description Parameter Current Value Recommended Value

Application support layer heap size (4KB) (ASLHEAPSZ) = 15 15

No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = AUTOMATIC AUTOMATIC

Enable intra-partition parallelism (INTRA_PARALLEL) = NO NO

Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY 1

Agent pool size (NUM_POOLAGENTS) = 100(calculated) 200

Initial number of agents in pool (NUM_INITAGENTS) = 0 0

Max requester I/O block size (bytes) (RQRIOBLK) = 32767 32767

Sort heap threshold (4KB) (SHEAPTHRES) = 0 0

 Table 9. Configuration Advisor sample output (continued)

 Former and Applied Values for Database Configuration

Description Parameter Current Value Recommended Value

Default application heap (4KB) (APPLHEAPSZ) = 256 256

Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 260

Changed pages threshold (CHNGPGS_THRESH) = 60 80

Database heap (4KB) (DBHEAP) = 1200 2791

Degree of parallelism (DFT_DEGREE) = 1 1

Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32

Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC

Default query optimization class (DFT_QUERYOPT) = 5 5

Max storage for lock list (4KB) (LOCKLIST) = 100 AUTOMATIC

Log buffer size (4KB) (LOGBUFSZ) = 8 99

Log file size (4KB) (LOGFILSIZ) = 1000 1024

Number of primary log files (LOGPRIMARY) = 3 8

Number of secondary log files (LOGSECOND) = 2 3

Max number of active applications (MAXAPPLS) = AUTOMATIC AUTOMATIC

Percent. of lock lists per application (MAXLOCKS) = 10 AUTOMATIC

Group commit count (MINCOMMIT) = 1 1

Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1 1

Number of I/O servers (NUM_IOSERVERS) = 3 4

Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8) 1533

Percent log file reclaimed before soft chckpt (SOFTMAX) = 100 320

Sort list heap (4KB) (SORTHEAP) = 256 AUTOMATIC

statement heap (4KB) (STMTHEAP) = 4096 4096

Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384 4384

Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000 113661

Self tuning memory (SELF_TUNING_MEM) = ON ON

 Automatic runstats (AUTO_RUNSTATS) = ON ON

Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000 AUTOMATIC

Chapter 3. Autonomic computing 57

Table 10. Configuration Advisor sample output (continued)

 Former and Applied Values for Bufferpool(s)

Description Parameter Current Value Recommended Value

IBMDEFAULTBP Bufferpool size = -2 340985

DB210203I AUTOCONFIGURE completed successfully. Database manager or database

configuration values may have been changed. The instance must be restarted before

any changes come into effect. You may also want to rebind your packages after the

new configuration parameters take effect so that the new values will be used.

If you agree with all of the recommendations, either reissue the

AUTOCONFIGURE command but specify that you want the recommended values

to be applied by using the APPLY option, or update individual configuration

parameters using the UPDATE DATABASE MANAGER CONFIGURATION

command and the UPDATE DATABASE CONFIGURATION command.

Utility throttling

Utility throttling regulates the performance impact of maintenance utilities so that

they can run concurrently during production periods. Although the impact policy,

a setting that allows utilities to run in throttled mode, is defined by default, you

must set the impact priority, a setting that each cleaner has indicating its throttling

priority, when you run a utility if you want to throttle it.

The throttling system ensures that the throttled utilities are run as frequently as

possible without violating the impact policy. You can throttle statistics collection,

backup operations, rebalancing operations, and asynchronous index cleanups.

You define the impact policy by setting the util_impact_lim configuration

parameter.

Cleaners are integrated with the utility throttling facility. By default, each (index)

cleaner has a utility impact priority of 50 (acceptable values are between 1 and 100,

with 0 indicating no throttling). You can change the priority by using the SET

UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Asynchronous index cleanup

Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following

operations that invalidate index entries. Depending on the type of index, the

entries can be row identifiers (RIDs) or block identifiers (BIDs). Either way, these

entries are removed by the index cleaners, which operate asynchronously in the

background.

AIC accelerates the detach of a data partition from a partitioned table. If the

partitioned table contains one or more non-partitioned indexes, AIC is initiated. In

this case, AIC removes all non-partitioned index entries that refer to the detached

data partition and any pseudo-deleted entries. After all of the indexes have been

cleaned, the identifier associated with the detached data partition is removed from

the system catalog.

Note: If the partitioned table has dependent materialized query tables (MQTs)

defined, AIC is not initiated until after a SET INTEGRITY operation is performed.

58 Data Servers, Databases, and Database Objects Guide

While AIC is in progress, normal table access is maintained. Queries accessing the

indexes ignore any non-valid entries that have not yet been cleaned.

In most cases, one cleaner is started for each non-partitioned index associated with

the partitioned table. An internal task distribution daemon is responsible for

distributing the AIC tasks to the appropriate database partitions and assigning

database agents.

Both the distribution daemon and cleaner agents are internal system applications.

They appear in the LIST APPLICATION output with the application names

db2taskd and db2aic, respectively. To prevent accidental disruption, system

applications cannot be forced. The distribution daemon remains online as long as

the database is active. The cleaners remain active until the cleaning is complete. If

the database is deactivated while cleaning is in progress, AIC resumes when you

reactivate the database.

Performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted

entry is committed. However, because the lock is never acquired, concurrency is

unaffected.

Each cleaner acquires a minimal table space lock (IX) and table lock (IS). These

locks are released if the cleaner determines that other applications are waiting for

the locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner

has a utility impact priority of 50. You can change the priority by using the SET

UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring

You can monitor AIC with the LIST UTILITIES command. Each index cleaner

appears in the monitor as a separate utility.

The following example demonstrates AIC activity in the WSDB database at the

current database partition using the Command Line Processor (CLP) interface:

$ db2 list utilities show detail

ID = 2

Type = ASYNCHRONOUS INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

Description = Table: USER1.SALES, Index: USER1.I2

Start Time = 12/15/2005 11:15:01.967939

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Total Work = 5 pages

 Completed Work = 0 pages

 Start Time = 12/15/2005 11:15:01.979033

ID = 1

Type = ASYNCHRONOUS INDEX CLEANUP

Database Name = WSDB

Chapter 3. Autonomic computing 59

Partition Number = 0

Description = Table: USER1.SALES, Index: USER1.I1

Start Time = 12/15/2005 11:15:01.978554

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Total Work = 5 pages

 Completed Work = 0 pages

 Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One

cleaner is processing index I1; the other is processing index I2. The progress

monitoring section shows the estimated total number of index pages that need

cleaning and the current number of clean index pages.

The State field indicates the current state of the cleaner.Normally, the state is

Executing. The cleaner might be in the Waiting state if the cleaner is waiting to be

assigned to an available database agent or if the cleaner is temporarily suspended

due to lock contention.

Note: Different tasks on different database partitions can have the same utility ID

because each database partition assigns IDs to tasks on that database partition only.

Asynchronous index cleanup for MDC tables

You can enhance the performance of a rollout deletion, an efficient method of

deleting qualifying blocks of data from multidimensional clustering (MDC) tables,

by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of

indexes following operations that invalidate index entries.

During a standard rollout delete, indexes are cleaned up synchronously with the

delete. For tables that contain many record ID (RID) indexes, a significant portion

of the delete time is spent removing index keys that reference the table rows being

deleted. You can speed up the rollout by specifying that these indexes are to be

cleaned up after the delete has been committed.

To take advantage of AIC for MDC tables, you need to explicitly enable the deferred

index cleanup rollout mechanism. There are two methods of specifying a deferred

rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER and issuing

the SET CURRENT MDC ROLLOUT MODE statement. During a deferred index

cleanup rollout, blocks are marked as rolled out without an update to the RID

indexes until after the transaction commits. Block identifier (BID) indexes are still

cleaned up during the delete because they don’t require row-level processing.

Rollout AIC is invoked when a rollout delete is committed or, if the database was

shut down, when the table is first accessed following a restart of the database.

While AIC is in progress, any queries against the indexes work, including those

accessing the index being cleaned up.

There one coordinating cleaner per MDC table. The index cleanup for multiple

rollouts is consolidated in the cleaner. The cleaner spawns a cleanup agent for each

RID index, and the cleanup agents update the RID indexes in parallel. Cleaners are

also integrated with the utility throttling facility. By default, each cleaner has a

utility impact priority of 50 (acceptable values are between 1 and 100, with 0

indicating no throttling). You can change the priority by using the SET

UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

60 Data Servers, Databases, and Database Objects Guide

Monitoring

Because the rolled-out blocks on an MDC table are not reusable until after the

cleanup is complete, it is useful to monitor the progress of a deferred index

cleanup rollout. Use the LIST UTILITIES monitor command to display a utility

monitor entry for each index being cleaned up. You can also query the number of

blocks in the table currently being cleaned up through deferred index cleanup

rollout (BLOCKS_PENDING_CLEANUP) by using the

SYSPROC.ADMIN_GET_TAB_INFO_V95 table function. To query the number of

MDC table blocks pending cleanup at the database level, use the GET SNAPSHOT

command.

In the following sample output for the LIST UTILITIES, progress is indicated by

the number of pages in each index that have been cleaned up. Each phase listed in

the output represents one of the RID indexes being cleaned for the table.

db2 LIST UTILITIES SHOW DETAILS output.

ID = 2

Type = MDC ROLLOUT INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

Description = TABLE.<schema_name>.<table_name>

Start Time = 06/12/2006 08:56:33.390158

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Estimated Percentage Complete = 83

 Phase Number = 1

 Description = <schema_name>.<index_name>

 Total Work = 13 pages

 Completed Work = 13 pages

 Start Time = 06/12/2006 08:56:33.391566

 Phase Number = 2

 Description = <schema_name>.<index_name>

 Total Work = 13 pages

 Completed Work = 13 pages

 Start Time = 06/12/2006 08:56:33.391577

 Phase Number = 3

 Description = <schema_name>.<index_name>

 Total Work = 9 pages

 Completed Work = 3 pages

 Start Time = 06/12/2006 08:56:33.391587

Chapter 3. Autonomic computing 61

62 Data Servers, Databases, and Database Objects Guide

Chapter 4. Instances

An instance is a logical database manager environment where you catalog

databases and set configuration parameters. Depending on your needs, you can

create more than one instance on the same physical server providing a unique

database server environment for each instance.

Note: For non-root installations on Linux® and UNIX operating systems, a single

instance is created during the installation of your DB2 product. Additional

instances cannot be created.

You can use multiple instances to do the following:

v Use one instance for a development environment and another instance for a

production environment.

v Tune an instance for a particular environment.

v Restrict access to sensitive information.

v Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority for

each instance.

v Optimize the database manager configuration for each instance.

v Limit the impact of an instance failure. In the event of an instance failure, only

one instance is affected. Other instances can continue to function normally.

Multiple instances will require:

v Additional system resources (virtual memory and disk space) for each instance.

v More administration because of the additional instances to manage.

The instance directory stores all information that pertains to a database instance.

You cannot change the location of the instance directory once it is created. The

directory contains:

v The database manager configuration file

v The system database directory

v The node directory

v The node configuration file (db2nodes.cfg)

v Any other files that contain debugging information, such as the exception or

register dump or the call stack for the DB2 database processes.

Terminology:

Bit-width

The number of bits used to address virtual memory: 32-bit and 64-bit are

the most common. This term might be used to refer to the bit-width of an

instance, application code, external routine code. 32-bit application means

the same things as 32-bit width application.

32-bit DB2 instance

A DB2 instance that contains all 32-bit binaries including 32-bit shared

libraries and executables.

64-bit DB2 instance

A DB2 instance that contains 64-bit shared libraries and executables, and

© Copyright IBM Corp. 1993, 2009 63

also all 32-bit client application libraries (included for both client and

server), and 32-bit external routine support (included only on a server

instance).

Designing instances

DB2 databases are created within DB2 instances on the database server. The

creation of multiple instances on the same physical server provides a unique

database server environment for each instance.

For example, you can maintain a test environment and a production environment

on the same machine, or you can create an instance for each application and then

fine-tune each instance specifically for the application it will service, or, to protect

sensitive data, you can have your payroll database stored in its own instance so

that owners of other instances (on the same server) cannot see payroll data.

The installation process creates a default DB2 instance, which is defined by the

DB2INSTANCE environment variable. This is the instance that is used for most

operations. However, instances can be created (or dropped) after installation.

When determining and designing the instances for your environment, note that

each instance controls access to one or more databases. Every database within an

instance is assigned a unique name, has its own set of system catalog tables (which

are used to keep track of objects that are created within the database), and has its

own configuration file. Each database also has its own set of grantable authorities

and privileges that govern how users interact with the data and database objects

stored in it. Figure 2 shows the hierarchical relationship among systems, instances,

and databases.

Data server (DB_SERVER)

Database 2
(RECEIVABLE)

Instance 1 (DB2_DEV)

Database manager
Configuration file 1

Database 1
(PAYABLE)

Database 2
(RECEIVABLE)

Instance 2 (DB2_PROD)

Database manager
Configuration file 2

Database 1
(PAYABLE)

Database manager
program files

Figure 2. Hierarchical relationship among DB2 systems, instances, and databases

64 Data Servers, Databases, and Database Objects Guide

You also need to be aware of another particular type of instance called the DB2

administration server (DAS). The DAS is a special DB2 administration control point

used to assist with the administration tasks only on other DB2 servers. A DAS

must be running if you want to use the Client Configuration Assistant to discover

the remote databases or the graphical tools that come with the DB2 product, for

example, the Control Center or the Task Center. There is only one DAS in a DB2

database server, even when there are multiple instances.

Once your instances are created, you can attach to any other instance available

(including instances on other systems). Once attached, you can perform

maintenance and utility tasks that can only be done at the instance level, for

example, create a database, force applications off a database, monitor database

activity, or change the contents of the database manager configuration file that is

associated with that particular instance.

Default instance

As part of your DB2 installation procedure, you create an initial instance of the

database manager called DB2, if there is no other instance called “DB2”. If you have

DB2 Version 8 installed, and you upgrade to Version 9.1 or Version 9.5, the default

instance is “DB2_01”.

On Linux and UNIX, the initial instance can be called anything you want within

the naming rules guidelines. The instance name is used to set up the directory

structure.

To support the immediate use of this instance, the following are set during

installation:

v The environment variable DB2INSTANCE is set to “DB2”.

v The registry variable DB2INSTDEF is set to “DB2”.

These settings establish “DB2” as the default instance. You can change the instance

that is used by default, but first you have to create an additional instance.

Before using the database manager, the database environment for each user must

be updated so that it can access an instance and run the DB2 database programs.

This applies to all users (including administrative users).

On Linux and UNIX operating systems, sample script files are provided to help

you set the database environment. The files are: db2profile for Bourne or Korn

shell, and db2cshrc for C shell. These scripts are located in the sqllib subdirectory

under the home directory of the instance owner. The instance owner or any user

belonging to the instance’s SYSADM group can customize the script for all users of

an instance. Use sqllib/userprofile and sqllib/usercshrc to customize a script for

each user.

The blank files sqllib/userprofile and sqllib/usercshrc are created during instance

creation to allow you to add your own instance environment settings. The

db2profile and db2cshrc files are overwritten during an instance update in a DB2

FixPak installation. If you do not want the new environment settings in the

db2profile or db2cshrc scripts, you can override them using the corresponding user

script , which is called at the end of the db2profile or db2cshrc script. During an

instance migration (using the db2imigr command), the user scripts are copied over

so that your environment modifications will still be in use.

The sample script contains statements to:

Chapter 4. Instances 65

v Update a user’s PATH by adding the following directories to the existing search

path: the bin, adm, and misc subdirectories under the sqllib subdirectory of the

instance owner’s home directory.

v Set the DB2INSTANCE environment variable to the instance name.

Instance directory

The instance directory stores all information that pertains to a database instance.

The location of the instance directory cannot be changed once it is created.

The instance directory contains:

v The database manager configuration file

v The system database directory

v The node directory

v The node configuration file (db2nodes.cfg)

v Other files that contain debugging information, such as the exception or register

dump or the call stack for the DB2 processes.

On Linux and UNIX operating systems, the instance directory is located in the

INSTHOME/sqllib directory, where INSTHOME is the home directory of the

instance owner. The default instance can be called anything you want within the

naming rules guidelines.

On Windows operating systems, the instance directory is located under the /sqllib

directory where the DB2 database product was installed. The instance name is the

same as the name of the service, so it should not conflict. No instance name should

be the same as another service name. You must have the correct authorization to

create a service.

In a partitioned database environment, the instance directory is shared between all

database partition servers belonging to the instance. Therefore, the instance

directory must be created on a network share drive that all computers in the

instance can access.

db2nodes.cfg

The db2nodes.cfg file is used to define the database partition servers that

participate in a DB2 instance. The db2nodes.cfg file is also used to specify the IP

address or host name of a high-speed interconnect, if you want to use a high-speed

interconnect for database partition server communication.

Multiple instances (Linux, UNIX)

It is possible to have more than one instance on a Linux or UNIX operating system

if the DB2 product was installed with root privileges. Although each instance runs

simultaneously, each is independent. Therefore, you can only work within one

instance of the database manager at a time.

Note: To prevent environmental conflicts between two or more instances, you

should ensure that each instance has its own home directory. Errors will be

returned when the home directory is shared. Each home directory can be in the

same or a different file system.

The instance owner and the group that is the System Administration (SYSADM)

group are associated with every instance. The instance owner and the SYSADM

66 Data Servers, Databases, and Database Objects Guide

group are assigned during the process of creating the instance. One user ID or

username can be used for only one instance, and that user ID or username is also

referred to as the instance owner.

Each instance owner must have a unique home directory. All of the configuration

files necessary to run the instance are created in the home directory of the instance

owner’s user ID or username. If it becomes necessary to remove the instance

owner’s user ID or username from the system, you could potentially lose files

associated with the instance and lose access to data stored in this instance. For this

reason, you should dedicate an instance owner user ID or username to be used

exclusively to run the database manager.

The primary group of the instance owner is also important. This primary group

automatically becomes the system administration group for the instance and gains

SYSADM authority over the instance. Other user IDs or usernames that are

members of the primary group of the instance owner also gain this level of

authority. For this reason, you might want to assign the instance owner’s user ID

or username to a primary group that is reserved for the administration of

instances. (Also, ensure that you assign a primary group to the instance owner

user ID or username; otherwise, the system-default primary group is used.)

If you already have a group that you want to make the system administration

group for the instance, you can simply assign this group as the primary group

when you create the instance owner user ID or username. To give other users

administration authority on the instance, add them to the group that is assigned as

the system administration group.

To separate SYSADM authority between instances, ensure that each instance owner

user ID or username uses a different primary group. However, if you choose to

have a common SYSADM authority over multiple instances, you can use the same

primary group for multiple instances.

Multiple instances (Windows)

It is possible to run multiple instances of the database manager on the same

computer. Each instance of the database manager maintains its own databases and

has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that

can be at different levels of the database manager.

An instance of the database manager consists of the following:

v A Windows service that represents the instance. The name of the service is same

as the instance name. The display name of the service (from the Services panel)

is the instance name, prefixed with the “DB2 - ” string. For example, for an

instance named “DB2”, there exists a Windows service called “DB2” with a

display name of “DB2 - <DB2 Copy Name> - DB2”.

Note: A Windows service is not created for client instances.

v An instance directory. This directory contains the database manager

configuration files, the system database directory, the node directory, the

Database Connection Services (DCS) directory, all the diagnostic log and dump

files that are associated with the instance. The instance directory is by default a

sub-directory inside the SQLLIB directory and has the same name as the

instance name. For example, the instance directory for instance “DB2” is

C:\SQLLIB\DB2, where C:\SQLLIB is where the database manager is installed. You

Chapter 4. Instances 67

can use the registry variable DB2INSTPROF to change the default location of the

instance directory. If the DB2INSTPROF registry variable is set to another

location, then the instance directory is created under the directory pointed to by

DB2INSTPROF. For example, if DB2INSTPROF=D:\DB2PROFS, then the instance

directory will be D:\DB2PROFS\DB2.

– Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command

– Run DB2ICRT.exe command to create the instance.
v When you create an instance on Windows operating systems, the default

locations for user data files, such as instance directories and the db2cli.ini file,

are the following directories:

– Documents and Settings\All Users\Application Data\IBM\DB2\copy name

on the Windows XP and Windows 2003 operating systems

– ProgramData\IBM\DB2\copy name on the Windows Vista operating system

Creating instances

Although an instance is created as part of the installation of the database manager,

your business needs might require you to create additional instances.

Prerequisites

If you belong to the Administrative group on Windows, or you have root authority

on Linux or UNIX platforms, you can add additional instances. The computer

where you add the instance becomes the instance-owning computer (node zero).

Ensure that you add instances on a computer where a DB2 administration server

resides. Instance IDs should not be root or have password expired.

Restrictions

v On Linux and UNIX operating systems, additional instances cannot be created

for non-root installations.

v If existing user IDs are used to create DB2 instances, make sure that the user

IDs:

– Are not locked

– Do not have expired passwords

To add an instance using the command line, enter:

 db2icrt <instance_name>

When creating instance on an AIX server, you must provide the fenced user id, for

example:

 DB2DIR/instance/db2icrt -u db2fenc1 db2inst1

When using the db2icrt command to add another DB2 instance, you should

provide the login name of the instance owner and optionally specify the

authentication type of the instance. The authentication type applies to all databases

created under that instance. The authentication type is a statement of where the

authenticating of users will take place.

You can change the location of the instance directory from DB2PATH using the

DB2INSTPROF environment variable. You require write-access for the instance

directory. If you want the directories created in a path other than DB2PATH, you

have to set DB2INSTPROF before entering the db2icrt command.

68 Data Servers, Databases, and Database Objects Guide

For DB2 Enterprise Server Edition (ESE), you also need to declare that you are

adding a new instance that is a partitioned database system. In addition, when

working with a ESE instance having more than one database partition, and

working with Fast Communication Manager (FCM), you can have multiple

connections between database partitions by defining more TCP/IP ports when

creating the instance.

For example, for Windows operating systems, use the db2icrt command with the -r

<port range> parameter. The port range is shown as follows, where the base_port

is the first port that can be used by FCM, and the end_port is the last port in a

range of port numbers that can be used by FCM:

 -r:<base_port,end_port>

Modifying instances

Instances are designed to be as independent as possible from the effects of

subsequent installation and removal of products. On Linux and UNIX, you can

update instances after the installation or removal of executables or components. On

Windows, you run the db2iupdt command.

In most cases, existing instances automatically inherit or lose access to the function

of the product being installed or removed. However, if certain executables or

components are installed or removed, existing instances do not automatically

inherit the new system configuration parameters or gain access to all the additional

function. The instance must be updated.

If the database manager is updated by installing a Program Temporary Fix (PTF)

or a patch, all the existing database instances should be updated using the

db2iupdt command (root installations) or the db2nrupdt command (non-root

installations).

You should ensure you understand the instances and database partition servers

you have in an instance before attempting to change or delete an instance.

Updating the instance configuration (Linux, UNIX)

This topic applies to root instances only. To update non-root instances, run the

db2nrupdt command.

Running the db2iupdt command updates the specified instance by performing the

following:

v Replaces the files in the sqllib subdirectory under the instance owner’s home

directory.

v If the node type has changed, then a new database manager configuration file is

created. This is done by merging relevant values from the existing database

manager configuration file with the default database manager configuration file

for the new node type. If a new database manager configuration file is created,

the old file is backed up to the backup subdirectory of the sqllib subdirectory

under the instance owner’s home directory.

The db2iupdt command is found in /usr/opt/db2_09_05/instance/ directory on

AIX. The db2iupdt command is found in /opt/IBM/db2/V9.5/instance/ directory

on HP-UX, Solaris, or Linux.

To update an instance using the command line, enter:

 db2iupdt InstName

Chapter 4. Instances 69

The InstName is the login name of the instance owner.

There are other optional parameters associated with this command:

-h or -?

Displays a help menu for this command.

-d Sets the debug mode for use during problem determination.

-a AuthType

Specifies the authentication type for the instance. Valid authentication

types are SERVER, SERVER_ENCRYPT, or CLIENT. If not specified, the

default is SERVER, if a DB2 server is installed. Otherwise, it is set to

CLIENT. The authentication type of the instance applies to all databases

owned by the instance.

-e Allows you to update each instance that exists. Usedb2ilist to list the

existing instances.

-u Fenced ID

Names the user under which the fenced user-defined functions (UDFs) and

stored procedures will execute. This is not required if you install the Data

Server Client or the DB2 Software Developer’s Kit. For other DB2 products,

this is a required parameter. Note: Fenced ID might not be ″root″ or ″bin″.

-k This parameter preserves the current instance type. If you do not specify

this parameter, the current instance is upgraded to the highest instance

type available in the following order:

v Partitioned database server with local and remote clients

v Database Server with local and remote clients

v Client

Examples:

v If you installed DB2 Workgroup Server Edition or DB2 Enterprise Server

Edition after the instance was created, enter the following command to update

that instance:

 db2iupdt -u db2fenc1 db2inst1

v If you installed the DB2® Connect™ Enterprise Edition after creating the instance,

you can use the instance name as the Fenced ID also:

 db2iupdt -u db2inst1 db2inst1

v To update client instances, invoke the following command:

 db2iupdt db2inst1

Updating the instance configuration (Windows)

To update the instance configuration on Windows, use the db2iupdt command.

Running the db2iupdt command updates the specified instance by performing the

following:

v Replaces the files in the sqllib subdirectory under the instance owner’s home

directory.

v If the node type is changed, then a new database manager configuration file is

created. This is done by merging relevant values from the existing database

manager configuration file with the default database manager configuration file

for the new node type. If a new database manager configuration file is created,

the old file is backed up to the backup subdirectory of the sqllib subdirectory

under the instance owner’s home directory.

70 Data Servers, Databases, and Database Objects Guide

The db2iupdt command is found in \sqllib\bin directory.

The command is used as shown:

 db2iupdt InstName

The InstName is the login name of the instance owner.

There are other optional parameters associated with this command:

/h: hostname

Overrides the default TCP/IP host name if there are one or more TCP/IP

host names for the current computer.

/p: instance profile path

Specifies the new instance profile path for the updated instance.

/r: baseport,endport

Specifies the range of TCP/IP ports used by the partitioned database

instance when running with multiple database partitions.

/u: username,password

Specifies the account name and password for the DB2 service.

Working with instances

When working with instances, you can start or stop instances, and attach to or

detach from instances.

Each instance is managed by users who belong to the SYSADM_GROUP defined in

the instance configuration file, also known as the database manager configuration file.

Creating user IDs and user groups is different for each operating environment.

Auto-starting instances

On Windows operating systems, the database instance that is created during install

is set as auto-started by default. An instance created using db2icrt is set as a

manual start. To change the start type, you need to go to the Services panel and

change the property of the DB2 service there.

On UNIX operating systems, to enable an instance to auto-start after each system

restart, enter the following command:

db2iauto -on <instance name>

where <instance name> is the login name of the instance.On UNIX operating

systems, to prevent an instance from auto-starting after each system restart, enter

the following command:

db2iauto -off <instance name>

where <instance name> is the login name of the instance.

Starting instances (Linux, UNIX)

You might need to start or stop a DB2 database during normal business operations,

for example, you must start an instance before you can perform some of the

following tasks: connect to a database on the instance, precompile an application,

bind a package to a database, or access host databases.

Before you start an instance on your Linux or UNIX system:

Chapter 4. Instances 71

1. Log in with a user ID or name that has SYSADM, SYSCTRL, or SYSMAINT

authority on the instance; or log in as the instance owner.

2. Run the startup script as follows, where INSTHOME is the home directory of the

instance you want to use:

 . INSTHOME/sqllib/db2profile (for Bourne or Korn shell)

 source INSTHOME/sqllib/db2cshrc (for C shell)

To start the instance using the command line, enter:

 db2start

Note: When you run commands to start or stop an instance’s database manager,

the DB2 database manager applies the command to the current instance.

Starting instances (Windows)

You might need to start or stop a DB2 instance during normal business operations,

for example, you must start an instance before you can perform some of the

following tasks: connect to a database on the instance, precompile an application,

bind a package to a database, or access a host database.

In order to successfully launch the DB2 database instance as a service from

db2start, the user account must have the correct privilege as defined by the

Windows operating system to start a Windows service. The user account can be a

member of the Administrators, Server Operators, or Power Users group. When

extended security is enabled, only members of the DB2ADMNS and

Administrators groups can start the database by default.

To start an instance using the command line, enter:

 db2start

Note: When you run commands to start or stop an instance’s database manager,

the DB2 database manager applies the command to the current instance.

The db2start command will launch the DB2 database instance as a Windows

service. The DB2 database instance on Windows can still be run as a process by

specifying the ″/D″ switch when invoking db2start. The DB2 database instance can

also be started as a service using the Control Panel or the NET START command.

When running in a partitioned database environment, each database partition

server is started as a Windows service. You can not use the ″/D″ switch to start a

DB2 instance as a process in a partitioned database environment.

Attaching to and detaching from instances

On all platforms, to attach to another instance of the database manager, which

might be remote, use the ATTACH command. To detach from an instance, use the

DETACH command.

More than one instance must already exist.

To attach to an instance using the command line, enter:

 db2 attach to <instance name>

For example, to attach to an instance called testdb2 that was previously cataloged

in the node directory:

 db2 attach to testdb2

72 Data Servers, Databases, and Database Objects Guide

After performing maintenance activities for the testdb2 instance, for example, to

detach from an instance using the command line, enter:

 db2 detach

Attaching to and detaching from client applications:

v To attach to an instance from a client application, call the sqleatin API,

v To detach from an instance from a client application, call the sqledtin

API.

Working with instances on the same or different DB2 copies

You can run multiple instances concurrently, in the same DB2 copy or in different

DB2 copies.

To work with instances in the same DB2 copy, you need to:

1. Create or migrate all instances to the same DB2 copy.

2. Set the DB2INSTANCE environment variable to the name of the instance you

are working with before issuing commands against that instance.

To prevent one instance from accessing the database of another instance, the

database files for an instance are created under a directory that has the same name

as the instance name. For example, when creating a database on drive C: for

instance “DB2”, the database files are created inside a directory called C:\DB2.

Similarly, when creating a database on drive C: for instance TEST, the database

files are created inside a directory called C:\TEST. By default, its value is the drive

letter where DB2 product is installed. For more information, see the dftdbpath

database manager configuration parameter.

To work with an instance in a system with multiple DB2 copies, use either of the

following methods:

v Using the Command window from the Start → Programs → IBM DB2 → <DB2

Copy Name> → Command Line Tools → Command Window: the Command

window is already set up with the correct environment variables for the

particular DB2 copy chosen.

v Using db2envar.bat from a Command window:

1. Open a Command window.

2. Run the db2envar.bat file using the fully qualified path for the DB2 copy that

you want the application to use:

<DB2 Copy install dir>\bin\db2envar.bat

Stopping instances (Linux, UNIX)

You might need to stop the current instance of the database manager.

Before you begin

To stop an instance on your Linux or UNIX system, you must do the following:

1. Log in or attach to an instance with a user ID or name that has SYSADM,

SYSCTRL, or SYSMAINT authority on the instance; or, log in as the instance

owner.

2. Display all applications and users that are connected to the specific database

that you want to stop. To ensure that no vital or critical applications are

running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT

authority for this.

Chapter 4. Instances 73

3. Force all applications and users off the database. You require SYSADM or

SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are

allowed when running this command; however, if there are any instance

attachments, they are forced off before the instance is stopped.

Note: If command line processor sessions are attached to an instance, you must

run the terminate command to end each session before running the db2stop

command. The db2stop command stops the instance defined by the

DB2INSTANCE environment variable.

Note: When you run commands to start or stop an instance’s database manager,

the DB2 database manager applies the command to the current instance.For more

information, see Setting the current instance environment variables.

Procedure

To stop the instance using the command line, enter: db2stop

You can use the db2stop command to stop, or drop, individual database partitions

within a partitioned database environment. When working in a partitioned

database environment and you are attempting to drop a logical partition using

 db2stop drop nodenum <0>

You must ensure that no users are attempting to access the database. If they are,

you will receive an error message SQL6030N.

Stopping instances (Windows)

You might need to stop the current instance of the database manager.

Before you begin

To stop an instance on your system, you must do the following:

1. The user account stopping the DB2 database service must have the correct

privilege as defined by the Windows operating system. The user account can be

a member of the Administrators, Server Operators, or Power Users group.

2. Display all applications and users that are connected to the specific database

that you want to stop. To ensure that no vital or critical applications are

running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT

authority for this.

3. Force all applications and users off the database. You require SYSADM or

SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are

allowed when running this command; however, if there are any instance

attachments, they are forced off before the DB2 database service is stopped.

Note: If command line processor sessions are attached to an instance, you must

run the terminate command to end each session before running the db2stop

command. The db2stop command stops the instance defined by the

DB2INSTANCE environment variable.

74 Data Servers, Databases, and Database Objects Guide

Recall that when you are using the database manager in a partitioned database

environment, each database partition server is started as a service. Each service

must be stopped.

Note: When you run commands to start or stop an instance’s database manager,

the database manager applies the command to the current instance. For more

information, see Setting the current instance environment variables.

Procedure

To stop an instance on your system, use one of the following methods:

v Stop using the db2stop command.

v Stop using the NET STOP command.

v Stop the instance from within an application.

Dropping instances

This topic applies to root instances only on all platforms. To drop non-root

instances, you must uninstall your DB2 product.

To remove an instance, from the command line, enter:

 db2idrop <instance_name>

The preparation and details to removing an instance using the command line are:

1. Stop all applications that are currently using the instance.

2. Stop the Command Line Processor by running the terminate commands in each

Command window.

3. Stop the instance by running the db2stop command.

4. Back up the instance directory indicated by the DB2INSTPROF registry

variable.

On Linux and UNIX operating systems, consider backing up the files in the

INSTHOME/sqllib directory (where INSTHOME is the home directory of the

instance owner). For example, you might want to save the database manager

configuration file, db2systm, the db2nodes.cfg file, user-defined functions

(UDFs), or fenced stored procedure applications.

5. (On Linux and UNIX operating systems only) Log off as the instance owner.

6. (On Linux and UNIX operating systems only) Log in as a user with root

authority.

7. Issue the db2idrop command:

db2idrop InstName

where InstName is the name of the instance being dropped.

This command removes the instance entry from the list of instances and

removes the instance directory.

8. (On Linux and UNIX operating systems only) Optionally, as a user with root

authority, remove the instance owner’s user ID and group (if used only for that

instance). Do not remove these if you are planning to re-create the instance.

This step is optional since the instance owner and the instance owner group

might be used for other purposes.

The db2idrop command removes the instance entry from the list of instances and

removes the sqllib subdirectory under the instance owner’s home directory.

Chapter 4. Instances 75

Note: On Linux and UNIX operating systems, when attempting to drop an

instance using the db2idrop command, a message is generated saying that the

sqllib subdirectory cannot be removed, and in the adm subdirectory several files

with the .nfs extension are being generated. The adm subdirectory is an

NFS-mounted system and the files are controlled on the server. You must delete

the *.nfs files from the file server from where the directory is being mounted. Then

you can remove the sqllib subdirectory.

76 Data Servers, Databases, and Database Objects Guide

Chapter 5. Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is an industry standard access

method to directory services. A directory service is a repository of resource

information about multiple systems and services within a distributed environment;

and it provides client and server access to these resources.

Each database server instance publishes its existence to an LDAP server and

provides database information to the LDAP directory when the databases are

created. When a client connects to a database, the catalog information for the

server can be retrieved from the LDAP directory. Each client is no longer required

to store catalog information locally on each machine. Client applications search the

LDAP directory for information required to connect to the database.

A caching mechanism exists so that the client only needs to search the LDAP

directory server once. After the information is retrieved from the LDAP directory

server, it is stored or cached on the local machine based on the values of the

dir_cache database manager configuration parameter and the DB2LDAPCACHE

registry variable. The dir_cache database manager configuration parameter is used

to store database, node, and DCS directory files in a memory cache. The directory

cache is used by an application until the application closes. The DB2LDAPCACHE

registry variable is used to store database, node, and DCS directory files in a local

disk cache.

v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.

v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2 cache.

v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP

once and cache it into the local database, node, and DCS directories.

Note: The DB2LDAPCACHE registry variable is only applicable to the database

and node directories.

Security considerations in an LDAP environment

Before accessing information in the LDAP directory, an application or user is

authenticated by the LDAP server. The authentication process is called binding to

the LDAP server. It is important to apply access control on the information stored

in the LDAP directory to prevent anonymous users from adding, deleting, or

modifying the information.

Access control is inherited by default and can be applied at the container level.

When a new object is created, it inherits the same security attribute as the parent

object. An administration tool available for the LDAP server can be used to define

access control for the container object.

By default, access control is defined as follows:

v For database and node entries in LDAP, everyone (or any anonymous user) has

read access. Only the Directory Administrator and the owner or creator of the

object has read/write access.

© Copyright IBM Corp. 1993, 2009 77

v For user profiles, the profile owner and the Directory Administrator have

read/write access. One user cannot access the profile of another user if that user

does not have Directory Administrator authority.

Note: The authorization check is always performed by the LDAP server and not

by DB2. The LDAP authorization check is not related to DB2 authorization. An

account or authorization ID that has SYSADM authority may not have access to

the LDAP directory.

When running the LDAP commands or APIs, if the bind Distinguished Name

(bindDN) and password are not specified, DB2 binds to the LDAP server using the

default credentials which may not have sufficient authority to perform the

requested commands and an error will be returned.

You can explicitly specify the user’s bindDN and password using the USER and

PASSWORD clauses for the DB2 commands or APIs.

LDAP object classes and attributes used by DB2

The following tables describe the object classes that are used by the DB2 database

manager:

 Table 11. cimManagedElement

Class cimManagedElement

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class of many of the system management

object classes in the IBM Schema

SubClassOf top

Required Attribute(s)

Optional Attribute(s) description

Type abstract

OID (Object Identifier) 1.3.18.0.2.6.132

GUID (Global Unique Identifier) b3afd63f-5c5b-11d3-b818-002035559151

 Table 12. cimSetting

Class cimSetting

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class for configuration and settings in the

IBM Schema

SubClassOf cimManagedElement

Required Attribute(s)

Optional Attribute(s) settingID

Type abstract

OID (object identifier) 1.3.18.0.2.6.131

GUID (Global Unique Identifier) b3afd64d-5c5b-11d3-b818-002035559151

78 Data Servers, Databases, and Database Objects Guide

Table 13. eProperty

Class eProperty

Active Directory LDAP Display Name ibm-eProperty

Active Directory Common Name (cn) ibm-eProperty

Description Used to specify any application specific settings for user

preference properties

SubClassOf cimSetting

Required Attribute(s)

Optional Attribute(s) propertyType

cisPropertyType

cisProperty

cesPropertyType

cesProperty

binPropertyType

binProperty

Type structural

OID (object identifier) 1.3.18.0.2.6.90

GUID (Global Unique Identifier) b3afd69c-5c5b-11d3-b818-002035559151

 Table 14. DB2Node

Class DB2Node

Active Directory LDAP Display Name ibm-db2Node

Active Directory Common Name (cn) ibm-db2Node

Description Represents a DB2 Server

SubClassOf eSap / ServiceConnectionPoint

Required Attribute(s) db2nodeName

Optional Attribute(s) db2nodeAlias

db2instanceName

db2Type

host / dNSHostName (see Note 2)

protocolInformation/ServiceBindingInformation

Type structural

OID (object identifier) 1.3.18.0.2.6.116

GUID (Global Unique Identifier) b3afd65a-5c5b-11d3-b818-002035559151

Chapter 5. Lightweight Directory Access Protocol (LDAP) 79

Table 14. DB2Node (continued)

Class DB2Node

Special Notes®

1. The DB2Node class is derived from eSap object class

under IBM Tivoli® Directory Server and from

ServiceConnectionPoint object class under Microsoft®

Active Directory.

2. The host is used under the IBM Tivoli Directory

Server environment. The dNSHostName attribute is

used under Microsoft Active Directory.

3. The protocolInformation is only used under the IBM

Tivoli Directory Server environment. For Microsoft

Active Directory, the attribute

ServiceBindingInformation, inherited from the

ServiceConnectionPoint class, is used to contain the

protocol information.

The protocolInformation (in IBM Tivoli Directory Server) or ServiceBindingInformation

(in Microsoft Active Directory) attribute in the DB2Node object contains the

communication protocol information to bind the DB2 database server. It consists of

tokens that describe the network protocol supported. Each token is separated by a

semicolon. There is no space between the tokens. An asterisk (*) may be used to

specify an optional parameter.

The tokens for TCP/IP are:

v “TCPIP”

v Server hostname or IP address

v Service name (svcename) or port number (e.g. 50000)

v (Optional) security (“NONE” or “SOCKS”)

The tokens for Named Pipe are:

v “NPIPE”

v Computer name of the server

v Instance name of the server

 Table 15. DB2Database

Class DB2Database

Active Directory LDAP Display Name ibm-db2Database

Active Directory Common Name (cn) ibm-db2Database

Description Represents a DB2 database

SubClassOf top

Required Attribute(s) db2databaseName

db2nodePtr

80 Data Servers, Databases, and Database Objects Guide

Table 15. DB2Database (continued)

Class DB2Database

Optional Attribute(s) db2databaseAlias

db2additionalParameter

db2ARLibrary

db2authenticationLocation

db2gwPtr

db2databaseRelease

DCEPrincipalName

db2altgwPtr

db2altnodePtr

Type structural

OID (object identifier) 1.3.18.0.2.6.117

GUID (Global Unique Identifier) b3afd659-5c5b-11d3-b818-002035559151

 Table 16. db2additionalParameters

Attribute db2additionalParameters

Active Directory LDAP Display Name ibm-db2AdditionalParameters

Active Directory Common Name (cn) ibm-db2AdditionalParameters

Description Contains any additional parameters used when

connecting to the host database server

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.426

GUID (Global Unique Identifier) b3afd315-5c5b-11d3-b818-002035559151

 Table 17. db2authenticationLocation

Attribute db2authenticationLocation

Active Directory LDAP Display Name ibm-db2AuthenticationLocation

Active Directory Common Name (cn) ibm-db2AuthenticationLocation

Description Specifies where authentication takes place

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.425

GUID (Global Unique Identifier) b3afd317-5c5b-11d3-b818-002035559151

Notes Valid values are: CLIENT, SERVER, DCS, DCE,

KERBEROS, SVRENCRYPT, or DCSENCRYPT

Chapter 5. Lightweight Directory Access Protocol (LDAP) 81

Table 18. db2ARLibrary

Attribute db2ARLibrary

Active Directory LDAP Display Name ibm-db2ARLibrary

Active Directory Common Name (cn) ibm-db2ARLibrary

Description Name of the Application Requestor library

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.427

GUID (Global Unique Identifier) b3afd316-5c5b-11d3-b818-002035559151

 Table 19. db2databaseAlias

Attribute db2databaseAlias

Active Directory LDAP Display Name ibm-db2DatabaseAlias

Active Directory Common Name (cn) ibm-db2DatabaseAlias

Description Database alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.422

GUID (Global Unique Identifier) b3afd318-5c5b-11d3-b818-002035559151

 Table 20. db2databaseName

Attribute db2databaseName

Active Directory LDAP Display Name ibm-db2DatabaseName

Active Directory Common Name (cn) ibm-db2DatabaseName

Description Database name

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.421

GUID (Global Unique Identifier) b3afd319-5c5b-11d3-b818-002035559151

 Table 21. db2databaseRelease

Attribute db2databaseRelease

Active Directory LDAP Display Name ibm-db2DatabaseRelease

Active Directory Common Name (cn) ibm-db2DatabaseRelease

Description Database release number

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.429

82 Data Servers, Databases, and Database Objects Guide

Table 21. db2databaseRelease (continued)

Attribute db2databaseRelease

GUID (Global Unique Identifier) b3afd31a-5c5b-11d3-b818-002035559151

 Table 22. db2nodeAlias

Attribute db2nodeAlias

Active Directory LDAP Display Name ibm-db2NodeAlias

Active Directory Common Name (cn) ibm-db2NodeAlias

Description Node alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.420

GUID (Global Unique Identifier) b3afd31d-5c5b-11d3-b818-002035559151

 Table 23. db2nodeName

Attribute db2nodeName

Active Directory LDAP Display Name ibm-db2NodeName

Active Directory Common Name (cn) ibm-db2NodeName

Description Node name

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.419

GUID (Global Unique Identifier) b3afd31e-5c5b-11d3-b818-002035559151

 Table 24. db2nodePtr

Attribute db2nodePtr

Active Directory LDAP Display Name ibm-db2NodePtr

Active Directory Common Name (cn) ibm-db2NodePtr

Description Pointer to the Node (DB2Node) object that represents the

database server which owns the database

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.423

GUID (Global Unique Identifier) b3afd31f-5c5b-11d3-b818-002035559151

Special Notes This relationship allows the client to retrieve protocol

communication information to connect to the database

 Table 25. db2altnodePtr

Attribute db2altnodePtr

Active Directory LDAP Display Name ibm-db2AltNodePtr

Chapter 5. Lightweight Directory Access Protocol (LDAP) 83

Table 25. db2altnodePtr (continued)

Attribute db2altnodePtr

Active Directory Common Name (cn) ibm-db2AltNodePtr

Description Pointer to the Node (DB2Node) object that represents the

alternate database server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3093

GUID (Global Unique Identifier) 5694e266-2059-4e32-971e-0778909e0e72

 Table 26. db2gwPtr

Attribute db2gwPtr

Active Directory LDAP Display Name ibm-db2GwPtr

Active Directory Common Name (cn) ibm-db2GwPtr

Description Pointer to the Node object that represents the gateway

server and from which the database can be accessed

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.424

GUID (Global Unique Identifier) b3afd31b-5c5b-11d3-b818-002035559151

 Table 27. db2altgwPtr

Attribute db2altgwPtr

Active Directory LDAP Display Name ibm-db2AltGwPtr

Active Directory Common Name (cn) ibm-db2AltGwPtr

Description Pointer to the Node object that represents the alternate

gateway server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3092

GUID (Global Unique Identifier) 70ab425d-65cc-4d7f-91d8-084888b3a6db

 Table 28. db2instanceName

Attribute db2instanceName

Active Directory LDAP Display Name ibm-db2InstanceName

Active Directory Common Name (cn) ibm-db2InstanceName

Description The name of the database server instance

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

84 Data Servers, Databases, and Database Objects Guide

Table 28. db2instanceName (continued)

Attribute db2instanceName

OID (object identifier) 1.3.18.0.2.4.428

GUID (Global Unique Identifier) b3afd31c-5c5b-11d3-b818-002035559151

 Table 29. db2Type

Attribute db2Type

Active Directory LDAP Display Name ibm-db2Type

Active Directory Common Name (cn) ibm-db2Type

Description Type of the database server

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.418

GUID (Global Unique Identifier) b3afd320-5c5b-11d3-b818-002035559151

Notes Valid types for database server are: SERVER, MPP, and

DCS

 Table 30. DCEPrincipalName

Attribute DCEPrincipalName

Active Directory LDAP Display Name ibm-DCEPrincipalName

Active Directory Common Name (cn) ibm-DCEPrincipalName

Description DCE principal name

Syntax Case Ignore String

Maximum Length 2048

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.443

GUID (Global Unique Identifier) b3afd32d-5c5b-11d3-b818-002035559151

 Table 31. cesProperty

Attribute cesProperty

Active Directory LDAP Display Name ibm-cesProperty

Active Directory Common Name (cn) ibm-cesProperty

Description Values of this attribute may be used to provide

application-specific preference configuration parameters.

For example, a value may contain XML-formatted data.

All values of this attribute must be homogeneous in the

cesPropertyType attribute value.

Syntax Case Exact String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.307

GUID (Global Unique Identifier) b3afd2d5-5c5b-11d3-b818-002035559151

Chapter 5. Lightweight Directory Access Protocol (LDAP) 85

Table 32. cesPropertyType

Attribute cesPropertyType

Active Directory LDAP Display Name ibm-cesPropertyType

Active Directory Common Name (cn) ibm-cesPropertyType

Description Values of this attribute may be used to describe the

syntax, semantics, or other characteristics of all of the

values of the cesProperty attribute. For example, a value

of “XML” might be used to indicate that all the values of

the cesProperty attribute are encoded as XML syntax.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.308

GUID (Global Unique Identifier) b3afd2d6-5c5b-11d3-b818-002035559151

 Table 33. cisProperty

Attribute cisProperty

Active Directory LDAP Display Name ibm-cisProperty

Active Directory Common Name (cn) ibm-cisProperty

Description Values of this attribute may be used to provide

application-specific preference configuration parameters.

For example, a value may contain an INI file. All values

of this attribute must be homogeneous in their

cisPropertyType attribute value.

Syntax Case Ignore String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.309

GUID (Global Unique Identifier) b3afd2e0-5c5b-11d3-b818-002035559151

 Table 34. cisPropertyType

Attribute cisPropertyType

Active Directory LDAP Display Name ibm-cisPropertyType

Active Directory Common Name (cn) ibm-cisPropertyType

Description Values of this attribute may be used to describe the

syntax, semantics, or other characteristics of all of the

values of the cisProperty attribute. For example, a value

of “INI File” might be used to indicate that all the values

of the cisProperty attribute are INI files.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.310

GUID (Global Unique Identifier) b3afd2e1-5c5b-11d3-b818-002035559151

86 Data Servers, Databases, and Database Objects Guide

Table 35. binProperty

Attribute binProperty

Active Directory LDAP Display Name ibm-binProperty

Active Directory Common Name (cn) ibm-binProperty

Description Values of this attribute may be used to provide

application-specific preference configuration parameters.

For example, a value may contain a set of

binary-encoded Lotus® 123 properties. All values of this

attribute must be homogeneous in their binPropertyType

attribute values.

Syntax binary

Maximum Length 250000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.305

GUID (Global Unique Identifier) b3afd2ba-5c5b-11d3-b818-002035559151

 Table 36. binPropertyType

Attribute binPropertyType

Active Directory LDAP Display Name ibm-binPropertyType

Active Directory Common Name (cn) ibm-binPropertyType

Description Values of this attribute may be used to describe the

syntax, semantics, or other characteristics of all of the

values of the binProperty attribute. For example, a value

of “Lotus 123” might be used to indicate that all the

values of the binProperty attribute are binary-encoded

Lotus 123 properties.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.306

GUID (Global Unique Identifier) b3afd2bb-5c5b-11d3-b818-002035559151

 Table 37. PropertyType

Attribute PropertyType

Active Directory LDAP Display Name ibm-propertyType

Active Directory Common Name (cn) ibm-propertyType

Description Values of this attribute describe the semantic

characteristics of the eProperty object

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.320

GUID (Global Unique Identifier) b3afd4ed-5c5b-11d3-b818-002035559151

Chapter 5. Lightweight Directory Access Protocol (LDAP) 87

Table 38. settingID

Attribute settingID

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description A naming attribute that may be used to identify the

cimSetting derived object entries such as eProperty

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.325

GUID (Global Unique Identifier) b3afd596-5c5b-11d3-b818-002035559151

Extending the LDAP directory schema with DB2 object classes and

attributes

The LDAP Directory Schema defines object classes and attributes for the

information stored in the LDAP directory entries. An object class consists of a set

of mandatory and optional attributes. Every entry in the LDAP directory has an

object class associated with it.

Before the DB2 database manager can store information in LDAP, the Directory

Schema for the LDAP server must include the object classes and attributes that the

DB2 database system uses. The process of adding new object classes and attributes

to the base schema is called schema extension.

Supported LDAP client and server configurations

The following table summarizes the supported LDAP client and server

configurations.

 Table 39. Supported LDAP client and server configurations

LDAP clients

LDAP servers

IBM Tivoli Directory

server

1

Microsoft Active

Directory server

2

Sun One LDAP

server

IBM LDAP Client

3 Supported Supported Supported

Microsoft

LDAP/ADSI Client

4

Supported Supported Supported

v

1 IBM Tivoli Directory Server is an LDAP Version 3 server and is available for

Windows, AIX, Solaris, Linux, and HP-UX. It is shipped as part of the base

operating system on AIX and System i™, and with OS/390® Security Server.

v

2 Microsoft Active Directory server is an LDAP Version 3 server and is available

as part of the Windows 2000 Server and Windows Server 2003 family of

operating systems.

v

3 The DB2 database system supports IBM LDAP client on AIX, Solaris, HP-UX

11.11, Windows, and Linux.

v

4 The Microsoft LDAP Client is included with the Windows operating system.

Note: When running on Windows operating systems, the DB2 database manager

supports using either the IBM LDAP client or the Microsoft LDAP client. To

88 Data Servers, Databases, and Database Objects Guide

explicitly select the IBM LDAP client, use the db2set command to set the

DB2LDAP_CLIENT_PROVIDER registry variable to IBM. The Microsoft LDAP

Client is included with the Windows operating system.

LDAP support and DB2 Connect

If LDAP support is available at the DB2 Connect gateway, and the database is not

found at the gateway database directory, then the DB2 database manager will look

up the database location in LDAP and will attempt to keep the found information.

Registering host databases in LDAP

When you register host databases in LDAP, there are two possible configurations:

direct connection to the host databases or, connection to the host database though a

gateway.

For direct connection to the host databases, you register the host server in LDAP,

then catalog the host database in LDAP specifying the node name of the host

server. For connection to the host database though a gateway, you register the

gateway server in LDAP, then catalog the host database in LDAP specifying the

node name of the gateway server.

If LDAP support is available at the DB2 Connect gateway, and the database is not

found at the gateway database directory, the DB2 database system looks up LDAP

and attempts to keep the found information.

The following example shows both cases, consider the following: Suppose there is

a host database called NIAGARA_FALLS. It can accept incoming connections using

TCP/IP. If the client cannot connect directly to the host because it does not have

DB2 Connect, then it connects using a gateway called goto@niagara.

The following steps need to be done:

1. Register the host database server in LDAP for TCP/IP connectivity. The

TCP/IP hostname of the server is ″myhost″ and the port number is ″446″. The

NODETYPE clause is set to DCS to indicate that this is a host database server.

 db2 register ldap as nftcpip tcpip hostname myhost svcename 446

 remote mvssys instance mvsinst nodetype dcs

2. Register a DB2 Connect gateway server in LDAP for TCP/IP connectivity. The

TCP/IP hostname for the gateway server is ″niagara″ and the port number is

″50000″.

 db2 register ldap as whasf tcpip hostname niagara svcename 50000

 remote niagara instance goto nodetype server

3. Catalog the host database in LDAP using TCP/IP connectivity. The host

database name is ″NIAGARA_FALLS″, the database alias name is ″nftcpip″.

The GWNODE clause is used to specify the nodename of the DB2 Connect

gateway server.

 db2 catalog ldap database NIAGARA_FALLS as nftcpip at node nftcpip

 gwnode whasf authentication server

After completing the registration and cataloging shown above, if you want to

connect to the host using TCPIP, you connect to nftcpip. If you do not have DB2

Connect on your client workstation, the connection goes through the gateway

using TCPIP. From the gateway, it connects to the host using TCP/IP.

In general, you can manually configure host database information in LDAP so that

each client does not need to manually catalog the database and node locally on

each machine. The process follows:

Chapter 5. Lightweight Directory Access Protocol (LDAP) 89

1. Register the host database server in LDAP. You must specify the remote

computer name, instance name, and the node type for the host database server

in the REGISTER command using the REMOTE, INSTANCE, and NODETYPE

clauses respectively. The REMOTE clause can be set to either the host name or

the LU name of the host server machine. The INSTANCE clause can be set to

any character string that has eight characters or less. (For example, the instance

name can be set to ″DB2″.) The NODETYPE clause must be set to DCS to

indicate that this is a host database server.

2. Register the host database in LDAP using the CATALOG LDAP DATABASE

command. Any additional DRDA® parameters can be specified by using the

PARMS clause. The database authentication type should be set to SERVER.

Extending the directory schema for IBM Tivoli Directory

Server

If you are using IBM Tivoli Directory Server, all the object classes and attributes

that are required by the DB2 database before Version 8.2 are included in the base

schema.

Run the following command to extend the base schema with new DB2 database

attributes introduced in Version 8.2, and later:

 ldapmodify -c -h machine_name:389 -D dn -w password -f altgwnode.ldif

The following is the content of the altgwnode.ldif file:

90 Data Servers, Databases, and Database Objects Guide

dn: cn=schema

 changetype: modify

 add: attributetypes

 attributetypes: (

 1.3.18.0.2.4.3092

 NAME ’db2altgwPtr’

 DESC ’DN pointer to DB2 alternate gateway (node) object’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 -

 add: ibmattributetypes

 ibmattributetypes: (

 1.3.18.0.2.4.3092

 DBNAME (’db2altgwPtr’ ’db2altgwPtr’)

 ACCESS-CLASS NORMAL

 LENGTH 1000)

 dn: cn=schema

 changetype: modify

 add: attributetypes

 attributetypes: (

 1.3.18.0.2.4.3093

 NAME ’db2altnodePtr’

 DESC ’DN pointer to DB2 alternate node object’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)

 -

 add: ibmattributetypes

 ibmattributetypes: (

 1.3.18.0.2.4.3093

 DBNAME (’db2altnodePtr’ ’db2altnodePtr’)

 ACCESS-CLASS NORMAL

 LENGTH 1000)

 dn: cn=schema

 changetype: modify

 replace: objectclasses

 objectclasses: (

 1.3.18.0.2.6.117

 NAME ’DB2Database’

 DESC ’DB2 database’

 SUP cimSetting

 MUST (db2databaseName $ db2nodePtr)

 MAY (db2additionalParameters $ db2altgwPtr $ db2altnodePtr

 $ db2ARLibrary $ db2authenticationLocation $ db2databaseAlias

 $ db2databaseRelease $ db2gwPtr $ DCEPrincipalName))

The altgwnode.ldif and altgwnode.readmefiles can be found at URL:

ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

After adding the DB2 schema definition, the Directory Server must be restarted for

all changes to be active.

Netscape LDAP directory support and attribute definitions

The supported level for Netscape LDAP Server is Version 4.12, or later.

Within Netscape LDAP Server Version 4.12, or later, the Netscape Directory Server

allows applications to extend the schema by adding attribute and object class

definitions to the following two files, slapd.user_oc.conf and slapd.user_at.conf.

These two files are located in the <Netscape_install path>\slapd-<machine_name>\
config directory.

Chapter 5. Lightweight Directory Access Protocol (LDAP) 91

ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

Note: If you are using Sun One Directory Server 5.0, refer to the topic about

extending the directory schema for the Sun One Directory Server.

The DB2 attributes must be added to the slapd.user_at.conf as follows:

 ##

 #

 # IBM DB2 Database

 # Attribute Definitions

 #

 # bin —> binary

 # ces —> case exact string

 # cis —> case insensitive string

 # dn —> distinguished name

 #

 ##

 attribute binProperty 1.3.18.0.2.4.305 bin

 attribute binPropertyType 1.3.18.0.2.4.306 cis

 attribute cesProperty 1.3.18.0.2.4.307 ces

 attribute cesPropertyType 1.3.18.0.2.4.308 cis

 attribute cisProperty 1.3.18.0.2.4.309 cis

 attribute cisPropertyType 1.3.18.0.2.4.310 cis

 attribute propertyType 1.3.18.0.2.4.320 cis

 attribute systemName 1.3.18.0.2.4.329 cis

 attribute db2nodeName 1.3.18.0.2.4.419 cis

 attribute db2nodeAlias 1.3.18.0.2.4.420 cis

 attribute db2instanceName 1.3.18.0.2.4.428 cis

 attribute db2Type 1.3.18.0.2.4.418 cis

 attribute db2databaseName 1.3.18.0.2.4.421 cis

 attribute db2databaseAlias 1.3.18.0.2.4.422 cis

 attribute db2nodePtr 1.3.18.0.2.4.423 dn

 attribute db2gwPtr 1.3.18.0.2.4.424 dn

 attribute db2additionalParameters 1.3.18.0.2.4.426 cis

 attribute db2ARLibrary 1.3.18.0.2.4.427 cis

 attribute db2authenticationLocation 1.3.18.0.2.4.425 cis

 attribute db2databaseRelease 1.3.18.0.2.4.429 cis

 attribute DCEPrincipalName 1.3.18.0.2.4.443 cis

The DB2 object classes must be added to the slapd.user_oc.conf file as follows:

IBM DB2 Database

Object Class Definitions

objectclass eProperty

 oid 1.3.18.0.2.6.90

 requires

 objectClass

 allows

 cn,

 propertyType,

 binProperty,

 binPropertyType,

 cesProperty,

 cesPropertyType,

 cisProperty,

 cisPropertyType

objectclass eApplicationSystem

 oid 1.3.18.0.2.6.84

 requires

 objectClass,

 systemName

92 Data Servers, Databases, and Database Objects Guide

objectclass DB2Node

 oid 1.3.18.0.2.6.116

 requires

 objectClass,

 db2nodeName

 allows

 db2nodeAlias,

 host,

 db2instanceName,

 db2Type,

 description,

 protocolInformation

objectclass DB2Database

 oid 1.3.18.0.2.6.117

 requires

 objectClass,

 db2databaseName,

 db2nodePtr

 allows

 db2databaseAlias,

 description,

 db2gwPtr,

 db2additionalParameters,

 db2authenticationLocation,

 DCEPrincipalName,

 db2databaseRelease,

 db2ARLibrary

After adding the DB2 schema definition, the Directory Server must be restarted for

all changes to be active.

Extending the directory schema for Sun One Directory Server

The Sun One Directory Server is also known as the Netscape or iPlanet directory

server.

To have the Sun One Directory Server work in your environment, add the

60ibmdb2.ldif file to the following directory:

On Windows, if you have iPlanet installed in C:\iPlanet\Servers, add the above

file to .\sldap-<machine_name>\config\schema.

On UNIX, if you have iPlanet installed in /usr/iplanet/servers, add the above file

to ./slapd-<machine_name>/config/schema.

The following is the contents of the file:

IBM DB2 Database

dn: cn=schema

Attribute Definitions (Before V8.2)

attributetypes: (1.3.18.0.2.4.305 NAME ’binProperty’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.306 NAME ’binPropertyType’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.307 NAME ’cesProperty’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.308 NAME ’cesPropertyType’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

Chapter 5. Lightweight Directory Access Protocol (LDAP) 93

attributetypes: (1.3.18.0.2.4.309 NAME ’cisProperty’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.310 NAME ’cisPropertyType’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.320 NAME ’propertyType’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.329 NAME ’systemName’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.419 NAME ’db2nodeName’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.420 NAME ’db2nodeAlias’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.428 NAME ’db2instanceName’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.418 NAME ’db2Type’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.421 NAME ’db2databaseName’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.422 NAME ’db2databaseAlias’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.426 NAME ’db2additionalParameters’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.427 NAME ’db2ARLibrary’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.425 NAME ’db2authenticationLocation’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.429 NAME ’db2databaseRelease’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.443 NAME ’DCEPrincipalName’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.423 NAME ’db2nodePtr’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.424 NAME ’db2gwPtr’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

Attribute Definitions (V8.2 and later)

attributetypes: (1.3.18.0.2.4.3092 NAME ’db2altgwPtr’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN ’IBM DB2’)

attributetypes: (1.3.18.0.2.4.3093 NAME ’db2altnodePtr’

 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN ’IBM DB2’)

Object Class Definitions

DB2Database for V8.2 has the above two new optional attributes.

objectClasses: (1.3.18.0.2.6.90 NAME ’eProperty’

 SUP top STRUCTURAL MAY (cn $ propertyType $ binProperty

 $ binPropertyType $ cesProperty $ cesPropertyType $ cisProperty

 $ cisPropertyType) X-ORIGIN ’IBM DB2’)

objectClasses: (1.3.18.0.2.6.84 NAME ’eApplicationSystem’

 SUP top STRUCTURAL MUST systemName

 X-ORIGIN ’IBM DB2’)

objectClasses: (1.3.18.0.2.6.116 NAME ’DB2Node’

 SUP top STRUCTURAL MUST db2nodeName MAY (db2instanceName $ db2nodeAlias

 $ db2Type $ description $ host $ protocolInformation)

 X-ORIGIN ’IBM DB2’)

objectClasses: (1.3.18.0.2.6.117 NAME ’DB2Database’

 SUP top STRUCTURAL MUST (db2databaseName $ db2nodePtr) MAY

 (db2additionalParameters $ db2altgwPtr $ db2altnodePtr $ db2ARLibrary

 $ db2authenticationLocation $ db2databaseAlias $ db2databaseRelease

 $ db2gwPtr $ DCEPrincipalName $ description)

 X-ORIGIN ’IBM DB2’)

The 60ibmdb2.ldif and 60ibmdb2.readmefiles can be found at URL:

ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

94 Data Servers, Databases, and Database Objects Guide

After adding the DB2 schema definition, the Directory Server must be restarted for

all changes to be active.

Windows Active Directory

The DB2 database servers are published in the Active Directory as the

ibm_db2Node objects. The ibm_db2Node object class is a subclass of the

ServiceConnectionPoint (SCP) object class.

Each ibm_db2Node object contains protocol configuration information to allow

client applications to connect to the DB2 database server. When a new database is

created, the database is published in the Active Directory as the ibm_db2Database

object under the ibm_db2Node object.

When connecting to a remote database, a DB2 client queries the Active Directory,

through the LDAP interface, for the ibm_db2Database object. The protocol

communication to connect to the database server (binding information) is obtained

from the ibm_db2Node object, which the ibm_db2Database object is created under.

Property pages for the ibm_db2Node and ibm_db2Database objects can be viewed

or modified using the Active Directory Users and Computer Management Console

(MMC) at a domain controller. To set up the property page, run the regsrv32

command to register the property pages for the DB2 objects as follows:

 regsvr32 %DB2PATH%\bin\db2ads.dll

You can view the objects by using the Active Directory Users and Computer

Management Console (MMC) at a domain controller. To get to this administration

tool, follow Start—> Program—> Administration Tools—> Active Directory Users

and Computer.

Note: You must select Users, Groups, and Computers as containers from the View

menu to display the DB2 database objects under the computer objects.

Note: If the DB2 database system is not installed on the domain controller, you can

still view the property pages of DB2 database objects by copying the db2ads.dll file

from %DB2PATH%\bin and the resource DLL db2adsr.dll from

%DB2PATH%\msg\locale-name to a local directory on the domain controller. (The

directory where you place these two copied files must be one of those found in the

PATH environment variable.) Then, you run the regsvr32 command from the local

directory to register the DLL.

Configuring the DB2 database manager to use Active Directory

In order to access Microsoft Active Directory, ensure that the following conditions

are met:

1. The machine that runs DB2 database must belong to a Windows 2000 or

Windows Server 2003 domain.

2. The Microsoft LDAP client is installed. The Microsoft LDAP client is part of the

Windows 2000, Windows XP, and Windows Server 2003 operating systems.

3. Enable LDAP support. For more information, see “Extending the Active

Directory Schema for LDAP directory services (Windows)” in Quick Beginnings

for DB2 Servers.

4. Log on to a domain user account when running the DB2 database system to

read information from the Active Directory.

Chapter 5. Lightweight Directory Access Protocol (LDAP) 95

Security considerations for Active Directory

The DB2 database and node objects are created under the computer object of the

machine where the DB2 server is installed in the Active Directory. To register a

database server or to catalog a database in the Active Directory, you need to have

sufficient access to create or update the objects under the computer object.

By default, objects under the computer object are readable by any authenticated

users and can be updated by administrators (users that belong to the

Administrators, Domain Administrators, and Enterprise Administrators groups). To

grant access for a specific user or a group, use the Active Directory Users and

Computer Management Console (MMC) as follows:

1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and

Computer)

2. Under View, select Advanced Features

3. Select the Computers container

4. Right click on the computer object that represents the server machine where

DB2 is installed and select Properties

5. Select the Security tab, then add the required access to the specified user or

group

The DB2 registry variables and CLI settings at the user level are maintained in the

DB2 property object under the user object. To set the DB2 registry variables or CLI

settings at the user level, a user needs to have sufficient access to create objects

under the User object.

By default, only administrators have access to create objects under the User object.

To grant access to a user to set the DB2 registry variables or CLI settings at the

user level, use the Active Directory Users and Computer Management Console

(MMC) as follows:

1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and

Computer)

2. Select the user object under the Users container

3. Right click on the user object and select Properties

4. Select the Security tab

5. Add the user name to the list by using the Add button

6. Grant “Write”, and “Create All Child Objects” access

7. Using the Advanced setting, set permissions to apply onto “This object and all

child objects”

8. Select the check box “Allow inheritable permissions from parent to propagate

to this object”

DB2 objects in the Active Directory

The DB2 database manager creates objects in the Active Directory at two locations:

1. The DB2 database and node objects are created under the computer object of

the machine where the DB2 server is installed. For the DB2 server machine that

does not belong to the Windows domain, the DB2 database and node objects

are created under the “System” container.

2. The DB2 registry variables and CLI settings at the user level are stored in the

DB2 property objects under the User object. These objects contain information

that is specific to that user.

96 Data Servers, Databases, and Database Objects Guide

Extending the directory schema for Active Directory

Before the DB2 database manager can store information in the Active Directory, the

directory schema needs to be extended to include the new DB2 database object

classes and attributes. The process of adding new object classes and attributes to

the directory schema is called schema extension.

You must extend the schema for Active Directory by running the DB2 Schema

Installation program, db2schex. You should run this command before installing

DB2 products and creating databases, otherwise you have to manually register the

node and catalog the databases.

The db2schex program is included on the product CD-ROM in the following

location: x:\db2\windows\utilities\ where x: is the DVD drive letter.

To update the schema, you must be a member of the Schema Administrators group

or have been delegated the rights to update the schema. Run the following

command on any machine that is part of the Windows domain:

 runas /user:MyDomain\Administrator x:\db2\Windows\utilities\db2schex.exe

where x: represents the DVD drive letter.

If you have run the db2schex command in an earlier version of the DB2 database

management system, when you run this same command again on DB2 UDB

Version 8.2, or later, the following two optional attributes are added to the

ibm-db2Database class:

 ibm-db2AltGwPtr

 ibm-db2NodePtr

If you have not run the db2schex command on an earlier version of the DB2

database management system on Windows, when you run this same command on

DB2Version 9.5, or later, all the classes and attributes for DB2 database system

LDAP support are added.

There are other optional clauses associated with this command. For more

information, refer to the “db2schex - Active Directory schema extension command”

topic.

Examples:

v To install the DB2 database schema:

 db2schex

v To install the DB2 database schema and specify a bind DN and password:

 db2schex -b "cn=A Name,dc=toronto1,dc=ibm,dc=com"

 -w password

Or,

 db2schex -b Administrator -w password

v To uninstall the DB2 database schema:

 db2schex -u

v To uninstall the DB2 database schema and ignore errors:

 db2schex -u -k

Chapter 5. Lightweight Directory Access Protocol (LDAP) 97

Enabling LDAP support after DB2 installation is complete

Before you can use LDAP, you must enable it after the DB2 product installation is

complete.

To enable LDAP support:

1. On any machine that is part of a Windows domain, perform the following

steps:

a. If you did not do so before installing the DB2 product, you must extend the

directory schema if you want to use Microsoft Active Directory. For more

information, see the “Extending the directory schema for Active Directory”

topic.

b. Install the LDAP support binary files by running the DB2 Setup program

and selecting the LDAP Directory Exploitation support from Custom install.

The Setup program sets automatically the DB2 registry variable

DB2_ENABLE_LDAP to YES which is a required setting to enable LDAP

support.

c. Optional: To use the IBM LDAP client instead of the Microsoft LDAP client,

set the DB2LDAP_CLIENT_PROVIDER registry variable to IBM.
2. On each LDAP client, perform the following steps:

a. Specify the TCP/IP host name and optionally the port number of the LDAP

server by running the following command: db2set

DB2LDAPHOST=base_domain_name[:port_number] where base_domain_name is

the TCP/IP hostname, and [:port_number] is the port number. If you do not

specify a port number, the default LDAP port number 389 is used.

DB2 objects are located in the LDAP base distinguished name (baseDN).

You can configure the baseDN on each machine by running the following

command:

 db2set DB2LDAP_BASEDN=baseDN

where baseDN is the name of the LDAP suffix that is defined at the LDAP

server.

b. Optional: To use LDAP to store DB2 user-specific information, enter the

distinguished name (DN) and password of the LDAP user.
3. If you extended the directory schema after installing the DB2 product, perform

the following steps:

a. Register the current instance of the DB2 server in LDAP by running the

following command:

db2 register ldap as node-name protocol tcpip

b. Register specific databases in LDAP by running the following command:

db2 catalog ldap database dbname as alias_dbname

You can now register the LDAP entries.

Registering LDAP entries

Registration of DB2 servers after installation

Each DB2 server instance must be registered in LDAP to publish the protocol

configuration information that is used by the client applications to connect to the

DB2 server instance.

98 Data Servers, Databases, and Database Objects Guide

When registering an instance of the database server, you need to specify a node

name. The node name is used by client applications when they connect or attach to

the server. You can catalog another alias name for the LDAP node by using the

CATALOG LDAP NODE command.

Note: If you are working in a Windows domain environment, then during

installation the DB2 server instance is automatically registered in the Active

Directory with the following information:

 nodename: TCP/IP hostname

 protocol type: TCP/IP

If the TCP/IP hostname is longer than 8 characters, it will be truncated to 8

characters.

The REGISTER command appears as follows:

 db2 register db2 server in ldap

 as <ldap_node_name>

 protocol tcpip

The protocol clause specifies the communication protocol to use when connecting

to this database server.

When creating an instance for DB2 Enterprise Server Edition that includes multiple

physical machines, the REGISTER command must be invoked once for each

machine. Use the rah command to issue the REGISTER command on all machines.

Note: The same ldap_node_name cannot be used for each machine since the name

must be unique in LDAP. You will want to substitute the hostname of each

machine for the ldap_node_name in the REGISTER command. For example:

 rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The ″<>″ is substituted by the hostname on each machine where the rah command

is run. In the rare occurrence where there are multiple DB2 Enterprise Server

Edition instances, the combination of the instance and host index may be used as

the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so, you

must specify the remote computer name, instance name, and the protocol

configuration parameters when registering a remote server. The command can be

used as follows:

 db2 register db2 server in ldap

 as <ldap_node_name>

 protocol tcpip

 hostname <host_name>

 svcename <tcpip_service_name>

 remote <remote_computer_name>

 instance <instance_name>

The following convention is used for the computer name:

v If TCP/IP is configured, the computer name must be the same as the TCP/IP

hostname.

When running in a high availability or failover environment, and using TCP/IP as

the communication protocol, the cluster IP address must be used. Using the cluster

IP address allows the client to connect to the server on either machine without

having to catalog a separate TCP/IP node for each machine. The cluster IP address

is specified using the hostname clause, shown as follows:

Chapter 5. Lightweight Directory Access Protocol (LDAP) 99

db2 register db2 server in ldap

 as <ldap_node_name>

 protocol tcpip

 hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

To register the DB2 server in LDAP from a client application, call the

db2LdapRegister API.

Catalog a node alias for ATTACH

A node name for the DB2 server must be specified when registering the server in

LDAP. Applications use the node name to attach to the database server.

If you require a different node name, such as when the node name is hard-coded

in an application, use the CATALOG LDAP NODE command to make the change,

for example:

 db2 catalog ldap node <ldap_node_name>

 as <new_alias_name>

To uncatalog a LDAP node, use the UNCATALOG LDAP NODE command, for

example:

 db2 uncatalog ldap node <ldap_node_name>

Registration of databases in the LDAP directory

During the creation of a database within an instance, the database is automatically

registered in LDAP. Registration allows remote client connection to the database

without having to catalog the database and node on the client machine. When a

client attempts to connect to a database, if the database does not exist in the

database directory on the local machine then the LDAP directory is searched.

If the name already exists in the LDAP directory, the database is still created on the

local machine but a warning message is returned stating the naming conflict in the

LDAP directory. For this reason you can manually catalog a database in the LDAP

directory. The user can register databases on a remote server in LDAP by using the

CATALOG LDAP DATABASE command. When registering a remote database, you

specify the name of the LDAP node that represents the remote database server. You

must register the remote database server in LDAP using the REGISTER DB2

SERVER IN LDAP command before registering the database. To register a database

manually in LDAP, use the CATALOG LDAP DATABASE command:

 db2 catalog ldap database <dbname>

 at node <node_name>

 with "My LDAP database"

To register a database in LDAP from a client application, call the

db2LdapCatalogDatabase API.

Deregistering LDAP entries

Deregistering the DB2 server

Deregistration of an instance from LDAP also removes all the node, or alias, objects

and the database objects referring to the instance.

100 Data Servers, Databases, and Database Objects Guide

Deregistration of the DB2 server on either a local or a remote machine requires the

LDAP node name be specified for the server:

 db2 deregister db2 server in ldap

 node <node_name>

To deregister the DB2 server from LDAP from a client application, call the

db2LdapDeregister API.

When the DB2 server is deregistered, any LDAP node entry and LDAP database

entries referring to the same instance of the DB2 server are also uncataloged.

Deregistering the database from the LDAP directory

The database is automatically deregistered from LDAP when the database is

dropped, or the owning instance is deregistered from LDAP.

You can manually deregister the database from LDAP using the following

command:

 db2 uncatalog ldap database <dbname>

To deregister a database from LDAP from a client application, call the

db2LdapUncatalogDatabase API.

Configuring LDAP users

Creating an LDAP user

The DB2 database system supports setting DB2 registry variables and CLI

configuration at the user level. (This is not available on the Linux and UNIX

platforms.) User level support provides user-specific settings in a multi-user

environment. An example is Windows Terminal Server where each logged on user

can customize his or her own environment without interfering with the system

environment or another user’s environment.

When using the IBM Tivoli directory, you must define an LDAP user before you

can store user-level information in LDAP. You can create an LDAP user by creating

an LDIF file to contain all attributes for the user object, then run the LDIF import

utility to import the object into the LDAP directory. The LDIF utility for the IBM

Tivoli Directory Server is LDIF2DB.

LDIF file containing the attributes for a person object appears similar to the

following:

 File name: newuser.ldif

 dn: cn=Mary Burnnet, ou=DB2 Development, ou=Toronto, o=ibm, c=ca

 objectclass: ePerson

 cn: Mary Burnnet

 sn: Burnnet

 uid: mburnnet

 userPassword: password

 telephonenumber: 1-416-123-4567

 facsimiletelephonenumber: 1-416-123-4568

 title: Software Developer

Following is an example of the LDIF command to import an LDIF file using the

IBM LDIF import utility:

 LDIF2DB -i newuser.ldif

Chapter 5. Lightweight Directory Access Protocol (LDAP) 101

Note:

1. You must run the LDIF2DB command from the LDAP server machine.

2. You must grant the required access (ACL) to the LDAP user object so that the

LDAP user can add, delete, read, and write to his own object. To grant ACL for

the user object, use the LDAP Directory Server Web Administration tool.

Configuring the LDAP user for DB2 applications

When you use the Microsoft LDAP client, the LDAP user is the same as the

operating system user account. However, when you use the IBM LDAP client,

before you use the DB2 database manager, you must configure the LDAP user

distinguished name (DN) and password for the current logged on user.

To configure the LDAP user distinguished name (DN) and password, use the

db2ldcfg utility:

 db2ldcfg -u <userDN> -w <password> --> set the user’s DN and password

 -r --> clear the user’s DN and password

For example:

 db2ldcfg -u "cn=Mary Burnnet,ou=DB2 Development,ou=Toronto,o=ibm,c=ca"

 -w password

Setting DB2 registry variables at the user level in the LDAP

environment

Under the LDAP environment, the DB2 profile registry variables can be set at the

user level which allows a user to customize their own DB2 environment.

To set the DB2 profile registry variables at the user level, use the -ul option:

 db2set -ul <variable>=<value>

Note: This is not supported on AIX or Solaris operating systems.

DB2 has a caching mechanism. The DB2 profile registry variables at the user level

are cached on the local machine. If the -ul parameter is specified, DB2 always

reads from the cache for the DB2 registry variables. The cache is refreshed when:

v You update or reset a DB2 registry variable at the user level.

v The command to refresh the LDAP profile variables at the user level is:

 db2set -ur

Disabling LDAP support

To disable LDAP support, use the following procedure:

1. For each instance of the DB2 server, deregister the DB2 server from LDAP:

 db2 deregister db2 server in ldap node <nodename>

2. Set the DB2 profile registry variable DB2_ENABLE_LDAP to ″NO″.

Updating the protocol information for the DB2 server

The DB2 server information in LDAP must be kept current. For example, changes

to the protocol configuration parameters or the server network address require an

update to LDAP.

102 Data Servers, Databases, and Database Objects Guide

To update the DB2 server in LDAP on the local machine, use the following

command:

 db2 update ldap ...

Examples of protocol configuration parameters that can be updated include a

TCP/IP hostname and service name or port number parameters.

To update a remote DB2 server protocol configuration parameters use the UPDATE

LDAP command with a node clause:

 db2 update ldap

 node <node_name>

 hostname <host_name>

 svcename <tcpip_service_name>

Rerouting LDAP clients to another server

Just as with the ability to reroute clients on a system failure, the same ability is

also available to you when working with LDAP.

The DB2_ENABLE_LDAP registry variable must be set to “Yes”.

Within an LDAP environment, all database and node directory information is

maintained at an LDAP server. The client retrieves information from the LDAP

directory. This information is updated in its local database and node directories if

the DB2LDAPCACHE registry variable is set to “Yes”.

Use the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command to

define the alternate server for a database that represents the DB2 database in

LDAP. Alternatively, you can call the db2LdapUpdateAlternateServerForDB API

from a client application to update the alternate server for the database in LDAP.

Once established, this alternate server information is returned to the client upon

connection.

Note: It is strongly recommended to keep the alternate server information stored

in the LDAP server synchronized with the alternate server information stored at

the database server instance. Issuing the UPDATE ALTERNATE SERVER FOR

DATABASE command (notice that it is not ″FOR LDAP DATABASE″) at the

database server instance will help ensure synchronization between the database

server instance and the LDAP server.

When you enter UPDATE ALTERNATE SERVER FOR DATABASE command at the

server instance, and if LDAP support is enabled (DB2_ENABLE_LDAP=Yes) on the

server, and if the LDAP user ID and password is cached (db2ldcfg was previously

run), then the alternate server for the database is automatically, or implicitly,

updated on the LDAP server. This works as if you entered UPDATE ALTERNATE

SERVER FOR LDAP DATABASE explicitly.

If the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command is issued

from an instance other than the database server instance, ensure the alternate

server information is also identically configured at the database server instance

using the UPDATE ALTERNATE SERVER FOR DATABASE command. After the

client initially connects to the database server instance, the alternate server

information returned from the database server instance will take precedence over

Chapter 5. Lightweight Directory Access Protocol (LDAP) 103

what is configured in the LDAP server. If the database server instance has no

alternate server information configured, client reroute will be considered disabled

after the initial connect.

Attaching to a remote server in the LDAP environment

In the LDAP environment, you can attach to a remote database server using the

LDAP node name on the ATTACH command: db2 attach to <ldap_node_name>.

When a client application attaches to a node or connects to a database for the first

time, since the node is not in the local node directory, the database manager

searches the LDAP directory for the target node entry. If the entry is found in the

LDAP directory, the protocol information of the remote server is retrieved. If you

connect to the database and if the entry is found in the LDAP directory, then the

database information is also retrieved. Using this information, the database

manager automatically catalogs a database entry and a node entry on the local

machine. The next time the client application attaches to the same node or

database, the information in the local database directory is used without having to

search the LDAP directory.

In more detail: A caching mechanism exists so that the client only searches the

LDAP server once. After the information is retrieved, it is stored or cached on the

local machine based on the values of the dir_cache database manager configuration

parameter and the DB2LDAPCACHE registry variable.

v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.

v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2(R) cache.

v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP

server once and cache it into the local database, node, and DCS directories.

Note: The caching of LDAP information is not applicable to user-level CLI or DB2

profile registry variables.

Refreshing LDAP entries in local database and node directories

The DB2 database system provides a caching mechanism to reduce the number of

times a client searches the LDAP server.

After the information is retrieved, it is stored or cached on the local machine based

on the values of the dir_cache database manager configuration parameter and the

DB2LDAPCACHE registry variable.

v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.

v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2 cache.

v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP

server once and cache it into the local database, node, and DCS directories.

Note: The caching of LDAP information is not applicable to user-level CLI or DB2

profile registry variables. Since information in LDAP is subject to change, it may be

necessary to refresh the LDAP entries cached in the local database and node

directories. There are a few ways to do this.

104 Data Servers, Databases, and Database Objects Guide

To refresh all the local database and node entries that were retrieved from LDAP,

use the following command:

 db2 refresh ldap immediate

Similarly, the following command can be used to both refresh existing local

database and node entries and add new entries from LDAP:

 db2 refresh ldap immediate all

Specifying the IMMEDIATE ALL option will add all the NODE and DB entries

contained with the LDAP server into the local directories.

Alternatively, to force DB2 to refresh the database entries that refer to LDAP

resources on the next database connection or instance attachment, use the

following command:

 db2 refresh ldap database directory

Likewise, to force the DB2 database manager to refresh the nodes entries that refer

to LDAP resources on the next database connection or instance attachment, use the

following command:

 db2 refresh ldap node directory

As part of the refresh, all the LDAP entries that are saved in the local database and

node directories are removed. The next time that the application accesses the

database or node, it will read the information directly from LDAP and generate a

new entry in the local database or node directory.

To ensure the refresh is done in a timely way, you may want to:

v Schedule a refresh that is run periodically.

v Run the REFRESH command during system bootup.

v Use an available administration package to invoke the REFRESH command on

all client machines.

v Set DB2LDAPCACHE=″NO″ to avoid LDAP information being cached in the

database, node, and DCS directories.

Searching the LDAP servers

The DB2 database system searches the current LDAP server but in an environment

where there are multiple LDAP servers, you can define the scope of the search.

For example, if the information is not found in the current LDAP server, you can

specify automatic search of all other LDAP servers, or, alternatively, you can

restrict the search scope to only the current LDAP server, or to the local DB2

database catalog.

When you set the search scope, this sets the default search scope for the entire

enterprise. The search scope is controlled through the DB2 database profile registry

variable, DB2LDAP_SEARCH_SCOPE. To set the search scope value, use the -gl

option, which means global in LDAP, on the db2set command:

 db2set -gl db2ldap_search_scope=<value>

Possible values include: local, domain, or global. If it is not set, the default value is

domain which limits the search scope to the directory on the current LDAP server.

Chapter 5. Lightweight Directory Access Protocol (LDAP) 105

For example, you may want to initially set the search scope to “global” after a new

database is created. This allows any DB2 client configured to use LDAP to search

all the LDAP servers to find the database. Once the entry has been recorded on

each machine after the first connect or attach for each client, if you have caching

enabled, the search scope can be changed to “local”. Once changed to “local”, each

client will not scan any LDAP servers.

Note: The DB2 database profile registry variables

DB2LDAP_KEEP_CONNECTION and DB2LDAP_SEARCH_SCOPE are the only

registry variables that can be set at the global level in LDAP.

106 Data Servers, Databases, and Database Objects Guide

Part 2. Databases

© Copyright IBM Corp. 1993, 2009 107

108 Data Servers, Databases, and Database Objects Guide

Chapter 6. Databases

A DB2 database is a relational database. The database stores all data in tables that are

related to one another. Relationships are established between tables such that data

is shared and duplication is minimized.

A relational database is a database that is treated as a set of tables and manipulated

in accordance with the relational model of data. It contains a set of objects used to

store, manage, and access data. Examples of such objects are tables, views, indexes,

functions, triggers, and packages. Objects can be either defined by the system

(system-defined objects) or defined by the user (user-defined objects).

A distributed relational database consists of a set of tables and other objects that are

spread across different but interconnected computer systems. Each computer

system has a relational database manager to manage the tables in its environment.

The database managers communicate and cooperate with each other in a way that

allows a given database manager to execute SQL statements on another computer

system.

A partitioned relational database is a relational database whose data is managed

across multiple database partitions. This separation of data across database

partitions is transparent to users of most SQL statements. However, some data

definition language (DDL) statements take database partition information into

consideration (for example, CREATE DATABASE PARTITION GROUP). DDL is the

subset of SQL statements used to describe data relationships in a database.

A federated database is a relational database whose data is stored in multiple data

sources (such as separate relational databases). The data appears as if it were all in

a single large database and can be accessed through traditional SQL queries.

Changes to the data can be explicitly directed to the appropriate data source.

Designing databases

When designing a database, you are modeling a real business system that contains

a set of entities and their characteristics, or attributes, and the rules or relationships

between those entities.

The first step is to describe the system that you want to represent. For example, if

you were creating a database for publishing system, the system would contain

several types of entities, such as books, authors, editors, and publishers. For each

of these entities, there are certain pieces of information, or attributes, that you need

to record:

v Books: titles, ISBN, date published, location, publisher,

v Authors: name, address, phone and fax numbers, e-mail address,

v Editors: name, address, phone and fax numbers, e-mail address,

v Publishers: name, address, phone and fax numbers, e-mail address,

You will need the database to represent not only these types of entities and their

attributes, but you also need a way to relate these entities to each other. For

example, you need to represent the relationship between books and their authors,

the relationship between books/authors and editors, and the relationship between

books/authors and publishers.

© Copyright IBM Corp. 1993, 2009 109

There are three types of relationships between the entities in a database:

One-to-one relationships

In this type of relationship, each instance of an entity relates to only one

instance of another entity. Currently, no one-to-one relationships exist in

the scenario described above.

One-to-many relationships

In this type of relationship, each instance of an entity relates to one or

more instances of another entity. For example, an author could have

written multiple books, but certain books have only one author. This is the

most common type of relationship modeled in relational databases.

Many-to-many relationships

In this type of relationship, many instances of a given entity relate to one

or more instances of another entity. For example, co-authors could write a

number of books.

Because databases consist of tables, you need to construct a set of tables that will

best hold this data, with each cell in the table holding a single view. There are

many possible ways to perform this task. As the database designer, your job is to

come up with the best set of tables possible.

For example, you could create a single table, with many rows and columns, to

hold all of the information. However, using this method, some information would

be repeated. Secondly, data entry and data maintenance would be time-consuming

and error prone. In contrast to this single-table design, a relational database allows

you to have multiple simple tables, reducing redundancy and avoiding the

difficulties posed by a large and unmanageable table. In a relational database,

tables should contain information about a single type of entity.

Also, the integrity of the data in a relational database must be maintained as

multiple users access and change the data. Whenever data is shared, there is a

need to ensure the accuracy of the values within database tables.

You can:

v Use isolation levels to determines how data is locked or isolated from other

processes while the data is being accessed.

v Protect data and define relationships between data by defining constraints to

enforce business rules.

v Create triggers that can do complex, cross-table data validation.

v Implement a recovery strategy to protect data so that it can be restore to a

consistent state.

Database design is a much more complex task than is indicated here, and there are

many items that need to be considered, such as space requirements, keys, indexes,

constraints, security and authorization, and so forth. You can find some of this

information in the DB2 Information Center, and in the many DB2 retail books that

are available on this subject.

Database directories and files

When you create a database, information about the database including default

information is stored in a directory hierarchy.

The hierarchical directory structure is created for you at a location that is

determined by the information you provide in the CREATE DATABASE command.

110 Data Servers, Databases, and Database Objects Guide

If you do not specify the location of the directory path or drive when you create

the database, the default location is used. It is suggested that you explicitly state

where you would like the database created.

In the directory you specify as the database path in the CREATE DATABASE

command, a subdirectory that uses the name of the instance is created. This

subdirectory ensures that databases created in different instances under the same

directory do not use the same path. Below the instance-name subdirectory, a

subdirectory named NODE0000 is created. This subdirectory differentiates database

partitions in a logically partitioned database environment. Below the node-name

directory, a subdirectory named SQL00001 is created. This name of this

subdirectory uses the database token and represents the database being created.

SQL00001 contains objects associated with the first database created, and

subsequent databases are given higher numbers: SQL00002, and so on. These

subdirectories differentiate databases created in this instance on the directory that

you specified in the CREATE DATABASE command.

The directory structure appears as follows:your_database_path/your_instance/
NODE0000/SQL00001/.

The database directory contains the following files that are created as part of the

CREATE DATABASE command.

v The files SQLBP.1 and SQLBP.2 contain buffer pool information. These files are

duplicates of each other for backup purposes.

v The files SQLSPCS.1 and SQLSPCS.2 contain table space information. These files

are duplicates of each other for backup purposes.

v The files SQLSGF.1 and SQLSGF.2 contain storage path information associated

with the database’s automatic storage. These files are duplicates of each other for

backup purposes.

v The SQLDBCONF file contains database configuration information. Do not edit

this file.

Note: The SQLDBCON file was used in previous releases and contains similar

information that can be used if SQLDBCONF is corrupted.
To change configuration parameters, use the UPDATE DATABASE

CONFIGURATION and RESET DATABASE CONFIGURATION commands.

v The DB2RHIST.ASC history file and its backup DB2RHIST.BAK contain history

information about backups, restores, loading of tables, reorganization of tables,

altering of a table space, and other changes to a database.

The DB2TSCHG.HIS file contains a history of table space changes at a log-file

level. For each log file, DB2TSCHG.HIS contains information that helps to

identify which table spaces are affected by the log file. Table space recovery uses

information from this file to determine which log files to process during table

space recovery. You can examine the contents of both history files in a text

editor.

v The log control files, SQLOGCTL.LFH.1, its mirror copy SQLOGCTL.LFH.2, and

SQLOGMIR.LFH, contain information about the active logs.

Recovery processing uses information from these files to determine how far back

in the logs to begin recovery. The SQLOGDIR subdirectory contains the actual

log files.

Note: You should ensure the log subdirectory is mapped to different disks than

those used for your data. A disk problem could then be restricted to your data

or the logs but not both. This can provide a substantial performance benefit

Chapter 6. Databases 111

because the log files and database containers do not compete for movement of

the same disk heads. To change the location of the log subdirectory, change the

newlogpath database configuration parameter.

v The SQLINSLK file helps to ensure that a database is used by only one instance

of the database manager.

At the same time a database is created, a detailed deadlocks event monitor is also

created. The detailed deadlocks event monitor files are stored in the database

directory of the catalog node. When the event monitor reaches its maximum

number of files to output, it will deactivate and a message is written to the

notification log. This prevents the event monitor from consuming too much disk

space. Removing output files that are no longer needed will allow the event

monitor to activate again on the next database activation.

Additional information for SMS database directories in

non-automatic storage databases

In non-automatic storage databases, the SQLT* subdirectories contain the default

System Managed Space (SMS) table spaces required for an operational database.

Three default table spaces are created:

v SQLT0000.0 subdirectory contains the catalog table space with the system catalog

tables.

v SQLT0001.0 subdirectory contains the default temporary table space.

v SQLT0002.0 subdirectory contains the default user data table space.

Each subdirectory or container has a file created in it called SQLTAG.NAM. This

file marks the subdirectory as being in use so that subsequent table space creation

does not attempt to use these subdirectories.

In addition, a file called SQL*.DAT stores information about each table that the

subdirectory or container contains. The asterisk (*) is replaced by a unique set of

digits that identifies each table. For each SQL*.DAT file there might be one or more

of the following files, depending on the table type, the reorganization status of the

table, or whether indexes, LOB, or LONG fields exist for the table:

v SQL*.BKM (contains block allocation information if it is an MDC table)

v SQL*.LF (contains LONG VARCHAR or LONG VARGRAPHIC data)

v SQL*.LB (contains BLOB, CLOB, or DBCLOB data)

v SQL*.XDA (contains XML data)

v SQL*.LBA (contains allocation and free space information about SQL*.LB files)

v SQL*.INX (contains index table data)

v SQL*.IN1 (contains index table data)

v SQL*.DTR (contains temporary data for a reorganization of an SQL*.DAT file)

v SQL*.LFR (contains temporary data for a reorganization of an SQL*.LF file)

v SQL*.RLB (contains temporary data for a reorganization of an SQL*.LB file)

v SQL*.RBA (contains temporary data for a reorganization of an SQL*.LBA file)

Database configuration file

A database configuration file is created for each database. This file is called

SQLDBCON prior to Version 8.2, and SQLDBCONF in Version 8.2 and later. The

creation of this file is done for you.

112 Data Servers, Databases, and Database Objects Guide

This file contains values for various configuration parameters that affect the use of

the database, such as:

v Parameters specified or used when creating the database (for example, database

code page, collating sequence, DB2 database release level)

v Parameters indicating the current state of the database (for example, backup

pending flag, database consistency flag, roll-forward pending flag)

v Parameters defining the amount of system resources that the operation of the

database might use (for example, buffer pool size, database logging, sort

memory size).

Note: If you edit the db2system, SQLDBCON (prior to Version 8.2), or

SQLDBCONF (Version 8.2 and later) file using a method other than those provided

by the DB2 database manager, you might make the database unusable. Therefore,

do not change these files using methods other than those documented and

supported by the database manager.

Performance Tip: Many of the configuration parameters come with default values,

but might need to be updated to achieve optimal performance for your database.

By default, the Configuration Advisor is invoked as part of the CREATE

DATABASE command so that the initial values for some parameters are already

configured for your environment.

For multi-partition databases: When you have a database that is distributed across

more than one database partition, the configuration file should be the same on all

database partitions. Consistency is required since the query compiler compiles

distributed SQL statements based on information in the local node configuration

file and creates an access plan to satisfy the needs of the SQL statement.

Maintaining different configuration files on database partitions could lead to

different access plans, depending on which database partition the statement is

prepared.

Node directory

The database manager creates the node directory when the first database partition is

cataloged.

To catalog a database partition, use the CATALOG NODE command. To list the

contents of the local node directory, use the LIST NODE DIRECTORY command.

The node directory is created and maintained on each database client. The

directory contains an entry for each remote workstation having one or more

databases that the client can access. The DB2 client uses the communication end

point information in the node directory whenever a database connection or

instance attachment is requested.

The entries in the directory also contain information on the type of communication

protocol to be used to communicate from the client to the remote database

partition. Cataloging a local database partition creates an alias for an instance that

resides on the same computer.

Local database directory

A local database directory file exists in each path (or “drive” for Windows operating

systems) in which a database has been defined. This directory contains one entry

for each database accessible from that location.

Each entry contains:

Chapter 6. Databases 113

v The database name provided with the CREATE DATABASE command

v The database alias name (which is the same as the database name, if an alias

name is not specified)

v A comment describing the database, as provided with the CREATE DATABASE

command

v The name of the root directory for the database

v Other system information.

System database directory

A system database directory file exists for each instance of the database manager, and

contains one entry for each database that has been cataloged for this instance.

Databases are implicitly cataloged when the CREATE DATABASE command is

issued and can also be explicitly cataloged with the CATALOG DATABASE

command.

For each database created, an entry is added to the directory containing the

following information:

v The database name provided with the CREATE DATABASE command

v The database alias name (which is the same as the database name, if an alias

name is not specified)

v The database comment provided with the CREATE DATABASE command

v The location of the local database directory

v An indicator that the database is indirect, which means that it resides on the

current database manager instance

v Other system information.

On UNIX platforms and in a partitioned database environment, you must ensure

that all database partitions always access the same system database directory file,

sqldbdir, in the sqldbdir subdirectory of the home directory for the instance.

Unpredictable errors can occur if either the system database directory or the

system intention file sqldbins in the same sqldbdir subdirectory are symbolic links

to another file that is on a shared file system.

Creating node configuration files

If your database is to operate in a partitioned database environment, you must

create a node configuration file called db2nodes.cfg.

This file must be located in the sqllib subdirectory of the home directory for the

instance before you can start the database manager with parallel capabilities across

multiple database partitions. The file contains configuration information for all

database partitions in an instance, and is shared by all database partitions for that

instance.

Windows considerations

If you are using DB2 Enterprise Server Edition on Windows, the node

configuration file is created for you when you create the instance. You should not

attempt to create or modify the node configuration file manually. You can use the

db2ncrt command to add a database partition server to an instance. You can use

the db2ndrop command to drop a database partition server from an instance. You

can use the db2nchg command to modify a database partition server configuration

114 Data Servers, Databases, and Database Objects Guide

including moving the database partition server from one computer to another;

changing the TCP/IP host name; or, selecting a different logical port or network

name.

Note: You should not create files or directories under the sqllib subdirectory other

than those created by the database manager to prevent the loss of data if an

instance is deleted. There are two exceptions. If your system supports stored

procedures, put the stored procedure applications in the function subdirectory

under the sqllib subdirectory. The other exception is when user-defined functions

(UDFs) have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance.

Each line has the following format:

dbpartitionnum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

dbpartitionnum

The database partition number, which can be from 0 to 999, uniquely

defines a database partition. Database partition numbers must be in

ascending sequence. You can have gaps in the sequence.

 Once a database partition number is assigned, it cannot be changed.

(Otherwise the information in the distribution map, which specifies how

data is distributed, would be compromised.)

If you drop a database partition, its database partition number can be used

again for any new database partition that you add.

The database partition number is used to generate a database partition

name in the database directory. It has the format:

 NODE nnnn

The nnnn is the database partition number, which is left-padded with

zeros. This database partition number is also used by the CREATE

DATABASE and DROP DATABASE commands.

hostname

The hostname of the IP address for inter-partition communications. Use the

fully-qualified name for the hostname. The /etc/hosts file also should use

the fully-qualified name. If the fully-qualified name is not used in the

db2nodes.cfg file and in the /etc/hosts file, you might receive error

message SQL30082N RC=3.

 (There is an exception when netname is specified. In this situation,

netname is used for most communications, with hostname only being used

for db2start, db2stop, and db2_all.)

logical-port

This parameter is optional, and specifies the logical port number for the

database partition. This number is used with the database manager

instance name to identify a TCP/IP service name entry in the etc/services

file.

 The combination of the IP address and the logical port is used as a

well-known address, and must be unique among all applications to

support communications connections between database partitions.

For each hostname, one logical-port must be either 0 (zero) or blank (which

defaults to 0). The database partition associated with this logical-port is the

Chapter 6. Databases 115

default node on the host to which clients connect. You can override this

with the DB2NODE environment variable in db2profile script, or with the

sqlesetc() API.

netname

This parameter is optional, and is used to support a host that has more

than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for an RS/6000®

SP™ system on which SP2EN1 has multiple TCP/IP interfaces, two logical

partitions, and uses SP2SW1 as the DB2 database interface. It also shows the

database partition numbers starting at 1 (rather than at 0), and a gap in the

dbpartitionnum sequence:

 Table 40. Database partition number example table.

dbpartitionnum hostname logical-port netname

1 SP2EN1.mach1.xxx.com 0 SP2SW1

2 SP2EN1.mach1.xxx.com 1 SP2SW1

4 SP2EN2.mach1.xxx.com 0

5 SP2EN3.mach1.xxx.com

You can update the db2nodes.cfg file using an editor of your choice. (The

exception is: an editor should not be used on Windows.) You must be careful,

however, to protect the integrity of the information in the file, as database

partitioning requires that the node configuration file is locked when you issue

db2start and unlocked after db2stop ends the database manager. The db2start

command can update the file, if necessary, when the file is locked. For example,

you can issue db2start with the RESTART option or the ADD

DBPARTITIONNUM option.

Note: If the db2stop command is not successful and does not unlock the node

configuration file, issue db2stop FORCE to unlock it.

Changing node and database configuration files

To update the database configuration file, run the AUTOCONFIGURE command

with the appropriate options.

The Configuration Advisor helps you to tune performance and to balance memory

requirements for a single database per instance by suggesting which configuration

parameters to modify and providing suggested values for them.

If you plan to change any database partition groups (adding or deleting database

partitions, or moving existing database partitions), the node configuration file must

be updated. If you plan to change the database, you should review the values for

the configuration parameters. You can adjust some values periodically as part of

the ongoing changes made to the database that are based on how it is used.

Note: If you modify any parameters, the values are not updated until:

v For database parameters, the first new connection to the database after all

applications are disconnected

v For database manager parameters, the next time that you stop and start the

instance

116 Data Servers, Databases, and Database Objects Guide

In most cases, the values recommended by the Configuration Advisor will provide

better performance than the default values because they are based on information

about your workload and your own particular server. However, the values are

designed to improve the performance of, though not necessarily optimize, your

database system. Think of the values as a starting point on which you can make

further adjustments to obtain optimized performance.

In Version 9.1, the Configuration Advisor is automatically invoked when you

create a database. To disable this feature, or to explicitly enable it, use the db2set

command before creating the database. Examples:

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

See “Automatic features” on page 17 for other features that are enabled by default.

To use the Configuration Advisor from the command line, use the

AUTOCONFIGURE command.

To update individual parameters in the database manager configuration using the

command line, enter:

 UPDATE DBM CFG USING <config_keyword>=<value>

To update individual parameters in the database configuration using the command

line, enter:

 UPDATE DB CFG FOR <database_alias>

 USING <config_keyword>=<value>

You can update one or more <config_keyword>=<value> combinations in a single

command. Most changes to the database manager configuration file become

effective only after they are loaded into memory. For a server configuration

parameter, this occurs during the running of the START DATABASE MANAGER

command. For a client configuration parameter, this occurs when the application is

restarted.

To view or print the current database manager configuration parameters, use the

GET DATABASE MANAGER CONFIGURATION command.

To access the Configuration Advisor from a client application, call the

db2AutoConfig API. To update individual parameters in the database manager

configuration or database configuration file from a client application, call the

db2CfgSet API.

Database recovery log

A database recovery log keeps a record of all changes made to a database, including

the addition of new tables or updates to existing ones.

This log is made up of a number of log extents, each contained in a separate file

called a log file.

The database recovery log can be used to ensure that a failure (for example, a

system power outage or application error) does not leave the database in an

inconsistent state. In case of a failure, the changes already made but not committed

are rolled back, and all committed transactions, which might not have been

physically written to disk, are redone. These actions ensure the integrity of the

database.

Chapter 6. Databases 117

Space requirements for database objects

Estimating the size of database objects is an imprecise undertaking. Overhead

caused by disk fragmentation, free space, and the use of variable length columns

makes size estimation difficult, because there is such a wide range of possibilities

for column types and row lengths.

After initially estimating your database size, create a test database and populate it

with representative data. Then use the db2look utility to generate data definition

statements for the database.

When estimating the size of a database, the contribution of the following must be

considered:

v System catalog tables

v User table data

v Long field (LF) data

v Large object (LOB) data

v Index space

v Log file space

v Temporary work space

Also consider the overhead and space requirements for the following:

v The local database directory file

v The system database directory file

v The file management overhead required by the operating system, including:

– File block size

– Directory control space

Space requirements for log files

You will require 56 KB of space for log control files.

You will also need at least enough space for your active log configuration, which

you can calculate as

 (logprimary + logsecond) * (logfilsiz + 2) * 4096

where:

v logprimary is the number of primary log files, defined in the database

configuration file

v logsecond is the number of secondary log files, defined in the database

configuration file; in this calculation, logsecond cannot be set to -1. (When

logsecond is set to -1, you are requesting an infinite active log space.)

v logfilsiz is the number of pages in each log file, defined in the database

configuration file

v 2 is the number of header pages required for each log file

v 4096 is the number of bytes in one page.

If the database is enabled for circular logging, the result of this formula is all the

space that will be allocated for logging; that is, more space will not be allocated,

and you will not receive insufficient disk space errors for any of your log files.

If the database is enabled for roll-forward recovery, special log space requirements

should be taken into consideration:

118 Data Servers, Databases, and Database Objects Guide

v With the logarchmeth1 configuration parameter set to logretain, the log files will

be archived in the log path directory. The online disk space will eventually fill

up, unless you move the log files to a different location.

v With the logarchmeth1 configuration parameter set to userexit, DISK, or

VENDOR, a user exit program moves the archived log files to a different

location. Extra log space is still required to allow for:

– Online archived logs that are waiting to be moved by the user exit program

– New log files being formatted for future use

If the database is enabled for infinite logging (that is, you set logsecond to -1), the

logarchmeth1 configuration parameter must be set to a value other than OFF or

LOGRETAIN to enable archive logging. The database manager will keep at least

the number of active log files specified by logprimary in the log path, so you should

not use the value of -1 for logsecond in the above formula. Ensure that you provide

extra disk space to allow for the delay caused by archiving log files.

If you are mirroring the log path, you will need to double the estimated log file

space requirements.

Lightweight Directory Access Protocol (LDAP) directory

service

A directory service is a repository of resource information about multiple systems

and services within a distributed environment; and it provides client and server

access to these resources.

Clients and servers would use the directory service to find out how to access other

resources. Information about these other resources in the distributed environment

must be entered into the directory service repository.

Lightweight Directory Access Protocol (LDAP) is an industry standard access method

to directory services. Each database server instance will publish its existence to an

LDAP server and provide database information to the LDAP directory when the

databases are created. When a client connects to a database, the catalog

information for the server can be retrieved from the LDAP directory. Each client is

no longer required to store catalog information locally on each computer. Client

applications search the LDAP directory for information required to connect to the

database.

Note: Publishing of the database server instance to the LDAP server is not an

automatic process, but must be done manually by the administrator.

As an administrator of a DB2 system, you can establish and maintain a directory

service. The Configuration Assistant can assist in the maintenance of this directory

service. The directory service is made available to the DB2 database manager

through Lightweight Directory Access Protocol (LDAP) directory services. To use

LDAP directory services, there must first exist an LDAP server that is supported

by the DB2 database manager so that directory information can be stored there.

Note: When running in a Windows domain environment, an LDAP server is

already available because it is integrated with the Windows Active Directory. As a

result, every computer running Windows can use LDAP.

An LDAP directory is helpful in an enterprise environment where it is difficult to

update local directory catalogs on each client computer because of the large

Chapter 6. Databases 119

number of clients. In this situation, you should consider storing your directory

entries in an LDAP server so that maintaining catalog entries is done in one place:

on the LDAP server.

Creating databases

You can create a database using the CREATE DATABASE command. To create a

database from a client application, call the sqlecrea API.

You should have spent sufficient time designing the contents, layout, potential

growth, and use of your database before you create it.

The following database privileges are automatically granted to PUBLIC:

CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the

system catalog views. However, if the RESTRICTIVE option is present, no

privileges are automatically granted to PUBLIC. For more information on the

RESTRICTIVE option, see the CREATE DATABASE command.

When you create a database, each of the following tasks are done for you:

v Setting up of all the system catalog tables that are needed by the database

v Allocation of the database recovery log

v Creation of the database configuration file and the default values are set

v Binding of the database utilities to the database

To create a database using the command line processor, enter:

 CREATE DATABASE <database name>

For example, the following command creates a database called PERSON1, in the

default location, with the associated comment ″Personnel DB for BSchiefer Co″.

 CREATE DATABASE personl

 WITH "Personnel DB for BSchiefer Co"

Configuration Advisor

The Configuration Advisor helps you to tune performance and to balance

memory requirements for a single database per instance by suggesting

which configuration parameters to modify and providing suggested values

for them. The Configuration Advisor is automatically invoked when you

create a database. To disable this feature, or to explicitly enable it, use the

db2set command before creating the database. Examples:

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

 db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

See “Automatic features” on page 17 for other features that are enabled by

default.

Event Monitor

At the same time a database is created, a detailed deadlocks event monitor

is also created. As with any monitor, there is some overhead associated

with this event monitor. If you do not want the detailed deadlocks Event

Monitor, then the Event Monitor can be dropped using the command:

 DROP EVENT MONITOR db2detaildeadlock

To limit the amount of disk space that this event monitor consumes, the

event monitor deactivates, and a message is written to the administration

notification log, once it has reached its maximum number of output files.

120 Data Servers, Databases, and Database Objects Guide

Removing output files that are no longer needed allows the event monitor

to activate again on the next database activation.

Remote databases

 You have the ability to create a database in a different, possibly remote,

instance. To create a database at another (remote) database partition server,

you must first attach to that server. A database connection is temporarily

established by the following command during processing:

 CREATE DATABASE <database name> AT DBPARTITIONNUM <options>

In this type of environment you can perform instance-level administration

against an instance other than your default instance, including remote

instances. For instructions on how to do this, see the db2iupdt (update

instance) command.

Database code pages

 By default, databases are created in the UTF-8 (Unicode) code set.

To override the default code page for the database, it is necessary to

specify the desired code set and territory when creating the database. See

the CREATE DATABASE command or the sqlecrea API for information on

setting the code set and territory.

Automatic storage databases

The database manager creates all databases as “automatic storage” databases, by

default. To create a database that is not an “automatic storage” database, specify

AUTOMATIC STORAGE NO when issuing the CREATE DATABASE command.

Databases that are enabled for automatic storage have a set of one or more storage

paths associated with them. A table space can be defined as managed by automatic

storage and its containers assigned and allocated by the database manager based on

those storage paths.

You can enable a database for automatic storage only when you create it; similarly,

you cannot disable automatic storage for a database that was originally designed

to use it.

All databases are created as automatic storage databases by default. To create a

database that is not an automatic storage database, specify AUTOMATIC

STORAGE NO when issuing the CREATE DATABASE command.

Examples of disabling automatic storage:

 CREATE DATABASE ASNODB1 AUTOMATIC STORAGE NO

 CREATE DATABASE ASNODB2 AUTOMATIC STORAGE NO ON X:

Examples of automatic storage being enabled either explicitly or implicitly:

 CREATE DATABASE DB1

 CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON X:

 CREATE DATABASE DB3 ON /data/path1, /data/path2

 CREATE DATABASE DB4 ON D:\StoragePath DBPATH ON C:

Based on the syntax used, the database manager extracts the following two pieces

of information that pertain to storage locations:

v The database path (where the database manager stores various control files for

the database):

– If you specify DBPATH ON, this indicates the database path.

Chapter 6. Databases 121

– If you do not specify DBPATH ON, the first path listed in ON indicates the

database path (and the storage path).

– If you specify neither DBPATH ON nor ON, the dftdbpath database manager

configuration parameter is used to determine the database path.
v The storage paths (where the database manager creates automatic storage table

space containers):

– If you specify ON, all of the listed paths are storage paths.

– If you do not specify ON, there is a single storage path that is set to the value

of the dftdbpath database manager configuration parameter.

For the examples shown previously, the following table summarizes the database

and storage paths used:

 Table 41. Automatic storage database and storage paths

CREATE DATABASE command Database path Storage paths

CREATE DATABASE DB1 AUTOMATIC STORAGE YES Value of the

dftdbpathconfiguration

parameter

Value of the

dftdbpathconfiguration

parameter

CREATE DATABASE DB2 AUTOMATIC STORAGE YES ON

X:

X: X:

CREATE DATABASE DB3 ON /data/path1,

/data/path2

/data/path1 /data/path1, /data/path2

CREATE DATABASE DB4 ON D:\StoragePath DBPATH

ON C:

C: D:\StoragePath

The storage paths provided must exist and be accessible. In a partitioned database

environment, the same storage paths are used on each database partition. You

cannot specify a unique set of storage paths for a particular database partition

unless you use database partition expressions as part of the storage path names.

Doing this allows the database partition number to be reflected in the storage

paths such that the resulting path names are different on each database partition.

Use the argument $N (that is, $N preceded by a blank) to indicate a database

partition expression. You can use a database partition expression anywhere in the

storage path, and you can specify multiple database partition expressions.

Terminate the database partition expression with a space character; whatever

follows the space is appended to the storage path after the database partition

expression is evaluated. If there is no space character in the storage path after the

database partition expression, it is assumed that the rest of the string is part of the

expression. The following table lists the only valid forms of the $N argument.

Operators are evaluated from left to right, and % represents the modulus operator.

The database partition number in the examples is 10.

 Table 42. Database partition expressions

Syntax Example Value

[blank]$N " $N" 10

[blank]$N+[number] " $N+100" 110

[blank]$N%[number] " $N%5" 0

[blank]$N+[number]%[number] " $N+1%5" 1

[blank]$N%[number]+[number] " $N%4+2" 4

122 Data Servers, Databases, and Database Objects Guide

The following is an example of using database partition expressions:

 CREATE DATABASE TESTDB ON "/path1ForNode $N",

 "/path2ForNode $N" DBPATH ON "/dbpathForNodes"

The following is an example of a database partition expression embedded in the

middle of a path:

 CREATE DATABASE TESTDB ON "/path1ForNode $N",

 "/path2ForNode $N suffix" DBPATH ON "/dbpathForNodes"

Note: Database partition expressions are not valid in database paths, whether you

specify them explicitly in DBPATH ON or implicitly by using a database partition

expression in the first storage path.

When free space is calculated for a storage path for a given database partition, the

database manager checks for the existence of the following directories or mount

points within the storage path and uses the first one that it finds:

 storage path/instance name/NODE####/database name

 storage path/instance name/NODE####

 storage path/instance name

 storage path

where:

storage path

Is a storage path associated with the database

instance name

Is the instance under which the database resides

NODE####

Is the database partition number (for example, NODE0000 or NODE0001)

database name

Is the name of the database

File systems can be mounted at a point beneath the storage path, and the database

manager recognizes that the actual amount of free space available for table space

containers might not be the same amount that is associated with the storage path

directory itself.

Consider the example where two logical database partitions exist on one physical

computer and there is a single storage path: /db2data. Each database partition can

use this storage path, but you might want to isolate the data from each database

partition by creating for each one a separate file system. The file system is

mounted at /db2data/instance/NODE####. When creating containers on the

storage path and determining free space, the database manager does not retrieve

free space information for /db2data but instead retrieves it for the corresponding

/db2data/instance/NODE#### directory.

There are three default table spaces created whenever you create a database. If you

do not provide explicit table space definitions as part of the CREATE DATABASE

command, the table spaces are created as automatic storage table spaces.

After you create a database, you can add new storage paths to it by using the

ADD STORAGE clause of the ALTER DATABASE statement, as shown in the

following example:

 ALTER DATABASE ADD STORAGE ON ’/data/path3’, ’/data/path4’

Chapter 6. Databases 123

Automatic storage restrictions

When deciding whether to create a database using automatic storage, there are

some restrictions to consider.

v You cannot disable or enable automatic storage for a database after you created

it.

v Storage paths must be absolute path names. They can be paths or drive letters

on the Windows operating system.The database path must be a drive letter. The

maximum path length is 175 characters.

v For partitioned databases, you must use the same set of storage paths on each

database partition (unless you use database partition expressions).

v Database partition expressions are not valid in database paths, whether you

specify them explicitly by using the DBPATH ON option of the CREATE

DATABASE command, or implicitly by using a database partition expression in

the first storage path.

Adding automatic storage paths to databases enabled for

automatic storage

Using the ALTER DATABASE statement, you can add an automatic storage path to

a database that is enabled for automatic storage. You can enable a database for

automatic storage only when you create it.

When you add a storage path for a multi-partition database environment, the

storage path must exist on each database partition. If the specified path does not

exist on every database partition, the statement is rolled back.

To add a storage path to an existing database, issue the following ALTER

DATABASE statement:

 ALTER DATABASE PATH pathname

Monitoring storage paths

A database snapshot includes the list of storage paths associated with the database.

If the number of automatic storage paths is 0, automatic storage is not enabled for

the database:

 Number of automatic storage paths = ##

 Automatic storage path = <1st path>

 Automatic storage path = <2nd path>

 ...

If the bufferpool monitor switch is on, the following elements are also set:

 File system ID = 12345

 File system free space (bytes) = 20000000000

 File system used space (bytes) = 40000000000000

 File system total space (bytes) = 40020000000000

This data is set on a per path basis: on a single database partition system per path,

and per each database partition on a multi-database partitioned environment.

In addition, the following information is set within a table space snapshot. The

information indicates whether or not the table space was created as an automatic

storage table space:

 Using automatic storage = Yes or No

124 Data Servers, Databases, and Database Objects Guide

Restore database implications

The RESTORE DATABASE command is used to restore a database from a backup

image.

During a restore operation it is possible to choose the location of the database path

and its also possible to redefine the storage paths that are associated with the

database. The database path and the storage paths are set by using a combination

of TO, ON, and DBPATH ON with the RESTORE DATABASE command.

For example, here are some valid RESTORE commands for databases enabled for

automatic storage:

 RESTORE DATABASE TEST1

 RESTORE DATABASE TEST2 TO X:

 RESTORE DATABASE TEST3 DBPATH ON D:

 RESTORE DATABASE TEST3 ON /path1, /path2, /path3

 RESTORE DATABASE TEST4 ON E:\newpath1, F:\newpath2 DBPATH ON D:

Like the CREATE DATABASE command, the database manager extracts the

following two pieces of information that pertain to storage locations:

v The database path (which is where the database manager stores various control

files for the database)

– If TO or DBPATH ON is specified, this indicates the database path.

– If ON is used but DBPATH ON is not specified with it, the first path listed

with ON is used as the database path (in addition to it being a storage path).

– If none of TO, ON, or DBPATH ON are specified, the dftdbpath database

manager configuration parameter determines the database path.

Note: If a database with the same name exists on disk, the database path is

ignored, and the database is placed into the same location as the existing

database.

v The storage paths (where the database manager creates automatic storage table

space containers)

– If ON is specified, all of the paths listed are considered storage paths, and

these paths are used instead of the ones stored within the backup image.

– If ON is not specified, no change is made to the storage paths (the storage

paths stored within the backup image are maintained).

To make this concept clearer, the same five RESTORE command examples

presented above are shown in the following table with their corresponding storage

paths:

 Table 43. Restore implications regarding database and storage paths

RESTORE DATABASE command

No database on disk exists with

same name

Database exists on disk with same

name

Database path Storage paths Database path Storage paths

RESTORE DATABASE TEST1 <dftdbpath> Uses storage

paths defined in

the backup image

Uses database

path of existing

database

Uses storage

paths defined in

the backup image

RESTORE DATABASE TEST2 TO X: X: Uses storage

paths defined in

the backup image

Uses database

path of existing

database

Uses storage

paths defined in

the backup image

Chapter 6. Databases 125

Table 43. Restore implications regarding database and storage paths (continued)

RESTORE DATABASE command

No database on disk exists with

same name

Database exists on disk with same

name

Database path Storage paths Database path Storage paths

RESTORE DATABASE TEST3

DBPATH ON /db2/databases

/db2/databases Uses storage

paths defined in

the backup image

Uses database

path of existing

database

Uses storage

paths defined in

the backup image

RESTORE DATABASE TEST4

ON /path1, /path2, /path3

/path1 /path1, /path2,

/path3

Uses database

path of existing

database

/path1, /path2,

/path3

RESTORE DATABASE TEST5

ON E:\newpath1, F:\newpath2

DBPATH ON D:

D: E:\newpath1,

F:\newpath2

Uses database

path of existing

database

E:\newpath1,

F:\newpath2

For those cases where storage paths have been redefined as part of the restore

operation, the table spaces that are defined to use automatic storage are

automatically redirected to the new paths. However, you cannot explicitly redirect

containers associated with automatic storage table spaces using the SET

TABLESPACE CONTAINERS command; this action is not permitted.

Use the -s option of the db2ckbkp command to show whether or not automatic

storage is enabled for a database within a backup image. The storage paths

associated with the database are displayed if automatic storage is enabled.

For multi-partition automatic storage enabled databases, the RESTORE DATABASE

command has a few extra implications:

1. The database must use the same set of storage paths on all database partitions.

2. Issuing a RESTORE command with new storage paths can only be done on the

catalog database partition, which will set the state of the database to

RESTORE_PENDING on all non-catalog database partitions.

126 Data Servers, Databases, and Database Objects Guide

Table 44. Restore implications for multi-partition databases

RESTORE DATABASE

command

Issued on

database

partition #

No database on disk exists

with same name

Database exists on disk with

same name (includes skeleton

databases)

Result on

other database

partitions Storage paths

Result on

other database

partitions Storage paths

RESTORE DATABASE TEST1 Catalog

database

partition

A skeleton

database is

created using

the storage

paths from the

backup image

on the catalog

database

partition. All

other database

partitions are

placed in a

RESTORE_

PENDING

state.

Uses storage

paths defined

in the backup

image

Nothing.

Storage paths

have not

changed so

nothing

happens to

other database

partitions

Uses storage

paths defined

in the backup

image

Non-catalog

database

partition

SQL2542N or

SQL2551N is

returned. If no

database exists,

the catalog

database

partition must

be restored

first.

N/A Nothing.

Storage paths

have not

changed so

nothing

happens to

other database

partitions

Uses storage

paths defined

in the backup

image

Chapter 6. Databases 127

Table 44. Restore implications for multi-partition databases (continued)

RESTORE DATABASE

command

Issued on

database

partition #

No database on disk exists

with same name

Database exists on disk with

same name (includes skeleton

databases)

Result on

other database

partitions Storage paths

Result on

other database

partitions Storage paths

RESTORE DATABASE TEST2 ON

/path1, /path2, /path3

Catalog

database

partition

A skeleton

database is

created using

the storage

paths specified

in the

RESTORE

command. All

other database

partitions are

place in a

RESTORE_

PENDING

state.

/path1,

/path2, /path3

 /path1,

/path2, /path3

Non-catalog

database

partition

SQL1174N is

returned. If no

database exists,

the catalog

database

partition must

be restored

first. Storage

paths cannot

be specified on

the RESTORE

of a

non-catalog

database

partition.

N/A SQL1172N is

returned. New

storage paths

cannot be

specified on

the RESTORE

of a

non-catalog

database

partition.

N/A

Cataloging databases

When you create a new database, it is automatically cataloged in the system

database directory file. You might also use the CATALOG DATABASE command to

explicitly catalog a database in the system database directory file.

The CATALOG DATABASE command allows you to catalog a database with a

different alias name, or to catalog a database entry that was previously deleted

using the UNCATALOG DATABASE command.

Although databases are cataloged automatically when a database is created, you

still might have a need to catalog the database. When you do so, the database

must exist.

By default directory files, including the database directory, are cached in memory

using the Directory Cache Support (dir_cache) configuration parameter. When

directory caching is enabled, a change made to a directory (for example, using a

CATALOG DATABASE or UNCATALOG DATABASE command) by another

128 Data Servers, Databases, and Database Objects Guide

application might not become effective until your application is restarted. To

refresh the directory cache used by a command line processor session, issue the

TERMINATE command.

In a partitioned database, a cache for directory files is created on each database

partition.

In addition to the application level cache, a database manager level cache is also

used for internal, database manager look-up. To refresh this “shared” cache, issue

the db2stop and db2start commands.

To catalog a database with a different alias name using the command line

processor, use the CATALOG DATABASE command. For example, the following

command line processor command catalogs the PERSON1 database as

HUMANRES:

 CATALOG DATABASE personl AS humanres

 WITH "Human Resources Database"

Here, the system database directory entry will have HUMANRES as the database

alias, which is different from the database name (PERSON1).

To catalog a database in the system database directory from a client application,

call the sqlecadb API.

To catalog a database on an instance other than the default using the command

line processor, use the CATALOG DATABASE command. In the following example,

connections to database B are to INSTNC_C. The instance instnc_c must already be

cataloged as a local node before attempting this command.

 CATALOG DATABASE b as b_on_ic AT NODE instnc_c

Note: The CATALOG DATABASE command is also used on client nodes to catalog

databases that reside on database server computers.

Binding utilities to the database

When a database is created, the database manager attempts to bind the utilities in

db2ubind.lst and in db2cli.lst to the database. These files are stored in the bnd

subdirectory of your sqllib directory.

Binding a utility creates a package, which is an object that includes all the

information needed to process specific SQL and XQuery statements from a single

source file.

Note: If you want to use these utilities from a client, you must bind them

explicitly. You must be in the directory where these files reside to create the

packages in the sample database. The bind files are found in the bnd subdirectory

of the sqllib directory. You must also bind the db2schema.bnd file when you create

or upgrade the database from a client. Refer to ″DB2 CLI bind files and package

names″ for details.

To bind or rebind the utilities to a database, from the command line, invoke the

following commands, where sample is the name of the database:

 connect to sample

 bind @db2ubind.lst

Chapter 6. Databases 129

Creating database aliases

An alias is an indirect method of referencing a table, nickname, or view, so that an

SQL or XQuery statement can be independent of the qualified name of that table

or view.

Only the alias definition must be changed if the table or view name changes. An

alias can be created on another alias. An alias can be used in a view or trigger

definition and in any SQL or XQuery statement, except for table check-constraint

definitions, in which an existing table or view name can be referenced.

An alias can be defined for a table, view, or alias that does not exist at the time of

definition. However, it must exist when the SQL or XQuery statement containing

the alias is compiled.

An alias name can be used wherever an existing table name can be used, and can

refer to another alias if no circular or repetitive references are made along the

chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can only

refer to a table within the same database. The name of a table or view used in a

CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name

in the same schema.

You do not require special authority to create an alias, unless the alias is in a

schema other than the one owned by your current authorization ID, in which case

DBADM authority is required.

When an alias, or the object to which an alias refers, is dropped, all packages

dependent on the alias are marked invalid and all views and triggers dependent

on the alias are marked inoperative.

To create an alias using the command line, enter:

 CREATE ALIAS <alias_name> FOR <table_name>

The alias is replaced at statement compilation time by the table or view name. If

the alias or alias chain cannot be resolved to a table or view name, an error results.

For example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

 SELECT * FROM WORKERS

becomes in effect

 SELECT * FROM EMPLOYEE

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:

 CREATE ALIAS WORKERS FOR EMPLOYEE

Note: DB2 for OS/390 or z/Series employs two distinct concepts of aliases: ALIAS

and SYNONYM. These two concepts differ from DB2 database as follows:

v ALIASes in DB2 for OS/390 or z/Series:

– Require their creator to have special authority or privilege

– Cannot reference other aliases
v SYNONYMs in DB2 for OS/390 or z/Series:

– Can only be used by their creator

– Are always unqualified

130 Data Servers, Databases, and Database Objects Guide

– Are dropped when a referenced table is dropped

– Do not share namespace with tables or views

Connecting to distributed relational databases

Distributed relational databases are built on formal requester-server protocols and

functions.

An application requester supports the application end of a connection. It transforms

a database request from the application into communication protocols suitable for

use in the distributed database network. These requests are received and processed

by a database server at the other end of the connection. Working together, the

application requester and the database server handle communication and location

considerations, so that the application can operate as if it were accessing a local

database.

An application process must connect to a database manager’s application server

before SQL statements that reference tables or views can be executed. The

CONNECT statement establishes a connection between an application process and

its server.

There are two types of CONNECT statements:

v CONNECT (Type 1) supports the single database per unit of work (Remote Unit

of Work) semantics.

v CONNECT (Type 2) supports the multiple databases per unit of work

(Application-Directed Distributed Unit of Work) semantics.

The DB2 call level interface (CLI) and embedded SQL support a connection mode

called concurrent transactions, which allows multiple connections, each of which is

an independent transaction. An application can have multiple concurrent

connections to the same database.

The application server can be local to or remote from the environment in which the

process is initiated. An application server is present, even if the environment is not

using distributed relational databases. This environment includes a local directory

that describes the application servers that can be identified in a CONNECT

statement.

The application server runs the bound form of a static SQL statement that

references tables or views. The bound statement is taken from a package that the

database manager has previously created through a bind operation.

For the most part, an application connected to an application server can use

statements and clauses that are supported by the application server’s database

manager. This is true even if an application is running through the application

requester of a database manager that does not support some of those statements

and clauses.

Remote unit of work for distributed relational databases

The remote unit of work facility provides for the remote preparation and execution of

SQL statements.

An application process at computer system “A” can connect to an application

server at computer system “B” and, within one or more units of work, execute any

Chapter 6. Databases 131

number of static or dynamic SQL statements that reference objects at “B”. After

ending a unit of work at B, the application process can connect to an application

server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed, with the following

restrictions:

v All objects referenced in a single SQL statement must be managed by the same

application server.

v All of the SQL statements in a unit of work must be executed by the same

application server.

At any given time, an application process is in one of four possible connection

states:

v Connectable and connected

An application process is connected to an application server, and CONNECT

statements can be executed.

If implicit connect is available:

– The application process enters this state when a CONNECT TO statement or

a CONNECT without operands statement is successfully executed from the

connectable and unconnected state.

– The application process may enter this state from the implicitly connectable

state if any SQL statement other than CONNECT RESET, DISCONNECT, SET

CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:

– A CONNECT TO statement is successfully executed from the connectable and

unconnected state.

– A COMMIT or ROLLBACK statement is successfully issued, or a forced

rollback occurs from the unconnectable and connected state.
v Unconnectable and connected

An application process is connected to an application server, but a CONNECT

TO statement cannot be successfully executed to change application servers. The

application process enters this state from the connectable and connected state

when it executes any SQL statement other than the following: CONNECT TO,

CONNECT with no operand, CONNECT RESET, DISCONNECT, SET

CONNECTION, RELEASE, COMMIT, or ROLLBACK.

v Connectable and unconnected

An application process is not connected to an application server. CONNECT TO

is the only SQL statement that can be executed; otherwise, an error (SQLSTATE

08003) is raised.

Whether or not implicit connect is available, the application process enters this

state if an error occurs when a CONNECT TO statement is issued, or an error

occurs within a unit of work, causing the loss of a connection and a rollback. An

error that occurs because the application process is not in the connectable state,

or because the server name is not listed in the local directory, does not cause a

transition to this state.

If implicit connect is not available:

– The application process is initially in this state

– The CONNECT RESET and DISCONNECT statements cause a transition to

this state.
v Implicitly connectable (if implicit connect is available).

132 Data Servers, Databases, and Database Objects Guide

If implicit connect is available, this is the initial state of an application process.

The CONNECT RESET statement causes a transition to this state. Issuing a

COMMIT or ROLLBACK statement in the unconnectable and connected state,

followed by a DISCONNECT statement in the connectable and connected state,

also results in this state.

Availability of implicit connect is determined by installation options, environment

variables, and authentication settings.

It is not an error to execute consecutive CONNECT statements, because

CONNECT itself does not remove the application process from the connectable

state. It is, however, an error to execute consecutive CONNECT RESET statements.

It is also an error to execute any SQL statement other than CONNECT TO,

CONNECT RESET, CONNECT with no operand, SET CONNECTION, RELEASE,

COMMIT, or ROLLBACK, and then to execute a CONNECT TO statement. To

avoid this error, a CONNECT RESET, DISCONNECT (preceded by a COMMIT or

ROLLBACK statement), COMMIT, or ROLLBACK statement should be executed

before the CONNECT TO statement.

Implicitly
Connectable

Connectable
and

Connected

Connectable
and

Unconnected

Unconnectable
and

Connected

Begin process

CONNECT
RESET

CONNECT
RESET

CONNECT TO,
COMMIT,

or ROLLBACK

Failure of
implicit connect

System failure
with rollback

ROLLBACK,
successful COMMIT,

or deadlock

CONNECT TO,
COMMIT, or
ROLLBACK

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

CONNECT TO with system failure

Successful C
ONNECT TO

Figure 3. Connection State Transitions If Implicit Connect Is Available

Chapter 6. Databases 133

Application-directed distributed unit of work

The application-directed distributed unit of work facility provides for the remote

preparation and execution of SQL statements.

An application process at computer system “A” can connect to an application

server at computer system “B” by issuing a CONNECT or a SET CONNECTION

statement. The application process can then execute any number of static and

dynamic SQL statements that reference objects at “B” before ending the unit of

work. All objects referenced in a single SQL statement must be managed by the

same application server. However, unlike the remote unit of work facility, any

number of application servers can participate in the same unit of work. A commit

or a rollback operation ends the unit of work.

An application-directed distributed unit of work uses a type 2 connection. A type 2

connection connects an application process to the identified application server, and

establishes the rules for application-directed distributed units of work.

A type 2 application process:

v Is always connectable

v Is either in the connected state or in the unconnected state

v Has zero or more connections.

Each connection of an application process is uniquely identified by the database

alias of the application server for the connection.

An individual connection always has one of the following connection states:

Connectable
and

Unconnected

Unconnectable
and

Connected

Connectable
and

Connected

Begin process
CONNECT RESET

CONNECT
RESET

CONNECT
RESET

System failure
with rollback

CONNECT TO,
COMMIT or
ROLLBACK

Successful CONNECT TO

CONNECT TO
with system failure

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

ROLLBACK,
successful COMMIT,

or deadlock

Figure 4. Connection State Transitions If Implicit Connect Is Not Available

134 Data Servers, Databases, and Database Objects Guide

v current and held

v current and release-pending

v dormant and held

v dormant and release-pending

A type 2 application process is initially in the unconnected state, and does not

have any connections. A connection is initially in the current and held state.

Application process connection states

There are certain rules that apply to the execution of a CONNECT statement.

The following rules apply to the execution of a CONNECT statement:

v A context cannot have more than one connection to the same application server

at the same time.

v When an application process executes a SET CONNECTION statement, the

specified location name must be an existing connection in the set of connections

for the application process.

v When an application process executes a CONNECT statement, and the

SQLRULES(STD) option is in effect, the specified server name must not be an

existing connection in the set of connections for the application process. For a

description of the SQLRULES option, see “Options that govern unit of work

semantics” on page 137.

Current

Current

Dormant

Dormant

Held
Release-
pending

States of a Connection

States of a Connection

RELEASE

Successful CONNECT or
SET CONNECTION

specifying an
existing dormant connection

Successful CONNECT or
SET CONNECTION

specifying another connection

The current connection is intentionally ended,
or a failure occurs causing the loss

of the connection

Successful CONNECT or
SET CONNECTION

Begin
process

Figure 5. Application-Directed Distributed Unit of Work Connection State Transitions

Chapter 6. Databases 135

If an application process has a current connection, the application process is in

the connected state. The CURRENT SERVER special register contains the name of

the application server for the current connection. The application process can

execute SQL statements that refer to objects managed by that application server.

An application process that is in the unconnected state enters the connected state

when it successfully executes a CONNECT or a SET CONNECTION statement. If

there is no connection, but SQL statements are issued, an implicit connect is made,

provided the DB2DBDFT environment variable has been set with the name of a

default database.

If an application process does not have a current connection, the application

process is in the unconnected state. The only SQL statements that can be executed

are CONNECT, DISCONNECT ALL, DISCONNECT (specifying a database), SET

CONNECTION, RELEASE, COMMIT, ROLLBACK, and local SET statements.

An application process in the connected state enters the unconnected state when its

current connection intentionally ends, or when an SQL statement fails, causing a

rollback operation at the application server and loss of the connection. Connections

end intentionally following the successful execution of a DISCONNECT statement,

or a COMMIT statement when the connection is in release-pending state. (If the

DISCONNECT precompiler option is set to AUTOMATIC, all connections end. If it

is set to CONDITIONAL, all connections that do not have open WITH HOLD

cursors end.)

Connection states

There are two types of connection states: “held and release-pending states” and

“current and dormant states”.

If an application process executes a CONNECT statement, and the server name is

known to the application requester but is not in the set of existing connections for

the application process: (i) the current connection is placed into the dormant

connection state, the server name is added to the set of connections, and the new

connection is placed into both the current connection state and the held connection

state.

If the server name is already in the set of existing connections for the application

process, and the application is precompiled with the SQLRULES(STD) option, an

error (SQLSTATE 08002) is raised.

Held and release-pending states. The RELEASE statement controls whether a

connection is in the held or the release-pending state. The release-pending state

means that a disconnect is to occur at the next successful commit operation. (A

rollback has no effect on connections.) The held state means that a disconnect is not

to occur at the next commit operation.

All connections are initially in the held state and can be moved to the

release-pending state using the RELEASE statement. Once in the release-pending

state, a connection cannot be moved back to the held state. A connection remains

in release-pending state across unit of work boundaries if a ROLLBACK statement

is issued, or if an unsuccessful commit operation results in a rollback operation.

Even if a connection is not explicitly marked for release, it may still be

disconnected by a commit operation if the commit operation satisfies the

conditions of the DISCONNECT precompiler option.

136 Data Servers, Databases, and Database Objects Guide

Current and dormant states. Regardless of whether a connection is in the held

state or the release-pending state, it can also be in the current state or the dormant

state. A connection in the current state is the connection being used to execute SQL

statements while in this state. A connection in the dormant state is a connection that

is not current.

The only SQL statements that can flow on a dormant connection are COMMIT,

ROLLBACK, DISCONNECT, or RELEASE. The SET CONNECTION and

CONNECT statements change the connection state of the specified server to

current, and any existing connections are placed or remain in dormant state. At

any point in time, only one connection can be in current state. If a dormant

connection becomes current in the same unit of work, the state of all locks, cursors,

and prepared statements is the same as the state they were in the last time that the

connection was current.

When a connection ends

When a connection ends, all resources that were acquired by the application

process through the connection, and all resources that were used to create and

maintain the connection are de-allocated. For example, if the application process

executes a RELEASE statement, any open cursors are closed when the connection

ends during the next commit operation.

A connection can also end because of a communications failure. If this connection

is in current state, the application process is placed in unconnected state.

All connections for an application process end when the process ends.

Options that govern unit of work semantics

The semantics of type 2 connection management are determined by a set of

precompiler options. These options are summarized below with default values

indicated by bold and underlined text.

v CONNECT (1 | 2). Specifies whether CONNECT statements are to be processed

as type 1 or type 2.

v SQLRULES (DB2 | STD). Specifies whether type 2 CONNECTs are to be

processed according to the DB2 rules, which allow CONNECT to switch to a

dormant connection, or the SQL92 Standard rules, which do not allow this.

v DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC). Specifies what

database connections are to be disconnected when a commit operation occurs:

– Those that have been explicitly marked for release by the SQL RELEASE

statement (EXPLICIT)

– Those that have no open WITH HOLD cursors, and those that are marked for

release (CONDITIONAL)

– All connections (AUTOMATIC).
v SYNCPOINT (ONEPHASE | TWOPHASE | NONE). Specifies how COMMITs

or ROLLBACKs are to be coordinated among multiple database connections.

This option is ignored, and is included for backwards compatibility only.

– Updates can only occur against one database in the unit of work, and all

other databases are read-only (ONEPHASE). Any update attempts to other

databases raise an error (SQLSTATE 25000).

– A transaction manager (TM) is used at run time to coordinate two-phase

COMMITs among those databases that support this protocol (TWOPHASE).

Chapter 6. Databases 137

– Does not use a TM to perform two-phase COMMITs, and does not enforce

single updater, multiple reader (NONE). When a COMMIT or a ROLLBACK

statement is executed, individual COMMITs or ROLLBACKs are posted to all

databases. If one or more ROLLBACKs fail, an error (SQLSTATE 58005) is

raised. If one or more COMMITs fail, another error (SQLSTATE 40003) is

raised.

To override any of the above options at run time, use the SET CLIENT command

or the sqlesetc application programming interface (API). Their current settings can

be obtained using the QUERY CLIENT command or the sqleqryc API. Note that

these are not SQL statements; they are APIs defined in the various host languages

and in the command line processor (CLP).

Data representation considerations

Different systems represent data in different ways. When data is moved from one

system to another, data conversion must sometimes be performed.

Products supporting DRDA automatically perform any necessary conversions at

the receiving system.

To perform conversions of numeric data, the system needs to know the data type

and how it is represented by the sending system. Additional information is needed

to convert character strings. String conversion depends on both the code page of

the data and the operation that is to be performed on that data. Character

conversions are performed in accordance with the IBM Character Data

Representation Architecture (CDRA). For more information about character

conversion, see the Character Data Representation Architecture: Reference & Registry

(SC09-2190-00) manual.

Viewing the local or system database directory files

Use the LIST DATABASE DIRECTORY command to view the information

associated with the databases that you have on your system.

Before viewing either the local or system database directory files, you must have

previously created an instance and a database.

To see the contents of the local database directory file, issue the following

command, where <location> specifies the location of the database:

 LIST DATABASE DIRECTORY ON <location>

To see the contents of the system database directory file, issue the LIST

DATABASE DIRECTORY command without specifying the location of the database

directory file.

Dropping databases

Dropping a database can have far-reaching effects, because this action deletes all its

objects, containers, and associated files. The dropped database is removed

(uncataloged) from the database directories.

To drop a database using the command line, enter:

 DROP DATABASE <name>

The following command deletes the database SAMPLE:

138 Data Servers, Databases, and Database Objects Guide

DROP DATABASE SAMPLE

Note: If you drop the SAMPLE database and find that you need it again, you can

re-create it.

To drop a database from a client application, call the sqledrpd API. To drop a

database at a specified database partition server, call the sqledpan API.

Dropping aliases

When you drop an alias, its description is deleted from the catalog, any packages

and cached dynamic queries that reference the alias are invalidated, and all views

and triggers dependent on the alias are marked inoperative.

To drop aliases, from the command line, issue the DROP statement:

 DROP ALIAS EMPLOYEE-ALIAS

Chapter 6. Databases 139

140 Data Servers, Databases, and Database Objects Guide

Chapter 7. Database partitions

A database partition is a part of a database that consists of its own data, indexes,

configuration files, and transaction logs. A database partition is sometimes called a

node or a database node. A partitioned database environment is a database

installation that supports the distribution of data across database partitions.

For complete details about database partitions, see the Partitioning and Clustering

Guide.

© Copyright IBM Corp. 1993, 2009 141

142 Data Servers, Databases, and Database Objects Guide

Chapter 8. Buffer pools

A buffer pool is an area of main memory that has been allocated by the database

manager for the purpose of caching table and index data as it is read from disk.

Every DB2 database must have a buffer pool.

Each new database has a default bufferpool defined, called IBMDEFAULTBP.

Additional buffer pools can be created, dropped, and modified, using the CREATE

BUFFERPOOL, DROP BUFFERPOOL, and ALTER BUFFERPOOL statements. The

SYSCAT.BUFFERPOOLS catalog view accesses the information for the buffer pools

defined in the database.

How buffer pools are used

When a row of data in a table is first accessed, the database manager places the

page that contains that data into a buffer pool. Pages stay in the buffer pool until

the database is shut down or until the space occupied by the page is required by

another page.

Pages in the buffer pool can be either in-use or not, and they can be dirty or clean:

v In-use pages are currently being read or updated. To maintain data consistency,

the database manager only allows one agent to be updating a given page in a

bufferpool at one time. If a page is being updated, it is being accessed

exclusively by one agent. If it is being read, it may be read by multiple agents

simultaneously.

v ″Dirty″ pages contain data that has been changed but has not yet been written to

disk.

v After a changed page is written to disk, it is clean and might remain in the

buffer pool.

A large part of tuning a database involves setting the configuration parameters that

control the movement of data into the buffer pool and the writing of data from the

buffer out to disk. If not needed by a recent agent, the page space can be used for

new page requests from new applications. Database manager performance is

degraded by extra disk I/O.

You can use the snapshot monitor to calculate the buffer pool hit ratio, which can

help you tune your buffer pools.

Designing buffer pools

The sizes of all buffer pools can have a major impact on the performance of your

database.

Before you create a new buffer pool, resolve the following items:

v What buffer pool name do you want to use?

v Whether the buffer pool is to be created immediately or following the next time

that the database is deactivated and reactivated?

v Whether the buffer pool should exist for all database partitions, or for a subset

of the database partitions?

© Copyright IBM Corp. 1993, 2009 143

v What page size you want for the buffer pool? See “Buffer pool page sizes”

below.

v Whether the buffer pool will be a fixed size, or whether the database manager

will automatically adjust the size of the buffer pool in response to your

workload? It is suggested that you allow the database manager to tune your

buffer pool automatically by leaving the SIZE parameter unspecified during

buffer pool creation. For details, see the SIZE parameter of the “CREATE

BUFFERPOOL statement” and “Buffer pool memory considerations.”

v Whether you want to reserve a portion of the buffer pool for block based I/O?

For details, see: “Block-based buffer pools for improved sequential prefetching”.

Relationship between table spaces and buffer pools

When designing buffer pools, you need to understand the relationship between

table spaces and buffer pools. Each table space is associated with a specific buffer

pool. IBMDEFAULTBP is the default buffer pool. The database manager also

allocates these system buffer pools: IBMSYSTEMBP4K, IBMSYSTEMBP8K,

IBMSYSTEMBP16K, and IBMSYSTEMBP32K (formerly known as the “hidden

buffer pools”). To associate another buffer pool with a table space, the buffer pool

must exist and the two must have the same page size. The association is defined

when the table space is created (using the CREATE TABLESPACE statement), but it

can be changed at a later time (using the ALTER TABLESPACE statement).

Having more than one buffer pool allows you to configure the memory used by

the database to improve overall performance. For example, if you have a table

space with one or more large (larger than available memory) tables that are

accessed randomly by users, the size of the buffer pool can be limited, because

caching the data pages might not be beneficial. The table space for an online

transaction application might be associated with a larger buffer pool, so that the

data pages used by the application can be cached longer, resulting in faster

response times. Care must be taken in configuring new buffer pools.

Buffer pool page sizes

The page size for the default buffer pool is set when you use the CREATE

DATABASE command. This default represents the default page size for all future

CREATE BUFFERPOOL and CREATE TABLESPACE statements. If you do not

specify the page size when creating the database, the default page size is 4 KB.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is required

by your database, you must have at least one bufferpool of the matching page size

defined and associated with table space in your database.

However, you might need a buffer pool that has different characteristics than the

system buffer pool. You can create new buffer pools for the database manager to

use. You may have to restart the database for table space and bufferpool changes

to take effect. The page sizes that you specify for your table spaces should

determine the page sizes that you choose for your buffer pools. The choice of page

size used for a buffer pool is important because you cannot alter the page size

after you create a buffer pool.

Buffer pool memory considerations

Memory requirements

When designing buffer pools, you should also consider the memory

requirements based on the amount of installed memory on your machine

144 Data Servers, Databases, and Database Objects Guide

and the memory required by other applications running concurrently with

the database manager on the same machine. Operating system data

swapping occurs when there is insufficient memory to hold all the data

being accessed. This occurs when some data is written or swapped to

temporary disk storage to make room for other data. When the data on

temporary disk storage is needed, it is swapped back into main memory.

Buffer pool memory protection

 With Version 9.5, data pages in buffer pool memory are protected using

storage keys, which are available only if explicitly enabled by the

DB2_MEMORY_PROTECT registry variable, and only on AIX (5.3 TL06

5.4), running on POWER6™.

Buffer pool memory protection works on a per-agent level; any particular

agent will only have access to buffer pool pages when that agent needs

access. Memory protection works by identifying at which times the DB2

engine threads should have access to the buffer pool memory and at which

times they should not have access. For details, see: “Buffer pool memory

protection (AIX running on POWER6).”

Address Windowing Extensions (AWE) and Extended Storage (ESTORE)

Note: AWE and ESTORE features have been discontinued, including the

ESTORE-related keywords, monitor elements, and data structures. To

allocate more memory, you need to upgrade to a 64-bit hardware operating

system, and associated DB2 products. You should also modify applications

and scripts to remove references to this discontinued functionality.

Buffer pool memory protection (AIX running on POWER6)

The database manager uses the buffer pool to apply additions, modifications and

deletions to much of the database data. On AIX 5.3 TL06+ running on POWER6,

you can use storage keys to protect the buffer pool memory.

Storage keys is a new feature in IBM® Power6 processors and the AIX® operating

system that allows the protection of ranges of memory using hardware keys at a

kernel thread level. Storage key protection reduces buffer pool memory corruption

problems and limits errors that might halt the database. Attempts to illegally access

the buffer pool by programming means cause an error condition that the database

manager can detect and deal with.

Note: Buffer pool memory protection works on a per-agent level; any particular

agent will only have access to buffer pool pages when that agent needs access.

The database manager protects buffer pools by restricting access to buffer pool

memory. When an agent requires access to the buffer pools to perform it’s work, it

will temporarily be granted access to the buffer pool memory. When the agent no

longer requires access to the buffer pools, access will be revoked. This ensures that

agents are only allowed to modify buffer pool contents when absolutely needed,

reducing the likelihood of buffer pool corruptions. Any illegal access to buffer pool

memory will result in a segmentation error. Tools to diagnose these errors are

provided, such as the db2diag, db2fodc, db2pdcfg, and db2support commands.

For complete enablement of this buffer pool memory protection feature, in order to

increase the resilience of the database engine, you should enable both the

DB2_MEMORY_PROTECT and the DB2_THREAD_SUSPENSION registry

variables:

Chapter 8. Buffer pools 145

DB2_MEMORY_PROTECT registry variable

This registry variable enables and disables the buffer pool memory

protection feature. When DB2_MEMORY_PROTECT is enabled (set to

YES), and a DB2 engine thread tries to illegally access buffer pool memory,

that engine thread traps. The default is NO.

DB2_THREAD_SUSPENSION registry variable

This registry variable enables and disables the DB2 thread suspension

feature. It allows you to control whether a DB2 instance sustains a trap by

suspending a faulty engine thread (that is, a thread which has tried to

illegally access memory protected with storage keys). .

Note: The buffer pool memory protection feature depends on the implementation

of AIX Storage Protect Keys and it may not work with the pinned shared

memory. If DB2_MEMORY_PROTECT is specified with DB2_PINNED_BP

or DB2_LARGE_PAGE_MEM setting, AIX Storage Protect Keys may not be

enabled. For more information about AIX Storage Protect Keys, refer to the

following link: http://publib.boulder.ibm.com/infocenter/systems/scope/
aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/
storage_protect_keys.htm

 DB2_THREAD_SUSPENSION can be enabled only if

DB2_MEMORY_PROTECT is enabled. If DB2_THREAD_SUSPENSION is

enabled:

v Whatever failure in the thread, whether or not caused by an attempt to

access memory that is protected using storage keys and to which the

thread has no access, if it happens at a point in which the thread has no

access to this memory protected using storage keys, then the database

manager guarantees that the protected memory has not been corrupted,

and consequently, lets the DB2 engine continue running.

v When running a User Defined Function without SQL in unfenced mode,

if a buffer pool memory protection violation is detected, the database

manager will return the error to the caller of the UDF and the database

will continue running without being affected.

Creating buffer pools

Use the CREATE BUFFERPOOL statement to define a new buffer pool to be used

by the database manager.

Example of a basic CREATE BUFFERPOOL statement is:

 CREATE BUFFERPOOL <buffer pool name>

 PAGESIZE 4096

The buffer pool may be come active immediately if there is sufficient memory

available. By default new buffer pools are created using the IMMEDIATE keyword,

and on most platforms, the database manager will be able to acquire more

memory. The expected return is successful memory allocation. Only in cases where

the database manager is unable to allocate the extra memory will it return a

warning condition stating that the buffer pool could not be started, and this is

done on the subsequent database startup. For immediate requests, you do not need

to restart the database. When this statement is committed, the buffer pool is

reflected in the system catalog tables, but the buffer pool does not become active

until the next time the database is started. For more information about this

statement, including other options, see the “CREATE BUFFERPOOL statement”.

146 Data Servers, Databases, and Database Objects Guide

http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm

If you issue a CREATE BUFFERPOOL DEFERRED, the buffer pool is not

immediately activated; instead, it is created at the next database startup. Until the

database is restarted, any new table spaces will use an existing buffer pool, even if

that table space is created to explicitly use the deferred buffer pool.

There needs to be enough real memory on the machine for the total of all the

buffer pools that you have created. The operating system also needs some memory

to operate.

To create a buffer pool using the command line, do the following:

1. Get the list of buffer pool names that already exist in the database by issuing

the following SQL statement:

SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

2. Choose a buffer pool name that is not currently found in the result list.

3. Determine the characteristics of the buffer pool you are going to create.

4. Ensure that you have the correct authorization ID to run the CREATE

BUFFERPOOL statement.

5. Issue the CREATE BUFFERPOOL statement.

On partitioned databases, you can also define the buffer pool to be created

differently, including different sizes, on each database partition. The default ALL

DBPARTITIONNUMS clause indicates that this buffer pool will be created on all

database partitions in the database.

In the following example, the optional DATABASE PARTITION GROUP clause

identifies the database partition group or groups to which the buffer pool

definition applies:

 CREATE BUFFERPOOL <buffer pool name>

 PAGESIZE 4096

 DATABASE PARTITION GROUP <db partition group name>

If this parameter is specified, the buffer pool will only be created on database

partitions in these database partition groups. Each database partition group must

currently exist in the database. If the DATABASE PARTITION GROUP clause is not

specified, this buffer pool will be created on all database partitions (and on any

database partitions that are subsequently added to the database).

For more information, see the “CREATE BUFFERPOOL statement”.

Modifying buffer pools

There are a number of reasons why you might want to modify a buffer pool, for

example, to enable self-tuning memory. To do this, you use the ALTER

BUFFERPOOL statement.

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

When working with buffer pools, you might need to do one of the following tasks

:

v Enable self tuning for a buffer pool, allowing the database manager to adjust the

size of the buffer pool in response to your workload.

v Modify the block area of the buffer pool for block-based I/O.

v Add this buffer pool definition to a new database partition group.

v Modify the size of the buffer pool on some or all database partitions.

Chapter 8. Buffer pools 147

To alter a buffer pool using the command line, do the following:

1. To get the list of the buffer pool names that already exist in the database, issue

the following statement:

 SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

2. Choose the buffer pool name from the result list.

3. Determine what changes need to be made.

4. Ensure that you have the correct authorization ID to run the ALTER

BUFFERPOOL statement.

Note: Two key parameters are IMMEDIATE and DEFERRED. With IMMEDIATE, the

buffer pool size is changed without having to wait until the next database

activation for it to take effect. If there is insufficient database shared memory to

allocate new space, the statement is run as DEFERRED.

With DEFERRED, the changes to the buffer pool will not be applied until the

database is reactivated. Reserved memory space is not needed; the database

manager allocates the required memory from the system at activation time.

5. Use the ALTER BUFFERPOOL statement to alter a single attribute of the buffer

pool object. For example:

 ALTER BUFFERPOOL buffer pool name SIZE number of pages

v The buffer pool name is a one-part name that identifies a buffer pool described in

the system catalogs.

v The number of pages is the new number of pages to be allocated to this specific

buffer pool. You can also use a value of -1, which indicates that the size of the

buffer pool should be the value found in the buffpage database configuration

parameter.

The statement can also have the DBPARTITIONNUM <db partition number>

clause that specifies the database partition on which the size of the buffer pool is

modified. If this clause is not specified, the size of the buffer pool is modified on

all database partitions except those that have an exception entry in

SYSCAT.BUFFERPOOLDBPARTITIONS. For details on using this clause for

database partitions, see the ALTER BUFFERPOOL statement.

Changes to the buffer pool as a result of this statement are reflected in the system

catalog tables when the statement is committed. However, no changes to the actual

buffer pool take effect until the next time the database is started, except for

successful ALTER BUFFERPOOL requests specified with the default IMMEDIATE

keyword.

There must be enough real memory on the machine for the total of all the buffer

pools that you have created. There also needs to be sufficient real memory for the

rest of the database manager and for your applications.

Dropping buffer pools

When dropping buffer pools, ensure that no table spaces have been assigned to

those buffer pools. You cannot drop the IBMDEFAULTBP buffer pool.

Disk storage may not be released until the next connection to the database. Storage

memory is not actually released from a dropped buffer pool until the database is

stopped. Buffer pool memory is released immediately, to be used by the database

manager.

148 Data Servers, Databases, and Database Objects Guide

You can use the DROP BUFFERPOOL statement to drop buffer pools, as follows:

 DROP BUFFERPOOL <buffer pool name>

Chapter 8. Buffer pools 149

150 Data Servers, Databases, and Database Objects Guide

Chapter 9. Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long

data. Table spaces reside in database partition groups. They allow you to assign the

location of database and table data directly onto containers. (A container can be a

directory name, a device name, or a file name.) This can provide improved

performance and more flexible configuration.

Since table spaces reside in database partition groups, the table space selected to

hold a table defines how the data for that table is distributed across the database

partitions in a database partition group. A single table space can span several

containers. It is possible for multiple containers (from one or more table spaces) to

be created on the same physical disk (or drive). If you are using automatic storage

table spaces, this is handled by the database manager. If you are not using

automatic storage table spaces, for improved performance, each container should

use a different disk.

Figure 6 illustrates the relationship between tables and table spaces within a

database, and the containers associated with that database.

 The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,

which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table

space in container 4. This example shows each container existing on a separate

disk.

The database manager attempts to balance the data load across containers. As a

result, all containers are used to store data. The number of pages that the database

manager writes to a container before using a different container is called the extent

size. The database manager does not always start storing table data in the first

container.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 6. Table spaces and tables in a database

© Copyright IBM Corp. 1993, 2009 151

Figure 7 shows the HUMANRES table space with an extent size of two 4 KB pages,

and four containers, each with a small number of allocated extents. The

DEPARTMENT and EMPLOYEE tables both have seven pages, and span all four

containers.

Designing table spaces

Table spaces are used to specify where data in a database is physically stored on a

system and to provide a layer of indirection between the database and the

container objects in which the actual data resides.

There are many reasons for creating table spaces, including recoverability, and the

ability to isolate objects in different bufferpools. With automatic storage, you no

longer need to be concerned about the physical disk location of table spaces, nor

about the physical location of containers. The database manager automatically

assigns or creates containers for table spaces.

A database must contain at least three table spaces:

v One catalog table space, which contains all of the system catalog tables for the

database. This table space is called SYSCATSPACE, and it cannot be dropped.

IBMCATGROUP is the default database partition group for this table space.

v One or more user table spaces, which contain all user defined tables. By default,

one table space, USERSPACE1, is created. IBMDEFAULTGROUP is the default

database partition group for this table space.

You should specify a table space name when you create a table, or the results

may not be what you intend.

A table’s page size is determined either by row size, or the number of columns.

The maximum allowable length for a row is dependent upon the page size of

the table space in which the table is created. Possible values for page size are 4

KB, 8 KB, 16 KB, and 32 KB. Before Version 9.1, the default page size was 4 KB.

In Version 9.1 and following, the default page size may be one of the other

supported values. The default page size is declared when creating a new

database. Once the default page size has been declared, you are still free to

create a table space with one page size for the table, and a different table space

with a different page size for long or LOB data. (Recall that SMS does not

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 7. Containers and extents in a table space

152 Data Servers, Databases, and Database Objects Guide

support tables that span table spaces, but that DMS does.) If the number of

columns or the row size exceeds the limits for a table space’s page size, an error

is returned (SQLSTATE 42997).

v One or more temporary table spaces, which contain temporary tables. Temporary

table spaces can be system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database

manager while performing operations such as sorts or joins. These types of

operations require extra space to process the results set. A database must have at

least one system temporary table space; by default, one system temporary table

space called TEMPSPACE1 is created at database creation. IBMTEMPGROUP is

the default database partition group for this table space.

User temporary table spaces hold temporary data from tables created with a

DECLARE GLOBAL TEMPORARY TABLE statement. To allow the definition of

declared temporary tables, at least one user temporary table space should be

created with the appropriate USE privileges. USE privileges are granted using

the GRANT statement. A user temporary table spaces is not created by default at

database creation.

If a database uses more than one temporary table space and a new temporary

object is needed, the optimizer will choose an appropriate page size for this

object. That object will then be allocated to the temporary table space with the

corresponding page size. If there is more than one temporary table space with

that page size, then the table space will be chosen in a round-robin fashion. In

most circumstances, it is not recommended to have more than one temporary

table space of any one page size.

If queries are running against tables in table spaces that are defined with page

sizes larger than the default, some of them may fail. This will occur if there are

no temporary table spaces defined with a larger page size. You may need to

create a temporary table space with a larger page size (if the default was 4 KB,

then you would need to create a temporary table space with a page size of 8 KB,

16 KB, or 32 KB). Any DML (Data Manipulation Language) statement could fail

unless there exists a temporary table space with the same page size as the

largest page size in the user table space.

You should define a single SMS temporary table space with a page size equal to

the page size used in the majority of your user table spaces. This should be

adequate for typical environments and workloads.

Table spaces and database partition groups

In a partitioned database environment, each table space is associated with a

specific database partition group. This allows the characteristics of the table space

to be applied to each database partition in the database partition group.

The database partition group must exist (it is defined with the CREATE

DATABASE PARTITION GROUP statement), and the association between the table

space and the database partition group is defined when the table space is created

using the CREATE TABLESPACE statement.

You cannot change the association between table space and database partition

group using the ALTER TABLESPACE statement. You can only change the table

space specification for individual database partitions within the database partition

group. In a single-partition environment, each table space is associated with the

default database partition group. The default database partition group, when

defining a table space, is IBMDEFAULTGROUP, unless a system temporary table

space is being defined; then IBMTEMPGROUP is used.

Chapter 9. Table spaces 153

Types of table spaces

A database must contain at least three types table spaces: one catalog table space,

one or more user table spaces, and one or more temporary table spaces.

There are two types of table space, both of which can be used in a single database:

v System managed space, in which the operating system’s file manager controls

the storage space.

v database managed space, in which the database manager controls the storage

space.

In a partitioned database environment, the catalog partition will contain all three

default table spaces, and the other database partitions will each contain only

TEMPSPACE1 and USERSPACE1.

Automatic storage table spaces can also be created, which will use SMS or DMS as

the underlying table space type. The actual type (SMS or DMS) is chosen by the

database manager depending on the type of data that will reside in it (SMS for

temporary table spaces, DMS otherwise).

System managed space

In an SMS (System Managed Space) table space, the operating system’s file system

manager allocates and manages the space where the table is stored.

The storage model typically consists of many files, representing table objects,

stored in the file system space. You decide the location of the files, the database

manager controls their names, and the file system is responsible for managing

them. By controlling the amount of data written to each file, the database manager

distributes the data evenly across the table space containers.

Each table has at least one SMS physical file associated with it.

The data in the table spaces is striped by extent across all the containers in the

system. An extent is a group of consecutive pages defined to the database. The file

extension denotes the type of the data stored in the file. To distribute the data

evenly across all containers in the table space, the starting extents for tables are

placed in round-robin fashion across all containers. Such distribution of extents is

particularly important if the database contains many small tables. DB2 striping is

recommended when writing data into multiple containers. If you choose to

implement disk striping along with DB2 striping, the extent size of the table space

and the strip size of the disk should be identical.

In an SMS table space, space for tables is allocated on demand. The amount of

space that is allocated is dependent on the setting of the multipage_alloc database

configuration parameter. If this configuration parameter is set to YES, then a full

extent (typically made up of two or more pages) will be allocated when space is

required. Otherwise, space will be allocated one page at a time.

Multipage file allocation is enabled by default. The value of the multipage_alloc

database configuration parameter will indicate if multipage file allocation is

enabled.

Note: Multipage file allocation is not applicable to temporary table spaces.

Multi-page file allocation only affects the data and index portions of a table. This

means that the .LF, .LB, and .LBA files are not extended one extent at a time.

154 Data Servers, Databases, and Database Objects Guide

When all space in a single container in an SMS table space is allocated to tables,

the table space is considered full, even if space remains in other containers. You

can add containers to an SMS table space only on a database partition that does

not yet have any containers.

Note: SMS table spaces can take advantage of file-system prefetching and caching.

SMS table spaces are defined using the MANAGED BY SYSTEM option on the

CREATE DATABASE command, or on the CREATE TABLESPACE statement. You

must consider two key factors when you design your SMS table spaces:

v Containers for the table space.

You must specify the number of containers that you want to use for your table

space. It is very important to identify all the containers you want to use, because

you cannot add or delete containers after an SMS table space is created. In a

partitioned database environment, when a new database partition is added to

the database partition group for an SMS table space, the ALTER TABLESPACE

statement can be used to add containers to the new database partition.

Each container used for an SMS table space identifies an absolute or relative

directory name. Each of these directories can be located on a different file system

(or physical disk). The maximum size of the table space can be estimated by:

 number of containers * (maximum file system size

 supported by the operating system)

This formula assumes that there is a distinct file system mapped to each

container, and that each file system has the maximum amount of space available.

In practice, this may not be the case, and the maximum table space size may be

much smaller. There are also SQL limits on the size of database objects, which

may affect the maximum size of a table space.

Note: Care must be taken when defining the containers. If there are existing files

or directories on the containers, an error (SQL0298N) is returned.

v Extent size for the table space.

The extent size can be specified only when the table space is created. Because it

cannot be changed later, it is important to select an appropriate value for the

extent size.

If you do not specify the extent size when creating a table space, the database

manager will create the table space using the default extent size, defined by the

dft_extent_sz database configuration parameter. This configuration parameter is

initially set based on information provided when the database is created. If the

dft_extent_sz parameter is not specified on the CREATE DATABASE command,

the default extent size will be set to 32.

To choose appropriate values for the number of containers and the extent size for

the table space, you must understand:

v The limitation that your operating system imposes on the size of a logical file

system.

For example, some operating systems have a 2 GB limit. Therefore, if you want a

64 GB table object, you will need at least 32 containers on this type of system.

When you create the table space, you can specify containers that reside on

different file systems and, as a result, increase the amount of data that can be

stored in the database.

v How the database manager manages the data files and containers associated

with a table space.

Chapter 9. Table spaces 155

The first table data file (SQL00002.DAT) is created in the first container specified

for the table space, and this file is allowed to grow to the extent size. After it

reaches this size, the database manager writes data to SQL00002.DAT in the next

container. This process continues until all of the containers contain SQL00002.DAT

files, at which time the database manager returns to the first container. This

process (known as striping) continues through the container directories until a

container becomes full (SQL0289N), or no more space can be allocated from the

operating system (disk full error). Striping applies to the block map files

(SQLnnnnn.BKM), to index objects, as well as other objects used to store table

data.

Note: The SMS table space is full as soon as any one of its containers is full.

Thus, it is important to have the same amount of space available to each

container.

To help distribute data across the containers more evenly, the database manager

determines which container to use first by taking the table identifier

(SQL00002.DAT in the above example) and factoring into account the number of

containers. Containers are numbered sequentially, starting at 0.

Database managed space

In a DMS (database managed space) table space, the database manager controls the

storage space.

The storage model consists of a limited number of devices or files whose space is

managed by the database manager. The database administrator decides which

devices and files to use, and manages the space on those devices and files. The

table space is essentially an implementation of a special purpose file system

designed to best meet the needs of the database manager.

DMS table spaces are different from SMS table spaces in that space for DMS table

spaces is allocated when the table space is created. For SMS table spaces, space is

allocated as needed. A DMS table space containing user defined tables and data

can be defined as a regular or large table space that stores any table data or index

data.

When designing your DMS table spaces and containers, you should consider the

following:

v The database manager uses striping to ensure an even distribution of data across

all containers. This writes the data evenly across all containers in the table space,

placing the extents for tables in round-robin fashion across all containers. DB2

striping is recommended when writing data into multiple containers. If you

choose to implement disk striping along with DB2 striping, the extent size of the

table space and the strip size of the disk should be identical.

v The maximum size of a regular table space is 512 GB for 32 KB pages. The

maximum size of a large table space is 16 TB. See SQL and XML limits for the

maximum size of regular table spaces for other page sizes.

v Unlike SMS table spaces, the containers that make up a DMS table space do not

need to be the same size; however, this is not normally recommended, because it

results in uneven striping across the containers, and sub-optimal performance. If

any container is full, DMS table spaces use available free space from other

containers.

v Because space is pre-allocated, it must be available before the table space can be

created. When using device containers, the device must also exist with enough

space for the definition of the container. Each device can have only one

container defined on it. To avoid wasted space, the size of the device and the

156 Data Servers, Databases, and Database Objects Guide

size of the container should be equivalent. If, for example, the device is allocated

with 5 000 pages, and the device container is defined to allocate 3 000 pages,

2 000 pages on the device will not be usable.

v By default, one extent in every container is reserved for overhead. Only full

extents are used, so for optimal space management, you can use the following

formula to determine an appropriate size to use when allocating a container:

 extent_size * (n + 1)

where extent_size is the size of each extent in the table space, and n is the

number of extents that you want to store in the container.

v The minimum size of a DMS table space is five extents. Attempting to create a

table space smaller than five extents will result in an error (SQL1422N).

– Three extents in the table space are reserved for overhead.

– At least two extents are required to store any user table data. (These extents

are required for the regular data for one table, and not for any index, long

field or large object data, which require their own extents.)
v Device containers must use logical volumes with a “character special interface,”

not physical volumes.

v You can use files instead of devices with DMS table spaces. The default table

space attribute - NO FILE SYSTEM CACHING in Viper 2 allows files to perform

close to devices with the advantage of not requiring to set up devices. For more

information, see “Table spaces without file system caching” on page 176.

v If your workload involves LOBs or LONG VARCHAR data, you may derive

performance benefits from file system caching.

Note: LOBs and LONG VARCHARs are not buffered by the database manager’s

buffer pool.

v Some operating systems allow you to have physical devices greater than 2 GB in

size. You should consider dividing the physical device into multiple logical

devices, so that no container is larger than the size allowed by the operating

system.

Note: Like SMS table spaces, DMS file containers can take advantage of file system

prefetching and caching. However, DMS table spaces that use raw device

containers cannot.

There are two container options when working with DMS table spaces: raw

devices and files. When working with file containers, the database manager

allocates the entire container at table space creation time. A result of this initial

allocation of the entire table space is that the physical allocation is typically, but

not guaranteed to be, contiguous even though the file system is doing the

allocation. When working with raw device containers, the database manager takes

control of the entire device and always ensures the pages in an extent are

contiguous.

When working with DMS table spaces, you should consider associating each

container with a different disk. This allows for a larger table space capacity and the

ability to take advantage of parallel I/O operations.

The CREATE TABLESPACE statement creates a new table space within a database,

assigns containers to the table space, and records the table space definition and

attributes in the catalog. When you create a table space, the extent size is defined

as a number of contiguous pages. The extent is the unit of space allocation within

a table space. Only one table or object, such as an index, can use the pages in any

Chapter 9. Table spaces 157

single extent. All objects created in the table space are allocated extents in a logical

table space address map. Extent allocation is managed through space map pages.

The first extent in the logical table space address map is a header for the table

space containing internal control information. The second extent is the first extent

of SMP for the table space. SMP extents are spread at regular intervals throughout

the table space. Each SMP extent is a bit map of the extents from the current SMP

extent to the next SMP extent. The bit map is used to track which of the

intermediate extents are in use.

The next extent following the SMP is the object table for the table space. The object

table is an internal table that tracks which user objects exist in the table space and

where their first extent map page (EMP) extent is located. Each object has its own

EMPs which provide a map to each page of the object that is stored in the logical

table space address map. Figure 8 shows how extents are allocated in a logical

table space address map.

DMS table space maps:

A table space map is the database manager’s internal representation of a DMS

table space that describes the logical to physical conversion of page locations in a

table space. This topic describes why a table space map is useful, and where the

information in a table space map comes from.

Figure 8. Logical table space address map

158 Data Servers, Databases, and Database Objects Guide

In a partitioned database, pages in a DMS table space are logically numbered from

0 to (N-1), where N is the number of usable pages in the table space.

The pages in a DMS table space are grouped into extents, based on the extent size,

and from a table space management perspective, all object allocation is done on an

extent basis. That is, a table might use only half of the pages in an extent but the

whole extent is considered to be in use and owned by that object. By default, one

extent is used to hold the container tag, and the pages in this extent cannot be

used to hold data. However, if the DB2_USE_PAGE_CONTAINER_TAG registry

variable is turned on, only one page is used for the container tag.

Figure 9 shows the logical address map for a DMS table space.

 Within the table space address map there are two types of map pages: extent map

pages (EMP) and space map pages.

Object
Table EMP

Header Reserved

First Extent of SMPs

First Extent of Object Table

Extent Map for T1

First Extent of T1 Data Pages

Second Extent of T1 Data Pages

Extent Map for T2

First Extent of T2 Data Pages

Third Extent of T1 Data Pages

Second Extent of SMPs

. . .

. . .

. . .

. . .

. . .

. . .

1

2

3

4

5

6

7

8

0

31968

Table space (logical) address map

16
20
32

Maps object-relative
extent number within T1
to table space-relative
page number

Maps object-relative
extent number within T2
to table space-relative
page number

Indirect Entries

Double Indirect Entries

Object ID for the table

First EMP

T1 12

T2 24

Figure 9. DMS table spaces

Chapter 9. Table spaces 159

The object table is an internal relational table that maps an object identifier to the

location of the first EMP extent in the table. This EMP extent, directly or indirectly,

maps out all extents in the object. Each EMP contains an array of entries. Each

entry maps an object-relative extent number to a table space-relative page number

where the object extent is located. Direct EMP entries directly map object-relative

addresses to table space-relative addresses. The last EMP page in the first EMP

extent contains indirect entries. Indirect EMP entries map to EMP pages which

then map to object pages. The last 16 entries in the last EMP page in the first EMP

extent contain double-indirect entries.

The extents from the logical table-space address map are striped in round-robin

order across the containers associated with the table space.

Because space in containers is allocated by extent, pages that do not make up a full

extent will not be used. For example, if you have a 205-page container with an

extent size of 10, one extent will be used for the tag, 19 extents will be available for

data, and the five remaining pages are wasted.

If a DMS table space contains a single container, the conversion from logical page

number to physical location on disk is a straightforward process where pages 0, 1,

2, are located in that same order on disk.

It is also a fairly straightforward process when there is more than one container

and each of the containers is the same size. The first extent in the table space,

containing pages 0 to (extent size - 1), is located in the first container, the second

extent will be located in the second container, and so on. After the last container,

the process repeats starting back at the first container. This cyclical process keeps

the data balanced.

For table spaces containing containers of different sizes, a simple approach that

proceeds through each container in turn cannot be used as it will not take

advantage of the extra space in the larger containers. This is where the table space

map comes in – it dictates how extents are positioned within the table space,

ensuring that all of the extents in the physical containers are available for use.

Note: In the following examples, the container sizes do not take the size of the

container tag into account. The container sizes are very small, and are just used for

the purpose of illustration, they are not recommended container sizes. The

examples show containers of different sizes within a table space, but you are

advised to use containers of the same size.

Example 1:

There are 3 containers in a table space, each container contains 80 usable pages,

and the extent size for the table space is 20. Each container therefore has 4 extents

(80 / 20) for a total of 12 extents. These extents are located on disk as shown in

Figure 10 on page 161.

160 Data Servers, Databases, and Database Objects Guide

To see a table space map, take a table space snapshot using the snapshot monitor.

In Example 1, where the three containers are of equal size, the table space map

looks like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 11 239 0 3 0 3 (0, 1, 2)

A range is the piece of the map in which a contiguous range of stripes all contain

the same set of containers. In Example 1, all of the stripes (0 to 3) contain the same

set of 3 containers (0, 1, and 2) and therefore this is considered a single range.

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,

Maximum extent number addressed by the range, Maximum page number

addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container

list. These will be explained in more detail for Example 2.

This table space can also be diagrammed as shown in Figure 11 on page 162, in

which each vertical line corresponds to a container, each horizontal line is called a

stripe, and each cell number corresponds to an extent.

Container 0

Extent 0

Extent 3

Extent 6

Extent 9

Container 1

Extent 1

Extent 4

Extent 7

Extent 10

Container 2

Extent 2

Extent 5

Extent 8

Extent 11

Table space

Figure 10. Table space with three containers and 12 extents

Chapter 9. Table spaces 161

Example 2:

There are two containers in the table space: the first is 100 pages in size, the

second is 50 pages in size, and the extent size is 25. This means that the first

container has four extents and the second container has two extents. The table

space can be diagrammed as shown in Figure 12.

 Stripes 0 and 1 contain both of the containers (0 and 1) but stripes 2 and 3 only

contain the first container (0). Each of these sets of stripes is a range. The table

space map, as shown in a table space snapshot, looks like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 3 99 0 1 0 2 (0, 1)

 [1] [0] 0 5 149 2 3 0 1 (0)

There are four extents in the first range, and therefore the maximum extent

number addressed in this range (Max Extent) is 3. Each extent has 25 pages and

therefore there are 100 pages in the first range. Since page numbering also starts at

0, the maximum page number addressed in this range (Max Page) is 99. The first

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Containers

Stripes

Figure 11. Table space with three containers and 12 extents, with stripes highlighted

0

0 1

1

2

3

Extent 0 Extent 1

Extent 3Extent 2

Extent 4

Extent 5

Containers

Stripes

Range 0

Range 1

Figure 12. Table space with two containers, with ranges highlighted

162 Data Servers, Databases, and Database Objects Guide

stripe (Start Stripe) in this range is 0 and the last stripe (End Stripe) in the range is

stripe 1. There are two containers in this range and those are 0 and 1. The stripe

offset is the first stripe in the stripe set, which in this case is 0 because there is only

one stripe set. The range adjustment (Adj.) is an offset used when data is being

rebalanced in a table space. (A rebalance may occur when space is added or

dropped from a table space.) When a rebalance is not taking place, this is always 0.

There are two extents in the second range and because the maximum extent

number addressed in the previous range is 3, the maximum extent number

addressed in this range is 5. There are 50 pages (2 extents * 25 pages) in the second

range and because the maximum page number addressed in the previous range is

99, the maximum page number addressed in this range is 149. This range starts at

stripe 2 and ends at stripe 3.

Automatic storage table spaces

When you create a table space in a database that is not enabled for automatic

storage, you must specify the MANAGED BY SYSTEM or MANAGED BY

DATABASE clause. Using these clauses results in the creation of a system-managed

space (SMS) table space or database-managed space (DMS) table space,

respectively. You must provide an explicit list of containers in both cases.

If a database is enabled for automatic storage, other choices exist: you can specify

the MANAGED BY AUTOMATIC STORAGE clause or omit the MANAGED BY

clause (which implies the use of automatic storage) . You do not need to provide

container definitions in this case because the database manager assigns the

containers automatically.

Following are some examples of statements that create automatic storage table

spaces:

 CREATE TABLESPACE TS1

 CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE

 CREATE TEMPORARY TABLESPACE TEMPTS

 CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE

 CREATE LONG TABLESPACE LONGTS

Although the automatic storage table space type appears to be a different table

space type, it is really just an extension of the existing SMS and DMS types. If you

create a table space as a regular or large table space, it is created as a DMS table

space with file containers. If you create a table space as a user or system temporary

table space, it is created as an SMS table space with directory containers.

Note: This behavior might change in future versions of the database manager.

The names associated with these containers have the following format:

 storage path/instance name/NODE####/database name/T#######/C#######.EXT

where:

storage path

Is a storage path associated with the database

instance name

Is the instance under which the database was created

database name

Is the name of the database

Chapter 9. Table spaces 163

NODE####

Is the database partition number (for example, NODE0000)

T#######

Is the table space ID (for example, T0000003)

C#######

Is the container ID (for example, C0000012)

EXT Is an extension based on the type of data being stored:

CAT System catalog table space

TMP System temporary table space

UTM User temporary table space

USR User or regular table space

LRG Large table space

 Differences between regular and large automatic storage table spaces

and DMS table spaces

Regular and large automatic storage table spaces are created as DMS table spaces,

and all of the rules and behaviors associated with DMS table spaces

apply.However, there are differences with respect to how storage is managed, as

shown in the following table:

 Table 45. Differences between managing non-automatic storage and automatic storage

table spaces

Non-automatic storage Automatic storage

You must explicitly provide a list of

containers when creating the table space.

You cannot provide a list of containers when

creating the table space; instead, the

database manager automatically assigns and

allocates containers.

Automatic resizing of table spaces is off

(AUTORESIZE is set to NO) by default.

Automatic resizing of table spaces is on

(AUTORESIZE is set to YES) by default.

You cannot use the INITIALSIZE clause to

specify the initial size for the table space.

You can use the INITIALSIZE clause to

specify the initial size for the table space.

You can perform container operations using

the ALTER TABLESPACE statement

(specifying ADD, DROP, BEGIN NEW

STRIPE SET, and so on).

You cannot perform container operations

because the database manager manages

space.

You can use a redirected restore operation to

redefine the containers associated with the

table space.

You cannot use a redirected restore

operation to redefine the containers

associated with the table space because the

database manager manages space.

As mentioned in the previous table, when you create a regular or large automatic

storage table space, you can specify an initial size as part of the CREATE

TABLESPACE statement, as shown in the following example:

 CREATE TABLESPACE TS1 INITIALSIZE 100 M

If you do not specify an initial size, the database manager uses a default value of

32 megabytes.

164 Data Servers, Databases, and Database Objects Guide

To create a table space with a given size, the database manager creates file

containers within the storage paths. If there is an uneven distribution of space

among the paths, containers might be created with different sizes. As a result, it is

important that all of the storage paths have a similar amount of free space on

them.

If you enable automatic resizing for a table space, as space is used within it, the

database manager automatically extends existing containers and adds new ones

(using stripe sets). Whether containers are extended or added, no rebalancing takes

place.

Temporary table spaces

System temporary table spaces hold temporary data required by the database

manager while performing operations such as sorts or joins.

These types of operations require extra space to process the results set. A database

must have at least one system temporary table space with the same page size as

the catalog table space; by default, one system temporary table space called

TEMPSPACE1 is created at database creation time. IBMTEMPGROUP is the default

database partition group for this table space.

User temporary table spaces hold temporary data from tables created with a

DECLARE GLOBAL TEMPORARY TABLE statement. To allow the definition of

declared temporary tables, at least one user temporary table space should be

created with the appropriate USE privileges. USE privileges are granted using the

GRANT statement. A user temporary table space is not created by default at

database creation time.

It is recommended that you define a single temporary table space with a page size

equal to the page size used in the majority of your user table spaces. This should

be suitable for typical environments and workloads. However, it can be

advantageous to experiment with different temporary table space configurations

and workloads. The following points should be considered:

v Temporary tables are in most cases accessed in batches and sequentially. That is,

a batch of rows are inserted, or a batch of sequential rows are fetched. Therefore,

a larger page size typically results in better performance, because fewer logical

and physical page requests are required to read a given amount of data.

v When reorganizing a table using a temporary table space, the page size of the

temporary table space must match that of the table. For this reason, you should

ensure that there are temporary table spaces defined for each different page size

used by existing tables that you may reorganize using a temporary table space.

You can also reorganize without a temporary table space by reorganizing the

table directly in the same table space. Of course, this type of reorganization

requires that there be extra space in the table space(s) of the table for the

reorganization process.

v When using SMS system temporary table spaces, you may want to consider

using the registry variable DB2_SMS_TRUNC_TMPTABLE_THRESH. When

dropped, files created for the system temporary tables are truncated to a size of

0. The DB2_SMS_TRUNC_TMPTABLE_THRESH can be used to avoid visiting

the file systems and potentially leave the files at a non-zero size to avoid the

performance cost of repeated extensions and truncations of the files.

v In general, when temporary table spaces of different page sizes exist, the

optimizer will choose the temporary table space whose buffer pool can hold the

most number of rows (in most cases that means the largest buffer pool). In such

cases, it is often wise to assign an ample buffer pool to one of the temporary

Chapter 9. Table spaces 165

table spaces, and leave any others with a smaller buffer pool. Such a buffer pool

assignment will help ensure efficient utilization of main memory. For example, if

your catalog table space uses 4 KB pages, and the remaining table spaces use 8

KB pages, the best temporary table space configuration may be a single 8 KB

temporary table space with a large buffer pool, and a single 4 KB table space

with a small buffer pool.

v There is generally no advantage to defining more than one temporary table

space of any single page size.

Ensuring system temporary table spaces page sizes meet requirements:

The use of larger record identifiers (RID) increases the row size in your result sets

from queries or positioned updates. If the row size in your result sets is close to

the maximum row length limit for your existing system temporary table spaces,

you might need to create a system temporary table space with a larger page size.

 Prerequisite

 Ensure that you have SYSCTRL or SYSADM authority to create a system

temporary table space if required.

Procedure

To ensure that the maximum page size of your system temporary table space is

large enough for your queries or positioned updates:

1. Determine the maximum row size in your result sets from queries or positioned

updates. Monitor your queries or calculate the maximum row size using the

DDL statement that you used to create your tables.

2. List your table spaces using the LIST TABLESPACES command, as shown in

the following example:

 db2 LIST TABLESPACES SHOW DETAIL

...

 Tablespace ID = 1

 Name = TEMPSPACE1

 Type = System managed space

 Contents = System Temporary data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 10

 Useable pages = 10

 Used pages = 10

 Free pages = Not applicable

 High water mark (pages) = Not applicable

 Page size (bytes) = 4096

 Extent size (pages) = 32

 Prefetch size (pages) = 320

 Number of containers = 10

...

You can identify the system temporary table spaces in the output by looking

for table spaces whose Contents fields have a value of System Temporary data.

Take note of the page size for each of your system temporary table spaces and

the page size of the table spaces where the tables referenced in the queries or

updates were created.

3. Check whether the largest row size in your result sets fits into your system

temporary table space page size:

 maximum_row_size > maximum_row_length - 8 bytes (structure overhead in

 single partition)

 maximum_row_size > maximum_row_length - 16 bytes (structure overhead in DPF)

166 Data Servers, Databases, and Database Objects Guide

where maximum_row_size is the maximum row size for your result sets, and

maximum_row_length is the maximum length allowed based on the largest

page size of all of your system temporary table spaces. Review the ″SQL and

XML limits″ in SQL Reference, Volume 1 to determine the maximum row length

per table space page size.

If the maximum row size is less than the calculated value then your queries

will run in the same manner that they did in DB2 UDB Version 8, and you do

not need to continue with this task.

4. Create a system temporary table space that is at least one page size larger than

the table space page size where the tables were created if you do not already

have a system temporary table with that page size. For example, on the

Windows operating systems, if you created your table in a table space with 4

KB page size , create the additional system temporary table space using an 8

KB page size:

 db2 CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp

 PAGESIZE 8K

 MANAGED BY SYSTEM

 USING (’d:\tmp_tbsp’,’e:\tmp_tbsp’)

If your table space page size is 32 KB, you can reduce the information that you

are selecting in your queries or split the queries to fit in the system temporary

table space page. For example, if you select all columns from a table, you can

instead select only the columns that you really required or a substring of

certain columns to avoid exceeding the page size limitation.

Comparison of SMS and DMS table spaces

There are a number of trade-offs to consider when determining which type of table

space you should use to store your data.

Advantages of an SMS Table Space:

v Space is not allocated by the system until it is required

v Creating a table space requires less initial work, because you do not have to

predefine the containers

v Indexes created on range partitioned data can be stored in a different table space

than the table data

Advantages of a DMS Table Space:

v The size of a table space can be increased by adding or extending containers,

using the ALTER TABLESPACE statement. Existing data can be automatically

rebalanced across the new set of containers to retain optimal I/O efficiency.

v A table can be split across multiple table spaces, based on the type of data being

stored:

– Long field (LF) and large object (LOB) data

– Indexes

– Regular table data
You might want to separate your table data for performance reasons, or to

increase the amount of data stored for a table. For example, if you are using

large table spaces with a 4-KB page size, you can have a table with 2 TB of

regular table data, a separate table space with 2 TB of index data, and another

separate table space with 2 TB of long data. If these three types of data were

stored in one table space instead, the total space would be limited to 2 TB. Using

larger page sizes allows you to store even more data. See the related links for

the complete list of database manager page size limits.

Chapter 9. Table spaces 167

v Indexes created on range partitioned data can be stored in a different table space

than the table data.

v The location of the data on the disk can be controlled, if this is allowed by the

operating system.

v In general, a well-tuned set of DMS table spaces will outperform SMS table

spaces.

Note: For performance-sensitive applications, particularly those involving a large

number of insert operations, it is suggested that you use DMS table spaces.

Also, placement of data can differ on the two types of table spaces. For example,

consider the need for efficient table scans: it is important that the pages in an

extent are physically contiguous. With SMS, the file system of the operating system

decides where each logical file page is physically placed. The pages might be

allocated contiguously depending on the level of other activity on the file system

and the algorithm used to determine placement. With DMS, however, the database

manager can ensure the pages are physically contiguous because it interfaces with

the disk directly.

In general, small personal databases are easiest to manage with SMS table spaces.

On the other hand, for large, growing databases you will probably only want to

use SMS table spaces for the temporary table spaces and catalog table space, and

separate DMS table spaces, with multiple containers, for each table. In addition,

you will probably want to store long field (LF) data and indexes on their own table

spaces.

If you choose to use DMS table spaces with device containers, you must be willing

to tune and administer your environment.

SMS and DMS workload considerations

The primary type of workload being managed by the database manager in your

environment can affect your choice of what table space type to use, and what page

size to specify.

An online transaction processing (OLTP) workload is characterized by transactions

that need random access to data, often involve frequent insert or update activity

and queries which usually return small sets of data. Given that the access is

random, and involves one or a few pages, prefetching is less likely to occur.

DMS table spaces using device containers perform best in this situation. DMS table

spaces with file containers, or SMS table spaces, are also reasonable choices for

OLTP workloads if maximum performance is not required. Note that using DMS

table spaces with file containers, where FILE SYSTEM CACHING is turned off, can

perform at a level comparable to DMS raw table space containers. With little or no

sequential I/O expected, the settings for the EXTENTSIZE and the PREFETCHSIZE

parameters on the CREATE TABLESPACE statement are not important for I/O

efficiency. However, setting a sufficient number of page cleaners, using the

chngpgs_thresh configuration parameter, is important.

A query workload is characterized by transactions that need sequential or partially

sequential access to data, which usually return large sets of data. A DMS table

space using multiple device containers (where each container is on a separate disk)

offers the greatest potential for efficient parallel prefetching. The value of the

PREFETCHSIZE parameter on the CREATE TABLESPACE statement should be set

to the value of the EXTENTSIZE parameter, multiplied by the number of device

containers. Alternatively, you can specify a prefetch size of -1 and the database

168 Data Servers, Databases, and Database Objects Guide

manager automatically chooses an appropriate prefetch size. This allows the

database manager to prefetch from all containers in parallel. If the number of

containers changes, or there is a need to make prefetching more or less aggressive,

the PREFETCHSIZE value can be changed accordingly by using the ALTER

TABLESPACE statement.

A reasonable alternative for a query workload is to use files, if the file system has

its own prefetching. The files can be either of DMS type using file containers, or of

SMS type. Note that if you use SMS, you need to have the directory containers

map to separate physical disks to achieve I/O parallelism.

Your goal for a mixed workload is to make single I/O requests as efficient as

possible for OLTP workloads, and to maximize the efficiency of parallel I/O for

query workloads.

The considerations for determining the page size for a table space are as follows:

v For OLTP applications that perform random row read and write operations, a

smaller page size is usually preferable because it does not waste buffer pool

space with unwanted rows.

v For decision-support system (DSS) applications that access large numbers of

consecutive rows at a time, a larger page size is usually better because it reduces

the number of I/O requests that are required to read a specific number of rows.

v Larger page sizes may allow you to reduce the number of levels in the index.

v Larger pages support rows of greater length.

v On default 4 KB pages, tables are restricted to 500 columns, while the larger

page sizes (8 KB, 16 KB, and 32 KB) support 1012 columns.

v The maximum size of the table space is proportional to the page size of the table

space.

SMS and DMS device considerations

There are a few options to consider when choosing to use file system files versus

devices for table space containers: the buffering of data and whether to use LOB or

LOG data.

v Buffering of data

Table data read from disk is usually available in the database buffer pool. In

some cases, a data page might be freed from the buffer pool before the

application has actually used the page, particularly if the buffer pool space is

required for other data pages. For table spaces that use system managed space

(SMS) or database managed space (DMS) file containers, file system caching

above can eliminate I/O that would otherwise have been required.

Table spaces using database managed space (DMS) device containers do not use

the file system or its cache. As a result, you might increase the size of the

database buffer pool and reduce the size of the file system cache to offset the

fact DMS table spaces that use device containers do not use double buffering.

If system-level monitoring tools show that I/O is higher for a DMS table space

using device containers compared to the equivalent SMS table space, this

difference might be because of double buffering.

v Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database manager

does not cache the data in its buffers, Each time an application needs one of

these pages, the database manager must retrieve it from disk. However, if LOB

or LONG data is stored in SMS or DMS file containers, file system caching

might provide buffering and, as a result, better performance.

Chapter 9. Table spaces 169

Because system catalogs contain some LOB columns, you should keep them in

SMS table spaces or in DMS-file table spaces.

Considerations when choosing table spaces for your tables

When determining how to map tables to tables spaces, you should consider the

distribution of your tables, the amount and type of data in the table, and

administritive issues.

The distribution of your tables

 At a minimum, you should ensure that the table space you choose is in a

database partition group with the distribution you want.

The amount of data in the table

 If you plan to store many small tables in a table space, consider using SMS

for that table space. The DMS advantages with I/O and space management

efficiency are not as important with small tables. The SMS advantages, and

only when needed, are more attractive with smaller tables. If one of your

tables is larger, or you need faster access to the data in the tables, a DMS

table space with a small extent size should be considered.

You may wish to use a separate table space for each very large table, and

group all small tables together in a single table space. This separation also

allows you to select an appropriate extent size based on the table space

usage.

The type of data in the table

 You may, for example, have tables containing historical data that is used

infrequently; the end-user may be willing to accept a longer response time

for queries executed against this data. In this situation, you could use a

different table space for the historical tables, and assign this table space to

less expensive physical devices that have slower access rates.

Alternatively, you may be able to identify some essential tables for which

the data has to be readily available and for which you require fast response

time. You may want to put these tables into a table space assigned to a fast

physical device that can help support these important data requirements.

Using DMS table spaces, you can also distribute your table data across

three different table spaces: one for index data; one for large object (LOB)

and long field (LF) data; and one for regular table data. This allows you to

choose the table space characteristics and the physical devices supporting

those table spaces to best suit the data. For example, you could put your

index data on the fastest devices you have available, and as a result, obtain

significant performance improvements. If you split a table across DMS

table spaces, you should consider backing up and restoring those table

spaces together if roll-forward recovery is enabled. SMS table spaces do

not support this type of data distribution across table spaces.

Administrative issues

 Some administrative functions can be performed at the table space level

instead of the database or table level. For example, taking a backup of a

table space instead of a database can help you make better use of your

time and resources. It allows you to frequently back up table spaces with

large volumes of changes, while only occasionally backing up tables spaces

with very low volumes of changes.

170 Data Servers, Databases, and Database Objects Guide

You can restore a database or a table space. If unrelated tables do not share

table spaces, you have the option to restore a smaller portion of your

database and reduce costs.

A good approach is to group related tables in a set of table spaces. These

tables could be related through referential constraints, or through other

defined business constraints.

If you need to drop and redefine a particular table often, you may want to

define the table in its own table space, because it is more efficient to drop a

DMS table space than it is to drop a table.

Automatic re-sizing of table spaces

Enabling automatic storage table spaces for automatic resizing allows the database

manager to handle the full file system condition automatically by adding a new

stripe set of containers.

Two table space types can exist within a database system: system-managed space

(SMS) and database-managed space (DMS). The containers associated with SMS

table spaces are file system directories, and the files within these directories grow

as the objects in the table space grow. .The files grow until a file system limit is

reached for one of the containers or until the table space size limit of the database

is reached (see SQL and XML limits).

DMS table spaces are made up of file containers or raw device containers, and

their sizes are set when the containers are assigned to the table space. The table

space is considered to be full when all of the space within the containers has been

used. However, unlike for SMS table spaces, you can add or extend containers

using the ALTER TABLESPACE statement, allowing more storage space to be given

to the table space. DMS table spaces also have a feature called auto-resize: as space

is consumed in a DMS table space that can be automatically resized, the database

system might extend the table space by one or more file containers. SMS table

spaces have similar capabilities for growing automatically, but the term auto-resize

is used exclusively for DMS.

Automatic resizing of table spaces has the following implications:

v Table spaces that are enabled for automatic resizing have metadata associated

with them that is not recognized by Version 8.2.1 or earlier releases. Any attempt

to use a database with table spaces enabled for automatic resizing with these

versions results in a failure (most likely, returning an SQL0980C or SQL0902C

error). An error might be sent if you try to connect to a database or try to restore

a database. If you enabled table spaces for automatic resizing, disabling the

auto-resize feature for these table spaces removes the metadata, allowing the

database to be used with Version 8.2.1 or earlier releases.

v If you disable the auto-resize feature, the values that are associated with

INCREASESIZE and MAXSIZE are lost if you subsequently enable this feature.

v You cannot this feature for table spaces that use raw device containers, and you

cannot add raw device containers to a table space that can be automatically

resized. Attempting these operations results in errors (SQL0109N). If you need to

add raw device containers, you must disable the feature first.

v A redirected restore operation cannot change the container definitions to include

a raw device container. Attempting this kind of operation results in an error

(SQL0109N).

v Because the maximum size limits how the database manager automatically

increases a table space, the maximum size also limits how you can increase a

Chapter 9. Table spaces 171

table space. That is, when you perform an operation that adds space to a table

space, the resulting size must be less than or equal to the maximum size. You

can add space by using the ADD, EXTEND, RESIZE, or BEGIN NEW STRIPE

SET clause of the ALTER TABLESPACE statement.

Enabling and disabling the auto-resize feature

By default, the auto-resize feature is not enabled for a DMS table space. The

following statement creates a DMS table space without enabling auto-resize:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

To enable the auto-resize feature, specify the AUTORESIZE YES clause for the

CREATE TABLESPACE statement:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M) AUTORESIZE YES

You can also enable or disable the auto-resize feature after creating a DMS table

space by using ALTER TABLESPACE statement with the AUTORESIZE clause:

 ALTER TABLESPACE DMS1 AUTORESIZE YES

 ALTER TABLESPACE DMS1 AUTORESIZE NO

Two other attributes, MAXSIZE and INCREASESIZE, are associated with

auto-resize table spaces:

Maximum size (MAXSIZE)

The MAXSIZE clause of the CREATE TABLESPACE statement defines the

maximum size for the table space. For example, the following statement creates a

table space that can grow to 100 megabytes (per database partition if the database

has multiple database partitions):

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES MAXSIZE 100 M

The MAXSIZE NONE clause specifies that there is no maximum limit for the table

space. The table space can grow until a file system limit or table space limit is

reached (see SQL and XML limits). If you do not specify the MAXSIZE clause,

there is no maximum limit when the auto-resize feature is enabled.

Use the ALTER TABLESPACE statement to change the value of MAXSIZE for a

table space that has auto-resize already enabled, as shown in the following

examples:

 ALTER TABLESPACE DMS1 MAXSIZE 1 G

 ALTER TABLESPACE DMS1 MAXSIZE NONE

If you specify a maximum size, the actual value that the database manager

enforces might be slightly smaller than the value specified because the database

manager attempts to keep container growth consistent.

Increase size (INCREASESIZE)

The INCREASESIZE clause of the CREATE TABLESPACE statement defines the

amount of space used to increase the table space when there are no free extents

172 Data Servers, Databases, and Database Objects Guide

within the table space but a request for one or more extents was made. You can

specify the value as an explicit size or as a percentage, as shown in the following

examples:

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES INCREASESIZE 5 M

 CREATE TABLESPACE DMS1 MANAGED BY DATABASE

 USING (FILE ’/db2files/DMS1’ 10 M)

 AUTORESIZE YES INCREASESIZE 50 PERCENT

A percentage value means that the amount by which to increase, as specified by

the INCREASESIZE value, is calculated every time that the table space needs to

grow and that growth is based on a percentage of the table space size at that time.

For example, if the table space is 20 MB in size and the INCREASESIZE value is

50% , the table space grows by 10 MB the first time (to a size of 30 MB) and by 15

MB the next time.

If you do not specify the INCREASESIZE clause when you enable the auto-resize

feature, the database manager determines an appropriate value to use, which

might change over the life of the table space. As with AUTORESIZE and

MAXSIZE, you can change the value of INCREASESIZE using the ALTER

TABLESPACE statement.

If you specify a size increase, the actual value that the database manager will use

might be slightly different than the value that you provide. This adjustment in the

value used is done to keep growth consistent across the containers in the table

space.

How table spaces are extended

For table spaces that can be automatically resized, the database manager attempts

to increase the size of the table space when all of the existing space has been used

and a request for more space is made. The database manager determines which of

the containers can be extended in the table space so that a rebalance does not

occur. The database manager extends only those containers that exist within the

last range of the table space map (the map describes the storage layout for the

table space) and extends them by an equal amount.

For example, consider the following statement:

 CREATE TABLESPACE TS1 MANAGED BY DATABASE

 USING (FILE ’C:\TS1CONT’ 1000, FILE ’D:\TS1CONT’ 1000,

 FILE ’E:\TS1CONT’ 2000, FILE ’F:\TS1CONT’ 2000)

 EXTENTSIZE 4

 AUTORESIZE YES

Keeping in mind that the database manager uses a small portion (one extent) of

each container for metadata, following is the table space map that is created for the

table space based on the CREATE TABLESPACE statement. (The table space map is

part of the output from a table space snapshot.)

 Table space map:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 995 3983 0 248 0 4 (0,1,2,3)

 [1] [0] 0 1495 5983 249 498 0 2 (2,3)

Chapter 9. Table spaces 173

The table space map shows that the containers with an identifier of 2 or 3

(E:\TS1CONT and F:\TS1CONT) are the only containers in the last range of the map.

Therefore, when the database manager automatically extends the containers in this

table space, it extends only those two containers.

Note: If you create a table space with all of the containers having the same size,

there is only one range in the map. In such a case, the database manager extends

each of the containers. To prevent restricting extensions to only a subset of the

containers, create a table space with containers of equal size.

As discussed previously, you can specify a limit on the maximum size of the table

space, or you can specify a value of NONE, which does not limit growth. If you

specify NONE or no limit, the upper limit is defined by the file system limit or by

the table space limit; the database manager does not attempt to increase the table

space size past the upper limit. However, before that limit is reached, an attempt to

increase a container might fail due to a full file system. In this case, the database

manager does not increase the table space size any further and returns an

out-of-space condition to the application. There are two ways to resolve this

situation:

v Increase the amount of space available on the file system that is full.

v Perform container operations on the table space such that the container in

question is no longer in the last range of the table space map. The easiest way to

do this is to add a new stripe set to the table space with a new set of containers,

and the best practice is to ensure that the containers are all the same size. You

can add new stripe sets by using the ALTER TABLESPACE statement with the

BEGIN NEW STRIPE SET clause. By adding a new stripe set, a new range is

added to the table space map. With a new range, the containers that the

database manager automatically attempts to extend are within this new stripe

set, and the older containers remain unchanged.

Note: When a user-initiated container operation is pending or a subsequent

rebalance is in progress, the auto-resize feature is disabled until the operation is

committed or the rebalance is complete.

For example, for DMS table spaces, suppose that a table space has three containers

that are the same size and that each resides on its own file system. As work is

done on the table space, the database manager automatically extends these three

containers. Eventually, one of the file systems becomes full, and the corresponding

container can no longer grow. If more free space cannot be made available on the

file system, you must perform container operations on the table space such that the

container in question is no longer in the last range of the table space map. In this

case, you could add a new stripe set specifying two containers (one on each of the

file systems that still has space), or you could specify more or fewer containers

(again, making sure that each container being added is the same size and that

there is sufficient room for growth on each of the file systems being used). When

the database manager attempts to increase the size of the table space, it now

attempts to extend the containers in this new stripe set instead of attempting to

extend the older containers.

Monitoring

Information about automatic resizing for DMS table spaces is displayed as part of

the table space monitor snapshot output. The increase size and maximum size

values are included in the output, as shown in the following sample:

174 Data Servers, Databases, and Database Objects Guide

Auto-resize enabled = Yes or No

 Current tablespace size (bytes) = ###

 Maximum tablespace size (bytes) = ### or NONE

 Increase size (bytes) = ###

 Increase size (percent) = ###

 Time of last successful resize = DD/MM/YYYY HH:MM:SS.SSSSSS

 Last resize attempt failed = Yes or No

Automatic prefetchsize adjustment after adding or dropping

containers

The database manager is set up so that the automatic prefetch size is the default

for any table spaces created using Version 8.2 (and later).

You should not have to worry about remembering to adjust the prefetch size after

you add or drop containers. The default for the database manager to automatically

adjust the prefetch size removes this worry from you. If there is the possibility that

you might forget to update the prefetch size of a table space after either adding or

dropping containers, do not change the default but allow the prefetch size to be

determined by the database manager automatically. If you do not allow automatic

prefetch size adjustment by changing the default and you forget to update the

prefetch size, then there might be a noticeable degradation in the performance of

the database.

There are three ways not to have the prefetch size of the table space set at

AUTOMATIC:

v Create the table space with a specific prefetch size. Manually choosing a value

for the prefetch size indicates that you will remember to adjust, if necessary, the

prefetch size whenever there is an adjustment in the number of containers

associated with the table space.

v Do not use prefetch size when creating the table space, and have the

dft_prefetch_sz database configuration parameter set to a non-AUTOMATIC

value. The database manager checks this parameter when there is no explicit

mention of the prefetch size when creating the table space. If a value other than

AUTOMATIC is found, then that value is what is used as the default prefetch

size. And you will need to remember to adjust, if necessary, the prefetch size

whenever there is an adjustment in the number of containers associated with the

table space.

v Alter the prefetch size manually by using the ALTER TABLESPACE statement.

Use of DB2_PARALLEL_IO

 Prefetch requests are broken down into several smaller prefetch requests

based on the parallelism of a table space, and before the requests are

submitted to the prefetch queues. The DB2_PARALLEL_IO registry

variable is used to define the number of physical spindles per container as

well as influencing the parallel I/O on the table space. With parallel I/O

off, the parallelism of a table space is equal to the number of containers.

With parallel I/O on, the parallelism of a table space is equal to the

number of container multiplied by the value given in the

DB2_PARALLEL_IO registry variable. (Another way of saying this is, the

parallelism of the table space is equal to the prefetch size divided by the

extent size of the table space.)

Here are several examples of how the DB2_PARALLEL_IO registry

variable influences the prefetch size. (Assume all of the following table

spaces have been defined with an AUTOMATIC prefetch size.)

Chapter 9. Table spaces 175

v DB2_PARALLEL_IO=*

– All table spaces will use the default where the number of spindles

equals 6 for each container. The prefetch size will be 6 times larger

with parallel I/O on.

– All table spaces will have parallel I/O on. The prefetch request is

broken down to several smaller requests, each equal to the prefetch

size divided by the extent size (or equal to the number of containers

times the number of spindles).
v DB2_PARALLEL_IO=*:3

– All table spaces will use 3 as the number of spindles per container.

– All table spaces will have parallel I/O on.
v DB2_PARALLEL_IO=*:3,1:1

– All table spaces will use 3 as the number of spindles per container

except for table space 1 which will use 1.

– All table spaces will have parallel I/O on.

Table spaces without file system caching

The recommended method of enabling or disabling non-buffered I/O on UNIX,

Linux, and Windows is at the table space level.

This allows you to enable or disable non-buffered I/O on specific table spaces

while avoiding any dependency on the physical layout of the database. It also

allows the database manager to determine which I/O is best suited for each file,

buffered or non-buffered.

The NO FILE SYSTEM CACHING clause is used to enable non-buffered I/O, thus

disabling file caching for a particular table space. Once enabled, based on platform,

the database manager automatically determines which of the Direct I/O (DIO) or

Concurrent I/O (CIO) is to be used. Given the performance improvement in CIO,

the database manager uses it whenever it is supported; there is no user interface to

specify which one is to be used.

In order to obtain the maximum benefits of non-buffered I/O, it might be

necessary to increase the size of buffer pools. However, if the self-tuning memory

manager is enabled and the buffer pool size is set to AUTOMATIC, the database

manager will self-tune the buffer pool size for optimal performance. Note that this

feature is not available prior to Version 9.

To disable or enable file system caching, specify the NO FILE SYSTEM CACHING

or the FILE SYSTEM CACHING clause in the CREATE TABLESPACE or ALTER

TABLESPACE statement, respectively. The default setting is used if neither clause

is specified. In the case of ALTER TABLESPACE, existing connections to the

database must be terminated before the new caching policy takes effect.

Note: If an attribute is altered from the default to either FILE SYSTEM CACHING

or NO FILE SYSTEM CACHING, there is no mechanism to change it back to the

default.

This method of enabling and disabling file system caching provides control of the

I/O mode, buffered or non-buffered, at the table space level.

176 Data Servers, Databases, and Database Objects Guide

Note: I/O access to long field (LF) data and large object (LOB) data will be

buffered for both SMS and DMS containers, regardless of the setting for the table

space in question.

The GET SNAPSHOT FOR TABLESPACES command can be used to query the

current setting of the file system caching clause. For example, the following is a

snippet from the DB2 GET SNAPSHOT FOR TABLEPSACES ON db1 output:

 Tablespace name = USERSPACE1

 Tablespace ID = 2

 Tablespace Type = database managed space

 Tablespace Content Type = All permanent data. Large table space.

 Tablespace Page size (bytes) = 4096

 Tablespace Extent size (pages) = 32

 Automatic Prefetch size enabled = Yes

 Buffer pool ID currently in use = 1

 Buffer pool ID next startup = 1

 Using automatic storage = Yes

 Auto-resize enabled = Yes

 File system caching = No

 Tablespace State = 0x’00000000’

 Detailed explanation:

 Normal

 Tablespace Prefetch size (pages) = 32

 Total number of pages = 256

Alternate methods to enable/disable non-buffered I/O on UNIX, Linux, and

Windows

Some UNIX platforms support the disabling of file system caching at a file

system level by using the MOUNT option. Consult your operating system

documentation for more information. However, it is important to

understand the difference between disabling file system caching at the

table space level and at the file system level. At the table space level, the

database manager controls which files are to be opened with and without

file system caching. At the file system level, every file residing on that

particular file system will be opened without file system caching. Some

platforms such as AIX have certain requirements before you can use this

feature, such as serialization of read and write access. While the database

manager adheres to these requirements, if the target file system contains

non-DB2 files, before enabling this feature, consult your operating system

documentation for any requirements.

Note: The now-deprecated registry variable DB2_DIRECT_IO, introduced

in Version 8.1 FixPak 4, enables no file system caching for all SMS

containers except for long field data, large object data, and temporary table

spaces on AIX JFS2. Setting this registry variable in Version 9.1 or later is

equivalent to altering all table spaces, SMS and DMS, with the NO FILE

SYSTEM CACHING clause. However, using DB2_DIRECT_IO is not

recommended, and this variable will be removed in a later release. Instead,

you should enable NO FILE SYSTEM CACHING at the table space level.

Alternate methods to enable/disable non-buffered I/O on Windows

In previous releases, the performance registry variable DB2NTNOCACHE

could be used to disable file system caching for all DB2 files in order to

make more memory available to the database so that the buffer pool or

sortheap can be increased. In Version 9.5, DB2NTNOCACHE is deprecated

and might be removed in a future release. The difference between

DB2NTNOCACHE and using the NO FILE SYSTEM CACHING clause is

the ability to disable caching for selective table spaces. Starting in Version

9.5, since the NO FILE SYSTEM CACHING is used as the default, unless

Chapter 9. Table spaces 177

FILE SYSTEM CACHING is specified explicitly, there is no need to set this

registry variable to disable file system caching across the entire instance if

the instance includes only newly created table spaces.

Performance considerations

Non-buffered I/O is essentially used for performance improvements. In

some cases, however, performance degradation might be due to, but is not

limited to, a combination of a small buffer pool size and a small file system

cache. Suggestions for improving performance include:

v If self-tuning memory manager is not enabled, enable it and set the

buffer pool size to automatic using ALTER BUFFERPOOL <name> SIZE

AUTOMATIC. This allows the database manager to self-tune the buffer pool

size.

v If self-tuning memory manager is not to be enabled, increase the buffer

pool size in increments of 10 or 20 percent until performance is

improved.

v If self-tuning memory manager is not to be enabled, alter the table space

to use “FILE SYSTEM CACHING”. This essentially disables the

non-buffered I/O and reverts back to buffered I/O for container access.

Performance tuning should be tested in a controlled environment before

implementing it on the production system.

When choosing to use file system files versus devices for table space containers,

you should consider file system caching, which is performed as follows:

v For DMS file containers (and all SMS containers), the operating system might

cache pages in the file system cache (unless the table space is defined with NO

FILESYSTEM CACHING).

v For DMS device container table spaces, the operating system does not cache

pages in the file system cache.

Using CIO/DIO as the default file system caching mechanism for

new table space containers

The default I/O mechanism for newly created table space containers on most AIX,

Linux, Solaris, and Windows platforms is CIO/DIO (concurrent I/O or Direct I/O).

This default provides an increase of throughput over buffered I/O on heavy

transaction processing workloads and rollbacks.

The FILE SYSTEM CACHING or NO FILE SYSTEM CACHING attribute specifies

whether or not I/O operations are to be cached at the file system level:

v FILE SYSTEM CACHING specifies that all I/O operations in the target table

space are to be cached at the file system level.

v NO FILE SYSTEM CACHING specifies that all I/O operations are to bypass the

file system-level cache.

Note: When using DMS table spaces, you should use a separate table space for

long field (LF) data and for large object (LOB) data so that the regular table spaces

are not affected. (For SMS table spaces, the CIO/DIO (NO FILE SYSTEM

CACHING) attribute is disabled.)

The following interfaces contain the FILE SYSTEM CACHING attribute:

v CREATE TABLESPACE statement

v CREATE DATABASE command

v sqlecrea() API (using the sqlfscaching field of the SQLETSDESC structure)

178 Data Servers, Databases, and Database Objects Guide

When this attribute is not specified on the CREATE TABLESPACE statement, or on

the CREATE DATABASE command, the database manager processes the request

using the default behaviour based on the platform and file system type. See “File

system caching configurations” for the exact behavior. For the sqlecrea() API, a

value of 0x2 for the field sqlfscaching field, instructs the database manager to use

the default setting.

Note that the following tools currently interpret the value for FILE SYSTEM

CACHING attribute:

v GET SNAPSHOT FOR TABLESPACES command

v db2pd –tablespaces command

v db2look –d <dbname> –l command

For db2look, if the FILE SYSTEM CACHING attribute is not specified, the output

does not contain this attribute.

Example

Suppose that the database and all related table space containers reside on an AIX

JFS file system and the following statement was issued:

 DB2 CREATE TABLESPACE JFS2

In previous versions, if the attribute was not specified, the database manager

would have used buffered I/O (FILE SYSTEM CACHING) for the I/O mechanism;

with Version 9.5, the database manager uses NO FILE SYSTEM CACHING.

File system caching configurations

The operating system, by default, caches file data that is read from and written to

disk.

A typical read operation involves physical disk access to read the data from disk

into the file system cache, and then to copy the data from the cache to the

application buffer. Similarly, a write operation involves physical disk access to copy

the data from the application buffer into the file system cache, and then to copy it

from the cache to the physical disk. This behavior of caching data at the file system

level is reflected in the FILE SYSTEM CACHING clause of the CREATE

TABLESPACE statement. Since the database manager manages its own data

caching using buffer pools, the caching at the file system level is not needed if the

size of the buffer pool is tuned appropriately.

Note: The database manager already prevents caching of most DB2 data, except

temporary data and LOBs on AIX, by invalidating the pages from the cache.

In some cases, caching at the file system level and in the buffer pools causes

performance degradation because of the extra CPU cycles required for the double

caching. To avoid this double caching, most file systems have a feature that

disables caching at the file system level. This is generically referred to as

non-buffered I/O. On UNIX, this feature is commonly known as Direct I/O (or DIO).

On Windows, this is equivalent to opening the file with the

FILE_FLAG_NO_BUFFERING flag. In addition, some file systems such as IBM

JFS2 or Symantec VERITAS VxFS also support enhanced Direct I/O, that is, the

higher-performing Concurrent I/O (CIO) feature. The database manager supports

this feature with the NO FILE SYSTEM CACHING table space clause. When this is

set, the database manager automatically takes advantage of CIO on file systems

Chapter 9. Table spaces 179

where this feature exists. This feature might help to reduce the memory

requirements of the file system cache, thus making more memory available for

other uses.

Prior to Version 9.5, the keyword FILE SYSTEM CACHING was implied if neither

NO FILE SYSTEM CACHING nor FILE SYSTEM CACHING was specified. With

Version 9.5, if neither keyword is specified, the default, NO FILE SYSTEM

CACHING, is used. This change affects only newly created table spaces. Existing

table spaces created prior to Version 9.5 are not affected. This change applies to

AIX, Linux, Solaris, and Windows with the following exceptions, where the default

behavior remains to be FILE SYSTEM CACHING:

v AIX JFS

v Solaris non-VxFS

v Linux for System z™

v All SMS temporary table space files

v Long Field (LF) and Large object (LOB) data files in SMS permanent table space

files

To override the default setting, specify FILE SYSTEM CACHING or NO FILE

SYSTEM CACHING.

Supported configurations

Table 46 shows the supported configuration for using table spaces without file

system caching. It also indicates: (a) whether DIO or enhanced DIO will be used in

each case, and (b) the default behavior when neither NO FILE SYSTEM CACHING

nor FILE SYSTEM CACHING is specified for a table space based on the platform

and file system type.

 Table 46. Supported configurations for table spaces without file system caching

Platforms File system type and

minimum level required

DIO or CIO requests

submitted by the database

manager when NO FILE

SYSTEM CACHING is

specified

Default behavior when

neither NO FILE SYSTEM

CACHING nor FILE

SYSTEM CACHING is

specified

AIX 5.3+ Journal File System (JFS) DIO FILE SYSTEM CACHING

(See Note 1.)

AIX 5.3+ Concurrent Journal File

System (JFS2)

CIO NO FILE SYSTEM

CACHING

AIX 5.3+ VERITAS Storage

Foundation for DB2 4.1

(VxFS)

CIO NO FILE SYSTEM

CACHING

HP-UX 11i (PA-RISC) VERITAS Storage

Foundation 4.1 (VxFS)

CIO FILE SYSTEM CACHING

HP-UX Version 11i v2

(Itanium®)

VERITAS Storage

Foundation 4.1 (VxFS)

CIO FILE SYSTEM CACHING

Solaris 9 UNIX File System (UFS) DIO FILE SYSTEM CACHING

(See Note 2.)

Solaris 10 UNIX File System (UFS) CIO FILE SYSTEM CACHING

(See Note 2.)

Solaris 9, 10 VERITAS Storage

Foundation for DB2 4.1

(VxFS)

CIO NO FILE SYSTEM

CACHING

180 Data Servers, Databases, and Database Objects Guide

Table 46. Supported configurations for table spaces without file system caching (continued)

Platforms File system type and

minimum level required

DIO or CIO requests

submitted by the database

manager when NO FILE

SYSTEM CACHING is

specified

Default behavior when

neither NO FILE SYSTEM

CACHING nor FILE

SYSTEM CACHING is

specified

Linux distributions SLES 9+

and RHEL 4+

(on these architectures: x86,

x86_64, IA64, POWER™)

ext2, ext3, reiserfs DIO NO FILE SYSTEM

CACHING

Linux distributions SLES 9+

and RHEL 4+

(on these architectures: x86,

x86_64, IA64, POWER)

VERITAS Storage

Foundation 4.1 (VxFS)

CIO NO FILE SYSTEM

CACHING

Linux distributions SLES 9+

and RHEL 4+

(on this architecture:

zSeries®)

ext2, ext3 or reiserfs on a

Small Computer System

Interface (SCSI) disks using

Fibre Channel Protocol

(FCP)

DIO FILE SYSTEM CACHING

Windows No specific requirement,

works on all DB2

supported file systems

DIO NO FILE SYSTEM

CACHING

Note:

1. On AIX JFS, FILE SYSTEM CACHING is the default.

2. On Solaris UFS, NO FILE SYSTEM CACHING is the default.

3. The VERITAS Storage Foundation for the database manager might have

different operating system prerequisites. The platforms listed above are the

supported platforms for the current release. Consult the VERITAS Storage

Foundation for DB2 support for prerequisite information.

4. If SFDB2 5.0 is used instead of the above minimum levels, the SFDB2 5.0 MP1

RP1 release must be used. This release includes fixes that are specific to the 5.0

version.

5. If you do not want the database manager to choose NO FILE SYSTEM

CACHING for the default setting, specify FILE SYSTEM CACHING in the

relevant SQL, commands, or APIs.

Examples

Example 1: By default, this new table space will be created using non-buffered

I/O; the NO FILE SYSTEM CACHING clause is implied:

 CREATE TABLESPACE table space name ...

Example 2: On the following statement, the NO FILE SYSTEM CACHING clause

indicates that file system level caching will be OFF for this particular table space:

 CREATE TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 3: The following statement disables file system level caching for an

existing table space:

 ALTER TABLESPACE table space name ... NO FILE SYSTEM CACHING

Chapter 9. Table spaces 181

Example 4: The following statement enables file system level caching for an

existing table space:

 ALTER TABLESPACE table space name ... FILE SYSTEM CACHING

Table space extent sizes

The extent size for a table space represents the number of pages of table data that

will be written to a container before data will be written to the next container.

When selecting an extent size, you should consider:

v The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As the

table is populated and an extent becomes full, a new extent is allocated. DMS

table space container storage is prereserved which means that new extents are

allocated until the container is completely used.

Space in SMS table spaces is allocated to a table either one extent at a time or

one page at a time. As the table is populated and an extent or page becomes

full, a new extent or page is allocated until all of the extents or pages in the file

system are used. When using SMS table spaces, multipage file allocation is

allowed. Multipage file allocation allows extents to be allocated instead of a

page at a time.

Multipage file allocation is enabled by default. The value of the multipage_alloc

database configuration parameter will indicate if multipage file allocation is

enabled.

Note: Multipage file allocation is not applicable to temporary table spaces.

A table is made up of the following separate table objects:

– A data object. This is where the regular column data is stored.

– An index object. This is where all indexes defined on the table are stored.

– A long field (LF) data object. This is where long field data, if your table has

one or more LONG columns, is stored.

– Two large object (LOB) data objects. If your table has one or more LOB

columns, they are stored in these two table objects:

- One table object for the LOB data

- A second table object for metadata describing the LOB data.
– A block map object for multidimensional clustering (MDC) tables.

– An extra XDA object, which stores XML documents.

Each table object is stored separately, and each object allocates new extents as

needed. Each DMS table object is also paired with a metadata object called an

extent map, which describes all of the extents in the table space that belong to

the table object. Space for extent maps is also allocated one extent at a time.

Therefore, the initial allocation of space for an object in a DMS table space is two

extents. (The initial allocation of space for an object in an SMS table space is one

page.)

If you have many small tables in a DMS table space, you may have a relatively

large amount of space allocated to store a relatively small amount of data. In

such a case, you should specify a small extent size. On the other hand, if you

have a very large table that has a high growth rate, and you are using a DMS

table space with a small extent size, you could have unnecessary overhead

related to the frequent allocation of additional extents.

v The type of access to the tables.

182 Data Servers, Databases, and Database Objects Guide

If access to the tables includes many queries or transactions that process large

quantities of data, prefetching data from the tables may provide significant

performance benefits.

v The minimum number of extents required.

If there is not enough space in the containers for five extents of the table space,

the table space will not be created.

Table space page sizes

When designing table spaces, you need to consider page sizes.

You can use a 4K, 8K, 16K or 32K page size limit. Each of these page sizes also has

maximums for each of the table space types that you must adhere to.

Table 47 shows the page size-specific limits for the different types of table spaces:

 Table 47. Table space page size-specific limits

Table space type

(in gigabytes)

4K page size

limit

8K page size

limit

16K page size

limit

32K page size

limit

SMS table spaces 64 128 256 512

DMS table spaces

(regular)

64 128 256 512

DMS table spaces

(large)

2048 4096 8192 16 384

Automatic storage

table spaces

(regular)

64 128 256 512

Automatic storage

table spaces (large)

2048 4096 8192 16 384

Temporary table

spaces

64 128 256 512

For database and index page size limits for the different types of table spaces, see

the database manager page size-specific limits in SQL and XML limits.

To ensure that the maximum page size of your system temporary table space is

large enough for your queries or positioned updates, see “Ensuring system

temporary table space page sizes meet requirements” in Migration Guide.

Table space disk I/O

The type and design of your table space determines the efficiency of the I/O

performed against that table space.

You should understand the following concepts before considering other issues

concerning table space design and use:

Big-block reads

A read where several pages (usually an extent) are retrieved in a single

request. Reading several pages at once is more efficient than reading each

page separately.

Prefetching

The reading of pages in advance of those pages being referenced by a

query. The overall objective is to reduce response time. This can be

achieved if the prefetching of pages can occur asynchronously to the

Chapter 9. Table spaces 183

execution of the query. The best response time is achieved when either the

CPU or the I/O subsystem is operating at maximum capacity.

Page cleaning

As pages are read and modified, they accumulate in the database buffer

pool. When a page is read in, it is read into a buffer pool page. If the

buffer pool is full of modified pages, one of these modified pages must be

written out to the disk before the new page can be read in. To prevent the

buffer pool from becoming full, page cleaner agents write out modified

pages to guarantee the availability of buffer pool pages for future read

requests.

 Whenever it is advantageous to do so, the database manager performs big-block

reads. This typically occurs when retrieving data that is sequential or partially

sequential in nature. The amount of data read in one read operation depends on

the extent size — the bigger the extent size, the more pages can be read at one

time.

Sequential prefetching performance can be further enhanced if pages can be read

from disk into contiguous pages within a buffer pool. Since buffer pools are

page-based by default, there is no guarantee of finding a set of contiguous pages

when reading in contiguous pages from disk. Block-based buffer pools can be used

for this purpose because they not only contain a page area, they also contain a

block area for sets of contiguous pages. Each set of contiguous pages is named a

block and each block contains a number of pages referred to as blocksize. The size

of the page and block area, as well as the number of pages in each block is

configurable.

How the extent is stored on disk affects I/O efficiency. In a DMS table space using

device containers, the data tends to be contiguous on disk, and can be read with a

minimum of seek time and disk latency. If files are being used, a large file that has

been pre-allocated for use by a DMS table space also tends to be contiguous on

disk, especially if the file was allocated in a clean file space. However, the data

may have been broken up by the file system and stored in more than one location

on disk. This occurs most often when using SMS table spaces, where files are

extended one page at a time, making fragmentation more likely.

You can control the degree of prefetching by changing the PREFETCHSIZE option

on the CREATE TABLESPACE or ALTER TABLESPACE statements, or you can set

the prefetch size to AUTOMATIC to have the database manager automatically

choose the best size to use. (The default value for all table spaces in the database is

set by the dft_prefetch_sz database configuration parameter.) The PREFETCHSIZE

parameter tells the database manager how many pages to read whenever a

prefetch is triggered. By setting PREFETCHSIZE to be a multiple of the

EXTENTSIZE parameter on the CREATE TABLESPACE statement, you can cause

multiple extents to be read in parallel. (The default value for all table spaces in the

database is set by the dft_extent_sz database configuration parameter.) The

EXTENTSIZE parameter specifies the number of 4 KB pages that will be written to

a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set the

PREFETCHSIZE to be three times the EXTENTSIZE, the database manager can do

a big-block read from each device in parallel, thereby significantly increasing I/O

throughput. This assumes that each device is a separate physical device, and that

the controller has sufficient bandwidth to handle the data stream from each device.

184 Data Servers, Databases, and Database Objects Guide

Note that the database manager may have to dynamically adjust the prefetch

parameters at run time based on query speed, buffer pool utilization, and other

factors.

Some file systems use their own prefetching method (such as the Journaled File

System on AIX). In some cases, file system prefetching is set to be more aggressive

than the database manager prefetching. This may cause prefetching for SMS and

DMS table spaces with file containers to appear to outperform prefetching for DMS

table spaces with devices. This is misleading, because it is likely the result of the

additional level of prefetching that is occurring in the file system. DMS table

spaces should be able to outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean buffer

pool pages must exist. For example, there could be a parallel prefetch request that

reads three extents from a table space, and for each page being read, one modified

page is written out from the buffer pool. The prefetch request may be slowed

down to the point where it cannot keep up with the query. Page cleaners should

be configured in sufficient numbers to satisfy the prefetch request.

Defining initial table spaces

When a database is created, three table spaces are defined: (1) SYSCATSPACE for

the system catalog tables, (2) TEMPSPACE1 for system temporary tables created

during database processing, and (3) USERSPACE1 for user-defined tables and

indexes.

Note: When you first create a database no user temporary table space is created.

Unless otherwise specified, the three default table spaces are managed by

Automatic Storage.

Using the CREATE DATABASE command, you can specify the page size for the

default buffer pool and the initial table spaces. This default also represents the

default page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE

statements. If you do not specify the page size when creating the database, the

default page size is 4 KB.

To define initial table spaces using the command line, enter:

 CREATE DATABASE <name>

 CATALOG TABLESPACE

 MANAGED BY SYSTEM USING (’<path>’)

 EXTENTSIZE <value> PREFETCHSIZE <value>

 USER TABLESPACE

 MANAGED BY DATABASE USING (FILE’<path>’ 5000,

 FILE’<path>’ 5000)

 EXTENTSIZE <value> PREFETCHSIZE <value>

 TEMPORARY TABLESPACE

 MANAGED BY SYSTEM USING (’<path>’)

 WITH "<comment>"

If you do not want to use the default definition for these table spaces, you might

specify their characteristics on the CREATE DATABASE command. For example,

the following command could be used to create your database on Windows:

 CREATE DATABASE PERSONL

 CATALOG TABLESPACE

 MANAGED BY SYSTEM USING (’d:\pcatalog’,’e:\pcatalog’)

 EXTENTSIZE 16 PREFETCHSIZE 32

 USER TABLESPACE

Chapter 9. Table spaces 185

MANAGED BY DATABASE USING (FILE’d:\db2data\personl’ 5000,

 FILE’d:\db2data\personl’ 5000)

 EXTENTSIZE 32 PREFETCHSIZE 64

 TEMPORARY TABLESPACE

 MANAGED BY SYSTEM USING (’f:\db2temp\personl’)

 WITH "Personnel DB for BSchiefer Co"

In this example, the definition for each of the initial table spaces is explicitly

provided. You only need to specify the table space definitions for those table

spaces for which you do not want to use the default definition.

Note: When working in a partitioned database environment, you cannot create or

assign containers to specific database partitions. First, you must create the database

with default user and temporary table spaces. Then you should use the CREATE

TABLESPACE statement to create the required table spaces. Finally, you can drop

the default table spaces.

The coding of the MANAGED BY phrase on the CREATE DATABASE command

follows the same format as the MANAGED BY phrase on the CREATE

TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot

drop the catalog table space SYSCATSPACE, or create another one; and there must

always be at least one system temporary table space with a page size of 4 KB. You

can create other system temporary table spaces. You also cannot change the page

size or the extent size of a table space after it has been created.

Attaching DMS direct disk access devices

When working with containers to store data, the database manager supports direct

disk access (raw I/O).

This type of support allows you to attach a direct disk access (raw) device to any

DB2 database system.

You must know the device or file names of the containers you are going to

reference when creating your table spaces. You must know the amount of space

associated with each device or file name that is to be allocated to the table space.

You will need the correct permissions to read and write to the container.

The physical and logical methods for identifying direct disk access differs based on

operating system:

v On the Windows operating systems:

To specify a physical hard drive, use the following syntax:

 \\.\PhysicalDriveN

where N represents one of the physical drives in the system. In this case, N

could be replaced by 0, 1, 2, or any other positive integer:

 \\.\PhysicalDrive5

To specify a logical drive, that is, an unformatted database partition, use the

following syntax:

 \\.\N:

186 Data Servers, Databases, and Database Objects Guide

where N: represents a logical drive letter in the system. For example, N: could

be replaced by E: or any other drive letter. To overcome the limitation imposed

by using a letter to identify the drive, you can use a globally unique identifier

(GUID) with the logical drive.

For Windows, there is a new method for specifying DMS raw table space

containers. Volumes (that is, basic disk database partitions or dynamic volumes)

are assigned a globally unique identifier (GUID) when they are created. The

GUID can be used as a device identifier when specifying the containers in a

table space definition. The GUIDs are unique across systems which means that

in a multi-partition database, GUIDs are different for each database partition

even if the disk partition definitions are the same.

A tool called db2listvolumes.exe is available (only on Windows operating systems)

to make it easy to display the GUIDs for all the disk volumes defined on a

Windows system. This tool creates two files in the current directory where the

tool is run. One file, called volumes.xml, contains information about each disk

volume encoded in XML for easy viewing on any XML-enabled browser. The

second file, called tablespace.ddl, contains the required syntax for specifying

table space containers. This file must be updated to fill in the remaining

information needed for a table space definition. The db2listvolumes command

does not require any command line arguments.

v On Linux and UNIX platforms, a logical volume can appear to users and

applications as a single, contiguous, and extensible disk volume. Although it

appears this way, it can reside on noncontiguous physical database partitions or

even on more than one physical volume. The logical volume must also be

contained within a single volume group. There is a limit of 256 logical volumes

per volume group. There is a limit of 32 physical volumes per volume group.

You can create additional logical volumes using the mklv command. This

command allows you to specify the name of the logical volume and to define its

characteristics, including the number and location of logical partitions to allocate

for it.

After you create a logical volume, you can change its name and characteristics

with the chlv command, and you can increase the number of logical partitions

allocated to it with the extendlv command. The default maximum size for a

logical volume at creation is 512 logical partitions, unless specified to be larger.

The chlv command is used to override this limitation.

Within AIX, the set of operating system commands, library subroutines, and

other tools that allow you to establish and control logical volume storage is

called the Logical Volume Manager (LVM). The LVM controls disk resources by

mapping data between a simpler and flexible logical view of storage space and

the actual physical disks.

For more information on the mklv and other logical volume commands, and the

LVM, refer to AIX 5L Version 5.2 System Management Concepts: Operating System

and Devices.

Configuring and setting up DMS direct disk access (Linux)

When working with containers to store data, the database manager supports direct

disk (raw) access using the block device interface (that is, raw I/O).

Before setting up raw I/O on Linux, one or more free IDE or SCSI disk database

partitions are required. In order to reference the disk partition when creating the

table space, you must know the name of the disk partition and the amount of

space associated with the disk partition that is to be allocated to the table space.

Chapter 9. Table spaces 187

The following information should be used when working in a Linux environment.

On Linux/390, the database manager does not support direct disk access devices.

To configure or raw I/O on Linux:

In this example, the raw database partition to be used is /dev/sda5. It should not

contain any valuable data.

1. Calculate the number of 4 096-byte pages in this database partition, rounding

down if necessary. For example:

fdisk /dev/sda

Command (m for help): p

Disk /dev/sda: 255 heads, 63 sectors, 1106 cylinders

Units = cylinders of 16065 * 512 bytes

 Table 48. Linux raw I/O calculations.

Device boot Start End Blocks Id System

/dev/sda1 1 523 4200997 83 Linux

/dev/sda2 524 1106 4682947+ 5 Extended

/dev/sda5 524 1106 4682947 83 Linux

Command (m for help): q

The number of pages in /dev/sda5 is:

num_pages = floor((4682947 * 1024)/4096)

num_pages = 1170736

2. Create the table space by specifying the disk partition name. For example:

CREATE TABLESPACE dms1

MANAGED BY DATABASE

USING (DEVICE ’/dev/sda5’ 1170736)

3. To specify logical partitions by using junction points (or volume mount points),

mount the RAW partition to another NTFS-formatted volume as a junction

point, then specify the path to the junction point on the NTFS volume as the

container path. For example:

CREATE TABLESPACE TS4

 MANAGED BY DATABASE USING (DEVICE ’C:\JUNCTION\DISK_1’ 10000,

 DEVICE ’C:\JUNCTION\DISK_2’ 10000)

The database manager first queries the partition to see whether there is a file

system R on it; if yes, the partition is not treated as a RAW device, and

performs normal file system I/O operations on the partition.

Table spaces on raw devices are also supported for all other page sizes supported

by the database manager.

Prior to Version 9, direct disk access using a raw controller utility on Linux was

used. This method is now deprecated, and its use is discouraged. The database

manager will still allow you to use this method if the Linux operating system still

supports it, however, there will be a message in the db2diag.log that will indicate

that its use is deprecated.

The prior method would have required you to ″bind″ a disk partition to a raw

controller, then specify that raw controller to the database manager using the

CREATE TABLESPACE command:

188 Data Servers, Databases, and Database Objects Guide

CREATE TABLESPACE dms1

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/raw/raw1’ 1170736)

Creating table spaces

For non-automatic storage table spaces you must know the device or file names of

the containers that you will reference when creating your table spaces.

In addition, you must know the space associated with each device or file name

that you will allocate to the table space. For automatic storage table spaces, the

database manager assigns containers to the table space based on the storage paths

associated with the database.

Table spaces establish the relationship between the physical storage devices used

by your database system and the logical containers or tables used to store data.

Creating a table space within a database assigns containers to the table space and

records its definitions and attributes in the database system catalog. You can then

create tables within this table space. You must know the device or file names of the

containers that you will reference when creating your table spaces. In addition, you

must know the space associated with each device or file name that you will

allocate to the table space.

When you create a database, three initial table spaces are created. The page size for

the three initial table spaces is based on the default that is established or accepted

when you use the CREATE DATABASE command. This default also represents the

default page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE

statements. If you do not specify the page size when creating the database, the

default page size is 4 KB. If you do not specify the page size when creating a table

space, the default page size is the one set when you created the database.

To create an SMS table space using the command line, enter:

 CREATE TABLESPACE <NAME>

 MANAGED BY SYSTEM

 USING (’<path>’)

To create a DMS table space using the command line, enter:

 CREATE TABLESPACE <NAME>

 MANAGED BY DATABASE

 USING (FILE’<path>’ <size>)

To create an automatic storage table space using the command line, enter either of

the following statements:

 CREATE TABLESPACE <NAME>

 CREATE TABLESPACE <NAME>

 MANAGED BY AUTOMATIC STORAGE

The following SQL statement creates an SMS table space on Windows using three

directories on three separate drives:

 CREATE TABLESPACE RESOURCE

 MANAGED BY SYSTEM

 USING (’d:\acc_tbsp’, ’e:\acc_tbsp’, ’f:\acc_tbsp’)

The following SQL statement creates a DMS table space using two file containers,

each with 5,000 pages:

Chapter 9. Table spaces 189

CREATE TABLESPACE RESOURCE

 MANAGED BY DATABASE

 USING (FILE’d:\db2data\acc_tbsp’ 5000,

 FILE’e:\db2data\acc_tbsp’ 5000)

In the previous two examples, explicit names are provided for the containers.

However, if you specify relative container names, the container is created in the

subdirectory created for the database.

When creating table space containers, the database manager creates any directory

levels that do not exist. For example, if a container is specified as

/project/user_data/container1, and the directory /project does not exist, then the

database manager creates the directories /project and /project/user_data.

Any directories created by the database manager are created with PERMISSION

700. This means that only the instance owner has read, write, and execute access.

Because only the instance owner has this access, the following scenario might

occur when multiple instances are being created:

v Using the same directory structure as described above, suppose that directory

levels /project/user_data do not exist.

v user1 creates an instance, named user1 by default, then creates a database, and

then creates a table space with /project/user_data/container1 as one of its

containers.

v user2 creates an instance, named user2 by default, then creates a database, and

then attempts to create a table space with /project/user_data/container2 as one

of its containers.

Because the database manager created directory levels /project/user_data with

PERMISSION 700 from the first request, user2 does not have access to these

directory levels and cannot create container2 in those directories. In this case, the

CREATE TABLESPACE operation fails.

There are two methods to resolve this conflict:

1. Create the directory /project/user_data before creating the table spaces and set

the permission to whatever access is needed for both user1 and user2 to create

the table spaces. If all levels of table space directory exist, the database

manager does not modify the access.

2. After user1 creates /project/user_data/container1, set the permission of

/project/user_data to whatever access is needed for user2 to create the table

space.

If a subdirectory is created by the database manager, it might also be deleted by

the database manager when the table space is dropped.

The assumption in this scenario is that the table spaces are not associated with a

specific database partition group. The default database partition group

IBMDEFAULTGROUP is used when the following parameter is not specified in the

statement:

 IN database_partition_group_name

The following SQL statement creates a DMS table space on an AIX system using

three logical volumes of 10 000 pages each, and specifies their I/O characteristics:

 CREATE TABLESPACE RESOURCE

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/rdblv6’ 10000,

190 Data Servers, Databases, and Database Objects Guide

DEVICE ’/dev/rdblv7’ 10000,

 DEVICE ’/dev/rdblv8’ 10000)

 OVERHEAD 7.5

 TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist, and the

instance owner and the SYSADM group must be able to write to them.

The following example creates a DMS table space on a database partition group

called ODDGROUP in a UNIX multi-partition database. ODDGROUP must be

previously created with a CREATE DATABASE PARTITION GROUP statement. In

this case, the ODDGROUP database partition group is assumed to be made up of

database partitions numbered 1, 3, and 5. On all database partitions, use the device

/dev/hdisk0 for 10 000 4 KB pages. In addition, declare a device for each database

partition of 40 000 4 KB pages.

 CREATE TABLESPACE PLANS IN ODDGROUP

 MANAGED BY DATABASE

 USING (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n1hd01’ 40000)

 ON DBPARTITIONNUM 1

 (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n3hd03’ 40000)

 ON DBPARTITIONNUM 3

 (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n5hd05’ 40000)

 ON DBPARTITIONNUM 5

The database manager can greatly improve the performance of sequential I/O

using the sequential prefetch facility, which uses parallel I/O.

You can also create a table space that uses a page size larger than the default 4 KB

size. The following SQL statement creates an SMS table space on a Linux and

UNIX system with an 8 KB page size.

 CREATE TABLESPACE SMS8K

 PAGESIZE 8192

 MANAGED BY SYSTEM

 USING (’FSMS_8K_1’)

 BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page size.

The created table space cannot be used until the buffer pool it references is

activated.

You can use the ALTER TABLESPACE statement to add, drop, or resize containers

to a DMS table space and modify the PREFETCHSIZE, OVERHEAD, and

TRANSFERRATE settings for a table space. You should commit the transaction

issuing the table space statement as soon as possible following the ALTER

TABLESPACE SQL statement to prevent system catalog contention.

Note: The PREFETCHSIZE value should be a multiple of the EXTENTSIZE value.

For example if the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or 30. You

should use the following equation to set your prefetch size manually when

creating a table space:

 prefetch size = (number of containers) X (number of physical spindles per

 container) X extent size

You should also consider letting the database manager automatically determine the

prefetch size, by setting PREFETCHSIZE to AUTOMATIC.

Chapter 9. Table spaces 191

Direct I/O (DIO) improves memory performance because it bypasses caching at

the file system level. This process reduces CPU overhead and makes more memory

available to the database instance.

Concurrent I/O (CIO) includes the advantages of DIO and also relieves the

serialization of write accesses.

DIO and CIO are supported on AIX; DIO is supported on HP-UX, Solaris, Linux,

and Windows operating systems.

The keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING are

part of the CREATE and ALTER TABLESPACE SQL statements to allow you to

specify whether DIO or CIO is to be used with each table space. When NO FILE

SYSTEM CACHING is in effect, the database manager attempts to use Concurrent

I/O (CIO) wherever possible. In cases where CIO is not supported (for example, if

JFS is used), DIO is used instead.

When you issue the CREATE TABLESPACE statement, the dropped table recovery

feature is turned on by default. This feature lets you recover dropped table data

using table space-level restore and rollforward operations. This is useful because it

is faster than database-level recovery, and your database can remain available to

users.

However, the dropped table recovery feature can have some performance impact

on forward recovery when there are many drop table operations to recover or

when the history file is very large.

You might want to disable this feature if you plan to run numerous drop table

operations, and you either use circular logging or you do not think you will want

to recover any of the dropped tables. To disable this feature, you can explicitly set

the DROPPED TABLE RECOVERY option to OFF when you issue the CREATE

TABLESPACE statement. Alternatively, you can turn off the dropped table recovery

feature for an existing table space using the ALTER TABLESPACE statement.

Creating system temporary table spaces

A system temporary table space is used to store system temporary tables.

A database must always have at least one system temporary table space

since system temporary tables can only be stored in such a table space.

 When a database is created, one of the three default table spaces defined is

a system temporary table space called ″TEMPSPACE1″.

To create another system temporary table space, use the CREATE

TABLESPACE statement. For example,

 CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp

 MANAGED BY SYSTEM

 USING (’d:\tmp_tbsp’,’e:\tmp_tbsp’)

You should have at least one table space of each page size.

The only database partition group that can be specified when creating a

system temporary table space is IBMTEMPGROUP.

Creating user temporary table spaces

User temporary table spaces are not created by default when a database is

created. If your application programs need to use temporary tables, you

need to create a user temporary table space where the temporary tables

will reside.

192 Data Servers, Databases, and Database Objects Guide

Like regular table spaces, user temporary table spaces can be created in

any database partition group other than IBMTEMPGROUP.

IBMDEFAULTGROUP is the default database partition group that is used

when creating a user temporary table.

The DECLARE GLOBAL TEMPORARY TABLE statement defines declared

temporary tables for use within a user temporary table space.

To create a user temporary table space, use the CREATE TABLESPACE

statement:

 CREATE USER TEMPORARY TABLESPACE usr_tbsp

 MANAGED BY DATABASE

 USING (FILE ’d:\db2data\user_tbsp’ 5000,

 FILE ’e:\db2data\user_tbsp’ 5000)

Altering table spaces

To alter a table space using the command line, use the ALTER TABLESPACE

statement.

You can alter SMS, DMS, and automatic storage containers. You can also rename a

table space, and switch it from offline to online mode.

Altering SMS table spaces

For SMS table spaces, you can only add one containers to single-partitioned

databases, or one or more containers to partitioned databases.

The process for doing this is the same as described in: “Adding or extending DMS

containers.”

Altering DMS table spaces

For DMS table spaces, you can add, extend, rebalance, resize, drop or reduce

containers.

Adding or extending DMS containers

You can increase the size of a DMS table space (that is, one created with the

MANAGED BY DATABASE clause) by adding one or more containers to the table

space.

When new containers are added to a table space, or existing containers are

extended, a rebalance of the table space might occur. The process of rebalancing

involves moving table space extents from one location to another. During this

process, an attempt is made to keep data striped within the table space.

Rebalancing does not necessarily occur across all containers but depends on many

factors, such as the existing container configuration, the size of the new containers,

and how full the table space is.

When containers are added to an existing table space, they might be added such

that they do not start in stripe 0, as described in “DMS table space maps” on page

158. Where they start in the map is determined by the database manager and is

based on the size of the containers being added. If the container being added is not

large enough, it is positioned such that it ends in the last stripe of the map. If it is

large enough, it is positioned to start in stripe 0.

No rebalancing occurs if you are adding new containers and creating a new stripe

set. A new stripe set is created using the BEGIN NEW STRIPE SET clause on the

Chapter 9. Table spaces 193

ALTER TABLESPACE statement. You can also add containers to existing stripe sets

using the ADD TO STRIPE SET clause on the ALTER TABLESPACE statement.

Access to the table space is not restricted during the rebalancing. If you need to

add more than one container, you should add them at the same time.

To add a container to a DMS table space using the command line, enter:

 ALTER TABLESPACE <name>

 ADD (DEVICE ’<path>’ <size>, FILE ’<filename>’ <size>)

The following example illustrates how to add two new device containers (each

with 10 000 pages) to a table space on a Linux and UNIX system:

 ALTER TABLESPACE RESOURCE

 ADD (DEVICE ’/dev/rhd9’ 10000,

 DEVICE ’/dev/rhd10’ 10000)

Note that the ALTER TABLESPACE statement allows you to change other

properties of the table space that can affect performance.

Rebalancing DMS containers

The ALTER TABLESPACE statement lets you add a container to an existing table

space or extend a container to increase its storage capacity.

Containers cannot be manually added to automatic storage table spaces. The

database manager will automatically extend or add containers as necessary.

When a table space is created, its table space map is created and all of the initial

containers are lined up such that they all start in stripe 0. This means that data is

striped evenly across all of the table space containers until the individual

containers fill up. (See Example 1.)

Adding a container that is smaller than existing containers results in a uneven

distribution of data. This can cause parallel I/O operations, such as prefetching

data, to perform less efficiently than they could on containers of equal size.

When new containers are added to a table space or existing containers are

extended, a rebalance of the table space data may occur.

Rebalancing

The process of rebalancing when adding or extending containers involves moving

table space extents from one location to another, and it is done in an attempt to

keep data striped within the table space.

Access to the table space is not restricted during rebalancing; objects can be

dropped, created, populated, and queried as usual. However, the rebalancing

operation can have a significant impact on performance. If you need to add more

than one container, and you plan to rebalance the containers, you should add them

at the same time within a single ALTER TABLESPACE statement to prevent the

database manager from having to rebalance the data more than once.

The table space high-water mark plays a key part in the rebalancing process. The

high-water mark is the page number of the highest allocated page in the table

space. For example, a table space has 1000 pages and an extent size of 10, resulting

in 100 extents. If the 42nd extent is the highest allocated extent in the table space,

then the high-water mark is 42 * 10 = 420 pages. This is not the same as used

194 Data Servers, Databases, and Database Objects Guide

pages because some of the extents below the high-water mark may have been

freed up so that they are available for reuse.

Before the rebalance starts, a new table space map is built based on the container

changes made. The rebalancer moves extents from their location determined by the

current map into the location determined by the new map. The rebalancer starts at

extent 0, moving one extent at a time until the extent holding the high-water mark

has been moved. As each extent is moved, the current map is altered, one piece at

a time, to look like the new map. When the rebalance is complete, the current map

and new map should look identical up to the stripe holding the high-water mark.

The current map is then made to look completely like the new map and the

rebalancing process is complete. If the location of an extent in the current map is

the same as its location in the new map, then the extent is not moved and no I/O

takes place.

When adding a new container, the placement of that container within the new map

depends on its size and the size of the other containers in its stripe set. If the

container is large enough such that it can start at the first stripe in the stripe set

and end at (or beyond) the last stripe in the stripe set, then it will be placed that

way (see Example 2). If the container is not large enough to do this, it will be

positioned in the map such that it ends in the last stripe of the stripe set (see

Example 4.) This is done to minimize the amount of data that needs to be

rebalanced.

Note: In the following examples, the container sizes do not take the size of the

container tag into account. The container sizes are very small, and are just used for

the purpose of illustration, they are not recommended container sizes. The

examples show containers of different sizes within a table space, but you are

advised to use containers of the same size.

Example 1:

If you create a table space with three containers and an extent size of 10, and the

containers are 60, 40, and 80 pages respectively (6, 4, and 8 extents), the table space

is created with a map that can be diagrammed as shown in Figure 13 on page 196.

Chapter 9. Table spaces 195

The corresponding table space map, as shown in a table space snapshot, looks like

this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 11 119 0 3 0 3 (0, 1, 2)

 [1] [0] 0 15 159 4 5 0 2 (0, 2)

 [2] [0] 0 17 179 6 7 0 1 (2)

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,

Maximum extent number addressed by the range, Maximum page number

addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container

list.

Example 2:

If an 80-page container is added to the table space in Example 1, the container is

large enough to start in the first stripe (stripe 0) and end in the last stripe (stripe

7). It is positioned such that it starts in the first stripe. The resulting table space can

be diagrammed as shown in Figure 14 on page 197.

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 15

Extent 16

Extent 17

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 14

Containers

Stripes

Figure 13. Table space with three containers and 18 extents

196 Data Servers, Databases, and Database Objects Guide

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 15 159 0 3 0 4 (0, 1, 2, 3)

 [1] [0] 0 21 219 4 5 0 3 (0, 2, 3)

 [2] [0] 0 25 259 6 7 0 2 (2, 3)

If the high-water mark is within extent 14, the rebalancer starts at extent 0 and

moves all of the extents up to and including 14. The location of extent 0 within

both of the maps is the same so this extent does not need to move. The same is

true for extents 1 and 2. Extent 3 does need to move so the extent is read from the

old location (second extent within container 0) and is written to the new location

(first extent within container 3). Every extent after this up to and including extent

14 is moved. Once extent 14 is moved, the current map looks like the new map

and the rebalancer terminates.

If the map is altered such that all of the newly added space comes after the

high-water mark, then a rebalance is not necessary and all of the space is available

immediately for use. If the map is altered such that some of the space comes after

the high-water mark, then the space in the stripes above the high-water mark is

available for use. The rest is not available until the rebalance is complete.

If you decide to extend a container, the function of the rebalancer is similar. If a

container is extended such that it extends beyond the last stripe in its stripe set,

the stripe set will expand to fit this and the following stripe sets will be shifted out

accordingly. The result is that the container will not extend into any stripe sets

following it.

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 6

Extent 10

Extent 14 Extent 15

Extent 11

Extent 7

Extent 3

Extent 18

Extent 21

Extent 23

Extent 25

Extent 17

Extent 20

Extent 22

Extent 24

Extent 5

Extent 9

Extent 13

Extent 4

Extent 8

Extent 12

Extent 16

Extent 19

Containers

Stripes

Figure 14. Table space with four containers and 26 extents

Chapter 9. Table spaces 197

Example 3:

Consider the table space from Example 1. If you extend container 1 from 40 pages

to 80 pages, the new table space looks like Figure 15.

The corresponding table space map, as shown in a table space snapshot, looks like

this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 17 179 0 5 0 3 (0, 1, 2)

 [1] [0] 0 21 219 6 7 0 2 (1, 2)

Example 4:

Consider the table space from Example 1. If a 50-page (5-extent) container is added

to it, the container will be added to the new map in the following way. The

container is not large enough to start in the first stripe (stripe 0) and end at or

beyond the last stripe (stripe 7), so it is positioned such that it ends in the last

stripe. (See Figure 16 on page 199.)

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 17

Extent 14

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 15 Extent 16

Extent 18

Extent 20

Containers

Stripes

Figure 15. Table space with three containers and 22 extents

198 Data Servers, Databases, and Database Objects Guide

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 8 89 0 2 0 3 (0, 1, 2)

 [1] [0] 0 12 129 3 3 0 4 (0, 1, 2, 3)

 [2] [0] 0 18 189 4 5 0 3 (0, 2, 3)

 [3] [0] 0 22 229 6 7 0 2 (2, 3)

To extend a container, use the EXTEND or RESIZE clause on the ALTER

TABLESPACE statement. To add containers and rebalance the data, use the ADD

clause on the ALTER TABLESPACE statement. If you are adding a container to a

table space that already has more than one stripe set, you can specify which stripe

set you want to add to. To do this, you use the ADD TO STRIPE SET clause on the

ALTER TABLESPACE statement. If you do not specify a stripe set, the default

behavior will be to add the container to the current stripe set. The current stripe

set is the most recently created stripe set, not the one that last had space added to

it.

Any change to a stripe set may cause a rebalance to occur to that stripe set and

any others following it.

You can monitor the progress of a rebalance by using table space snapshots. A

table space snapshot can provide information about a rebalance such as the start

time of the rebalance, how many extents have been moved, and how many extents

need to move.

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11 Extent 12

Extent 15

Extent 18

Extent 20

Extent 22

Extent 14

Extent 17

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 13

Extent 16

Containers

Stripes

Figure 16. Table space with four containers and 23 extents

Chapter 9. Table spaces 199

Without rebalancing (using stripe sets)

If you add or extend a container, and the space added is above the table space

high-water mark, a rebalance will not occur.

Adding a container will almost always add space below the high-water mark. In

other words, a rebalance is often necessary when you add a container. There is an

option to force new containers to be added above the high-water mark, which

allows you to choose not to rebalance the contents of the table space. An

advantage of this method is that the new container will be available for immediate

use. The option not to rebalance applies only when you add containers, not when

you extend existing containers. When you extend containers you can only avoid

rebalancing if the space you add is above the high-water mark. For example, if you

have a number of containers that are the same size, and you extend each of them

by the same amount, the relative positions of the extents will not change, and a

rebalance will not occur.

Adding containers to a table space without rebalancing is done by adding a new

stripe set. A stripe set is a set of containers in a table space that has data striped

across it separately from the other containers that belong to that table space. The

existing containers in the existing stripe sets remain untouched, and the containers

you add become part of a new stripe set.

To add containers without rebalancing, use the BEGIN NEW STRIPE SET clause on

the ALTER TABLESPACE statement.

Example 5:

If you have a table space with three containers and an extent size of 10, and the

containers are 30, 40, and 40 pages (3, 4, and 4 extents respectively), the table space

can be diagrammed as shown in Figure 17.

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 8 89 0 2 0 3 (0, 1, 2)

 [1] [0] 0 10 109 3 3 0 2 (1, 2)

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

Figure 17. Table space with three containers and 11 extents

200 Data Servers, Databases, and Database Objects Guide

Example 6:

When you add two new containers that are 30 pages and 40 pages (3 and 4 extents

respectively) with the BEGIN NEW STRIPE SET clause, the existing ranges are not

affected; instead, a new set of ranges is created. This new set of ranges is a stripe

set and the most recently created one is called the current stripe set. After the two

new containers is added, the table space looks like Figure 18.

The corresponding table space map, as shown in a table space snapshot, looks like

this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 8 89 0 2 0 3 (0, 1, 2)

 [1] [0] 0 10 109 3 3 0 2 (1, 2)

 [2] [1] 4 16 169 4 6 0 2 (3, 4)

 [3] [1] 4 17 179 7 7 0 1 (4)

If you add new containers to a table space, and you do not use the TO STRIPE SET

clause with the ADD clause, the containers are added to the current stripe set (the

highest stripe set). You can use the ADD TO STRIPE SET clause to add containers

to any stripe set in the table space. You must specify a valid stripe set.

The database manager tracks the stripe sets using the table space map, and adding

new containers without rebalancing generally causes the map to grow faster than

when containers are rebalanced. When the table space map becomes too large, you

will receive error SQL0259N when you try to add more containers.

Resizing DMS containers

Containers cannot be manually resized in automatic storage table spaces.

0

0 1 2 3 4

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 12

Extent 14

Extent 16

Extent 17

Extent 11

Extent 13

Extent 15

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

Stripe
set #0

Stripe
set #1

Figure 18. Table space with two stripe sets

Chapter 9. Table spaces 201

The database manager will automatically extend or add containers as necessary.

However, you can resize the containers in a DMS table space (that is, one created

with the MANAGED BY DATABASE clause).

Each raw device can only be used as one container. The raw device size is fixed

after its creation. When you are considering to use the RESIZE or EXTEND options

to increase a raw device container, you should check the raw device size first to

ensure that you do not attempt to increase the device container size larger than the

raw device size.

You can also drop existing containers from a DMS table space, reduce the size of

existing containers in a DMS table space, and add new containers to a DMS table

space without requiring a rebalance of the data across all of the containers.

The dropping of existing table space containers as well as the reduction in size of

existing containers is only allowed if the number of extents being dropped or

reduced in size is less than or equal to the number of free extents above the

“high-water mark” in the table space. The high-water mark is the page number of

the highest allocated page in the table space. This mark is not the same as the

number of used pages in the table space because some of the extents below the

high-water mark might have been made available for reuse.

The number of free extents above the high-water mark in the table space is

important because all extents up to and including the high-water mark must sit in

the same logical position within the table space. The resulting table space must

have enough space to hold all of the data. If there is not enough free space, an

error message (SQL20170N, SQLSTATE 57059) will result.

To drop containers, the DROP option is used on the ALTER TABLESPACE

statement. For example:

 ALTER TABLESPACE TS1 DROP (FILE ’file1’, DEVICE ’/dev/rdisk1’)

To reduce the size of existing containers, you can use either the RESIZE option or

the REDUCE option. When using the RESIZE option, all of the containers listed as

part of the statement must either be increased in size, or decreased in size. You

cannot increase some containers and decrease other containers in the same

statement. You should consider the resizing method if you know the new lower

limit for the size of the container. You should consider the reduction method if you

do not know (or care about) the current size of the container.

To decrease the size of one or more containers in a DMS table space using the

command line, enter:

 ALTER TABLESPACE <name>

 REDUCE (FILE ’<filename>’ <size>)

The following example illustrates how to reduce a file container (which already

exists with 1 000 pages) in a table space on a Windows-based system:

 ALTER TABLESPACE PAYROLL

 REDUCE (FILE ’d:\hldr\finance’ 200)

Following this action, the file is decreased from 1 000 pages in size to 800 pages.

To increase the size of one or more containers in a DMS table space using the

command line, enter:

 ALTER TABLESPACE <name>

 RESIZE (DEVICE ’<path>’ <size>)

202 Data Servers, Databases, and Database Objects Guide

The following example illustrates how to increase two device containers (each

already existing with 1 000 pages) in a table space on a Linux and UNIX system:

 ALTER TABLESPACE HISTORY

 RESIZE (DEVICE ’/dev/rhd7’ 2000,

 DEVICE ’/dev/rhd8’ 2000)

Following this action, the two devices have increased from 1 000 pages in size to

2 000 pages. The contents of the table space might be rebalanced across the

containers. Access to the table space is not restricted during the rebalancing.

To extend one or more containers in a DMS table space using the command line,

enter:

 ALTER TABLESPACE <name>

 EXTEND (FILE ’<filename>’ <size>)

The following example illustrates how to increase file containers (each already

existing with 1 000 pages) in a table space on a Windows-based system:

 ALTER TABLESPACE PERSNEL

 EXTEND (FILE ’e:\wrkhist1’ 200

 FILE ’f:\wrkhist2’ 200)

Following this action, the two files have increased from 1 000 pages in size to

1 200 pages. The contents of the table space might be rebalanced across the

containers. Access to the table space is not restricted during the re-balancing.

The addition or modification of DMS containers (both file and raw device

containers) is performed in parallel through prefetchers. To achieve an increase in

parallelism of these create or resize container operations, you can increase the

number of prefetchers running in the system. The only process which is not done

in parallel is the logging of these actions and, in the case of creating containers, the

tagging of the containers.

Note: To maximize the parallelism of the CREATE TABLESPACE or ALTER

TABLESPACE statements (with respect to adding new containers to an existing

table space) ensure the number of prefetchers is greater than or equal to the

number of containers being added. The number of prefetchers is controlled by the

num_ioservers database configuration parameter. The database has to be stopped for

the new parameter value to take effect. In other words, all applications and users

must disconnect from the database for the change to take affect.

Note that the ALTER TABLESPACE statement allows you to change other

properties of the table space that can affect performance.

Dropping or reducing DMS containers

With a DMS table space, you can drop a container from the table space or reduce

the size of a container using the ALTER TABLESPACE statement.

Dropping or reducing a container will only be allowed if the number of extents

being dropped by the operation is less than or equal to the number of free extents

above the high-water mark in the table space. This is necessary because page

numbers cannot be changed by the operation and therefore all extents up to and

including the high-water mark must sit in the same logical position within the

table space. Therefore, the resulting table space must have enough space to hold all

of the data up to and including the high-water mark. In the situation where there

is not enough free space, you will receive an error immediately upon execution of

the statement.

Chapter 9. Table spaces 203

The high-water mark is the page number of the highest allocated page in the table

space. For example, a table space has 1000 pages and an extent size of 10, resulting

in 100 extents. If the 42nd extent is the highest allocated extent in the table space

that means that the high-water mark is 42 * 10 = 420 pages. This is not the same as

used pages because some of the extents below the high-water mark may have been

freed up such that they are available for reuse.

When containers are dropped or reduced, a rebalance will occur if data resides in

the space being dropped from the table space. Before the rebalance starts, a new

table space map is built based on the container changes made. The rebalancer will

move extents from their location determined by the current map into the location

determined by the new map. The rebalancer starts with the extent that contains the

high-water mark, moving one extent at a time until extent 0 has been moved. As

each extent is moved, the current map is altered one piece at a time to look like the

new map. If the location of an extent in the current map is the same as its location

in the new map, then the extent is not moved and no I/O takes place. Because the

rebalance moves extents starting with the highest allocated one, ending with the

first extent in the table space, it is called a reverse rebalance (as opposed to the

forward rebalance that occurs when space is added to the table space after adding or

extending containers).

When containers are dropped, the remaining containers are renumbered such that

their container IDs start at 0 and increase by 1. If all of the containers in a stripe

set are dropped, the stripe set will be removed from the map and all stripe sets

following it in the map will be shifted down and renumbered such that there are

no gaps in the stripe set numbers.

Note: In the following examples, the container sizes do not take the size of the

container tag into account. The container sizes are very small, and are just used for

the purpose of illustration, they are not recommended container sizes. The

examples show containers of different sizes within a table space, but this is just for

the purpose of illustration; you are advised to use containers of the same size.

For example, consider a table space with three containers and an extent size of 10.

The containers are 20, 50, and 50 pages respectively (2, 5, and 5 extents). The table

space diagram is shown in Figure 19 on page 205.

204 Data Servers, Databases, and Database Objects Guide

An X indicates that there is an extent but there is no data in it.

If you want to drop container 0, which has two extents, there must be at least two

free extents above the high-water mark. The high-water mark is in extent 7,

leaving four free extents, therefore you can drop container 0.

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 5 59 0 1 0 3 (0, 1, 2)

 [1] [0] 0 11 119 2 4 0 2 (1, 2)

After the drop, the table space will have just Container 0 and Container 1. The

new table space diagram is shown in Figure 20 on page 206.

0

0 1 2

1

2

3

4

Extent 0 Extent 1 Extent 2

Extent 5

Extent 7

Extent 4

Extent 6

x

x

x

x

Extent 3

Containers

Stripes

Figure 19. Table space with 12 extents, including four extents with no data

Chapter 9. Table spaces 205

The corresponding table space map, as shown in a table space snapshot, will look

like this:

 Range Stripe Stripe Max Max Start End Adj. Containers

 Number Set Offset Extent Page Stripe Stripe

 [0] [0] 0 9 99 0 4 0 2 (0, 1)

If you want to reduce the size of a container, the rebalancer works in a similar

way.

To reduce a container, use the REDUCE or RESIZE option on the ALTER

TABLESPACE statement. To drop a container, use the DROP option on the ALTER

TABLESPACE statement.

Altering automatic storage table spaces

For automatic storage table spaces, you can only reduce the size of the containers.

The process for doing this is the same as described in: “Resizing DMS containers”

on page 201.

Renaming a table space

Use the RENAME TABLESPACE statement to rename a table space.

You cannot rename the SYSCATSPACE table space. You cannot rename a table

space that is in a rollforward pending or rollforward-in-progress state.

When restoring a table space that has been renamed since it was backed up, you

must use the new table space name in the RESTORE DATABASE command. If you

use the previous table space name, it will not be found. Similarly, if you are rolling

forward the table space with the ROLLFORWARD DATABASE command, ensure

that you use the new name. If the previous table space name is used, it will not be

found.

0

0 1

1

2

3

4

Extent 0 Extent 1

Extent 3

Extent 5

Extent 7

x x

Extent 2

Extent 4

Extent 6

Containers

Stripes

Figure 20. Table space after a container is dropped

206 Data Servers, Databases, and Database Objects Guide

You can give an existing table space a new name without being concerned with the

individual objects within the table space. When renaming a table space, all the

catalog records referencing that table space are changed.

Switching table spaces from offline to online

The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be used

to remove the OFFLINE state from a table space if the containers associated with

that table space have become accessible.

The table space has the OFFLINE state removed while the rest of the database is

still up and being used.

An alternative to the use of this clause is to disconnect all applications from the

database and then to have the applications connect to the database again. This

removes the OFFLINE state from the table space.

To remove the OFFLINE state from a table space using the command line, enter:

 db2 ALTER TABLESPACE <name>

 SWITCH ONLINE

Optimizing table space performance when data is on RAID devices

Follow these guidelines to optimize performance when data is stored on

Redundant Array of Independent Disks (RAID) devices.

1. When creating a table space on a set of RAID devices, create the containers for

a given table space (SMS or DMS) on separate devices.

Consider an example where you have fifteen 146 GB disks configured as three

RAID-5 arrays with five disks in each array. After formatting, each disk can

hold approximately 136 GB of data. Each array can therefore store

approximately 544 GB (4 active disks x 136 GB). If you have a table space that

requires 300 GB of storage, create three containers, and put each container on a

separate device. Each container uses 100 GB (300 GB/3) on a device, and there

are 444 GB (544 GB - 100 GB) left on each device for additional table spaces.

2. Select an appropriate extent size for the table spaces. The extent size for a table

space is the amount of data that the database manager writes to a container

before writing to the next container. Ideally, the extent size should be a multiple

of the underlying segment size of the disks, where the segment size is the

amount of data that the disk controller writes to one physical disk before

writing to the next physical disk. Choosing an extent size that is a multiple of

the segment size ensures that extent-based operations, such as parallel

sequential read in prefetching, do not compete for the same physical disks.

Also, choose an extent size that is a multiple of the page size.

In the example, if the segment size is 64 KB and the page size is 16 KB, an

appropriate extent size might be 256 KB.

3. Use the DB2_PARALLEL_IO registry variable to enable parallel I/O for all

table spaces and to specify the number of physical disks per container.

For the situation in the example, set DB2_PARALLEL_IO = *:4.

If you set the prefetch size of a table space to AUTOMATIC, the database

manager uses the number of physical disks value that you specified for

DB2_PARALLEL_IO to determine the prefetch size value. If the prefetch size is

not set to AUTOMATIC, you can set it manually, taking into account the RAID

stripe size, which is the value of the segment size multiplied by the number of

active disks. Choose a prefetch size value that meets the following conditions:

Chapter 9. Table spaces 207

v It is equal to the RAID stripe size multiplied by the number of RAID parallel

devices (or a whole number representation of this product).

v It is a whole number representation of the extent size.

In the example, you might set the prefetch size to 768 KB. This value is equal

to the RAID stripe size (256 KB) multiplied by the number of RAID parallel

devices (3). It is also a multiple of the extent size (256 KB). Choosing this

prefetch size means that a single prefetch will engage all the disks in all the

arrays. If you want the prefetchers to work more aggressively because your

workload involves mainly sequential scans, you can instead use a multiple of

this value, such as 1536 KB (768 KB x 2).

4. Do not set the DB2_USE_PAGE_CONTAINER_TAG registry variable. As

described earlier, you should create a table space with an extent size that is

equal to, or a multiple of, the RAID stripe size. However, when you set

DB2_USE_PAGE_CONTAINER_TAG to ON, a one-page container tag is used,

and the extents do not line up with the RAID stripes. As a result, it might be

necessary during an I/O request to access more physical disks than would be

optimal.

Dropping table spaces

When you drop a table space, you delete all the data in that table space, free the

containers, remove the catalog entries, and cause all objects defined in the table

space to be either dropped or marked as invalid.

You can reuse the containers in an empty table space by dropping the table space,

but you must commit the DROP TABLESPACE statement before attempting to

reuse the containers.

Note: You cannot drop a table space without dropping all table spaces that are

associated with it. Example, if you have a table in one table space and its index

created in another table space, you need to drop both index and data table spaces

in one DROP TABLESPACE command.

Dropping user table spaces

 You can drop a user table space that contains all of the table data including

index and LOB data within that single user table space. You can also drop

a user table space that might have tables spanned across several table

spaces. That is, you might have table data in one table space, indexes in

another, and any LOBs in a third table space. You must drop all three table

spaces at the same time in a single statement. All of the table spaces that

contain tables that are spanned must be part of this single statement or the

drop request will fail.

To drop a user table space using the command line, enter:

 DROP TABLESPACE <name>

The following SQL statement drops the table space ACCOUNTING:

 DROP TABLESPACE ACCOUNTING

Dropping user temporary table spaces

You can only drop a user temporary table space if there are no declared

temporary tables currently defined in that table space. When you drop the

table space, no attempt is made to drop all of the declared temporary

tables in the table space.

208 Data Servers, Databases, and Database Objects Guide

Note: A declared temporary table is implicitly dropped when the

application that declared it disconnects from the database.

Dropping system temporary table spaces

You cannot drop a system temporary table space that has a page size of 4

KB without first creating another system temporary table space. The new

system temporary table space must have a page size of 4 KB because the

database must always have at least one system temporary table space that

has a page size of 4 KB. For example, if you have a single system

temporary table space with a page size of 4 KB, and you want to add a

container to it, and it is an SMS table space, you must first add a new 4 KB

page size system temporary table space with the proper number of

containers, and then drop the old system temporary table space. (If you

were using DMS, you could add a container without having to drop and

recreate the table space.)

 The default table space page size is the page size that the database was

created with (which is 4 KB by default, but could also be 8 KB, 16 KB, or

32 KB).

This is the statement to create a system temporary table space:

 CREATE SYSTEM TEMPORARY TABLESPACE <name>

 MANAGED BY SYSTEM USING (’<directories>’)

Then, to drop a system table space using the command line, enter:

 DROP TABLESPACE <name>

The following SQL statement creates a new system temporary table space

called TEMPSPACE2:

 CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2

 MANAGED BY SYSTEM USING (’d:\systemp2’)

Once TEMPSPACE2 is created, you can then drop the original system

temporary table space TEMPSPACE1 with the command:

 DROP TABLESPACE TEMPSPACE1

Chapter 9. Table spaces 209

210 Data Servers, Databases, and Database Objects Guide

Chapter 10. Schemas

A schema is a collection of named objects; it provides a way to group those objects

logically. A schema is also a name qualifier; it provides a way to use the same

natural name for several objects, and to prevent ambiguous references to those

objects.

For example, the schema names ’INTERNAL’ and ’EXTERNAL’ make it easy to

distinguish two different SALES tables (INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database

without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,

which is a standard that describes the structure and validates the content of XML

documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and

other objects. A schema is itself a database object. It is explicitly created using the

CREATE SCHEMA statement, with the current user or a specified authorization ID

recorded as the schema owner. It can also be implicitly created when another

object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the

object is specifically qualified with a schema name when created, the object is

assigned to that schema. If no schema name is specified when the object is created,

the default schema name is used (specified in the CURRENT SCHEMA special

register).

For example, a user with DBADM authority creates a schema called C for user A:

 CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema

C (provided that user A has the CREATETAB database authority):

 CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the

SYSIBM schema, and the pre-installed user-defined functions belong to the

SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all

users have IMPLICIT_SCHEMA authority. With this authority, users implicitly

create a schema whenever they create an object with a schema name that does not

already exist. When schemas are implicitly created, CREATEIN privileges are

granted which allows any user to create other objects in this schema. The ability to

create objects such as aliases, distinct types, functions, and triggers is extended to

implicitly-created schemas. The default privileges on an implicitly-created schema

provide backward compatibility with previous versions.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be

explicitly created using the CREATE SCHEMA statement, or implicitly created by

users (such as those with DBADM authority) who have been granted

IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority

© Copyright IBM Corp. 1993, 2009 211

from PUBLIC increases control over the use of schema names, it can result in

authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users

have the privilege to create, alter, copy, and drop objects in the schema. This

provides a way to control the manipulation of a subset of objects in the database.

A schema owner is initially given all of these privileges on the schema, with the

ability to grant the privileges to others. An implicitly-created schema is owned by

the system, and all users are initially given the privilege to create objects in such a

schema. A user with SYSADM or DBADM authority can change the privileges that

are held by users on any schema. Therefore, access to create, alter, copy, and drop

objects in any schema (even one that was implicitly created) can be controlled.

Designing schemas

While organizing your data into tables, it might be beneficial to group the tables

and other related objects together. This is done by defining a schema through the

use of the CREATE SCHEMA statement.

Information about the schema is kept in the system catalog tables of the database

to which you are connected. As other objects are created, they can be placed within

the schemas you create, however, note that an object can exist in only one schema.

Schemas can be compared to directories, with the current schema being the current

directory. Using this analogy, SET SCHEMA is equivalent to the change directory

command.

Important: It is important to understand that there is no relation between

authorization IDs and schemas except for the default CURRENT SCHEMA setting

(described below).

While designing your databases and tables, you should also consider the schemas

in your system, including their names and the objects that will be associated with

each of them.

Most objects in a database are assigned a unique name that consists of two parts.

The first (leftmost) part is called the qualifier or schema, and the second

(rightmost) part is called the simple (or unqualified) name. Syntactically, these two

parts are concatenated as a single string of characters separated by a period. When

any object that can be qualified by a schema name (such as a table, index, view,

user-defined data type, user-defined function, nickname, package, or trigger) is

first created, it is assigned to a particular schema based on the qualifier in its

name.

For example, the following diagram illustrates how a table is assigned to a

particular schema during the table creation process:

212 Data Servers, Databases, and Database Objects Guide

Index

Table

Payroll (Schema)

Table

Index

Sales (Schema)

Staff

'CREATE TABLE 'PAYROLL.STAFF

Table Name

Schema Name

You should also be familiar with how schema access is granted, in order to give

your users the correct authority and instructions:

Schema names

When creating a new schema, the name must not identify a schema name

already described in the catalog and the name cannot begin with ″SYS″.

For other restrictions and recommendations, see “Schema name restrictions

and recommendations” on page 215.

Access to schemas

 Unqualified access to objects within a schema is not allowed since the

schema is used to enforce uniqueness in the database. This becomes clear

when considering the possibility that two users could create two tables (or

other objects) with the same name. Without a schema to enforce

uniqueness, ambiguity would exist if a third user attempted to query the

table. It is not possible to determine which table to use without some

further qualification.

The definer of any objects created as part of the CREATE SCHEMA

statement is the schema owner. This owner can GRANT and REVOKE

schema privileges to other users.

If a user has SYSADM or DBADM authority, then that user can create a

schema with any valid name. When a database is created,

IMPLICIT_SCHEMA authority is granted to PUBLIC (that is, to all users).

If users do not have IMPLICIT_SCHEMA or DBADM authority, the only

schema they can create is one that has the same name as their own

authorization ID.

Default schema

 If a schema or qualifier is not specified as part of the name of the object to

be created, that object is assigned to the default schema as indicated in the

CURRENT SCHEMA special register. The default value of this special

register is the value of the session authorization ID.

Chapter 10. Schemas 213

A default schema is needed by unqualified object references in dynamic

statements. You can set a default schema for a specific DB2 connection by

setting the CURRENT SCHEMA special register to the schema that you

want as the default. No designated authorization is required to set this

special register, so any user can set the CURRENT SCHEMA.

The syntax of the SET SCHEMA statement is:

 SET SCHEMA = <schema-name>

You can issue this statement interactively or from within an application.

The initial value of the CURRENT SCHEMA special register is equal to the

authorization ID of the current session user. For more information, see the

SET SCHEMA statement.

Note:

v There are other ways to set the default schema upon connection. For

example, by using the cli.ini file for CLI/ODBC applications, or by using

the connection properties for the JDBC application programming

interface.

v The default schema record is not created in the system catalogs, but it

exists only as a value that the database manager can obtain (from the

CURRENT SCHEMA special register) whenever a schema or qualifier is

not specified as part of the name of the object to be created.

Implicit creation

 You can implicitly create schemas if you have IMPLICIT_SCHEMA

authority. With this authority, you can implicitly create a schema whenever

you create an object with a schema name that does not already exist. Often

schemas are implicitly created the first time a data object in the schema is

created, provided the user creating the object holds the

IMPLICIT_SCHEMA authority.

Explicit creation

 Schemas can also be explicitly created and dropped by executing the

CREATE SCHEMA and DROP SCHEMA statements from the command

line or from an application program. For more information, see the

CREATE SCHEMA and DROP SCHEMA statements.

Table and view aliases by schema

 To allow another user to access a table or view without entering the

schema name as part of the qualification on the table or view name

requires that a an alias be established for that user. The definition of the

alias would define the fully-qualified table or view name including the

user’s schema; then the user simply queries using the alias name. The alias

would be fully-qualified by the user’s schema as part of the alias

definition.

Grouping objects by schema

Database object names might be made up of a single identifier or they might be

schema-qualified objects made up of two identifiers. The schema, or high-order part,

of a schema-qualified object provides a means to classify or group objects in the

database. When an object such as a table, view, alias, distinct type, function, index,

package or trigger is created, it is assigned to a schema. This assignment is done

either explicitly or implicitly.

214 Data Servers, Databases, and Database Objects Guide

Explicit use of the schema occurs when you use the high-order part of a two-part

object name when referring to that object in a statement. For example, USER A

issues a CREATE TABLE statement in schema C as follows:

 CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of a

two-part object name. When this happens, the CURRENT SCHEMA special register

is used to identify the schema name used to complete the high-order part of the

object name. The initial value of CURRENT SCHEMA is the authorization ID of

the current session user. If you want to change this during the current session, you

can use the SET SCHEMA statement to set the special register to another schema

name.

Some objects are created within certain schemas and stored in the system catalog

tables when the database is created.

You do not have to explicitly specify in which schema an object is to be created; if

not specified, the authorization ID of the statement is used. For example, for the

following CREATE TABLE statement, the schema name defaults to the

authorization ID that is currently logged on (that is, the CURRENT SCHEMA

special register value):

 CREATE TABLE X (COL1 INT)

Dynamic SQL and XQuery statements typically use the CURRENT SCHEMA

special register value to implicitly qualify any unqualified object name references.

Before creating your own objects, you need to consider whether you want to create

them in your own schema or by using a different schema that logically groups the

objects. If you are creating objects that will be shared, using a different schema

name can be very beneficial.

Schema name restrictions and recommendations

There are some restrictions and recommendations that you need to be aware of

when naming schemas.

v User-defined types (UDTs) cannot have schema names longer than the schema

length listed in: SQL and XML limits.

v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPROC.

v To avoid potential migration problems in the future, do not use schema names

that begin with SYS. The database manager will not allow you to create triggers,

user-defined types or user-defined functions using a schema name beginning

with SYS.

v It is recommended that you not use SESSION as a schema name. Declared

temporary tables must be qualified by SESSION. It is therefore possible to have

an application declare a temporary table with a name identical to that of a

persistent table, in which case the application logic can become overly

complicated. Avoid the use of the schema SESSION, except when dealing with

declared temporary tables.

Chapter 10. Schemas 215

Creating schemas

You can use schemas to group objects as you create those objects. An object can

belong to only one schema. Use the CREATE SCHEMA statement to create

schemas. Information about the schemas is kept in the system catalog tables of the

database to which you are connected.

To create a schema and optionally make another user the owner of the schema,

you need SYSADM or DBADM authority. If you do not hold either of these two

authorities, you can still create a schema using your own authorization ID.The

definer of any objects created as part of the CREATE SCHEMA statement is the

schema owner. This owner can GRANT and REVOKE schema privileges to other

users.

To create a schema from the command line, enter the following statement:

CREATE SCHEMA <schema-name> [AUTHORIZATION <schema-owner-name>]

Where <schema-name> is the name of the schema. This name must be unique within

the schemas already recorded in the catalog, and the name cannot begin with SYS.

If the optional AUTHORIZATION clause is specified, the <schema-owner-name>

becomes the owner of the schema. If this clause is not specified, the authorization

ID that issued this statement becomes the owner of the schema.

For more information, see the CREATE SCHEMA statement. See also “Schema

name restrictions and recommendations” on page 215.

Copying schemas

The db2move utility and the ADMIN_COPY_SCHEMA procedure allow you to

quickly make copies of a database schema. Once a model schema is established,

you can use it as a template for creating new versions.

Use the ADMIN_COPY_SCHEMA procedure to copy a single schema within the

same database or the db2move utility with the -co COPY action to copy a single

schema or multiple schemas from a source database to a target database. Most

database objects from the source schema are copied to the target database under

the new schema.

Troubleshooting tips

Both the ADMIN_COPY_SCHEMA procedure and the db2move utility invoke the

LOAD command. While the load is processing, the table spaces wherein the

database target objects reside are put into backup pending state.

ADMIN_COPY_SCHEMA procedure

Using this procedure with the COPYNO option places the table spaces

wherein the target object resides into backup pending state, as described in

the note above. To get the table space out of the set integrity pending state,

this procedure issues a SET INTEGRITY statement. In situations where a

target table object has referential constraints defined, the target table is also

placed in the set integrity pending state. Because the table spaces are

already in backup pending state, the ADMIN_COPY_SCHEMA procedure’s

attempt to issue a SET INTEGRITY statement will fail.

 To resolve this situation, issue a BACKUP DATABASE command to get the

affected table spaces out of backup pending state. Next, look at the

Statement_text column of the error table generated by this procedure to

216 Data Servers, Databases, and Database Objects Guide

find a list of tables in the set integrity pending state. Then issue the SET

INTEGRITY statement for each of the tables listed to take each table out of

the set integrity pending state.

db2move utility

This utility attempts to copy all allowable schema objects with the

exception of the following types:

v table hierarchy

v staging tables (not supported by the load utility in multiple partition

database environments)

v jars (Java™ routine archives)

v nicknames

v packages

v view hierarchies

v object privileges (All new objects are created with default authorizations)

v statistics (New objects do not contain statistics information)

v index extensions (user-defined structured type related)

v user-defined structured types and their transform functions

Unsupported type errors

If an object of one of the unsupported types is detected in the source

schema, an entry is logged to an error file, indicating that an unsupported

object type is detected. The COPY operation will still succeed–the logged

entry is meant to inform you of objects not copied by this operation.

Objects not coupled with schemas

Objects that are not coupled with a schema, such as table spaces and event

monitors, are not operated on during a copy schema operation. You should

create them on the target database before the copy schema operation is

invoked.

Replicated tables

When copying a replicated table, the new copy of the table is not enabled

for replication. The table is re-created as a regular table.

Different instances

The source database must be cataloged if it does not reside in the same

instance as the target database.

SCHEMA_MAP option

When using the SCHEMA_MAP option to specify a different schema name

on the target database, the copy schema operation will perform only

minimal parsing of the object definition statements to replace the original

schema name with the new schema name. For example, any instances of

the original schema that appear inside the contents of an SQL procedure

are not replaced with the new schema name. Thus the copy schema

operation may fail to recreate these objects. You can use the DDL in the

error file to manually recreate these failed objects after the copy operation

completes.

Interdependencies between objects

The copy schema operation attempts to recreate objects in an order that

satisfies the interdependencies between these objects. For example, if a

table T1 contains a column that references a user-defined function U1, then

it will recreate U1 before recreating T1. However, dependency information

for procedures is not readily available in the catalogs, so when recreating

procedures, the copy schema operation will first attempt to recreate all

Chapter 10. Schemas 217

procedures, then retry to recreate those that failed (on the assumption that

if they depended on a procedure that was successfully created during the

previous attempt, then during a subsequent attempt they will be recreated

successfully). The operation will continually try to recreate these failed

procedures as long as it is able to successfully recreate one or more during

a subsequent attempt. During every attempt at recreating a procedure, an

error (and DDL) is logged into the error file. You might see many entries in

the error file for the same procedures, but these procedures might have

even been successfully recreated during a subsequent attempt. You should

query the SYSCAT.PROCEDURES table upon completion of the copy

schema operation to determine if these procedures listed in the error file

were successfully recreated.

For more information, see the ADMIN_COPY_SCHEMA procedure and the

db2move utility.

Example of schema copy using the ADMIN_COPY_SCHEMA

procedure

Use the ADMIN_COPY SCHEMA procedure as shown below to copy a single

schema within the same database.

 DB2 "SELECT SUBSTR(OBJECT_SCHEMA,1, 8)

 AS OBJECT_SCHEMA, SUBSTR(OBJECT_NAME,1, 15)

 AS OBJECT_NAME, SQLCODE, SQLSTATE, ERROR_TIMESTAMP, SUBSTR(DIAGTEXT,1, 80)

 AS DIAGTEXT, SUBSTR(STATEMENT,1, 80)

 AS STATEMENT FROM COPYERRSCH.COPYERRTAB"

 CALL SYSPROC.ADMIN_COPY_SCHEMA(’SOURCE_SCHEMA’, ’TARGET_SCHEMA’,

 ’COPY’, NULL, ’SOURCETS1 , SOURCETS2’, ’TARGETTS1, TARGETTS2,

 SYS_ANY’, ’ERRORSCHEMA’, ’ERRORNAME’)

The output from this SELECT statement is shown below:

OBJECT_SCHEMA OBJECT_NAME SQLCODE SQLSTATE ERROR_TIMESTAMP

------------- --------------- ----------- -------- --------------------------

SALES EXPLAIN_STREAM -290 55039 2006-03-18-03.22.34.810346

DIAGTEXT

--

[IBM][CLI Driver][DB2/LINUXX8664] SQL0290N Table space access is not allowed.

STATEMENT

--

set integrity for "SALES "."ADVISE_INDEX" , "SALES"."ADVISE_MQT" , "SALES"."

1 record(s) selected.

Examples of schema copy using the db2move utility

Use the db2move utility with the -co COPY action to copy one or more schemas

from a source database to a target database. Once a model schema is established,

you can use it as a template for creating new versions.

Example 1: Using the -c COPY options

The following example of the db2move -co COPY options copies the

schema BAR and renames it FOO from the sample database to the target

database:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" -u userid -p password

218 Data Servers, Databases, and Database Objects Guide

The new (target) schema objects are created using the same object names as

the objects in the source schema, but with the target schema qualifier. It is

possible to create copies of tables with or without the data from the source

table. The source and target databases can be on different systems.

Example 2: Specifying table space name mappings during the COPY operation

The following example shows how to specify specific table space name

mappings to be used instead of the table spaces from the source system

during a db2move COPY operation. You can specify the SYS_ANY

keyword to indicate that the target table space should be chosen using the

default table space selection algorithm. In this case, the db2move utility

chooses any available table space to be used as the target:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" tablespace_map "(SYS_ANY)" -u userid -p password

The SYS_ANY keyword can be used for all table spaces, or you can specify

specific mappings for some table spaces, and the default table space

selection algorithm for the remaining:

 db2move sample COPY -sn BAR -co target_db target schema_map "

 ((BAR,FOO))" tablespace_map "((TS1, TS2),(TS3, TS4), SYS_ANY)"

 -u userid -p password

This indicates that table space TS1 is mapped to TS2, TS3 is mapped to

TS4, but the remaining table spaces use a default table space selection

algorithm.

Example 3: Changing the object owners after the COPY operation

You can change the owner of each new object created in the target schema

after a successful COPY. The default owner of the target objects is the

connect user. If this option is specified, ownership is transferred to a new

owner as demonstrated:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" tablespace_map "(SYS_ANY)" owner jrichards

 -u userid -p password

The new owner of the target objects is jrichards.

 The db2move utility must be invoked on the target system if source and

target schemas reside on different systems. For copying schemas from one

database to another, this action requires a list of schema names to be

copied from a source database, separated by commas, and a target

database name.

To copy a schema, issue db2move from an OS command prompt as

follows:

 db2move <dbname> COPY -co <COPY- options>

 -u <userid> -p <password>

Restarting a failed copy schema operation

Errors occurring during a db2move COPY operation can be handled in various

ways depending on the type of object being copied, or the phase during which the

COPY operation failed (that is, either the recreation of objects phase, or the loading

of data phase).

The db2move utility reports errors and messages to the user using message and

error files. Copy schema operations use the COPYSCHEMA_<timestamp>.MSG

message file, and the COPYSCHEMA_<timestamp>.err error file. These files are

Chapter 10. Schemas 219

created in the current working directory. The current time is appended to the

filename to ensure uniqueness of the files. It is up to the user to delete these

message and error files when they are no longer required.

Note: It is possible to have multiple db2move instances running simultaneously.

The COPY option does not return any SQLCODES. This is consistent with

db2move behavior.

Object types

The type of object being copied can be categorized as one of two types : physical

objects and business objects.

A physical object refers to an object that physically resides in a container, such as

tables, indexes and user-defined structured types. A business object refers to

cataloged objects that do not reside in containers, such as views, user-defined

structured types (UDTs), and aliases.

Errors occurring during the recreation of a physical object cause the utility to

rollback, whereas, errors during the recreation of a logical object do not.

Restarting the copy schema operation

After addressing the issues causing the load operations to fail (described in the

error file), you can reissue the db2move -COPY command using the -tf option to

specify which tables to copy and to populate with data (passing in the

LOADTABLE.err filename) as shown in the following syntax:

 db2move sourcedb COPY -tf LOADTABLE.err -co TARGET_DB mytarget_db

 -mode load_only

You can also input the table names manually using the -tn option, as shown in the

following syntax:

 db2move sourcedb COPY -tn "FOO"."TABLE1","FOO 1"."TAB 444",

 -co TARGET_DB mytarget_db -mode load_only

Note: The load_only mode requires inputting at least one table using the -tn or -tf

option.

Examples

Errors occurring during a db2move COPY schema operation can be handled in

various ways depending on the type of object being copy copied, or the phase of

the COPY operation failure.

The db2move utility reports schema copy errors and messages in the following

message and error files:

v COPYSCHEMA <timestamp>.MSG message file

v COPYSCHEMA_<timestamp>.err error file

These files are created in the current working directory. The current time is

appended to the filename to ensure uniqueness of the files. These message and

error files should be deleted when they are no longer required.

Note: It is possible to have multiple db2move instances running simultaneously.

The COPY option does not return any SQLCODES. This is consistent with

db2move behavior.

220 Data Servers, Databases, and Database Objects Guide

Example 1: Schema copy errors related to physical objects

Failures which occur during the recreation of physical objects on the target

database, are logged in the error file COPYSCHEMA_<timestamp>.err. For

each failing object, the error file contains information such as object name,

object type, DDL text, time stamp, and a string formatted sqlca (sqlca field

names, followed by their data values).

 Sample output for the COPYSCHEMA_<timestamp>.err error file:

 1. schema: FOO.T1

 Type: TABLE

 Error Msg: SQL0104N An unexpected token ’FOO.T1’...

 Timestamp: 2005-05-18-14.08.35.65

 DDL: create view FOO.v1

 2. schema: FOO.T3

 Type: TABLE

 Error Msg: SQL0204N FOO.V1 is an undefined name.

 Timestamp: 2005-05-18-14.08.35.68

 DDL: create table FOO.T3

If any errors creating physical objects are logged at the end of the

recreation phase and before attempting the load phase, the db2move utility

fails and an error is returned. All object creation on the target database is

rolled back, and all internally created tables are cleaned up on the source

database. The rollback occurs at the end of the recreation phase after

attempting to recreate each object, rather than after the first failure, in

order to gather all possible errors into the error file. This allows you the

opportunity to fix any problems before restarting the db2move operation.

If there are no failures, the error file is deleted.

Example 2: Schema copy errors related to business objects

Failures that occur during the recreation of business objects on the target

database, do not cause the db2move utility to fail. Instead, these failures

are logged in the COPYSCHEMA_<timestamp>.err error file. Upon

completion of the db2move utility, you can examine the failures, address

any issues, and manually recreate each failed object (the DDL is provided

in the error file for convenience).

 If an error occurs while db2move is attempting to repopulate table data

using the load utility, the db2move utility will not fail. Rather, generic

failure information is logged to the COPYSCHEMA_<timestamp>.err file

(object name, object type, DDL text, time stamp, sqlca, and so on), and the

fully qualified name of the table is logged into another file,

LOADTABLE_<timestamp>.err. Each table is listed per line to satisfy the

db2move -tf option format, similar to the following:

 "FOO"."TABLE1"

 "FOO 1"."TAB 444"

Example 3: Other types of db2move failures

Internal operations such as memory errors, or file system errors can cause

the db2move utility to fail.

 Should the internal operation failure occur during the ddl recreation phase,

all successfully created objects are rolled back from the target schema, and

all internally created tables such as the DMT table and the db2look table,

are cleaned up on the source database.

Should the internal operation failure occur during the load phase, all

successfully created objects remain on the target schema. All tables that

experience a failure during a load operation, and all tables, which have not

Chapter 10. Schemas 221

yet been loaded are logged in the LOADTABLE.err error file. You can then

issue the db2move COPY command using the LOADTABLE.err as

discussed in Example 2. If the db2move utility abends (for example a

system crash, the utility traps, the utility is killed, and so on), then the

information regarding which tables still need to be loaded is lost. In this

case, you can drop the target schema using the ADMIN_DROP_SCHEMA

procedure and reissue the db2move COPY command.

Regardless of what error you might encounter during an attempted copy

schema operation, you always have the option of dropping the target

schema using the ADMIN_DROP_SCHEMA procedure and reissuing the

db2move COPY command.

Dropping schemas

Before dropping a schema, all objects that were in that schema must be dropped or

moved to another schema. The schema name must be in the catalog when

attempting the DROP statement; otherwise an error is returned.

To drop a schema using the command line, enter:

 DROP SCHEMA <name> RESTRICT

In the following example, the schema ″joeschma″ is dropped:

 DROP SCHEMA joeschma RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the

specified schema for the schema to be deleted from the database, and it must be

specified.

222 Data Servers, Databases, and Database Objects Guide

Part 3. Database objects

Logical database design consists of defining database objects.

The following database objects can be created within a DB2 database:

v Tables

v Constraints

v Indexes

v Triggers

v Sequences

v Views

These database objects can be created using graphical user interfaces or by

explicitly executing statements. The statements used to create these database

objects are called Data Definition Language (DDL) statements and are generally

prefixed by the keywords CREATE or ALTER.

Understanding the features and functionality that each of these database objects

provides is important to implement a good database design that meets your

current business’s data storage needs while remaining flexible enough to

accommodate expansion and growth over time.

© Copyright IBM Corp. 1993, 2009 223

224 Data Servers, Databases, and Database Objects Guide

Chapter 11. Tables

Tables are logical structures maintained by the database manager. Tables are made

up of columns and rows.

At the intersection of every column and row is a specific data item called a value.

A column is a set of values of the same type or one of its subtypes. A row is a

sequence of values arranged so that the nth value is a value of the nth column of

the table.

An application program can determine the order in which the rows are populated

into the table, but the actual order of rows is determined by the database manager,

and typically cannot be controlled. Multidimensional clustering (MDC) provides

some sense of clustering, but not actual ordering between the rows.

Types of tables

Depending on your environment, you will need to create one or more tables in

your DB2 databases to store your data. When you create tables, you specify the

type of content in each of the columns in the tables, and you define other

characteristics, such as the primary key and check constraints for the enforcement

of business rules. When you create tables, you also need to consider the type that

is best suited for your needs.

You can create all of the following types of tables using the CREATE TABLE

statement, except for (Declared) Global temporary tables:

Base tables

These types of tables hold persistent data.

Regular tables

These types of tables are implemented as a heap. Regular tables with

indexes are the ″general purpose″ table choice.

Append mode tables

These types of tables are regular tables that are optimized primarily for

INSERTs. Regular tables are placed into append mode through an ALTER

TABLE statement. Append mode is best used for tables where clustering to

any specific index is not important, and the insert rate is both high and

also there are not many or no deletes to the table.

Result tables

These types of tables are made up of sets of rows that the database

manager selects or generates from one or more tables to satisfy a query.

Summary tables

These types of tables are defined by a query that is also used to determine

the data in the table. Summary tables can be used to improve the

performance of queries. If the database manager determines that a portion

of a query can be resolved using a summary table, the database manager

can rewrite the query to use the summary table. This decision is based on

database configuration settings, such as the CURRENT REFRESH AGE and

the CURRENT QUERY OPTIMIZATION special registers.

Typed tables

A table can define the data type of each column separately, or base the

© Copyright IBM Corp. 1993, 2009 225

types on the attributes of a user-defined structured type. This is called a

typed table. A user-defined structured type may be part of a type hierarchy.

A subtype inherits attributes from its supertype. Similarly, a typed table can

be part of a table hierarchy. A subtable inherits columns from its supertable.

Note that the term subtype applies to a user-defined structured type and all

user-defined structured types that are below it in the type hierarchy. A

proper subtype of a structured type T is a structured type below T in the

type hierarchy. Similarly, the term subtable applies to a typed table and all

typed tables that are below it in the table hierarchy. A proper subtable of a

table T is a table below T in the table hierarchy.

(Declared) Global temporary tables

These types of tables, also referred to as user-defined temporary tables, are

used by applications that work with data in the database. Results from

manipulation of the data need to be stored temporarily in a table. A user

temporary table space must exist before creating global temporary tables.

Note: The description of global temporary tables does not appear in the

system catalog thus making it not persistent for, and not able to be shared

with, other applications. When the application using this table terminates

or disconnects from the database, any data in the table is deleted and the

table is implicitly dropped.

Global temporary tables do not support:

v LOB-type columns (or distinct-type columns based on LOBs)

v User-defined type columns

v LONG VARCHAR columns

v XML columns

These types of tables are created with a DECLARE GLOBAL TEMPORARY

TABLE statement and are used to hold temporary data on behalf of a

single application. This table is dropped implicitly when the application

disconnects from the database.

Multidimensional clustering (MDC) tables

These types of tables are implemented as tables that are physically

clustered on more than one key, or dimension, at the same time. MDC

tables are used in data warehousing and large database environments.

Clustering indexes on regular tables support single-dimensional clustering

of data. MDC tables provide the benefits of data clustering across more

than one dimension.

Note: MDC is a type of table, but can coexist with a partitioned table or

can be partitioned table as well. Thus, it is not mutually exclusive to other

types of tables. A partitioned table can also be an APPEND table. Some

other combinations are not allowed, for example, MDC and APPEND, RCT

and any other table, or other combinations). Also, MDC provides

guaranteed clustering within the composite dimension, while for regular

tables with a clustering index, clustering is attempted by the database

manager, but not guaranteed and it typically degrades over time.

Range-clustered tables (RCT)

These types of tables are implemented as sequential clusters of data that

provide fast, direct access. Each record in the table has a predetermined

record ID (RID) which is an internal identifier used to locate a record in a

table. RTC tables are used where the data is tightly clustered across one or

more columns in the table. The largest and smallest values in the columns

226 Data Servers, Databases, and Database Objects Guide

define the range of possible values. You use these columns to access

records in the table; this is the most optimal method of utilizing the

predetermined record identifier (RID) aspect of RCT tables.

Partitioned tables

These types of tables are implemented with data divided across multiple

data partitions according to values in the table partitioning key columns

for the table. Partitioned tables allow easier roll-in and rollout of table

data, easier administration, flexible index placement, and better query

processing than regular tables.

 For each table that holds your data, consider which of the possible table types

would best suit your needs. For example, if you have data records that will be

loosely clustered (not monotonically increasing), consider using a regular table and

indexes. If you have data records that will have duplicate (not unique) values in

the key, you should not use a range-clustered table. If you cannot afford to

preallocate a fixed amount of storage on disk for the range-clustered tables you

might want, you should not use this type of table. These factors will help you to

determine whether you have data that can be used as a range-clustered table.

Designing tables

When designing tables, you need to be familiar with certain concepts, determine

the space requirements for tables and user data, and determine whether you will

take advantage of certain features, such as space compression and optimistic

locking.

When designing partitioned tables, you need to be familiar with the partitioning

concepts, such as:

v Data organization schemes

v Table partitioning keys

v Keys used for distributing data across data partitions

v Keys used for MDC dimensions

For these and other partitioning concepts, see “Table partitioning and data

organization schemes” on page 253.

Table design concepts

When designing tables, you need to be familiar with some related concepts.

Specifying column data types

When defining columns, you need to name the columns, define the type of data

that will be included in those columns (called data types), and define the length of

the data for each column in the table you are creating.

Character data stored as binary data

Small integer

This data type is used to store binary integer values that have a

precision of 15 bits. The range for a small integer value is -32 768

to +32 767. The small integer data type uses the smallest amount

of storage space possible to store numerical values (2 bytes of

space is required for each value stored). The term SMALLINT is

used to declare a small integer column in a table definition.

Integer

This data type is used to store binary integer values that have a

Chapter 11. Tables 227

precision of 31 bytes. Although the integer data type requires twice

as much storage space as the small integer data type (4 bytes of

space is required for each value stored), its range of values is much

greater. The range for an integer value is -2 147 483 648 to +2 147

483 647. The terms INTEGER and INT can be used to declare an

integer column in a table definition.

Big integer

This data type is used to store binary integer values that have a

precision of 63 bits on platforms that provide support for 64 bit

integers. Processing large numbers that are stored as big integers is

more efficient than processing similar numbers that have been

stored as decimal values. In addition, calculations performed with

big integer values are more precise than calculations performed

with real or double values.

 This data type requires four times as much storage space as the

small integer data type (8 bytes of space is required for each value

stored.) The range for a big integer is -9 223 372 036 854 775 808

to +9 223 372 036 854 775 807. The term BIGINT is used to

declare a big integer column in a table definition.

Decimal

This data type is used to store numbers that contain both whole

and fractional parts; the parts are combined and stored in packed

decimal format. A precision (the total number of digits) and a scale

(the number of digits to use for the fractional part of the number)

must be specified whenever a decimal data type is declared. The

range for the precision of a decimal is 1 to 31. The amount of

storage space needed to store a decimal value can be calculated by

using the following equation: precision divided by 2 (truncated) + 1

= bytes of space required.

 For example, a DECIMAL(8,2) value would require 5 bytes of

storage space (8 divided by 2 = 4; 4 + 1 = 5), whereas a

DECIMAL(7,2) value would require 4 bytes of storage space (7

divided by 2 = 3.5 (truncated to 3); 3 + 1 = 4).

The terms DECIMAL, DEC, NUMERIC, and NUM can all be used

to declare a decimal column in a table definition.

Note: If the precision and scale values are not provided for a

decimal column definition, by default, a precision value of 5 and a

scale value of 0 are used (therefore, 3 bytes of storage space is

needed).

Single-precision floating point

This data type is used to store a 32-bit approximation of a real

number. Although the single-precision floating-point data type and

the integer data type require the same amount of storage space (4

bytes of space is required for each value stored), the range for a

single-precision floating-point number is much greater: 10E-38 to

10E+38.

 The terms REAL and FLOAT can be used to declare a

single-precision floating-point column in a table definition.

However, if the term FLOAT is used, the length specified for the

column must be between 1 and 24–the FLOAT can be used to

228 Data Servers, Databases, and Database Objects Guide

represent both single- and double-precision floating-point data

types; the length specified determines which actual data type is to

be used.

Double-precision floating point

The double-precision floating-point data type is used to store a

64-bit approximation of a real number. Although the

double-precision floating-point data type requires the same amount

of storage space as the big integer data type (8 bytes of space is

required for each value stored), the range for a double-precision

floating-point number is the largest possible: -1.79760+308 to

-2.225E-307, 0, and 2.225E-307 to -1.79769E+308.

Fixed-length character string

This data type is used to store character and character string data

that has a specific length that does not exceed 254 characters. The

terms CHARACTER and CHAR can be used to declare a

fixed-length character string column in a table definition; the

length of the character string data to be stored must be specified

whenever a fixed-length character string data type is declared. The

amount of storage space needed to store a fixed-length character

string value can be determined by using the following equation:

fixed length x 1 = bytes of space required. For example, a CHAR(8)

value would require 8 bytes of storage.

Note: When fixed-length character string data types are used,

storage space can be wasted if the actual length of the data is

significantly smaller than the length specified when the column

was defined. For example, if the values YES and NO were to be

stored in a column that was defined as CHAR(20). Therefore, the

fixed length specified for a fixed-length character string column

should be as close as possible to the actual length of the data that

will be stored in the column.

Variable length character data

This data type is used to store character string data that varies in length.

Varying-length character string data can be up to 32 672 characters long;

however, the actual length allowed is governed by one restriction: the data

must fit on a single table space page. This means that for a table that

resides in a table space that used 4K pages, varying-length character string

data cannot be more than 4 092 characters long; for a table that resides in a

table space that used 8K pages, varying-length character string data cannot

be more than 8 188 characters long and so on, up to 32K. Because table

spaces are created with 4K pages by default, you must explicitly create a

table space with a larger page size if you want to use a varying length

character string data type to store strings that contain more than 4 092

characters.

Note:

v You must also have sufficient space in the table row to accommodate the

character string data. In other words, the storage requirements for other

columns in the table must be added to the storage requirements of the

character string data and the total amount of storage space needed must

not exceed the size of the table space’s page.

v When a varying-length string data value is updated and the new value

is larger than the original value, the record containing the value will be

moved to another page in the table. Such records are known as pointer

Chapter 11. Tables 229

records. Too many pointer records can cause a significant decrease in

performance because multiple pages must be retrieved in order to

process a single data record.

The terms CHARACTER VARYING, CHAR VARYING, and VARCHAR can

be used to declare a varying-length character string column in a table

definition. When a varying length character string column is defined, the

maximum number of characters that are expected to be stored in that

column must be specified as part of the declaration. Subsequent character

string data values that are stored in the column can be shorter than or

equal to the maximum length specified; if they are longer, they will not be

stored and error is returned.

The amount of storage space needed to store a varying-length character

string value can be determined by using the following equation: (string

length x 1) + 4 = bytes of space required. Thus, if a character string containing

30 characters were stored using a VARCHAR(30) data type, that particular

value would require 34 bytes of storage space. (All character strings using

this data type would have to be less than or equal to 30 characters in

length.)

Variable length long character data

The varying-length long character string data type is also used to store

string data that varies in length. This data type is used to store character

string data that is less than or equal to 32 700 characters long in a table

that resides in a table space that uses 4K pages. In other words, when the

varying-length long character string is used, the page size/character string

data length restrictions that apply to varying-length character string data

are not applicable.

 The term LONG VARCHAR is used to declare a varying-length long

character string column in a table definition. The amount of storage space

needed to store a varying-length character string value can be determined

by using this equation: (string length x 1) + 24 = bytes of space required. The

LONG VARCHAR and LONG VARGRAPHIC data types are deprecated

and might be removed in a future release. When choosing a data type for a

column, use data types such as VARCHAR, VARGRAPHIC, CLOB, or

DBCLOB since these will continue to be supported in future releases and

are recommended for portable applications.

Note: The FOR BIT DATA clause can be used with any character string

data type when declaring a column in a table definition. If this clause is

used, code page conversions will not be performed during data exchange

operations and the data itself will be treated and compared as binary (bit)

data.

Character large objects (CLOBS)

A CLOB (character large object) value can be up to 2 gigabytes (2 147 483

647 bytes) long. A CLOB is used to store large SBCS or mixed (SBCS and

MBCS) character-based data (such as documents written with a single

character set) and, therefore, has an SBCS or mixed code page associated

with it.

Variable length character stored as binary data (Large objects–LOBS and Binary

large objects–BLOBs)

The term large object and the generic acronym LOB refer to the BLOB,

CLOB, or DBCLOB data type. LOB values are subject to restrictions that

apply to LONG VARCHAR values, as described in the section “Variable

length character data”. These restrictions apply even if the length attribute

230 Data Servers, Databases, and Database Objects Guide

of the LOB string is 254 bytes or less. This data type is used to store binary

string data that varies in length. It is frequently used to store

nontraditional data such as documents, graphic images, pictures, audio,

and video.

Note: Binary large objects data cannot be manipulated by SQL the same

way that other data can. For example, binary large object values cannot be

sorted.

Unicode data

All data types supported are also supported in a Unicode database. In

particular, graphic string data is supported for a Unicode database, and is

stored in UCS-2 encoding. Every client, including SBCS clients, can work

with graphic string data types in UCS-2 encoding when connected to a

Unicode database.

Date and time data (Timestamps)

The date data type is used to store a three-part value (year, month, and

day) that designates a valid calendar data. The range for the year part is

0001 to 9999; the range for the month part is 1 to 12; and the range for the

day part is 1 to n (28, 29, 30, or 31) where n is dependent upon the month

part and whether the year part corresponds to a leap year. Externally, the

date data type appears to be a fixed-length character string data type that

has a length of 10. However, internally, the date data type requires much

less storage space–4 bytes of space is required for each value stored,

because date values are stored as packed strings. The term DATE is used

to declare a date column in a table definition.

 The time data type is used to store a three-part value (hours, minutes, and

seconds) that designates a valid time of day under a 24-hour clock. The

range for the hours part is 0 to 24; the range for the minutes part is 0 to 59;

and the range for the seconds part is also 0 to 59. (If the hours part is set

to 24, the minutes and seconds parts must be set to 0.) Externally, the time

data type appears to be a fixed-length character string data type that has a

length of 8. However, like date values, time values are stored as packed

strings–in this case, 3 bytes of space is required for each time value stored.

The term TIME is used to declare a time column in a table definition.

Like dates, the representation of time varies in different parts of the world.

Thus the format of a time value is also determined by the territory code

associated with the database being used. Table 49 shows the time formats

that are available, along with an example of their string representation:

 Table 49. Date formats (YYYY = Year, MM = Month, DD = Day)

Format name Abbreviation Date string format

International Standards

Organization

ISO YYYY-MM-DD

IBM USA Standard USA MM/DD/YYYY

IBM European Standard EUR MM/DD/YYYY

Japanese Industrial Standard JIS YYYY-MM-DD

Site specific LOC Based on database’s territory

code

Numeric data

All numbers have a sign and a precision. The sign is considered positive if

Chapter 11. Tables 231

the value of a number is zero. The precision is the number of bits or digits

excluding the sign. See the data type section in the description of the

CREATE TABLE statement.

Monetary data

Version 9.5 introduces DECFLOAT, a decimal floating-point data type that

is useful in business applications (for example, financial applications) that

deal with exact decimal values. Binary floating-point data types (REAL and

DOUBLE), which provide binary approximations for decimal data, are not

appropriate in such applications. DECFLOAT combines the accuracy of

DECIMAL with some of the performance advantage of FLOAT, which is

beneficial in applications where monetary values are being manipulated.

XML data

The XML data type is used to define columns of a table that store XML

values, where all stored XML values must be well-formed XML documents.

The introduction of this native XML data type provides the ability to store

well-formed XML documents in their native hierarchical format in the

database alongside other relational data.

Generated columns

A generated column is defined in a table where the stored value is computed using

an expression, rather than being specified through an insert or update operation.

When creating a table where it is known that certain expressions or predicates will

be used all the time, you can add one or more generated columns to that table. By

using a generated column there is opportunity for performance improvements

when querying the table data.

For example, there are two ways in which the evaluation of expressions can be

costly when performance is important:

1. The evaluation of the expression must be done many times during a query.

2. The computation is complex.

To improve the performance of the query, you can define an additional column

that would contain the results of the expression. Then, when issuing a query that

includes the same expression, the generated column can be used directly; or, the

query rewrite component of the optimizer can replace the expression with the

generated column.

Where queries involve the joining of data from two or more tables, the addition of

a generated column can allow the optimizer a choice of possibly better join

strategies.

Generated columns will be used to improve performance of queries. As a result,

generated columns will likely be added after the table has been created and

populated.

Examples

The following is an example of defining a generated column on the CREATE

TABLE statement:

 CREATE TABLE t1 (c1 INT,

 c2 DOUBLE,

 c3 DOUBLE GENERATED ALWAYS AS (c1 + c2)

 c4 GENERATED ALWAYS AS

 (CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

232 Data Servers, Databases, and Database Objects Guide

After creating this table, indexes can be created using the generated columns. For

example,

CREATE INDEX i1 ON t1(c4)

Queries can take advantage of the generated columns. For example,

SELECT COUNT(*) FROM t1 WHERE c1 > c2

can be written as:

 SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:

SELECT c1 + c2 FROM t1 WHERE (c1 + c2) * c1 > 100

can be written as:

SELECT c3 FROM t1 WHERE c3 * c1 > 100

Auto numbering and identifier columns

An identity column provides a way for DB2 to automatically generate a unique

numeric value for each row that is added to the table.

When creating a table in which you need to uniquely identify each row that will

be added to the table, you can add an identity column to the table. To guarantee a

unique numeric value for each row that is added to a table, you should define a

unique index on the identity column or declare it a primary key.

Other uses of an identity column are an order number, an employee number, a

stock number, or an incident number. The values for an identity column can be

generated by the DB2 database manager: ALWAYS or BY DEFAULT.

An identity column defined as GENERATED ALWAYS is given values that are

always generated by the DB2 database manager. Applications are not allowed to

provide an explicit value. An identity column defined as GENERATED BY

DEFAULT gives applications a way to explicitly provide a value for the identity

column. If the application does not provide a value, then DB2 will generate one.

Since the application controls the value, DB2 cannot guarantee the uniqueness of

the value. The GENERATED BY DEFAULT clause is meant for use for data

propagation where the intent is to copy the contents of an existing table; or, for the

unload and reloading of a table.

Once created, you cannot alter the table description to include an identity column.

If rows are inserted into a table with explicit identity column values specified, the

next internally generated value is not updated, and might conflict with existing

values in the table. Duplicate values will generate an error message if the

uniqueness of the values in the identity column is being enforced by a primary-key

or a unique index that has been defined on the identity column.

To define an identity column on a new table, use the AS IDENTITY clause on the

CREATE TABLE statement.

Example

The following is an example of defining an identity column on the CREATE

TABLE statement:

Chapter 11. Tables 233

CREATE TABLE table (col1 INT,

 col2 DOUBLE,

 col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify the

value used in the column to uniquely identify each row when added. Here the first

row entered has the value of “100” placed in the column; every subsequent row

added to the table has the associated value increased by five.

Constraining column data with constraints, defaults, and null

settings

Data often must adhere to certain restrictions or rules. Such restrictions may apply

to single pieces of information, such as the format and sequence numbers, or they

may apply to several pieces of information.

Nullability of column data values

Null values represent unknown states. By default, all of the built-in data

types support the presence of null values. However, some business rules

might dictate that a value must always be provided for some columns, for

example, emergency information. For this condition, you can use the NOT

NULL constraint to ensure that a given column of a table is never assigned

the null value. Once a NOT NULL constraint has been defined for a

particular column, any insert or update operation that attempts to place a

null value in that column will fail.

Default column data values

Just as some business rules dictate that a value must always be provided,

other business rules may dictate what that value should be, for example,

the gender of an employee must be either M or F. The column default

constraint is used to ensure that a given column of a table is always

assigned a predefined value whenever a row that does not have a specific

value for that column is added to the table. The default value provided for

a column can be null, a constraint value that is compatible with the data

type of the column, or a value that is provided by the database manager.

For more information, see: “Default column and data type definitions” on

page 235.

Keys A key is a single column or a set of columns in a table or index that can be

used to identify or access a specific row of data. Any column can be part

of a key and the same column can be part of more than one key. A key

that consists of a single column is called an atomic key; a key that is

composed of more than one column is called a composite key. In addition

to having atomic or composite attributes, keys are classified according to

how they are used to implement constraints:

v A unique key is used to implement unique constraints.

v A primary key is used to implement entity integrity constraints. (A

primary key is a special type of unique key that does not support null

values.)

v A foreign key is used to implement referential integrity constraints.

(Foreign keys must reference primary keys or unique keys; foreign keys

do not have corresponding indexes.)

Keys are normally specified during the declaration of a table, an index, or

a referential constraint definition.

Constraints

Constraints are rules that limit the values that can be inserted, deleted, or

234 Data Servers, Databases, and Database Objects Guide

updated in a table. There are check constraints, primary key constraints,

referential constraints, unique constraints, unique key constraints, foreign

key constraints, and informational constraints. For details about each of

these types of constraints, see: Chapter 12, “Constraints,” on page 267 or

“Types of constraints” on page 267.

Default column and data type definitions:

Certain columns and data types have predefined or assigned default values.

 For example, default column values for the various data types are as follows:

v NULL

v 0 Used for small integer, integer, decimal, single-precision floating point, and

double-precision floating point.

v Blank: Used for fixed-length and fixed-length double-byte character strings.

v Zero-length string: Used for varying-length character strings, binary large objects,

character large objects, and double-byte character large objects.

v Date: This the system date at the time the row is inserted (obtained from the

CURRENT_DATE special register). When a date column is added to an existing

table, existing rows are assigned the date January, 01, 0001.

v Time or Timestamp: This is the system time or system date/time of the at the time

the statement is inserted (obtained from the CURRENT_TIME special register).

When a time column is added to an existing table, existing rows are assigned

the time 00:00:00 or a timestamp that contains the date January, 01, 0001 and the

time 00:00:00.

Note: All the rows get the same default time/timestamp value for a given

statement.

v Distinct user-defined data type: This is the system-defined default value for the

base data type of the distinct user-defined data type (cast to the distinct

user-defined data type.

Primary key, referential integrity, check, and unique constraints

Constraints are rules that limit the values that can be inserted, deleted, or updated

in a table.

Primary key constraints

A primary key constraint is a column or combination of columns that has

the same properties as a unique constraint. You can use a primary key and

foreign key constraints to define relationships between tables.

Referential integrity (or foreign key) constraints

A foreign key constraint (also referred to as a referential constraint or a

referential integrity constraint) is a logical rule about values in one or more

columns in one or more tables. For example, a set of tables shares

information about a corporation’s suppliers. Occasionally, a supplier’s

name changes. You can define a referential constraint stating that the ID of

the supplier in a table must match a supplier ID in the supplier

information. This constraint prevents insert, update, or delete operations

that would otherwise result in missing supplier information.

Check constraints

A (table) check constraint sets restrictions on data added to a specific table.

Unique constraints

A unique constraint (also referred to as a unique key constraint) is a rule

Chapter 11. Tables 235

that forbids duplicate values in one or more columns within a table.

Unique and primary keys are the supported unique constraints.

Unicode table and data considerations

The Unicode character encoding standard is a fixed-length, character encoding

scheme that includes characters from almost all of the living languages of the

world.

For more information on Unicode table and data considerations, see:

v “Unicode character encoding” in Internationalization Guide

v “Character comparisons based on collating sequences” in Internationalization

Guide

v “Date and time formats by territory code” in Internationalization Guide

v “Conversion table files for euro-enabled code pages” in Internationalization Guide

Additional information on Unicode can be found in the latest edition of The

Unicode Standard , and from the Unicode Consortium web site at www.unicode.org.

Space requirements for tables

When designing tables, you need to take space requirements into considerations

Long field (LF) data

Long field (LF) data is stored in a separate table object that is structured

differently than the storage space for other data types.

 Data is stored in 32-KB areas that are broken up into segments whose sizes

are ″powers of two″ times 512 bytes. (Hence these segments can be 512

bytes, 1024 bytes, 2048 bytes, and so on, up to 32 768 bytes.)

Long field data types (LONG VARCHAR or LONG VARGRAPHIC) are

stored in a way that enables free space to be reclaimed easily. Allocation

and free space information is stored in 4 KB allocation pages, which appear

infrequently throughout the object.

The amount of unused space in the object depends on the size of the long

field data, and whether this size is relatively constant across all occurrences

of the data. For data entries larger than 255 bytes, this unused space can be

up to 50 percent of the size of the long field data.

If character data is less than the page size, and it fits into the record along

with the rest of the data, the CHAR, GRAPHIC, VARCHAR, or

VARGRAPHIC data types should be used instead of LONG VARCHAR or

LONG VARGRAPHIC.

Large object (LOB) data

Large object (LOB) data is stored in two separate table objects that are

structured differently than the storage space for other data types. To

estimate the space required by LOB data, you need to consider the two

table objects used to store data defined with these data types:

v LOB Data Objects: Data is stored in 64 MB areas that are broken up into

segments whose sizes are ″powers of two″ times 1024 bytes. (Hence

these segments can be 1024 bytes, 2048 bytes, 4096 bytes, and so on, up

to 64 MB.)

To reduce the amount of disk space used by LOB data, you can specify

the COMPACT option on the lob-options clause of the CREATE TABLE

and the ALTER TABLE statements. The COMPACT option minimizes the

amount of disk space required by allowing the LOB data to be split into

236 Data Servers, Databases, and Database Objects Guide

http://www.unicode.org

smaller segments. This process does not involve data compression, but

simply uses the minimum amount of space, to the nearest 1 KB

boundary. Using the COMPACT option may result in reduced

performance when appending to LOB values.

The amount of free space contained in LOB data objects is influenced by

the amount of update and delete activity, as well as the size of the LOB

values being inserted.

v LOB Allocation Objects:Allocation and free space information is stored in

4 KB allocation pages that are separated from the actual data. The

number of these 4 KB pages is dependent on the amount of data,

including unused space, allocated for the large object data. The overhead

is calculated as follows: one 4 KB page for every 64 GB, plus one 4 KB

page for every 8 MB.

If character data is less than the page size, and it fits into the record

along with the rest of the data, the CHAR, GRAPHIC, VARCHAR, or

VARGRAPHIC data types should be used instead of BLOB, CLOB, or

DBCLOB.

System catalog tables

System catalog tables are created when a database is created. The system

tables grow as database objects and privileges are added to the database.

 Initially, they use approximately 3.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type

of table space, and the extent size of the table space containing the catalog

tables. For example, if a DMS table space with an extent size of 32 is used,

the catalog table space is initially allocated 20 MB of space. Note: For

databases with multiple partitions, the catalog tables reside only on the

database partition from which the CREATE DATABASE command was

issued. Disk space for the catalog tables is only required for that database

partition.

Temporary tables

Some statements require temporary tables for processing (such as a work

file for sorting operations that cannot be done in memory). These

temporary tables require disk space; the amount of space required is

dependent upon the size, number, and nature of the queries, and the size

of returned tables.

 Your work environment is unique which makes the determination of your

space requirements for temporary tables difficult to estimate. For example,

more space may appear to be allocated for system temporary table spaces

than is actually in use due to the longer life of various system temporary

tables. This could occur when DB2_SMS_TRUNC_TMPTABLE_THRESH

registry variable is used.

You can use the database system monitor and the table space query APIs

to track the amount of work space being used during the normal course of

operations.

You can use the DB2_OPT_MAX_TEMP_SIZE registry variable to limit the

amount of temporary table space used by queries.

Table page sizes

Rows of table data are organized into blocks called pages. Pages can be four sizes:

4, 8, 16, and 32 kilobytes. Table data pages do not contain the data for columns

Chapter 11. Tables 237

defined with LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB or DCLOB

data types. The rows in a table data page do, however, contain a descriptor of

these columns.

You can create buffer pools or table spaces that have page sizes of 4 KB, 8 KB, 16

KB, or 32 KB. All tables created within a table space of a particular size have a

matching page size. A single table or index object can be as large as 512 GB,

assuming a 32 KB page size.

You can have a maximum of 1012 columns when you are using an 8 KB, 16 KB, or

32 KB page size. You can have a maximum of 500 columns for a 4 KB page size.

Larger record identifiers (RIDs), which allow more data pages per table object and

more records per page, change the required amount of memory and space used by

log files and system temporary table spaces. The maximum possible number of

rows you can have for a 32KB page size is approximately 2335, if the minimum

row size (12) is being used.

Maximum row lengths vary, depending on page size used:

v When the page size is 4 KB, the row length can be up to 4 005 bytes.

v When the page size is 8 KB, the row length can be up to 8 101 bytes.

v When the page size is 16 KB, the row length can be up to 16 293 bytes.

v When the page size is 32 KB, the row length can be up to 32 677 bytes.

To determine the page size for a table space you must consider the following:

v For OLTP applications that perform random row read and write operations, a

smaller page size is usually preferable, because it wastes less buffer pool space

with unwanted rows.

v For DSS applications that access large numbers of consecutive rows at a time, a

larger page size is usually better, because it reduces the number of I/O requests

that are required to read a specific number of rows. There is, however, an

exception to this. If your row size is smaller than pagesize / maximum rows,

there will be wasted space on each page. In this situation, a smaller page size

may be more appropriate.

Larger page sizes may allow you to reduce the number of levels in the index.

Larger pages support rows of greater length. Using the default of 4 KB pages,

tables are restricted to 500 columns. Larger page sizes (8 KB, 16 KB, and 32 KB)

support 1012 columns. The maximum size of the table space is proportional to the

page size of the table space.

Space requirements for user table data

By default, table data is stored on 4-KB pages. Each page (regardless of page size)

contains 68 bytes of overhead for the database manager. This leaves 4028 bytes to

hold user data (or rows), although no row on a 4-KB page can exceed 4005 bytes in

length. A row will not span multiple pages. You can have a maximum of 500

columns when using a 4-KB page size.

Table data pages do not contain the data for columns defined with LONG

VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, or DBCLOB data types. The

rows in a table data page do, however, contain a descriptor for these columns.

Rows are usually inserted into a regular table in first-fit order. The file is searched

(using a free space map) for the first available space that is large enough to hold

the new row. When a row is updated, it is updated in place, unless there is

238 Data Servers, Databases, and Database Objects Guide

insufficient space left on the page to contain it. If this is the case, a record is

created in the original row location that points to the new location in the table file

of the updated row.

If the ALTER TABLE APPEND ON statement is issued, data is always appended,

and information about any free space on the data pages is not kept.

If the table has a clustering index defined on it, the database manager will attempt

to physically cluster the data according to the key order of that clustering index.

When a row is inserted into the table, the database manager will first look up its

key value in the clustering index. If the key value is found, the database manager

attempts to insert the record on the data page pointed to by that key; if the key

value is not found, the next higher key value is used, so that the record is inserted

on the page containing records having the next higher key value. If there is

insufficient space on the target page in the table, the free space map is used to

search neighboring pages for space. Over time, as space on the data pages is

completely used up, records are placed further and further from the target page in

the table. The table data would then be considered unclustered, and a table

reorganization can be used to restore clustered order.

If the table is a multidimensional clustering (MDC) table, the database manager

will guarantee that records are always physically clustered along one or more

defined dimensions, or clustering indexes. When an MDC table is defined with

certain dimensions, a block index is created for each of the dimensions, and a

composite block index is created which maps cells (unique combinations of

dimension values) to blocks. This composite block index is used to determine to

which cell a particular record belongs, and exactly which blocks or extents in the

table contains records belonging to that cell. As a result, when inserting records,

the database manager searches the composite block index for the list of blocks

containing records having the same dimension values, and limits the search for

space to those blocks only. If the cell does not yet exist, or if there is insufficient

space in the cell’s existing blocks, then another block is assigned to the cell and the

record is inserted into it. A free space map is still used within blocks to quickly

find available space in the blocks.

The number of 4-KB pages for each user table in the database can be estimated by

calculating:

 ROUND DOWN(4028/(average row size + 10)) = records_per_page

and then inserting the result into:

 (number_of_records/records_per_page) * 1.1 = number_of_pages

where the average row size is the sum of the average column sizes, and the factor

of ″1.1″ is for overhead.

Note: This formula provides only an estimate. The estimate’s accuracy is reduced

if the record length varies because of fragmentation and overflow records.

You also have the option to create buffer pools or table spaces that have an 8 KB,

16 KB, or 32 KB page size. All tables created within a table space of a particular

size have a matching page size. A single table or index object can be as large as 512

GB, assuming a 32 KB page size. You can have a maximum of 1012 columns when

using an 8 KB, 16 KB, or 32 KB page size. The maximum number of columns is

500 for a 4-KB page size. Maximum row lengths also vary, depending on page size:

v When the page size is 4-KB, the row length can be up to 4005 bytes.

Chapter 11. Tables 239

v When the page size is 8 KB, the row length can be up to 8101 bytes.

v When the page size is 16 KB, the row length can be up to 16 293 bytes.

v When the page size is 32 KB, the row length can be up to 32 677 bytes.

A larger page size facilitates a reduction in the number of levels in any index. If

you are working with OLTP (online transaction processing) applications, that

perform random row reads and writes, a smaller page size is better, because it

wastes less buffer space with undesired rows. If you are working with DSS

(decision support system) applications, which access large numbers of consecutive

rows at a time, a larger page size is better because it reduces the number of I/O

requests required to read a specific number of rows.

You cannot restore a backup image to a different page size.

You cannot import IXF data files that represent more than 755 columns.

Declared temporary tables can be created only in their own user temporary table

space type. There is no default user temporary table space. Temporary tables

cannot have LONG data. The tables are dropped implicitly when an application

disconnects from the database, and estimates of the space requirements for their

tables should take this into account.

Space compression for tables

It might be possible for tables to occupy less space when stored on disk by

utilizing such features as compression for data rows, NULL values, and system

default values. Through data compression, you might be able to save disk storage

space by using fewer database pages to store data. Since more logical data can be

stored per page, fewer pages will need to be read in order to access the same

amount of logical data. This means that compression can also result in disk I/O

savings. I/O speed might also increase because more logical data can be cached in

the buffer pool.

To implement data compression in a database system, there are two methods you

can employ:

(Space) Value compression

This method optimizes space usage for the representation of data, and the

storage structures used internally by the database management system

(DBMS) to store data. Value compression involves removing duplicate

entries for a value, and only storing one copy. The stored copy keeps track

of the location of any references to the stored value.

 When creating a table, you can use the optional VALUE COMPRESSION

clause to specify that the table is using the space saving row format at the

table level and possibly at the column level.

When VALUE COMPRESSION is used, NULLs and zero-length data that

has been assigned to defined variable-length data types (VARCHAR,

VARGRAPHICS, LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB,

and DBCLOB) will not be stored on disk. Only overhead values associated

with these data types will take up disk space.

If VALUE COMPRESSION is used then the optional COMPRESS SYSTEM

DEFAULT option can also be used to further reduce disk space usage.

Minimal disk space is used if the inserted or updated value is equal to the

system default value for the data type of the column. The default value

will not be stored on disk. Data types that support COMPRESS SYSTEM

240 Data Servers, Databases, and Database Objects Guide

DEFAULT include all numerical type columns, fixed-length character, and

fixed-length graphic string data types. This means that zeros and blanks

can be compressed.

(Data) Row compression

This method compresses data rows by replacing repeating patterns that

span multiple column values within a row with shorter symbol strings.

Data row compression aims to achieve disk storage space savings. It can

also lead to disk I/O savings. Also, more data can be cached in the buffer

pool, thereby leading to increased bufferpool hit ratios. However, there is

an associated cost in the form of extra CPU cycles needed to compress and

decompress data. The storage savings and performance impact of data row

compression are tied to the characteristics of the data within the database,

the layout and tuning of the database, and application workload. Only the

data on a data page or in log records is compressed.

 Data row compression uses a static dictionary-based compression

algorithm to compress data by row. Compressing data at the row level

allows repeating patterns that span multiple column values within a row

to be replaced with shorter symbol strings. In order to compress table data,

the table COMPRESS attribute must be set to YES and a compression

dictionary must exist for the table.

To build a compression dictionary (and subsequently compress a table),

perform a classic (offline) table reorganization. A compression dictionary is

also built with the following operations: INSERT, including IMPORT,

LOAD INSERT and LOAD REPLACE, and also from some REDISTRIBUTE

operations. All the data rows that exist in a table participate in the building

of the compression dictionary. The dictionary is stored along with the table

data rows in the data object portions of the table.

To decompress a table, set the table COMPRESS attribute to NO and then

perform a classic (offline) table reorganization.

A data row that is inserted into a page may be compressed if the

COMPRESS attribute for the table is YES and a dictionary exists. This

applies to any insert row operation, including an insert through the import

or LOAD operations. Compression is enabled for an entire table, however,

each row is compressed individually. Therefore, a table could contain both

compressed and non-compressed rows at the same time.

Data row compression is not applicable to index, long, LOB, and XML data

objects.

Row compression is not compatible with table data replication support.

Row compression statistics can be generated using the RUNSTATS

command and are stored in the system catalog table SYSCAT.TABLES. A

compression estimation option is available with the INSPECT utility. The

query optimizer includes decompression cost in its costing model.

Depending upon UPDATE activity and the positioning of update changes

within a data row, there could be an increase in log consumption. For

information about update logging and column ordering, see “Ordering

columns to minimize update logging” on page 242.

For rows undergoing a size-increasing update, the new version of the row

might not fit on the current data page. Rather, the new image of the row is

stored on an overflow page. To minimize the creation of such

pointer-overflow records, more free space can be added within a data page.

For example, if 5% free space was used without compression, then allocate

Chapter 11. Tables 241

10% free space with compression. This recommendation is especially

important for data that is heavily updated.

Space compression for existing tables

 By specifying VALUE COMPRESSION clause, the row format of existing

table can be changed to allow space compression. Note that the sum of the

byte counts of the columns allowing space compression might exceed the

sum of the byte counts of the columns that do not allow space

compression. This is acceptable as long as the sum of the byte counts does

not exceed allowable row length of the table in the table space. For

example, the allowable row length is 4005 bytes in a table space with 4 KB

page size. If the allowable row length is exceeded, the error message

SQL0670N is returned. The byte count formula is documented as part of

the CREATE TABLE statement.

Similarly, by removing the VALUE COMPRESSION clause, table rows that

previously allowed space compression can be changed to no longer allow

space compression. The same condition regarding the sum of the byte

counts of the columns applies; and the error message SQL0670N is

returned as necessary.

To determine if you should consider space compression for your table, you

should know that a table with the majority of values equal to the system

default values, or NULL, would benefit from the new row format. For

example, where there is an INTEGER column and 90% of the column has

values of 0 (the default value for the data type INTEGER), or NULL,

compressing this table plus this column would benefit from the new row

format and save a lot of disk space.

When altering a table, you can use the VALUE COMPRESSION clause to

specify that the table is using the space row format at the table level and

possibly at the column level. You would use ACTIVATE VALUE

COMPRESSION to specify that the table will use the space saving

techniques or you would use DEACTIVATE VALUE COMPRESSION to

specify that the table will no longer use space saving techniques for data in

the table.

If you use DEACTIVATE VALUE COMPRESSION, this will implicitly

disable any COMPRESS SYSTEM DEFAULT options associated with

columns in that table.

After modifying the table to a new row format, all subsequent rows

inserted, loaded, or updated will have the new row format. To have every

row modified to the new row format, you should run a reorganization of

the table or perform an update operation on existing rows before changing

the row format.

Ordering columns to minimize update logging

When you define columns using the CREATE TABLE statement, consider the order

of the columns, particularly for update-intensive workloads. Columns which are

updated frequently should be grouped together, and defined towards or at the end

of the table definition. This results in better performance, fewer bytes logged, and

fewer log pages written, as well as a smaller active log space requirement for

transactions performing a large number of updates.

The database manager does not automatically assume that columns specified in the

SET clause of an UPDATE statement are changing in value. In order to limit index

maintenance and the amount of the row which needs to be logged, the database

compares the new column value against the old column value to determine if the

242 Data Servers, Databases, and Database Objects Guide

column is changing. Only the columns that are changing in value are treated as

being updated. Exceptions to this UPDATE behavior occur for columns where the

data is stored outside of the data row (long, LOB, ADT, and XML column types),

or for fixed-length columns when the registry variable DB2ASSUMEUPDATE is

enabled. For these exceptions, the column value is assumed to be changing so no

comparison will be made between the new and old column value.

There are three different types of UPDATE log records.

v Full before and after row image logging. The entire before and after image of the

row is logged. This is the only type of logging performed on tables enabled with

DATA CAPTURE CHANGES, and results in the most number of bytes being

logged for an update to a row.

v Full XOR logging. The XOR differences between the before and after row

images, from the first byte that is changing until the end of the smaller row, then

any residual bytes in the longer row. This results in less logged bytes than the

full before and after image logging, with the number of bytes of data beyond the

log record header information being the size of the largest row image.

v Partial XOR logging. The XOR differences between the before and after row

images, from the first byte that is changing until the last byte that is changing.

Byte positions may be first or last bytes of a column. This results in the least

number of bytes being logged and the most efficient type of log record for an

update to a row.

When DATA CAPTURE CHANGES is not enabled on the table, the amount of data

that is logged for an update depends on:

v the proximity of the updated columns (COLNO)

v whether the updated columns are fixed in length or variable length

v whether row compression (COMPRESS YES) is enabled

When the total length of the row is not changing, even when row compression is

enabled, the database manager computes and writes the optimal partial XOR log

record.

When the total length of the row is changing, which is common when

variable-length columns are updated and row compression is enabled, the database

manager determines which byte is first to be changed and write a full XOR log

record.

Data row compression

The purpose of data row compression is to achieve disk storage space savings, and

it can also lead to disk I/O savings. Also, more data can be cached in the buffer

pool, thereby increasing bufferpool hit ratios. Data row compression uses a static

dictionary–based compression algorithm to compress data by row.

Compressing data at the row level allows repeating patterns that span multiple

column values within a row to be replaced with shorter symbol strings.

Note: There is an associated cost in the form of extra CPU cycles needed to

compress and decompress data. The storage savings and performance impact of

data row compression are tied to the characteristics of the data within the

database, the layout and tuning of the database, and the application workload.

Only the data on a data page or in log records is compressed.

To compress table data, a compression dictionary must exist for the table, you

must set the COMPRESS attribute of the CREATE TABLE or ALTER TABLE

Chapter 11. Tables 243

statement to YES, and there needs to be sufficient data in the table. If these

compression conditions exist for the table, then when you issue an INSERT

statement or a LOAD INSERT, IMPORT INSERT, or REDISTRIBUTE command,

data added to the table is compressed.

In Version 9.5, data row compression is automatically enabled if a table has the

COMPRESS attribute set to YES and after the data compression dictionary has

been created. If you created or altered a table with a COMPRESS attribute set to

YES, no manual operation or database request is required on your part: that is, you

do not need to perform an explicit classic (offline) table reorganization to create the

data compression dictionary.

Note: If you set the COMPRESS attribute to YES and a compression dictionary

exists, compression applies to any insert row operation, including an insert

through an import or a load operation. Compression is enabled for an entire table;

however, each row is compressed individually. Therefore, a table could contain

both compressed and non-compressed rows at the same time.

To explicitly build a compression dictionary (and subsequently compress a table),

perform a classic (offline) table reorganization. All of the data rows that exist in a

table participate in the building of the compression dictionary. The dictionary is

stored with the table data rows in the data object portions of the table.

To decompress a table, set the table COMPRESS attribute to NO, and then perform

a classic (offline) table reorganization.

Restrictions

v Data row compression is not applicable to index, long, LOB, and XML data

objects.

v Row compression is not compatible with table data replication support.

v You can generate row compression statistics by using the RUNSTATS command.

These are stored in the system catalog table SYSCAT.TABLES. A compression

estimation option, which estimates the effectiveness of row compression for a

table, is available with the INSPECT utility. The query optimizer includes

decompression cost in its costing model.

v Depending upon update activity and the positioning of update changes within a

data row, there might be an increase in log space consumption.

v If a row is increasing in size, the new version of the row might not fit on the

current data page. In that case, the new image of the row is stored on an

overflow page. To minimize the creation of such pointer-overflow records, you

can add more free space within a data page. For example, if 5% free space was

used without compression, allocate 10% free space with compression. This

recommendation is especially important for data that is heavily updated.

Optimistic locking

With Version 9.5, enhanced optimistic locking support provides a technique for

SQL database applications that does not hold row locks between selecting, and

updating or deleting rows.

Applications can be written to optimistically assume that unlocked rows are

unlikely to change before the update or delete. If the rows do change, the updates

or deletes will fail and the application’s logic can handle such failures, for

example, by retrying the select.

244 Data Servers, Databases, and Database Objects Guide

The advantage of this enhanced optimistic locking is improved concurrency, since

other applications can read and write those same rows. In three-tier environments

where business transactions have no correlation to database transactions, this

optimistic locking technique is used, since locks cannot be maintained across

business transactions.

Optimistic locking

Optimistic locking is a technique for SQL database applications that does not hold

row locks between selecting and updating or deleting a row.

The application is written to optimistically assume that unlocked rows are unlikely

to change before the update or delete operation. If the row does change, the

update or delete will fail and the application logic handles such failures by, for

example, retrying the select. One advantage of optimistic locking is improved

concurrency, because other applications can read and write that row. In a three tier

environment where business transactions have no correlation to database

transaction, the optimistic locking technique is used, because locks cannot be

maintained across the business transaction.

However, optimistic locking by values has some disadvantages:

v Can result in false positives without additional data server support, a condition

when using optimistic locking whereby a row that is changed since it was

selected cannot be updated without first being selected again. (This can be

contrasted with false negatives, the condition whereby a row that is unchanged

since it was selected cannot be updated without first being selected again.)

v Requires more retry logic in applications

v It is complicated for applications to build the UPDATE search conditions

v It is inefficient for the DB2 server to search for the target row based on values

v Data type mismatches between some client types and database types, for

example, timestamps, prevent all columns from being used in the searched

update

Version 9.5 adds support for easier and faster optimistic locking with no false

positives. This support is added using the following new SQL functions,

expressions, and features:

v Row Identifier (RID_BIT or RID) built-in function

v ROW CHANGE TOKEN expression

v Time-based update detection

v Implicitly hidden columns

DB2 applications can enable optimistic locking by values by building a searched

UPDATE statement that finds the row with the exact same values that were

selected. The searched UPDATE fails if the row’s column values have changed.

Applications using this programming model will benefit from the enhanced

optimistic locking feature. Note that applications that do not use this programming

model are not considered optimistic locking applications, and they will continue to

work as before.

Row Identifier (RID_BIT or RID) built-in function

This built-in function can be used in the SELECT list or predicates

statement. In a predicate, for example, WHERE RID_BIT(tab)=?, the

RID_BIT equals predicate is implemented as a new direct access method in

order to to efficiently locate the row. Previously, so called values optimistic

Chapter 11. Tables 245

locking with values was done by adding all the selected column values to

the predicates and relying on some unique column combinations to qualify

only a single row, with a less efficient access method.

ROW CHANGE TOKEN expression

This new expression returns a token as BIGINT. The token represents a

relative point in the modification sequence of a row. An application can

compare the current row change token value of a row with the row change

token value that was stored when the row was last fetched to determine

whether the row has changed.

Time-based update detection:

This feature is added to SQL using the ROW CHANGE TIMESTAMP

expression. To support this feature, the table needs to have a new

generated row change timestamp column defined to store the timestamp

values. This can be added to existing tables using the ALTER TABLE

statement, or the row change timestamp column can defined when creating

a new table. The row change timestamp column’s existence also affects the

behavior of optimistic locking in that the column is used to improve the

granularity of the row change token from page level to row level, which

could greatly benefit optimistic locking applications. This feature has also

been added to DB2 for z/OS®.

Implicitly hidden columns:

For compatibility, this feature eases the adoption of the row change

timestamp columns to existing tables and applications. Implicitly hidden

columns are not externalized when implicit column lists are used. For

example:

v A SELECT * against the table does not return a implicitly hidden

columns in the result table

v An INSERT statement without a column list does not expect a value for

implicitly hidden columns, but the column should be defined to allow

nulls or have another default value.

Note: Refer to the DB2 Glossary for the definition of optimistic locking terms, such

as optimistic concurrency control, pessimistic locking, ROWID, and update detection.

Optimistic locking restrictions and considerations

This topic lists optimistic locking restrictions that you need to be aware of.

v ROW CHANGE TIMESTAMP columns are not supported in the following keys,

columns, and names (sqlstate 429BV is returned if used):

– Primary keys

– Foreign keys

– Multidimensional clustered (MDC) columns

– Range partition columns

– Database hashed partitioning keys

– DETERMINED BY constraint columns

– Nicknames
v The RID() function is not supported in Database Partitioning Feature (DPF)

configurations.

v Online or offline table reorg performed between the fetch and update operations

in an optimistic locking scenario may cause the update to fail, but this should be

handled by normal application retry logic.

246 Data Servers, Databases, and Database Objects Guide

v In Version 9.5, the IMPLICITLY HIDDEN attribute is restricted to only ROW

CHANGE TIMESTAMP columns for optimistic locking.

v Inplace reorg is restricted for tables where a ROW CHANGE TIMESTAMP

column was added to an existing table until all rows are guaranteed to have

been materialized (SQL2219, reason code 13, is returned for this error). This can

be accomplished with a LOAD REPLACE command or with a classic table reorg.

This will prevent false positives. Tables created with the ROW CHANGE

TIMESTAMP column have no restrictions.

Considerations for implicitly hidden columns

A column defined as IMPLICITLY HIDDEN is not part of the result table of a

query that specifies * in a SELECT list. However, an implicitly hidden column can

be explicitly referenced in a query.

If a column list is not specified on the insert, then the VALUES clause or the

SELECT LIST for the insert should not include this column (in general, it must be

a generated, defaultable, or nullable column).

For example, an implicitly hidden column can be referenced in the SELECT list, or

in a predicate in a query. Additionally, an implicitly hidden column can be

explicitly referenced in a CREATE INDEX statement, ALTER TABLE statement,

INSERT statement, MERGE statement, or UPDATE statement. An implicitly hidden

column can be referenced in a referential constraint. A REFERENCES clause that

does not contain a column list refers implicitly to the primary key of the parent

table. It is possible that the primary key of the parent table includes a column

defined as implicitly hidden. Such a referential constraint is allowed.

v If the SELECT list of the fullselect of the materialized query definition explicitly

refers to an implicitly hidden column, that column will be part of the

materialized query table. Otherwise, an implicitly hidden column is not part of a

materialized query table that refers to a table containing an implicitly hidden

column.

v If the SELECT list of the fullselect of a view definition (CREATE VIEW

statement) explicitly refers to an implicitly hidden column, that column will be

part of the view, (however the view column is not considered to be ‘hidden’).

Otherwise, an implicitly hidden column is not part of a view that refers to a

table containing an implicitly hidden column.

Considerations for Label Based Access Control (LBAC)

When a column is protected under LBAC, access by a user to that column is

determined by the LBAC policies and the security label of the user. This protection,

if applied to a row change timestamp column, extends to the reference to that

column via both the ROW CHANGE TIMESTAMP and ROW CHANGE TOKEN

expressions which are derived from that column.

Therefore when determining the security policies for a table, ensure that the access

to the row change timestamp column is available for all users which need to use

optimistic locking or time based update detection as appropriate. Note that if there

is no row change timestamp column then the ROW CHANGE TOKEN expression

cannot be blocked by LBAC. However, if the table is altered to add a row change

timestamp column then any LBAC considerations will then apply.

Chapter 11. Tables 247

Granularity of row change tokens and false negatives

The RID_BIT() built-in function and the row change token are the only

requirements for optimistic locking. However, the schema of the table also affects

the behavior of optimistic locking.

For example, a row change timestamp column, defined using either of the

following statement clauses shown below, causes the DB2 server to store the time

when a row is last changed (or initially inserted). This provides a way to capture

the timestamp of the most recent change to a row. This is a timestamp column and

it is maintained by the database manager, unless the GENERATED BY DEFAULT

clause is used to accept a user-provided input value.

 GENERATED ALWAYS FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

 GENERATED BY DEFAULT FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Therefore, when an application uses the new ROW CHANGE TOKEN expression

on a table, there are two possibilities to consider:

v The table does not have a row change timestamp column: A ROW CHANGE TOKEN

expression returns a derived BIGINT value that is shared by all rows located on

the same page. If one row on a page is updated, the row change token is

changed for all the rows on the same page. This means an update can fail when

changes are made to other rows, a property referred to as a false negative.

Note: Use this mode only if the application can tolerate false negatives and does

not want to add additional storage to each row for a ROW CHANGE

TIMESTAMP column.

v The table has a row change timestamp column: A ROW CHANGE TOKEN

expression returns a BIGINT value derived from the timestamp value in the

column. In this case, false negatives may occur but are more infrequent: If the

table is reorganized or redistributed, false negatives can occur if the row is moved

and an application uses the prior RID_BIT() value.

Time-based update detection

Some applications need to know database updates for certain time ranges, which

may be used for replication of data, auditing scenarios, and so forth. The new

ROW CHANGE TIMESTAMP expression provides this information.

It returns a timestamp representing the time when a row was last changed,

expressed in local time similar to CURRENT TIMESTAMP. For a row that has been

updated, this reflects the most recent update to the row. Otherwise, the value

corresponds to the original insert of the row.

The value of the ROW CHANGE TIMESTAMP is unique for every row per table of

a database or table partition, that is, not all rows per database partition are unique,

only the rows in the same table. The value represents the modification sequence of

the row. Rows which are more lately modified always have later values than rows

which were earlier modified. Since the value is always growing from earlier to

later, it may become out of sync with the system clock if:

v The system clock is changed

v The row change timestamp column is GENERATED BY DEFAULT (intended for

data propagation only) and a row is provided with an out of sync value

The prerequisite for using the ROW CHANGE TIMESTAMP expression is that the

table must have a row change timestamp column defined. Every row returns the

timestamp of when it was inserted or last updated.There are two methods in

which the row change timestamp column can be part of the table:

248 Data Servers, Databases, and Database Objects Guide

v The table was created with a row change timestamp column. A ROW CHANGE

TIMESTAMP expression returns the value of the column. For this category, the

timestamp is precise. The row change timestamp in general when generated by

the database is limited by speed of inserts and possible clock manipulations

including DST adjustment.

v The table was not created with a row change timestamp column, but one was later

added through an ALTER TABLE statement. A ROW CHANGE TIMESTAMP

expression returns the value of the column. For this category, the old (pre-alter)

rows do not contain the actual timestamp until they are first updated or an

offline table reorganization is performed.

Note: The timestamp is an approximate time that the actual update occurred in

the database, as of the system clock at the time and taking into account the

limitation that no timestamps can be repeated within a database/table partition.

In practice this is normally a very accurate representation of the time of the

update. The row change timestamp, in general, when generated by the database,

is limited by speed of inserts and possible clock manipulations including DST

adjustments.

Rows that have not been updated since the ALTER TABLE statement will return

the type default value for the column, which is midnight Jan 01, year 1. Only

rows that have been updated will have a unique timestamp. Rows which have

the timestamp materialized via an offline table reorganization will return a

unique timestamp generated during the reorganization of the table. Reorg using

the INPLACE option is not sufficient as it does not materialize schema changes.

In either case, the timestamp of a row may also be updated if a redistribute is

performed. If the row is moved from one database partition to another during a

redistribute then a new timestamp must be generated which is guaranteed to be

unique at the target.

Time values generated for ROW CHANGE TIMESTAMPs

There are some boundary conditions on the exact values generated for the row

change timestamp columns due to the enforcement of unique values per partition.

Whenever the system clock is adjusted into the past for clock correction or for a

daylight saving time policy on the DB2 server, it is possible that timestamps will

appear to be in the future relative to the current value of the system clock, or the

value of the CURRENT TIMESTAMP special register. This occurs when a

timestamp was generated prior to the system clock adjustment, that is, later than

the adjusted time, as the timestamps are always generated in an ascending fashion

to maintain uniqueness.

When timestamps are generated for columns which were added to the table by a

REORG operation or as part of a LOAD operation, the timestamps will be

sequentially generated at some point in the processing of the utility starting from

an initial timestamp value. If the utility is able to process rows faster than the

timestamp granularity (that is, more than 1 million rows per second), then the

values generated for some of the rows may also appear to be in the future relative

to the system clock or the CURRENT TIMESTAMP special register.

In each case, once the system clock catches up to the row change timestamp

values, there will be a close approximation of the time that the row was inserted.

Until such time, timestamps will be generated in ascending sequence by the finest

granularity allowed by the timestamp type.

Chapter 11. Tables 249

RID_BIT() and RID() built-in function

The RID_BIT() and row change token can be selected for every row in a table. The

SELECT can occur at any isolation level that the application requires.

The application can UPDATE the same (unchanged) row with optimistic locking by

searching on:

v The RID_BIT() to directly access (not scan) the update target row

v The row change token to ensure this is the same unchanged row

This update (or delete) can occur at any point after the select, within the same unit

of work, or even across connection boundaries; the only requirement is having

obtained the two values above for a given row at some point in time.

Optimistic locking is used in the “WebSphere-Oriented Programming Model”. For

example, Microsoft .NET uses this model to process SELECT statements followed

by UPDATE or DELETE statements as follows:

v Connect to the database server and SELECT the desired rows from a table

v Disconnect from the database, or release the row locks so that other applications

can read, update, delete, and insert data without any concurrency conflicts due

to locks and resources held by the application (isolation “Uncommited Read”

allows higher concurrency AND assuming other applications COMMIT their

update and delete transactions, then this optimistic locking application will read

the updated values and the optimistic searched update/delete will succeed)

v Perform some local calculations on the SELECTed row data

v Reconnect to the database server, and search for UPDATE or DELETE on one or

more particular targeted rows (and, if the target row has changed, handle failed

UPDATE or DELETE statements)

Applications using this programming model will benefit from the enhanced

optimistic locking feature. Note that applications that do not use this programming

model are not considered optimistic locking applications, and they will continue to

work as before.

RID_BIT() and RID() built-in function features

Following are the new features that will be implemented for enhanced optimistic

locking and for update detection:

RID_BIT(<table designator>)

A new built-in function that returns the Record identifier (RID) of a row as

VARCHAR(16) FOR BIT DATA.

Note: DB2 for z/OS implements a built-in function RID with a return type

of BIGINT, but that is not large enough for Linux, UNIX, and Windows

RIDs. For compatibility, this RID() built-in function returns BIGINT, in

addition to RID_BIT().

This RID() built-in function does not work in DPF environments, and does

not include table version information. Otherwise, it works the same as

RID_BIT. You should use it only when coding applications that will be

ported to z/OS servers. Except where necessary, this topic refers only to

RID_BIT.

RID_BIT() built-in function

This built-in function can be used in the SELECT list or predicates

statement. In a predicate, for example, WHERE RID_BIT(tab)=?, the RID_BIT

250 Data Servers, Databases, and Database Objects Guide

equals predicate is implemented as a new direct access method in order to

to efficiently locate the row. Previously, so called values optimistic locking

with values was done by adding all the selected column values to the

predicates and relying on some unique column combinations to qualify

only a single row, with a less efficient access method.

ROW CHANGE TOKEN FOR <table designator>

A new expression that returns a token as BIGINT. The token represents a

relative point in the modification sequence of a row. An application can

compare the current row change token value of a row with the row change

token value that was stored when the row was last fetched to determine

whether the row has changed.

ROW CHANGE TIMESTAMP column

A GENERATED column with default type of TIMESTAMP which can be

defined as either:

 GENERATED ALWAYS FOR EACH ROW ON UPDATE

 AS ROW CHANGE TIMESTAMP

or (suggested only for data propagation or unload and reload operations):

 GENERATED BY DEFAULT FOR EACH ROW ON UPDATE

 AS ROW CHANGE TIMESTAMP

The data in this column changes every time the row is changed. When this

column is defined, the ROW CHANGE TOKEN value will be derived from

it. Note that when GENERATED ALWAYS is used, the database manager

ensures that this value is unique within a database partition or within table

partition to ensure that no false positives are possible.

To use the first two elements, RID_BIT and ROW CHANGE TOKEN, no other

changes are need to the database schema. Note, however, that without the ROW

CHANGE TIMESTAMP column, the row change token is shared by every row on

the same page. Updates to any row on the page may cause false negatives for other

rows stored on the same page. With this column, the ROW CHANGE TOKEN is

derived from the timestamp and is not shared with any other rows in the table or

database partition. See “Granularity of row change tokens and false negatives” on

page 248.

Time-based update detection feature

A new expression that returns a timestamp value that represents the time when the

row in the table identified by the table designator was last changed.

 ROW CHANGE TIMESTAMP FOR <table designator>

The ROW CHANGE TIMESTAMP expression is not supported for tables that do

not have a ROW CHANGE TIMESTAMP column.

The ROW CHANGE TIMESTAMP expression is used for time-based update

detection scenarios only, and requires that a row change timestamp column is

defined for the table identified by the table designator. This column is managed by

the database manager and is used to store the timestamp value that will be

returned by the ROW CHANGE TIMESTAMP expression. This timestamp differs

from the CURRENT TIMESTAMP in that it is guaranteed unique when assigned

by the database per row per database partition. It is a local timestamp

approximation of the modification time of each individual row inserted or

updated.

Chapter 11. Tables 251

Note: Despite the inter-relation of these two features, that is, the RID_BIT() and

RID() built-in function and the time-based update detection feature, it is important

to note that the usage of ROW CHANGE TOKEN and ROW CHANGE

TIMESTAMP expressions are not interchangeable; specifically, that ROW CHANGE

TIMESTAMP expression is not part of the optimistic locking usage.

Planning the enablement of optimistic locking

Since the new SQL expressions and attributes for optimistic locking can be used

with no DDL changes to the tables involved, you can easily try optimistic locking

in your test applications.

Note that without DDL changes, optimistic locking applications may get more false

negatives than with DDL changes. An application that does get false negatives may

not scale well in a production environment because the false negatives may cause

too many retries. Therefore, to avoid false negatives, optimistic locking target

table(s) should be either:

v Created with a ROW CHANGE TIMESTAMP column

v Altered to contain the ROW CHANGE TIMESTAMP column

If the recommended DDL changes are done, there will be many fewer false

negatives. The only false negatives will occur due to table level operations like

reorg, not concurrent applications operating on different rows.

In general, the database manager allows false negatives (online or offline reorg, for

example) and the presence of a row change timestamp column is sufficient to

determine whether page or row level granularity is being used. You can also query

the SYSCAT.COLUMNS for a table that has rows with a YES in the

ROWCHANGETIMESTAMP column.

A thorough analysis of the application and database may indicate that this DDL is

not required, for example, if there is one row per page, or if the update and delete

operations are very infrequent and rarely, or never, on the same data page. Such

analysis is the exception.

For the update timestamp detection usage, you must make changes to the DDL for

the table, and possibly reorganize the table to materialize the values. If there is

concern that these changes could have a negative impact on the production

database, you should first prototype the changes in a test environment. For

instance, the extra columns can affect the row size limitations and plan selection.

Conditions to be aware of

v You should be aware of conditions relating to the system clock and the

granularity of the timestamp values. If a table has a ROW CHANGE

TIMESTAMP column, after an insert or update, the new row will have a unique

ROW CHANGE TIMESTAMP value in that table on that database partition.

v To ensure uniqueness, the generated timestamp of a row will always increase,

regardless if the system clock is adjusted backwards or if the update or insertion

of data is happening faster than timestamp granularity. Therefore, the ROW

CHANGE TIMESTAMP may be in the future compared with the system time

and DB2’s CURRENT TIMESTAMP special register. Unless the system clock is

gets completely out of sync, or the database manager is inserting or updating at

more than one million rows per second, then this should normally be very close

to the actual time. In contrast to the CURRENT TIMESTAMP, this value is also

generated per row at the time of the update, therefore, it is normally much

closer than the CURRENT TIMESTAMP, which is generated once for an entire

252 Data Servers, Databases, and Database Objects Guide

statement that could take a very long time to complete, depending on the

complexity and number of rows affected.

Enabling optimistic locking in applications

There are a number of steps that you need to perform in order to enable optimistic

locking support in your applications.

1. In the initial query, SELECT the row identifier (using the “RID_BIT() and RID()

built-in function” on page 250) and row change token for each row that you

need to process.

2. Release the row locks so that other applications can SELECT, INSERT, UPDATE

and DELETE from the table.

3. Perform a searched UPDATE or DELETE on the target rows, using the row

identifier and row change token in the search condition, optimistically

assuming that the unlocked row has not changed since the original SELECT

statement

4. If the row has changed, the UPDATE operation will fail and the application

logic must handle the failure. For instance, the application retries the SELECT

and UPDATE operations.

After running the above steps:

v If the number of retries performed by your application seems higher than

expected or is desired, then adding a row change timestamp column to your

table to ensure that only changes to the row identified by the RID_BIT function

will invalidate only the row change token, and not other activity on the same

data page.

v To see rows which have been inserted or updated in a given time range, create

or alter the table to contain a row change timestamp column. This column will

be maintained by the database manager automatically and can be queried using

either the column name or the ROW CHANGE TIMESTAMP expression.

v For row change timestamp columns only, if the column is defined with the

IMPLICTLY HIDDEN attribute, then it is not externalized when there is an

implicit reference to the columns of the table. However, an implicitly hidden

column can always be referenced explicitly in SQL statements. This can be useful

when adding a column to a table can cause existing applications using implicit

column lists to fail.

Table partitioning and data organization schemes

Table partitioning is a data organization scheme in which table data is divided

across multiple data partitions according to values in one or more partitioning

columns of the table. Data from a given table is partitioned into multiple storage

objects, which can be in different table spaces.

For complete details about table partitioning and data organization schemes, see

the Partitioning and Clustering Guide.

Creating tables

The database manager controls changes and access to the data stored in the tables.

You can create tables using the CREATE TABLE statement. Complex statements

can be used to define all the attributes and qualities of tables. However, if all the

defaults are used, the statement to create a table is quite simple.

 CREATE TABLE <table name> (<column name> <data type> <column options>,

 (<column name> <data type> <column options>, ...)

Chapter 11. Tables 253

The <table name> may or may not include a qualifier. The name must be unique

when compared to all table, view, and alias names in the system catalog. The name

must also not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT.

The <column name> names the columns in the table. This name cannot be qualified

and must be unique within the other columns of the table.

Any <column options> that exist for a column further define the attributes of the

column. The options include NOT NULL in order to prevent the column from

containing null values, specific options for LOB data types, and the SCOPE of the

reference type columns, any constraints on the columns, and any defaults for the

columns. For more information, see the CREATE TABLE statement.

Declaring global temporary tables

To create global temporary tables from within your applications, use the DECLARE

GLOBAL TEMPORARY TABLE statement.

Global temporary tables, also referred to as user-defined temporary tables, are used

by applications that work with data in the database. Results from manipulation of

the data need to be stored temporarily in a table. A user temporary table space

must exist before creating global temporary tables.

Note: The description of global temporary tables does not appear in the system

catalog thus making it not persistent for, and not able to be shared with, other

applications. When the application using this table terminates or disconnects from

the database, any data in the table is deleted and the table is implicitly dropped.

Global temporary tables do not support:

v LOB-type columns (or distinct-type columns based on LOBs)

v User-defined type columns

v LONG VARCHAR columns

v XML columns

Example

 DECLARE GLOBAL TEMPORARY TABLE gbl_temp

 LIKE empltabl

 ON COMMIT DELETE ROWS

 NOT LOGGED

 IN usr_tbsp

This statement creates a global temporary table called gbl_temp. This table is

defined with columns that have exactly the same name and description as the

columns of the empltabl. The implicit definition only includes the column name,

data type, nullability characteristic, and column default value attributes. All other

column attributes including unique constraints, foreign key constraints, triggers,

and indexes are not defined. When a COMMIT operation is performed, all data in

the table is deleted if no WITH HOLD cursor is open on the table. Changes made

to the user temporary table are not logged. The global temporary table is placed in

the specified user temporary table space. This table space must exist or the

declaration of this table will fail.

If a ROLLBACK or ROLLBACK TO SAVEPOINT is specified when creating this

table, either you can specify to delete all the rows in the table (DELETE ROWS,

which is the default), or you can specify that the rows of the table are to be

preserved (PRESERVE ROWS).

254 Data Servers, Databases, and Database Objects Guide

The table is dropped implicitly when the application disconnects from the

database.

Creating tables like existing tables

Creating a new source table might be necessary when the characteristics of the

target table do not sufficiently match the characteristics of the source when issuing

the ALTER TABLE statement with the ATTACH PARTITION clause. Before creating

a new source table, you can attempt to correct the mismatch between the existing

source table and the target table.

To create a table, the privileges held by the authorization ID of the statement must

include at least one of the following authorities and privileges:

v CREATETAB authority on the database and USE privilege on the table space, as

well as one of:

– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v SYSADM or DBADM authority

If attempts to correct the mismatch fail, error SQL20408N or SQL20307N is

returned.

To create a new source table:

1. Use the db2look command to produce the CREATE TABLE statement to create

a table identical to the target table:

db2look -d <source database name> -t <target database name> -e -p

2. Remove the partitioning clause from the db2look output and change the name

of the table created to a new name (in this example, referred to here as

sourceC).

3. Next, load all of the data from the original source table to the newly created

source table, sourceC using a LOAD FROM CURSOR command:

 DECLARE mycurs CURSOR FOR SELECT * FROM source

 LOAD FROM mycurs OF CURSOR REPLACE INTO sourceC

If this command fails because the original data is incompatible with the

definition of table sourceC, you must transform the data in the original table as

it is being transferred to sourceC.

4. After the data has been successfully copied to sourceC, submit the ALTER

TABLE target ...ATTACH sourceC statement.

Creating tables for staging data

A staging table allows incremental maintenance support for deferred materialized

query table. The staging table collects changes that need to be applied to the

materialized query table to synchronize it with the contents of underlying tables.

The use of staging tables eliminates the high lock contention caused by immediate

maintenance content when an immediate refresh of the materialized query table is

requested. Also, the materialized query tables no longer need to be entirely

regenerated whenever a REFRESH TABLE is performed.

Chapter 11. Tables 255

Materialized query tables are a powerful way to improve response time for

complex queries, especially queries that might require some of the following

operations:

v Aggregated data over one or more dimensions

v Joins and aggregates data over a group of tables

v Data from a commonly accessed subset of data

v Repartitioned data from a table, or part of a table, in a partitioned database

environment

Here are some of the key restrictions regarding staging tables:

1. The query used to define the materialized query table, for which the staging

table is created, must be incrementally maintainable; that is, it must adhere to

the same rules as a materialized query table with an immediate refresh option.

2. Only a deferred refresh can have a supporting staging table. The query also

defines the materialized query table associated with the staging table. The

materialized query table must be defined with REFRESH DEFERRED.

3. When refreshing using the staging tables, only a refresh to the current point in

time is supported.

4. Partitioned hierarchy tables and partitioned typed tables are not supported.

(Partitioned tables are tables where data is partitioned into multiple storage

objects based on the specifications provided in the PARTITION BY clause of the

CREATE TABLE statement.)

An inconsistent, incomplete, or pending state staging table cannot be used to

incrementally refresh the associated materialized query table unless some other

operations occur. These operations will make the content of the staging table

consistent with its associated materialized query table and its underlying tables,

and to bring the staging table out of pending. Following a refresh of a materialized

query table, the content of its staging table is cleared and the staging table is set to

a normal state. A staging table might also be pruned intentionally by using the SET

INTEGRITY statement with the appropriate options. Pruning will change the

staging table to an inconsistent state. For example, the following statement forces

the pruning of a staging table called STAGTAB1:

 SET INTEGRITY FOR STAGTAB1 PRUNE;

When a staging table is created, it is put in a pending state and has an indicator

that shows that the table is inconsistent or incomplete with regard to the content of

underlying tables and the associated materialized query table. The staging table

needs to be brought out of the pending and inconsistent state in order to start

collecting the changes from its underlying tables. While in a pending state, any

attempts to make modifications to any of the staging table’s underlying tables will

fail, as will any attempts to refresh the associated materialized query table.

There are several ways a staging table might be brought out of a pending state; for

example:

v SET INTEGRITY FOR <staging table name> STAGING IMMEDIATE

UNCHECKED

v SET INTEGRITY FOR <staging table name> IMMEDIATE CHECKED

Modifying tables

This section provides topics on how you can modify tables.

256 Data Servers, Databases, and Database Objects Guide

Altering materialized query table properties

With some restrictions, you can change a materialized query table to a regular

table or a regular table to a materialized query table. You cannot change other

table types; only regular and materialized query tables can be changed. For

example, you cannot change a replicated materialized query table to a regular

table, nor the reverse.

Once a regular table has been altered to a materialized query table, the table is

placed in a set integrity pending state. When altering in this way, the fullselect

in the materialized query table definition must match the original table definition,

that is:

v The number of columns must be the same.

v The column names and positions must match.

v The data types must be identical.

If the materialized query table is defined on an original table, then the original

table cannot itself be altered into a materialized query table. If the original table

has triggers, check constraints, referential constraints, or a defined unique index,

then it cannot be altered into a materialized query table. If altering the table

properties to define a materialized query table, you are not allowed to alter the

table in any other way in the same ALTER TABLE statement.

When altering a regular table into a materialized query table, the fullselect of the

materialized query table definition cannot reference the original table directly or

indirectly through views, aliases, or materialized query tables.

To change a materialized query table to a regular table, use the following:

 ALTER TABLE sumtable

 SET SUMMARY AS DEFINITION ONLY

To change a regular table to a materialized query table, use the following:

 ALTER TABLE regtable

 SET SUMMARY AS <fullselect>

The restrictions on the fullselect when altering the regular table to a materialized

query table are very much like the restrictions when creating a summary table

using the CREATE SUMMARY TABLE statement.

Refreshing the data in a materialized query table

You can refresh the data in one or more materialized query tables by using the

REFRESH TABLE statement. The statement can be embedded in an application

program, or issued dynamically. To use this statement, you must have either

SYSADM or DBADM authority, or CONTROL privilege on the table to be

refreshed.

The following example shows how to refresh the data in a materialized query

table:

 REFRESH TABLE SUMTAB1

Changing column properties

Use the ALTER TABLE statement to change column properties, such as nullability,

LOB options, scope, constraints and compression attributes, data types and so

forth. For complete details, see the ALTER TABLE statement.

Chapter 11. Tables 257

To alter a table, you must have at least one of the following privileges on the table

to be altered:

v ALTER privilege

v CONTROL privilege

v SYSADM or DBADM authority

v ALTERIN privilege on the schema of the table

To change the definition of a existing column, to edit and test SQL when changing

table columns, or to validate related objects when changing table columns, you

must have DBADM authority.

For example, from the command line, enter:

 ALTER TABLE EMPLOYEE

 ALTER COLUMN WORKDEPT

 SET DEFAULT ’123’

Adding and dropping columns

To add columns to existing tables, or to drop columns from existing tables, use the

ALTER TABLE statement with the ADD COLUMN, or DROP COLUMN, clause,

respectively. The table must not be a typed table.

For all existing rows in the table, the value of the new column is set to its default

value. The new column is the last column of the table; that is, if initially there are

n columns, the added column is column n+1. Adding the new column must not

make the total byte count of all columns exceed the row size limit.

To add a column, issue the following statement:

 ALTER TABLE SALES

 ADD COLUMN SOLD_QTY

 SMALLINT NOT NULL DEFAULT 0

To delete or drop a column, issue the following statement:

 ALTER TABLE SALES

 DROP COLUMN SOLD_QTY

Modifying DEFAULT clause column definitions

The DEFAULT clause provides a default value for a column in the event that a

value is not supplied on INSERT or is specified as DEFAULT on INSERT or

UPDATE. If a specific default value is not specified following the DEFAULT

keyword, the default value depends on the data type. If a column is defined as an

XML or structured type, then a DEFAULT clause cannot be specified.

Omission of DEFAULT from a column-definition results in the use of the null

value as the default for the column, as described in: “Default column and data

type definitions” on page 235.

Specific types of values that can be specified with the DEFAULT keyword, see the

ALTER TABLE statement.

Modifying the generated or identity property of a column

You can add and drop the generated or identity property of a column in a table

using the ALTER COLUMN clause in the ALTER TABLE statement.

You can do one of the following actions:

258 Data Servers, Databases, and Database Objects Guide

v When working with an existing non-generated column, you can add a generated

expression attribute. The modified column then becomes a generated column.

v When working with an existing generated column, you can drop a generated

expression attribute. The modified column then becomes a normal,

non-generated column.

v When working with an existing non-identity column, you can add a identity

attribute. The modified column then becomes an identity column.

v When working with an existing identity column, you can drop the identity

attribute. The modified column then becomes a normal, non-generated,

non-identity column.

v When working with an existing generated column, you can alter a generated

column from being GENERATED ALWAYS to GENERATED BY DEFAULT. The

reverse is also true; that is, you can alter a generated column from being

GENERATED BY DEFAULT to GENERATED ALWAYS. This is only possible

when working with a generated column.

v You can drop the default attribute from the user-defined default column. When

you do this, the new default value is null.

v You can drop the default, identity, or generation attribute and then set a new

default, identity, or generation attribute in the same ALTER COLUMN

statement.

v For both the CREATE TABLE and ALTER TABLE statements, the “ALWAYS” is

an optional word in the GENERATED clause. This means that GENERATED

ALWAYS is equivalent to GENERATED when used in the ALTER TABLE

statement.

Modifying column definitions

Use the ALTER TABLE statement to drop columns, or change their types and

attributes. For example, you can increase the length of an existing VARCHAR or

VARGRAPHIC column. The number of characters might increase up to a value

dependent on the page size used.

To modify the default value associated with a column, once you have defined the

new default value, the new value is used for the column in any subsequent SQL

operations where the use of the default is indicated. The new value must follow

the rules for assignment and have the same restrictions as documented under the

CREATE TABLE statement.

Note: Generate columns cannot have their default value altered by this statement.

When changing these table attributes using SQL, it is no longer necessary to drop

the table and then recreate it, a time consuming process that can be complex when

object dependencies exist.

To modify the length and type of a column of an existing table using the command

line, enter:

 ALTER TABLE <table_name>

 ALTER COLUMN <column_name>

 <modification_type>

For example, to increase a column up to 4000 characters, use something similar to

the following:

 ALTER TABLE t1

 ALTER COLUMN colnam1

 SET DATA TYPE VARCHAR(4000)

Chapter 11. Tables 259

In another example, to allow a column to have a new VARGRAPHIC value, use an

statement similar to the following:

 ALTER TABLE t1

 ALTER COLUMN colnam2

 SET DATA TYPE VARGRAPHIC(2000)

You cannot alter the column of a typed table. However, you can add a scope to an

existing reference type column that does not already have a scope defined. For

example:

 ALTER TABLE t1

 ALTER COLUMN colnamt1

 ADD SCOPE typtab1

To modify the default value of a column of an existing table using the command

line, enter:

 ALTER TABLE <table_name>

 ALTER COLUMN <column_name>

 SET DEFAULT ’new_default_value’

For example, to change the default value for a column, use something similar to

the following:

 ALTER TABLE t1

 ALTER COLUMN colnam1

 SET DEFAULT ’123’

Renaming tables

You can use the RENAME statement to rename an existing table.

When renaming tables, the source table must not be referenced in any existing

definitions (view or materialized query table), triggers, SQL functions, or

constraints. It must also not have any generated columns (other than identity

columns), or be a parent or dependent table. Catalog entries are updated to reflect

the new table name. For more information and examples, see the RENAME

statement.

To change the definition of existing columns, see “Changing column properties” on

page 257 and the ALTER TABLE statement.

Recovering inoperative summary tables

Summary tables can become inoperative as a result of a revoked SELECT privilege

on an underlying table.

The following steps can help you recover an inoperative summary table:

v Determine the statement that was initially used to create the summary table. You

can obtain this information from the TEXT column of the SYSCAT.VIEW catalog

view.

v Re-create the summary table by using the CREATE SUMMARY TABLE

statement with the same summary table name and same definition.

v Use the GRANT statement to re-grant all privileges that were previously granted

on the summary table. (Note that all privileges granted on the inoperative

summary table are revoked.)

260 Data Servers, Databases, and Database Objects Guide

If you do not want to recover an inoperative summary table, you can explicitly

drop it with the DROP TABLE statement, or you can create a new summary table

with the same name but a different definition.

An inoperative summary table only has entries in the SYSCAT.TABLES and

SYSCAT.VIEWS catalog views; all entries in the SYSCAT.TABDEP,

SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views

are removed.

Viewing table definitions

You can use the SYSCAT.COLUMNS catalog view, to view table definitions. Each

row represents a column defined for a table, view, or nickname. To see the data in

the columns, use the SELECT statement.

Table or view aliases

An alias is an alternative name for a table or a view. It can be used to reference a

table or a view if an existing table or view can be referenced.

An alias cannot be used in all contexts; for example, it cannot be used in the check

condition of a check constraint. An alias cannot reference a declared temporary

table.

Like tables or views, an alias can be created, dropped, and have comments

associated with it. However, unlike tables, aliases can refer to each other in a

process called chaining. Aliases are publicly referenced names, so no special

authority or privilege is required to use them. Access to the table or the view

referred to by an alias, however, does require the authorization associated with

these objects.

There are other types of aliases, such as database and network aliases. Aliases can

also be created for nicknames that refer to data tables or views located on federated

systems.

Dropping tables

A table can be dropped with a DROP TABLE statement. When a table is dropped,

the row in the SYSCAT.TABLES system catalog view that contains information

about that table is dropped, and any other objects that depend on the table are

affected.

For example:

v All column names are dropped.

v Indexes created on any columns of the table are dropped.

v All views based on the table are marked inoperative.

v All privileges on the dropped table and dependent views are implicitly revoked.

v All referential constraints in which the table is a parent or dependent are

dropped.

v All packages and cached dynamic SQL and XQuery statements dependent on

the dropped table are marked invalid, and remain so until the dependent objects

are re-created. This includes packages dependent on any supertable above the

subtable in the hierarchy that is being dropped.

v Any reference columns for which the dropped table is defined as the scope of

the reference become “unscoped”.

Chapter 11. Tables 261

v An alias definition on the table is not affected, because an alias can be undefined

v All triggers dependent on the dropped table are marked inoperative.

To drop a table using the command line, enter:

 DROP TABLE <table_name>

The following statement drops the table called DEPARTMENT:

 DROP TABLE DEPARTMENT

An individual table cannot be dropped if it has a subtable. However, all the tables

in a table hierarchy can be dropped by a single DROP TABLE HIERARCHY

statement, as in the following example:

 DROP TABLE HIERARCHY person

The DROP TABLE HIERARCHY statement must name the root table of the

hierarchy to be dropped.

There are differences when dropping a table hierarchy compared to dropping a

specific table:

v DROP TABLE HIERARCHY does not activate deletion-triggers that would be

activated by individual DROP table statements. For example, dropping an

individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual rows of

the dropped tables. Instead, the dropping of the hierarchy is logged as a single

event.

Dropping materialized query or staging tables

You cannot alter a materialized query or staging table, but you can drop it. All

indexes, primary keys, foreign keys, and check constraints referencing the table are

dropped. All views and triggers that reference the table are made inoperative. All

packages depending on any object dropped or marked inoperative will be

invalidated.

To drop a materialized query or staging table using the command line, enter:

 DROP TABLE <table_name>

The following statement drops the materialized query table XT:

 DROP TABLE XT

A materialized query table might be explicitly dropped with the DROP TABLE

statement, or it might be dropped implicitly if any of the underlying tables are

dropped.

A staging table might be explicitly dropped with the DROP TABLE statement, or it

might be dropped implicitly when its associated materialized query table is

dropped.

Scenarios and examples of tables

This section provides scenarios and examples of tables.

262 Data Servers, Databases, and Database Objects Guide

Scenarios: Optimistic locking and time-based detection

Three scenarios are provided that show you how to enable and implement

optimistic locking in your applications, with and without time-based detection, and

with and without implicitly hidden columns.

Scenario: Using optimistic locking in an application program

This scenario demonstrates how optimistic locking is implemented in an

application program, covering six different scenarios.

Consider the following sequence of events in an application designed and enabled

for optimistic locking:

 SELECT QUANTITY, row change token FOR STOCK, RID_BIT(STOCK)

 INTO :h_quantity, :h_rct, :h_rid

 FROM STOCK WHERE PARTNUM = 3500

In this scenario, the application logic reads each row. Since this application is

enabled for optimistic locking as described in “Enabling optimistic locking in

applications” on page 253, the select list includes the RID_BIT() value saved in the

:h_rid host variable and the row change token value saved in the :h_rct host

variable.

With optimistic locking enabled, the application optimistically assumes any rows

targeted for update or delete will remain unchanged, even if they are unprotected

by locks. To improve database concurrency, the application removes the row lock(s)

using one of the following methods:

v Committing the unit of work, in which case the row locks are removed

v Closing the cursor using the WITH RELEASE clause, in which case the row

locks are removed

v Using a lower isolation level:

– CURSOR STABILITY (CS) in which case the row is not locked after the

cursor fetches to the next row, or to the end of the result table.

– UNCOMMITED READ (UR) in which case any uncommitted data has a new

(uncommitted) row change token value. If the uncommitted data is rolled

back, then the old committed row change token will be a different value.

Note: Assuming updates are not normally rolled back, using UR allows the

most concurrency.
v Disconnecting from the database, thus releasing all DB2 server resources for the

application. (.NET applications often use this mode).

The application processes the rows and decides it wants to optimistically update

one of them:

 UPDATE STOCK SET QUANTITY = QUANTITY – 1

 WHERE row change token FOR STOCK = :h_rct AND

 RID_BIT(STOCK) = :h_rid

The UPDATE statement updates the row identified in the SELECT statement

shown above.

The searched UPDATE predicate is planned as a direct fetch to the table:

 RID_BIT(STOCK) = :h_rid

Chapter 11. Tables 263

Direct fetch is a very efficient access plan, that is simple for the DB2 optimizer to

cost. If the RID_BIT() predicate does not find a row, the row was deleted and the

update fails with row not found.

Assuming that the RID_BIT() predicate finds a row, the predicate row change

token FOR STOCK = :h_rct will find the row if the row change token has not

changed. If the row change token has changed since the SELECT, the searched

UPDATE fails with row not found.

Table 50 lists the possible scenarios that could occur when optimistic locking is

enabled.

 Table 50. Scenarios that could occur when optimistic locking is enabled

Scenario ID Action Result

Scenario 1 There is a row change timestamp

column defined on the table and no

other application has changed the

row.

The update succeeds as the row

change token predicate succeeds for

the row identified by :h_rid.

Scenario 2 There is a ROW CHANGE

TIMESTAMP defined on the table.

Another application updates the row

after the select and before the update

(and commits), updating the row

change timestamp column.

The row change token predicate fails

comparing the token generated from

the timestamp in the row at the time

of the select and the token value of

the timestamp currently in the row. So

the UPDATE statement fails to find a

row.

Scenario 3 There is a ROW CHANGE

TIMESTAMP defined on the table.

Another application updates the row

and so the row has a new row

change token. This application

selects the row at isolation UR and

gets the new uncommitted row

change token.

This application runs the UPDATE,

which will lock wait until the other

application releases its row lock. The

row change token predicate will

succeed if the other application

commits the change with the new

token, so the UPDATE succeeds. The

row change token predicate will fail if

the other application rolls back to the

old token, so the UPDATE fails to find

a row.

Scenario 4 There is no row change timestamp

column defined on the table.

Another row is updated, deleted or

inserted on the same page, after the

select and before the update.

The row change token predicate fails

comparing the token because the row

change token value for all rows on the

page has changed, so the UPDATE

statement fails to find a row even

though our row has not actually

changed.

This false negative scenario would not

result in an UPDATE failure if a row

change timestamp column was added.

Scenario 5 The table has been altered to contain

a row change timestamp column,

and the row returned in the select

has not been modified since the time

of the alter. Another application

updates the row, adding the row

change timestamp column to that

row in the process with the current

timestamp.

The row change token predicate fails

comparing the token generated from

before with the token value created

from the row change timestamp

column so the UPDATE statement

fails to find a row. Since the row of

interest has actually been changed this

is not a false negative scenario.

264 Data Servers, Databases, and Database Objects Guide

Table 50. Scenarios that could occur when optimistic locking is enabled (continued)

Scenario ID Action Result

Scenario 6 The table is reorganized after the

select and before the update. The

row ID identified by :h_rid does not

find a row, or contains a row with a

different token so the update fails.

This is the form of false negative

that cannot be avoided even with the

existence of a row change timestamp

column in the row.

The row itself is not updated by the

reorganization but the RID_BIT

portion of the predicate cannot

identify the original row after the

reorganization.

Scenarios: Optimistic locking using implicitly hidden columns

The following scenarios demonstrate how optimistic locking is implemented in an

application program using implicitly hidden columns, that is, a column defined

with the IMPLICITLY HIDDEN attribute.

For these scenarios, assume that table SALARY_INFO is defined with three

columns, and the first column is an implicitly hidden ROW CHANGE

TIMESTAMP column whose values are always generated.

Scenario 1:

In the following statement, the implicitly hidden column is explicitly

referenced in the column list and a value is provided for it in the VALUES

clause:

 INSERT INTO SALARY_INFO (UPDATE_TIME, LEVEL, SALARY)

 VALUES (DEFAULT, 2, 30000)

Scenario 2:

The following INSERT statement uses an implicit column list. An implicit

column list does not include implicitly hidden columns, therefore, the

VALUES clause only contains values for the other two columns:

 INSERT INTO SALARY_INFO

 VALUES (2, 30000)

In this case, column UPDATE_TIME must be defined to have a default

value, and that default value is used for the row that is inserted.

Scenario 3:

In the following statement, the implicitly hidden column is explicitly

referenced in the select list and a value for it appears in the result set:

 SELECT UPDATE_TIME, LEVEL, SALARY FROM SALARY_INFO

 WHERE LEVEL = 2

 UPDATE_TIME LEVEL SALARY

 -------------------------- ----------- -----------

 2006-11-28-10.43.27.560841 2 30000

Scenario 4:

In the following statement the column list is generated implicitly through

use of the * notation, and the implicitly hidden column does not appear in

the result set:

 SELECT * FROM SALARY_INFO

 WHERE LEVEL = 2

 LEVEL SALARY

 ----------- -----------

 2 30000

Chapter 11. Tables 265

Scenario 5:

In the following statement, the column list is generated implicitly through

use of the * notation, and the implicitly hidden column value also appears

by using the ROW CHANGE TIMESTAMP FOR expression:

 SELECT ROW CHANGE TIMESTAMP FOR SALARY_INFO

 AS ROW_CHANGE_STAMP, SALARY_INFO.*

 FROM SALARY_INFO WHERE LEVEL = 2

The result table will be similar to scenario 3 (column UPDATE_TIME will

be ROW_CHANGE_STAMP).

Scenario: Time-based update detection

This scenario demonstrates how optimistic locking is implemented in an

application program using update detection by timestamp, covering three different

scenarios.

In this scenario, the application selects all rows that have changed in the last 30

days.

 SELECT * FROM TAB WHERE

 ROW CHANGE TIMESTAMP FOR TAB <=

 CURRENT TIMESTAMP AND

 ROW CHANGE TIMESTAMP FOR TAB >=

 CURRENT TIMESTAMP - 30 days;

Scenario 1:

No row change timestamp column is defined on the table. Statement fails

with SQL20431N. This SQL expression is only supported for tables with a

row change timestamp column defined.

Note: This scenario will work on z/OS.

Scenario 2:

A row change timestamp column was defined when the table was created:

 CREATE TABLE TAB (..., RCT TIMESTAMP NOT NULL

 GENERATED ALWAYS

 FOR EACH ROW ON UPDATE AS

 ROW CHANGE TIMESTAMP)

This statement returns all rows inserted or updated in the last 30 days.

Scenario 3:

A row change timestamp column was added to the table using the ALTER

TABLE statement at some point in the last 30 days:

 ALTER TABLE TAB ADD COLUMN RCT TIMESTAMP NOT NULL

 GENERATED ALWAYS

 FOR EACH ROW ON UPDATE AS

 ROW CHANGE TIMESTAMP

This statement returns all the rows in the table. Any rows that have not

been modified since the ALTER TABLE statement will use the default

value of the timestamp of the ALTER TABLE statement itself, and all other

rows that have been modified since then will have a unique timestamp.

266 Data Servers, Databases, and Database Objects Guide

Chapter 12. Constraints

Within any business, data must often adhere to certain restrictions or rules. For

example, an employee number must be unique. The database manager provides

constraints as a way to enforce such rules.

The following types of constraints are available:

v NOT NULL constraints

v Unique (or unique key) constraints

v Primary key constraints

v Foreign key (or referential integrity) constraints

v (Table) Check constraints

v Informational constraints

Constraints are only associated with tables and are either defined as part of the

table creation process (using the CREATE TABLE statement) or are added to a

table’s definition after the table has been created (using the ALTER TABLE

statement). You can use the ALTER TABLE statement to modify constraints. In

most cases, existing constraints can be dropped at any time; this action does not

affect the table’s structure or the data stored in it.

Note: Unique and primary constraints are only associated with table objects, they

are often enforced through the use of one or more unique or primary key indexes.

Types of constraints

A constraint is a rule that is used for optimization purposes.

There are five types of constraints:

v A NOT NULL constraint is a rule that prevents null values from being entered

into one or more columns within a table.

v A unique constraint (also referred to as a unique key constraint) is a rule that

forbids duplicate values in one or more columns within a table. Unique and

primary keys are the supported unique constraints. For example, a unique

constraint can be defined on the supplier identifier in the supplier table to

ensure that the same supplier identifier is not given to two suppliers.

v A primary key constraint is a column or combination of columns that has the

same properties as a unique constraint. You can use a primary key and foreign

key constraints to define relationships between tables.

v A foreign key constraint (also referred to as a referential constraint or a referential

integrity constraint) is a logical rule about values in one or more columns in one

or more tables. For example, a set of tables shares information about a

corporation’s suppliers. Occasionally, a supplier’s name changes. You can define

a referential constraint stating that the ID of the supplier in a table must match a

supplier ID in the supplier information. This constraint prevents insert, update,

or delete operations that would otherwise result in missing supplier information.

v A (table) check constraint (simply called a check constraint) sets restrictions on data

added to a specific table. For example, a table check constraint can ensure that

the salary level for an employee is at least $20,000 whenever salary data is

added or updated in a table containing personnel information.

© Copyright IBM Corp. 1993, 2009 267

An informational constraint is an attribute of a certain type of constraint, but one

that is not enforced by the database manager.

NOT NULL constraints

NOT NULL constraints prevent null values from being entered into a column.

The null value is used in databases to represent an unknown state. By default, all

of the built-in data types provided with the database manager support the

presence of null values. However, some business rules might dictate that a value

must always be provided (for example, every employee is required to provide

emergency contact information). The NOT NULL constraint is used to ensure that

a given column of a table is never assigned the null value. Once a NOT NULL

constraint has been defined for a particular column, any insert or update operation

that attempts to place a null value in that column will fail.

Because constraints only apply to a particular table, they are usually defined along

with a table’s attributes, during the table creation process. The following CREATE

TABLE statement shows how the NOT NULL constraint would be defined for a

particular column:

 CREATE TABLE EMPLOYEES (. . .

 EMERGENCY_PHONE CHAR(14) NOT NULL,

 . . .

);

Unique constraints

Unique constraints ensure that the values in a set of columns are unique and not

null for all rows in the table. The columns specified in a unique constraint must be

defined as NOT NULL. The database manager uses a unique index to enforce the

uniqueness of the key during changes to the columns of the unique constraint.

Unique constraints can be defined in the CREATE TABLE or ALTER TABLE

statement using the UNIQUE clause. For example, a typical unique constraint in a

DEPARTMENT table might be that the department number is unique and not null.

Figure 21 shows that a duplicate record is prevented from being added to a table

when a unique constraint exists for the table:

The database manager enforces the constraint during insert and update operations,

ensuring data integrity.

Department
number

001

003

002

003

004

005

Invalid record

Figure 21. Unique constraints prevent duplicate data

268 Data Servers, Databases, and Database Objects Guide

A table can have an arbitrary number of unique constraints, with at most one

unique constraint defined as the primary key. A table cannot have more than one

unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint

is called the parent key.

v When a unique constraint is defined in a CREATE TABLE statement, a unique

index is automatically created by the database manager and designated as a

primary or unique system-required index.

v When a unique constraint is defined in an ALTER TABLE statement and an

index exists on the same columns, that index is designated as unique and

system-required. If such an index does not exist, the unique index is

automatically created by the database manager and designated as a primary or

unique system-required index.

Note: There is a distinction between defining a unique constraint and creating a

unique index. Although both enforce uniqueness, a unique index allows nullable

columns and generally cannot be used as a parent key.

Primary key constraints

You can use primary key and foreign key constraints to define relationships

between tables.

A primary key is a column or combination of columns that has the same properties

as a unique constraint. Because the primary key is used to identify a row in a

table, it must be unique, and must have the NOT NULL attribute. A table cannot

have more than one primary key, but it can have multiple unique keys. Primary

keys are optional, and can be defined when a table is created or altered. They are

also beneficial, because they order the data when data is exported or reorganized.

(Table) Check constraints

A check constraint (also referred to as a table check constraint) is a database rule that

specifies the values allowed in one or more columns of every row of a table.

Specifying check constraints is done through a restricted form of a search

condition.

Foreign key (referential) constraints

Foreign key constraints (also known as referential constraints or referential integrity

constraints) enable you to define required relationships between and within tables.

For example, a typical foreign key constraint might state that every employee in

the EMPLOYEE table must be a member of an existing department, as defined in

the DEPARTMENT table.

Referential integrity is the state of a database in which all values of all foreign keys

are valid. A foreign key is a column or a set of columns in a table whose values are

required to match at least one primary key or unique key value of a row in its

parent table. A referential constraint is the rule that the values of the foreign key are

valid only if one of the following conditions is true:

v They appear as values of a parent key.

v Some component of the foreign key is null.

Chapter 12. Constraints 269

To establish this relationship, you would define the department number in the

EMPLOYEE table as the foreign key, and the department number in the

DEPARTMENT table as the primary key.

Figure 22 shows how a record with an invalid key is prevented from being added

to a table when a foreign key constraint exists between two tables:

The table containing the parent key is called the parent table of the referential

constraint, and the table containing the foreign key is said to be a dependent of that

table.

Referential constraints can be defined in the CREATE TABLE statement or the

ALTER TABLE statement. Referential constraints are enforced by the database

manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE,

MERGE, ADD CONSTRAINT, and SET INTEGRITY statements.

Employee table

Department table

Department
number

001

002

003

Invalid
record

Employee
name

John Doe

Barb Smith

Fred Vickers

Jane Doe

Department
number

Department
name

001 Sales

002 Training

003

015

Communications

...

Program
development

Foreign
key

Primary
key

...

027

Figure 22. Foreign and primary key constraints

270 Data Servers, Databases, and Database Objects Guide

Referential integrity rules involve the following terms:

 Table 51. Referential integrity terms

Concept Terms

Parent key A primary key or a unique key of a referential constraint.

Parent row A row that has at least one dependent row.

Parent table A table that contains the parent key of a referential constraint. A table

can be a parent in an arbitrary number of referential constraints. A table

that is the parent in a referential constraint can also be the dependent in

a referential constraint.

Dependent table A table that contains at least one referential constraint in its definition. A

table can be a dependent in an arbitrary number of referential

constraints. A table that is the dependent in a referential constraint can

also be the parent in a referential constraint.

Descendent

table

A table is a descendent of table T if it is a dependent of T or a

descendent of a dependent of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row r if it is a dependent of r or a descendent

of a dependent of r.

Referential cycle A set of referential constraints such that each table in the set is a

descendent of itself.

Self-referencing

table

A table that is a parent and a dependent in the same referential

constraint. The constraint is called a self-referencing constraint.

Self-referencing

row

A row that is a parent of itself.

The purpose of a referential constraint is to guarantee that table relationships are

maintained and that data entry rules are followed. This means that as long as a

referential constraint is in effect, the database manager guarantees that for each

row in a child table that has a non-null value in its foreign key columns, a row

exists in a corresponding parent table that has a matching value in its parent key.

When an SQL operation attempts to change data in such a way that referential

integrity will be compromised, a foreign key (or referential) constraint could be

violated. The database manager handles these types of situations by enforcing a set

of rules that are associated with each referential constraint. This set of rules consist

of:

v An insert rule

v An update rule

v A delete rule

When an SQL operation attempts to change data in such a way that referential

integrity will be compromised, a referential constraint could be violated. For

example,

v An insert operation could attempt to add a row of data to a child table that has

a value in its foreign key columns that does not match a value in the

corresponding parent table’s parent key.

v An update operation could attempt to change the value in a child table’s foreign

key columns to a value that has no matching value in the corresponding parent

table’s parent key.

Chapter 12. Constraints 271

v An update operation could attempt to change the value in a parent table’s

parent key to a value that does not have a matching value in a child table’s

foreign key columns.

v A delete operation could attempt to remove a record from a parent table that has

a matching value in a child table’s foreign key columns.

The database manager handles these types of situations by enforcing a set of rules

that are associated with each referential constraint. This set of rules consists of:

v An insert rule

v An update rule

v A delete rule

Insert rule

The insert rule of a referential constraint is that a non-null insert value of the

foreign key must match some value of the parent key of the parent table. The

value of a composite foreign key is null if any component of the value is null. This

rule is implicit when a foreign key is specified.

Update rule

The update rule of a referential constraint is specified when the referential

constraint is defined. The choices are NO ACTION and RESTRICT. The update rule

applies when a row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is

updated, the following rules apply:

v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.

v If any row in the dependent table does not have a corresponding parent key

when the update statement is completed (excluding AFTER triggers), the update

is rejected when the update rule is NO ACTION.

The value of the parent unique keys cannot be changed if the update rule is

RESTRICT and there are one or more dependent rows. However, if the update rule

is NO ACTION, parent unique keys can be updated as long as every child has a

parent key by the time the update statement completes. A non-null update value of

a foreign key must be equal to a value of the primary key of the parent table of the

relationship.

Also, the use of NO ACTION or RESTRICT as update rules for referential

constraints determines when the constraint is enforced. An update rule of

RESTRICT is enforced before all other constraints, including those referential

constraints with modifying rules such as CASCADE or SET NULL. An update rule

of NO ACTION is enforced after other referential constraints. Note that the

SQLSTATE returned is different depending on whether the update rule is

RESTRICT or NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when a

foreign key is specified. NO ACTION means that a non-null update value of a

foreign key must match some value of the parent key of the parent table when the

update statement is completed.

The value of a composite foreign key is null if any component of the value is null.

272 Data Servers, Databases, and Database Objects Guide

Delete rule

The delete rule of a referential constraint is specified when the referential

constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET

NULL. SET NULL can be specified only if some column of the foreign key allows

null values.

If the identified table or the base table of the identified view is a parent, the rows

selected for delete must not have any dependents in a relationship with a delete

rule of RESTRICT, and the DELETE must not cascade to descendent rows that

have dependents in a relationship with a delete rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected

rows are deleted. Any rows that are dependents of the selected rows are also

affected:

v The nullable columns of the foreign keys of any rows that are their dependents

in a relationship with a delete rule of SET NULL are set to the null value.

v Any rows that are their dependents in a relationship with a delete rule of

CASCADE are also deleted, and the above rules apply, in turn, to those rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign key

refers to an existing parent row after the other referential constraints have been

enforced.

The delete rule of a referential constraint applies only when a row of the parent

table is deleted. More precisely, the rule applies only when a row of the parent

table is the object of a delete or propagated delete operation (defined below), and

that row has dependents in the dependent table of the referential constraint.

Consider an example where P is the parent table, D is the dependent table, and p

is a parent row that is the object of a delete or propagated delete operation. The

delete rule works as follows:

v With RESTRICT or NO ACTION, an error occurs and no rows are deleted.

v With CASCADE, the delete operation is propagated to the dependents of p in

table D.

v With SET NULL, each nullable column of the foreign key of each dependent of p

in table D is set to null.

Any table that can be involved in a delete operation on P is said to be

delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent

of P, or a dependent of a table to which delete operations from P cascade.

The following restrictions apply to delete-connected relationships:

v When a table is delete-connected to itself in a referential cycle of more than one

table, the cycle must not contain a delete rule of either RESTRICT or SET NULL.

v A table must not both be a dependent table in a CASCADE relationship

(self-referencing or referencing another table) and have a self-referencing

relationship with a delete rule of either RESTRICT or SET NULL.

v When a table is delete-connected to another table through multiple relationships

where such relationships have overlapping foreign keys, these relationships must

have the same delete rule and none of these can be SET NULL.

v When a table is delete-connected to another table through multiple relationships

where one of the relationships is specified with delete rule SET NULL, the

foreign key definition of this relationship must not contain any distribution key

or MDC key column, or add data partitioning key column, or RCT key column.

Chapter 12. Constraints 273

v When two tables are delete-connected to the same table through CASCADE

relationships, the two tables must not be delete-connected to each other where

the delete connected paths end with delete rule RESTRICT or SET NULL.

Informational constraints

An informational constraint is a constraint attribute that can be used by the SQL

compiler to improve the access to data. Informational constraints are not enforced

by the database manager, and are not used for additional verification of data;

rather, they are used to improve query performance.

Informational constraints are defined using the CREATE TABLE or ALTER TABLE

statements. You first add referential integrity or check constraints and then

associate constraint attributes to them specifying whether the database manager is

to enforce the constraint or not; and, whether the constraint is to be used for query

optimization or not.

Designing constraints

When designing and creating constraints, it is a good idea to use a naming

convention that properly identifies the different types constraints. This is

particularly important for diagnosing errors that might occur.

You can design the following types of constraints:

v NOT NULL constraints

v Unique constraints

v Primary key constraints

v (Table) Check constraints

v Foreign key (referential) constraints

v Information constraints

Designing unique constraints

Unique constraints ensure that every value in the specified key is unique. A table

can have any number of unique constraints, with one unique constraint defined as

a primary key.

Restrictions

v A unique constraint might not be defined on a subtable.

v There can be only one primary key per table.

You define a unique constraint with the UNIQUE clause in the CREATE TABLE or

ALTER TABLE statements. The unique key can consist of more than one column.

More than one unique constraint is allowed on a table.

Once established, the unique constraint is enforced automatically by the database

manager when an INSERT or UPDATE statement modifies the data in the table.

The unique constraint is enforced through a unique index.

When a unique constraint is defined in an ALTER TABLE statement and an index

exists on the same set of columns of that unique key, that index becomes the

unique index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The primary

key can be used as the parent key in a referential constraint (along with other

274 Data Servers, Databases, and Database Objects Guide

unique constraints). You define a primary key with the PRIMARY KEY clause in

the CREATE TABLE or ALTER TABLE statement. The primary key can consist of

more than one column.

A primary index forces the value of the primary key to be unique. When a table is

created with a primary key, the database manager creates a primary index on that

key.

Some performance tips for indexes used as unique constraints include:

When performing an initial load of an empty table with indexes, LOAD gives

better performance than IMPORT. This is true no matter whether you are using the

INSERT or REPLACE modes of LOAD. When appending a substantial amount of

data to an existing table with indexes (using IMPORT INSERT, or LOAD INSERT),

LOAD gives slightly better performance than IMPORT. If you are using the

IMPORT command for an initial large load of data, create the unique key after the

data has been imported or loaded. This avoids the overhead of maintaining the

index while the table is being loaded. It also results in the index using the least

amount of storage. If you are using the load utility in REPLACE mode, create the

unique key before loading the data. In this case, creation of the index during the

load is more efficient than using the CREATE INDEX statement after the load.

Designing primary key constraints

Each table can have one primary key. A primary key is a column or combination of

columns that has the same properties as a unique constraint. You can use a

primary key and foreign key constraints to define relationships between tables.

Because the primary key is used to identify a row in a table, it should be unique

and have very few additions or deletions. A table cannot have more than one

primary key, but it can have multiple unique keys. Primary keys are optional, and

can be defined when a table is created or altered, using the PRIMARY KEY clause.

They are also beneficial, because they order the data when data is exported or

reorganized.

Primary key constraints are designed like unique constraints, as described in

“Designing unique constraints” on page 274. The only difference is that you can

have only one primary key constraint per table, whereas, you can have many

unique constraints.

Note: You can have primary key constraints based on composite primary keys.

Designing check constraints

When creating check constraints, one of two things can happen: (i) all the rows

meet the check constraint, or (ii) some or all the rows do not meet the check

constraint.

All the rows meet the check constraint

When all the rows meet the check constraint, the check constraint will be

created successfully. Future attempts to insert or update data that does not

meet the constraint business rule will be rejected.

Some or all the rows do not meet the check constraint

When there are some rows that do not meet the check constraint, the check

constraint will not be created (that is, the ALTER TABLE statement will

fail). The ALTER TABLE statement, which adds a new constraint to the

EMPLOYEE table, is shown below. The check constraint is named

Chapter 12. Constraints 275

CHECK_JOB. The database manager will use this name to inform you

about which constraint was violated if an INSERT or UPDATE statement

fails. The CHECK clause is used to define a table-check constraint.

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT check_job

 CHECK (JOB IN (’Engineer’, ’Sales’, ’Manager’));

An ALTER TABLE statement was used because the table had already been

defined. If there are values in the EMPLOYEE table that conflict with the

constraint being defined, the ALTER STATEMENT will not be completed

successfully.

As check constraints and other types of constraints are used to implement business

rules, you may need to change them from time to time. This could happen when

the business rules change in your organization. Whenever a check constraint needs

to be changed, you must drop it and recreate a new one. Check constraints can be

dropped at any time, and this action will not affect your table or the data within it.

When you drop a check constraint, you must be aware that data validation

performed by the constraint will no longer be in effect.

Comparison of check constraints and BEFORE triggers

You need to consider the difference between check constraints when considering

whether to use triggers or check constraints to preserve the integrity of your data.

The integrity of the data in a relational database must be maintained as multiple

users access and change the data. Whenever data is shared, there is a need to

ensure the accuracy of the values within databases.

Check constraints

A (table) check constraint sets restrictions on data added to a specific table.

You can use a table check constraint to define restrictions, beyond those of

the data type, on the values that are allowed for a column in the table.

Table check constraints take the form of range checks or checks against

other values in the same row of the same table.

 If the rule applies for all applications that use the data, use a table check

constraint to enforce your restriction on the data allowed in the table. Table

check constraints make the restriction generally applicable and easier to

maintain.

The enforcement of check constraints is important for maintaining data

integrity, but it also carries a certain amount of overhead that can impact

performance whenever large volumes of data are modified.

BEFORE triggers

By using triggers that run before an update or insert, values that are being

updated or inserted can be modified before the database is actually

modified. These can be used to transform input from the application (user

view of the data) to an internal database format where desired. BEFORE

triggers can also be used to cause other non-database operations to be

activated through user-defined functions.

 In addition to modification, a common use of the BEFORE triggers is for

data verification using the SIGNAL clause.

There are two differences between BEFORE triggers and check constraints

when used for data verification:

1. BEFORE triggers, unlike check constraints, are not restricted to access

other values in the same row of the same table.

276 Data Servers, Databases, and Database Objects Guide

2. During a SET INTEGRITY operation on a table after a LOAD operation,

triggers (including BEFORE triggers) are not executed. Check

constraints, however, are verified.

Designing foreign key (referential) constraints

Referential integrity is imposed by adding foreign key (or referential) constraints to

table and column definitions, and to create an index on all the foreign key

columns. Once the index and foreign key constraints are defined, changes to the

data within the tables and columns is checked against the defined constraint.

Completion of the requested action depends on the result of the constraint

checking.

Referential constraints are established with the FOREIGN KEY clause, and the

REFERENCES clause in the CREATE TABLE or ALTER TABLE statements. There

are effects from a referential constraint on a typed table or to a parent table that is

a typed table that you should consider before creating a referential constraint.

The identification of foreign keys enforces constraints on the values within the

rows of a table or between the rows of two tables. The database manager checks

the constraints specified in a table definition and maintains the relationships

accordingly. The goal is to maintain integrity whenever one database object

references another, without performance degradation.

For example, primary and foreign keys each have a department number column.

For the EMPLOYEE table, the column name is WORKDEPT, and for the

DEPARTMENT table, the name is DEPTNO. The relationship between these two

tables is defined by the following constraints:

v There is only one department number for each employee in the EMPLOYEE

table, and that number exists in the DEPARTMENT table.

v Each row in the EMPLOYEE table is related to no more than one row in the

DEPARTMENT table. There is a unique relationship between the tables.

v Each row in the EMPLOYEE table that has a non-null value for WORKDEPT is

related to a row in the DEPTNO column of the DEPARTMENT table.

v The DEPARTMENT table is the parent table, and the EMPLOYEE table is the

dependent table.

The statement defining the parent table, DEPARTMENT, is:

CREATE TABLE DEPARTMENT

 (DEPTNO CHAR(3) NOT NULL,

 DEPTNAME VARCHAR(29) NOT NULL,

 MGRNO CHAR(6),

 ADMRDEPT CHAR(3) NOT NULL,

 LOCATION CHAR(16),

 PRIMARY KEY (DEPTNO))

 IN RESOURCE

The statement defining the dependent table, EMPLOYEE, is:

CREATE TABLE EMPLOYEE

 (EMPNO CHAR(6) NOT NULL PRIMARY KEY,

 FIRSTNME VARCHAR(12) NOT NULL,

 LASTNAME VARCHAR(15) NOT NULL,

 WORKDEPT CHAR(3),

 PHONENO CHAR(4),

 PHOTO BLOB(10m) NOT NULL,

 FOREIGN KEY DEPT (WORKDEPT)

 REFERENCES DEPARTMENT ON DELETE NO ACTION)

 IN RESOURCE

Chapter 12. Constraints 277

By specifying the DEPTNO column as the primary key of the DEPARTMENT table

and WORKDEPT as the foreign key of the EMPLOYEE table, you are defining a

referential constraint on the WORKDEPT values. This constraint enforces

referential integrity between the values of the two tables. In this case, any

employees that are added to the EMPLOYEE table must have a department

number that can be found in the DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO ACTION,

which means that a department cannot be deleted from the DEPARTMENT table if

there are any employees in that department.

Although the previous examples use the CREATE TABLE statement to add a

referential constraint, the ALTER TABLE statement can also be used.

Another example: The same table definitions are used as those in the previous

example. Also, the DEPARTMENT table is created before the EMPLOYEE table.

Each department has a manager, and that manager is listed in the EMPLOYEE

table. MGRNO of the DEPARTMENT table is actually a foreign key of the

EMPLOYEE table. Because of this referential cycle, this constraint poses a slight

problem. You could add a foreign key later. You could also use the CREATE

SCHEMA statement to create both the EMPLOYEE and DEPARTMENT tables at

the same time.

See also, “Foreign keys in referential constraints” on page 280.

Examples of interaction between triggers and referential

constraints

Update operations may cause the interaction of triggers with referential constraints

and check constraints.

Figure 23 and the associated description are representative of the processing that is

performed for an statement that updates data in the database.

Figure 23 shows the general order of processing for an statement that updates a

table. It assumes a situation where the table includes BEFORE triggers, referential

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 23. Processing an statement with associated triggers and constraints

278 Data Servers, Databases, and Database Objects Guide

constraints, check constraints and AFTER triggers that cascade. The following is a

description of the boxes and other items found in Figure 23 on page 278.

v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The

statement S1

identifies a table (or an updatable view over some table) referred to

as the subject table throughout this description.

v Determine set of affected rows

This step is the starting point for a process that repeats for referential constraint

delete rules of CASCADE and SET NULL and for cascaded statements from

AFTER triggers.

The purpose of this step is to determine the set of affected rows for the statement.

The set of rows included is based on the statement:

– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)

– for INSERT, the rows identified by the VALUES clause or the fullselect

– for UPDATE, all rows that satisfy the search condition (or the current row for

a positioned UPDATE).
If the set of affected rows is empty, there will be no BEFORE triggers, changes to

apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers

All BEFORE triggers are processed in ascending order of creation. Each BEFORE

trigger will process the triggered action once for each row in the set of affected

rows.

An error may occur during the processing of a triggered action in which case all

changes made as a result of the original statement S1

(so far) are rolled back.

If there are no BEFORE triggers or the set of affected is empty, this step is

skipped.

v Apply the set of affected rows to the subject table

The actual delete, insert, or update is applied using the set of affected rows to

the subject table in the database.

An error may occur when applying the set of affected rows (such as attempting

to insert a row with a duplicate key where a unique index exists) in which case

all changes made as a result of the original statement S1

(so far) are rolled back.

v Apply Constraints

The constraints associated with the subject table are applied if set of affected

rows is not empty. This includes unique constraints, unique indexes, referential

constraints, check constraints and checks related to the WITH CHECK OPTION

on views. Referential constraints with delete rules of cascade or set null may

cause additional triggers to be activated.

A violation of any constraint or WITH CHECK OPTION results in an error and

all changes made as a result of S1

(so far) are rolled back.

v Process AFTER triggers

All AFTER triggers activated by S1

are processed in ascending order of creation.

FOR EACH STATEMENT triggers will process the triggered action exactly once,

even if the set of affected rows is empty. FOR EACH ROW triggers will process

the triggered action once for each row in the set of affected rows.

An error may occur during the processing of a triggered action in which case all

changes made as a result of the original S1

(so far) are rolled back.

Chapter 12. Constraints 279

The triggered action of a trigger may include triggered statements that are

DELETE, INSERT or UPDATE statements. For the purposes of this description,

each such statement is considered a cascaded statement.

A cascaded statement is a DELETE, INSERT, or UPDATE statement that is

processed as part of the triggered action of an AFTER trigger. This statement

starts a cascaded level of trigger processing. This can be thought of as assigning

the triggered statement as a new S1

and performing all of the steps described

here recursively.

Once all triggered statements from all AFTER triggers activated by each S1

have

been processed to completion, the processing of the original S1

is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results

in a roll back of all the changes made directly or indirectly as a result of the

original statement S1. The database is therefore back in the same state as

immediately prior to the execution of the original statement S1

Foreign keys in referential constraints

A foreign key references a primary key or a unique key in the same or another

table. A foreign key assignment indicates that referential integrity is to be

maintained according to the specified referential constraints.

You define a foreign key with the FOREIGN KEY clause in the CREATE TABLE or

ALTER TABLE statement. A foreign key makes its table dependent on another

table called a parent table. The values in the column or set of columns that make

up the foreign key in one table must match the unique key or primary key values

of the parent table.

The number of columns in the foreign key must be equal to the number of

columns in the corresponding primary or unique constraint (called a parent key) of

the parent table. In addition, corresponding parts of the key column definitions

must have the same data types and lengths. The foreign key can be assigned a

constraint name. If you do not assign a name, one is automatically assigned. For

ease of use, it is recommended that you assign a constraint name and do not use the

system-generated name.

The value of a composite foreign key matches the value of a parent key if the

value of each column of the foreign key is equal to the value of the corresponding

column of the parent key. A foreign key containing null values cannot match the

values of a parent key, since a parent key by definition can have no null values.

However, a null foreign key value is always valid, regardless of the value of any of

its non-null parts.

The following rules apply to foreign key definitions:

v A table can have many foreign keys

v A foreign key is nullable if any part is nullable

v A foreign key value is null if any part is null.

When working with foreign keys you can do the following:

v Create a table with zero or more foreign keys.

v Define foreign keys when a table is created or altered.

v Drop foreign keys when a table is altered.

280 Data Servers, Databases, and Database Objects Guide

Table constraint implications for utility operations

If the table being loaded into has referential integrity constraints, the load utility

places the table into the set integrity pending state to inform you that the SET

INTEGRITY statement is required to be run on the table, in order to verify the

referential integrity of the loaded rows. After the load utility has completed, you

will need to issue the SET INTEGRITY statement to carry out the referential

integrity checking on the loaded rows and to bring the table out of the set integrity

pending state.

For example, if the DEPARTMENT and EMPLOYEE tables are the only tables that

have been placed in set integrity pending state, you can execute the following

statement:

 SET INTEGRITY FOR DEPARTMENT ALLOW WRITE ACCESS,

 EMPLOYEE ALLOW WRITE ACCESS,

 IMMEDIATE CHECKED FOR EXCEPTION IN DEPARTMENT,

 USE DEPARTMENT_EX,

 IN EMPLOYEE USE EMPLOYEE_EX

The import utility is affected by referential constraints in the following ways:

v The REPLACE and REPLACE CREATE functions are not allowed if the object

table has any dependents other than itself.

To use these functions, first drop all foreign keys in which the table is a parent.

When the import is complete, re-create the foreign keys with the ALTER TABLE

statement.

v The success of importing into a table with self-referencing constraints depends

on the order in which the rows are imported.

Statement dependencies when changing objects

Statement dependencies include package and cached dynamic SQL and XQuery

statements. A package is a database object that contains the information needed by

the database manager to access data in the most efficient way for a particular

application program. Binding is the process that creates the package the database

manager needs in order to access the database when the application is executed.

Packages and cached dynamic SQL and XQuery statements can be dependent on

many types of objects.

These objects could be explicitly referenced, for example, a table or user-defined

function that is involved in an SQL SELECT statement. The objects could also be

implicitly referenced, for example, a dependent table that needs to be checked to

ensure that referential constraints are not violated when a row in a parent table is

deleted. Packages are also dependent on the privileges which have been granted to

the package creator.

If a package or cached dynamic query statement depends on an object and that

object is dropped, the package or cached dynamic query statement is placed in an

“invalid” state. If a package depends on a user-defined function and that function

is dropped, the package is placed in an “inoperative” state, with the following

conditions:

v A cached dynamic SQL or XQuery statement that is in an invalid state is

automatically re-optimized on its next use. If an object required by the statement

has been dropped, execution of the dynamic SQL or XQuery statement might

fail with an error message.

Chapter 12. Constraints 281

v A package that is in an invalid state is implicitly rebound on its next use. Such a

package can also be explicitly rebound. If a package was marked invalid because

a trigger was dropped, the rebound package no longer invokes the trigger.

v A package that is in an inoperative state must be explicitly rebound before it can

be used.

Federated database objects have similar dependencies. For example, dropping a

server invalidates any packages or cached dynamic SQL referencing nicknames

associated with that server.

In some cases, it is not possible to rebind the package. For example, if a table has

been dropped and not re-created, the package cannot be rebound. In this case, you

need to either re-create the object or change the application so it does not use the

dropped object.

In many other cases, for example if one of the constraints was dropped, it is

possible to rebind the package.

The following system catalog views help you to determine the state of a package

and the package’s dependencies:

v SYSCAT.PACKAGEAUTH

v SYSCAT.PACKAGEDEP

v SYSCAT.PACKAGES

Designing informational constraints

Constraints that are enforced by the database manager when records are inserted

or updated can lead to high amounts of system overhead, especially when loading

large quantities of records that have referential integrity constraints. If an

application has already verified information before inserting a record into the table,

it may be more efficient to use informational constraints, rather than normal

constraints.

Informational constraints tell the database manager what rules the data conforms

to, but the rules are not enforced by the database manager. However, this

information can be used by the DB2 optimizer and could result in better

performance of SQL queries.

The following example illustrates the use of information constraints and how they

work. This simple table contains information on applicants’ age and gender:

 CREATE TABLE APPLICANTS

 (

 AP_NO INT NOT NULL,

 GENDER CHAR(1) NOT NULL,

 CONSTRAINT GENDEROK

 CHECK (GENDER IN (’M’, ’F’))

 NOT ENFORCED

 ENABLE QUERY OPTIMIZATION,

 AGE INT NOT NULL,

 CONSTRAINT AGEOK

 CHECK (AGE BETWEEN 1 AND 80)

 NOT ENFORCED

 ENABLE QUERY OPTIMIZATION,

);

282 Data Servers, Databases, and Database Objects Guide

This example contains two clauses that change the behavior of the column

constraints. The first option is NOT ENFORCED, which instructs the database

manager not to enforce the checking of this column when data is inserted or

updated.

The second option is ENABLE QUERY OPTIMIZATION which is used by the

database manager when SELECT statements are run against this table. When this

value is specified, the database manager will use the information in the constraint

when optimizing the SQL.

If the table contains the NOT ENFORCED option, the behavior of insert statements

may appear odd. The following SQL will not result in any errors when run against

the APPLICANTS table:

 INSERT INTO APPLICANTS VALUES

 (1, ’M’, 54),

 (2, ’F’, 38),

 (3, ’M’, 21),

 (4, ’F’, 89),

 (5, ’C’, 10),

 (6, ’S’,100),

Applicant number five has a gender (C), for child, and applicant number six has

both an unusual gender and exceeds the age limits of the AGE column. In both

cases the database manager will allow the insert to occur since the constraints are

NOT ENFORCED. The result of a select statement against the table is shown

below:

 SELECT * FROM APPLICANTS

 WHERE GENDER = ’C’;

 APPLICANT GENDER AGE

 --------- ------ ---

 0 record(s) selected.

The database manager returned the incorrect answer to the query, even though the

value ’C’ is found within the table, but the constraint on this column tells the

database manager that the only valid values are either ’M’ or ’F’. The ENABLE

QUERY OPTIMIZATION keyword also allowed the database manager to use this

constraint information when optimizing the statement. If this is not the behavior

that you want, then the constraint needs to be changed through the use of the

ALTER TABLE statement, as shown below:

 ALTER TABLE APPLICANTS

 ALTER CHECK AGEOK DISABLE QUERY OPTIMIZATION

If the query is reissued, the database manager will return the following correct

results:

 SELECT * FROM APPLICANTS

 WHERE SEC = ’C’;

 APPLICANT GENDER AGE

 --------- ------ ---

 5 C 10

 1 record(s) selected.

The best scenario for using informational constraints occurs when you can

guarantee that the application program is the only application inserting and

updating the data. If the application already checks all of the information

beforehand (like gender and age) then using informational constraints can result in

Chapter 12. Constraints 283

faster performance and no duplication of effort. Another possible use of

informational constraints is in the design of data warehouses.

Creating and modifying constraints

Constraints can be added to existing tables with the ALTER TABLE statement.

The constraint name cannot be the same as any other constraint specified within an

ALTER TABLE statement, and must be unique within the table (this includes the

names of any referential integrity constraints that are defined). Existing data is

checked against the new condition before the statement succeeds.

Creating and modifying unique constraints

Unique constraints can be added to an existing table. The constraint name

cannot be the same as any other constraint specified within the ALTER

TABLE statement, and must be unique within the table (this includes the

names of any referential integrity constraints that are defined). Existing

data is checked against the new condition before the statement succeeds.

 To define unique constraints using the command line, use the ADD

CONSTRAINT option of the ALTER TABLE statement. For example, the

following statement adds a unique constraint to the EMPLOYEE table that

represents a new way to uniquely identify employees in the table:

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

To modify this constraint, you would have to drop it, and then recreate it.

Creating and modifying primary key constraints

A primary key constraint can be added to an existing table. The constraint

name must be unique within the table (this includes the names of any

referential integrity constraints that are defined). Existing data is checked

against the new condition before the statement succeeds.

 To add primary keys using the command line, enter:

 ALTER TABLE <name>

 ADD CONSTRAINT <column_name>

 PRIMARY KEY <column_name>

An existing constraint cannot be modified. To define another column, or

set of columns, as the primary key, the existing primary key definition

must first be dropped, and then recreated.

Creating and modifying check constraints

When a table check constraint is added, packages and cached dynamic

SQL that insert or update the table might be marked as invalid.

 To add a table check constraint using the command line, enter:

 ALTER TABLE EMPLOYEE

 ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To modify this constraint, you would have to drop it, and then recreate it.

Creating and modifying foreign key (referential) constraints

A foreign key is a reference to the data values in another table. There are

different types of foreign key constraints.

 When a foreign key is added to a table, packages and cached dynamic SQL

containing the following statements might be marked as invalid:

v Statements that insert or update the table containing the foreign key

284 Data Servers, Databases, and Database Objects Guide

v Statements that update or delete the parent table.

To add foreign keys using the command line, enter:

 ALTER TABLE <name>

 ADD CONSTRAINT <column_name>

 FOREIGN KEY <column_name>

 ON DELETE <action_type>

 ON UPDATE <action_type>

The following examples show the ALTER TABLE statement to add primary

keys and foreign keys to a table:

 ALTER TABLE PROJECT

 ADD CONSTRAINT PROJECT_KEY

 PRIMARY KEY (PROJNO)

 ALTER TABLE EMP_ACT

 ADD CONSTRAINT ACTIVITY_KEY

 PRIMARY KEY (EMPNO, PROJNO, ACTNO)

 ADD CONSTRAINT ACT_EMP_REF

 FOREIGN KEY (EMPNO)

 REFERENCES EMPLOYEE

 ON DELETE RESTRICT

 ADD CONSTRAINT ACT_PROJ_REF

 FOREIGN KEY (PROJNO)

 REFERENCES PROJECT

 ON DELETE CASCADE

To modify this constraint, you would have to drop it and then recreate it.

Creating and modifying informational constraints

To improve the performance of queries, you can add informational

constraints to your tables. You add informational constraints using the

CREATE TABLE or ALTER TABLE statement when you specify the NOT

ENFORCED option on the DDL.

Restriction: After you define informational constraints on a table, you can

only alter the column names for that table after you remove the

informational constraints.

To specify informational constraints on a table using the command line,

enter the following command for a new table:

 ALTER TABLE <name> <constraint attributes> NOT ENFORCED

ENFORCED or NOT ENFORCED: Specifies whether the constraint is

enforced by the database manager during normal operations such as insert,

update, or delete.

v ENFORCED cannot be specified for a functional dependency (SQLSTATE

42621).

v NOT ENFORCED should only be specified if the table data is

independently known to conform to the constraint. Query results might

be unpredictable if the data does not actually conform to the constraint.

To modify this constraint, you would have to drop it and then recreate it.

Viewing constraint definitions for a table

Constraint definitions on a table can be found in the SYSCAT.INDEXES and

SYSCAT.REFERENCES catalog views.

The UNIQUERULE column of the SYSCAT.INDEXES view indicates the

characteristic of the index. If the value of this column is P, the index is a primary

key, and if it is U, the index is a unique index (but not a primary key).

Chapter 12. Constraints 285

The SYSCAT.REFERENCES catalog view contains referential integrity (foreign key)

constraint information.

Dropping constraints

You can explicitly drop a table check constraint using the ALTER TABLE statement,

or implicitly drop it as the result of a DROP TABLE statement.

To drop constraints, use the ALTER TABLE statement with the DROP or DROP

CONSTRAINT clauses. This allows allow you to BIND and continue accessing the

tables that contain the affected columns. The name of all unique constraints on a

table can be found in the SYSCAT.INDEXES system catalog view.

Dropping unique constraints

You can explicitly drop a unique constraint using the ALTER TABLE

statement.

 The DROP UNIQUE clause of the ALTER TABLE statement drops the

definition of the unique constraint constraint-name and all referential

constraints that are dependent upon this unique constraint. The

constraint-name must identify an existing unique constraint.

 ALTER TABLE <table-name>

 DROP UNIQUE <constraint-name>

Dropping this unique constraint invalidates any packages or cached

dynamic SQL that used the constraint.

Dropping primary key constraints

Use the DROP PRIMARY KEY clause of the ALTER TABLE statement to

drop primary key constraints.

 The DROP PRIMARY KEY clause of the ALTER TABLE statement drops

the definition of the primary key and all referential constraints that are

dependent upon this primary key. The table must have a primary key. To

drop a primary key using the command line, enter:

 ALTER TABLE <table-name>

 DROP PRIMARY KEY

Dropping (table) check constraints

When you drop a check constraint, all packages and cached dynamic

statements with INSERT or UPDATE dependencies on the table are

invalidated. The name of all check constraints on a table can be found in

the SYSCAT.CHECKS catalog view. Before attempting to drop a table check

constraint having a system-generated name, look for the name in the

SYSCAT.CHECKS catalog view.

 The following statement drops the check constraint constraint-name. The

constraint-name must identify an existing check constraint defined on the

table. To drop a table check constraint using the command line:

 ALTER TABLE <table_name>

 DROP <check_constraint_name>

Dropping foreign key (referential) constraints

Use the DROP CONSTRAINT clause of the ALTER TABLE statement to

drop foreign key constraints.

 The DROP CONSTRAINT clause of the ALTER TABLE statement drops the

constraint constraint-name. The constraint-name must identify an existing

foreign key constraint, primary key, or unique constraint defined on the

table. To drop foreign keys using the command line, enter:

286 Data Servers, Databases, and Database Objects Guide

ALTER TABLE <table-name>

 DROP FOREIGN KEY <foreign_key_name>

The following examples use the DROP PRIMARY KEY and DROP

FOREIGN KEY clauses in the ALTER TABLE statement to drop primary

keys and foreign keys on a table:

 ALTER TABLE EMP_ACT

 DROP PRIMARY KEY

 DROP FOREIGN KEY ACT_EMP_REF

 DROP FOREIGN KEY ACT_PROJ_REF

 ALTER TABLE PROJECT

 DROP PRIMARY KEY

When a foreign key constraint is dropped, packages or cached dynamic

statements containing the following might be marked as invalid:

v Statements that insert or update the table containing the foreign key

v Statements that update or delete the parent table.

Chapter 12. Constraints 287

288 Data Servers, Databases, and Database Objects Guide

Chapter 13. Indexes

An index is a set of one or more keys, each key pointing to a row in a table. The

SQL optimizer automatically chooses the most efficient way to access data in tables.

The optimizer takes indexes into consideration when determining the fastest access

path to data.

Note: Not all indexes point to rows in a table. MDC block indexes point to extents

(or blocks) of the data. XML indexes for XML data use particular XML pattern

expressions to index paths and values in XML documents stored within a single

column. The data type of that column must be XML. Both MDC block indexes and

XML indexes are system generated indexes.

Indexes are used by the database manager to:

v Improve performance. In most cases, access to data is faster with an index.

Although an index cannot be created for a view, an index created for the table

on which a view is based can sometimes improve the performance of operations

on that view.

v Ensure uniqueness. A table with a unique index cannot have rows with identical

keys.

As data is added to a table, unless other actions have been carried out on the table

or the data being added, the data is simply appended to the bottom of the table.

There is no order to the data. When searching for a particular row of data, each

row of the table from first to last must be checked. Indexes are used as a means to

access the data within the table in an order that might otherwise not be available.

A column value in a row of data can be used to identify the entire row. One or

more columns might be needed to identify the row. Such columns are known as a

key. A column can be used in more than one key.

An index is ordered by the values within a key. Keys can be unique or non-unique.

Each table should have at least one unique key; but can also have other,

non-unique keys. Each index has exactly one key. For example, you might use the

employee ID number (unique) as the key for one index and the department

number (non-unique) as the key for a different index.

Example

Table A in Figure 24 on page 290 has an index based on the employee numbers in

the table. This key value provides a pointer to the rows in the table. For example,

employee number 19 points to employee KMP. An index allows efficient access to

rows in a table by creating a path to the data through pointers.

Unique indexes can be created to ensure uniqueness of the index key. An index key

is a column or an ordered collection of columns on which an index is defined.

Using a unique index will ensure that the value of each index key in the indexed

column or columns is unique.

Figure 24 on page 290 shows the relationship between an index and a table.

© Copyright IBM Corp. 1993, 2009 289

Figure 25 illustrates the relationships among some database objects. It also shows

that tables, indexes, and long data are stored in table spaces.

Types of indexes

There are five types of indexes: unique and non-unique indexes, and clustered and

non-clustered indexes, and system generated block indexes for multidimensional

clustered (MDC) tables .

Unique and non-unique indexes

Unique indexes are indexes that help maintain data integrity by ensuring that no

two rows of data in a table have identical key values.

When attempting to create a unique index for a table that already contains data,

values in the column or columns that comprise the index are checked for

uniqueness; if the table contains rows with duplicate key values, the index creation

process fails. Once a unique index has been defined for a table, uniqueness is

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

Figure 24. Relationship between an index and a table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

Figure 25. Relationships among selected database objects

290 Data Servers, Databases, and Database Objects Guide

enforced whenever keys are added or changed within the index. (This includes

insert, update, load, import, and set integrity, to name a few.) In addition to

enforcing the uniqueness of data values, a unique index can also be used to

improve data retrieval performance during query processing.

Non-unique indexes, on the other hand, are not used to enforce constraints on the

tables with which they are associated. Instead, non-unique indexes are used solely

to improve query performance by maintaining a sorted order of data values that

are used frequently.

Clustered and non-clustered indexes

Index architectures are classified as clustered or non-clustered. Clustered indexes

are indexes whose order of the rows in the data pages correspond to the order of

the rows in the index. This is why only one clustered index can exist in a given

table, whereas, many non-clustered indexes can exist in the table. In some

relational database management systems, the leaf node of the clustered index

corresponds to the actual data, not a pointer to data that resides elsewhere.

Both clustered and non-clustered indexes contain only keys and record IDs in the

index structure. The record IDs always point to rows in the data pages. The only

difference between clustered and non-clustered indexes is that the database

manager attempts to keep the data in the data pages in the same order as the

corresponding keys appear in the index pages. Thus the database manager will

attempt to insert rows with similar keys onto the same pages. If the table is

reorganized, it will be inserted into the data pages in the order of the index keys.

Reorganizing a table with respect to a chosen index re-clusters the data. A

clustered index is most useful for columns that have range predicates because it

allows better sequential access of data in the table. This results in fewer page

fetches, since like values are on the same data page.

In general, only one of the indexes in a table can have a high degree of clustering.

Improving performance with clustering indexes

Clustering indexes can improve the performance of most query operations because

they provide a more linear access path to data, which has been stored in pages. In

addition, because rows with similar index key values are stored together,

prefetching is usually more efficient when clustering indexes are used.

However, clustering indexes cannot be specified as part of the table definition used

with the CREATE TABLE statement. Instead, clustering indexes are only created by

executing the CREATE INDEX statement with the CLUSTER option specified. Then

the ALTER TABLE statement should be used to add a primary key that

corresponds to the clustering index created to the table. This clustering index will

then be used as the table’s primary key index.

Note: Setting PCTFREE in the table to an appropriate value using the ALTER

TABLE statement can help the table remain clustered by leaving adequate free

space to insert rows in the pages with similar values. For more information, see the

ALTER TABLE statement and “Reducing the need to reorganize tables and

indexes” in Tuning Database Performance.

Generally, clustering is more effectively maintained if the clustering index is

unique.

Chapter 13. Indexes 291

Differences between primary key or unique key constraints and

unique indexes

It is important to understand that there is no significant difference between a

primary unique key constraint and a unique index. The database manager uses a

combination of a unique index and the NOT NULL constraint to implement the

relational database concept of primary and unique key constraints. Therefore,

unique indexes do not enforce primary key constraints by themselves because they

allow null values. (Although null values represent unknown values, when it comes

to indexing, a null value is treated as being equal to other null values.)

Therefore, if a unique index consists of a single column, only one null value is

allowed–more than one null value would violate the unique constraint. Similarly, if

a unique index consists of multiple columns, a specific combination of values and

nulls can be used only once.

Bi-directional indexes

By default, bi-directional indexes allow scans in both the forward and reverse

directions. The ALLOW REVERSE SCANS clause of the CREATE INDEX statement

enables both forward and reverse index scans, that is, in the order defined at index

creation time and in the opposite (or reverse) order. This option allows you to:

v Facilitate MIN and MAX functions

v Fetch previous keys

v Eliminate the need for the database manager to create a temporary table for the

reverse scan

v Eliminate redundant reverse order indexes

If DISALLOW REVERSE SCANS is specified then the index cannot be scanned in

reverse order. (But physically it will be exactly the same as an ALLOW REVERSE

SCANS index.)

Designing indexes

Indexes are typically used to speed up access to a table. However, they can also

serve a logical data design purpose.

For example, a unique index does not allow entry of duplicate values in the

columns, thereby guaranteeing that no two rows of a table are the same. Indexes

can also be created to order the values in a column in ascending or descending

sequence.

Note: When creating indexes, keep in mind that while they may improve read

performance, they will negatively impact write performance. This is because for

every row that the database manager writes to a table, it must also update any

affected indexes. Therefore, you should create indexes only when there is a clear

overall performance advantage.

When creating indexes, you must also take into account the structure of the tables

and the type of queries that are most frequently performed on them. For example,

columns appearing in the WHERE clause of a frequently issued query are good

candidates for indexes. In less frequently run queries, however, the cost that an

index incurs for performance in INSERT and UPDATE statement might outweigh

the benefits.

292 Data Servers, Databases, and Database Objects Guide

Similarly, columns that figure in a GROUP BY clause of a frequent query might

benefit from the creation of an index, particularly if the number of values used to

group the rows is small relative to the number of rows being grouped.

Guidelines and considerations when designing indexes

v An index is defined by columns in the table. It can be defined by the creator of a

table, or by a user who knows that certain columns require direct access. A

primary index key is automatically created on the primary key, unless a

user-defined index already exists.

v An index key is a column or collection of columns on which an index is defined,

and determines the usefulness of an index. Although the order of the columns

making up an index key does not make a difference to index key creation, it

might make a difference to the optimizer when it is deciding whether or not to

use an index.

v Any number of indexes can be defined on a particular table, and they can have

a beneficial effect on the performance of queries. The index manager must

maintain the indexes during update, delete and insert operations. Creating a

large number of indexes for a table that receives many updates can slow down

processing of requests. Similarly, large index keys can also slow down processing

of requests. Therefore, use indexes only where a clear advantage for frequent

access exists.

v Column data which is not part of the unique index key but which is to be stored

or maintained in the index is called an include column. Include columns can be

specified for unique indexes only. When creating an index with include columns,

only the unique key columns are sorted and considered for uniqueness. The use

of include columns may enable index only access for data retrieval, thus

improving performance.

v If the table being indexed is empty, an index is still created, but no index entries

are made until the table is loaded or rows are inserted. If the table is not empty,

the database manager creates the index entries while processing the CREATE

INDEX statement.

v For a clustering index, the database manager attempts to place new rows for the

table physically close to existing rows with similar key values (as defined by the

index).

v If you want a primary key index to be a clustering index, a primary key should

not be specified on the CREATE TABLE statement. Once a primary key is

created, the associated index cannot be modified. Instead, issue a CREATE

TABLE without a primary key clause. Then issue a CREATE INDEX statement,

specifying clustering attributes. Finally, use the ALTER TABLE statement to add

a primary key that corresponds to the index just created. This index will be used

as the primary key index.

v Indexes consume disk space. The amount of disk space varies depending on the

length of the key columns and the number of rows being indexed. The size of

the index increases as more data is inserted into the table. Therefore, consider

the amount of data being indexed when planning the size of the database. Some

of the indexing sizing considerations include:

– Primary and unique key constraints will always create a system-generated

unique index.

– The creation of an MDC table will also create system-generated block indexes.

– XML columns will always cause system-generated indexes to be created.

– It is usually beneficial to create indexes on foreign key constraint columns.

Chapter 13. Indexes 293

Note: The maximum number of columns in an index is 64. However, if you are

indexing a typed table, the maximum number of columns in an index is 63. The

maximum length of an index key, including all overhead, is indexpagesize/4. The

maximum indexes allowed on a table is 32 767. The maximum length of an

index key must not be greater than the index key length limit for the page size.

For column stored lengths, see the “CREATE TABLE statement”. For the key

length limits, see the “SQL and XQuery limits” topic.

Note:

Tools for designing indexes

Once you have created your tables, you need to consider how rapidly the database

manager will be able to retrieve data from them. You can use the Design Advisor

or the db2advis command to help you design your indexes.

Creating useful indexes on your tables can significantly improve query

performance. Like indexes of a book, indexes on tables allow specific information

to be located rapidly, with minimal searching. Using an index to retrieve particular

rows from a table can reduce the number of expensive input/output operations

that the database manager needs to perform. This is because an index allows the

database manager to locate a row by reading in a relatively small number of data

pages, rather than by performing an exhaustive search of all data pages until all

matches are found.

The DB2 Design Advisor is a tool that can help you significantly improve your

workload performance. The task of selecting which indexes, MQTs, clustering

dimensions, or database partitions to create for a complex workload can be quite

daunting. The Design Advisor identifies all of the objects needed to improve the

performance of your workload. Given a set of SQL statements in a workload, the

Design Advisor will generate recommendations for:

v New indexes

v New materialized query tables (MQTs)

v Conversion to multidimensional clustering (MDC) tables

v Redistribution of tables

v Deletion of indexes and MQTs unused by the specified workload (through the

GUI tool)

You can have the Design Advisor implement some or all of these recommendations

immediately or schedule them for a later time.

Using either the Design Advisor GUI or the command-line tool, the Design

Advisor can help simplify the following tasks:

v Planning for or setting up a new database

v Workload performance tuning

Space requirements for indexes

When designing indexes, you need to be aware of their space requirements.

For each index, the space needed can be estimated as:

 (average index key size + index key overhead) * number of rows * 2

where:

294 Data Servers, Databases, and Database Objects Guide

v The “average index key size” is the byte count of each column in the index key.

(When estimating the average column size for VARCHAR and VARGRAPHIC

columns, use an average of the current data size, plus two bytes. Do not use the

maximum declared size.)

v The “index key overhead” depends on the type of table on which the index is

created. For large tables (with or without XML indexes), the value is 11, unless

the table is partitioned in which case the value is 13. For regular tables, the

value is 9 without XML indexes and 11 with XML indexes. For all regular tables

that are partitioned, the value is 11.

v The factor of “2” is for overhead, such as non-leaf pages and free space.

Note:

1. For every column that allows null values, add one extra byte for the null

indicator.

2. For block indexes created internally for multidimensional clustering (MDC)

tables, the “number of rows” would be replaced by the “number of blocks”.

For each index on an XML column, the space needed can be estimated as:

 (average index key size + index key overhead) * number of indexed nodes * 2

where:

v The “average index key size” is the sum of the key parts that make up the

index. The XML index is made up of several XML key parts plus a value

(sql-data-type):

 fixed overhead + variable overhead + byte count of sql-data-type

where:

– The ″fixed overhead″ is 14 bytes.

– The ″variable overhead″ is the average depth of the indexed node plus 4

bytes.

– The byte count of the sql-data-type value follows the same rules as SQL.
v The “number of indexed nodes” is the number of documents to be inserted

multiplied by the number of nodes in a sample document that satisfy the XML

pattern expression (XMLPATTERN) in the index definition.

Indexes created before Version 8 (type-1 indexes) are different from those created at

version 8 (type-2 indexes) and following. To find out what type of index exists for

a table, use the ADMIN_GET_TAB_INFO table function. To convert type-1 indexes

to type-2 indexes, use the REORG INDEXES CONVERT command.

When using the REORG INDEXES command, ensure that you have sufficient free

space in the table space where the indexes are stored. The amount of free space

should be equal to the current size of the index. Additional space may be required

if you choose to reorganize the indexes with the ALLOW WRITE ACCESS option.

The additional space is for the logs of the activity affecting the indexes during the

reorganization of the indexes.

Temporary space is required when creating the index. The maximum amount of

temporary space required during index creation can be estimated as:

 (average index key size + index key overhead) * number of rows * 3.2

or

 (average index key size + index key overhead) * number of indexed nodes * 3.2

Chapter 13. Indexes 295

where the factor of “3.2” is for index overhead, and space required for sorting

during index creation.

Note: In the case of non-unique indexes, only five bytes are required to store

duplicate key entries. The estimate shown above assumes no duplicates. The space

required to store an index may be over-estimated by the formula shown above.

Temporary space is required when inserting if the number of index nodes exceeds

64 KB of data. The amount of temporary space can be estimated as:

 (average index key size) * number of indexed nodes * 1.2

The following two formulas can be used to estimate the number of keys per leaf

page (the second provides a more accurate estimate). The accuracy of these

estimates depends largely on how well the averages reflect the actual data.

Note: For SMS table spaces, the minimum required space for leaf pages is 12 KB.

For DMS table spaces, the minimum is an extent.

v A rough estimate of the average number of keys per leaf page is:

 (.9 * (U - (M*2))) * (D + 1)

 K + 7 + (5 * D)

where:

– U, the usable space on a page, is approximately equal to the page size minus

100. For a page size of 4096, U is 3996.

– M = U / (9 + minimumKeySize)

– D = average number of duplicates per key value

– K = averageKeySize

Remember that minimumKeySize and averageKeysize must have an extra byte for

each nullable key part, and an extra two bytes for the length of each variable

length key part.

If there are include columns, they should be accounted for in minimumKeySize

and averageKeySize.

The “minimumKeySize” is the sum of the key parts that make up the index:

 fixed overhead + variable overhead + byte count of sql-data-type

where:

– The ″fixed overhead″ is 13 bytes.

– The ″variable overhead″ is the minimum depth of the indexed node plus 4

bytes.

– The byte count of the sql-data-type value follows the same rules as SQL.
The .9 can be replaced by any (100 - pctfree)/100 value, if a percent free value

other than the default value of ten percent is specified during index creation.

v A more accurate estimate of the average number of keys per leaf page is:

 L = number of leaf pages = X / (avg number of keys on leaf page)

where X is the total number of rows in the table.

For the index on an XML column, X is the total number of indexed nodes in the

column.

You can estimate the original size of an index as:

 (L + 2L/(average number of keys on leaf page)) * pagesize

296 Data Servers, Databases, and Database Objects Guide

For DMS table spaces, add the sizes of all indexes on a table and round up to a

multiple of the extent size for the table space on which the index resides.

You should provide additional space for index growth due to INSERT/UPDATE

activity, from which page splits may result.

Use the following calculation to obtain a more accurate estimate of the original

index size, as well as an estimate of the number of levels in the index. (This may

be of particular interest if include columns are being used in the index

definition.) The average number of keys per non-leaf page is roughly:

 (.9 * (U - (M*2))) * (D + 1)

 K + 13 + (9 * D)

where:

– U, the usable space on a page, is approximately equal to the page size minus

100. For a page size of 4096, U is 3996.

– D is the average number of duplicates per key value on non-leaf pages (this

will be much smaller than on leaf pages, and you may want to simplify the

calculation by setting the value to 0).

– M = U / (9 + minimumKeySize for non-leaf pages)

– K = averageKeySize for non-leaf pages
The minimumKeySize and the averageKeySize for non-leaf pages will be the same

as for leaf pages, except when there are include columns. Include columns are

not stored on non-leaf pages.

You should not replace .9 with (100 - pctfree)/100, unless this value is greater

than .9, because a maximum of 10 percent free space will be left on non-leaf

pages during index creation.

The number of non-leaf pages can be estimated as follows:

 if L > 1 then {P++; Z++}

 While (Y > 1)

 {

 P = P + Y

 Y = Y / N

 Z++

 }

where:

– P is the number of pages (0 initially).

– L is the number of leaf pages.

– N is the number of keys for each non-leaf page.

– Y = L / N

– Z is the number of levels in the index tree (1 initially).
Total number of pages is:

 T = (L + P + 2) * 1.0002

The additional 0.02 percent is for overhead, including space map pages.

The amount of space required to create the index is estimated as:

 T * pagesize

Creating indexes

Indexes can be created to order the values in a column in ascending or descending

sequence. You can use the CREATE INDEX statement, the DB2 Design Advisor, or

the db2advis Design Advisor command to create the indexes.

Chapter 13. Indexes 297

For example, to create an index using the CREATE INDEX statement from the

command line, enter:

 CREATE UNIQUE INDEX EMP_IX

 ON EMPLOYEE(EMPNO)

 INCLUDE(FIRSTNAME, JOB)

The INCLUDE clause, applicable only on unique indexes, specifies additional

columns to be appended to the set of index key columns. Any columns included

with this clause are not used to enforce uniqueness. These included columns may

improve the performance of some queries through index only access. This option

might:

v Eliminate the need to access data pages for more queries

v Eliminate redundant indexes

If SELECT EMPNO, FIRSTNAME, JOB FROM EMPLOYEE is issued to the table on

which this index resides, all of the required data can be retrieved from the index

without reading data pages. This improves performance.

Note: In indexes created in Version 8 or later, known as type 2 indexes, keys are

just marked as deleted when a row is deleted or updated. There are referred to as

pseudo-deleted keys. These keys are not physically removed from a page until

clean up is done some time after the deletion or update has commited. Such a

clean up might be done by a subsequent transaction which is changing the page

where the key is marked deleted. Clean up of pseudo-deleted keys can be

explicitly triggered using the CLEANUP ONLY ALL option of the REORG

INDEXES utility.

Indexes for tables in a partitioned database environment are built using the same

CREATE INDEX statement. Data in the indexes is distributed based on the

distribution key of the table. When this is done, a B+ tree is created on each

database partition in the database partition group. Each B+ tree indexes the part of

the table belonging to that database partition. Columns in a unique index defined

on a multi-partition database must be a superset of the columns in the distribution

key.

Note: In Version 9.5, on Solaris platforms, the CREATE INDEX statement will hang

if a RAW device is used. Sun will be fixing this problem and releasing the fix in a

kernel patch.

Modifying indexes

If you want to modify your index, you have to drop the index first and then create

the index again. There is no ALTER INDEX statement.

For example, you cannot add a column to the list of key columns without

dropping the previous definition and creating a new index. You can add a

comment to describe the purpose of the index using the COMMENT statement.

Renaming indexes

You can use the RENAME statement to rename an existing index.

To rename an existing index, issue the following statement from the command line:

 RENAME INDEX <source index name> TO <target index name>

v <source index name> is the name of the existing index that is to be renamed.

The name, including the schema name, must identify an index that already

298 Data Servers, Databases, and Database Objects Guide

exists in the database. It must not be the name of an index on a declared global

temporary table. The schema name must not be SYSIBM, SYSCAT, SYSFUN, or

SYSSTAT.

v <target index name> specifies the new name for the index without a schema

name. The schema name of the source object is used to qualify the new name for

the object. The qualified name must not identify an index that already exists in

the database.

When renaming an index, the source index must not be a system-generated index.

If the statement is successful, the system catalog tables are updated to reflect the

new index name.

Rebuilding indexes

Certain database operations, such as a rollforward through a create index that was

not fully logged, can cause an index object to become invalid because the index is

not created during the rollforward operation. The index object can be recovered by

recreating the indexes in it.

When the database manager detects that an index is no longer valid, it

automatically attempts to rebuild it. When the rebuild takes place, it is controlled

by the indexrec parameter of the database or database manager configuration file.

There are five possible settings for this:

v SYSTEM

v RESTART

v RESTART_NO_REDO

v ACCESS

v ACCESS_NO_REDO

RESTART_NO_REDO and ACCESS_NO_REDO are similar to RESTART and

ACCESS.

The NO_REDO options mean that even if the index was fully logged during the

original operation, such as CREATE INDEX, the index will not be recreated during

rollforward, but will instead be created either at restart time or first access. See the

indexrec parameter for more information.

If database restart time is not a concern, it is better for invalid indexes to be rebuilt

as part of the process of returning a database to a consistent state. When this

approach is used, the time needed to restart a database will be longer due to the

index recreation process; however, normal processing will not be impacted once

the database has been returned to a consistent state.

On the other hand, when indexes are rebuilt as they are accessed, the time taken to

restart a database is faster, but an unexpected degradation in response time may

occur as a result of an index being recreated; for example, users accessing a table

that has an invalid index would have to wait for the index to be rebuilt. In

addition, unexpected locks may be acquired and held long after an invalid index

has been recreated, especially if the transaction that caused the index recreation to

occur never terminates (that is, commits or rolls back the changes made).

Chapter 13. Indexes 299

Dropping indexes

You cannot change any clause of an index definition; you must drop the index and

create it again. (Dropping an index does not cause any other objects to be dropped

but might cause some packages to be invalidated.). Use the DROP statement to

drop indexes.

A primary key or unique key index cannot be explicitly dropped. You must use

one of the following methods to drop it:

v If the primary index or unique constraint was created automatically for the

primary key or unique key, dropping the primary key or unique key will cause

the index to be dropped. Dropping is done through the ALTER TABLE

statement.

v If the primary index or the unique constraint was user-defined, the primary key

or unique key must be dropped first, through the ALTER TABLE statement.

After the primary key or unique key is dropped, the index is no longer

considered the primary index or unique index, and it can be explicitly dropped.

To drop an index using the command line, enter:

 DROP INDEX <index_name>

The following statement drops the index called PH:

 DROP INDEX PH

Any packages and cached dynamic SQL and XQuery statements that depend on

the dropped indexes are marked invalid. The application program is not affected

by changes resulting from adding or dropping indexes.

300 Data Servers, Databases, and Database Objects Guide

Chapter 14. Triggers

A trigger defines a set of actions that are performed in response to an insert,

update, or delete operation on a specified table. When such an SQL operation is

executed, the trigger is said to have been activated. Triggers are optional and are

defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to

enforce data integrity rules. Triggers can also be used to cause updates to other

tables, automatically generate or transform values for inserted or updated rows, or

invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional business

rules, which are rules that involve different states of the data (for example, a salary

that cannot be increased by more than 10 percent).

Using triggers places the logic that enforces business rules inside the database. This

means that applications are not responsible for enforcing these rules. Centralized

logic that is enforced on all of the tables means easier maintenance, because

changes to application programs are not required when the logic changes.

The following are specified when creating a trigger:

v The subject table specifies the table for which the trigger is defined.

v The trigger event defines a specific SQL operation that modifies the subject table.

The event can be an insert, update, or delete operation.

v The trigger activation time specifies whether the trigger should be activated before

or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected rows.

These are the rows of the subject table that are being inserted, updated, or deleted.

The trigger granularity specifies whether the actions of the trigger are performed

once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of statements

that are executed whenever the trigger is activated. The statements are only

executed if the search condition evaluates to true. If the trigger activation time is

before the trigger event, triggered actions can include statements that select, set

transition variables, or signal SQL states. If the trigger activation time is after the

trigger event, triggered actions can include statements that select, insert, update,

delete, or signal SQL states.

The triggered action can refer to the values in the set of affected rows using

transition variables. Transition variables use the names of the columns in the subject

table, qualified by a specified name that identifies whether the reference is to the

old value (before the update) or the new value (after the update). The new value

can also be changed using the SET Variable statement in before, insert, or update

triggers.

Another means of referring to the values in the set of affected rows is to use

transition tables. Transition tables also use the names of the columns in the subject

table, but specify a name to allow the complete set of affected rows to be treated as

© Copyright IBM Corp. 1993, 2009 301

a table. Transition tables can only be used in AFTER triggers (that is, not with

BEFORE and INSTEAD OF triggers), and separate transition tables can be defined

for old and new values.

Multiple triggers can be specified for a combination of table, event (INSERT,

UPDATE, DELETE, INSTEAD OF), or activation time (BEFORE, AFTER). When

more than one trigger exists for a particular table, event, and activation time, the

order in which the triggers are activated is the same as the order in which they

were created. Thus, the most recently created trigger is the last trigger to be

activated.

The activation of a trigger might cause trigger cascading, which is the result of the

activation of one trigger that executes statements that cause the activation of other

triggers or even the same trigger again. The triggered actions might also cause

updates resulting from the application of referential integrity rules for deletions

that can, in turn, result in the activation of additional triggers. With trigger

cascading, a chain of triggers and referential integrity delete rules can be activated,

causing significant change to the database as a result of a single INSERT, UPDATE,

or DELETE statement.

When multiple triggers have insert, update, or delete actions against the same

object, conflict resolution mechanism, like temporary tables, are used to resolve

access conflicts, and this can have a noticeable impact on performance, particularly

in partitioned database environments.

Types of triggers

A trigger defines a set of actions that are performed in response to an insert,

update, or delete operation on a specified table. When such an SQL operation is

executed, the trigger is said to have been activated. Triggers are optional and are

defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to

enforce data integrity rules. Triggers can also be used to cause updates to other

tables, automatically generate or transform values for inserted or updated rows, or

invoke functions to perform tasks such as issuing alerts.

The following types of triggers are supported:

BEFORE triggers

Run before an update, or insert. Values that are being updated or inserted

can be modified before the database is actually modified. You can use

triggers that run before an update or insert in several ways:

v To check or modify values before they are actually updated or inserted

in the database. This is useful if you need to transform data from the

way the user sees it to some internal database format.

v To run other non-database operations coded in user-defined functions.

BEFORE DELETE triggers

Run before a delete. Checks values (a raises an error, if necessary).

AFTER triggers

Run after an update, insert, or delete. You can use triggers that run after an

update or insert in several ways:

v To update data in other tables. This capability is useful for maintaining

relationships between data or in keeping audit trail information.

302 Data Servers, Databases, and Database Objects Guide

v To check against other data in the table or in other tables. This capability

is useful to ensure data integrity when referential integrity constraints

aren’t appropriate, or when table check constraints limit checking to the

current table only.

v To run non-database operations coded in user-defined functions. This

capability is useful when issuing alerts or to update information outside

the database.

INSTEAD OF triggers

Describe how to perform insert, update, and delete operations against

views that are too complex to support these operations natively. They

allow applications to use a view as the sole interface for all SQL operations

(insert, delete, update and select).

BEFORE triggers

By using triggers that run before an update or insert, values that are being

updated or inserted can be modified before the database is actually modified.

These can be used to transform input from the application (user view of the data)

to an internal database format where desired.

These BEFORE triggers can also be used to cause other non-database operations to

be activated through user-defined functions.

BEFORE DELETE triggers run before a delete operation. They check the values and

raise an error, if necessary.

Examples

The following example defines a DELETE TRIGGER with a complex default:

 CREATE TRIGGER trigger1

 BEFORE UPDATE ON table1

 REFERENCING NEW AS N

 WHEN (N.expected_delivery_date IS NULL)

 SET N.expected_delivery_date = N.order_date + 5 days;

The following example defines a DELETE TRIGGER with a cross table constraint

that is not a referential integrity constraint:

 CREATE TRIGGER trigger2

 BEFORE UPDATE ON table2

 REFERENCING NEW AS N

 WHEN (n.salary > (SELECT maxsalary FROM salaryguide WHERE rank = n.position))

 SIGNAL SQLSTATE ’78000’ SET MESSAGE_TEXT = ’Salary out of range’);

AFTER triggers

Triggers that run after an update, insert, or delete can be used in several ways.

v Triggers can update, insert, or delete data in the same or other tables. This is

useful to maintain relationships between data or to keep audit trail information.

v Triggers can check data against values of data in the rest of the table or in other

tables. This is useful when you cannot use referential integrity constraints or

check constraints because of references to data from other rows from this or

other tables.

v Triggers can use user-defined functions to activate non-database operations. This

is useful, for example, for issuing alerts or updating information outside the

database.

Chapter 14. Triggers 303

Example

The following example presents an AFTER trigger that increases the number of

employees when a new employee is hired.

 CREATE TRIGGER NEW_HIRE

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

INSTEAD OF triggers

INSTEAD OF triggers describe how to perform insert, update, and delete

operations against complex views. INSTEAD OF triggers allow applications to use

a view as the sole interface for all SQL operations (insert, delete, update and

select).

Usually, INSTEAD OF triggers contain the inverse of the logic applied in a view

body. For example, consider a view that decrypts columns from its source table.

The INSTEAD OF trigger for this view encrypts data and then inserts it into the

source table, thus performing the symmetrical operation.

Using an INSTEAD OF trigger, the requested modify operation against the view

gets replaced by the trigger logic, which performs the operation on behalf of the

view. From the perspective of the application this happens transparently, as it

perceives that all operations are performed against the view. Only one INSTEAD

OF trigger is allowed for each kind of operation on a given subject view.

The view itself must be an untyped view or an alias that resolves to an untyped

view. Also, it cannot be a view that is defined using WITH CHECK OPTION (a

symmetric view) or a view on which a symmetric view has been defined directly

or indirectly.

Example

The following example presents three INSTEAD OF triggers that provide logic for

INSERTs, UPDATEs, and DELETEs to the defined view (EMPV). The view EMPV

contains a join in its from clause and therefore cannot natively support any modify

operation.

 CREATE VIEW EMPV(EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,

 HIREDATE, DEPTNAME)

 AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,

 HIREDATE, DEPTNAME

 FROM EMPLOYEE, DEPARTMENT WHERE

 EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

 CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV

 REFERENCING NEW AS NEWEMP FOR EACH ROW

 INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,

 WORKDEPT, PHONENO, HIREDATE)

 VALUES(EMPNO, FIRSTNME, MIDINIT, LASTNAME,

 COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D

 WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

 RAISE_ERROR(’70001’, ’Unknown dept name’)),

 PHONENO, HIREDATE)

 CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV

 REFERENCING NEW AS NEWEMP OLD AS OLDEMP

 FOR EACH ROW

 BEGIN ATOMIC

 VALUES(CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0

304 Data Servers, Databases, and Database Objects Guide

ELSE RAISE_ERROR(’70002’, ’Must not change EMPNO’) END);

 UPDATE EMPLOYEE AS E

 SET (FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)

 = (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,

 COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D

 WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

 RAISE_ERROR (’70001’, ’Unknown dept name’)),

 NEWEMP.PHONENO, NEWEMP.HIREDATE)

 WHERE NEWEMP.EMPNO = E.EMPNO;

 END

 CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV

 REFERENCING OLD AS OLDEMP FOR EACH ROW

 DELETE FROM EMPLOYEE AS E WHERE E.EMPNO = OLDEMP.EMPNO

Designing triggers

When creating a trigger, you must associate it with a table; when creating an

INSTEAD OF trigger, you must associate it with a view. This table or view is

called the target table of the trigger. The term modify operation refers to any change

in the state of the target table.

A modify operation is initiated by:

v an INSERT statement

v an UPDATE statement, or a referential constraint which performs an UPDATE

v a DELETE statement, or a referential constraint which performs a DELETE

v a MERGE statement

You must associate each trigger with one of these three types of modify operations.

The association is called the trigger event for that particular trigger.

You must also define the action, called the triggered action, that the trigger performs

when its trigger event occurs. The triggered action consists of one or more

statements which can execute either before or after the database manager performs

the trigger event. Once a trigger event occurs, the database manager determines

the set of rows in the subject table that the modify operation affects and executes

the trigger.

Guidelines when creating triggers:

When creating a trigger, you must declare the following attributes and

behavior:

v The name of the trigger.

v The name of the subject table.

v The trigger activation time (BEFORE or AFTER the modify operation

executes).

v The trigger event (INSERT, DELETE, or UPDATE).

v The old transition variable value, if any.

v The new transition variable value, if any.

v The old transition table value, if any.

v The new transition table value, if any.

v The granularity (FOR EACH STATEMENT or FOR EACH ROW).

v The triggered action of the trigger (including a triggered action condition

and triggered statement(s)).

v If the trigger event is UPDATE a trigger-column list if the trigger should

only fire when specific columns are specified in the update statement.

Chapter 14. Triggers 305

Designing multiple triggers:

When triggers are defined using the CREATE TRIGGER statement, their

creation time is registered in the database in form of a timestamp. The

value of this timestamp is subsequently used to order the activation of

triggers when there is more than one trigger that should be run at the

same time. For example, the timestamp is used when there is more than

one trigger on the same subject table with the same event and the same

activation time. The timestamp is also used when there are one or more

AFTER or INSTEAD OF triggers that are activated by the trigger event and

referential constraint actions caused directly or indirectly (that is,

recursively by other referential constraints) by the triggered action.

 Consider the following two triggers:

 CREATE TRIGGER NEW_HIRED

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 BEGIN ATOMIC

 UPDATE COMPANY_STATS

 SET NBEMP = NBEMP + 1;

 END

 CREATE TRIGGER NEW_HIRED_DEPT

 AFTER INSERT ON EMPLOYEE

 REFERENCING NEW AS EMP

 FOR EACH ROW

 BEGIN ATOMIC

 UPDATE DEPTS

 SET NBEMP = NBEMP + 1

 WHERE DEPT_ID = EMP.DEPT_ID;

 END

The above triggers are activated when you run an INSERT operation on

the employee table. In this case, the timestamp of their creation defines

which of the above two triggers is activated first.

The activation of the triggers is conducted in ascending order of the

timestamp value. Thus, a trigger that is newly added to a database runs

after all the other triggers that are previously defined.

Old triggers are activated before new triggers to ensure that new triggers

can be used as incremental additions to the changes that affect the database.

For example, if a triggered statement of trigger T1 inserts a new row into a

table T, a triggered statement of trigger T2 that is run after T1 can be used

to update the same row in T with specific values. Because the activation

order of triggers is predictable, you can have multiple triggers on a table

and still know that the newer ones will be acting on a table that has

already been modified by the older ones.

Trigger interactions with referential constraints:

A trigger event can occur as a result of changes due to referential

constraint enforcement. For example, given two tables DEPT and EMP, if

deleting or updating DEPT causes propagated deletes or updates to EMP

by means of referential integrity constraints, then delete or update triggers

defined on EMP become activated as a result of the referential constraint

defined on DEPT. The triggers on EMP are run either BEFORE or AFTER

the deletion (in the case of ON DELETE CASCADE) or update of rows in

EMP (in the case of ON DELETE SET NULL), depending on their

activation time.

306 Data Servers, Databases, and Database Objects Guide

Specifying what makes a trigger fire (triggering statement or

event)

Every trigger is associated with an event. Triggers are activated when their

corresponding event occurs in the database. This trigger event occurs when the

specified action, either an UPDATE, INSERT, or DELETE statement (including

those caused by actions of referential constraints), is performed on the target table.

For example:

 CREATE TRIGGER NEW_HIRE

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The above statement defines the trigger new_hire, which activates when you

perform an insert operation on table employee.

You associate every trigger event, and consequently every trigger, with exactly one

target table and exactly one modify operation. The modify operations are:

Insert operation

An insert operation can only be caused by an INSERT statement or the

insert operation of a MERGE statement. Therefore, triggers are not

activated when data is loaded using utilities that do not use INSERT, such

as the LOAD command.

Delete operation

A delete operation can be caused by a DELETE statement, or the delete

operation of a MERGE statement, or as a result of a referential constraint

rule of ON DELETE CASCADE.

Update operation

An update operation can be caused by an UPDATE statement, or the

update operation of a MERGE statement, or as a result of a referential

constraint rule of ON DELETE SET NULL.

If the trigger event is an update operation, the event can be associated with

specific columns of the target table. In this case, the trigger is only activated if the

update operation attempts to update any of the specified columns. This provides a

further refinement of the event that activates the trigger.

For example, the following trigger, REORDER, activates only if you perform an

update operation on the columns ON_HAND or MAX_STOCKED, of the table

PARTS:

 CREATE TRIGGER REORDER

 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

 REFERENCING NEW AS N_ROW

 FOR EACH ROW

 WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)

 BEGIN ATOMIC

 VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

 N_ROW.ON_HAND,

 N_ROW.PARTNO));

 END

When a trigger is activated, it runs according to its level of granularity as follows:

FOR EACH ROW

It runs as many times as the number of rows in the set of affected rows. If

you need to refer to the specific rows affected by the triggered action, use

Chapter 14. Triggers 307

FOR EACH ROW granularity. An example of this is the comparison of the

new and old values of an updated row in an AFTER UPDATE trigger.

FOR EACH STATEMENT

It runs once for the entire trigger event.

If the set of affected rows is empty (that is, in the case of a searched UPDATE or

DELETE in which the WHERE clause did not qualify any rows), a FOR EACH

ROW trigger does not run. But a FOR EACH STATEMENT trigger still runs once.

For example, keeping a count of number of employees can be done using FOR

EACH ROW.

 CREATE TRIGGER NEW_HIRED

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

You can achieve the same affect with one update by using a granularity of FOR

EACH STATEMENT.

 CREATE TRIGGER NEW_HIRED

 AFTER INSERT ON EMPLOYEE

 REFERENCING NEW_TABLE AS NEWEMPS

 FOR EACH STATEMENT

 UPDATE COMPANY_STATS

 SET NBEMP = NBEMP + (SELECT COUNT(*) FROM NEWEMPS)

Note:

v A granularity of FOR EACH STATEMENT is not supported for BEFORE

triggers.

v The maximum nesting level for triggers is 16. That is, the maximum number of

cascading trigger activations is 16. A trigger activation refers to the activation of

a trigger upon a triggering event, such as insert, update, or delete of data in a

column of a table, or generally to a table.

Specifying when a trigger fires (BEFORE, AFTER, and

INSTEAD OF clauses)

The trigger activation time specifies when the trigger should be activated, relative to

the trigger event.

There are three activation times that you can specify: BEFORE, AFTER, or

INSTEAD OF:

v If the activation time is BEFORE, the triggered actions are activated for each row

in the set of affected rows before the trigger event executes. Hence, the subject

table will only be modified after the BEFORE trigger has completed execution

for each row. Note that BEFORE triggers must have a granularity of FOR EACH

ROW.

v If the activation time is AFTER, the triggered actions are activated for each row

in the set of affected rows or for the statement, depending on the trigger

granularity. This occurs after the trigger event has been completed, and after the

database manager checks all constraints that the trigger event might affect,

including actions of referential constraints. Note that AFTER triggers can have a

granularity of either FOR EACH ROW or FOR EACH STATEMENT.

For example, the activation time of the following trigger is AFTER the INSERT

operation on employee:

308 Data Servers, Databases, and Database Objects Guide

CREATE TRIGGER NEW_HIRE

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

v If the activation time is INSTEAD OF, the triggered actions are activated for each

row in the set of affected rows instead of executing the trigger event. INSTEAD

OF triggers must have a granularity of FOR EACH ROW, and the subject table

must be a view. No other triggers are able to use a view as the subject table.

The following diagram illustrates the execution model of BEFORE and AFTER

triggers:

For a given table with both before and AFTER triggers, and a modifying event that

is associated with these triggers, all the BEFORE triggers are activated first. The

first activated BEFORE trigger for a given event operates on the set of rows

targeted by the operation and makes any update modifications to the set that its

logic prescribes. The output of this BEFORE trigger is accepted as input by the

next before-trigger. When all of the BEFORE triggers that are activated by the

E-mail

A set-oriented
insert modification

Database tables

Base
table C

Base
table B

Base
table A

. . .

Before insert trigger-1
on table A

Set of rows specified
for the insert modification
on base table A

Before insert trigger-2
on table A

Before insert trigger-3
on table A

Intermediate
result set

Intermediate
result set

After insert trigger-1
on table A

After insert trigger-2
on table A

After insert trigger-3
on table A

Trigger
activated

Trigger
activated

Trigger
activated

Trigger modifies
table A

Trigger modifies
table B

Trigger modifies
table C

Trigger invokes a function
(UDF) that contains complex
logic, modifies table C,
and sends an e-mail.

The intermediate
result set rows are
inserted into table A.

Intermediate
result set

Figure 26. Trigger execution model

Chapter 14. Triggers 309

event have been fired, the intermediate result set, the result of the BEFORE trigger

modifications to the rows targeted by the trigger event operation, is applied to the

table. Then each AFTER trigger associated with the event is fired. The AFTER

triggers might modify the same table, another table, or perform an action external

to the database.

The different activation times of triggers reflect different purposes of triggers.

Basically, BEFORE triggers are an extension to the constraint subsystem of the

database management system. Therefore, you generally use them to:

v Perform validation of input data

v Automatically generate values for newly inserted rows

v Read from other tables for cross-referencing purposes

BEFORE triggers are not used for further modifying the database because they are

activated before the trigger event is applied to the database. Consequently, they are

activated before integrity constraints are checked.

Conversely, you can view AFTER triggers as a module of application logic that

runs in the database every time a specific event occurs. As a part of an application,

AFTER triggers always see the database in a consistent state. Note that they are

run after the integrity constraint validations. Consequently, you can use them

mostly to perform operations that an application can also perform. For example:

v Perform follow on modify operations in the database.

v Perform actions outside the database, for example, to support alerts. Note that

actions performed outside the database are not rolled back if the trigger is rolled

back.

In contrast, you can view an INSTEAD OF trigger as a description of the inverse

operation of the view it is defined on. For example, if the select list in the view

contains an expression over a table, the INSERT statement in the body of its

INSTEAD OF INSERT trigger will contain the reverse expression.

Because of the different nature of BEFORE, AFTER, and INSTEAD OF triggers, a

different set of SQL operations can be used to define the triggered actions of

BEFORE and AFTER, INSTEAD OF triggers. For example, update operations are

not allowed in BEFORE triggers because there is no guarantee that integrity

constraints will not be violated by the triggered action. Similarly, different trigger

granularities are supported in BEFORE, AFTER, and INSTEAD OF triggers.

The triggered SQL statement of all triggers can be a dynamic compound statement.

However, BEFORE triggers face some restrictions; they cannot contain the

following SQL statements:

v UPDATE

v DELETE

v INSERT

v MERGE

Defining conditions for when trigger-action will fire (WHEN

clause)

The activation of a trigger results in the running of its associated triggered action.

Every trigger has exactly one triggered action which, in turn, has two components:

an optional triggered action condition or WHEN clause, and a set of triggered

statement(s).

310 Data Servers, Databases, and Database Objects Guide

The triggered action condition is an optional clause of the triggered action which

specifies a search condition that must evaluate to true to run statements within the

triggered action. If the WHEN clause is omitted, then the statements within the

triggered action are always executed.

The triggered action condition is evaluated once for each row if the trigger is a

FOR EACH ROW trigger, and once for the statement if the trigger is a FOR EACH

STATEMENT trigger.

This clause provides further control that you can use to fine tune the actions

activated on behalf of a trigger. An example of the usefulness of the WHEN clause

is to enforce a data dependent rule in which a triggered action is activated only if

the incoming value falls inside or outside of a certain range.

The activation of a trigger results in the running of its associated triggered action.

Every trigger has exactly one triggered action which, in turn, has two components:

The triggered action condition defines whether or not the set of triggered

statements are performed for the row or for the statement for which the triggered

action is executing. The set of triggered statements define the set of actions

performed by the trigger in the database as a consequence of its event having

occurred.

For example, the following trigger action specifies that the set of triggered

statements should only be activated for rows in which the value of the on_hand

column is less than ten per cent of the value of the max_stocked column. In this

case, the set of triggered statements is the invocation of the issue_ship_request

function.

 CREATE TRIGGER REORDER

 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

 REFERENCING NEW AS N_ROW

 FOR EACH ROW

 WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)

 BEGIN ATOMIC

 VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

 N_ROW.ON_HAND,

 N_ROW.PARTNO));

 END

The set of triggered statements carries out the real actions caused by activating a

trigger. Not every SQL operation is meaningful in every trigger. Depending on

whether the trigger activation time is BEFORE or AFTER, different kinds of

operations might be appropriate as a triggered statement.

In most cases, if any triggered statement returns a negative return code, the

triggering statement together with all trigger and referential constraint actions are

rolled back. The trigger name, SQLCODE, SQLSTATE and many of the tokens from

the failing triggered statement are returned in the error message.

Supported SQL PL statements in triggers

The triggered SQL statement of all triggers can be a dynamic compound statement.

That is, triggered SQL statements can contain one or more of the following

elements:

v CALL statement

Chapter 14. Triggers 311

v DECLARE variable statement

v SET variable statement

v WHILE loop

v FOR loop

v IF statement

v SIGNAL statement

v ITERATE statement

v LEAVE statement

v GET DIGNOSTIC statement

v fullselect

However, only AFTER and INSTEAD OF triggers can contain one or more of the

following SQL statements:

v UPDATE statement

v DELETE statement

v INSERT statement

v MERGE statement

Accessing old and new column values in triggers using

transition variables

When you implement a FOR EACH ROW trigger, it might be necessary to refer to

the value of columns of the row in the set of affected rows, for which the trigger is

currently executing. Note that to refer to columns in tables in the database

(including the subject table), you can use regular SELECT statements.

A FOR EACH ROW trigger can refer to the columns of the row for which it is

currently executing by using two transition variables that you can specify in the

REFERENCING clause of a CREATE TRIGGER statement. There are two kinds of

transition variables, which are specified as OLD and NEW, together with a

correlation-name. They have the following semantics:

OLD AS correlation-name

Specifies a correlation name which captures the original state of the row,

that is, before the triggered action is applied to the database.

NEW AS correlation-name

Specifies a correlation name which captures the value that is, or was, used

to update the row in the database when the triggered action is applied to

the database.

Consider the following example:

 CREATE TRIGGER REORDER

 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

 REFERENCING NEW AS N_ROW

 FOR EACH ROW

 WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED

 AND N_ROW.ORDER_PENDING = ’N’)

 BEGIN ATOMIC

 VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

 N_ROW.ON_HAND,

 N_ROW.PARTNO));

 UPDATE PARTS SET PARTS.ORDER_PENDING = ’Y’

 WHERE PARTS.PARTNO = N_ROW.PARTNO;

 END

312 Data Servers, Databases, and Database Objects Guide

Based on the definition of the OLD and NEW transition variables given above, it is

clear that not every transition variable can be defined for every trigger. Transition

variables can be defined depending on the kind of trigger event:

UPDATE

An UPDATE trigger can refer to both OLD and NEW transition variables.

INSERT

An INSERT trigger can only refer to a NEW transition variable because

before the activation of the INSERT operation, the affected row does not

exist in the database. That is, there is no original state of the row that

would define old values before the triggered action is applied to the

database.

DELETE

A DELETE trigger can only refer to an OLD transition variable because

there are no new values specified in the delete operation.

Note: Transition variables can only be specified for FOR EACH ROW triggers. In a

FOR EACH STATEMENT trigger, a reference to a transition variable is not

sufficient to specify to which of the several rows in the set of affected rows the

transition variable is referring. Instead, refer to the set of new and old rows by

using the OLD TABLE and NEW TABLE clauses of the CREATE TRIGGER

statement. For more information on these clauses, see the CREATE TRIGGER

statement.

Referencing old and new table result sets using transition

tables

In both FOR EACH ROW and FOR EACH STATEMENT triggers, it might be

necessary to refer to the whole set of affected rows. This is necessary, for example,

if the trigger body needs to apply aggregations over the set of affected rows (for

example, MAX, MIN, or AVG of some column values).

A trigger can refer to the set of affected rows by using two transition tables that

can be specified in the REFERENCING clause of a CREATE TRIGGER statement.

Just like the transition variables, there are two kinds of transition tables, which are

specified as OLD_TABLE and NEW_TABLE together with a table-name, with the

following semantics:

OLD_TABLE AS table-name

Specifies the name of the table which captures the original state of the set

of affected rows (that is, before the triggering SQL operation is applied to

the database).

NEW_TABLE AS table-name

Specifies the name of the table which captures the value that is used to

update the rows in the database when the triggered action is applied to the

database.

For example:

 CREATE TRIGGER REORDER

 AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS

 REFERENCING NEW_TABLE AS N_TABLE

 NEW AS N_ROW

 FOR EACH ROW

 WHEN ((SELECT AVG (ON_HAND) FROM N_TABLE) > 35)

 BEGIN ATOMIC

Chapter 14. Triggers 313

VALUES(INFORM_SUPERVISOR(N_ROW.PARTNO,

 N_ROW.MAX_STOCKED,

 N_ROW.ON_HAND));

 END

Note that NEW_TABLE always has the full set of updated rows, even on a FOR

EACH ROW trigger. When a trigger acts on the table on which the trigger is

defined, NEW_TABLE contains the changed rows from the statement that activated

the trigger. However, NEW_TABLE does not contain the changed rows that were

caused by statements within the trigger, as that would cause a separate activation

of the trigger.

The transition tables are read-only. The same rules that define the kinds of

transition variables that can be defined for which trigger event, apply for transition

tables:

UPDATE

An UPDATE trigger can refer to both OLD_TABLE and NEW_TABLE

transition tables.

INSERT

An INSERT trigger can only refer to a NEW_TABLE transition table

because before the activation of the INSERT operation the affected rows do

not exist in the database. That is, there is no original state of the rows that

defines old values before the triggered action is applied to the database.

DELETE

A DELETE trigger can only refer to an OLD_TABLE transition table

because there are no new values specified in the delete operation.

Note: It is important to observe that transition tables can be specified for both

granularities of AFTER triggers: FOR EACH ROW and FOR EACH STATEMENT.

The scope of the OLD_TABLE and NEW_TABLE table-name is the trigger body. In this

scope, this name takes precedence over the name of any other table with the same

unqualified table-name that might exist in the schema. Therefore, if the OLD_TABLE or

NEW_TABLE table-name is for example, X, a reference to X (that is, an unqualified X)

in the FROM clause of a SELECT statement will always refer to the transition table

even if there is a table named X in the in the schema of the trigger creator. In this

case, the user has to make use of the fully qualified name in order to refer to the

table X in the schema.

Creating triggers

A trigger defines a set of actions that are executed in conjunction with, or triggered

by, an INSERT, UPDATE, or DELETE clause on a specified table or a typed table.

Use triggers to:

v Validate input data

v Generate a value for a newly-inserted row

v Read from other tables for cross-referencing purposes

v Write to other tables for audit-trail purposes

You can use triggers to support general forms of integrity or business rules. For

example, a trigger can check a customer’s credit limit before an order is accepted

or update a summary data table.

314 Data Servers, Databases, and Database Objects Guide

Benefits:

v Faster application development: Because a trigger is stored in the

database, you do not have to code the actions that it performs in every

application.

v Easier maintenance: Once a trigger is defined, it is automatically invoked

when the table that it is created on is accessed.

v Global enforcement of business rules: If a business policy changes, you

only need to change the trigger and not each application program.

Restrictions:

v You cannot use triggers with nicknames.

v If the trigger is a BEFORE trigger, the column name specified by the

triggered action must not be a generated column other than an identity

column. That is, the generated identity value is visible to BEFORE

triggers.

When creating an atomic trigger, care must be taken with the end-of-statement

character. The command line processor, by default, considers a “;” the

end-of-statement marker. You should manually edit the end-of-statement character

in your script to create the atomic trigger so that you are using a character other

than “;”. For example, the “;” could be replaced by another special character like

“#”. You can also precede the CREATE TRIGGER DDL with:

 --#SET TERMINATOR @

To change the terminator in the CLP on the fly, the following syntax will set it

back:

 --#SET TERMINATOR

To create a trigger from the command line, enter:

 db2 -td <delimiter> -vf <script>

where the <delimiter> is the alternative end-of-statement character and the

<script> is the modified script with the new <delimiter> in it.

To create a trigger from the command line, enter:

 CREATE TRIGGER <name>

 <action> ON <table_name>

 <operation>

 <triggered_action>

The following statement creates a trigger that increases the number of employees

each time a new person is hired, by adding 1 to the number of employees

(NBEMP) column in the COMPANY_STATS table each time a row is added to the

EMPLOYEE table.

 CREATE TRIGGER NEW_HIRED

 AFTER INSERT ON EMPLOYEE

 FOR EACH ROW

 UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

A trigger body can include one or more of the following statements: INSERT,

searched UPDATE, searched DELETE, fullselect, SET Variable, and SIGNAL

SQLSTATE. The trigger can be activated before or after the INSERT, UPDATE, or

DELETE statement to which it refers.

Chapter 14. Triggers 315

Modifying and dropping triggers

Triggers cannot be modified. They must be dropped and then created again

according to the new definitions you require.

Trigger dependencies

v All dependencies of a trigger on some other object are recorded in the

SYSCAT.TRIGDEP system catalog view. A trigger can depend on many

objects.

v If an object that a trigger is dependent on is dropped, the trigger

becomes inoperative but its definition is retained in the system catalog

view. To re-validate this trigger, you must retrieve its definition from the

system catalog view and submit a new CREATE TRIGGER statement.

v If a trigger is dropped, its description is deleted from the

SYSCAT.TRIGGERS system catalog view and all of its dependencies are

deleted from the SYSCAT.TRIGDEP system catalog view. All packages

having UPDATE, INSERT, or DELETE dependencies on the trigger are

invalidated.

v If the view is dependent on the trigger and it is made inoperative, the

trigger is also marked inoperative. Any packages dependent on triggers

that have been marked inoperative are invalidated.

A trigger object can be dropped using the DROP TRIGGER statement, but this

procedure will cause dependent packages to be marked invalid, as follows:

v If an update trigger without an explicit column list is dropped, then packages

with an update usage on the target table are invalidated.

v If an update trigger with a column list is dropped, then packages with update

usage on the target table are only invalidated if the package also had an update

usage on at least one column in the column-name list of the CREATE TRIGGER

statement.

v If an insert trigger is dropped, packages that have an insert usage on the target

table are invalidated.

v If a delete trigger is dropped, packages that have a delete usage on the target

table are invalidated.

A package remains invalid until the application program is explicitly bound or

rebound, or it is run and the database manager automatically rebinds it.

Examples of triggers and trigger use

Examples of interaction between triggers and referential

constraints

Update operations may cause the interaction of triggers with referential constraints

and check constraints.

Figure 23 on page 278 and the associated description are representative of the

processing that is performed for an statement that updates data in the database.

316 Data Servers, Databases, and Database Objects Guide

Figure 23 on page 278 shows the general order of processing for an statement that

updates a table. It assumes a situation where the table includes BEFORE triggers,

referential constraints, check constraints and AFTER triggers that cascade. The

following is a description of the boxes and other items found in Figure 23 on page

278.

v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The

statement S1

identifies a table (or an updatable view over some table) referred to

as the subject table throughout this description.

v Determine set of affected rows

This step is the starting point for a process that repeats for referential constraint

delete rules of CASCADE and SET NULL and for cascaded statements from

AFTER triggers.

The purpose of this step is to determine the set of affected rows for the statement.

The set of rows included is based on the statement:

– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)

– for INSERT, the rows identified by the VALUES clause or the fullselect

– for UPDATE, all rows that satisfy the search condition (or the current row for

a positioned UPDATE).
If the set of affected rows is empty, there will be no BEFORE triggers, changes to

apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers

All BEFORE triggers are processed in ascending order of creation. Each BEFORE

trigger will process the triggered action once for each row in the set of affected

rows.

An error may occur during the processing of a triggered action in which case all

changes made as a result of the original statement S1

(so far) are rolled back.

If there are no BEFORE triggers or the set of affected is empty, this step is

skipped.

v Apply the set of affected rows to the subject table

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 27. Processing an statement with associated triggers and constraints

Chapter 14. Triggers 317

The actual delete, insert, or update is applied using the set of affected rows to

the subject table in the database.

An error may occur when applying the set of affected rows (such as attempting

to insert a row with a duplicate key where a unique index exists) in which case

all changes made as a result of the original statement S1

(so far) are rolled back.

v Apply Constraints

The constraints associated with the subject table are applied if set of affected

rows is not empty. This includes unique constraints, unique indexes, referential

constraints, check constraints and checks related to the WITH CHECK OPTION

on views. Referential constraints with delete rules of cascade or set null may

cause additional triggers to be activated.

A violation of any constraint or WITH CHECK OPTION results in an error and

all changes made as a result of S1

(so far) are rolled back.

v Process AFTER triggers

All AFTER triggers activated by S1

are processed in ascending order of creation.

FOR EACH STATEMENT triggers will process the triggered action exactly once,

even if the set of affected rows is empty. FOR EACH ROW triggers will process

the triggered action once for each row in the set of affected rows.

An error may occur during the processing of a triggered action in which case all

changes made as a result of the original S1

(so far) are rolled back.

The triggered action of a trigger may include triggered statements that are

DELETE, INSERT or UPDATE statements. For the purposes of this description,

each such statement is considered a cascaded statement.

A cascaded statement is a DELETE, INSERT, or UPDATE statement that is

processed as part of the triggered action of an AFTER trigger. This statement

starts a cascaded level of trigger processing. This can be thought of as assigning

the triggered statement as a new S1

and performing all of the steps described

here recursively.

Once all triggered statements from all AFTER triggers activated by each S1

have

been processed to completion, the processing of the original S1

is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results

in a roll back of all the changes made directly or indirectly as a result of the

original statement S1. The database is therefore back in the same state as

immediately prior to the execution of the original statement S1

Examples of defining actions using triggers

Assume that your general manager wants to keep the names of customers who

have sent three or more complaints in the last 72 hours in a separate table. The

general manager also wants to be informed whenever a customer name is inserted

in this table more than once.

To define such actions, you define:

v An UNHAPPY_CUSTOMERS table:

 CREATE TABLE UNHAPPY_CUSTOMERS (

 NAME VARCHAR (30),

 EMAIL_ADDRESS VARCHAR (200),

 INSERTION_DATE DATE)

v A trigger to automatically insert a row in UNHAPPY_CUSTOMERS if 3 or more

messages were received in the last 3 days (assumes the existence of a

CUSTOMERS table that includes a NAME column and an E_MAIL_ADDRESS

column):

318 Data Servers, Databases, and Database Objects Guide

CREATE TRIGGER STORE_UNHAPPY_CUST

 AFTER INSERT ON ELECTRONIC_MAIL

 REFERENCING NEW AS N

 FOR EACH ROW

 WHEN (3 <= (SELECT COUNT(*)

 FROM ELECTRONIC_MAIL

 WHERE SENDER = N.SENDER

 AND SENDING_DATE(MESSAGE) > CURRENT DATE - 3 DAYS)

)

 BEGIN ATOMIC

 INSERT INTO UNHAPPY_CUSTOMERS

 VALUES ((SELECT NAME

 FROM CUSTOMERS

 WHERE EMAIL_ADDRESS = N.SENDER), N.SENDER, CURRENT DATE);

 END

v A trigger to send a note to the general manager if the same customer is inserted

in UNHAPPY_CUSTOMERS more than once (assumes the existence of a

SEND_NOTE function that takes 2 character strings as input):

 CREATE TRIGGER INFORM_GEN_MGR

 AFTER INSERT ON UNHAPPY_CUSTOMERS

 REFERENCING NEW AS N

 FOR EACH ROW

 WHEN (1 <(SELECT COUNT(*)

 FROM UNHAPPY_CUSTOMERS

 WHERE EMAIL_ADDRESS = N.EMAIL_ADDRESS)

)

 BEGIN ATOMIC

 VALUES(SEND_NOTE(’Check customer:’ CONCAT N.NAME,

 ’bigboss@vnet.ibm.com’));

 END

Example of defining business rules using triggers

Suppose your company has the policy that all e-mail dealing with customer

complaints must have Mr. Nelson, the marketing manager, in the carbon copy (CC)

list.

Because this is a rule, you might want to express it as a constraint such as one of

the following (assuming the existence of a CC_LIST UDF to check it):

 ALTER TABLE ELECTRONIC_MAIL ADD

 CHECK (SUBJECT <> ’Customer complaint’ OR

 CONTAINS (CC_LIST(MESSAGE), ’nelson@vnet.ibm.com’) = 1)

However, such a constraint prevents the insertion of e-mail dealing with customer

complaints that do not have the marketing manager in the cc list. This is certainly

not the intent of your company’s business rule. The intent is to forward to the

marketing manager any e-mail dealing with customer complaints that were not

copied to the marketing manager. Such a business rule can only be expressed with

a trigger because it requires taking actions that cannot be expressed with

declarative constraints. The trigger assumes the existence of a SEND_NOTE

function with parameters of type E_MAIL and character string.

 CREATE TRIGGER INFORM_MANAGER

 AFTER INSERT ON ELECTRONIC_MAIL

 REFERENCING NEW AS N

 FOR EACH ROW

 WHEN (N.SUBJECT = ’Customer complaint’ AND

 CONTAINS (CC_LIST(MESSAGE), ’nelson@vnet.ibm.com’) = 0)

 BEGIN ATOMIC

 VALUES(SEND_NOTE(N.MESSAGE, ’nelson@vnet.ibm.com’));

 END

Chapter 14. Triggers 319

Example of preventing operations on tables using triggers

Suppose you want to prevent undeliverable e-mail from being stored in a table

named ELECTRONIC_MAIL. To do so, you need to prevent the execution of

certain SQL INSERT statements.

There are two ways to do this:

v Define a BEFORE trigger that returns an error whenever the subject of an e-mail

is undelivered mail:

 CREATE TRIGGER BLOCK_INSERT

 NO CASCADE BEFORE INSERT ON ELECTRONIC_MAIL

 REFERENCING NEW AS N

 FOR EACH ROW

 WHEN (SUBJECT(N.MESSAGE) = ’undelivered mail’)

 BEGIN ATOMIC

 SIGNAL SQLSTATE ’85101’

 SET MESSAGE_TEXT = (’Attempt to insert undelivered mail’);

 END

v Define a check constraint forcing values of the new column SUBJECT to be

different from undelivered mail:

 ALTER TABLE ELECTRONIC_MAIL

 ADD CONSTRAINT NO_UNDELIVERED

 CHECK (SUBJECT <> ’undelivered mail’)

320 Data Servers, Databases, and Database Objects Guide

Chapter 15. Sequences

A sequence is a database object that allows the automatic generation of values, such

as cheque numbers. Sequences are ideally suited to the task of generating unique

key values. Applications can use sequences to avoid possible concurrency and

performance problems resulting from column values used to track numbers. The

advantage that sequences have over numbers created outside the database is that

the database server keeps track of the numbers generated. A crash and restart will

not cause duplicate numbers from being generated.

The sequence numbers generated have the following properties:

v Values can be any exact numeric data type with a scale of zero. Such data types

include: SMALLINT, BIGINT, INTEGER, and DECIMAL.

v Consecutive values can differ by any specified integer increment. The default

increment value is 1.

v Counter value is recoverable. The counter value is reconstructed from logs when

recovery is required.

v Values can be cached to improve performance. Pre-allocating and storing values

in the cache reduces synchronous I/O to the log when values are generated for

the sequence. In the event of a system failure, all cached values that have not

been used are considered lost. The value specified for CACHE is the maximum

number of sequence values that could be lost.

There are two expressions that can used with sequences:

v NEXT VALUE expression: returns the next value for the specified sequence. A

new sequence number is generated when a NEXT VALUE expression specifies

the name of the sequence. However, if there are multiple instances of a NEXT

VALUE expression specifying the same sequence name within a query, the

counter for the sequence is incremented only once for each row of the result,

and all instances of NEXT VALUE return the same value for each row of the

result.

v PREVIOUS VALUE expression: returns the most recently generated value for

the specified sequence for a previous statement within the current application

process. That is, for any given connection, the PREVIOUS VALUE remains

constant even if another connection invokes NEXT VALUE.

For complete details and examples of these expressions, see “Sequence reference”

in SQL Reference, Volume 1.

Designing sequences

When designing sequences you need to consider the differences between identity

columns and sequences, and which is more appropriate for your environment. If

you decide to use sequences, you need to be familiar with the available options

and parameters.

Before designing sequences, see “Sequences compared to identity columns” on

page 324.

In addition to being simple to set up and create, the sequence has a variety of

additional options that allows you more flexibility in generating the values:

© Copyright IBM Corp. 1993, 2009 321

v Choose from a variety of data types (SMALLINT, INTEGER, BIGINT,

DECIMAL)

v Change starting values (START WITH)

v Change the sequence increment, including specifying increasing or decreasing

values (INCREMENT BY)

v Set minimum and maximum values where the sequence numbering starts and

stops (MINVALUE/MAXVALUE)

v Allow wrapping of values so that sequences can start over again, or disallow

cycling (CYCLE/NO CYCLE)

v Allow caching of sequence values to improve performance, or disallow

caching(CACHE/NO CACHE)

Even after the sequence has been generated, many of these values can be altered.

For instance, you may want to set a different starting value depending on the day

of the week. Another practical example of using sequences is for the generation

and processing of bank checks. The sequence of bank check numbers is extremely

important, and there are serious consequences if a batch of sequence numbers is

lost or corrupted.

For improved performance, you should also be aware of and make use of the

CACHE option. This option tells the database manager how many sequence values

should be generated by the system before going back to the catalog to generate

another set of sequences. The default CACHE value is 20, if not specified. Using

the default as an example, the database manager automatically generates 20

sequential values in memory (1, 2, , 20) when the first sequence value is

requested. Whenever a new sequence number is required, this memory cache of

values is used to return the next value. Once this cache of values is used up, the

database manager will generate the next twenty values (21, 22, , 40).

By implementing caching of sequence numbers, the database manager does not

have to continually go to the catalog tables to get the next value. This reduces the

overhead associated with retrieving sequence numbers, but it also leads to possible

gaps in the sequences if a system failure occurs, or if the system is shut down. For

instance, if you decide to set the sequence cache to 100, the database manager will

cache 100 values of these numbers and also set the system catalog to show that the

next sequence of values should begin at 201. In the event that the database is shut

down, the next set of sequence numbers will begin at 201. The numbers that were

generated from 101 to 200 will be lost from the set of sequences if they were not

used. If gaps in generated values cannot be tolerated in your application, you need

to set the caching value to NO CACHE despite the higher system overhead this

will cause.

For more information on all available options and associated values, see the

CREATE SEQUENCE statement.

Managing sequence behavior

You can tailor the behavior of sequences to meet the needs of your application.

You change the attributes of a sequence when you issue the CREATE SEQUENCE

statement to create a new sequence, and when you issue the ALTER SEQUENCE

statement for an existing sequence.

Following are some of the attributes of a sequence that you can specify:

Data type

The AS clause of the CREATE SEQUENCE statement specifies the numeric

322 Data Servers, Databases, and Database Objects Guide

data type of the sequence. The data type determines the possible minimum

and maximum values of the sequence. The minimum and maximum

values for a data type are listed in SQL and XML limits. You cannot change

the data type of a sequence; instead, you must drop the sequence by

issuing the DROP SEQUENCE statement and issue a CREATE SEQUENCE

statement with the new data type.

Start value

The START WITH clause of the CREATE SEQUENCE statement sets the

initial value of the sequence. The RESTART WITH clause of the ALTER

SEQUENCE statement resets the value of the sequence to a specified value.

Minimum value

The MINVALUE clause sets the minimum value of the sequence.

Maximum value

The MAXVALUE clause sets the maximum value of the sequence.

Increment value

The INCREMENT BY clause sets the value that each NEXT VALUE

expression adds to the current value of the sequence. To decrement the

value of the sequence, specify a negative value.

Sequence cycling

The CYCLE clause causes the value of a sequence that reaches its

maximum or minimum value to generate its respective minimum value or

maximum value on the following NEXT VALUE expression.

Note: CYCLE should only be used if unique numbers are not required or

if it can be guaranteed that older sequence values are not in use anymore

once the sequence cycles.

For example, to create a sequence called id_values that starts with a minimum

value of 0, has a maximum value of 1000, increments by 2 with each NEXT

VALUE expression, and returns to its minimum value when the maximum value is

reached, issue the following statement:

CREATE SEQUENCE id_values

 START WITH 0

 INCREMENT BY 2

 MAXVALUE 1000

 CYCLE

Application performance and sequences

Like identity columns, using sequences to generate values generally improves the

performance of your applications in comparison to alternative approaches. The

alternative to sequences is to create a single-column table that stores the current

value and to increment that value with either a trigger or under the control of the

application. However, in a distributed environment where applications

concurrently access the single-column table, the locking required to force serialized

access to the table can seriously affect performance.

Sequences avoid the locking issues that are associated with the single-column table

approach and can cache sequence values in memory to improve response time. To

maximize the performance of applications that use sequences, ensure that your

sequence caches an appropriate amount of sequence values. The CACHE clause of

the CREATE SEQUENCE and ALTER SEQUENCE statements specifies the

maximum number of sequence values that the database manager generates and

stores in memory.

Chapter 15. Sequences 323

If your sequence must generate values in order, without introducing gaps in that

order because of a system failure or database deactivation, use the ORDER and

NO CACHE clauses in the CREATE SEQUENCE statement. The NO CACHE

clause guarantees that no gaps appear in the generated values at the cost of some

of your application’s performance because it forces your sequence to write to the

database log every time it generates a new value. Note that gaps can still appear

due to transactions that rollback and do not actually use that sequence value that

they requested.

Sequences compared to identity columns

Although sequences and identity columns appear to serve similar purposes for

DB2 applications, there is an important difference. An identity column

automatically generates values for a column in a single table using the LOAD

utility. A sequence generates sequential values upon request that can be used in

any SQL statement using the CREATE SEQUENCE statement.

Identity columns

Allow the database manager to automatically generate a unique numeric

value for each row that is added to the table. If you are creating a table

and you know you will need to uniquely identify each row that is added

to that table, then you can add an identity column to the table definition as

part of the CREATE TABLE statement:

 CREATE TABLE <table name>

 (<column name 1> INT,

 <column name 2>, DOUBLE,

 <column name 3> INT NOT NULL GENERATED ALWAYS AS IDENTITY

 (START WITH <value 1>, INCREMENT BY <value 2>))

In this example, the third column identifies the identity column. One of the

attributes that you can define is the value used in the column to uniquely

define each row when a row is added. The value following the

INCREMENT BY clause shows by how much subsequent values of the

identity column contents will be increased for every row added to the

table.

Once created, the identity properties can be changed or removed using the

ALTER TABLE statement. You can also use the ALTER TABLE statement to

add identity properties on other columns.

Sequences

Allow the automatic generation of values. Sequences are ideally suited to

the task of generating unique key values. Applications can use sequences

to avoid possible concurrency and performance problems resulting from

the generation of a unique counter through other means. Unlike an identity

column, a sequence is not tied to a particular table column, nor is it bound

to a unique table column and only accessible through that table column.

 A sequence can be created, and later altered, so that it generates values by

incrementing or decrementing values either without a limit; or to a

user-defined limit, and then stopping; or to a user-defined limit, then

cycling back to the beginning and starting again. Sequences are only

supported in single partition databases.

The following example shows how to create a sequence called orderseq:

324 Data Servers, Databases, and Database Objects Guide

CREATE SEQUENCE orderseq

 START WITH 1

 INCREMENT BY 1

 NOMAXVALUE

 NOCYCLE

 CACHE 50

In this example, the sequence starts at 1 and increases by 1 with no upper

limit. There is no reason to cycle back to the beginning and restart from 1

because there is no assigned upper limit. The CACHE parameter specifies

the maximum number of sequence values that the database manager

preallocates and keeps in memory.

Creating sequences

To create sequences, use the CREATE SEQUENCE statement. Unlike an identity

column attribute, a sequence is not tied to a particular table column nor is it bound

to a unique table column and only accessible through that table column.

There are several restrictions on where NEXT VALUE or PREVIOUS VALUE

expressions can be used. A sequence can be created, or altered, so that it generates

values in one of these ways:

v Increment or decrement monotonically (changing by a constant amount) without

bound

v Increment or decrement monotonically to a user-defined limit and stop

v Increment or decrement monotonically to a user-defined limit and cycle back to

the beginning and start again

Note: Use caution when recovering databases that use sequences: For sequence

values that are used outside the database, for example sequence numbers used for

bank checkes, if the database is recovered to a point in time before the database

failure, then this could cause the generation of duplicate values for some

sequences. To avoid possible duplicate values, databases that use sequence values

outside the database should not be recovered to a prior point in time.

To create a sequence called order_seq using defaults for all the options, issue the

following statement in an application program or through the use of dynamic SQL

statements:

 CREATE SEQUENCE order_seq

This sequence starts at 1 and increases by 1 with no upper limit.

This example could represent processing for a batch of bank checks starting from

101 to 200. The first order would have been from 1 to 100. The sequence starts at

101 and increase by 1 with an upper limit of 200. NOCYCLE is specified so that

duplicate cheque numbers are not produced. The number associated with the

CACHE parameter specifies the maximum number of sequence values that the

database manager preallocates and keeps in memory.

 CREATE SEQUENCE order_seq

 START WITH 101

 INCREMENT BY 1

 MAXVALUE 200

 NOCYCLE

 CACHE 25

For more information about these and other options, and authorization

requirements, see the CREATE SEQUENCE statement.

Chapter 15. Sequences 325

Generating sequential values

Generating sequential values is a common database application development

problem. The best solution to that problem is to use sequences and sequence

expressions in SQL. Each sequence is a uniquely named database object that can be

accessed only by sequence expressions.

There are two sequence expressions: the PREVIOUS VALUE expression and the

NEXT VALUE expression. The PREVIOUS VALUE expression returns the value

most recently generated in the application process for the specified sequence. Any

NEXT VALUE expressions occurring in the same statement as the PREVIOUS

VALUE expression have no effect on the value generated by the PREVIOUS

VALUE expression in that statement. The NEXT VALUE sequence expression

increments the value of the sequence and returns the new value of the sequence.

To create a sequence, issue the CREATE SEQUENCE statement. For example, to

create a sequence called id_values using the default attributes, issue the following

statement:

 CREATE SEQUENCE id_values

To generate the first value in the application session for the sequence, issue a

VALUES statement using the NEXT VALUE expression:

VALUES NEXT VALUE FOR id_values

1

 1

 1 record(s) selected.

To update the value of a column with the next value of the sequence, include the

NEXT VALUE expression in the UPDATE statement, as follows:

UPDATE staff

 SET id = NEXT VALUE FOR id_values

 WHERE id = 350

To insert a new row into a table using the next value of the sequence, include the

NEXT VALUE expression in the INSERT statement, as follows:

INSERT INTO staff (id, name, dept, job)

 VALUES (NEXT VALUE FOR id_values, ‘Kandil’, 51, ‘Mgr’)

Determining when to use identity columns or sequences

While there are similarities between identity columns and sequences, there are also

differences. The characteristics of each can be used when designing your database

and applications.

Depending on your database design and the applications using the database, the

following characteristics will assist you in determining when to use identity

columns and when to use sequences.

Identity column characteristics

v An identity column automatically generates values for a single table.

v When an identity column is defined as GENERATED ALWAYS, the

values used are always generated by the database manager. Applications

are not allowed to provide their own values during the modification of

the contents of the table.

326 Data Servers, Databases, and Database Objects Guide

v After inserting a row, the generated identity value can be retrieved either

by using the IDENTITY_VAL_LOCAL() function or by selecting the

identity column back from the insert by using the SELECT FROM

INSERT statement.

v The LOAD utility can generate IDENTITY values.

Sequence characteristics

v Sequences are not tied to any one table.

v Sequences generate sequential values that can be used in any SQL or

XQuery statement.

Since sequences can be used by any application, there are two

expressions used to control the retrieval of the next value in the

specified sequence and the value generated previous to the statement

being executed. The PREVIOUS VALUE expression returns the most

recently generated value for the specified sequence for a previous

statement within the current session. The NEXT VALUE expression

returns the next value for the specified sequence. The use of these

expressions allows the same value to be used across several SQL and

XQuery statements within several tables.

Modifying sequences

Modify the attributes of an existing sequence with the ALTER SEQUENCE

statement.

The attributes of the sequence that can be modified include:

v Changing the increment between future values

v Establishing new minimum or maximum values

v Changing the number of cached sequence numbers

v Changing whether the sequence will cycle or not

v Changing whether sequence numbers must be generated in order of request

v Restarting the sequence

There are two tasks that are not found as part of the creation of the sequence. They

are:

v RESTART: Resets the sequence to the value specified implicitly or explicitly as

the starting value when the sequence was created.

v RESTART WITH <numeric-constant>: Resets the sequence to the exact numeric

constant value. The numeric constant can be any positive or negative value with

no non-zero digits to the right of any decimal point.

After restarting a sequence or changing to CYCLE, it is possible to generate

duplicate sequence numbers. Only future sequence numbers are affected by the

ALTER SEQUENCE statement.

The data type of a sequence cannot be changed. Instead, you must drop the

current sequence and then create a new sequence specifying the new data type.

All cached sequence values not used by the database manager are lost when a

sequence is altered.

Chapter 15. Sequences 327

Viewing sequence definitions

Use the VALUES statement using the PREVIOUS VALUE option to view the

reference information associated with a sequence or to view the sequence itself.

To display the current value of the sequence, issue a VALUES statement using the

PREVIOUS VALUE expression:

VALUES PREVIOUS VALUE FOR id_values

1

 1

 1 record(s) selected.

You can repeatedly retrieve the current value of the sequence, and the value that

the sequence returns does not change until you issue a NEXT VALUE expression.

In the following example, the PREVIOUS VALUE expression returns a value of 1,

until the NEXT VALUE expression in the current connection increments the value

of the sequence:

VALUES PREVIOUS VALUE FOR id_values

1

 1

 1 record(s) selected.

VALUES PREVIOUS VALUE FOR id_values

1

 1

 1 record(s) selected.

VALUES NEXT VALUE FOR id_values

1

 2

 1 record(s) selected.

VALUES PREVIOUS VALUE FOR id_values

1

 2

 1 record(s) selected.

This is even true if another connection consumes sequence values at the same time.

Dropping sequences

To delete a sequence, use the DROP statement.

When dropping sequences, the authorization ID of the statement must hold

SYSADM or DBADM authority.

A specific sequence can be dropped by using:

 DROP SEQUENCE <sequence_name>

328 Data Servers, Databases, and Database Objects Guide

where the <sequence_name> is the name of the sequence to be dropped and

includes the implicit or explicit schema name to exactly identify an existing

sequence.

Sequences that are system-created for IDENTITY columns cannot be dropped using

the DROP SEQUENCE statement.

Once a sequence is dropped, all privileges on the sequence are also dropped.

Examples of how to code sequences

Many applications that are written require the use of sequence number to track

invoice numbers, customer numbers, and other objects which get incremented by

one whenever a new item is required. The database manager can auto-increment

values in a table through the use of identity columns. Although this technique

works well for individual tables, it may not be the most convenient way of

generating unique values that need to be used across multiple tables.

The sequence object lets you create a value that gets incremented under

programmer control and can be used across many tables. The following example

shows a sequence number being created for customer numbers using a data type

of integer:

 CREATE SEQUENCE customer_no AS INTEGER

By default the sequence number starts at one and increments by one at a time and

is of an INTEGER data type. The application needs to get the next value in the

sequence by using the NEXT VALUE function. This function generates the next

value for the sequence which can then be used for subsequent SQL statements:

 VALUES NEXT VALUE FOR customer_no

Instead of generating the next number with the VALUES function, the programmer

could have used this function within an INSERT statement. For instance, if the first

column of the customer table contained the customer number, an INSERT

statement could be written as follows:

 INSERT INTO customers VALUES

 (NEXT VALUE FOR customer_no, ’comment’, ...)

If the sequence number needs to be used for inserts into other tables, the

PREVIOUS VALUE function can be used to retrieve the previously generated

value. For instance, if the customer number just created needs to be used for a

subsequent invoice record, the SQL would include the PREVIOUS VALUE

function:

 INSERT INTO invoices

 (34,PREVIOUS VALUE FOR customer_no, 234.44, ...)

The PREVIOUS VALUE function can be used multiple times within the application

and it will only return the last value generated by that application. It may be

possible that subsequent transactions have already incremented the sequence to

another value, but you will always see the last number that is generated.

Chapter 15. Sequences 329

Sequence reference

sequence-reference:

 nextval-expression

prevval-expression

nextval-expression:

 NEXT VALUE FOR sequence-name

prevval-expression:

 PREVIOUS VALUE FOR sequence-name

NEXT VALUE FOR sequence-name

A NEXT VALUE expression generates and returns the next value for the

sequence specified by sequence-name.

PREVIOUS VALUE FOR sequence-name

A PREVIOUS VALUE expression returns the most recently generated value for

the specified sequence for a previous statement within the current application

process. This value can be referenced repeatedly by using PREVIOUS VALUE

expressions that specify the name of the sequence. There may be multiple

instances of PREVIOUS VALUE expressions specifying the same sequence

name within a single statement; they all return the same value. In a partitioned

database environment, a PREVIOUS VALUE expression may not return the

most recently generated value.

 A PREVIOUS VALUE expression can only be used if a NEXT VALUE

expression specifying the same sequence name has already been referenced in

the current application process, in either the current or a previous transaction

(SQLSTATE 51035).

Notes

v A new value is generated for a sequence when a NEXT VALUE expression

specifies the name of that sequence. However, if there are multiple instances of a

NEXT VALUE expression specifying the same sequence name within a query,

the counter for the sequence is incremented only once for each row of the result,

and all instances of NEXT VALUE return the same value for a row of the result.

v The same sequence number can be used as a unique key value in two separate

tables by referencing the sequence number with a NEXT VALUE expression for

the first row (this generates the sequence value), and a PREVIOUS VALUE

expression for the other rows (the instance of PREVIOUS VALUE refers to the

sequence value most recently generated in the current session), as shown below:

 INSERT INTO order(orderno, cutno)

 VALUES (NEXT VALUE FOR order_seq, 123456);

 INSERT INTO line_item (orderno, partno, quantity)

 VALUES (PREVIOUS VALUE FOR order_seq, 987654, 1);

v NEXT VALUE and PREVIOUS VALUE expressions can be specified in the

following places:

330 Data Servers, Databases, and Database Objects Guide

– select-statement or SELECT INTO statement (within the select-clause,

provided that the statement does not contain a DISTINCT keyword, a

GROUP BY clause, an ORDER BY clause, a UNION keyword, an INTERSECT

keyword, or EXCEPT keyword)

– INSERT statement (within a VALUES clause)

– INSERT statement (within the select-clause of the fullselect)

– UPDATE statement (within the SET clause (either a searched or a positioned

UPDATE statement), except that NEXT VALUE cannot be specified in the

select-clause of the fullselect of an expression in the SET clause)

– SET Variable statement (except within the select-clause of the fullselect of an

expression; a NEXT VALUE expression can be specified in a trigger, but a

PREVIOUS VALUE expression cannot)

– VALUES INTO statement (within the select-clause of the fullselect of an

expression)

– CREATE PROCEDURE statement (within the routine-body of an SQL

procedure)

– CREATE TRIGGER statement within the triggered-action (a NEXT VALUE

expression may be specified, but a PREVIOUS VALUE expression cannot)
v NEXT VALUE and PREVIOUS VALUE expressions cannot be specified

(SQLSTATE 428F9) in the following places:

– Join condition of a full outer join

– DEFAULT value for a column in a CREATE or ALTER TABLE statement

– Generated column definition in a CREATE OR ALTER TABLE statement

– Summary table definition in a CREATE TABLE or ALTER TABLE statement

– Condition of a CHECK constraint

– CREATE TRIGGER statement (a NEXT VALUE expression may be specified,

but a PREVIOUS VALUE expression cannot)

– CREATE VIEW statement

– CREATE METHOD statement

– CREATE FUNCTION statement

– An argument list of an XMLQUERY, XMLEXISTS, or XMLTABLE expression
v In addition, a NEXT VALUE expression cannot be specified (SQLSTATE 428F9)

in the following places:

– CASE expression

– Parameter list of an aggregate function

– Subquery in a context other than those explicitly allowed above

– SELECT statement for which the outer SELECT contains a DISTINCT

operator

– Join condition of a join

– SELECT statement for which the outer SELECT contains a GROUP BY clause

– SELECT statement for which the outer SELECT is combined with another

SELECT statement using the UNION, INTERSECT, or EXCEPT set operator

– Nested table expression

– Parameter list of a table function

– WHERE clause of the outer-most SELECT statement, or a DELETE or

UPDATE statement

– ORDER BY clause of the outer-most SELECT statement

Chapter 15. Sequences 331

– select-clause of the fullselect of an expression, in the SET clause of an

UPDATE statement

– IF, WHILE, DO ... UNTIL, or CASE statement in an SQL routine
v When a value is generated for a sequence, that value is consumed, and the next

time that a value is requested, a new value will be generated. This is true even

when the statement containing the NEXT VALUE expression fails or is rolled

back.

If an INSERT statement includes a NEXT VALUE expression in the VALUES list

for the column, and if an error occurs at some point during the execution of the

INSERT (it could be a problem in generating the next sequence value, or a

problem with the value for another column), then an insertion failure occurs

(SQLSTATE 23505), and the value generated for the sequence is considered to be

consumed. In some cases, reissuing the same INSERT statement might lead to

success.

For example, consider an error that is the result of the existence of a unique

index for the column for which NEXT VALUE was used and the sequence value

generated already exists in the index. It is possible that the next value generated

for the sequence is a value that does not exist in the index and so the

subsequent INSERT would succeed.

v If in generating a value for a sequence, the maximum value for the sequence is

exceeded (or the minimum value for a descending sequence) and cycles are not

permitted, then an error occurs (SQLSTATE 23522). In this case, the user could

ALTER the sequence to extend the range of acceptable values, or enable cycles

for the sequence, or DROP and CREATE a new sequence with a different data

type that has a larger range of values.

For example, a sequence may have been defined with a data type of SMALLINT,

and eventually the sequence runs out of assignable values. DROP and re-create

the sequence with the new definition to redefine the sequence as INTEGER.

v A reference to a NEXT VALUE expression in the select statement of a cursor

refers to a value that is generated for a row of the result table. A sequence value

is generated for a NEXT VALUE expression for each row that is fetched from the

database. If blocking is done at the client, the values may have been generated

at the server prior to the processing of the FETCH statement. This can occur

when there is blocking of the rows of the result table. If the client application

does not explicitly FETCH all the rows that the database has materialized, then

the application will not see the results of all the generated sequence values (for

the materialized rows that were not returned).

v A reference to a PREVIOUS VALUE expression in the select statement of a

cursor refers to a value that was generated for the specified sequence prior to

the opening of the cursor. However, closing the cursor can affect the values

returned by PREVIOUS VALUE for the specified sequence in subsequent

statements, or even for the same statement in the event that the cursor is

reopened. This would be the case when the select statement of the cursor

included a reference to NEXT VALUE for the same sequence name.

v Compatibilities

– For compatibility with previous versions of DB2:

- NEXTVAL and PREVVAL can be specified in place of NEXT VALUE and

PREVIOUS VALUE
– For compatibility with IBM IDS:

- sequence-name.NEXTVAL can be specified in place of NEXT VALUE FOR

sequence-name

332 Data Servers, Databases, and Database Objects Guide

- sequence-name.CURRVAL can be specified in place of PREVIOUS VALUE

FOR sequence-name

Examples

Assume that there is a table called ″order″, and that a sequence called ″order_seq″

is created as follows:

 CREATE SEQUENCE order_seq

 START WITH 1

 INCREMENT BY 1

 NO MAXVALUE

 NO CYCLE

 CACHE 24

Following are some examples of how to generate an ″order_seq″ sequence number

with a NEXT VALUE expression:

 INSERT INTO order(orderno, custno)

 VALUES (NEXT VALUE FOR order_seq, 123456);

or

 UPDATE order

 SET orderno = NEXT VALUE FOR order_seq

 WHERE custno = 123456;

or

 VALUES NEXT VALUE FOR order_seq INTO :hv_seq;

Chapter 15. Sequences 333

334 Data Servers, Databases, and Database Objects Guide

Chapter 16. Views

A view is an efficient way of representing data without the need to maintain it. A

view is not an actual table and requires no permanent storage. A “virtual table” is

created and used.

A view provides a different way of looking at the data in one or more tables; it is a

named specification of a result table. The specification is a SELECT statement that

is run whenever the view is referenced in an SQL statement. A view has columns

and rows just like a table. All views can be used just like tables for data retrieval.

Whether a view can be used in an insert, update, or delete operation depends on

its definition.

A view can include all or some of the columns or rows contained in the tables on

which it is based. For example, you can join a department table and an employee

table in a view, so that you can list all employees in a particular department.

Figure 28 shows the relationship between tables and views.

 You can use views to control access to sensitive data, because views allow multiple

users to see different presentations of the same data. For example, several users

might be accessing a table of data about employees. A manager sees data about his

or her employees but not employees in another department. A recruitment officer

sees the hire dates of all employees, but not their salaries; a financial officer sees

the salaries, but not the hire dates. Each of these users works with a view derived

from the table. Each view appears to be a table and has its own name.

When the column of a view is directly derived from the column of a base table,

that view column inherits any constraints that apply to the table column. For

Column

Row

Database

Table B

19

81

87

93

47

17

85

ABS

QRS

FCP

MLI

CJP

DJS

KMP

Table A

View AB

CREATE VIEW_AB
AS SELECT. . .

FROM TABLE_A, TABLE_B
WHERE. . .

View A

CREATE VIEW_A
AS SELECT. . .

FROM TABLE_A
WHERE. . .

Figure 28. Relationship between tables and views

© Copyright IBM Corp. 1993, 2009 335

example, if a view includes a foreign key of its table, insert and update operations

using that view are subject to the same referential constraints as is the table. Also,

if the table of a view is a parent table, delete and update operations using that

view are subject to the same rules as are delete and update operations on the table.

A view can derive the data type of each column from the result table, or base the

types on the attributes of a user-defined structured type. This is called a typed view.

Similar to a typed table, a typed view can be part of a view hierarchy. A subview

inherits columns from its superview. The term subview applies to a typed view and

to all typed views that are below it in the view hierarchy. A proper subview of a

view V is a view below V in the typed view hierarchy.

A view can become inoperative (for example, if the table is dropped); if this occurs,

the view is no longer available for SQL operations.

Designing views

A view provides a different way of looking at the data in one or more tables; it is a

named specification of a result table.

The specification is a SELECT statement that is run whenever the view is

referenced in an SQL statement. A view has columns and rows just like a base

table. All views can be used just like tables for data retrieval. Whether a view can

be used in an insert, update, or delete operation depends on its definition.

Views are classified by the operations they allow. They can be:

v Deletable

v Updatable

v Insertable

v Read-only

The view type is established according to its update capabilities. The classification

indicates the kind of SQL operation that is allowed against the view.

Referential and check constraints are treated independently. They do not affect the

view classification.

For example, you might not be able to insert a row into a table due to a referential

constraint. If you create a view using that table, you also cannot insert that row

using the view. However, if the view satisfies all the rules for an insertable view, it

will still be considered an insertable view. This is because the insert restriction is

on the table, not on the view definition.

For more information, see the CREATE VIEW statement.

System catalog views

The database manager maintains a set of tables and views that contain information

about the data under its control. These tables and views are collectively known as

the system catalog.

The system catalog contains information about the logical and physical structure of

database objects such as tables, views, indexes, packages, and functions. It also

contains statistical information. The database manager ensures that the descriptions

in the system catalog are always accurate.

336 Data Servers, Databases, and Database Objects Guide

The system catalog views are like any other database view. SQL statements can be

used to query the data in the system catalog views. A set of updatable system

catalog views can be used to modify certain values in the system catalog.

Views with the check option

A view that is defined WITH CHECK OPTION enforces any rows that are

modified or inserted against the SELECT statement for that view. Views with the

check option are also called symmetric views. For example, a symmetric view that

only returns only employees in department 10 will not allow insertion of

employees in other departments. This option, therefore, ensures the integrity of the

data being modified in the database, returning an error if the condition is violated

during an INSERT or UPDATE operation.

If your application cannot define the desired rules as table check constraints, or the

rules do not apply to all uses of the data, there is another alternative to placing the

rules in the application logic. You can consider creating a view of the table with

the conditions on the data as part of the WHERE clause and the WITH CHECK

OPTION clause specified. This view definition restricts the retrieval of data to the

set that is valid for your application. Additionally, if you can update the view, the

WITH CHECK OPTION clause restricts updates, inserts, and deletes to the rows

applicable to your application.

The WITH CHECK OPTION must not be specified for the following views:

v Views defined with the read-only option (a read-only view)

v View that reference the NODENUMBER or PARTITION function, a

nondeterministic function (for example, RAND), or a function with external

action

v Typed views

Example 1

Following is an example of a view definition using the WITH CHECK OPTION.

This option is required to ensure that the condition is always checked. The view

ensures that the DEPT is always 10. This will restrict the input values for the DEPT

column. When a view is used to insert a new value, the WITH CHECK OPTION is

always enforced:

 CREATE VIEW EMP_VIEW2

 (EMPNO, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)

 AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE

 WHERE DEPT=10

 WITH CHECK OPTION;

If this view is used in an INSERT statement, the row will be rejected if the

DEPTNO column is not the value 10. It is important to remember that there is no

data validation during modification if the WITH CHECK OPTION is not specified.

If this view is used in a SELECT statement, the conditional (WHERE clause) would

be invoked and the resulting table would only contain the matching rows of data.

In other words, the WITH CHECK OPTION does not affect the result of a SELECT

statement.

Chapter 16. Views 337

Example 2

With a view, you can make a subset of table data available to an application

program and validate data that is to be inserted or updated. A view can have

column names that are different from the names of corresponding columns in the

original tables. For example:

 CREATE VIEW <name> (<column>, <column>, <column>)

 SELECT <column_name> FROM <table_name>

 WITH CHECK OPTION

Example 3

The use of views provides flexibility in the way your programs and end-user

queries can look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists all

employees in Department A00 with their employee and telephone numbers:

 CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)

 AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

 WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The name

EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The view name

appears as a table name although it contains no data. The view will have three

columns called DA00NAME, DA00NUM, and PHONENO, which correspond to

the columns LASTNAME, EMPNO, and PHONENO from the EMPLOYEE table.

The column names listed apply one-to-one to the select list of the SELECT

statement. If column names are not specified, the view uses the same names as the

columns of the result table of the SELECT statement.

The second line is a SELECT statement that describes which values are to be

selected from the database. It might include the clauses ALL, DISTINCT, FROM,

WHERE, GROUP BY, and HAVING. The name or names of the data objects from

which to select columns for the view must follow the FROM clause.

Example 4

The WITH CHECK OPTION clause indicates that any updated or inserted row to

the view must be checked against the view definition, and rejected if it does not

conform. This enhances data integrity but requires additional processing. If this

clause is omitted, inserts and updates are not checked against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table using

the SELECT AS clause:

 CREATE VIEW EMP_VIEW

 SELECT LASTNAME AS DA00NAME,

 EMPNO AS DA00NUM,

 PHONENO

 FROM EMPLOYEE

 WHERE WORKDEPT = ’A00’

 WITH CHECK OPTION

For this example, the EMPLOYEE table might have salary information in it, which

should not be made available to everyone. The employee’s phone number,

however, should be generally accessible. In this case, a view could be created from

the LASTNAME and PHONENO columns only. Access to the view could be

338 Data Servers, Databases, and Database Objects Guide

granted to PUBLIC, while access to the entire EMPLOYEE table could be restricted

to those who have the authorization to see salary information.

Nested view definitions

If a view is based on another view, the number of predicates that must be

evaluated is based on the WITH CHECK OPTION specification.

If a view is defined without WITH CHECK OPTION, the definition of the view is

not used in the data validity checking of any insert or update operations. However,

if the view directly or indirectly depends on another view defined with the WITH

CHECK OPTION, the definition of that super view is used in the checking of any

insert or update operation.

If a view is defined with the WITH CASCADED CHECK OPTION or just the

WITH CHECK OPTION (CASCADED is the default value of the WITH CHECK

OPTION), the definition of the view is used in the checking of any insert or update

operations. In addition, the view inherits the search conditions from any updatable

views on which the view depends. These conditions are inherited even if those

views do not include the WITH CHECK OPTION. Then the inherited conditions

are multiplied together to conform to a constraint that is applied for any insert or

update operations for the view or any views depending on the view.

As an example, if a view V2 is based on a view V1, and the check option for V2 is

defined with the WITH CASCADED CHECK OPTION, the predicates for both

views are evaluated when INSERT and UPDATE statements are performed against

the view V2:

 CREATE VIEW EMP_VIEW2 AS

 SELECT EMPNO, EMPNAME, DEPTNO FROM EMP

 WHERE DEPTNO = 10

 WITH CHECK OPTION;

The following example shows a CREATE VIEW statement using the WITH

CASCADED CHECK OPTION. The view EMP_VIEW3 is created based on a view

EMP_VIEW2, which has been created with the WITH CHECK OPTION. If you

want to insert or update a record to EMP_VIEW3, the record should have the

values DEPTNO=10 and EMPNO=20.

 CREATE VIEW EMP_VIEW3 AS

 SELECT EMPNO, EMPNAME, DEPTNO FROM EMP_VIEW2

 WHERE EMPNO > 20

 WITH CASCADED CHECK OPTION;

Note: The condition DEPTNO=10 is enforced for inserting or updating operations

to EMP_VIEW3 even if EMP_VIEW2 does not include the WITH CHECK OPTION.

The WITH LOCAL CHECK OPTION can also be specified when creating a view. If

a view is defined with the LOCAL CHECK OPTION, the definition of the view is

used in the checking of any insert or update operations. However, the view does

not inherit the search conditions from any updatable views on which it depends.

Deletable views

Depending on how a view is defined, the view can be deletable. A deletable view

is a view against which you can successfully issue a DELETE statement.

There are a few rules that need to be followed for a view to be considered

deletable:

Chapter 16. Views 339

v Each FROM clause of the outer fullselect identifies only one table (with no

OUTER clause), deletable view (with no OUTER clause), deletable nested table

expression, or deletable common table expression.

v The database manager needs to be able to derive the rows to be deleted in the

table using the view definition. Certain operations make this impossible

– A grouping of multiple rows into one using a GROUP BY clause or column

functions result in a loss of the original row and make the view non deletable.

– Similarly when th rows are derived from a VALUES there is no table to delete

from. Again the view is not deletable.
v The outer fullselect doesn’t use the GROUP BY or HAVING clauses.

v The outer fullselect doesn’t include column functions in its select list.

v The outer fullselect doesn’t use set operations (UNION, EXCEPT, or

INTERSECT) with the exception of UNION ALL

v The tables in the operands of a UNION ALL must not be the same table, and

each operand must be deletable.

v The select list of the outer fullselect does not include DISTINCT.

A view must meet all the rules listed above to be considered a deletable view. For

example, the following view is deletable. It follows all the rules for a deletable

view.

 CREATE VIEW deletable_view

 (number, date, start, end)

 AS

 SELECT number, date, start, end

 FROM employee.summary

 WHERE date=’01012007’

Insertable views

Insertable views allow you to insert rows using the view definition. A view is

insertable if an INSTEAD OF trigger for the insert operation has been defined for

the view, or at least one column of the view is updatable (independent of an

INSTEAD OF trigger for update), and the fullselect of the view does not include

UNION ALL. A given row can be inserted into a view (including a UNION ALL)

if, and only if, it fulfills the check constraints of exactly one of the underlying

tables. To insert into a view that includes non-updatable columns, those columns

must be omitted from the column list.

The view shown below is an insertable view. However, in this example, an attempt

to insert the view will fail. This is because there are columns in the table that do

not accept null values. Some of these columns are not present in the view

definition. When you try to insert a value using the view, the database manager

will try to insert a null value into a NOT NULL column. This action is not

permitted.

 CREATE VIEW insertable_view

 (number, name, quantity)

 AS

 SELECT number, name, quantify FROM ace.supplies

Note: The constraints defined on the table are independent of the operations that

can be performed using a view based on that table.

Updatable views

An updatable view is a special case of a deletable view. A deletable view becomes

an updatable view when at least one of its columns is updatable.

340 Data Servers, Databases, and Database Objects Guide

A column of a view is updatable when all of the following rules are true:

v The view is deletable.

v The column resolves to a column of a table (not using a dereference operation)

and the READ ONLY option is not specified.

v All the corresponding columns of the operands of a UNION ALL have exactly

matching data types (including length or precision and scale) and matching

default values if the fullselect of the view includes a UNION ALL.

The following example uses constant values that cannot be updated. However, the

view is a deletable view and at least one of its columns is updatable. Therefore, it

is an updatable view.

 CREATE VIEW updatable_view

 (number, current_date, current_time, temperature)

 AS

 SELECT number, CURRENT DATE, CURRENT TIME, temperature)

 FROM weather.forecast

 WHERE number = 300

Read-only views

A view is read-only if it is not deletable, updatable, or insertable. A view can be

read-only if it is a view that does not comply with at least one of the rules for

deletable views.

The READONLY column in the SYSCAT.VIEWS catalog view indicates a view is

read-only (R).

The example shown below is not a deletable view as it uses the DISTINCT clause

and the SQL statement involves more than one table:

 CREATE VIEW read_only_view

 (name, phone, address)

 AS

 SELECT DISTINCT viewname, viewphone, viewaddress

 FROM employee.history adam, employer.dept sales

 WHERE adam.id = sales.id

Creating views

Views are derived from one or more tables, nicknames, or views, and can be used

interchangeably with tables when retrieving data. When changes are made to the

data shown in a view, the data is changed in the table itself. The table, nickname,

or view on which the view is to be based must already exist before the view can

be created.

A view can be created to limit access to sensitive data, while allowing more

general access to other data.

When inserting into a view where the select list of the view definition directly or

indirectly includes the name of an identity column of a table, the same rules apply

as if the INSERT statement directly referenced the identity column of the table.

In addition to using views as described above, a view can also be used to:

v Alter a table without affecting application programs. This can happen by

creating a view based on an underlying table. Applications that use the

underlying table are not affected by the creation of the new view. New

applications can use the created view for different purposes than those

applications that use the underlying table.

Chapter 16. Views 341

v Sum the values in a column, select the maximum values, or average the values.

v Provide access to information in one or more data sources. You can reference

nicknames within the CREATE VIEW statement and create multi-location/global

views (the view could join information in multiple data sources located on

different systems).

When you create a view that references nicknames using standard CREATE

VIEW syntax, you will see a warning alerting you to the fact that the

authentication ID of view users will be used to access the underlying object or

objects at data sources instead of the view creator authentication ID. Use the

FEDERATED keyword to suppress this warning.

A typed view is based on a predefined structured type. You can create a typed

view using the CREATE VIEW statement.

An alternative to creating a view is to use a nested or common table expression to

reduce catalog lookup and improve performance.

A sample CREATE VIEW statement is shown below. The underlying table,

EMPLOYEE, has columns named SALARY and COMM. For security reasons this

view is created from the ID, NAME, DEPT, JOB, and HIREDATE columns. In

addition, access on the DEPT column is restricted. This definition will only show

the information of employees who belong to the department whose DEPTNO is 10.

 CREATE VIEW EMP_VIEW1

 (EMPID, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)

 AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE

 WHERE DEPT=10;

After the view has been defined, the access privileges can be specified. This

provides data security since a restricted view of the table is accessible. As shown

above, a view can contain a WHERE clause to restrict access to certain rows or can

contain a subset of the columns to restrict access to certain columns of data.

The column names in the view do not have to match the column names of the

base table. The table name has an associated schema as does the view name.

Once the view has been defined, it can be used in statements such as SELECT,

INSERT, UPDATE, and DELETE (with restrictions). The DBA can decide to provide

a group of users with a higher level privilege on the view than the table.

Creating views that use user-defined functions (UDFs)

Once you create a view that uses a UDF, the view will always use this same UDF

as long as the view exists even if you create other UDFs with the same names later.

If you want to pick up a new UDF you need to recreate the view.

The following SQL statement creates a view with a function in its definition:

 CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)

 AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)

 FROM EMPLOYEE

The UDF function PENSION calculates the current pension an employee is eligible

to receive, based on a formula involving their HIREDATE, BIRTHDATE, SALARY,

and BONUS.

342 Data Servers, Databases, and Database Objects Guide

Modifying typed views

Certain properties of a typed view can be changed without requiring the view to

be dropped and recreated. One such property is the adding of a scope to a

reference column of a typed view.

The ALTER VIEW statement modifies an existing typed view definition by altering

a reference type column to add a scope. The DROP statement deletes a typed view.

You can also:

v Modify the contents of a typed view through INSTEAD OF triggers

v Alter a typed view to enable statistics collection

Changes you make to the underlying content of a typed view require that you use

triggers. Other changes to a typed view require that you drop and then re-create

the typed view.

The data type of the column-name in the ALTER VIEW statement must be REF

(type of the typed table name or typed view name).

Other database objects such as tables and indexes are not affected although

packages and cached dynamic statements are marked invalid.

To alter a typed view using the command line, enter:

 ALTER VIEW <view_name> ALTER <column_name>

 ADD SCOPE <typed table or view name>

Recovering inoperative views

An inoperative view is a view that is no longer available for SQL statements.

Views can become inoperative:

v As a result of a revoked privilege on an underlying table

v If a table, alias, or function is dropped.

v If the superview becomes inoperative. (A superview is a typed view upon which

another typed view, a subview, is based.)

v When the views they are dependent on are dropped.

The following steps can help you recover an inoperative view:

1. Determine the SQL statement that was initially used to create the view. You can

obtain this information from the TEXT column of the SYSCAT.VIEW catalog

view.

2. Set the current schema to the content of the QUALIFIER column.

3. Set the function path to the content of the FUNC_PATH column.

4. Re-create the view by using the CREATE VIEW statement with the same view

name and same definition.

5. Use the GRANT statement to re-grant all privileges that were previously

granted on the view. (Note that all privileges granted on the inoperative view

are revoked.)

If you do not want to recover an inoperative view, you can explicitly drop it with

the DROP VIEW statement, or you can create a new view with the same name but

a different definition.

Chapter 16. Views 343

An inoperative view only has entries in the SYSCAT.TABLES and SYSCAT.VIEWS

catalog views; all entries in the SYSCAT.TABDEP, SYSCAT.TABAUTH,

SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views are removed.

Dropping views

Use the DROP VIEW statement to drop views. Any views that are dependent on

the view being dropped will be made inoperative.

To drop a view using the command line, enter:

 DROP VIEW <view_name>

The following example shows how to drop a view named EMP_VIEW:

 DROP VIEW EMP_VIEW

As in the case of a table hierarchy, it is possible to drop an entire view hierarchy in

one statement by naming the root view of the hierarchy, as in the following

example:

 DROP VIEW HIERARCHY VPerson

344 Data Servers, Databases, and Database Objects Guide

Part 4. Reference

© Copyright IBM Corp. 1993, 2009 345

346 Data Servers, Databases, and Database Objects Guide

Chapter 17. Conforming to naming rules

Naming rules

Rules exist for the naming of all objects, users and groups. Some of these rules are

specific to the platform you are working on.

For example, there is a rule regarding the use of upper and lowercase letters in a

name.

v On UNIX platforms, names must be in lowercase.

v On Windows platforms, names can be in upper, lower, and mixed-case.

Unless otherwise specified, all names can include the following characters:

v A through Z. When used in most names, characters A through Z are converted

from lowercase to uppercase.

v 0 through 9.

v ! % () { } . – ^ ~ _ (underscore) @, #, $, and space.

v \ (backslash).

Names cannot begin with a number or with the underscore character.

Do not use SQL reserved words to name tables, views, columns, indexes, or

authorization IDs.

There are other special characters that might work separately depending on your

operating system and where you are working with the DB2 database. However,

while they might work, there is no guarantee that they will work. It is not

recommended that you use these other special characters when naming objects in

your database.

User and group names also need to follow the rules forced on specific operation

systems by the related systems. For example, on Linux and UNIX platforms,

allowed characters for user names and primary group names must be lowercase a

through z, 0 through 9, and _ (underscore) for names not starting with 0 through 9.

Lengths must be less than or equal to the lengths listed in: SQL and XML limits.

You also need to consider object naming rules, naming rules in an NLS

environment, and naming rules in a Unicode environment.

Restrictions on the AUTHID identifier: Version 9.5, and later, of the DB2 database

system allows you to have an 128-byte authorization ID, but when the

authorization ID is interpreted as an operating system user ID or group name, the

operating system naming restrictions apply (for example, a limitation to 8 or 30

character user IDs and group names). Therefore, while you can grant an 128-byte

authorization ID, it is not possible to connect as a user that has that authorization

ID. If you write your own security plugin, you should be able to take full

advantage of the extended sizes for the authorization ID. For example, you can

give your security plugin a 30-byte user ID and it can return an 128-byte

authorization ID during authentication that you are able to connect with.

© Copyright IBM Corp. 1993, 2009 347

DB2 object naming rules

All objects follow the General Naming Rules. In addition, some objects have

additional restrictions shown in the accompanying tables.

 Table 52. Database, database alias and instance naming rules

Objects Guidelines

v Databases

v Database aliases

v Instances

v Database names must be unique within the location in which they

are cataloged. On Linux and UNIX implementations, this location

is a directory path, while on Windows implementations, it is a

logical disk.

v Database alias names must be unique within the system database

directory. When a new database is created, the alias defaults to

the database name. As a result, you cannot create a database

using a name that exists as a database alias, even if there is no

database with that name.

v Database, database alias and instance name lengths must be less

than or equal to 8 bytes

v On Windows, no instance can have the same name as a service

name.

Note: To avoid potential problems, do not use the special characters

@, #, and $ in a database name if you intend to use the database in

a communications environment. Also, because these characters are

not common to all keyboards, do not use them if you plan to use

the database in another language.

 Table 53. Database object naming rules

Objects Guidelines

v Aliases

v Audit policies

v Buffer pools

v Columns

v Event monitors

v Indexes

v Methods

v Nodegroups

v Packages

v Package versions

v Roles

v Schemas

v Stored procedures

v Tables

v Table spaces

v Triggers

v Trusted contexts

v UDFs

v UDTs

v Views

Lengths for these objects must be less than or equal to the lengths

listed in: SQL and XML limits. Object names can also include:

v Valid accented characters (such as ö)

v Multibyte characters, except multibyte spaces (for multibyte

environments)

Package names and package versions can also include periods (.),

hyphens (-), and colons (:).

348 Data Servers, Databases, and Database Objects Guide

Table 54. Federated database object naming rules

Objects Guidelines

v Function

mappings

v Index

specifications

v Nicknames

v Servers

v Type mappings

v User mappings

v Wrappers

Lengths for these objects must be less than or equal to the lengths

listed in: SQL and XML limits. Names for federated database objects

can also include:

v Valid accented letters (such as ö)

v Multibyte characters, except multibyte spaces (for multibyte

environments)

Delimited identifiers and object names

Keywords can be used. If a keyword is used in a context where it could also be

interpreted as an SQL keyword, it must be specified as a delimited identifier.

Using delimited identifiers, it is possible to create an object that violates these

naming rules; however, subsequent use of the object could result in errors. For

example, if you create a column with a + or - sign included in the name and you

subsequently use that column in an index, you will experience problems when you

attempt to reorganize the table.

Additional schema names information

v User-defined types (UDTs) cannot have schema names longer than the lengths

listed in: SQL and XML limits.

v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT.

v To avoid potential migration problems in the future, do not use schema names

that begin with SYS. The database manager will not allow you to create triggers,

user-defined types or user-defined functions using a schema name beginning

with SYS.

v It is recommended that you not use SESSION as a schema name. Declared

temporary tables must be qualified by SESSION. It is therefore possible to have

an application declare a temporary table with a name identical to that of a

persistent table, in which case the application logic can become overly

complicated. Avoid the use of the schema SESSION, except when dealing with

declared temporary tables.

Delimited identifiers and object names

Keywords can be used. If a keyword is used in a context where it could also be

interpreted as an SQL keyword, it must be specified as a delimited identifier.

Using delimited identifiers, it is possible to create an object that violates these

naming rules; however, subsequent use of the object could result in errors. For

example, if you create a column with a + or - sign included in the name and you

subsequently use that column in an index, you will experience problems when you

attempt to reorganize the table.

Chapter 17. Conforming to naming rules 349

User, user ID and group naming rules

User, user ID and group names must follow naming guidelines.

 Table 55. User, user ID and group naming rules

Objects Guidelines

v Group names

v User names

v User IDs

v Group names must be less than or equal

to the group name length listed in: SQL

and XML limits.

v User IDs on Linux and UNIX operating

systems can contain up to 8 characters.

v User names on Windows can contain up

to 30 characters.

v When not using Client authentication,

non-Windows 32-bit clients connecting to

Windows with user names longer than the

user name length listed in listed in SQL

and XML limits are supported when the

user name and password are specified

explicitly.

v Names and IDs cannot:

– Be USERS, ADMINS, GUESTS,

PUBLIC, LOCAL or any SQL reserved

word

– Begin with IBM, SQL or SYS.

Note:

1. Some operating systems allow case sensitive user IDs and passwords. You

should check your operating system documentation to see if this is the case.

2. The authorization ID returned from a successful CONNECT or ATTACH is

truncated to the authorization name length listed in SQL and XML limits. An

ellipsis (...) is appended to the authorization ID and the SQLWARN fields

contain warnings to indicate truncation.

3. Trailing blanks from user IDs and passwords are removed.

Naming rules in an NLS environment

The basic character set that can be used in database names consists of the

single-byte uppercase and lowercase Latin letters (A...Z, a...z), the Arabic numerals

(0...9) and the underscore character (_).

This list is augmented with three special characters (#, @, and $) to provide

compatibility with host database products. Use special characters #, @, and $ with

care in an NLS environment because they are not included in the NLS host

(EBCDIC) invariant character set. Characters from the extended character set can

also be used, depending on the code page that is being used. If you are using the

database in a multiple code page environment, you must ensure that all code

pages support any elements from the extended character set you plan to use.

When naming database objects (such as tables and views), program labels, host

variables, cursors, and elements from the extended character set (for example,

letters with diacritical marks) can also be used. Precisely which characters are

available depends on the code page in use.

350 Data Servers, Databases, and Database Objects Guide

Extended Character Set Definition for DBCS Identifiers: In DBCS environments,

the extended character set consists of all the characters in the basic character set,

plus the following:

v All double-byte characters in each DBCS code page, except the double-byte

space, are valid letters.

v The double-byte space is a special character.

v The single-byte characters available in each mixed code page are assigned to

various categories as follows:

 Category Valid Code Points within each Mixed Code Page

Digits x30-39

Letters x23-24, x40-5A, x61-7A, xA6-DF (A6-DF for code pages 932 and 942 only)

Special

Characters

All other valid single-byte character code points

Naming rules in a Unicode environment

In a Unicode database, all identifiers are in multibyte UTF-8. Therefore, it is

possible to use any UCS-2 character in identifiers where the use of a character in

the extended character set (for example, an accented character, or a multibyte

character) is allowed by the DB2 database system.

Clients can enter any character that is supported by their environment, and all the

characters in the identifiers will be converted to UTF-8 by the database manager.

Two points must be taken into account when specifying national language

characters in identifiers for a Unicode database:

v Each non-ASCII character requires two to four bytes. Therefore, an n-byte

identifier can only hold somewhere between n/4 and n characters, depending on

the ratio of ASCII to non-ASCII characters. If you have only one or two

non-ASCII (for example, accented) characters, the limit is closer to n characters,

while for an identifier that is completely non-ASCII (for example, in Japanese),

only n/4 to n/3 characters can be used.

v If identifiers are to be entered from different client environments, they should be

defined using the common subset of characters available to those clients. For

example, if a Unicode database is to be accessed from Latin-1, Arabic, and

Japanese environments, all identifiers should realistically be limited to ASCII.

Chapter 17. Conforming to naming rules 351

352 Data Servers, Databases, and Database Objects Guide

Chapter 18. SQL and XML limits

The following tables describe certain SQL and XML limits. Adhering to the most

restrictive case can help you to design application programs that are easily

portable.

Table 56 lists limits in bytes. These limits are enforced after conversion from the

application code page to the database code page when creating identifiers. The

limits are also enforced after conversion from the database code page to the

application code page when retrieving identifiers from the database. If, during

either of these processes, the identifier length limit is exceeded, truncation occurs

or an error is returned.

Character limits vary depending on the code page of the database and the code

page of the application. For example, because the width of a UTF-8 character can

range from 1 to 4 bytes, the character limit for an identifier in a Unicode table

whose limit is 128 bytes will range from 32 to 128 characters, depending on which

characters are used. If an attempt is made to create an identifier whose name is

longer than the limit for this table after conversion to the database code page, an

error is returned.

Applications that store identifier names must be able to handle the potentially

increased size of identifiers after code page conversion has occurred. When

identifiers are retrieved from the catalog, they are converted to the application

code page. Conversion from the database code page to the application code page

can result in an identifier becoming longer than the byte limit for the table. If a

host variable declared by the application cannot store the entire identifier after

code page conversion, it is truncated. If that is unacceptable, the host variable can

be increased in size to be able to accept the entire identifier name.

The same rules apply to DB2 utilities retrieving data and converting it to a

user-specified code page. If a DB2 utility, such as export, is retrieving the data and

forcing conversion to a user-specified code page (using the export CODEPAGE

modifier or the DB2CODEPAGE registry variable), and the identifier expands

beyond the limit that is documented in this table because of code page conversion,

an error might be returned or the identifier might be truncated.

 Table 56. Identifier Length Limits

Description Maximum in Bytes

Alias name 128

Attribute name 128

Audit policy name 128

Authorization name (can only be single-byte characters) 128

Buffer pool name 18

Column name2 128

Constraint name 128

Correlation name 128

Cursor name 128

Data partition name 128

© Copyright IBM Corp. 1993, 2009 353

Table 56. Identifier Length Limits (continued)

Description Maximum in Bytes

Data source column name 255

Data source index name 128

Data source name 128

Data source table name (remote-table-name) 128

Database partition group name 128

Database partition name 128

Event monitor name 128

External program name 128

Function mapping name 128

Group name 128

Host identifier1 255

Identifier for a data source user (remote-authorization-name) 128

Identifier in an SQL procedure (condition name, for loop

identifier, label, result set locator, statement name, variable

name)

128

Index name 128

Index extension name 18

Index specification name 128

Label name 128

Namespace uniform resource identifier (URI) 1000

Nickname 128

Package name 128

Package version ID 64

Parameter name 128

Password to access a data source 32

Procedure name 128

Role name 128

Savepoint name 128

Schema name2 128

Security label component name 128

Security label name 128

Security policy name 128

Sequence name 128

Server (database alias) name 8

Specific name 128

SQL condition name 128

SQL variable name 128

Statement name 128

Table name 128

Table space name 18

354 Data Servers, Databases, and Database Objects Guide

Table 56. Identifier Length Limits (continued)

Description Maximum in Bytes

Transform group name 18

Trigger name 128

Trusted context name 128

Type mapping name 18

User-defined function name 128

User-defined method name 128

User-defined type name2 128

View name 128

Wrapper name 128

XML element name, attribute name, or prefix name 1000

XML schema location uniform resource identifier (URI) 1000

Note:

1. Individual host language compilers might have a more restrictive limit on variable

names.

2. The SQLDA structure is limited to storing 30-byte column names, 18-byte user-defined

type names, and 8-byte schema names for user-defined types. Because the SQLDA is

used in the DESCRIBE statement, embedded SQL applications that use the DESCRIBE

statement to retrieve column or user-defined type name information must conform to

these limits.

 Table 57. Numeric Limits

Description Limit

Smallest SMALLINT value -32 768

Largest SMALLINT value +32 767

Smallest INTEGER value -2 147 483 648

Largest INTEGER value +2 147 483 647

Smallest BIGINT value -9 223 372 036 854 775 808

Largest BIGINT value +9 223 372 036 854 775 807

Largest decimal precision 31

Maximum exponent (Emax) for

REAL values

38

Smallest REAL value -3.402E+38

Largest REAL value +3.402E+38

Minimum exponent (Emin) for

REAL values

-37

Smallest positive REAL value +1.175E-37

Largest negative REAL value -1.175E-37

Maximum exponent (Emax) for

DOUBLE values

308

Smallest DOUBLE value -1.79769E+308

Largest DOUBLE value +1.79769E+308

Minimum exponent (Emin) for

DOUBLE values

-307

Chapter 18. SQL and XML limits 355

Table 57. Numeric Limits (continued)

Description Limit

Smallest positive DOUBLE

value

+2.225E-307

Largest negative DOUBLE

value

-2.225E-307

Maximum exponent (Emax) for

DECFLOAT(16) values

384

Smallest DECFLOAT(16)

value1

-9.999999999999999E+384

Largest DECFLOAT(16) value 9.999999999999999E+384

Minimum exponent (Emin) for

DECFLOAT(16) values

-383

Smallest positive

DECFLOAT(16) value

1.000000000000000E-383

Largest negative

DECFLOAT(16) value

-1.000000000000000E-383

Maximum exponent (Emax) for

DECFLOAT(34) values

6144

Smallest DECFLOAT(34)

value1

-9.999999999999999999999999999999999E+6144

Largest DECFLOAT(34) value 9.999999999999999999999999999999999E+6144

Minimum exponent (Emin) for

DECFLOAT(34) values

-6143

Smallest positive

DECFLOAT(34) value

1.000000000000000000000000000000000E-6143

Largest negative

DECFLOAT(34) value

-1.000000000000000000000000000000000E-6143

Note:

1. These are the limits of normal decimal floating-point numbers. Valid decimal

floating-point values include the special values NAN, -NAN, SNAN, -SNAN, INFINITY

and -INFINITY. In addition, valid values include subnormal numbers.

Subnormal numbers are non-zero numbers whose adjusted exponents are less than Emin.

For a subnormal number, the minimum value of the exponent is Emin

- (precision-1),

called Etiny, where precision is the working precision (16 or 34). That is, subnormal

numbers extend the range of numbers close to zero by 15 or 33 orders of magnitude for

DECFLOAT(16) or DECFLOAT(34), respectively. Subnormal numbers are different from

normal numbers because the maximum number of digits for a subnormal number is

less than the working precision (16 or 34). Decimal floating-point cannot represent the

subnormal numbers with the same accuracy as it can represent normal numbers. The

smallest positive subnormal number for DECFLOAT(34) is 1x10-6176, which contains only

one digit, whereas the smallest positive normal number for DECFLOAT(34) is

1.000000000000000000000000000000000x10-6143, which contains 34 digits. The smallest

positive subnormal number for DECFLOAT(16) is 1x10-398.

 Table 58. String Limits

Description Limit

Maximum length of CHAR (in bytes) 254

Maximum length of VARCHAR (in bytes) 32 672

Maximum length of LONG VARCHAR (in bytes)1 32 700

356 Data Servers, Databases, and Database Objects Guide

Table 58. String Limits (continued)

Description Limit

Maximum length of CLOB (in bytes) 2 147 483 647

Maximum length of serialized XML (in bytes) 2 147 483 647

Maximum length of GRAPHIC (in double-byte characters) 127

Maximum length of VARGRAPHIC (in double-byte

characters)

16 336

Maximum length of LONG VARGRAPHIC (in double-byte

characters)1

16 350

Maximum length of DBCLOB (in double-byte characters) 1 073 741 823

Maximum length of BLOB (in bytes) 2 147 483 647

Maximum length of character constant 32 672

Maximum length of graphic constant 16 336

Maximum length of concatenated character string 2 147 483 647

Maximum length of concatenated graphic string 1 073 741 823

Maximum length of concatenated binary string 2 147 483 647

Maximum number of hexadecimal constant digits 32 672

Largest instance of a structured type column object at run

time (in gigabytes)

1

Maximum size of a catalog comment (in bytes) 254

Note:

1. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated, not

recommended, and might be removed in a future release.

 Table 59. XML Limits

Description Limit

Maximum depth of an XML document (in levels) 125

Maximum size of an XML schema document (in bytes) 31 457 280

 Table 60. Datetime Limits

Description Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-00.00.00.000000

Largest TIMESTAMP value 9999-12-31-24.00.00.000000

 Table 61. Database Manager Limits

Description Limit

Applications

Maximum number of host variable declarations in a

precompiled program3

storage

Maximum length of a host variable value (in bytes) 2 147 483 647

Chapter 18. SQL and XML limits 357

Table 61. Database Manager Limits (continued)

Description Limit

Maximum number of declared cursors in a program storage

Maximum number of rows changed in a unit of work storage

Maximum number of cursors opened at one time storage

Maximum number of connections per process within a DB2

client

512

Maximum number of simultaneously opened LOB locators

in a transaction

4 194 304

Maximum size of an SQLDA (in bytes) storage

Maximum number of prepared statements storage

Buffer Pools

Maximum NPAGES in a buffer pool for 32-bit releases 1 048 576

Maximum NPAGES in a buffer pool for 64-bit releases 2 147 483 647

Maximum total size of all buffer pool slots (4K) 2 147 483 646

Concurrency

Maximum number of concurrent users of a server4 64 000

Maximum number of concurrent users per instance 64 000

Maximum number of concurrent applications per database 60 000

Maximum number of databases per instance concurrently

in use

256

Constraints

Maximum number of constraints on a table storage

Maximum number of columns in a UNIQUE constraint

(supported through a UNIQUE index)

64

Maximum combined length of columns in a UNIQUE

constraint (supported through a UNIQUE index, in bytes)9

8192

Maximum number of referencing columns in a foreign key 64

Maximum combined length of referencing columns in a

foreign key (in bytes)9

8192

Maximum length of a check constraint specification (in

bytes)

65 535

Databases

Maximum database partition number 999

Indexes

Maximum number of indexes on a table 32 767 or storage

Maximum number of columns in an index key 64

Maximum length of an index key including all overhead7 9 indexpagesize/4

Maximum length of a variable index key part (in bytes)8 1022 or storage

Maximum size of an index per database partition in an

SMS table space (in gigabytes)7

16 384

Maximum size of an index per database partition in a

regular DMS table space (in gigabytes)7

512

Maximum size of an index per database partition in a large

DMS table space (in gigabytes)7

16 384

358 Data Servers, Databases, and Database Objects Guide

Table 61. Database Manager Limits (continued)

Description Limit

Maximum size of an index over XML data per database

partition (in terabytes)

2

Maximum length of a variable index key part for an index

over XML data (in bytes)7

pagesize/4 - 207

Log records

Maximum Log Sequence Number 281 474 976 710 655

Monitoring

Maximum number of simultaneously active event monitors 32

Routines

Maximum number of parameters in a procedure 32 767

Maximum number of parameters in a user-defined function 90

Maximum number of nested levels for routines 64

Maximum number of schemas in the SQL path 64

Maximum length of the SQL path (in bytes) 2048

Security

Maximum number of elements in a security label

component of type set or tree

64

Maximum number of elements in a security label

component of type array

65 535

Maximum number of security label components in a

security policy

16

SQL

Maximum total length of an SQL statement (in bytes) 2 097 152

Maximum number of tables referenced in an SQL statement

or a view

storage

Maximum number of host variable references in an SQL

statement

32 767

Maximum number of constants in a statement storage

Maximum number of elements in a select list7 1012

Maximum number of predicates in a WHERE or HAVING

clause

storage

Maximum number of columns in a GROUP BY clause7 1012

Maximum total length of columns in a GROUP BY clause

(in bytes)7

32 677

Maximum number of columns in an ORDER BY clause7 1012

Maximum total length of columns in an ORDER BY clause

(in bytes)7

32 677

Maximum level of subquery nesting storage

Maximum number of subqueries in a single statement storage

Maximum number of values in an insert operation7 1012

Maximum number of SET clauses in a single update

operation7

1012

Tables and Views

Chapter 18. SQL and XML limits 359

Table 61. Database Manager Limits (continued)

Description Limit

Maximum number of columns in a table

7 1012

Maximum number of columns in a view1 5000

Maximum number of columns in a data source table or

view that is referenced by a nickname

5000

Maximum number of columns in a distribution key5 500

Maximum length of a row including all overhead2 7 32 677

Maximum number of rows in a non-partitioned table, per

database partition

128 x 1010

Maximum number of rows in a data partition, per database

partition

128 x 1010

Maximum size of a table per database partition in a regular

table space (in gigabytes)3 7

512

Maximum size of a table per database partition in a large

DMS table space (in gigabytes)7

16 384

Maximum number of data partitions for a single table 32 767

Maximum number of table partitioning columns 16

Table Spaces

Maximum size of a LOB object (in terabytes) 4

Maximum size of a LF object (in terabytes) 2

Maximum number of table spaces in a database 32 768

Maximum number of tables in an SMS table space 65 534

Maximum size of a regular DMS table space (in gigabytes)

3

7

512

Maximum size of a large DMS table space (in terabytes)

3 7 16

Maximum size of a temporary DMS table space (in

terabytes)

37

16

Maximum number of table objects in a DMS table space6 51 000

Maximum number of storage paths in an automatic storage

database

128

Maximum length of a storage path that is associated with

an automatic storage database (in bytes)

175

Triggers

Maximum run-time depth of cascading triggers 16

User-defined Types

Maximum number of attributes in a structured type 4082

360 Data Servers, Databases, and Database Objects Guide

Table 61. Database Manager Limits (continued)

Description Limit

Note:

1. This maximum can be achieved using a join in the CREATE VIEW statement. Selecting

from such a view is subject to the limit of most elements in a select list.

2. The actual data for BLOB, CLOB, LONG VARCHAR, DBCLOB, and LONG

VARGRAPHIC columns is not included in this count. However, information about the

location of that data does take up some space in the row.

3. The numbers shown are architectural limits and approximations. The practical limits

may be less.

4. The actual value is controlled by the max_connections and max_coordagents database

manager configuration parameters.

5. This is an architectural limit. The limit on the most columns in an index key should be

used as the practical limit.

6. Table objects include data, indexes, LONG VARCHAR or VARGRAPHIC columns, and

LOB columns. Table objects that are in the same table space as the table data do not

count extra toward the limit. However, each table object that is in a different table

space than the table data does contribute one toward the limit for each table object type

per table in the table space in which the table object resides.

7. For page size-specific values, see Table 62.

8. This is limited only by the longest index key, including all overhead (in bytes). As the

number of index key parts increases, the maximum length of each key part decreases.

9. The maximum can be less, depending on index options.

 Table 62. Database Manager Page Size-specific Limits

Description

4K page size

limit

8K page size

limit

16K page size

limit

32K page size

limit

Maximum number of

columns in a table

500 1012 1012 1012

Maximum length of a row

including all overhead

4005 8101 16 293 32 677

Maximum size of a table

per database partition in a

regular table space (in

gigabytes)

64 128 256 512

Maximum size of a table

per database partition in a

large DMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum length of an

index key including all

overhead (in bytes)

1024 2048 4096 8192

Maximum size of an index

per database partition in an

SMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum size of an index

per database partition in a

regular DMS table space (in

gigabytes)

64 128 256 512

Chapter 18. SQL and XML limits 361

Table 62. Database Manager Page Size-specific Limits (continued)

Description

4K page size

limit

8K page size

limit

16K page size

limit

32K page size

limit

Maximum size of an index

per database partition in a

large DMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum size of an index

over XML data per database

partition (in terabytes)

2 2 2 2

Maximum size of a regular

DMS table space (in

gigabytes)

64 128 256 512

Maximum size of a large

DMS table space (in

gigabytes)

2048 4096 8192 16 384

Maximum size of a

temporary DMS table space

(in terabytes)

2 4 8 16

Maximum number of

elements in a select list

500 1012 1012 1012

Maximum number of

columns in a GROUP BY

clause

500 1012 1012 1012

Maximum total length of

columns in a GROUP BY

clause (in bytes)

4005 8101 16 293 32 677

Maximum number of

columns in an ORDER BY

clause

500 1012 1012 1012

Maximum total length of

columns in an ORDER BY

clause (in bytes)

4005 8101 16 293 32 677

Maximum number of values

in an insert operation

500 1012 1012 1012

Maximum number of SET

clauses in a single update

operation

500 1012 1012 1012

362 Data Servers, Databases, and Database Objects Guide

Chapter 19. Registry and environment variables

Environment variables and the profile registry

Environment and registry variables control your database environment.

You can use the Configuration Assistant (db2ca) to configure registry variables and

configuration parameters.

Prior to the introduction of the DB2 database profile registry, changing your

environment variables on Windows workstations (for example) required you to

change an environment variable and restart. Now, your environment is controlled,

with a few exceptions, by registry variables stored in the DB2 profile registries.

Users on UNIX operating systems with system administration (SYSADM) authority

for a given instance can update registry values for that instance. On Windows,

updating profile registry variables requires local Administrator authority or

SYSADM authority according to the following conditions:

v If extended security is enabled, SYSADM users must belong to the DB2ADMNS

group.

v If extended security is not enabled, SYSADM users can make updates provided

that the appropriate permissions have been granted to them in the Windows

registry.

Use the db2set command to update registry variables without restarting; this

information is stored immediately in the profile registries. However, changes do

not affect the currently running DB2 applications or users. The DB2 registry

applies the updated information to DB2 server instances and DB2 applications

started after the changes are made.

Note: There are DB2 environment variables DB2INSTANCE, and DB2NODE,

which might not be stored in the DB2 profile registries. On some operating systems

the set command must be used in order to update these environment variables.

These changes are in effect until the next time the system is restarted. On Linux

and UNIX platforms, the export command might be used instead of the set

command.

Using the profile registry allows for centralized control of the environment

variables. Different levels of support are now provided through the different

profiles. Remote administration of the environment variables is also available when

using the DB2 Administration Server.

There are four profile registries:

v The DB2 Instance-Level Profile Registry. The majority of the DB2 environment

variables are placed within this registry. The environment variable settings for a

particular instance are kept in this registry. Values defined in this level override

their settings in the global level.

v The DB2 Global-Level Profile Registry. If an environment variable is not set for a

particular instance, this registry is used. This registry is visible to all instances

pertaining to a particular copy of DB2 ESE, one global-level profile exists in the

installation path.

© Copyright IBM Corp. 1993, 2009 363

v The DB2 Instance Node-Level Profile Registry. This registry level contains

variable settings that are specific to a database partition in a partitioned database

environment. Values defined in this level override their settings at the instance

and global levels.

v The DB2 Instance Profile Registry. This registry contains a list of all instance

names associated with the current copy. Each installation has its own list. You

can see the complete list of all the instances available on the system by running

db2ilist.

DB2 configures the operating environment by checking for registry values and

environment variables and resolving them in the following order:

1. Environment variables set with the set command. (Or the export command on

UNIX platforms.)

2. Registry values set with the instance node-level profile (using the db2set -i

<instance name> <nodenum> command).

3. Registry values set with the instance-level profile (using the db2set -i

command).

4. Registry values set with the global-level profile (using the db2set -g command).

Instance-level profile registry

There are a couple of UNIX and Windows differences when working with a

partitioned database environment. These differences are shown in the following

example.

Assume that there is a partitioned database environment with three physical

database partitions that are identified as “red”, “white”, and “blue”. On UNIX

platforms, if the instance owner runs the following from any of the database

partitions:

 db2set -i FOO=BAR

or

 db2set FOO=BAR (’-i’ is implied)

the value of FOO will be visible to all nodes of the current instance (that is, “red”,

“white”, and “blue”).

On UNIX platforms, the instance level profile registry is stored in a text file inside

the sqllib directory. In partitioned database environments, the sqllib directory is

located on the filesystem shared by all physical database partitions.

On Windows platforms, if the user performs the same command from “red”, the

value of FOO will only be visible on “red” of the current instance. The DB2

database manager stores the instance level profile registry inside the Windows

registry. There is no sharing across physical database partitions. To set the registry

variables on all the physical computers, use the “rah” command as follows:

 rah db2set -i FOO=BAR

rah will remotely run the db2set command on “red”, “white”, and “blue”.

It is possible to use DB2REMOTEPREG so that the registry variables on

non-instance-owning computers are configured to refer to those on the instance

364 Data Servers, Databases, and Database Objects Guide

owning computer. This effectively creates an environment where the registry

variables on the instance-owning computer are shared amongst all computers in

the instance.

Using the example shown above, and assuming that “red” is the owning computer,

then one would set DB2REMOTEPREG on “white” and “blue” computers to share

the registry variables on “red” by doing the following:

 (on red) do nothing

 (on white and blue) db2set DB2REMOTEPREG=\\red

The setting for DB2REMOTEPREG must not be changed after it is set.

Here is how REMOTEPREG works:

When the DB2 database manager reads the registry variables on Windows, it first

reads the DB2REMOTEPREG value. If DB2REMOTEPREG is set, it then opens

the registry on the remote computer whose computer name is specified in the

DB2REMOTEPREG variable. Subsequent reading and updating of the registry

variables will be redirected to the specified remote computer.

Accessing the remote registry requires that the Remote Registry Service is running

on the target computer. Also, the user logon account and all DB2 service logon

accounts have sufficient access to the remote registry. Therefore, to use

DB2REMOTEPREG, you should operate in a Windows domain environment so

that the required registry access can be granted to the domain account.

There are Microsoft Cluster Server (MSCS) considerations. You should not use

DB2REMOTEPREG in an MSCS environment. When running in an MSCS

configuration where all computers belong to the same MSCS cluster, the registry

variables are maintained in the cluster registry. Therefore, they are already shared

between all computers in the same MSCS cluster and there is no need to use

DB2REMOTEPREG in this case.

When running in a multi-partitioned failover environment where database

partitions span across multiple MSCS clusters, you cannot use DB2REMOTEPREG

to point to the instance-owning computer because the registry variables of the

instance-owning computer reside in the cluster registry.

Declaring, showing, changing, resetting, and deleting registry and

environment variables

It is strongly recommended that all specific registry variables be defined in the

DB2 database profile registry. If DB2 variables are set outside of the registry,

remote administration of those variables is not possible, and the workstation must

be restarted in order for the variable values to take effect.

The db2set command supports the local declaration of the registry and

environment variables.

To display help information for the command, use:

 db2set -?

To list the complete set of all supported registry variables, use:

 db2set -lr

Chapter 19. Registry and environment variables 365

To list all defined registry variables for the current or default instance, use:

 db2set

To list all defined registry variables in the profile registry, use:

 db2set -all

To show the value of a registry variable in the current or default instance, use:

 db2set registry_variable_name

To show the value of a registry variable at all levels, use:

 db2set registry_variable_name -all

To change a registry variable for in the current or default instance, use:

 db2set registry_variable_name=new_value

To change a registry variable default for all databases in the instance, use:

 db2set registry_variable_name=new_value

 -i instance_name

To change a registry variable default for a particular database partition in an

instance, use:

 db2set registry_variable_name=new_value

 -i instance_name database_partition_number

To change a registry variable default for all instances pertaining to a particular

installation in the system, use:

 db2set registry_variable_name=new_value -g

If you use an aggregate registry variable such as DB2_WORKLOAD to configure

your registry variables for an SAP environment, you can set that variable using:

 db2set DB2_WORKLOAD=SAP

If you use the Lightweight Directory Access Protocol (LDAP), you can set registry

variables in LDAP using:

v To set registry variables at the user level within LDAP, use:

db2set -ul

v To set registry variables at the global level within LDAP, use:

db2set -gl user_name

When running in an LDAP environment, you can set a DB2 registry variable value

so that its scope is global to all servers and all users that belong to a directory

partition or to a Windows domain. Currently, there are only two DB2 registry

variables that can be set at the LDAP global level:

DB2LDAP_KEEP_CONNECTION and DB2LDAP_SEARCH_SCOPE.

For example, to set the search scope value at the global level in LDAP, use:

 db2set -gl db2ldap_search_scope = value

where the value can be local, domain, or global.

Note:

366 Data Servers, Databases, and Database Objects Guide

1. When the DB2 profile.env file is updated by two or more users with the db2set

command at the same time, or very close to the same time, the size of the

profile.env file is reduced to zero. Also, the output from db2set -all displays

inconsistent values.

2. There is a difference between the -g option, which is used to set DB2 registry

variables that apply to all instances pertaining to the same installation of DB2

ESE, and the -gl option which is specifically used at the LDAP global level.

3. The user level registry variable is only supported on Windows when running in

an LDAP environment.

4. Variable settings at the user level contains user specific variable settings. Any

changes to the user level are written to the LDAP directory.

5. The parameters ″-i″, ″-g″, ″-gl″, and ″-ul″ cannot be used at the same time in the

same command.

6. Some variables will always default to the global level profile (global means the

variables are shared between all instances running on the same DB2 copy).

They cannot be set at the instance or database partition level profiles; for

example, DB2SYSTEM and DB2INSTDEF.

7. On UNIX, you must have system administration (SYSADM) authority to

change registry values for an instance. Only users with root authority can

change parameters in global-level registries.

To reset a registry variable for an instance back to the default found in the Global

Profile Registry, use:

 db2set -r registry_variable_name

To reset a registry variable for a database partition in an instance back to the

default found in the Global Profile Registry, use:

 db2set -r registry_variable_name database_partition_number

To delete a variable’s value at a specified level, you can use the same command

syntax to set the variable but specify nothing for the variable value. For example,

to delete the variable’s setting at the database partition level, enter:

 db2set registry_variable_name= -i instance_name

 database_partition_number

To delete a variable’s value and to restrict its use, if it is defined at a higher profile

level, enter:

 db2set registry_variable_name= -null -r instance_name

This command deletes the setting for the parameter you specify and restricts high

level profiles from changing this variable’s value (in this case, DB2 global-level

profile). However, the variable you specify could still be set by a lower level

profile (in this case, the DB2 database partition-level profile).

Setting environment variables on Windows

Windows operating systems have one system environment variable,

DB2INSTANCE, that can only be set outside the profile registry; however, you are

not required to set DB2INSTANCE. The DB2 profile registry variable

DB2INSTDEF might be set in the global level profile to specify the instance name

to use if DB2INSTANCE is not defined.

DB2 Enterprise Server Edition servers on Windows have two system environment

variables, DB2INSTANCE and DB2NODE, that can only be set outside the profile

Chapter 19. Registry and environment variables 367

registry. You are not required to set DB2INSTANCE. The DB2 profile registry

variable DB2INSTDEF might be set in the global level profile to specify the

instance name to use if DB2INSTANCE is not defined.

The DB2NODE environment variable is used to route requests to a target logical

node within a computer. This environment variable must be set in the session in

which the application or command is issued and not in the DB2 profile registry. If

this variable is not set, the target logical node defaults to the logical node which is

defined as zero (0) on the computer.

To determine the settings of an environment variable, use the echo command. For

example, to check the value of the DB2PATH environment variable, enter:

echo %db2path%

You can set the DB2 environment variables DB2INSTANCE and DB2NODE as

follows (using DB2INSTANCE in this description):

v Right click on My Computer and select Properties .

v Select the Advanced tab, click Environment Variables, and do the following:

1. If the DB2INSTANCE variable does not exist:

a. Click New.

b. Fill in the Variable Name field with DB2INSTANCE.

c. Fill in the Variable Value field with the instance name, for example

db2inst.
2. If the DB2INSTANCE variable already exists, append a new value:

a. Select the DB2INSTANCE environment variable.

b. Change the Value field to the instance name, for example db2inst.
3. Restart your system for these changes to take effect.

Note: The environment variable DB2INSTANCE can also be set at the session

(process) level. For example, if you want to start a second DB2 instance called

TEST, issue the following commands in a command window:

 set DB2INSTANCE=TEST

 db2start

When working in C Shell, issue the following commands in a command window:

 setenv DB2INSTANCE TEST

The profile registries are located as follows:

v The DB2 Instance-Level Profile Registry in the Windows operating system

registry, with the path:

 \HKEY_LOCAL_computer\SOFTWARE\IBM\DB2\PROFILES\instance_name

Note: The instance_name is the name of the DB2 instance.

v The DB2 Global-Level Profile Registry in the Windows registry, with the path:

 \HKEY_LOCAL_computer\SOFTWARE\IBM\DB2\GLOBAL_PROFILE

v The DB2 Instance Node-Level Profile Registry in the Windows registry, with the

path:

 ...\SOFTWARE\IBM\DB2\PROFILES\instance_name\NODES\node_number

Note: The instance_name and the node_number are specific to the database

partition you are working with.

368 Data Servers, Databases, and Database Objects Guide

v There is no DB2 Instance Profile Registry required. For each of the DB2 instances

in the system, a key is created in the path:

 \HKEY_LOCAL_computer\SOFTWARE\IBM\DB2\PROFILES\instance_name

The list of instances can be obtained by counting the keys under the PROFILES

key.

Setting environment variables on Linux and UNIX operating

systems

On UNIX operating systems, you must set the system environment variable

DB2INSTANCE.

The scripts db2profile (for Bourne or Korn shell) and db2cshrc (for C shell) are

provided as examples to help you set up the database environment. You can find

these files in insthome/sqllib, where insthome is the home directory of the instance

owner.

These scripts include statements to:

v Update a user’s path with the following directories:

– insthome/sqllib/bin

– insthome/sqllib/adm

– insthome/sqllib/misc
v Set DB2INSTANCE to the default local instance_name for execution.

Note: Except for PATH and DB2INSTANCE, all other supported variables must be

set in the DB2 profile registry. To set variables that are not supported by the DB2

database manager, define them in your script files, userprofile and usercshrc.

An instance owner or SYSADM user might customize these scripts for all users of

an instance. Alternatively, users can copy and customize a script, then invoke a

script directly or add it to their .profile or .login files.

To change the environment variable for the current session, issue commands

similar to the following:

v For Korn shell:

 DB2INSTANCE=<inst1>

 export DB2INSTANCE

v For Bourne shell:

 export DB2INSTANCE=<inst1>

v For C shell:

 setenv DB2INSTANCE <inst1>

In order for the DB2 profile registry to be administered properly, the following file

ownership rules must be followed on UNIX operating systems.

v The DB2 Instance-Level Profile Registry file is located under:

INSTHOME/sqllib/profile.env

The access permissions and ownership of this file should be:

-rw-rw-r-- <db2inst1> <db2iadm1> profile.env

Chapter 19. Registry and environment variables 369

where <db2inst1> is the instance owner, and <db2iadm1> is the instance owner’s

group.

The INSTHOME is the home path of the instance owner.

v The DB2 Global-Level Profile Registry is located under:

<installation path>/default.env

for all Linux and UNIX platforms.

The access permissions and ownership of this file should be:

-rw-rw-r-- root <group> default.env

where <group> is the group name for group ID 0; for example, on AIX, it is

″system″.

To modify a global registry variable in root installations, you must be logged on

with root authority.

v The DB2 Instance Node-Level Profile Registry is located under:

 INSTHOME/sqllib/nodes/<node_number>.env

The access permissions and ownership of the directory and this file should be:

 drwxrwsr-w <Instance_Owner> <Instance_Owner_Group> nodes

 -rw-rw-r-- <Instance_Owner> <Instance_Owner_Group> <node_number>.env

The INSTHOME is the home path of the instance owner.

v The DB2 Instance Profile Registry is located under:

<installation path>/profiles.reg

for all Linux and UNIX platforms

The access permissions and ownership of this file should be:

 -rw-r--r-- root system profiles.reg

Setting the current instance environment variables

When you run commands to start or stop an instance’s database manager, DB2

applies the command to the current instance. DB2 determines the current instance

as follows:

v If the DB2INSTANCE environment variable is set for the current session, its

value is the current instance. To set the DB2INSTANCE, enter:

set db2instance=<new_instance_name>

v If DB2INSTANCE is not set for the current session, the DB2 database manager

uses the setting for the DB2INSTANCE environment variable from the system

environment variables. On Windows, system environment variables are set in

the System Environment registry.
v If DB2INSTANCE is not set at all, the DB2 database manager uses the registry

variable, DB2INSTDEF.

To set the DB2INSTDEF registry variable at the global level of the registry,

enter:

db2set db2instdef=<new_instance_name> -g

To determine which instance applies to the current session, enter:

 db2 get instance

370 Data Servers, Databases, and Database Objects Guide

Aggregate registry variables

An aggregate registry variable allows several registry variables to be grouped as a

configuration that is identified by another registry variable name. Each registry

variable that is part of the group has a predefined setting. The aggregate registry

variable is given a value that is interpreted as declaring several registry variables.

The intention of an aggregate registry variable is to ease registry configuration for

broad operational objectives.

The only valid aggregate registry variable is DB2_WORKLOAD.

Valid values for this variable are:

v SAP

v 1C

v TPM

v CM

v WC

Any registry variable that is implicitly configured through an aggregate registry

variable might also be explicitly defined. Explicitly setting a registry variable that

was previously given a value through the use of an aggregate registry variable is

useful when doing performance or diagnostic testing. Explicitly setting a variable

that is configured implicitly by an aggregate is referred to as overriding the

variable.

If you attempt to modify an explicitly set registry variable by using an aggregate

registry variable, a warning is issued and the explicitly set value is kept. This

warning tells you that the explicit value is maintained. If the aggregate registry

variable is used first and then you specify an explicit registry variable, a warning

is not given.

None of the registry variables that are configured through setting an aggregate

registry variable are shown unless you explicitly make that request for each

variable. When you query the aggregate registry variable, only the value assigned

to that variable is shown. Most users should not care about the values for each

individual variable.

The following example shows the interaction between using the aggregate registry

variable and explicitly setting a registry variable. For example, you might have set

the DB2_WORKLOAD aggregate registry variable to SAP and have overridden

the DB2_SKIPDELETED registry variable to NO. By entering db2set, you would

receive the following results:

 DB2_WORKLOAD=SAP

 DB2_SKIPDELETED=NO

In another situation, you might have set DB2ENVLIST, set the DB2_WORKLOAD

aggregate registry variable to SAP, and overridden the DB2_SKIPDELETED

registry variable to NO. (This assumes that the DB2_SKIPDELETED registry

variable is part of the group making up the SAP environment.) In addition, those

registry variables that were configured automatically through setting the aggregate

registry variable will show the name of the aggregate displayed within square

brackets, adjacent to its value. The DB2_SKIPDELETED registry variable will

show a NO value and will show [O] displayed adjacent to its value.

Chapter 19. Registry and environment variables 371

When you no longer require the configuration associated with DB2_WORKLOAD,

you can disable the implicit values of each registry variable in the group by

deleting the aggregate registry variable’s value using the command:

 db2set DB2_WORKLOAD=

After deleting the DB2_WORKLOAD aggregate registry variable value, restart the

database. After the database is restarted, the registry variables that were implicitly

configured by the aggregate registry variable are no longer in effect. The method

used to delete an aggregate registry variable’s value is the same as deleting an

individual registry variable.

Deleting an aggregate registry variable’s value does not delete a registry variable’s

value that has been explicitly set. It does not matter that the registry variable is a

member of the group definition being disabled. The explicit setting for the registry

variable is maintained.

You might need to see the values for each registry variable that is a member of the

DB2_WORKLOAD aggregate registry variable. For instance, you might want to

see the values that would be used if you configured DB2_WORKLOAD to SAP. To

find the values that would be used if DB2_WORKLOAD=SAP, run db2set -gd

DB2_WORKLOAD=SAP.

DB2 registry and environment variables

DB2 database products provide a number of registry variables and environment

variables that you might need to know about to get up and running.

To view a list of all supported registry variables, execute the following command:

db2set -lr

To change the value for a variable in the current or default instance, execute the

following command:

db2set registry_variable_name=new_value

Whether the DB2 environment variables DB2INSTANCE, DB2NODE, DB2PATH,

and DB2INSTPROF are stored in the DB2 profile registries depends on your

operating system. To update these environment variables, use the set command.

These changes are only effective in the local (current) command prompt and are in

effect until the next time the system is rebooted. On Linux and UNIX operating

systems, you can use the export command instead of the set command.

You must set the values for the changed registry variables before you execute the

db2start command.

Note: If a registry variable requires Boolean values as arguments, the values YES,

1, and ON are all equivalent and the values NO, 0, and OFF are also equivalent.

For any variable, you can specify any of the appropriate equivalent values.

372 Data Servers, Databases, and Database Objects Guide

The following table lists all registry variables per category:

 Table 63. Registry and environment variables summary

Variable category Registry or environment variable name

General DB2ACCOUNT

DB2BIDI

DB2_CAPTURE_LOCKTIMEOUT

DB2CODEPAGE

DB2_COLLECT_TS_REC_INFO

DB2_CONNRETRIES_INTERVAL

DB2CONSOLECP

DB2COUNTRY

DB2DBDFT

DB2DBMSADDR

DB2DISCOVERYTIME

DB2FFDC

DB2FODC

DB2_FORCE_APP_ON_MAX_LOG

DB2GRAPHICUNICODESERVER

DB2INCLUDE

DB2INSTDEF

DB2INSTOWNER

DB2_LIC_STAT_SIZE

DB2LOCALE

DB2_MAX_CLIENT_CONNRETRIES

DB2_OBJECT_TABLE_ENTRIES

DB2_SYSTEM_MONITOR_SETTINGS

DB2TERRITORY

DB2_VIEW_REOPT_VALUES

System environment DB2_ALTERNATE_GROUP_LOOKUP

DB2_CLP_EDITOR

DB2_CLP_HISTSIZE

DB2CONNECT_IN_APP_PROCESS

DB2_COPY_NAME

DB2DBMSADDR

DB2_DIAGPATH

DB2DOMAINLIST

DB2ENVLIST

DB2INSTANCE

DB2INSTPROF

DB2LDAPSecurityConfig

DB2LIBPATH

DB2LOGINRESTRICTIONS

DB2NODE

DB2OPTIONS

DB2_PARALLEL_IO

DB2PATH

DB2PROCESSORS

DB2RCMD_LEGACY_MODE

DB2SYSTEM

DB2_UPDDBCFG_SINGLE_DBPARTITION

DB2_USE_PAGE_CONTAINER_TAG

DB2_WORKLOAD

Chapter 19. Registry and environment variables 373

Table 63. Registry and environment variables summary (continued)

Variable category Registry or environment variable name

Communications DB2CHECKCLIENTINTERVAL

DB2COMM

DB2FCMCOMM

DB2_FORCE_NLS_CACHE

DB2RSHCMD

DB2RSHTIMEOUT

DB2SORCVBUF

DB2SOSNDBUF

DB2TCP_CLIENT_CONTIMEOUT

DB2TCP_CLIENT_RCVTIMEOUT

DB2TCPCONNMGRS

Command-line DB2BQTIME

DB2BQTRY

DB2_CLPPROMPT

DB2IQTIME

DB2RQTIME

Partitioned database

environment

DB2CHGPWD_EEE

DB2_FCM_SETTINGS

DB2_NUM_FAILOVER_NODES

DB2_PARTITIONEDLOAD_DEFAULT

DB2PORTRANGE

Query compiler DB2_ANTIJOIN

DB2_INLIST_TO_NLJN

DB2_LIKE_VARCHAR

DB2_MINIMIZE_LISTPREFETCH

DB2_NEW_CORR_SQ_FF

DB2_OPT_MAX_TEMP_SIZE

DB2_REDUCED_OPTIMIZATION

DB2_SELECTIVITY

DB2_SQLROUTINE_PREPOPTS

374 Data Servers, Databases, and Database Objects Guide

Table 63. Registry and environment variables summary (continued)

Variable category Registry or environment variable name

Performance DB2_ALLOCATION_SIZE

DB2_APM_PERFORMANCE

DB2ASSUMEUPDATE

DB2_ASYNC_IO_MAXFILOP

DB2_AVOID_PREFETCH

DB2BPVARS

DB2CHKPTR

DB2CHKSQLDA

DB2_EVALUNCOMMITTED

DB2_EXTENDED_IO_FEATURES

DB2_EXTENDED_OPTIMIZATION

DB2_IO_PRIORITY_SETTING

DB2_IO_PRIORITY_SETTING

DB2_KEEP_AS_AND_DMS_CONTAINERS_OPEN

DB2_KEEPTABLELOCK

DB2_LARGE_PAGE_MEM

DB2_LOGGER_NON_BUFFERED_IO

DB2MAXFSCRSEARCH

DB2_MAX_INACT_STMTS

DB2_MAX_NON_TABLE_LOCKS

DB2_MDC_ROLLOUT

DB2MEMDISCLAIM

DB2MEMMAXFREE

DB2_MEM_TUNING_RANGE

DB2_MMAP_READ

DB2_MMAP_WRITE

DB2_NO_FORK_CHECK

DB2NTMEMSIZE

DB2NTNOCACHE

DB2NTPRICLASS

DB2NTWORKSET

DB2_OVERRIDE_BPF

DB2_PINNED_BP

DB2PRIORITIES

DB2_RESOURCE_POLICY

DB2_RCT_FEATURES

DB2_SET_MAX_CONTAINER_SIZE

DB2_SKIPDELETED

DB2_SKIPINSERTED

DB2_SMS_TRUNC_TMPTABLE_THRESH

DB2_SORT_AFTER_TQ

DB2_SELUDI_COMM_BUFFER

DB2_TRUSTED_BINDIN

DB2_USE_ALTERNATE_PAGE_CLEANING

DB2_USE_IOCP

Chapter 19. Registry and environment variables 375

Table 63. Registry and environment variables summary (continued)

Variable category Registry or environment variable name

Miscellaneous DB2ADMINSERVER

DB2_ATS_ENABLE

DB2AUTH

DB2CLIINIPATH

DB2_COMMIT_ON_EXIT

DB2_CREATE_DB_ON_PATH

DB2DEFPREP

DB2_DISABLE_FLUSH_LOG

DB2_DISPATCHER_PEEKTIMEOUT

DB2_DJ_INI

DB2DMNBCKCTLR

DB2_DOCHOST

DB2_DOCPORT

DB2_ENABLE_AUTOCONFIG_DEFAULT

DB2_ENABLE_LDAP

DB2_EVMON_EVENT_LIST_SIZE

DB2_EVMON_STMT_FILTER

DB2_EXTSECURITY

DB2_FALLBACK

DB2_FMP_COMM_HEAPSZ

DB2_GRP_LOOKUP

DB2_HADR_BUF_SIZE

DB2_HADR_NO_IP_CHECK

DB2_HADR_PEER_WAIT_LIMIT

DB2_HADR_SORCVBUF

DB2_HADR_SOSNDBUF

DB2LDAP_BASEDN

DB2LDAPCACHE

DB2LDAP_CLIENT_PROVIDER

DB2LDAPHOST

DB2LDAP_KEEP_CONNECTION

DB2LDAP_SEARCH_SCOPE

DB2_LOAD_COPY_NO_OVERRIDE

DB2LOADREC

DB2LOCK_TO_RB

DB2_MAP_XML_AS_CLOB_FOR_DLC

DB2_MAX_LOB_BLOCK_SIZE

DB2_MEMORY_PROTECT

DB2NOEXITLIST

DB2_NUM_CKPW_DAEMONS

DB2_OPTSTATS_LOG

DB2REMOTEPREG

DB2_RESOLVE_CALL_CONFLICT

DB2ROUTINE_DEBUG

DB2SATELLITEID

DB2_SERVER_CONTIMEOUT

DB2_SERVER_ENCALG

DB2SORT

DB2_THREAD_SUSPENSION

DB2_TRUNCATE_REUSESTORAGE

DB2_USE_DB2JCCT2_JROUTINE

DB2_UTIL_MSGPATH

DB2_VENDOR_INI

DB2_XBSA_LIBRARY

376 Data Servers, Databases, and Database Objects Guide

General registry variables

DB2ACCOUNT

v Operating system: All

v Default: NULL

v This variable defines the accounting string that is sent to the remote

host. Refer to the DB2 Connect User’s Guide for details.

DB2BIDI

v Operating system: All

v Default: NO, Values: YES or NO

v This variable enables bidirectional support and the DB2CODEPAGE

variable is used to declare the code page to be used.

DB2_CAPTURE_LOCKTIMEOUT

v Operating system: All

v Default: NULL, Values: ON or NULL

v This variable specifies to log descriptive information about lock

timeouts at the time that they occur. The logged information identifies:

the key applications involved in the lock contention that resulted in the

lock timeout, the details about what these applications were running at

the time of the lock timeout, and the details about the lock causing the

contention. Information is captured for both the lock requestor (the

application that received the lock timeout error) and the current lock

owner. A text report is written and stored in a file for each lock timeout.

The files are created using the following naming convention:

db2locktimeout.par.AGENTID.yyyy-mm-dd-hh-mm-ss, where par is the

database partition number; AGENTID is the Agent ID;

yyyy-mm-dd-hh-mm-ss is the timestamp consisting of the year, month,

day, hour, minute and second. In non-partitioned database

environments, par is set to 0.

The location of the file is based on the value set in the diagpath

database configuration parameter. If diagpath is not set, then the file is

located in one of the following directories:

– In Windows environments:

- If you do not set the DB2INSTPROF environment variable,

information is written to x:\SQLLIB\DB2INSTANCE, where x is the

drive reference, SQLLIB is the directory that you specified for the

DB2PATH registry variable, and DB2INSTANCE is the name of the

instance owner.

- If you set the DB2INSTPROF environment variable, information is

written to x:\DB2INSTPROF\DB2INSTANCE, where x is the drive

reference, DB2INSTPROF is the name of the instance profile

directory, and DB2INSTANCE is the name of the instance owner.
– In Linux and UNIX environments: information is written to

INSTHOME/sqllib/db2dump, where INSTHOME is the home

directory of the instance.

Delete lock timeout report files when you no longer need them. Because

the report files are in the same location as other diagnostics logs, the

DB2 system could shutdown if the directory is allowed to get full. If you

need to keep some lock timeout report files, move them to a directory or

folder different than where the DB2 logs are stored.

DB2CODEPAGE

Chapter 19. Registry and environment variables 377

v Operating system: All

v Default: derived from the language ID, as specified by the operating

system.

v This variable specifies the code page of the data presented to DB2 for

database client application. The user should not set DB2CODEPAGE

unless explicitly stated in DB2 documents, or asked to do so by DB2

service. Setting DB2CODEPAGE to a value not supported by the

operating system can produce unexpected results. Normally, you do not

need to set DB2CODEPAGE because DB2 automatically derives the

code page information from the operating system.

Note: Because Windows does not report a Unicode code page (in the

Windows regional settings) instead of the ANSII code page, a Windows

application will not behave as a Unicode client. To override this

behavior, set the DB2CODEPAGE registry variable to 1208 (for the

Unicode code page) to cause the application to behave as a Unicode

application.

DB2_COLLECT_TS_REC_INFO

v Operating system: All

v Default: ON, Values: ON or OFF

v This variable specifies whether DB2 will process all log files when

rolling forward a table space, regardless of whether the log files contain

log records that affect the table space. To skip the log files known not to

contain any log records affecting the table space, set this variable to ON.

DB2_COLLECT_TS_REC_INFO must be set before the log files are

created and used so that the information required for skipping log files

is collected.

DB2_CONNRETRIES_INTERVAL

v Operating system: All

v Default: Not set, Values: an integer number of seconds

v This variable specifies the sleep time between consecutive connection

retries, in seconds, for the automatic client reroute feature. You can use

this variable in conjunction with DB2_MAX_CLIENT_CONNRETRIES

to configure the retry behavior for automatic client reroute.

If DB2_MAX_CLIENT_CONNRETRIES is set, but

DB2_CONNRETRIES_INTERVAL is not,

DB2_CONNRETRIES_INTERVAL defaults to 30. If

DB2_MAX_CLIENT_CONNRETRIES is not set, but

DB2_CONNRETRIES_INTERVAL is set,

DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither

DB2_MAX_CLIENT_CONNRETRIES nor

DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute

feature reverts to its default behavior of retrying the connection to a

database repeatedly for up to 10 minutes.

DB2CONSOLECP

v Operating system: Windows

v Default: NULL, Values: all valid code page values

v Specifies the code page for displaying DB2 message text. When

specified, this value overrides the operating system code page setting.

DB2COUNTRY

v Operating system: Windows

378 Data Servers, Databases, and Database Objects Guide

v Default: NULL, Values: all valid numeric country, territory, or region

codes

v This variable specifies the country, territory, or region code of the client

application. When specified, this value overrides the operating system

setting.

Note: DB2COUNTRY is deprecated and may be removed in a future

release. Instead, use DB2TERRITORY, which accepts the same values as

DB2COUNTRY

DB2DBDFT

v Operating system: All

v Default: NULL

v This variable specifies the database alias name of the database to be

used for implicit connects. If an application has no database connection

but SQL or XQuery statements are issued, an implicit connect will be

made if the DB2DBDFT environment variable has been defined with a

default database.

DB2DBMSADDR

v Operating system: Windows 32-bit

v Default: 0x20000000, Values: 0x20000000 to 0xB0000000 in increments of

0x10000

v This variable specifies the default database manager shared memory

address in hexadecimal format. If db2start fails due to a shared memory

address collision, this registry variable can be modified to force the

database manager instance to allocate its shared memory at a different

address.

DB2DISCOVERYTIME

v Operating system: Windows

v Default: 40 seconds, Minimum: 20 seconds

v This variable specifies the amount of time that SEARCH discovery will

search for DB2 systems.

DB2_EXPRESSION_RULES

v Operating system: All

v Default: Empty, Values: RAISE_ERROR_PERMIT_SKIP or

RAISE_ERROR_PERMIT_DROP

v The settings for the DB2_EXPRESSION_RULES registry variable control

how the DB2 Optimizer determines the access plan for queries which

involve a RAISE_ERROR function. The default behaviour of the

RAISE_ERROR function is that no filtering may be pushed beyond the

expression containing this function. This can result in no predicates

being applied during the table accesses which can lead to excessive

computation of expressions, excessive locking and poor query

performance.

In certain cases this behaviour is too strict, depending on the particular

business requirements of the application, it may not matter if predicates

and joins are applied before the application of RAISE_ERROR. For

example in the context of a row level security implementation, there is

typically an expression of the form:

Chapter 19. Registry and environment variables 379

CASE WHEN <conditions for validatin access to this row>

 THEN NULL

 ELSE RAISE_ERROR(...)

END

The application may only be concerned with validating access to the

rows which are selected by the query and not in validating access to

every row in the table. Thus predicates could be applied in the base

table access and the expression containing the RAISE_ERROR only needs

to executed after all the filtering is performed. In this case a value of

DB2_EXPRESSION_RULES=RAISE_ERROR_PERMIT_SKIP may be

appropriate.

Another alternative is in the context of COLUMN LEVEL security. In

this case there are typically expressions of the form:

CASE WHEN <conditions for validating access to this row and column>

 THEN <table.column>

 ELSE RAISE_ERROR(...)

END

In this case the application may only want errors to be raised if the user

attempts to receive the data for a particular row and column contains a

value that the user is not allowed to retrieve. In this case a setting of

DB2_EXPRESSION_RULES=RAISE_ERROR_PERMIT_DROP will only

cause the expression containing the RAISE_ERROR function to be

evaluated if the particular column is used by a predicate, column

function or if it is returned as output from the query.

DB2FFDC

v Operating system: All

v Default: ON, Values: ON, CORE:OFF

v This variable provides the ability to deactivate core file generation. By

default, this registry variable is set to ON. If this registry variable is not

set, or is set to a value other than CORE:OFF, core files may be

generated if the DB2 database system abends.

Core files, which are used for problem determination and are created in

the diagpath directory, contain the entire process image of the

terminating DB2 process. Consideration should be given to the available

file system space because core files can be quite large. The size is

dependent on the DB2 database system configuration and the state of

the process at the time the problem occurs.

On Linux operating systems, the default core file size limit is set to 0

(that is, ulimit -c). With this setting, core files are not generated. To

allow core files to be created on Linux platforms, set the value to

unlimited.

Note: DB2FFDC is being deprecated in version 9.5, and will be removed

in a later release. The new registry variable DB2FODC incorporates

DB2FFDC’s functionality.

DB2FODC

v Operating system: All

v Default: The concatenation of all First Occurrence Data Collection

(FODC) parameters (see below)

– for Linux and UNIX: ″CORELIMIT=val DUMPCORE=ON

DUMPDIR=diagpath″

380 Data Servers, Databases, and Database Objects Guide

– for Windows: ″DUMPCORE=ON DUMPDIR=diagpath″

Note that the parameters are separated by spaces.

v This registry variable controls a set of troubleshooting-related parameters

used in FODC. Use DB2FODC to control different aspects of data

collection in outage situations.

This registry variable is read once, during the DB2 instance startup. To

perform updates to the FODC parameters online, use db2pdcfg tool. Use

the DB2FODC registry variable to sustain the configuration across

reboots. You do not need to specify all of the parameters, nor do you

need to specify them in a particular order. The default value is assigned

to any parameter that is not specified. For example, if you don’t want

the core files dumped, but you do want the other parameters’ default

behaviors, you would issue the command:

db2set DB2FODC="DUMPCORE=OFF"

Parameters:

CORELIMIT

– Operating system: Linux and UNIX

– Default: Current ulimit setting, Values: 0 to unlimited

– This option specifies the maximum size, in gigabytes, of core

files created. This value overrides the current core file size

limit setting. Consideration should be given to the available

file system space because core files can be quite large. The

size is dependent on the DB2 configuration and the state of

the process at the time the problem occurs.

If CORELIMIT is set, DB2 will use this value override current

user core limit (ulimit) setting to generate the core file.

If CORELIMIT is not set, DB2 will set the core file size to the

value equal to the current ulimit setting. One exception is AIX

where an ulimit setting of ″unlimited″ will be overridden

with a value of 8 GB for DB2 server processes only. If you

require a core dump larger than 8 GB, set ulimit to an

appropriately large value, such as the size of RAM, or set

CORELIMIT with a sufficiently large value.

Note: Any changes to the user core limit or CORELIMIT are

not effective until the next recycling of the DB2 instance.

DUMPCORE

– Operating system: Linux, Solaris, AIX

– Default: ON, Values: ON or OFF

– This option specifies if core file generation is to take place.

Core files, which are used for problem determination and are

created in the diagpath directory, contain the entire process

image of the terminating DB2 process. However, whether or

not an actual core file dump occurs depends on the current

ulimit setting and value of the CORELIMIT parameter. Some

operating systems also have configuration settings for core

dumps, which may dictate the behavior of application core

dumping.

The recommended method for disabling core file dumps is to

set DUMPCORE to OFF.

Chapter 19. Registry and environment variables 381

DUMPDIR

– Operating system: All

– Default: diagpath directory, or the default diagnostic directory

if diagpath is not defined, Values: path to directory

– This option specifies the absolute path name of the directory

for core file creation. This option may be used for other large

binary dumps that have to be stored outside of FODC

package, not for only core files.

DB2_FORCE_APP_ON_MAX_LOG

v Operating system: All

v Default: TRUE, Values: TRUE or FALSE

v Specifies what happens when the max_log configuration parameter

value is exceeded. If set to TRUE, the application is forced off the

database and the unit of work is rolled back.

If FALSE, the current statement fails. The application can still commit

the work completed by previous statements in the unit of work, or it can

roll back the work completed to undo the unit of work.

Note: This DB2 registry variable affects the ability of the import utility

to recover from log full situations. If DB2_FORCE_APP_ON_MAX_LOG

is set to TRUE and you issue an IMPORT command with the

COMMITCOUNT command option, the import utility will not be able

to perform a commit in order to avoid running out of active log space.

When the import utility encounters an SQL0964C (Transaction Log Full),

it will be forced off the database and the current unit of work will be

rolled back.

DB2GRAPHICUNICODESERVER

v Operating system: All

v Default: OFF, Values: ON or OFF

v This registry variable is used to accommodate existing applications

written to insert graphic data into a Unicode database. Its use is only

needed for applications that specifically send sqldbchar (graphic) data in

Unicode instead of the code page of the client. (sqldbchar is a supported

SQL data type in C and C++ that can hold a single double-byte

character.) When set to ON, you are telling the database that graphic

data is coming in Unicode, and the application expects to receive

graphic data in Unicode.

DB2INCLUDE

v Operating system: All

v Default: Current directory

v Specifies a path to be used during the processing of the SQL INCLUDE

text-file statement during DB2 PREP processing. It provides a list of

directories where the INCLUDE file might be found. Refer to

Developing Embedded SQL Applications for descriptions of how

DB2INCLUDE is used in the different precompiled languages.

DB2INSTDEF

v Operating system: Windows

v Default: DB2

v This variable sets the value to be used if DB2INSTANCE is not defined.

382 Data Servers, Databases, and Database Objects Guide

DB2INSTOWNER

v Operating system: Windows

v Default: NULL

v The registry variable created in the DB2 profile registry when the

instance is first created. This variable is set to the name of the

instance-owning machine.

DB2_LIC_STAT_SIZE

v Operating system: All

v Default: NULL, Range: 0 to 32767

v This variable determines the maximum size (in MBs) of the file

containing the license statistics for the system. A value of zero turns the

license statistic gathering off. If the variable is not recognized or not

defined, the variable defaults to unlimited. The statistics are displayed

using the License Center.

DB2LOCALE

v Operating system: All

v Default: NO, Values: YES or NO

v This variable specifies whether the default ″C″ locale of a process is

restored to the default ″C″ locale after calling DB2 and whether to

restore the process locale back to the original ’C’ after calling a DB2

function. If the original locale was not ’C’, then this registry variable is

ignored.

DB2_MAX_CLIENT_CONNRETRIES

v Operating system: All

v Default: Not set, Values: an integer number of maximum times to retry

the connection

v This variable specifies the maximum number of connection retries that

the automatic client reroute feature will attempt. You can use this

variable in conjunction with DB2_CONNRETRIES_INTERVAL to

configure the retry behavior for automatic client reroute.

If DB2_MAX_CLIENT_CONNRETRIES is set, but

DB2_CONNRETRIES_INTERVAL is not,

DB2_CONNRETRIES_INTERVAL defaults to 30. If

DB2_MAX_CLIENT_CONNRETRIES is not set, but

DB2_CONNRETRIES_INTERVAL is set,

DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither

DB2_MAX_CLIENT_CONNRETRIES nor

DB2_CONNRETRIES_INTERVAL is set, the automatic client reroute

feature reverts to its default behavior of retrying the connection to a

database repeatedly for up to 10 minutes.

DB2_OBJECT_TABLE_ENTRIES

v Operating system: All

v Default: 0, Values: 0–65532

The actual maximum value possible on your system depends on the

page size and extent size, but it cannot exceed 65532.

v This variable specifies the expected number of objects in a table space. If

you know that a large number of objects (for example, 1000 or more)

will be created in a DMS table space, you should set this registry

variable to the approximate number before creating the table space. This

will reserve contiguous storage for object metadata during table space

Chapter 19. Registry and environment variables 383

creation. Reserving contiguous storage reduces the chance that an online

backup will block operations which update entries in the metadata (for

example, CREATE INDEX, IMPORT REPLACE). It will also make

resizing the table space easier because the metadata will be stored at the

start of the table space.

If the initial size of the table space is not large enough to reserve the

contiguous storage, the table space creation will continue without the

additional space reserved.

DB2_SYSTEM_MONITOR_SETTINGS

v Operating system: All

v The registry variable controls a set of parameters which allow you to

modify the behavior of various aspects of DB2 monitoring. Separate each

parameter by a semicolon, as in the following example:

db2set DB2_SYSTEM_MONITOR_SETTINGS=OLD_CPU_USAGE:TRUE;

 DISABLE_CPU_USAGE:TRUE

Every time you set DB2_SYSTEM_MONITOR_SETTINGS, each

parameter must be set explicitly. Any parameter that you do not specify

when setting this variable reverts back to its default value. So in the

following example:

db2set DB2_SYSTEM_MONITOR_SETTINGS=DISABLE_CPU_USAGE:TRUE

Note: Currently, this registry variable only has settings for Linux;

additional settings for other operating systems will be added in future

releases.
OLD_CPU_USAGE will be restored to its default setting.

v Parameters:

OLD_CPU_USAGE

– Operating system: Linux

– Values: TRUE/ON, FALSE/OFF

– Default value on RHEL4 and SLES9: TRUE (Note: a setting of

FALSE for OLD_CPU_USAGE will be ignored–only the old

behavior will be used.)

– Default value on RHEL5, SLES10, and others: FALSE

– This parameter controls how the instance obtains CPU usage

times on Linux platforms. If set to TRUE, the older method of

getting CPU usage time is used. This method returns both

system and user CPU usage times, but consumes more CPU

in doing so (that is, it has a higher overhead). If set to FALSE,

the newer method of getting CPU usage is used. This method

returns only the user CPU usage value, but is faster because it

has less overhead.

DISABLE_CPU_USAGE

– Operating system: Linux

– Values: TRUE/ON, FALSE/OFF

– Default value on RHEL4 and SLES9: TRUE

– Default value on RHEL5, SLES10, and others: FALSE

– This parameter allows you to determine whether CPU usage

is read or not. When DISABLE_CPU_USAGE is enabled (set

384 Data Servers, Databases, and Database Objects Guide

to TRUE), CPU usage is not read, allowing you to avoid the

overhead that can sometimes occur during the retrieval of

CPU usage.

DB2TERRITORY

v Operating system: All

v Default: Derived from the language ID, as specified by the operating

system.

v This variable specifies the region, or territory code of the client

application, which influences date and time formats.

DB2_VIEW_REOPT_VALUES

v Operating system: All

v Default: NO, Values: YES, NO

v This variable enables all users to store the cached values of a

reoptimized SQL or XQuery statement in the EXPLAIN_PREDICATE

table when the statement is explained. When this variable is set to NO,

only DBADM is allowed to save these values in the

EXPLAIN_PREDICATE table.

System environment variables

DB2_ALTERNATE_GROUP_LOOKUP

v Operating system: AIX

v Default: NULL, Values: NULL or GETGRSET

v This variable allows DB2 to obtain group information from an

alternative source provided by the operating system. On AIX, the

function getgrset is used. This provides the ability to obtain groups from

somewhere other than local files via Loadable Authentication Modules.

DB2_CLP_EDITOR

v Operating system: All

v Default: Notepad(Windows), vi (UNIX), Values: Any valid editor that is

located in the operating system path

Note: This registry variable is not set to the default value during

installation. Instead, the code that makes use of this variable uses a

default value if the registry variable is not set.

v This variable determines the editor to be used when executing the EDIT

command. From a CLP interactive session, the EDIT command launches

an editor preloaded with a user-specified command which can then be

edited and run.

DB2_CLP_HISTSIZE

v Operating system: All

v Default: 20, Values: 1–500 inclusive

Note: This registry variable is not set to the default value during

installation. Instead, the code that makes use of this variable uses a

default value of 20 if the registry variable is not set or if it is set to a

value outside of the valid range.

v This variable determines the number of commands stored in the

command history during CLP interactive sessions. Because the command

Chapter 19. Registry and environment variables 385

history is held in memory, a very high value for this variable might

result in a performance impact depending on the number and length of

commands run in a session.

DB2CONNECT_IN_APP_PROCESS

v Operating system: All

v Default: YES, Values: YES or NO

v When you set this variable to NO, local DB2 Connect clients on a DB2

Enterprise Server Edition machine are forced to run within an agent.

Some advantages of running within an agent are that local clients can be

monitored and that they can use SYSPLEX support.

DB2_COPY_NAME

v Operating system: Windows

v Default: The name of the default copy of DB2 installed on your machine.

Values: the name of a copy of DB2 installed on your machine. The name

can be up to 128 characters long.

v The DB2_COPY_NAME variable stores the name of the copy of DB2

currently in use. If you have multiple DB2 copies installed on your

machine, you cannot use DB2_COPY_NAME to switch to a different

copy of DB2, you must run the command INSTALLPATH\bin\
db2envar.bat to change the copy currently in use.

DB2DBMSADDR

v Operating system: Linux on x86 and Linux on zSeries (31-bit)

v Default: NULL, Values: virtual addresses in the range 0x09000000 to

0xB0000000 in increments of 0x10000

v The DB2DBMSADDR registry variable specifies the default database

shared memory address in hexadecimal format.

Note: An incorrect address can cause severe issues with the DB2 system,

ranging from an inability to start a DB2 instance, to an ability to connect

to the database. An incorrect address is one that collides with an area in

memory that is already in use, or is predestined to be used for

something else. To address this problem, reset the DB2DBMSADDR

registry variable to NULL by using the following command:

 db2set DB2DBMSADDR=

This variable can be used to fine tune the address space layout of DB2

processes. This variable changes the location of the instance shared

memory from its current location at virtual address 0x10000000 to the

new value.

DB2_DIAGPATH

v Operating system: All

v Default: The default value is the instance db2dump directory on UNIX

and Linux operating systems, and the instance DB2 directory on

Windows operating systems.

v This parameter applies to ODBC and DB2 CLI applications only.

This parameter allows you to specify the fully qualified path for DB2

diagnostic information. This directory could possibly contain dump files,

trap files, an error log, a notification file, and an alert log file, depending

on your platform.

Setting this environment variable has the same effect for ODBC and CLI

applications in the scope of that environment as setting the DB2

386 Data Servers, Databases, and Database Objects Guide

database manager configuration parameter diagpath, and as setting the

CLI/ODBC configuration keyword DiagPath.

DB2DOMAINLIST

v Operating system: All

v Default: NULL, Values: A list of Windows domain names separated by

commas (“,”)

v This variable defines one or more Windows domains. The list, which is

maintained on the server, defines the domains that the requesting user

ID is authenticated against. Only users belonging to these domains have

their connection or attachment requests accepted.

This variable is effective only when CLIENT authentication is set in the

database manager configuration. It is needed if a single sign-on from a

Windows desktop is required in a Windows domain environment.

DB2 servers versions 7.1 or later support DB2DOMAINLIST, but only

in a pure Windows domain environment. Starting with Version 8 FixPak

15 and Version 9.1 Fix Pack 3, DB2DOMAINLIST is supported if either

the client or the server is running in a Windows environment.

DB2ENVLIST

v Operating system: UNIX

v Default: NULL

v This variable lists specific variable names for either stored procedures or

user-defined functions. By default, the db2start command filters out all

user environment variables except those prefixed with DB2 or db2. If

specific environment variables must be passed to either stored

procedures or user-defined functions, you can list the variable names in

the DB2ENVLIST environment variable. Separate each variable name by

one or more spaces.

DB2INSTANCE

v Operating system: All

v Default: DB2INSTDEF on Windows 32-bit operating systems.

v This environment variable specifies the instance that is active by default.

On UNIX, users must specify a value for DB2INSTANCE.

DB2INSTPROF

v Operating system: Windows

v Default: Documents and Settings\All Users\Application

Data\IBM\DB2\Copy Name (Windows XP, Windows 2003),

ProgramData\IBM\DB2\Copy Name (Windows Vista)

v This environment variable specifies the location of the instance directory

on Windows operating systems. Beginning with version 9.5, the instance

directory (and other user data files) cannot be under the sqllib directory.

DB2LDAPSecurityConfig

v Operating system: All

v Default: NULL, Values: valid name and path to the IBM LDAP security

plug-in configuration file

v This variable is used to specify the location of the IBM LDAP security

plug-in configuration file. If the variable is not set, the IBM LDAP

security plug-in configuration file is named IBMLDAPSecurity.ini and is

in one of the following locations:

– On Linux and UNIX operating systems: INSTHOME/sqllib/cfg/

Chapter 19. Registry and environment variables 387

– On Windows operating systems: %DB2PATH%\cfg\

On Windows operating systems, this variable should be set in the global

system environment to ensure it is picked up by the DB2 service.

DB2LIBPATH

v Operating system: UNIX

v Default: NULL

v DB2 constructs its own shared library path. If you want to add a PATH

into the engine’s library path (for example, on AIX, a user-defined

function requires a specific entry in LIBPATH), you must set

DB2LIBPATH. The actual value of DB2LIBPATH is appended to the

end of the DB2 constructed shared library path.

DB2LOGINRESTRICTIONS

v Operating system: AIX

v Default: LOCAL, Values: LOCAL, REMOTE, SU, NONE

v This registry variable allows you to use an AIX operating system API

called loginrestrictions(). This API determines whether a user is allowed

to access the system. By calling this API, DB2 database security is able to

enforce the login restrictions that are specified by the operating system.

There are different values that can be submitted to this API when using

this registry variable. The values are:

– REMOTE

DB2 only enforces login restrictions to verify that the account can be

used for remote logins through the rlogind or telnetd programs.

– SU

DB2 Version 9.1 only enforces su restrictions to verify that the su

command is permitted, and that the current process has a group ID

that can invoke the su command to switch to the account.

– NONE

DB2 does not enforce any login restrictions.

– LOCAL (or the variable is not set)

DB2 only enforces login restrictions to verify that local logins are

permitted for this account. This is the normal behavior when logging

in.
No matter which one of these options you set, user accounts or IDs that

have the specified privileges are able to use DB2 successfully both

locally on the server and from remote clients. For a description of the

loginrestrictions() API, please refer to AIX documentation.

DB2NODE

v Operating system: All

v Default: NULL, Values: 1 to 999

v Used to specify the target logical node of a database partition server that

you want to attach to or connect to. If this variable is not set, the target

logical node defaults to the logical node which is defined with port 0 on

the machine. In a partitioned database environment, the connection

settings could have an impact on acquiring trusted connections. For

example, if the DB2NODE variable is set to a node such that the

establishment of a connection on that node requires going through an

intermediate node (a hop node), it is the IP address of that intermediate

node and the communication protocol used to communicate between the

hop node and the connection node that are considered when evaluating

388 Data Servers, Databases, and Database Objects Guide

this connection in order to determine whether or not it can be marked as

a trusted connection. In other words, it is not the original node from

which the connection was initiated that is considered. Rather, it is the

hop node that is considered.

DB2OPTIONS

v Operating system: All

v Default: NULL

v Used to set the command line processor options.

DB2_PARALLEL_IO

v Operating system: All

v Default: NULL, Values: TablespaceID:[n],... – a comma-separated list of

defined table spaces (identified by their numeric table space ID). If the

prefetch size of a table space is AUTOMATIC, you can indicate to the

DB2 database manager the number of disks per container for that table

space by specifying the table space ID, followed by a colon, followed by

the number of disks per container, n. If n is not specified, the default is

6.

You can replace TablespaceID with an asterisk (*) to specify all table

spaces. For example, if DB2_PARALLEL_IO =*, all table spaces use six

as the number of disks per container. If you specify both an asterisk (*)

and a table space ID, the table space ID setting takes precedence. For

example, if DB2_PARALLEL_IO =*,1:3, all table spaces use six as the

number of disks per container, except for table space 1, which uses three.

v This registry variable is used to change the way DB2 calculates the I/O

parallelism of a table space. When I/O parallelism is enabled (either

implicitly, by the use of multiple containers, or explicitly, by setting

DB2_PARALLEL_IO), it is achieved by issuing the correct number of

prefetch requests. Each prefetch request is a request for an extent of

pages. For example, a table space has two containers and the prefetch

size is four times the extent size.If the registry variable is set, a prefetch

request for this table space will be broken into four requests (one extent

per request) with a possibility of four prefetchers servicing the requests

in parallel.

You might want to set the registry variable if the individual containers

in the table space are striped across multiple physical disks or if the

container in a table space is created on a single RAID device that is

composed of more than one physical disk.

If this registry variable is not set, the degree of parallelism of any table

space is the number of containers of the table space. For example, if

DB2_PARALLEL_IO is set to NULL and a table space has four

containers, four extent-sized prefetch requests are issued; or if a

tablespace has two containers and the prefetch size is four times the

extent size, the prefetch request for this table space will be broken into

two requests (each request will be for two extents).

If this registry variable is set, and the prefetch size of the table is not

AUTOMATIC, the degree of parallelism of the table space is the prefetch

size divided by the extent size. For example, if DB2_PARALLEL_IO is

set for a table space that has a prefetch size of 160 and an extent size of

32 pages, five extent-sized prefetch requests are issued.

If this registry variable is set, and the prefetch size of the table space is

AUTOMATIC, DB2 automatically calculates the prefetch size of a table

space using the following equation:

Chapter 19. Registry and environment variables 389

Prefetch size =

 (number of containers) * (number of disks per container)

 * extent size

The number after the colon is used by DB2 for the number of disks per

container in the equation. If only an asterisk is used but a number is not

specified, a default of 6 disks per container is used.

The following table summarizes the different options available and how

parallelism is calculated for each situation:

 Table 64. How Parallelism is Calculated

Prefetch size of table space DB2_PARALLEL_IO Setting

Parallelism is equal

to:

AUTOMATIC (Prefetchsize=number

of containers * 1 * extent size)

Not set Number of containers

AUTOMATIC (Prefetchsize=number

of containers * 6 * extent size)

Table space ID Number of containers

* 6

AUTOMATIC (Prefetchsize=number

of containers * n * extent size)

Table space ID:n Number of containers

* n

Not AUTOMATIC Not set Number of containers

Not AUTOMATIC Table space ID Prefetch size/extent

size

Not AUTOMATIC Table space ID:n Prefetch size/extent

size

For example, consider you have three table spaces and their ID’s are 3,4,

and 5 respectively. Their extent sizes are all 4096 bytes, and they all have

two containers each. The prefetch sizes of table spaces 3 and 4 are both

AUTOMATIC, and that of table space 5 is 16384 bytes. Suppose you set

DB2_PARALLEL_IO=*:5,4:10, the table spaces will have parallelism

derived as follows:

– Tablespace 3: The value of n (number of disks per container) is 5,

extent size=4096, number of containers=2, and prefetch size is

AUTOMATIC. Therefore, prefetch size is 2*5*4096 and

parallelism=number of containers * n =2*5=10.

– Tablespace 4: Note the value of n (number of disks per container) is

set specifically to 10 for this tablespace. Extent size=4096, number of

containers=2 n=10, and prefetch size is AUTOMATIC. Therefore,

prefetch size =2*10*4096, and parallelism=number of

containers*n=2*10=20.

– Tablespace 5: The value of n is still 5, but it has no influence, as

prefetch size is not AUTOMATIC. Extent size=4096 number of

containers=2 and prefetch size=16384. Therefore, parallelism=prefetch

size/extent size=16384/4096=4.

Disk contention might result using this variable in some scenarios. For

example, if a table space has two containers and each of the two

containers have each a single disk dedicated to it, setting the registry

variable might result in contention on those disks because the two

prefetchers will be accessing each of the two disks at once. However, if

each of the two containers was striped across multiple disks, setting the

registry variable would potentially allow access to four different disks at

once.

To activate changes to this registry variable, issue a db2stop command

and then enter a db2start command.

390 Data Servers, Databases, and Database Objects Guide

DB2PATH

v Operating system: Windows

v Default: Varies by operating system

v This environment variable is used to specify the directory where the

product is installed on Windows 32-bit operating systems.

DB2PROCESSORS

v Operating system: Windows

v Default: NULL, Values: 0–n-1 (where n= the number of processors)

v This variable sets the process affinity mask for a particular db2syscs

process. In environments running multiple logical nodes, this variable is

used to associate a logical node to a processor or set of processors.

When specified, DB2 issues the SetProcessAffinityMask() api. If

unspecified, the db2syscs process is associated with all processors on the

server.

DB2RCMD_LEGACY_MODE

v Operating system: Windows,

v Default: NULL, Values: YES, ON, TRUE, or 1, or NO, OFF, FALSE, or 0

v This variable allows users to enable or disable the DB2 Remote

Command Service’s enhanced security. To run the DB2 Remote

Command Service in a secure manner, set DB2RCMD_LEGACY_MODE

to NO, OFF, FALSE, 0, or NULL. To run in legacy mode (without

enhanced security), set DB2RCMD_LEGACY_MODE to YES, ON,

TRUE, or 1. The secure mode is only available if your domain controller

is running Windows 2000 or later.

Note: If DB2RCMD_LEGACY_MODE is set to YES, ON, TRUE, or 1,

all requests sent to the DB2 Remote Command Service are processed

under the context of the requestor. To facilitate this, you must allow

either or both the machine and service logon account to impersonate the

client by enabling the machine and service logon accounts at the domain

controller.

Note: If DB2RCMD_LEGACY_MODE is set to NO, OFF, FALSE, or 0,

you must have SYSADM authority in order to have the DB2 Remote

Command Service execute commands on your behalf.

DB2SYSTEM

v Operating system: Windows and UNIX

v Default: NULL

v Specifies the name that is used by your users and database

administrators to identify the DB2 server system. If possible, this name

should be unique within your network.

This name is displayed in the system level of the Control Center’s object

tree to aid administrators in the identification of server systems that can

be administered from the Control Center.

When using the Search the Network function of the Configuration

Assistant, DB2 discovery returns this name and it is displayed at the

system level in the resulting object tree. This name aids users in

identifying the system that contains the database they wish to access. A

value for DB2SYSTEM is set at installation time as follows:

Chapter 19. Registry and environment variables 391

– On Windows the setup program sets it equal to the computer name

specified for the Windows system.

– On UNIX systems, it is set equal to the UNIX system’s TCP/IP

hostname.

DB2_UPDDBCFG_SINGLE_DBPARTITION

v Operating system: All

v Default: Not set, Values: 0/FALSE/NO, 1/TRUE/YES

v When set to 1, TRUE, or, YES, this registry variable allows you to specify

that any updates and resets to your database affect only a specific

partition. If the variable is not set, updates and requests follow the

version 9.5 behavior.

v Beginning with version 9.5, updates or changes to a database

configuration act across all database partitions, when you do not specify

a partition clause. DB2_UPDDBCFG_SINGLE_DBPARTITION enables

you to revert to the behavior of previous versions of DB2, in which

updates to a database configuration apply only to the local database

partition or the database partition that is set by the DB2NODE registry

variable. This allows for backward compatibility support for any existing

command scripts or applications that require this behavior.

Note: This variable does not apply to update or reset requests made by

calling ADMIN_CMD routines.

DB2_USE_PAGE_CONTAINER_TAG

v Operating system: All

v Default:NULL, Values: ON, NULL

v By default, DB2 stores a container tag in the first extent of each DMS

container, whether it is a file or a device. The container tag is the

metadata for the container. Before DB2 Version 8.1, the container tag was

stored in a single page, and it thus required less space in the container.

To continue to store the container tag in a single page, set

DB2_USE_PAGE_CONTAINER_TAG to ON.

However, if you set this registry variable to ON when you use RAID

devices for containers, I/O performance might degrade. Because for

RAID devices you create table spaces with an extent size equal to or a

multiple of the RAID stripe size, setting the

DB2_USE_PAGE_CONTAINER_TAG to ON causes the extents not to

line up with the RAID stripes. As a result, an I/O request might need to

access more physical disks than would be optimal. Users are strongly

advised against enabling this registry variable unless you have very

tight space constraints, or you require behavior consistent with

pre-Version 8 databases..

To activate changes to this registry variable, issue a db2stop command

and then enter a db2start command.

DB2_WORKLOAD

v Operating system: All

v Default: Not set, Values: 1C, CM, SAP, TPM, WC

v Each value for DB2_WORKLOAD represents a specific grouping of

several registry variables with predefined settings.

v These are the valid values:

392 Data Servers, Databases, and Database Objects Guide

1C Use this setting when you want to configure a set of registry

variables in your database for 1C applications.

CM Use this setting when you want to configure a set of registry

variables in your database for IBM Content Manager. This value

is available in DB2 Version 9.5 Fix Pack 3 and later.

SAP Use this setting when want to configure a set of registry

variables in your database for the SAP environment.

 When you have set DB2_WORKLOAD=SAP, the user table

space SYSTOOLSPACE and the user temporary table space

SYSTOOLSTMPSPACE are not automatically created. These table

spaces are used for tables created automatically by the following

wizards, utilities, or functions:

– Automatic maintenance

– Design Advisor

– Control Center database information panel

– SYSINSTALLOBJECTS stored procedure, if the table space

input parameter is not specified

– GET_DBSIZE_INFO stored procedure

Without the SYSTOOLSPACE and SYSTOOLSTMPSPACE table

spaces, you cannot use these wizards, utilities, or functions.

To be able to use these wizards, utilities, or functions, do either

of the following:

– Manually create the SYSTOOLSPACE table space to hold the

objects that the tools need (in a partitioned database

environment, create this table space on the catalog partition).

For example:

CREATE REGULAR TABLESPACE SYSTOOLSPACE

IN IBMCATGROUP

MANAGED BY SYSTEM

USING (’SYSTOOLSPACE’)

– Specifying a valid table space, call the SYSINSTALLOBJECTS

stored procedure to create the objects for the tools, and

specify the identifier for the particular tool.

SYSINSTALLOBJECTS will create a table space for you. If you

do not want to use SYSTOOLSSPACE for the objects, specify a

different user-defined table space.

After completing at least one of these choices, create the

SYSTOOLSTMPSPACE temporary table space (also on the

catalog partition, if you’re working in a partitioned database

environment). For example:

CREATE USER TEMPORARY TABLESPACE SYSTOOLSTMPSPACE

IN IBMCATGROUP

MANAGED BY SYSTEM

USING (’SYSTOOLSTMPSPACE’)

Once the table space SYSTOOLSPACE and the temporary table

space SYSTOOLSTMPSPACE are created, you can use the

wizards, utilities, or functions mentioned earlier.

TPM Use this setting when you want to configure a set of registry

variables in your database for the IBM Tivoli Provisioning

Manager.

Chapter 19. Registry and environment variables 393

WC Use this setting when you want to configure a set of registry

variables in your database for Websphere Commerce. This value

is available in DB2 Version 9.5 Fix Pack 4 and later.

Communications variables

DB2CHECKCLIENTINTERVAL

v Operating system: All, server only

v Default=50, Values: A numeric value that is greater than or equal to zero.

v This variable specifies the frequency of TCP/IP client connection

verifications. It permits early detection of client termination, instead of

waiting until after the completion of the query. If this variable is set to 0,

no verification is performed.

Lower values cause more frequent checks. As a guide, for low frequency,

use 100; for medium frequency, use 50; for high frequency use 10. The

value is measured in an internal DB2 metric. The values represent a

linear scale, that is, increasing the value from 50 to 100 doubles the

interval. Checking more frequently for client status while executing a

database request lengthens the time taken to complete queries. If the

DB2 workload is heavy (that is, it involves many internal requests),

setting DB2CHECKCLIENTINTERVAL to a low value has a greater

impact on performance than in a situation where the workload is light.

Since DB2® Universal Database™, Version 8.1.4, the default value for

DB2CHECKCLIENTINTERVAL has been 50. Prior to version 8.1.4, the

default value was 0.

DB2COMM

v Operating system: All, server only

v Default=NULL, Values: NPIPE, TCPIP, SSL

v This variable specifies the communication managers that are started

when the database manager is started. If this variable is not set, no DB2

communications managers are started at the server.

DB2FCMCOMM

v Operating system: All supported DB2 Enterprise Server Edition

platforms

v Default=TCPIP4, Values: TCPIP4 or TCPIP6

v This variable specifies how the host names in the db2nodes.cfg file are

resolved. All host names are resolved as IPv4 or IPv6. If an IP address

instead of a host name is specified in db2nodes.cfg, the form of the IP

determines if IPv4 or IPv6 is used. If DB2FCMCOMM is not set, its

default setting of IPv4 means that only IPv4 hosts can be started.

Note: If the IP format resolved from the hostname specified in

db2nodes.cfg, or the IP format directly specified in db2nodes.cfg does

not match the setting of DB2FCMCOMM, db2start will fail.

DB2_FORCE_NLS_CACHE

v Operating system: AIX, HP_UX, Solaris

v Default=FALSE, Values: TRUE or FALSE

v This variable is used to eliminate the chance of lock contention in

multi-threaded applications. When this registry variable is TRUE, the

code page and territory code information is saved the first time a thread

accesses it. From that point, the cached information is used for any other

394 Data Servers, Databases, and Database Objects Guide

thread that requests this information. This eliminates lock contention and

results in a performance benefit in certain situations. This setting should

not be used if the application changes locale settings between

connections. It is probably not needed in such a situation because

multi-threaded applications typically do not change their locale settings

because it is not thread safe to do so.

DB2RSHCMD

v Operating system: UNIX

v Default=rsh (remsh on HP-UX), Values are a full path name to rsh,

remsh, or ssh

v By default, DB2 database system uses rsh as the communication protocol

when starting remote database partitions and with the db2_all script to

run utilities and commands on all database partitions. For example,

setting this registry variable to the full path name for ssh causes DB2

database products to use ssh as the communication protocol for the

requested running of the utilities and commands. It may also be set to

the full path name of a script that invokes the remote command

program with appropriate default parameters. This variable is only

required for partitioned databases, or for single-partition environments

where the db2start command is run from a different server than where

the DB2 product was installed. The instance owner must be able to use

the specified remote shell program to log in from each DB2 database

node to each other DB2 database node, without being prompted for any

additional verification or authentication (that is, passwords or password

phrases).

For detailed instructions on setting the DB2RSHCMD registry variable to

use a ssh shell with DB2, see the white paper “Configure DB2 Universal

Database for UNIX to use OpenSSH.″

DB2RSHTIMEOUT

v Operating system: UNIX

v Default=30 seconds, Values: 1 - 120

v This variable is only applicable if DB2RSHCMD is set to a non-null

value. This registry variable is used to control the timeout period that

the DB2 database system will wait for any remote command. After this

timeout period, if no response is received, the assumption is made that

the remote database partition is not reachable and the operation has

failed.

Note: The time value given is not the time required to run the remote

command, it is the time needed to authenticate the request.

DB2SORCVBUF

v Operating system: All

v Default=65 536

v Specifies the value of TCP/IP receive buffers.

DB2SOSNDBUF

v Operating system: All

v Default=65 536

v Specifies the value of TCP/IP send buffers.

DB2TCP_CLIENT_CONTIMEOUT

v Operating system: All, client only

Chapter 19. Registry and environment variables 395

http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0506finnie/
http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0506finnie/

v Default=0 (no timeout), Values: 0 - 32 767 seconds

v The DB2TCP_CLIENT_CONTIMEOUT registry variable specifies the

number of seconds a client waits for the completion on a TCP/IP

connect operation. If a connection is not established in the seconds

specified, then the DB2 database manager returns the error -30081

selectForConnectTimeout.

There is no timeout if the registry variable is not set or is set to 0.

Note: Operating systems also have a connection timeout value that may

take effect prior to the timeout you set using

DB2TCP_CLIENT_CONTIMEOUT. For example, AIX has a default

tcp_keepinit=150 (in half seconds) that would terminate the connection

after 75 seconds.

DB2TCP_CLIENT_RCVTIMEOUT

v Operating system: All, client only

v Default=0 (no timeout), Values: 0 - 32 767 seconds

v The DB2TCP_CLIENT_RCVTIMEOUT registry variable specifies the

number of seconds a client waits for data on a TCP/IP receive operation.

If data from the server is not received in the seconds specified, then the

DB2 database manager returns the error -30081 selectForRecvTimeout.

There is no timeout if the registry variable is not set or is set to 0.

Note: The value of the DB2TCP_CLIENT_RCVTIMEOUT can be

overridden by the CLI, using the db2cli.ini keyword ReceiveTimeout or

the connection attribute SQL_ATTR_RECEIVE_TIMEOUT.

DB2TCPCONNMGRS

v Operating system: All

v Default=1 on serial machines; square root of the number of processors

rounded up to a maximum of sixteen connection managers on

symmetric multiprocessor machines. Values: 1 to 16

v The default number of connection managers is created if the registry

variable is not set. If the registry variable is set, the value assigned here

overrides the default value. The number of TCP/IP connection managers

specified up to a maximum of 16 is created. If less than 1 is specified

then DB2TCPCONNMGRS is set to a value of 1 and a warning is

logged that the value is out of range. If greater than 16 is specified then

DB2TCPCONNMGRS is set to a value of 16 and a warning is logged

that the value is out of range. Values between 1 and 16 are used as

given. When there is greater than one connection manager created,

connection throughput should improve when multiple client connections

are received simultaneously. There may be additional TCP/IP connection

manager processes (on UNIX) or threads (on Windows operating

systems) if the user is running on a SMP machine, or has modified the

DB2TCPCONNMGRS registry variable. Additional processes or threads

require additional storage.

Note: Having the number of connection managers set to 1 causes a drop

in performance on remote connections in systems with a lot of users,

frequent connects and disconnects, or both.

396 Data Servers, Databases, and Database Objects Guide

Command-line variables

DB2BQTIME

v Operating system: All

v Default=1 second, Minimum value: 1 second

v This variable specifies the amount of time the command-line processor

front end sleeps before it checks whether the back-end process is active

and establishes a connection to it.

DB2BQTRY

v Operating system: All

v Default=60 retries, Minimum value: 0 retries

v This variable specifies the number of times the command-line processor

front-end process tries to determine whether the back-end process is

already active. It works in conjunction with DB2BQTIME.

DB2_CLPPROMPT

v Operating system: All

v Default=None (if it is not defined, “db2 => ” will be used as the default

CLP interactive prompt), Values: Any text string of length less than 100

that contains zero or more of the following tokens %i, %d, %ia, %da, or

%n. Users need not set this variable unless they explicitly wish to

change the default CLP interactive prompt (db2 =>).

v This registry variable allows a user to define the prompt to be used in

the Command Line Processor (CLP) interactive mode. The variable can

be set to any text string of length less than 100 characters containing

zero or more of the optional tokens %i, %d, %ia, %da, or %n. When

running in CLP interactive mode, the prompt to be used is constructed

by taking the text-string specified in the DB2_CLPPROMPT registry

variable and replacing all occurrences of the tokens %i, %d, %ia, %da, or

%n by the local alias of the current attached instance, the local alias of

the current database connection, the authorization ID of the current

attached instance, the authorization ID of the current database

connection, and newline (that is, a carriage-return) respectively.

Note:

1. If the DB2_CLPPROMPT registry variable is changed within CLP

interactive mode, the new value for DB2_CLPPROMPT will not take

effect until the CLP interactive mode has been closed and reopened.

2. If no instance attachment exists, %ia is replaced by the empty string

and %i is replaced by the value of the DB2INSTANCE registry

variable. On Windows platforms only, if the DB2INSTANCE variable

is not set, %i is replaced by the value of the DB2INSTDEF registry

variable. If neither of these variables are set, %i is replaced by the

empty string.

3. If no database connection exists, %da is replaced by the empty string

and %d is replaced by the value of the DB2DBDFT registry variable.

If the DB2DBDFT variable is not set, %d is replaced by the empty

string.

4. The interactive input prompt will always present the values for the

authorization IDs, database names, and instance names in upper

case.

DB2IQTIME

Chapter 19. Registry and environment variables 397

v Operating system: All

v Default=5 seconds, Minimum value: 1 second

v This variable specifies the amount of time the command line processor

back end process waits on the input queue for the front end process to

pass commands.

DB2RQTIME

v Operating system: All

v Default=5 seconds, Minimum value: 1 second

v This variable specifies the amount of time the command line processor

back end process waits for a request from the front end process.

Partitioned database environment variables

DB2CHGPWD_EEE

v Operating system: DB2 ESE on AIX, Linux, and Windows

v Default=NULL, Values: YES or NO

v This variable specifies whether you allow other users to change

passwords on AIX or Windows ESE systems. You must ensure that the

passwords for all database partitions or nodes are maintained centrally

using either a Windows domain controller on Windows, or LDAP on

AIX. If not maintained centrally, passwords may not be consistent across

all database partitions or nodes. This could result in a password being

changed only at the database partition to which the user connects to

make the change.

DB2_FCM_SETTINGS

v Operating system: Linux

v Default=NULL, Values:

FCM_MAXIMIZE_SET_SIZE:[YES|TRUE|NO|FALSE]. The default

value for FCM_MAXIMIZE_SET_SIZE is NO.

v Starting from Version 9.5 fix pack 4, you can set the

DB2_FCM_SETTINGS registry variable with the

FCM_MAXIMIZE_SET_SIZE token to preallocate a default 2 GB space

for the fast communication manager (FCM) buffer. The token needs have

a value of eitherYES or TRUE to enable this feature.

DB2_NUM_FAILOVER_NODES

v Operating system: All

v Default=2, Values: 0 to the required number of database partitions

v On each machine where a given database exists, set

DB2_NUM_FAILOVER_NODES to specify the total number of database

partitions in that database.

In a DB2 database high availability solution, if a database server fails,

the database partitions on the failed machine can be restarted on another

machine. The fast communication manager (FCM) uses

DB2_NUM_FAILOVER_NODES to calculate how much memory to

reserve on each machine to facilitate this failover.

For example, consider the following configuration:

– Machine A has two database partitions: 1 and 2.

– Machine B has two database partitions: 3 and 4.

– DB2_NUM_FAILOVER_NODES is set to 4 on both A and B.

398 Data Servers, Databases, and Database Objects Guide

At DB2START, FCM will reserve enough memory on both A and B to

manage up to four database partitions so that if one machine fails, the

two database partitions on the failed machine can be restarted on the

other machine. If machine A fails, database partitions 1 and 2 can be

restarted on machine B. If machine B fails, database partitions 3 and 4

can be restarted on machine A.

DB2_PARTITIONEDLOAD_DEFAULT

v Operating system: All supported ESE platforms

v Default=YES, Values: YES or NO

v The DB2_PARTITIONEDLOAD_DEFAULT registry variable lets users

change the default behavior of the load utility in an ESE environment

when no ESE-specific load options are specified. The default value is

YES, which specifies that in an ESE environment if you do not specify

ESE-specific load options, loading is attempted on all database partitions

on which the target table is defined. When the value is NO, loading is

attempted only on the database partition to which the load utility is

currently connected.

Note: This variable is deprecated and may be removed in a later release.

The LOAD command has various options that can be used to achieve

the same behavior. You can achieve the same results as the NO setting

for this variable by specifying the following with the LOAD command:

PARTITIONED DB CONFIG MODE LOAD_ONLY OUTPUT_DBPARTNUMS x, where x

is the partition number of the partition into which you want to load

data.

DB2PORTRANGE

v Operating system: Windows

v Values: nnnn:nnnn

v This value is set to the TCP/IP port range used by FCM so that any

additional database partitions created on another machine will also have

the same port range.

Query compiler variables

DB2_ANTIJOIN

v Operating system: All

v Default=NO in a ESE environment, Default=YES in a non-ESE

environment, Values: YES, NO, or EXTEND

v For DB2 Enterprise Server Edition: when YES is specified, the optimizer

searches for opportunities to transform “NOT EXISTS” subqueries into

anti-joins which can be processed more efficiently by DB2. For non-ESE

environments: when NO is specified, the optimizer limits the

opportunities to transform “NOT EXISTS” subqueries into anti-joins.

In both ESE and NON-ESE environments, when EXTEND is specified,

the optimizer searches for opportunities to transform both ″NOT IN″

and ″NOT EXISTS″ subqueries into anti-joins.

DB2_INLIST_TO_NLJN

v Operating system: All

v Default=NO, Values: YES or NO

v In some situations, the SQL and XQuery compiler can rewrite an IN list

predicate to a join. For example, the following query:

Chapter 19. Registry and environment variables 399

SELECT *

 FROM EMPLOYEE

 WHERE DEPTNO IN (’D11’, ’D21’, ’E21’)

could be written as:

 SELECT *

 FROM EMPLOYEE, (VALUES ’D11’, ’D21’, ’E21) AS V(DNO)

 WHERE DEPTNO = V.DNO

This revision might provide better performance if there is an index on

DEPTNO. The list of values would be accessed first and joined to

EMPLOYEE with a nested loop join using the index to apply the join

predicate.

Sometimes the optimizer does not have accurate information to

determine the best join method for the rewritten version of the query.

This can occur if the IN list contains parameter markers or host variables

which prevent the optimizer from using catalog statistics to determine

the selectivity. This registry variable causes the optimizer to favor nested

loop joins to join the list of values, using the table that contributes the

IN list as the inner table in the join.

Note: When either or both of the DB2 query compiler variables

DB2_MINIMIZE_LISTPREFETCH and DB2_INLIST_TO_NLJN, are set

to YES, they remain active even if REOPT(ONCE) is specified.

DB2_LIKE_VARCHAR

v Operating system: All

v Default=Y,Y,

v Controls the use of sub-element statistics. These are statistics about the

content of data in columns when the data has a structure in the form of

a series of sub-fields or sub-elements delimited by blanks. Collection of

sub-element statistics is optional and controlled by options in the

RUNSTATS command or API.

This registry variable affects how the optimizer deals with a predicate of

the form:

 COLUMN LIKE ’%xxxxxx%’

where the xxxxxx is any string of characters.

The syntax showing how this registry variable is used is:

 db2set DB2_LIKE_VARCHAR=[Y|N|S|num1] [,Y|N|S|num2]

where

– The term preceding the comma, or the only term to the right of the

predicate, means the following but only if the second term is specified

as N or the column does not have positive sub-element statistics:

- S – The optimizer estimates the length of each element in a series

of elements concatenated together to form a column based on the

length of the string enclosed in the % characters.

- Y – The default. Use a default value of 1.9 for the algorithm

parameter. Use a variable-length sub-element algorithm with the

algorithm parameter.

- N – Use a fixed-length sub-element algorithm.

- num1 – Use the value of num1 as the algorithm parameter with the

variable length sub-element algorithm.

400 Data Servers, Databases, and Database Objects Guide

– The term following the comma means the following, but only for

columns that do have positive sub-element statistics:

- N – Do not use sub-element statistics. The first term takes effect

- Y – The default. Use a variable-length sub-element algorithm that

uses sub-element statistics together with the 1.9 default value for

the algorithm parameter in the case of columns with positive

sub-element statistics.

- num2 – Use a variable-length sub-element algorithm that uses

sub-element statistics together with the value of num2 as the

algorithm parameter in the case of columns with positive

sub-element statistics.

DB2_MINIMIZE_LISTPREFETCH

v Operating system: All

v Default=NO, Values: YES or NO

v List prefetch is a special table access method that involves retrieving the

qualifying RIDs from the index, sorting them by page number and then

prefetching the data pages. Sometimes the optimizer does not have

accurate information to determine if list prefetch is a good access

method. This might occur when predicate selectivities contain parameter

markers or host variables that prevent the optimizer from using catalog

statistics to determine the selectivity.

This registry variable prevents the optimizer from considering list

prefetch in such situations.

Note: When either or both of the DB2 query compiler variables

DB2_MINIMIZE_LISTPREFETCH and DB2_INLIST_TO_NLJN, are set

to YES, they remain active even if REOPT(ONCE) is specified.

DB2_NEW_CORR_SQ_FF

v Operating system: All

v Default=OFF, Values: ON or OFF

v Affects the selectivity value computed by the query optimizer for certain

subquery predicates when it is set to ON. It can be used to improve the

accuracy of the selectivity value of equality subquery predicates that use

the MIN or MAX aggregate function in the SELECT list of the subquery.

For example:

SELECT * FROM T WHERE

T.COL = (SELECT MIN(T.COL)

FROM T WHERE ...)

DB2_OPT_MAX_TEMP_SIZE

v Operating system: All

v Default=NULL, Values: amount of space in megabytes that can be used

by a query in all temporary table spaces

v Limits the amount of space that queries can use in the temporary table

spaces. Setting DB2_OPT_MAX_TEMP_SIZE can cause the optimizer to

choose a plan that is more expensive than would otherwise be chosen,

but which uses less space in the temporary table spaces. If you set

DB2_OPT_MAX_TEMP_SIZE, be sure to balance your need to limit use

of temporary table space against the efficiency of the plan your setting

causes to be chosen.

If DB2_WORKLOAD=SAP is set, DB2_OPT_MAX_TEMP_SIZE is

automatically set to 10 240 (10 GB).

Chapter 19. Registry and environment variables 401

If you run a query that uses temporary table space in excess of the value

set for DB2_OPT_MAX_TEMP_SIZE, the query does not fail, but you

receive a warning that its performance may be suboptimal, as not all

resources may be available.

The operations considered by the optimizer that are affected by the limit

set by DB2_OPT_MAX_TEMP_SIZE are:

– Explicit sorts for operations such as ORDER BY, DISTINCT, GROUP

BY, merge scan joins, and nested loop joins.

– Explicit temporary tables

– Implicit temporary tables for hash joins and duplicate merge joins

DB2_REDUCED_OPTIMIZATION

v Operating system: All

v Default=NO, Values: NO, YES, any integer, DISABLE,

NO_SORT_NLJOIN, or NO_SORT_MGJOIN

v This registry variable lets you request either reduced optimization

features or rigid use of optimization features at the specified

optimization level. If you reduce the number of optimization techniques

used, you also reduce time and resource use during optimization.

Note: Although optimization time and resource use might be reduced,

the risk of producing a less than optimal data access plan is increased.

Use this registry variable only when advised by IBM or one of its

partners.

– If set to NO

The optimizer does not change its optimization techniques.

– If set to YES

If the optimization level is 5 (the default) or lower, the optimizer

disables some optimization techniques that might consume significant

prepare time and resources but do not usually produce a better access

plan.

If the optimization level is exactly 5, the optimizer scales back or

disables some additional techniques, which might further reduce

optimization time and resource use, but also further increase the risk

of a less than optimal access plan. For optimization levels lower than

5, some of these techniques might not be in effect in any case. If they

are, however, they remain in effect.

– If set to any integer

The effect is the same as YES, with the following additional behavior

for dynamically prepared queries optimized at level 5. If the total

number of joins in any query block exceeds the setting, then the

optimizer switches to greedy join enumeration instead of disabling

additional optimization techniques as described above for level 5

optimization levels. which implies that the query will be optimized at

a level similar to optimization level 2.

– If set to DISABLE

The behavior of the optimizer when unconstrained by this

DB2_REDUCED_OPTIMIZATION variable is sometimes to

dynamically reduce the optimization for dynamic queries at

optimization level 5. This setting disables this behavior and requires

the optimizer to perform full level 5 optimization.

– If set to NO_SORT_NLJOIN

402 Data Servers, Databases, and Database Objects Guide

The optimizer does not generate query plans that force sorts for

nested loop joins (NLJN). These types of sorts can be useful for

improving performance; therefore, be careful when using the

NO_SORT_NLJOIN option, as performance can be severely impacted.

– If set to NO_SORT_MGJOIN

The optimizer does not generate query plans that force sorts for

merge scan joins (MSJN). These types of sorts can be useful for

improving performance; therefore, be careful when using the

NO_SORT_MGJOIN option, as performance can be severely impacted.

Note that the dynamic optimization reduction at optimization level 5

takes precedence over the behavior described for optimization level of

exactly 5 when DB2_REDUCED_OPTIMIZATION is set to YES as

well as the behavior described for the integer setting.

DB2_SELECTIVITY

v Operating system: All

v Default=NO, Values: YES or NO

v This registry variable controls where the SELECTIVITY clause can be

used in search conditions in SQL statements.

When this registry variable is set to YES, the SELECTIVITY clause can be

specified for the following predicates:

– A basic predicate in which at least one expression contains host

variables

– A LIKE predicate in which the MATCH expression, predicate

expression, or escape expression contains host variables

DB2_SQLROUTINE_PREPOPTS

v Operating system: All

v Default=Empty string, Values:

– BLOCKING {UNAMBIG | ALL | NO}

– DATETIME {DEF | USA | EUR | ISO | JIS | LOC}

– DEGREE {1 | degree-of-parallelism | ANY}

– DYNAMICRULES {BIND | INVOKEBIND | DEFINEBIND | RUN |

INVOKERUN | DEFINERUN}

– EXPLAIN {NO | YES | ALL}

– EXPLSNAP {NO | YES | ALL}

– FEDERATED {NO | YES}

– INSERT {DEF | BUF}

– ISOLATION {CS | RR | UR | RS | NC}

– QUERYOPT optimization-level

– REOPT {NONE | ONCE | ALWAYS}

– VALIDATE {RUN | BIND}
v The DB2_SQLROUTINE_PREPOPTS registry variable can be used to

customize the precompile and bind options for SQL and XQuery

procedures. When setting this variable, separate each of the options with

a space, as follows:

db2set DB2_SQLROUTINE_PREPOPTS="BLOCKING ALL VALIDATE RUN"

For a complete description of each option and its settings, see ″BIND

command.″

Chapter 19. Registry and environment variables 403

If you want to achieve the same results as

DB2_SQLROUTINE_PREPOPTS for select individual procedures, but

without restarting the instance, use the SET_ROUTINE_OPTS procedure.

Performance variables

DB2_ALLOCATION_SIZE

v Operating system: All

v Default: 128 KB, Range: 64 KB - 256 MB

v Specifies the size of memory allocations for buffer pools.

The potential advantage of setting a higher value for this registry

variable is fewer allocations will be required to reach a desired amount

of memory for a buffer pool.

The potential cost of setting a higher value for this registry variable is

wasted memory if the buffer pool is altered by a non-multiple of the

allocation size. For example, if the value for DB2_ALLOCATION_SIZE

is 8 MB and a buffer pool is reduced by 4 MB, this 4 MB will be wasted

because an entire 8 MB segment cannot be freed.

Note: DB2_ALLOCATION_SIZE is deprecated and may be removed in a

later release.

DB2_APM_PERFORMANCE

v Operating system: All

v Default: OFF, Values: ON or OFF

v Set this variable to ON to enable performance-related changes in the

access plan manager (APM) that affect the behavior of the query cache

(package cache). These settings are not usually recommended for

production systems. They introduce some limitations, such as the

possibility of out-of-package cache errors or increased memory use, or

both.

Setting DB2_APM_PERFORMANCE to ON also enables the NO

PACKAGE LOCK mode. This mode allows the global query cache to

operate without the use of package locks, which are internal system

locks that protect cached package entries from being removed. The NO

PACKAGE LOCK mode might result in somewhat improved

performance, but certain database operations are not allowed. These

prohibited operations might include: operations that invalidate packages,

operations that inoperate packages, and PRECOMPILE, BIND, and

REBIND.

DB2ASSUMEUPDATE

v Operating system: All

v Default: OFF, Values: ON or OFF

v When enabled, this variable allows the DB2 database system to assume

that all fixed-length columns provided in an UPDATE statement are

being changed. This eliminates the need for the DB2 database system to

compare the existing column values to the new values to determine if

the column is actually changing. Using this registry variable can cause

additional logging and index maintenance when columns are provided

for update (for example, in a SET clause) but are not actually being

modified.

The activation of the DB2ASSUMEUPDATE registry variable is effective

on the db2start command.

404 Data Servers, Databases, and Database Objects Guide

DB2_ASYNC_IO_MAXFILOP

v Operating system: All

v Default: The value of the maxfilop configuration parameter, Values: from

the value of maxfilop to the value of max_int

v DB2_ASYNC_IO_MAXFILOP is deprecated and may be removed in a

later release. This variable is obsolete because of the shared file handle

table maintained by the threaded database manager. For more

information, see ″Shared file handle table″ in Data Servers, Databases, and

Database Objects Guide.

DB2_ASYNC_IO_MAXFILOP can still be set in Version 9.5, but it will

have no effect. If you want to limit the number of file handles that can

be open for each database, use the maxfilop configuration parameter.

DB2_AVOID_PREFETCH

v Operating system: All

v Default: OFF, Values: ON or OFF

v Specifies whether prefetch should be used during crash recovery. If

DB2_AVOID_PREFETCH =ON, prefetch is not used.

DB2BPVARS

v Operating system: As specified for each parameter

v Default: Path

v Two sets of parameters are available to tune buffer pools. One set of

parameters, available only on Windows, specify that buffer pools should

use scatter read for specific types of containers. The other set of

parameters, available on all platforms, affect prefetching behavior.

Parameters are specified in an ASCII file, one parameter on each line, in

the form parameter=value. For example, a file named bpvars.vars might

contain the following lines:

 NO_NT_SCATTER = 1

 NUMPREFETCHQUEUES = 2

Assuming that bpvars.vars is stored in F:\vars\, to set these variables

you execute the following command:

 db2set DB2BPVARS=F:\vars\bpvars.vars

Scatter-read parameters

The scatter-read parameters are recommended for systems with a large

amount of sequential prefetching against the respective type of

containers and for which you have already set DB2NTNOCACHE to

ON. These parameters, available only on Windows platforms, are

NT_SCATTER_DMSFILE, NT_SCATTER_DMSDEVICE, and

NT_SCATTER_SMS. Specify the NO_NT_SCATTER parameter to

explicitly disallow scatter read for any container. Specific parameters are

used to turn scatter read on for all containers of the indicated type. For

each of these parameters, the default is zero (or OFF); and the possible

values include: zero (or OFF) and 1 (or ON).

Note: You can turn on scatter read only if DB2NTNOCACHE is set to

ON to turn Windows file caching off. If DB2NTNOCACHE is set to OFF

or not set, a warning message is written to the administration

notification log if you attempt to turn on scatter read for any container,

and scatter read remains disabled.

Prefetch-adjustment parameters

Chapter 19. Registry and environment variables 405

The prefetch-adjustment parameters are NUMPREFETCHQUEUES and

PREFETCHQUEUESIZE. These parameters are available on all

platforms and can be used to improve bufferpool data prefetching. For

example, consider sequential prefetching in which the desired

PREFETCHSIZE is divided into PREFETCHSIZE/EXTENTSIZE

prefetch requests. In this case, requests are placed on prefetch queues

from which I/O servers are dispatched to perform asynchronous I/O.

By default, the DB2 database manager maintains one queue of size

max(200,2*NUM_IOSERVERS) for each database partition. In some

environments, performance improves with either more queues or queues

of a different size, or both. The number of prefetch queues should be at

most one half of the number of I/O servers. When you set these

parameters, consider other parameters such as PREFETCHSIZE,

EXTENTSIZE, NUM_IOSERVERS, and buffer pool size, as well as

workload characteristics such as the number of current users.

If you think the default values are too small for your environment, first

increase the values only slightly. For example, you might set

NUMPREFETCHQUEUES=4 and PREFETCHQUEUESIZE=200. Make

changes to these parameters in a controlled manner so that you can

monitor and evaluate the effects of the change.

For NUMPREFETCHQUEUES, the default is 1, and the range of values

is 1 to NUM_IOSERVERS. If you set NUMPREFETCHQUEUES to less

than 1, it is adjusted to 1. If you set it greater than NUM_IOSERVERS,

it is adjusted to NUM_IOSERVERS.

For PREFETCHQUEUESIZE, the default value is

max(200,2*NUM_IOSERVERS). The range of values is 1 to 32767. If you

set PREFETCHQUEUESIZE to less than 1, it is adjusted to the default. If

set greater than 32767, it is adjusted to 32767.

Note: DB2BPVARS is deprecated and may be removed in a later release.

DB2CHKPTR

v Operating system: All

v Default: OFF, Values: ON or OFF

v Specifies whether or not pointer checking for input is required.

DB2CHKSQLDA

v Operating system: All

v Default: ON, Values: ON or OFF

v Specifies whether or not SQLDA checking for input is required.

DB2_EVALUNCOMMITTED

v Operating system: All

v Default: OFF, Values: ON, OFF

v When enabled, this variable allows, where possible, table or index access

scans to defer or avoid row locking until a data record is known to

satisfy predicate evaluation.

With this variable enabled, predicate evaluation may occur on

uncommitted data.

DB2_EVALUNCOMMITTED is applicable only to statements using

either Cursor Stability or Read Stability isolation levels. For index scans,

the index must be a type-2 index.

406 Data Servers, Databases, and Database Objects Guide

Furthermore, deleted rows are skipped unconditionally on table scan

access while deleted keys are not skipped for type-2 index scans unless

the registry variable DB2_SKIPDELETED is also set.

The activation of the DB2_EVALUNCOMMITTED registry variable is

effective on the db2start command. The decision as to whether deferred

locking is applicable is made at statement compile or bind time.

DB2_EXTENDED_IO_FEATURES

v Operating system: AIX

v Default: OFF, Values: ON, OFF

v Set this variable to ON to enable features that enhance I/O performance.

This enhancement includes improving the hit rate of memory caches as

well as reducing the latency on high priority I/O. These features are

only available on certain combinations of software and hardware

configuration; setting this variable to ON for other configurations will be

ignored by either the DB2 database management system or by the

operating system. The minimum configuration requirements are:

– Database version: DB2 V9.1

– RAW device must be used for database containers (container on file

systems is not supported)

– Operating system: AIX 5.3 TL4

– Storage subsystem: Shark DS8000™ supports all the enhanced I/O

performance features. Refer to the Shark DS8000 documentation for

setup and prerequisite information.

The default I/O priority settings for HIGH, MEDIUM, and LOW are 3,

8, and 12, respectively; you can use the DB2_IO_PRIORITY_SETTING

registry variable to change these settings.

DB2_EXTENDED_OPTIMIZATION

v Operating system: All

v Default: OFF, Values: ON, OFF, or ENHANCED_MULTIPLE_DISTINCT

v This variable specifies whether or not the query optimizer uses

optimization extensions to improve query performance. The ON and

ENHANCED_MULTIPLE_DISTINCT values specify different

optimization extensions. Use a comma-separated list when you want to

use both.

The ENHANCED_MULTIPLE_DISTINCT value might improve the

performance of queries where multiple distinct aggregate operations are

involved in one single select operation and where the ratio of processors

to the number of database partitions is low (for example, the ratio is less

than or equal to 1). This setting should be used in DPF (Database

Partitioning Feature) environments without symmetric multiprocessors

(SMPs).

The optimization extensions might not improve query performance in all

environments. Testing should be done to determine individual query

performance improvements.

DB2_HASH_JOIN

v Operating system: All

v Default: YES, Values: YES or NO

v Specifies hash join as a possible join method when compiling an access

plan. DB2_HASH_JOIN needs to be tuned to get the best performance.

Hash join performance is best if you can avoid hash loops and overflow

Chapter 19. Registry and environment variables 407

to disk. To tune hash join performance, estimate the maximum amount

of memory available for the sheapthres configuration parameter, and

then tune the sortheap configuration parameter. Increase its value until

you avoid as many hash loops and disk overflows as possible, but do

not reach the limit specified by the sheapthres configuration parameter.

Note: DB2_HASH_JOIN is deprecated in Version 9.5 and might be

removed in a future release.

DB2_IO_PRIORITY_SETTING

v Operating system: AIX

v Values: HIGH:#, MEDIUM:#, LOW:#, where # can be 1 to 15

v This variable is used in combination with the

DB2_EXTENDED_IO_FEATURES registry variable. This registry

variable provides a means to override the default HIGH, MEDIUM, and

LOW I/O priority settings for the DB2 database system, which are 3, 8,

and 12, respectively. This registry variable must be set prior to the start

of an instance; any modification requires an instance restart. Note that

setting this registry variable alone does not enable the enhanced I/O

features, DB2_EXTENDED_IO_FEATURES must be set to enable them.

All system requirements for DB2_EXTENDED_IO_FEATURES also

apply to this registry variable.

DB2_KEEP_AS_AND_DMS_CONTAINERS_OPEN

v Operating system: All

v Default: NO, Values: YES or NO

v When you set this variable to ON, each DMS table space container has a

file handle opened until the database is deactivated. Query performance

might improve because the overhead to open the containers is

eliminated. You should use this registry only in pure DMS

environments, otherwise performance of queries against SMS table

spaces might be impacted negatively.

DB2_KEEPTABLELOCK

v Operating system: All

v Default: OFF, Values: ON, TRANSACTION, OFF, CONNECTION

v When this variable is set to ON or TRANSACTION, this variable allows

the DB2 database system to maintain the table lock when an

Uncommitted Read or Cursor Stability isolation level is closed. The table

lock that is kept is released at the end of the transaction, just as it would

be released for Read Stability and Repeatable Read scans.

When this variable is set to CONNECTION, a table lock is released for

an application until the application either rolls back the transaction or

the connection is reset. The table lock continues to be held across

commits and application requests to drop the table lock are ignored by

the database. The table lock remains allocated to the application. Thus,

when the application re-requests the table lock, the lock is already

available.

For application workloads that can leverage this optimization,

performance should improve. However, the workloads of other

application executing concurrently might be impacted. Other

applications might get blocked from accessing a given table resulting in

poor concurrency. DB2 SQL catalog tables are not impacted by this

setting. The CONNECTION setting also includes the behavior described

with the ON or TRANSACTION setting.

408 Data Servers, Databases, and Database Objects Guide

This registry variable is checked at statement compile or bind time.

DB2_LARGE_PAGE_MEM

v Operating system: AIX, Linux, Windows Server 2003

v Default: NULL, Values: Use * to denote all applicable memory regions

should use large page memory, or a comma-separated list of specific

memory regions that should use large page memory. Available regions

vary by operating system. On AIX, the following regions can be

specified: DB, DBMS, FCM, or PRIVATE. On Linux, the following region

can be specified: DB. On Windows Server 2003, the following region can

be specified: DB. Huge page memory is only available on AIX.

v The DB2_LARGE_PAGE_MEM registry variable is used to enable large

page or huge page support. Setting DB2_LARGE_PAGE_MEM=DB

enables large page memory for the database shared memory region, and

if database_memory is set to AUTOMATIC, disables automatic tuning of

this shared memory region by STMM. On AIX, setting

DB2_LARGE_PAGE_MEM=DB:16GB enables huge page memory for the

database shared memory region.

Memory access-intensive applications that use large amounts of virtual

memory might obtain performance improvements by using large or

huge pages. To enable the DB2 database system to use them, you must

first configure the operating system to use large or huge pages.

To enable large pages for agent private memory on 64-bit DB2 for AIX

(the DB2_LARGE_PAGE_MEM=PRIVATE setting), you have to

configure large pages on the operating system and the instance owner

must possess the CAP_BYPASS_RAC_VMM and CAP_PROPAGATE

capabilities.

On AIX 5L™, you can set this variable to FCM. FCM memory resides in

its own memory set, so you must add the FCM keyword to the value of

the DB2_LARGE_PAGE_MEM registry variable to enable large pages

for FCM memory.

On Linux, there is an additional requirement for the availability of the

libcap.so.1 library. This library must be installed for this option to work.

If this option is turned on and the library is not on the system, the DB2

database disables the large kernel pages and continues to function as it

would without them.

On Linux, to verify that large kernel pages are available, issue the

following command:

 cat /proc/meminfo

If large kernel pages are available, the following three lines should

appear (with different numbers depending on the amount of memory

configured on your server):

 HugePages_Total: 200

 HugePages_Free: 200

 Hugepagesize: 16384 kB

If you do not see these lines, or if the HugePages_Total is 0, you need to

configure the operating system or kernel.

On Windows, the amount of large page memory that is available on the

system is less than the total available memory. After the system has been

running for some time, memory can become fragmented, and the

amount of large page memory decreases.

DB2_LOGGER_NON_BUFFERED_IO

v Operating system: All

Chapter 19. Registry and environment variables 409

v Default: OFF, Values: ON, OFF

v This variable enables direct I/O on the log file system .

DB2_LOGGER_NON_BUFFERED_IO registry variable is available

starting in the DB2 Version 9.5 Fix Pack 1 release.

DB2MAXFSCRSEARCH

v Operating system: All

v Default: 5, Values: -1, 1 to 33554

v Specifies the number of free space control record (FSCRs) to search when

adding a record to a table. The default is to search five FSCRs.

Modifying this value allows you to balance insert speed with space

reuse. Use large values to optimize for space reuse. Use small values to

optimize for insert speed. Setting the value to -1 forces the database

manager to search all FSCRs.

DB2_MAX_INACT_STMTS

v Operating system: All

v Default: Not set, Values: up to 4 GB

v This variable overrides the default limit on the number of inactive

statements kept by any one application. You can choose a different value

in order to increase or reduce the amount of system monitor heap used

for inactive statement information. The default limit is 250.

The system monitor heap can become exhausted if an application

contains a very high number of statements in a unit of work, or if there

are a large number of applications executing concurrently.

DB2_MAX_NON_TABLE_LOCKS

v Operating system: All

v Default: YES, Values: See description

v This variable defines the maximum number of NON table locks a

transaction can have before it releases all of these locks. NON table locks

are table locks that are kept in the hash table and transaction chain even

when the transaction has finished using them. Because transactions often

access the same table more than once, retaining locks and changing their

state to NON can improve performance.

For best results, the recommended value for this variable is the

maximum number of tables expected to be accessed by any connection.

If no user-defined value is specified, the default value is as follows: If

the locklist size is greater than or equal to

 SQLP_THRESHOLD_VAL_OF_LRG_LOCKLIST_SZ_FOR_MAX_NON_LOCKS

(currently 8000), the default value is

SQLP_DEFAULT_MAX_NON_TABLE_LOCKS_LARGE

(currently 150). Otherwise, the default value is

SQLP_DEFAULT_MAX_NON_TABLE_LOCKS_SMALL

(currently 0).

DB2_MDC_ROLLOUT

v Operating system: All

v Default: IMMEDIATE, Values: IMMEDIATE, OFF, or DEFER

410 Data Servers, Databases, and Database Objects Guide

v This variable enables a performance enhancement known as “rollout” for

deletions from MDC tables. Rollout is a faster way of deleting rows in

an MDC table, when entire cells (intersections of dimension values) are

deleted in a search DELETE statement. The benefits are reduced logging

and more efficient processing.

v There are three possible outcomes of the variable setting:

– No rollout - if OFF is specified

– Immediate rollout - if IMMEDIATE is specified.

– Rollout with deferred index cleanup - if DEFER is specified
v If the value is changed after startup, any new compilations of a

statement will respect the new registry value setting. For statements that

are in the package cache, no change in delete processing will be made

until the statement is recompiled. The SET CURRENT MDC ROLLOUT

MODE statement overrides the value of DB2_MDC_ROLLOUT at the

application connection level.

DB2MEMDISCLAIM

v Operating system: ALL

v Default: YES, Values: YES or NO

v Memory used by DB2 database system processes might have some

associated paging space. This paging space might remain reserved even

when the associated memory has been freed. Whether or not this is so

depends on the operating system’s (tunable) virtual memory

management allocation policy. The DB2MEMDISCLAIM registry

variable controls whether DB2 agents explicitly request that the

operating system disassociate the reserved paging space from the freed

memory.

A DB2MEMDISCLAIM setting of YES results in smaller paging space

requirements, and possibly less disk activity from paging. A

DB2MEMDISCLAIM setting of NO results in larger paging space

requirements, and possibly more disk activity from paging. In some

situations, such as if paging space is plentiful and real memory is so

plentiful that paging never occurs, a setting of NO provides a minor

performance improvement.

DB2MEMMAXFREE

v Operating system: All

v Default: NULL, Values: 0 to 2³²-1 bytes

v Specifies the maximum number of bytes of unused private memory that

is retained by DB2 database system processes before unused memory is

returned to the operating system.

If DB2MEMMAXFREE is not set, DB2 database system processes retain

up to 20% of unused private memory (based on the amount of private

memory currently consumed), before freeing memory back to the

operating system.

Note: DB2MEMMAXFREE is deprecated and will be removed in a future

release. This variable is no longer necessary because the database manager

now uses a threaded engine model. Do not set this variable. Doing so will

likely hurt performance and may lead to unexpected behavior.

DB2_MEM_TUNING_RANGE

v Operating system: AIX, Windows

Chapter 19. Registry and environment variables 411

v Default: NULL, Values: a sequence of percentages n, m where n=minfree

and m=maxfree

v The amount of physical memory that the DB2 instance leaves free is

important because this dictates how much memory other applications

running on the same machine are able to use. When self tuning of

database shared memory is enabled, the amount of physical memory left

free by a given instance depends on the need for memory by the

instance (and its active databases). When an instance is in urgent need of

additional memory, it will allocate memory until the free physical

memory on the system reaches the percentage specified by minfree.

When the instance is less in need of memory, it will maintain a larger

amount of free physical memory, specified as a percentage by maxfree. As

a result, it is a requirement that the value set for minfree must be less

than the value of maxfree.

If this variable is not set, the DB2 database manager will calculate values

for minfree and maxfree based on the amount of memory on the server. It

is recommended that this variable not be set, unless you are running the

self-tuning memory manager (STMM), have database_memory set to

AUTOMATIC, and are experiencing problems related to an insufficient

amount of free physical memory.

DB2_MMAP_READ

v Operating system: AIX

v Default: OFF, Values: ON or OFF

v This variable is used in conjunction with DB2_MMAP_WRITE to allow

the DB2 database system to use mmap as an alternate method of I/O.

When these variables are set to ON, data that is read to and written

from the DB2 buffer pools bypasses the AIX memory cache. If you have

a relatively small DB2 buffer pool, and you cannot or choose not to

increase the size of this buffer pool, you should take advantage of AIX

memory caching by setting DB2_MMAP_READ and

DB2_MMAP_WRITE to OFF.

DB2_MMAP_WRITE

v Operating system: AIX

v Default: OFF, Values: ON or OFF

v This variable is used in conjunction with DB2_MMAP_READ to allow

the DB2 database system to use mmap as an alternate method of I/O.

When these variables are set to ON, data that is read to and written

from the DB2 buffer pools bypasses the AIX memory cache. If you have

a relatively small DB2 buffer pool, and you cannot or choose not to

increase the size of this buffer pool, you should take advantage of AIX

memory caching by setting DB2_MMAP_READ and

DB2_MMAP_WRITE to OFF.

DB2_NO_FORK_CHECK

v Operating system: UNIX

v Default: OFF, Values: ON or OFF

v When this variable is enabled, the DB2 runtime client minimizes checks

to determine if the current process is a result of a fork call. This can

improve performance of DB2 applications that do not use the fork() api.

412 Data Servers, Databases, and Database Objects Guide

Note: This variable is deprecated and will be removed in a future release.

It is unnecessary because the current process id (pid) is cached when the

process is started or newly forked.

DB2NTMEMSIZE

v Operating system: Windows

v Default: (varies by memory segment)

v Windows requires that all shared memory segments be reserved at DLL

initialization time in order to guarantee matching addresses across

processes. DB2NTMEMSIZE permits the user to override the DB2

defaults on Windows if necessary. In most situations, the default values

should be sufficient. The memory segments, default sizes, and override

options are:

1. Parallel FCM Buffers: default size is 512 MB on 32-bit platforms, 4.5

GB on 64-bit platforms; override option is FCM:<number of bytes>

2. Fenced Mode Communication: default size is 80 MB on 32-bit

platforms, 512 MB on 64-bit platforms; override option is

APLD:<number of bytes>

More than one segment may be overridden by separating the override

options with a semicolon (;). For example, on a 32-bit version of DB2, to

limit the FCM buffers to 1 GB, and the fenced stored procedures limit to

256 MB, use:

db2set DB2NTMEMSIZE=FCM:1073741824;APLD:268435456

DB2NTNOCACHE

v Operating system: Windows

v Default: OFF, Values: ON or OFF

v The DB2NTNOCACHE registry variable specifies whether the DB2

database system opens database files with a NOCACHE option. If

DB2NTNOCACHE=ON, file system caching is eliminated. If

DB2NTNOCACHE=OFF, the operating system caches DB2 files. This

applies to all data except for files that contain long fields or LOBs.

Eliminating system caching allows more memory to be available to the

database so that the buffer pool or sort heap can be increased.

In Windows, files are cached when they are opened, which is the default

behavior. One MB is reserved from a system pool for every 1 GB in the

file. Use this registry variable to override the undocumented 192 MB

limit for the cache. When the cache limit is reached, an out-of-resource

error is given.

Note: DB2NTNOCACHE has been deprecated since Version 8.2 and will

be removed in a future release. You can achieve the same benefit for table

space containers by using the CREATE TABLESPACE and ALTER

TABLESPACE SQL statements.

DB2NTPRICLASS

v Operating system: Windows

v Default: NULL, Values: R, H, (any other value)

v Sets the priority class for the DB2 instance (program DB2SYSCS.EXE).

There are three priority classes:

– NORMAL_PRIORITY_CLASS (the default priority class)

– REALTIME_PRIORITY_CLASS (set by using R)

– HIGH_PRIORITY_CLASS (set by using H)

Chapter 19. Registry and environment variables 413

This variable is used in conjunction with individual thread priorities (set

using DB2PRIORITIES) to determine the absolute priority of DB2

threads relative to other threads in the system.

Note: DB2NTPRICLASS is deprecated and should only be used at the

recommendation of service. Use DB2 service classes to adjust agent

priority and prefetch priority. Care should be taken when using this

variable. Misuse could adversely affect overall system performance.

For more information, please refer to the SetPriorityClass() API in the

Win32 documentation.

DB2NTWORKSET

v Operating system: Windows

v Default: 1,1

v Used to modify the minimum and maximum working-set size available

to the DB2 database manager. By default, when Windows is not in a

paging situation, the working set of a process can grow as large as

needed. However, when paging occurs, the maximum working set that a

process can have is approximately 1 MB. DB2NTWORKSET allows you

to override this default behavior.

Specify DB2NTWORKSET using the syntax DB2NTWORKSET=min,

max, where min and max are expressed in megabytes.

DB2_OVERRIDE_BPF

v Operating system: All

v Default: Not set, Values: a positive numeric number of pages OR

<entry>[;<entry>...] where <entry>=<buffer pool ID>,<number of pages>

v This variable specifies the size of the buffer pool, in pages, to be created

at database activation, rollforward recovery, or crash recovery. It is

useful when memory constraints cause failures to occur during database

activation, rollforward recovery, or crash recovery. The memory

constraint could arise either in the rare case of a real memory shortage

or, because of the attempt by the database manager to allocate a large

buffer pool, in the case where there were inaccurately configured buffer

pools. For example, when even a minimal buffer pool of 16 pages is not

brought up by the database manager, try specifying a smaller number of

pages using this environment variable. The value given to this variable

overrides the current buffer pool size.

You can also use <entry>[;<entry>...] where <entry>=<buffer pool

ID>,<number of pages> to temporarily change the size of all or a subset

of the buffer pools so that they can start up.

DB2_PINNED_BP

v Operating system: AIX, HP-UX, Linux

v Default: NO, Values: YES or NO

v Setting this variable to YES causes DB2 to request that the operating

system pins DB2’s Database Shared Memory. When configuring DB2 to

pin Database Shared Memory, care should be taken to ensure that the

system is not overcommitted, as the operating system will have reduced

flexibility in managing memory.

On Linux, in addition to modifying this registry variable, the library,

libcap.so.1 is also required.

414 Data Servers, Databases, and Database Objects Guide

Setting this variable to YES means that self tuning for database shared

memory (activated by setting the database_memory configuration

parameter to AUTOMATIC) cannot be enabled.

For AIX operating systems, to use database memory pinning with

medium page size support (which is a default behavior), ensure that the

instance owner has the CAP_BYPASS_RAC_VMM and

CAP_PROPAGATE capabilities by logging on as root authority and

issuing the following command:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE <instance_owner_user_id>

For HP-UX in a 64-bit environment, in addition to modifying this

registry variable, the DB2 instance group must be given the MLOCK

privilege. To do this, a user with root access rights performs the

following actions:

1. Adds the DB2 instance group to the /etc/privgroup file. For

example, if the DB2 instance group belongs to db2iadm1 group then

the following line must be added to the /etc/privgroup file:

 db2iadm1 MLOCK

2. Issues the following command:

 setprivgrp -f /etc/privgroup

DB2PRIORITIES

v Operating system: All

v Values setting is platform dependent

v Controls the priorities of DB2 processes and threads.

Note: DB2PRIORITIES is deprecated and should only be used at the

recommendation of service. Use DB2 service classes to adjust agent priority

and prefetch priority.

DB2_RCT_FEATURES

v Operating system: All

v Default: NULL. Values: GROUPUPDATE=[ON|OFF]. The default value for

GROUPUPDATE is OFF.

v This variable allows for optimized and reduced update processing for a

searched UPDATE statement which targets multiple rows in an range

clustered table when only equal predicates on the leading and subset of

key sequence columns are specified. Logging is also reduced due to a

single log record for all rows updated on a page, instead of a log record

for each row updated.

Usage :

db2set DB2_RCT_FEATURES=GROUPUPDATE=ON

Note: This registry variable is available with Version 9.5 fix pack 3. It

will not be possible to reverse migrate to older fix packs once this

registry variable is enabled. In addition, group update will not be

performed when the target table of the UPDATE statement uses DATA

CAPTURE CHANGES, triggers, variable length columns, has any

secondary indexes, or the update modifies any primary or foreign key

columns.

DB2_RESOURCE_POLICY

v Operating system: AIX 5 or higher, all Linux except zSeries (32–bit),

Windows Server 2003 or higher

v Default: Not set, Values: valid path to configuration file

Chapter 19. Registry and environment variables 415

v Defines a resource policy which can be used to limit what operating

system resources are used by the DB2 database or it contains rules for

assigning specific operating system resources to specific DB2 database

objects. For example, on AIX, Linux, or Windows operating systems, this

registry variable can be used to limit the set of processors that the DB2

database system uses. The extent of resource control varies depending

on the operating system.

On AIX NUMA and Linux NUMA enabled machines, a policy can be

defined which specifies what resource sets the DB2 database system

uses. When resource set binding is used, each individual DB2 process is

bound to a particular resource set. This can be beneficial in some

performance tuning scenarios.

You can set the registry variable to indicate the path to a configuration

file which defines a policy for binding DB2 processes to operating

system resources. The resource policy allows you to specify a set of

operating system resources to restrict the DB2 database system. Each

DB2 process is bound to a single resource of the set. Resource

assignment occurs in a circular round robin fashion.

Sample configuration files:

Example 1: Bind all DB2 processes to either CPU 1 or 3.

<RESOURCE_POLICY>

 <GLOBAL_RESOURCE_POLICY>

 <METHOD>CPU</METHOD>

 <RESOURCE_BINDING>

 <RESOURCE>1</RESOURCE>

 </RESOURCE_BINDING>

 <RESOURCE_BINDING>

 <RESOURCE>3</RESOURCE>

 </RESOURCE_BINDING>

 </GLOBAL_RESOURCE_POLICY>

 </RESOURCE_POLICY>

Example 2: (AIX only) Bind DB2 processes to one of the following

resource sets: sys/node.03.00000, sys/node.03.00001, sys/node.03.00002,

sys/node.03.00003

<RESOURCE_POLICY>

 <GLOBAL_RESOURCE_POLICY>

 <METHOD>RSET</METHOD>

 <RESOURCE_BINDING>

 <RESOURCE>sys/node.03.00000</RESOURCE>

 </RESOURCE_BINDING>

 <RESOURCE_BINDING>

 <RESOURCE>sys/node.03.00001</RESOURCE>

 </RESOURCE_BINDING>

 <RESOURCE_BINDING>

 <RESOURCE>sys/node.03.00002</RESOURCE>

 </RESOURCE_BINDING>

 <RESOURCE_BINDING>

 <RESOURCE>sys/node.03.00003</RESOURCE>

 </RESOURCE_BINDING>

 </GLOBAL_RESOURCE_POLICY>

 </RESOURCE_POLICY>

Note: For AIX only, use of the RSET method requires

CAP_NUMA_ATTACH capability.

Example 3: (Linux only) Bind all memory from bufferpool IDs 2 and 3

which are associated with the SAMPLE database to NUMA node 3. Also

416 Data Servers, Databases, and Database Objects Guide

use 80 percent of the total database memory for the binding to NUMA

node 3 and leave 20 percent to be striped across all nodes for

non-bufferpool specific memory.

<RESOURCE_POLICY>

 <DATABASE_RESOURCE_POLICY>

 <DBNAME>sample</DBNAME>

 <METHOD>NODEMASK</METHOD>

 <RESOURCE_BINDING>

 <RESOURCE>3</RESOURCE>

 <DBMEM_PERCENTAGE>80</DBMEM_PERCENTAGE>

 <BUFFERPOOL_BINDING>

 <BUFFERPOOL_ID>2</BUFFERPOOL_ID>

 <BUFFERPOOL_ID>3</BUFFERPOOL_ID>

 </BUFFERPOOL_BINDING>

 </RESOURCE_BINDING>

 </DATABASE_RESOURCE_POLICY>

 </RESOURCE_POLICY>

Example 4: (For Linux and Windows only) Define two distinct processor

sets specified by CPU masks 0x0F and 0xF0. Bind DB2 processes and

bufferpool ID 2 to processor set 0x0F and DB2 processes and bufferpool

ID 3 to processor set 0xF0. For each processor set, use 50 percent of the

total database memory for the binding.

This resource policy is useful when a mapping between processors and

NUMA nodes is desired. An example of such a scenario is a system with

8 processors and 2 NUMA nodes where processors 0 to 3 belong to

NUMA node 0 and processors 4 to 7 belong to NUMA node 1. This

resource policy allows for processor binding while implicitly maintaining

memory locality (ie. a hybrid of CPU method and NODEMASK

method).

 <RESOURCE_POLICY>

 <DATABASE_RESOURCE_POLICY>

 <DBNAME>sample</DBNAME>

 <METHOD>CPUMASK</METHOD>

 <RESOURCE_BINDING>

 <RESOURCE>0x0F</RESOURCE>

 <DBMEM_PERCENTAGE>50</DBMEM_PERCENTAGE>

 <BUFFERPOOL_BINDING>

 <BUFFERPOOL_ID>2</BUFFERPOOL_ID>

 </BUFFERPOOL_BINDING>

 </RESOURCE_BINDING>

 <RESOURCE>0x0F</RESOURCE>

 <DBMEM_PERCENTAGE>50</DBMEM_PERCENTAGE>

 <BUFFERPOOL_BINDING>

 <BUFFERPOOL_ID>3</BUFFERPOOL_ID>

 </BUFFERPOOL_BINDING>

 </RESOURCE_BINDING>

 </DATABASE_RESOURCE_POLICY>

 </RESOURCE_POLICY>

Note: Use of the RSET method requires CAP_NUMA_ATTACH

capability and is not supported on Linux.

The configuration file specified by the DB2_RESOURCE_POLICY

registry variable accepts a SCHEDULING_POLICY element. You can use

the SCHEDULING_POLICY element on some platforms to select

– The operating system scheduling policy used by the DB2 server

You can set an operating system scheduling policy for DB2 on AIX,

and for DB2 on Windows using the DB2NTPRICLASS registry

variable.

– The operating system priorities used by individual DB2 server agents

Chapter 19. Registry and environment variables 417

Alternatively, you can use the registry variables DB2PRIORITIES and

DB2NTPRICLASS to control the operating system scheduling policy

and set DB2 agent priorities. However, the specification of a

SCHEDULING_POLICY element in the resource policy configuration file

provides a single place to specify both the scheduling policy and the

associated agent priorities.

Example 1: Selection of the AIX SCHED_FIFO2 scheduling policy with a

priority boost for the db2 log writer and reader processes.

 <RESOURCE_POLICY>

 <SCHEDULING_POLICY>

 <POLICY_TYPE>SCHED_FIFO2</POLICY_TYPE>

 <PRIORITY_VALUE>60</PRIORITY_VALUE>

 <EDU_PRIORITY>

 <EDU_NAME>db2loggr</EDU_NAME>

 <PRIORITY_VALUE>56</PRIORITY_VALUE>

 </EDU_PRIORITY>

 <EDU_PRIORITY>

 <EDU_NAME>db2loggw</EDU_NAME>

 <PRIORITY_VALUE>56</PRIORITY_VALUE>

 </EDU_PRIORITY>

 </SCHEDULING_POLICY>

 </RESOURCE_POLICY>

Example 2: Replacement for DB2NTPRICLASS=H on Windows.

 <RESOURCE_POLICY>

 <SCHEDULING_POLICY>

 <POLICY_TYPE>HIGH_PRIORITY_CLASS</POLICY_TYPE>

 </SCHEDULING_POLICY>

 </RESOURCE_POLICY>

DB2_SET_MAX_CONTAINER_SIZE

v Operating system: All

v Default: Not set, Values: -1, any positive integer greater than 65536 bytes

v This registry variable allows you to limit the size of individual

containers for automatic storage table spaces with the AutoResize feature

enabled.

Note: Although you can specify DB2_SET_MAX_CONTAINER_SIZE in

bytes, kilobytes, or megabytes, db2set indicates its value in bytes.

v If the value is set to -1, there will be no limit to the size of a container.

DB2_SKIPDELETED

v Operating system: All

v Default: OFF, Values: ON or OFF

v When enabled, this variable allows statements using either Cursor

Stability or Read Stability isolation levels to unconditionally skip deleted

keys during index access and deleted rows during table access. With

DB2_EVALUNCOMMITTED enabled, deleted rows are automatically

skipped, but uncommitted pseudo-deleted keys in type-2 indexes are not

skipped unless DB2_SKIPDELETED is also enabled.

This registry variable does not impact the behavior of cursors on the

DB2 catalog tables.

This registry variable is activated with the db2start command.

DB2_SKIPINSERTED

v Operating system: All

418 Data Servers, Databases, and Database Objects Guide

v Default: OFF, Values: ON or OFF

v When the DB2_SKIPINSERTED registry variable is enabled, it allows

statements using either Cursor Stability or Read Stability isolation levels

to skip uncommitted inserted rows as if they had not been inserted. This

registry variable does not impact the behavior of cursors on the DB2

catalog tables. This registry variable is activated at database startup,

while the decision to skip uncommitted inserted rows is made at

statement compile or bind time.

Note: Skip inserted behavior is not compatible with tables that have

pending rollout cleanup. As a result, scanners might wait for locks on a

RID only to discover that the RID is part of a rolled out block.

DB2_SMS_TRUNC_TMPTABLE_THRESH

v Operating system: All

v Default: 0, Values: -1, 0-n, where n = the number of extents per

temporary table in the SMS table space container that are to be

maintained

v This variable specifies a minimum file size threshold at which the file

representing a temporary table is maintained in SMS table spaces.

By default, this variable is set to 0, which means no special threshold

handling is done. Instead, once a temporary table is no longer needed,

that file is truncated to 0 extent.

When the value of this variable is greater than 0, a larger file is

maintained. This reduces some of the system overhead involved in

dropping and recreating the file each time a temporary table is used.

If this variable is set to -1, the file is not truncated and the file is allowed

to grow indefinitely, restricted only by system resources.

DB2_SORT_AFTER_TQ

v Operating system: All

v Default: NO, Values: YES or NO

v Specifies how the optimizer works with directed table queues in a

partitioned database environment when the receiving end requires the

data to be sorted and the number of receiving nodes is equal to the

number of sending nodes.

When DB2_SORT_AFTER_TQ=NO, the optimizer tends to sort at the

sending end and merge the rows at the receiving end.

When DB2_SORT_AFTER_TQ=YES, the optimizer tends to transmit the

rows unsorted, not merge at the receiving end, and sort the rows at the

receiving end after receiving all the rows.

DB2_SELUDI_COMM_BUFFER

v Operating system: All

v Default: OFF, Values: ON or OFF

v This variable is used during the processing of blocking cursors over

SELECT from UPDATE, INSERT, or DELETE (UDI) queries. When

enabled, this registry variable prevents the result of a query from being

stored in a temporary table. Instead, during the OPEN processing of a

blocking cursor for a SELECT from UDI query, the DB2 database system

attempts to buffer the entire result of the query directly into the

communications buffer memory area.

Chapter 19. Registry and environment variables 419

Note: If the communications buffer space is not large enough to hold

the entire result of query, an SQLCODE -906 error is issued, and the

transaction is rolled back. See the aslheapsz and rqrioblk database

manager configuration parameters for information on adjusting the size

of the communication buffer memory area for local and remote

applications respectively.

This registry variable is not supported in partitioned database

environments or when intrapartition parallelism is enabled.

DB2_TRUSTED_BINDIN

v Operating system: All

v Default: OFF, Values: OFF, ON, or CHECK

v When DB2_TRUSTED_BINDIN is enabled, it speeds up the execution

of query statements containing host variables within an embedded

unfenced stored procedure.

When this variable is enabled, there is no conversion from the external

SQLDA format to an internal DB2 format during the binding of SQL and

XQuery statements contained within an embedded unfenced stored

procedure. This will speed up the processing of the embedded SQL and

XQuery statements.

The following data types are not supported in embedded unfenced

stored procedures when this variable is enabled:

– SQL_TYP_DATE

– SQL_TYP_TIME

– SQL_TYP_STAMP

– SQL_TYP_CGSTR

– SQL_TYP_BLOB

– SQL_TYP_CLOB

– SQL_TYP_DBCLOB

– SQL_TYP_CSTR

– SQL_TYP_LSTR

– SQL_TYP_BLOB_LOCATOR

– SQL_TYP_CLOB_LOCATOR

– SQL_TYP_DCLOB_LOCATOR

– SQL_TYP_BLOB_FILE

– SQL_TYP_CLOB_FILE

– SQL_TYP_DCLOB_FILE

– SQL_TYP_BLOB_FILE_OBSOLETE

– SQL_TYP_CLOB_FILE_OBSOLETE

– SQL_TYP_DCLOB_FILE_OBSOLETE
If these data types are encountered, an SQLCODE -804, SQLSTATE 07002

error is returned.

Note: The data type and length of the input host variable must match

the internal data type and length of the corresponding element exactly.

For host variables, this requirement will always be met. However, for

parameter markers, care must be taken to ensure that matching data

types are used. The CHECK option can be used to ensure that the data

types and lengths match for all input host variables, but this option

negates most of the performance improvements.

420 Data Servers, Databases, and Database Objects Guide

Note: DB2_TRUSTED_BINDIN is deprecated and will be removed in a

later release.

DB2_USE_ALTERNATE_PAGE_CLEANING

v Operating system: All

v Default: Not set, Values: ON or OFF

v This variable specifies whether a DB2 database uses the alternate

method of page cleaning algorithms or the default method of page

cleaning. When this variable is set to ON, the DB2 system writes

changed pages to disk, keeping ahead of LSN_GAP and proactively

finding victims. Doing this allows the page cleaners to better utilize

available disk I/O bandwidth. When this variable is set to ON, the

chngpgs_thresh database configuration parameter is no longer relevant

because it does not control page cleaner activity.

DB2_USE_IOCP

v Operating system: AIX 5.3 TL9

v Default: OFF Values: OFF or ON

v Configure IOCP before enabling this registry variable.

v This variables enables the use of AIX I/O completion ports (IOCP) when

submitting and collecting asynchronous I/O (AIO) requests. This feature

is used to enhance performance in a non-uniform memory access

(NUMA) environment by avoiding remote memory access. This

performance variable is available with Version 9.5 fix pack 3.

Miscellaneous variables

DB2ADMINSERVER

v Operating system: Windows and UNIX

v Default: NULL

v Specifies the DB2 Administration Server.

DB2_ATS_ENABLE

v Operating system: All

v Default: NULL, Values: YES/TRUE/ON/1 or NO/FALSE/OFF/0

v This variable controls whether the administrative task scheduler is

running. The administrative task scheduler is disabled by default. When

the scheduler is disabled, you can use the built-in procedures and views

to define and modify tasks but the scheduler will not execute the tasks.

DB2AUTH

v Operating system: All

v Values: TRUSTEDCLIENT_SRVRENC, TRUSTEDCLIENT_DATAENC,

DISABLE_CHGPASS

v This variable allows you to tune the behavior of user authentication.

– TRUSTEDCLIENT_SRVRENC: This value forces untrusted clients to

use SERVER_ENCRYPT.

– TRUSTEDCLIENT_DATAENC: This value forces untrusted clients to

use DATA_ENCRYPT.

– DISABLE_CHGPASS: This value disables the ability to change the

password from the client.

– OSAUTHDB: Starting in DB2 Version 9.5 Fix Pack 4, this value

instructs DB2 to use the authentication and group setting for a user

Chapter 19. Registry and environment variables 421

on the AIX operating system. By setting DB2AUTH to the

OSAUTHDB value, you can configure DB2 to authenticate users and

acquire their groups through the operating system. If the AIX

operating system settings for a user’s authentication and group

information are configured to use LDAP, the AIX operating system

will, in turn, perform authentication through an LDAP server. The

LDAP server can be any one of the following:

- IBM Tivoli Directory Server (ITDS)

- Microsoft Active Directory (MSAD)

- Sun One Directory Server

DB2CLIINIPATH

v Operating system: All

v Default: NULL

v Used to override the default path of the DB2 CLI/ODBC configuration

file (db2cli.ini) and specify a different location on the client. The value

specified must be a valid path on the client system.

DB2_COMMIT_ON_EXIT

v Operating system: UNIX

v Default: OFF, Values: OFF/NO/0 or ON/YES/1

v On UNIX operating systems, prior to DB2 UDB Version 8, DB2

committed any remaining in-flight transactions on successful application

exit. In DB2 UDB Version 8, the behavior was changed so that in-flight

transactions were rolled back on exit. This registry variable allows users

with embedded SQL applications which depend on the earlier behavior

to continue to enable it in version 9. This registry variable does not

affect JDBC, CLI, and ODBC applications.

Note that this registry variable is deprecated, and the commit-on-exit

behavior will no longer be supported in future release. Users should

determine whether any of their applications developed prior to version 9

continue to depend on this functionality, and add the appropriate

explicit COMMIT or ROLLBACK statements to the application as

required. If the registry variable is turned on, care should be taken not

to implement new applications which fail to explicitly COMMIT before

exit.

Most users should leave this registry variable at the default setting.

DB2_CREATE_DB_ON_PATH

v Operating system: Windows

v Default: NULL, Values: YES or NO

v Set this registry variable to YES to enable support for the use of a path

(as well as a drive) as a database path. The setting of

DB2_CREATE_DB_ON_PATH is checked when a database is created,

when the database manager configuration parameter dftdbpath is set,

and when a database is restored. The fully qualified database path can

be up to 215 characters in length.

If DB2_CREATE_DB_ON_PATH is not set (or is set to NO) and you

specify a path for the database path when creating or restoring a

database, error SQL1052N is returned.

If DB2_CREATE_DB_ON_PATH is not set (or is set to NO) and you

update the dftdbpath database manager configuration parameter, error

SQL5136N is returned.

422 Data Servers, Databases, and Database Objects Guide

CAUTION:

If path support is used to create new databases, applications written

prior to Version 9.1 using the db2DbDirGetNextEntry() API or an

older version of it, might not work correctly. Refer to

http://www.ibm.com/software/data/db2/support/db2_9/ for details on

various scenarios and the proper course of action.

DB2DEFPREP

v Operating system: All

v Default: NO, Values: ALL, YES, or NO

v Simulates the runtime behavior of the DEFERRED_PREPARE precompile

option for applications that were precompiled before this option was

available. For example, if a DB2 v2.1.1 or earlier application were run in

a DB2 v2.1.2 or later environment, DB2DEFPREP could be used to

indicate the desired “deferred prepare” behavior.

Note: DB2DEFPREP is deprecated and will be removed in a future

release. This variable is only needed by users using old versions of DB2

where the DEFERRED_PREPARE precompile option is not available.

DB2_DISABLE_FLUSH_LOG

v Operating system: All

v Default: OFF, Values: ON or OFF

v Specifies whether to disable closing the active log file when the online

backup is completed.

When an online backup completes, the last active log file is truncated,

closed, and made available to be archived. This ensures that your online

backup has a complete set of archived logs available for recovery. You

might want to disable closing the last active log file if you are concerned

that you are wasting portions of the Log Sequence Number (LSN) space.

Each time an active log file is truncated, the LSN is incremented by an

amount proportional to the space truncated. If you perform a large

number of online backups each day, you might disable closing the last

active log file.

You might also want to disable closing the last active log file if you find

you are receiving log full messages a short time after the completion of

the online backup. When a log file is truncated, the reserved active log

space is incremented by the amount proportional to the size of the

truncated log. The active log space is freed once the truncated log file is

reclaimed. The reclamation occurs a short time after the log file becomes

inactive. During the short interval between these two events, you may

receive log full messages.

During any backup which includes logs, this registry variable is ignored,

since the active log file must be truncated and closed in order for the

backup to include the logs.

DB2CONNECT_DISCONNECT_ON_INTERRUPT

v Operating system: All

v Default: NO, Values: YES/TRUE/1 or NO/FALSE/0

v When set to YES (TRUE or 1), this variable specifies that the connection

to a Version 8 (or higher) DB2 Universal Database z/OS server should

be broken immediately when an interrupt occurs. You can use this

variable in the following configurations:

Chapter 19. Registry and environment variables 423

http://www.ibm.com/software/data/db2/support/db2_9/

– If you are running a DB2 client with a Version 8 (or higher) DB2 UDB

z/OS server, set DB2CONNECT_DISCONNECT_ON_INTERRUPT

to YES on the client.

– If you are running a DB2 client through a DB2 Connect gateway to a

Version 8 (or higher) DB2 UDB z/OS server, set

DB2CONNECT_DISCONNECT_ON_INTERRUPT to YES on the

gateway.

DB2_DISPATCHER_PEEKTIMEOUT

v Operating system: All

v Default: 1, Values: 0 to 32767 seconds; 0 denotes that timeout is

immediate

v DB2_DISPATCHER_PEEKTIMEOUT allows you to adjust the time, in

seconds, that a dispatcher waits for a client’s connection request before

handing the client off to an agent. In most cases, you should not need to

adjust this registry variable. This registry variable only affects instances

that have DB2 Connect connection concentrator enabled.

This registry variable and the DB2_SERVER_CONTIMEOUT registry

variable both configure the handling of a new client during connect

time. If there are many slow clients connecting to an instance, the

dispatcher may be held up for up to 1 second to timeout each client,

causing the dispatcher to become a bottle neck, if many clients are

connecting simultaneously. If an instance with multiple active databases

is experiencing very slow connection times,

DB2_DISPATCHER_PEEKTIMEOUT may be lowered to 0. Lowering

DB2_DISPATCHER_PEEKTIMEOUT causes the dispatcher to only look

into the client’s connect request if it is already there; the dispatcher will

not wait for the connect request to arrive. If an invalid value is set, the

default value is used. This registry variable is not dynamic.

DB2_DJ_INI

v Operating system: All

v Default:

– UNIX: db2_instance_directory/cfg/db2dj.ini

– Windows: db2_install_directory\cfg\db2dj.ini
v Specifies the absolute path name of the federation configuration file, for

example: db2set DB2_DJ_INI=$HOME/sqllib/cfg/my_db2dj.ini This file

contains the settings for data source environment variables. These

environment variables are used by the Informix® wrapper and by the

wrappers provided by WebSphere® Federation Server.

Here is a sample federation configuration file:

INFORMIXDIR=/informix/client_sdk

INFORMIXSERVER=inf93

ORACLE_HOME=/usr/oracle9i

SYBASE=/sybase/V12

SYBASE_OCS=OCS-12_5

The following restrictions apply to the db2dj.ini file:

– Entries must follow the format evname=value where evname is the

name of the environment variable and value is its value.

– The environment variable name has a maximum length of 255 bytes.

– The environment variable value has a maximum length of 765 bytes.
This variable is ignored unless the database manager parameter

FEDERATED is set to YES.

424 Data Servers, Databases, and Database Objects Guide

DB2DMNBCKCTLR

v Operating system: Windows

v Default: NULL, Values: ? or a domain name

v If you know the name of the domain for which the DB2 server is the

backup domain controller, set DB2DMNBCKCTLR=DOMAIN_NAME.

The DOMAIN_NAME must be in upper case. To have DB2 determine

the domain for which the local machine is a backup domain controller,

set DB2DMNBCKCTLR=?. If the DB2DMNBCKCTLR profile variable

is not set or is set to blank, DB2 performs authentication at the primary

domain controller.

Note: DB2 does not use an existing backup domain controller by default

because a backup domain controller can get out of synchronization with

the primary domain controller, causing a security exposure. Getting out

of synchronization can occur when the primary domain controller’s

security database is updated but the changes are not propagated to a

backup domain controller. This could occur if there are network latencies

or if the computer browser service is not operational.

Note: DB2DMNBCKCTLR is deprecated and will be removed in a later

release. This variable is no longer necessary because there are no more

backup domain controllers in the Active Directory.

DB2_DOCHOST

v Operating system: All

v Default: Not set (but DB2 will still try to access the Information Center

from the IBM Web site at publib.boulder.ibm.com/infocenter/db2luw/
v9r5), Values: http://hostname where hostname is a valid host name or IP

address

v Specifies the host name on which the DB2 Information Center is installed.

This variable can be automatically set during the installation of the DB2

Information Center if the automatic configuration option is selected in the

DB2 Setup wizard.

DB2_DOCPORT

v Operating system: All

v Default: NULL, Values: any valid port number

v Specifies the port number through which the DB2 help system serves the

DB2 documentation. This variable can be automatically set during the

installation of the DB2 Information Center if the automatic configuration

option is selected in the DB2 Setup wizard.

DB2_ENABLE_AUTOCONFIG_DEFAULT

v Operating system: All

v Default: NULL, Values: YES or NO

v This variable controls whether the Configuration Advisor is run

automatically at database creation. If

DB2_ENABLE_AUTOCONFIG_DEFAULT is not set (null), the effect is

the same as if the variable was set to YES and the Configuration Advisor

is run at database creation. You do not need to restart the instance after

you set this variable. If you execute the AUTOCONFIGURE command

or run CREATE DB AUTOCONFIGURE, these commands override the

setting of DB2_ENABLE_AUTOCONFIG_DEFAULT.

DB2_ENABLE_LDAP

Chapter 19. Registry and environment variables 425

v Operating system: All

v Default: NO, Values: YES or NO

v Specifies whether or not the Lightweight Directory Access Protocol

(LDAP) is used. LDAP is an access method to directory services.

DB2_EVMON_EVENT_LIST_SIZE

v Operating system: All

v Default: 0 (no limit), Values: A value specified in KB/Kb/kb,

MB/Mb/mb, or GB/Gb/gb; While there is no fixed upper limit for this

variable, it is limited by the amount of available memory from the

monitor heap.

v This registry variable specifies the maximum number of bytes that can

be queued up waiting to be written to a particular event monitor. Once

this limit is reached, agents attempting to send event monitor records

will wait until the queue size drops below this threshold.

Note: If activity records cannot be allocated from the monitor heap, they

will be dropped. To prevent this from happening, set the mon_heap_sz

configuration parameter to AUTOMATIC. If you have mon_heap_sz set to

a specific value, ensure that DB2_EVMON_EVENT_LIST_SIZE is set to a

smaller value. These actions, however, cannot guarantee that activity

records will not be dropped, as the monitor heap is also used for tracking

other monitor elements.

DB2_EVMON_STMT_FILTER

v Operating system: All

v Default: Not set; Values:

– ALL: Indicates that the output for all statement event monitors is to

be filtered. This option is exclusive.

– ’nameA nameB nameC’: Where each name in the string represents the

name of an event monitor for which records are to be filtered. If more

than one name is supplied, each name must be separated by a single

blank. All input names will be made uppercase by DB2. The

maximum number of event monitors you can specify is 32. Each

monitor name can be up to a maximum of 18 characters long.

– ’nameA:op1,op2 nameB:op1,op2 nameC:op1’: Where each name in the

string represents the name of an event monitor for which records are

to be filtered. Each option (op1, op2, etc.) represents an integer value

mapping to a specific SQL operation. Specifying integer values allows

users to determine which rules to apply to which event monitor.
v DB2_EVMON_STMT_FILTER can be used to reduce the number of

records written by a statement event monitor. When set, this registry

variable causes only the records for the following SQL operations to be

written to the specified event monitor:

 Table 65. List of integer values that can be specified in DB2_EVMON_STMT_FILTER to

represent specific SQL operations

SQL operation Integer value mapping

SELECT 15

EXECUTE 2

EXECUTE_IMMEDIATE 3

CLOSE 6

426 Data Servers, Databases, and Database Objects Guide

Table 65. List of integer values that can be specified in DB2_EVMON_STMT_FILTER to

represent specific SQL operations (continued)

SQL operation Integer value mapping

STATIC COMMIT 8

STATIC ROLLBACK 9

CALL 12

PRE_EXEC 17

All other operations will not appear in the output of the statement event

monitor. To customize the set of operations for which records are written

to the event monitor, use integer values.

Example 1:

db2set DB2_EVMON_STMT_FILTER= ’mon1 monitor3’

In this example, mon1 and monitor3 event monitors will receive a record

for a restricted list of application requests. For example, if an application

being monitored by the mon1 statement event monitor prepares a

dynamic SQL statement, opens a cursor based on that statement, fetches

10,000 rows from that cursor, and then issues a cursor close request, only

a record for a close request will appear in the mon1 event monitor

output.

Example 2:

db2set DB2_EVMON_STMT_FILTER=’evmon1:3,8 evmon2:9,15

In this example, evmon1 and evmon2 will receive a record for a

restricted list of application requests. For example, if an application

being monitored by the evmon1 statement event monitor issues a create

statement, only the execute immediate and static commit operations will

appear in the evmon1 event monitor output. If an application being

monitored by the evmon2 statement event monitor performs SQL

involving both a select and a static rollback only these two operations

will appear in the evmon2 event monitor output.

Note: Refer to the sqlmon.h header file for definitions of database system

monitor constants.

DB2_EXTSECURITY

v Operating system: Windows

v Default: ON, Values: ON or OFF

v Prevents unauthorized access to DB2 by locking DB2 system files. To

avoid potential problems, this registry variable should not be turned off.

DB2_FALLBACK

v Operating system: Windows

v Default: OFF, Values: ON or OFF

v This variable allows you to force all database connections off during the

fallback processing. It is used in conjunction with the failover support in

the Windows environment with Microsoft Cluster Server (MSCS). If

DB2_FALLBACK is not set or is set to OFF, and a database connection

exists during the fall back, the DB2 resource cannot be brought offline.

This will mean the fallback processing will fail.

DB2_FMP_COMM_HEAPSZ

Chapter 19. Registry and environment variables 427

v Operating system: Windows, UNIX

v Default: 20 MB, or enough space to run 10 fenced routines (whichever is

larger). On AIX, the default is 256 MB

v This variable specifies, in 4 KB pages, the size of the pool used for

fenced routine invocations, such as stored procedure or user-defined

function calls. The space used by each fenced routine is twice the value

of the aslheapsz configuration parameter.

If you are running a large number of fenced routines on your system,

you may need to increase the value of this variable. If you are running a

very small number of fenced routines, you can reduce it.

Setting this value to 0 means that no set is created, and as a result no

fenced routines can be invoked. It also means that the health monitor

and the automatic database maintenance functionality (such as automatic

backups, statistics collection, and REORG) will be disabled since this

functionality relies on the fenced routine infrastructure.

DB2_GRP_LOOKUP

v Operating system: Windows

v Default: NULL, Values: LOCAL, DOMAIN, TOKEN, TOKENLOCAL,

TOKENDOMAIN

v This variable specifies which Windows security mechanism is used to

enumerate the groups to which a user belongs.

DB2_HADR_BUF_SIZE

v Operating system: All

v Default: 2*logbufsz

v This variable specifies the standby log receiving buffer size in unit of log

pages. If not set, DB2 will use two times the primary logbufsz

configuration parameter value for the standby receiving buffer size. This

variable should be set in the standby instance. It is ignored by the

primary database.

If HADR synchronization mode (the hadr_syncmode database

configuration parameter) is set to ASYNC, during peer state, a slow

standby may cause the send operation on the primary to stall and

therefore block transaction processing on the primary. A larger than

default log-receiving buffer can be configured on a standby database to

allow it to hold more unprocessed log data. This may allow for brief

periods where the primary generates log data faster than the standby

can consume it, without blocking transaction processing at the primary.

Note: A larger log receiving buffer size can help absorb peak transaction

loads on the primary database, but the buffer will still fill up if the

average replay rate on the standby database is slower than the log rate

on the primary database.

DB2_HADR_NO_IP_CHECK

v Operating system: All

v Default: OFF, Values: ON |OFF

v Specifies whether to bypass IP check for HADR connections

v This variable is primarily used in Network Address Translation (NAT)

environments to bypass IP cross check for HADR connections. Use of

this variable is not recommended in other environments because it

weakens the sanity check of the HADR configuration. By default,

configuration consistency for the local and remote host parameters is

428 Data Servers, Databases, and Database Objects Guide

verified when an HADR connection is established. Hostnames are

mapped to IP addresses for the cross check. Two checks are performed:

– HADR_LOCAL_HOST parameter on primary =

HADR_REMOTE_HOST parameter on standby

– HADR_REMOTE_HOST parameter on primary =

HADR_LOCAL_HOST parameter on standby

The connection will be closed if the check fails.

When this parameter is turned on, no IP check occurs.

DB2_HADR_PEER_WAIT_LIMIT

v Operating system: All

v Default: 0 (meaning no limit) Values: 0 to max unsigned 32 bit integer,

inclusive

v Starting DB2 Version 9.5 Fix Pack 1, when registry variable

DB2_HADR_PEER_WAIT_LIMIT is set, the HADR primary database

will break out of peer state if logging on the primary database has been

blocked for the specified number of seconds because of log replication to

the standby. When this limit is reached, the primary database will break

the connection to the standby database. If the peer window is disabled,

the primary database will enter disconnected state and logging resumes.

If the peer window is enabled, the primary database will enter

disconnected peer state, in which logging continues to be blocked. The

primary database leaves disconnected peer state upon re-connection or

peer window expiration. Logging resumes once the primary leaves

disconnected peer state. This parameter has no effect on a standby

database. It is recommended that the same value be used on both

primary and standby databases though. Invalid values (not a number or

negative numbers) will be interpreted as ″0″, meaning no limit. This

parameter is static. Database instance needs to be restarted to make this

parameter effective.

DB2_HADR_SORCVBUF

v Operating system: All

v Default: Operating system TCP socket receive buffer size, Values: 1024 to

4294967295

v This variable specifies the operating system (OS) TCP socket receive

buffer size for the HADR connection, which allows users to customize

the HADR TCP/IP behavior distinctly from other connections. Some

operating systems will automatically round or silently cap the user

specified value. The actual buffer size used for the HADR connection is

logged in the db2diag.log file. Consult your operating system network

tuning guide for the optimal setting for this parameter based on your

network traffic. This variable should be used in conjunction with

DB2_HADR_SOSNDBUF.

DB2_HADR_SOSNDBUF

v Operating system: All

v Default: Operating system TCP socket send buffer size, Values: 1024 to

4294967295

v This variable specifies the operating system (OS) TCP socket send buffer

size for the HADR connection, which allows users to customize the

HADR TCP/IP behavior distinctly from other connections. Some

operating systems will automatically round or silently cap the user

specified value. The actual buffer size used for the HADR connection is

Chapter 19. Registry and environment variables 429

logged in the db2diag.log file. Consult your operating system network

tuning guide for the optimal setting for this parameter based on your

network traffic. This variable should be used in conjunction with

DB2_HADR_SORCVBUF.

DB2LDAP_BASEDN

v Operating system: All

v Default: NULL, Values: Any valid base distinguished domain name.

v When this is set, the LDAP objects for DB2 will be stored in the LDAP

directory under

 CN=System

 CN=IBM

 CN=DB2

under the base distinguished name specified.

When this is set for the Microsoft Active Directory Server, ensure that

CN=DB2, CN=IBM, and CN=System are defined under this

distinguished name.

DB2LDAPCACHE

v Operating system: All

v Default: YES, Values: YES or NO

v Specifies that the LDAP cache is to be enabled. This cache is used to

catalog the database, node, and DCS directories on the local machine.

To ensure that you have the latest entries in the cache, do the following:

 REFRESH LDAP IMMEDIATE ALL

This command updates and removes incorrect entries from the database

directory and the node directory.

DB2LDAP_CLIENT_PROVIDER

v Operating system: Windows

v Default: NULL (Microsoft, if available, is used; otherwise IBM is used.)

Values: IBM or Microsoft

v When running in a Windows environment, DB2 supports using either

Microsoft LDAP clients or IBM LDAP clients to access the LDAP

directory. This registry variable is used to explicitly select the LDAP

client to be used by DB2.

Note: To display the current value of this registry variable, use the

db2set command:

 db2set DB2LDAP_CLIENT_PROVIDER

DB2LDAPHOST

v Operating system: All

v Default: NULL, Values: Any valid hostname

v Specifies the hostname of the location for the LDAP directory.

DB2LDAP_KEEP_CONNECTION

v Operating system: All

v Default: YES, Values: YES or NO

v Specifies whether DB2 caches its internal LDAP connection handles.

When this variable is set to NO, DB2 will not cache its LDAP connection

handles to the directory server. This will likely result in a negative

performance impact, but it might be desirable to set

430 Data Servers, Databases, and Database Objects Guide

DB2LDAP_KEEP_CONNECTION to NO if the number of

simultaneously active LDAP client connections to the directory server

needs to be minimized.

To maximize performance, this variable is set to YES by default.

The DB2LDAP_KEEP_CONNECTION registry variable is only

implemented as a global level profile registry variable in LDAP, so you

must set it by specifying the -gl option with the db2set command as

follows:

 db2set -gl DB2LDAP_KEEP_CONNECTION=NO

DB2LDAP_SEARCH_SCOPE

v Operating system: All

v Default: DOMAIN, Values: LOCAL, DOMAIN, or GLOBAL

v Specifies the search scope for information found in database partitions or

domains in the Lightweight Directory Access Protocol (LDAP). LOCAL

disables searching in the LDAP directory. DOMAIN only searches in

LDAP for the current directory partition. GLOBAL searches in LDAP in

all directory partitions until the object is found.

DB2_LOAD_COPY_NO_OVERRIDE

v Operating system: All

v Default: NONRECOVERABLE, Values: COPY YES or

NONRECOVERABLE

v This variable will convert any LOAD COPY NO to either LOAD COPY

YES or NONRECOVERABLE, depending on the value of the variable.

This variable is applicable to HADR primary databases as well as to

standard (non-HADR) databases; it is ignored on an HADR standby

database. On an HADR primary database, if this variable is not set,

LOAD COPY NO is converted to LOAD NONRECOVERABLE. The

value of this variable either specifies a nonrecoverable load or the copy

destination, using the same syntax as a COPY YES clause.

DB2LOADREC

v Operating system: All

v Default: NULL

v Used to override the location of the load copy during roll forward. If the

user has changed the physical location of the load copy, DB2LOADREC

must be set before issuing the roll forward.

DB2LOCK_TO_RB

v Operating system: All

v Default: NULL, Values: STATEMENT

v Specifies whether lock timeouts cause the entire transaction to be rolled

back, or only the current statement. If DB2LOCK_TO_RB is set to

STATEMENT, locked timeouts cause only the current statement to be

rolled back. Any other setting results in transaction rollback.

DB2_MAP_XML_AS_CLOB_FOR_DLC

v Operating system: All

v Default: NO, Values: YES or NO

v The DB2_MAP_XML_AS_CLOB_FOR_DLC registry variable provides

the ability to override the default DESCRIBE and FETCH behavior of

XML values for clients (or DRDA Application Requestors) that do not

support XML as a data type. The default value is NO, which specifies

Chapter 19. Registry and environment variables 431

that for these clients a DESCRIBE of XML values will return BLOB(2GB),

and a FETCH of XML values will result in an implicit XML serialization

to BLOB that includes an XML declaration indicating an encoding of

UTF-8.

When the value is YES, a DESCRIBE of XML values will return

CLOB(2GB), and a FETCH of XML values will result in an implicit XML

serialization to CLOB that does not contain an XML declaration.

Note: DB2_MAP_XML_AS_CLOB_FOR_DLC is deprecated and will be

removed in a future release. This variable is no longer necessary because

most existing DB2 applications that access XML values do so with an XML

capable client.

DB2_MAX_LOB_BLOCK_SIZE

v Operating system: All

v Default: 0 (no limit), Values: 0 to 21487483647

v Sets the maximum amount of LOB or XML data to be returned in a

block. This is not a hard maximum; if this maximum is reached on the

server during data retrieval, the server finishes writing out the current

row before generating a reply for the command, such as FETCH, to the

client.

DB2_MEMORY_PROTECT

v Operating system: AIX with storage key support

v Default: NO, Values: NO or YES

v This registry variable enables a memory protection feature that uses

storage keys to prevent data corruption in the buffer pool caused by

invalid memory access. Memory protection works by identifying at

which times the DB2 engine threads should have access to the buffer

pool memory and at which times they should not have access. When

DB2_MEMORY_PROTECT is set to YES, any time a DB2 engine thread

tries to illegally access buffer pool memory, that engine thread traps.

DB2_MEMORY_PROTECT needs to be enabled for the trap resilience

feature DB2_THREAD_SUSPENSION to work.

Note: You will not be able to use the memory protection if

DB2_LGPAGE_BP is set to YES. Even if DB2_MEMORY_PROTECT is

set to YES, DB2 will fail to protect the buffer pool memory and disable

the feature.

DB2NOEXITLIST

v Operating system: All

v Default: OFF, Values: ON or OFF

v This variable indicates that DB2 should not load an exit list handler and

that it should not perform a commit when the application exits,

regardless of the setting of the DB2_COMMIT_ON_EXIT registry

variable.

When DB2NOEXITLIST is turned off and DB2_COMMIT_ON_EXIT is

turned on, any in-flight transactions for embedded SQL applications are

automatically committed. It is recommended to explicitly add COMMIT

or ROLLBACK statements when an application exits.

Applications that dynamically load and unload the DB2 library before

the application terminates might crash when calling the DB2 exit

handler. This crash might happen because the application attempts to

432 Data Servers, Databases, and Database Objects Guide

call a function that does not exist in memory. To avoid this situation, set

the DB2NOEXITLIST registry variable.

DB2_NUM_CKPW_DAEMONS

v Operating system: UNIX

v Default: 3, Values: 1[:FORK] to 100[:FORK]

v You can use the DB2_NUM_CKPW_DAEMONS registry variable to

start a configurable number of check password daemons. The daemons

are created during db2start and handle check password requests when

the default IBMOSauthserver security plugin is in use. Increasing the

setting for DB2_NUM_CKPW_DAEMONS can decrease the time

required to establish a database connection, but this is only effective in

scenarios where many connections are being made simultaneously and

where authentication is expensive.

DB2_NUM_CKPW_DAEMONS can be set to a value between 1 and

100. The database manager will create the number of daemons specified

by DB2_NUM_CKPW_DAEMONS. Each daemon can handle check

password requests directly.

An optional FORK parameter can be added to enable the check

password daemons to explicitly spawn an external check password

program (db2ckpw) to handle check password requests. This is similar

to setting DB2_NUM_CKPW_DAEMONS to zero in previous releases.

In FORK mode, each check password daemon will spawn the check

password program for each request to check a password. The daemons

in FORK mode are started as the instance owner.

If DB2_NUM_CKPW_DAEMONS is set to zero, the effective value is

set to 3:FORK, where 3 check password daemons are started in FORK

mode.

DB2_OPTSTATS_LOG

v Operating system: All

v Default: Not set (see details below), Values = OFF, ON {NUM | SIZE |

NAME | DIR}

v DB2_OPTSTATS_LOG specifies the attributes of the statistics event

logging files which are used to monitor and analyze statistics collection

related activities. When DB2_OPTSTATS_LOG is not set or set to ON,

statistics event logging is enabled, allowing you to monitor system

performance and keep a history for better problem determination. Log

records are written to the first log file until it is full. Subsequent records

are written to the next available log file. If the maximum number of files

is reached, the oldest log file will be overwritten with the new records. If

system resource consumption is of great concern to you, disable this

registry variable by setting it to OFF.

When statistics event logging is explicitly enabled (set to ON), there are a

number of options you can modify:

v NUM: the maximum number of rotating log files. Default = 5, Values 1 -

15

v SIZE: the maximum size of rotating log files. (The size of each rotating

file is SIZE/NUM.) Default = 100 Mb, Values 1 Mb – 4096 Mb

v NAME: the base name for rotating log files. Default =

db2optstats.number.log, for instance db2optstats.0.log, db2optstats.1.log,

etc.

Chapter 19. Registry and environment variables 433

v DIR: the base directory for rotating log files. Default =

$DIAGPATH/events

You can specify a value for as many of these options as you want, just

ensure that ON is the first value when you want to enable statistics

logging. For instance, to enable statistics logging with maximum of 6 log

files, a maximum file size of 25 Mb, a base file name of mystatslog, and the

directory mystats, issue the following command:

db2set DB2_OPTSTATS_LOG=ON,NUM=6,SIZE=25,NAME=mystatslog,DIR=mystats

DB2REMOTEPREG

v Operating system: Windows

v Default: NULL, Values: Any valid Windows machine name

v Specifies the remote machine name that contains the Win32 registry list

of DB2 instance profiles and DB2 instances. The value for

DB2REMOTEPREG should only be set once after DB2 is installed, and

should not be modified. Use this variable with extreme caution.

DB2_RESOLVE_CALL_CONFLICT

v Operating system: AIX, HP-UX, Solaris, Linux, Windows

v Default: YES, Values: YES, NO, or ALL

v Eliminates SQLCODE SQL0746 runtime errors when CALL statements

are issued in two situations:

– In triggers, when you set DB2_RESOLVE_CALL_CONFLICT to YES

(the default value) or ALL

– In SQL table functions, when you set

DB2_RESOLVE_CALL_CONFLICT to ALL

To comply with the SQL standard rules for order of execution, the

database manager might not read or modify the subject table of a trigger

before modifications caused by a triggering operation are completed.

The database manager also might not read or modify the subject table of

a table function accessed elsewhere in the invoking statement. When

there are multiple table access requests for these subject tables within the

same invoking statements, these conflicting requests are described as

mutating tables conflicts because the tables are potentially changing at the

same time that a trigger or an SQL table function tries to reference them.

When you set this variable to YES, the default, the database manager

strictly enforces the order of execution for accessing tables in procedures

called within triggers through the use of temporary tables, as needed.

When you set this variable to ALL, the database manager strictly

enforces the order of execution for accessing tables in procedures called

within triggers and in table functions through the use of temporary

tables, as needed. The ALL setting is available starting in Fix Pack 2.

When you set this variable to NO, the database manager assumes that

mutating table conflicts should not occur, but if they do, it prevents

them and generates SQLCODE SQL0746 error messages.

v Before changing the value of DB2_RESOLVE_CALL_CONFLICT, stop

the instance. After changing the value, restart the instance, then rebind

any packages which cause the invocation of triggers or table functions.

To rebind SQL procedures, use the following statement:

CALL SYSPROC.REBIND_ROUTINE_PACKAGE

 (’P’,’procedureschema.procedurename’,’CONSERVATIVE’);

v DB2_RESOLVE_CALL_CONFLICT has performance impacts:

434 Data Servers, Databases, and Database Objects Guide

– On triggers, when you set the registry variable to YES or ALL.

Typically, the impact is small. The performance in OLTP environments

is usually not affected because in most cases only one or a small

number of rows are modified by the triggering statement. When you

follow the general recommendation to use system-managed space

(SMS) for temporary table spaces, the performance impact from using

DB2_RESOLVE_CALL_CONFLICT is expected to be low.

– On SQL table functions, when you set the registry variable to ALL.

The amount of impact depends on the type of conflict:

- When both a CALL statement and another statement in the same

SQL table function try to access the same table, the impact is small.

- When both a CALL statement within an SQL table function and a

SELECT statement invoking the same SQL table function try to

access the same table, the impact depends on the amount of data

inserted into the temporary table.

DB2ROUTINE_DEBUG

v Operating system: AIX and Windows

v Default: OFF, Values: ON or OFF

v Specifies whether to enable the debug capability for Java stored

procedures. If you are not debugging Java stored procedures, use the

default, OFF. There is a performance impact to enable debugging.

Note: DB2ROUTINE_DEBUG is deprecated and will be removed in a

future release. This stored procedure debugger has been replaced by the

Unified Debugger.

DB2SATELLITEID

v Operating system: All

v Default: NULL, Values: a valid satellite ID declared in the Satellite

Control Database

v Specifies the satellite ID that is passed to the satellite control server

when a satellite synchronizes. If a value is not specified for this variable,

the logon ID is used as the satellite ID.

DB2_SERVER_CONTIMEOUT

v Operating system: All

v Default: 180, Values: 0 to 32767 seconds

v This registry variable and the DB2_DISPATCHER_PEEKTIMEOUT

registry variable both configure the handling of a new client during

connect time. DB2_SERVER_CONTIMEOUT allows you to adjust the

time, in seconds, that an agent waits for a client’s connection request

before terminating the connection. In most cases, you should not need to

adjust this registry variable, but if DB2 clients are constantly being timed

out by the server at connect time, you can set a higher value for

DB2_SERVER_CONTIMEOUT to extend the timeout period. If an

invalid value is set, the default value is used. This registry variable is

not dynamic.

DB2_SERVER_ENCALG

v Operating system: All

v Default: NULL, Values: AES_CMP or AES_ONLY

v The Advanced Encryption Standard (AES) can be used to encrypt user

IDs and passwords when you connect to DB2 for Linux, UNIX and

Chapter 19. Registry and environment variables 435

Windows Version 9.5 Fix Pack 3 and later database servers. When the

database manager configuration parameter authentication is set to

SERVER_ENCRYPT, the default behavior is for the database server to

accept whatever encryption algorithm the client proposes. The

DB2_SERVER_ENCALG registry variable can be used to change that

behavior. It affects all connections to the DB2 instance, regardless of the

application language.

If this variable is set to AES_ONLY, the database server will only accept

connections that use AES encryption. If the client does not support AES

encryption, then the connection will be rejected.

If this variable is set to AES_CMP, the database server will accept user

IDs and passwords that are encrypted using either AES or DES, but it

will negotiate for AES if the client supports AES encryption.

You do not need to set DB2_SERVER_ENCALG if your application is

programmatically enabled to use AES encryption.

DB2SORT

v Operating system: All, server only

v Default: NULL

v This variable specifies the location of a library to be loaded at runtime

by the load utility. The library contains the entry point for functions

used in sorting indexing data. Use DB2SORT to exploit vendor-supplied

sorting products for use with the load utility in generating table indexes.

The path supplied must be relative to the database server.

DB2_THREAD_SUSPENSION

v Operating system: AIX with storage key support

v Default: OFF, Values: ON or OFF

v This registry variable enables or disables the DB2 thread suspension

feature. It allows you to control whether a DB2 instance sustains a trap

by suspending a faulty engine thread (a thread which has tried to

illegally access memory protected with storage keys).

Note: DB2_THREAD_SUSPENSION can only be enabled if the registry

variable DB2_MEMORY_PROTECT is set to YES.

DB2_TRUNCATE_REUSESTORAGE

v Operating system: All

v Default: NULL (not set), Values: IMPORT, import

v You can use this variable to resolve lock contention between the

IMPORT with REPLACE command and the BACKUP ... ONLINE

command. In some situations, online backup and truncate operations are

unable to execute concurrently. When this occurs, you can set

DB2_TRUNCATE_REUSESTORAGE to IMPORT or import, and

physical truncation of the object, including data, indexes, long fields,

large objects and block maps (for multidimensional clustering tables), is

skipped and only logical truncation is performed. That is, the IMPORT

with REPLACE command empties the table, causing the object’s logical

size to decrease, but the storage on disk remains allocated.

This registry variable is dynamic; you can set it or unset it without

having to stop and start instance. You can set

DB2_TRUNCATE_REUSESTORAGE before an online backup starts and

then unset it after online backup completes. For multi-partitioned

436 Data Servers, Databases, and Database Objects Guide

environments, the registry variable will only be active on the nodes on

which the variable is set. DB2_TRUNCATE_REUSESTORAGE is only

effective on DMS permanent objects.

In SAP environments, when DB2_WORKLOAD=SAP is set, the default

value of this registry variable is IMPORT.

DB2_USE_DB2JCCT2_JROUTINE

v Operating system: All

v Default: Not set, Values: ON/YES/1/TRUE or OFF/NO/0/FALSE

v The default driver for Java stored procedures and user-defined functions

is the IBM Data Server Driver for JDBC and SQLJ. If you want to use the

deprecated driver DB2 JDBC Type 2 Driver for Linux, UNIX, and

Windows to serve SQL requests for Java routines, set

DB2_USE_DB2JCCT2_JROUTINE to any of OFF, NO, 0, or FALSE.

DB2_UTIL_MSGPATH

v Operating system: All

v Default: instanceName/tmp directory

v The DB2_UTIL_MSGPATH registry variable is used in conjunction with

the SYSPROC.ADMIN_CMD procedure, the

SYSPROC.ADMIN_REMOVE_MSGS procedure, and the

SYSPROC.ADMIN_GET_MSGS UDF. It applies on the instance level.

DB2_UTIL_MSGPATH can be set to indicate a directory path on the

server where the fenced user ID can read, write and delete files. This

directory must be accessible from all coordinator partitions, and must

have sufficient space to contain utility message files.

If this path is not set, the instanceName/tmp directory is used as the

default (note that instanceName/tmp is cleaned up when DB2 is

uninstalled).

If this path is changed, the files that existed in the directory pointed to

by the previous setting are not automatically moved or deleted. If you

want to retrieve the contents of the messages created under the old path,

you must manually move these messages (which are prefixed with the

utility name and suffixed with the user ID) to the new directory to

which DB2_UTIL_MSGPATH points. The next utility message file is

created, read, and cleaned up in the new location.

The files under the DB2_UTIL_MSGPATH directory are utility specific,

not transaction dependent. They are not part of the backup image. The

files under the DB2_UTIL_MSGPATH directory are user managed; that

means a user can delete the message files using the

SYSPROC.ADMIN_REMOVE_UTILMSG procedure. These files are not

cleaned up by uninstalling DB2.

DB2_VENDOR_INI

v Operating system: AIX, HP-UX, Solaris, and Windows

v Default: NULL, Values: Any valid path and file.

v Points to a file containing all vendor-specific environment settings. The

value is read when the database manager starts.

Note: DB2_VENDOR_INI is deprecated in Version 9.5 and might be

removed in a future release. You can put the environment variable settings

that it contains into the file specified by the DB2_DJ_INI variable instead.

DB2_XBSA_LIBRARY

Chapter 19. Registry and environment variables 437

v Operating system: AIX, HP-UX, Solaris, and Windows

v Default: NULL, Values: Any valid path and file.

v Points to the vendor-supplied XBSA library. On AIX, the setting must

include the shared object if it is not named shr.o. HP-UX, Solaris, and

Windows do not require the shared object name. For example, to use

Legato’s NetWorker Business Suite Module for DB2, the registry variable

must be set as follows:

 db2set DB2_XSBA_LIBRARY="/usr/lib/libxdb2.a(bsashr10.o)"

The XBSA interface can be invoked through the BACKUP DATABASE or

the RESTORE DATABASE commands. For example:

 db2 backup db sample use XBSA

 db2 restore db sample use XBSA

438 Data Servers, Databases, and Database Objects Guide

Chapter 20. Configuration parameters

When a DB2 database instance or a database is created, a corresponding

configuration file is created with default parameter values. You can modify these

parameter values to improve performance and other characteristics of the instance

or database.

The disk space and memory allocated by the database manager on the basis of

default values of the parameters might be sufficient to meet your needs. In some

situations, however, you might not be able to achieve maximum performance using

these default values.

Configuration files contain parameters that define values such as the resources

allocated to the DB2 database products and to individual databases, and the

diagnostic level. There are two types of configuration files:

v The database manager configuration file for each DB2 instance

v The database configuration file for each individual database.

The database manager configuration file is created when a DB2 instance is created.

The parameters it contains affect system resources at the instance level,

independent of any one database that is part of that instance. Values for many of

these parameters can be changed from the system default values to improve

performance or increase capacity, depending on your system’s configuration.

There is one database manager configuration file for each client installation as well.

This file contains information about the client enabler for a specific workstation. A

subset of the parameters available for a server are applicable to the client.

Database manager configuration parameters are stored in a file named db2systm.

This file is created when the instance of the database manager is created. In Linux

and UNIX environments, this file can be found in the sqllib subdirectory for the

instance of the database manager. In Windows, the default location of this file is

the instance subdirectory of the sqllib directory. If the DB2INSTPROF variable is

set, the file is in the instance subdirectory of the directory specified by the

DB2INSTPROF variable.

In Version 9.5, the implicit default value of DB2INSTPROF at the global level

(db2set -g) will be stored at the new location shown below, even if DB2INSTPROF

is not set:

v On Vista environments: ProgramData\IBM\DB2\<DB2COPYNAME>

v On Windows 2003/XP environments: Documents and Settings\All

Users\Application Data\IBM\DB2\<Copy Name>

Other profile-registry variables that specify where run-time data files should go

should query the value of DB2INSTPROF. This includes the following variables:

v DB2CLINIPATH

v DIAGPATH

v SPM_LOG_PATH

Database configuration parameters are stored in a file named SQLDBCON for

databases created before Version 8.2; all database configuration parameters are

stored in a file named SQLDBCONF for databases created in Version 8.2 and later.

© Copyright IBM Corp. 1993, 2009 439

These files cannot be directly edited, and can only be changed or viewed via a

supplied API or by a tool which calls that API.

In a partitioned database environment, this file resides on a shared file system so

that all database partition servers have access to the same file. The configuration of

the database manager is the same on all database partition servers.

Most of the parameters either affect the amount of system resources that will be

allocated to a single instance of the database manager, or they configure the setup

of the database manager and the different communications subsystems based on

environmental considerations. In addition, there are other parameters that serve

informative purposes only and cannot be changed. All of these parameters have

global applicability independent of any single database stored under that instance

of the database manager.

A database configuration file is created when a database is created, and resides where

that database resides. There is one configuration file per database. Its parameters

specify, among other things, the amount of resource to be allocated to that

database. Values for many of the parameters can be changed to improve

performance or increase capacity. Different changes may be required, depending on

the type of activity in a specific database.

Configuring the DB2 database manager with configuration parameters

The disk space and memory allocated by the database manager on the basis of

default values of the parameters might be sufficient to meet your needs. In some

situations, however, you might not be able to achieve maximum performance using

these default values.

Since the default values are oriented towards machines that have relatively small

memory resources and are dedicated as database servers, you might need to

modify these values if your environment has:

v Large databases

v Large numbers of connections

v High performance requirements for a specific application

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

Figure 29. Relationship between database objects and configuration files

440 Data Servers, Databases, and Database Objects Guide

v Unique query or transaction loads or types

Each transaction processing environment is unique in one or more aspects. These

differences can have a profound impact on the performance of the database

manager when using the default configuration. For this reason, you are strongly

advised to tune your configuration for your environment.

A good starting point for tuning your configuration is to use the Configuration

Advisor or the AUTOCONFIGURE command which will generate values for

parameters based on your responses to questions about workload characteristics.

Some configuration parameters can be set to AUTOMATIC, allowing the database

manager to automatically manage these parameters to reflect the current resource

requirements. To turn off the AUTOMATIC setting of a configuration parameter

while maintaining the current internal setting, use the MANUAL keyword with the

UPDATE DATABASE CONFIGURATION command. If the database manager

updates the value of these parameters, the get db/dbm cfg show detail commands

will show the new value.

Parameters for an individual database are stored in a configuration file named

SQLDBCONF. This file is stored along with other control files for the database in the

SQLnnnnn directory, where nnnnn is a number assigned when the database was

created. Each database has its own configuration file, and most of the parameters

in the file specify the amount of resources allocated to that database. The file also

contains descriptive information, as well as flags that indicate the status of the

database.

Attention: If you edit db2systm, SQLDBCON, or SQLDBCONF using a method other than

those provided by the database manager, you might make the database unusable.

Do not change these files using methods other than those documented and

supported by the database manager.

In a partitioned database environment, a separate SQLDBCONF file exists for each

database partition. The values in the SQLDBCONF file may be the same or different at

each database partition, but the recommendation is that in a homogeneous

environment, the configuration parameter values should be the same on all

database partitions. Typically, there could be a catalog node needing different

database configuration parameters setting, while the other data partitions have

different values again, depending on their machine types, and other information.

Updating configuration parameters using the command line processor:

 Commands to change the settings can be entered as follows:

For database manager configuration parameters:

v GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)

v UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE

DBM CFG)

v RESET DATABASE MANAGER CONFIGURATION (or RESET DBM

CFG) to reset all database manager parameters to their default values

v AUTOCONFIGURE.

For database configuration parameters:

v GET DATABASE CONFIGURATION (or GET DB CFG)

v UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)

Chapter 20. Configuration parameters 441

v RESET DATABASE CONFIGURATION (or RESET DB CFG) to reset all

database parameters to their default values

v AUTOCONFIGURE.

Updating configuration parameters using application programming interfaces

(APIs).

 The APIs can be called from an application or a host-language program.

Call the following DB2 APIs to view or update configuration parameters:

v db2AutoConfig - Access the Configuration Advisor

v db2CfgGet - Get the database manager or database configuration

parameters

v db2CfgSet - Set the database manager or database configuration

parameters

Updating configuration parameters using the Configuration Assistant

The Configuration Assistant can also be used to set the database manager

configuration parameters on a client. Other parameters can be changed

online; these are called configurable online configuration parameters.

Viewing updated configuration values

 For some database manager configuration parameters, the database

manager must be stopped (db2stop) and then restarted (db2start) for the

new parameter values to take effect.

For some database parameters, changes will only take effect when the

database is reactivated, or switched from offline to online. In these cases,

all applications must first disconnect from the database. (If the database

was activated, or switched from offline to online, then it must be

deactivated and reactivated.) Then, at the first new connect to the database,

the changes will take effect.

If you change the setting of a configurable online database manager

configuration parameter while you are attached to an instance, the default

behavior of the UPDATE DBM CFG command will be to apply the change

immediately. If you do not want the change applied immediately, use the

DEFERRED option on the UPDATE DBM CFG command.

To change a database manager configuration parameter online:

 db2 attach to <instance-name>

 db2 update dbm cfg using <parameter-name> <value>

 db2 detach

For clients, changes to the database manager configuration parameters take

effect the next time the client connects to a server.

If you change a configurable online database configuration parameter

while connected, the default behavior is to apply the change online,

wherever possible. You should note that some parameter changes might

take a noticeable amount of time to take effect due to the overhead

associated with allocating space. To change configuration parameters

online from the command line processor, a connection to the database is

required. To change a database configuration parameter online:

 db2 connect to <dbname>

 db2 update db cfg using <parameter-name> <parameter-value>

 db2 connect reset

442 Data Servers, Databases, and Database Objects Guide

Each configurable online configuration parameter has a propagation class

associated with it. The propagation class indicates when you can expect a

change to the configuration parameter to take effect. There are three

propagation classes:

v Immediate: Parameters that change immediately upon command or API

invocation. For example, diaglevel has a propagation class of immediate.

v Statement boundary: Parameters that change on statement and

statement-like boundaries. For example, if you change the value of

sortheap, all new requests will start using the new value.

v Transaction boundary: Parameters that change on transaction

boundaries. For example, a new value for dl_expint is updated after a

COMMIT statement.

While new parameter values might not be immediately effective, viewing

the parameter settings (using the GET DATABASE MANAGER

CONFIGURATION or GET DATABASE CONFIGURATION command) will

always show the latest updates. Viewing the parameter settings using the

SHOW DETAIL clause on these commands will show both the latest

updates and the values in memory.

Rebinding applications after updating database configuration parameters

 Changing some database configuration parameters can influence the access

plan chosen by the SQL and XQuery optimizer. After changing any of

these parameters, you should consider rebinding your applications to

ensure the best access plan is being used for your SQL and XQuery

statements. Any parameters that were modified online (for example, by

using the UPDATE DATABASE CONFIGURATION IMMEDIATE

command) will cause the SQL and XQuery optimizer to choose new access

plans for new query statements. However, the query statement cache will

not be purged of existing entries. To clear the contents of the query cache,

use the FLUSH PACKAGE CACHE statement.

Note: A number of configuration parameters (for example, userexit) are

described as having acceptable values of either “Yes” or “No”, or “On” or

“Off” in the help and other DB2 documentation. To clarify, “Yes” should be

considered equivalent to “On” and “No” should be considered equivalent

to “Off”.

Configuration parameters summary

The following tables list the parameters in the database manager and database

configuration files for database servers. When changing the database manager and

database configuration parameters, consider the detailed information for each

parameter. Specific operating environment information including defaults is part of

each parameter description.

Database Manager Configuration Parameter Summary

For some database manager configuration parameters, the database manager must

be stopped (db2stop) and restarted (db2start) for the new parameter values to take

effect. Other parameters can be changed online; these are called configurable online

configuration parameters. If you change the setting of a configurable online database

manager configuration parameter while you are attached to an instance, the default

behavior of the UPDATE DBM CFG command applies the change immediately. If

you do not want the change applied immediately, use the DEFERRED option on

the UPDATE DBM CFG command.

Chapter 20. Configuration parameters 443

The column “Auto” in the following table indicates whether the parameter

supports the AUTOMATIC keyword on the UPDATE DBM CFG command.

When updating a parameter to automatic, it is also possible to specify a starting

value as well as the AUTOMATIC keyword. Note that the value can mean

something different for each parameter, and in some cases it is not applicable.

Before specifying a value, read the parameter’s documentation to determine what

it represents. In the following example, num_poolagents will be updated to

AUTOMATIC and the database manager will use 20 as the minimum number of

idle agents to pool:

 db2 update dbm cfg using num_poolagents 20 automatic

To unset the AUTOMATIC feature, the parameter can be updated to a value or the

MANUAL keyword can be used. When a parameter is updated to MANUAL, the

parameter is no longer automatic and is set to its current value (as displayed in the

Current Value column from the GET DBM CFG SHOW DETAIL or GET DB CFG

SHOW DETAIL commands).

The column “Perf. Impact” provides an indication of the relative importance of

each parameter as it relates to system performance. It is impossible for this column

to apply accurately to all environments; you should view this information as a

generalization.

v High — Indicates the parameter can have a significant impact on performance.

You should consciously decide the values of these parameters, which, in some

cases, means that you will accept the default values provided.

v Medium — Indicates that the parameter can have some impact on performance.

Your specific environment and needs will determine how much tuning effort

should be focused on these parameters.

v Low — Indicates that the parameter has a less general or less significant impact

on performance.

v None — Indicates that the parameter does not directly impact performance.

Although you do not have to tune these parameters for performance

enhancement, they can be very important for other aspects of your system

configuration, such as communication support, for example.

The columns “Token”, “Token Value”, and “Data Type” provide information that

you will need when calling the db2CfgGet or the db2CfgSet API. This information

includes configuration parameter identifiers, entries for the token element in the

db2CfgParam data structure, and data types for values that are passed to the

structure.

 Table 66. Configurable Database Manager Configuration Parameters

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

agent_stack_sz No No Low SQLF_KTN_AGENT_STACK_
SZ

61 Uint16 “agent_stack_sz - Agent stack

size” on page 460

agentpri No No High SQLF_KTN_AGENTPRI 26 Sint16 “agentpri - Priority of agents”

on page 461

aslheapsz No No High SQLF_KTN_ASLHEAPSZ 15 Uint32 “aslheapsz - Application

support layer heap size” on

page 463

audit_buf_sz No No High SQLF_KTN_AUDIT_BUF_SZ 312 Sint32 “audit_buf_sz - Audit buffer

size” on page 464

authentication1 No No Low SQLF_KTN_
AUTHENTICATION

78 Uint16 “authentication -

Authentication type” on page

465

444 Data Servers, Databases, and Database Objects Guide

Table 66. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

catalog_noauth Yes No None SQLF_KTN_CATALOG_
NOAUTH

314 Uint16 “catalog_noauth - Cataloging

allowed without authority” on

page 466

clnt_krb_plugin No No None SQLF_KTN_CLNT_KRB_
PLUGIN

812 char(33) “clnt_krb_plugin - Client

Kerberos plug-in” on page 467

clnt_pw_plugin No No None SQLF_KTN_CLNT_PW_
PLUGIN

811 char(33) “clnt_pw_plugin - Client

userid-password plug-in” on

page 467

cluster_mgr No No None SQLF_KTN_CLUSTER_MGR 920 char(262) “cluster_mgr - Cluster

manager name” on page 468

comm_bandwidth Yes No Medium SQLF_KTN_COMM_
BANDWIDTH

307 float “comm_bandwidth -

Communications bandwidth”

on page 468

conn_elapse Yes No Medium SQLF_KTN_CONN_ELAPSE 508 Uint16 “conn_elapse - Connection

elapse time” on page 469

cpuspeed Yes No High SQLF_KTN_CPUSPEED 42 float “cpuspeed - CPU speed” on

page 469

dft_account_str Yes No None SQLF_KTN_DFT_
ACCOUNT_STR

28 char(25) “dft_account_str - Default

charge-back account” on page

470

dft_monswitches

v dft_mon_bufpool

v dft_mon_lock

v dft_mon_sort

v dft_mon_stmt

v dft_mon_table

v dft_mon_timestamp

v dft_mon_uow

Yes No Medium SQLF_KTN_DFT_
MONSWITCHES2

v SQLF_KTN_DFT_MON_
BUFPOOL

v SQLF_KTN_DFT_MON_LOCK

v SQLF_KTN_DFT_MON_SORT

v SQLF_KTN_DFT_MON_STMT

v SQLF_KTN_DFT_MON_
TABLE

v SQLF_KTN_DFT_MON_
TIMESTAMP

v SQLF_KTN_DFT_MON_
UOW

29

v 33

v 34

v 35

v 31

v 32

v 36

v 30

Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

“dft_monswitches - Default

database system monitor

switches” on page 471

dftdbpath Yes No None SQLF_KTN_DFTDBPATH 27 char(215) “dftdbpath - Default database

path” on page 472

diaglevel Yes No Low SQLF_KTN_DIAGLEVEL 64 Uint16 “diaglevel - Diagnostic error

capture level” on page 473

diagpath Yes No None SQLF_KTN_DIAGPATH 65 char(215) “diagpath - Diagnostic data

directory path” on page 474

dir_cache No No Medium SQLF_KTN_DIR_CACHE 40 Uint16 “dir_cache - Directory cache

support” on page 475

discover3 No No Medium SQLF_KTN_DISCOVER 304 Uint16 “discover - Discovery mode”

on page 476

discover_inst Yes No Low SQLF_KTN_DISCOVER_INST 308 Uint16 “discover_inst - Discover

server instance” on page 477

fcm_num_buffers Yes Yes Medium SQLF_KTN_FCM_NUM_
BUFFERS

503 Uint32 “fcm_num_buffers - Number

of FCM buffers” on page 477

fcm_num_channels Yes Yes Medium SQLF_KTN_FCM_NUM_
CHANNELS

902 Uint32 “fcm_num_channels - Number

of FCM channels” on page 478

fed_noauth Yes No None SQLF_KTN_FED_NOAUTH 806 Uint16 “fed_noauth - Bypass

federated authentication” on

page 479

federated Yes No Medium SQLF_KTN_FEDERATED 604 Sint16 “federated - Federated

database system support” on

page 479

federated_async Yes Yes Medium SQLF_KTN_FEDERATED_
ASYNC

849 Sint32 “federated_async - Maximum

asynchronous TQs per query

configuration parameter” on

page 480

Chapter 20. Configuration parameters 445

Table 66. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

fenced_pool Yes Yes Medium SQLF_KTN_FENCED_POOL 80 Sint32 “fenced_pool - Maximum

number of fenced processes”

on page 480

group_plugin No No None SQLF_KTN_GROUP_PLUGIN 810 char(33) “group_plugin - Group

plug-in” on page 482

health_mon Yes No Low SQLF_KTN_HEALTH_MON 804 Uint16 “health_mon - Health

monitoring” on page 482

indexrec4 Yes No Medium SQLF_KTN_INDEXREC 20 Uint16 “indexrec - Index re-creation

time” on page 483

instance_memory Yes Yes Medium SQLF_KTN_INSTANCE_
MEMORY

803 Uint64 “instance_memory - Instance

memory” on page 485

intra_parallel No No High SQLF_KTN_INTRA_PARALLEL 306 Sint16 “intra_parallel - Enable

intra-partition parallelism” on

page 487

java_heap_sz No No High SQLF_KTN_JAVA_HEAP_SZ 310 Sint32 “java_heap_sz - Maximum

Java interpreter heap size” on

page 487

jdk_path No No None SQLF_KTN_JDK_PATH 311 char(255) “jdk_path - Software

Developer’s Kit for Java

installation path” on page 488

keepfenced No No Medium SQLF_KTN_KEEPFENCED 81 Uint16 “keepfenced - Keep fenced

process” on page 489

local_gssplugin No No None SQLF_KTN_LOCAL_
GSSPLUGIN

816 char(33) “local_gssplugin - GSS API

plug-in used for local instance

level authorization” on page

490

max_connections Yes Yes Medium SQLF_KTN_MAX_
CONNECTIONS

802 Sint32 “max_connections - Maximum

number of client connections”

on page 490

max_connretries Yes No Medium SQLF_KTN_MAX_
CONNRETRIES

509 Uint16 “max_connretries - Node

connection retries” on page

491

max_coordagents Yes Yes Medium SQLF_KTN_MAX_
COORDAGENTS

501 Sint32 “max_coordagents - Maximum

number of coordinating

agents” on page 491

max_querydegree Yes No High SQLF_KTN_MAX_
QUERYDEGREE

303 Sint32 “max_querydegree -

Maximum query degree of

parallelism” on page 492

max_time_diff No No Medium SQLF_KTN_MAX_TIME_DIFF 510 Uint16 “max_time_diff - Maximum

time difference among nodes”

on page 493

mon_heap_sz Yes Yes Low SQLF_KTN_MON_HEAP_SZ 79 Uint16 “mon_heap_sz - Database

system monitor heap size” on

page 495

notifylevel Yes No Low SQLF_KTN_NOTIFYLEVEL 605 Sint16 “notifylevel - Notify level” on

page 496

num_initagents No No Medium SQLF_KTN_NUM_
INITAGENTS

500 Uint32 “num_initagents - Initial

number of agents in pool” on

page 497

num_initfenced No No Medium SQLF_KTN_NUM_
INITFENCED

601 Sint32 “num_initfenced - Initial

number of fenced processes”

on page 498

num_poolagents Yes Yes High SQLF_KTN_NUM_
POOLAGENTS

502 Sint32 “num_poolagents - Agent pool

size” on page 498

numdb No No Low SQLF_KTN_NUMDB 6 Uint16 “numdb - Maximum number

of concurrently active

databases including host and

System i databases” on page

499

query_heap_sz No No Medium SQLF_KTN_QUERY_HEAP_SZ 49 Sint32 “query_heap_sz - Query heap

size” on page 500

resync_interval No No None SQLF_KTN_RESYNC_
INTERVAL

68 Uint16 “resync_interval - Transaction

resync interval” on page 501

446 Data Servers, Databases, and Database Objects Guide

Table 66. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

rqrioblk No No High SQLF_KTN_RQRIOBLK 1 Uint16 “rqrioblk - Client I/O block

size” on page 502

sheapthres No No High SQLF_KTN_SHEAPTHRES 21 Uint32 “sheapthres - Sort heap

threshold” on page 503

spm_log_file_sz No No Low SQLF_KTN_SPM_LOG_FILE_
SZ

90 Sint32 “spm_log_file_sz - Sync point

manager log file size” on page

504

spm_log_path No No Medium SQLF_KTN_SPM_LOG_PATH 313 char(226) “spm_log_path - Sync point

manager log file path” on

page 505

spm_max_resync No No Low SQLF_KTN_SPM_MAX_
RESYNC

91 Sint32 “spm_max_resync - Sync

point manager resync agent

limit” on page 506

spm_name No No None SQLF_KTN_SPM_NAME 92 char(8) “spm_name - Sync point

manager name” on page 506

srvcon_auth No No None SQLF_KTN_SRVCON_AUTH 815 Uint16 “srvcon_auth - Authentication

type for incoming connections

at the server” on page 506

srvcon_gssplugin_list No No None SQLF_KTN_SRVCON_
GSSPLUGIN_ LIST

814 char(256) “srvcon_gssplugin_list - List

of GSS API plug-ins for

incoming connections at the

server” on page 507

srv_plugin_mode No No None SQLF_KTN_SRV_PLUGIN_
MODE

809 Uint16 “srv_plugin_mode - Server

plug-in mode” on page 508

srvcon_pw_plugin No No None SQLF_KTN_SRVCON_PW_
PLUGIN

813 char(33) “srvcon_pw_plugin -

Userid-password plug-in for

incoming connections at the

server” on page 507

start_stop_time Yes No Low SQLF_KTN_START_STOP_
TIME

511 Uint16 “start_stop_time - Start and

stop timeout” on page 508

svcename No No None SQLF_KTN_SVCENAME 24 char(14) “svcename - TCP/IP service

name” on page 509

sysadm_group No No None SQLF_KTN_SYSADM_
GROUP

39 char(128) “sysadm_group - System

administration authority

group name” on page 510

sysctrl_group No No None SQLF_KTN_SYSCTRL_
GROUP

63 char(128) “sysctrl_group - System

control authority group name”

on page 510

sysmaint_group No No None SQLF_KTN_SYSMAINT_
GROUP

62 char(128) “sysmaint_group - System

maintenance authority group

name” on page 511

sysmon_group No No None SQLF_KTN_SYSMON
GROUP

808 char(128) “sysmon_group - System

monitor authority group

name” on page 512

tm_database No No None SQLF_KTN_TM_DATABASE 67 char(8) “tm_database - Transaction

manager database name” on

page 512

tp_mon_name No No None SQLF_KTN_TP_MON_NAME 66 char(19) “tp_mon_name - Transaction

processor monitor name” on

page 513

trust_allclnts5 No No None SQLF_KTN_TRUST_ALLCLNTS 301 Uint16 “trust_allclnts - Trust all

clients” on page 514

trust_clntauth No No None SQLF_KTN_TRUST_
CLNTAUTH

302 Uint16 “trust_clntauth - Trusted

clients authentication” on

page 515

util_impact_lim Yes No High SQLF_KTN_UTIL_IMPACT_
LIM

807 Uint32 “util_impact_lim - Instance

impact policy” on page 516

Chapter 20. Configuration parameters 447

Table 66. Configurable Database Manager Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

Note:

1. The valid values are defined in sqlenv.h.

2.

 Bit 1 (xxxx xxx1): dft_mon_uow

 Bit 2 (xxxx xx1x): dft_mon_stmt

 Bit 3 (xxxx x1xx): dft_mon_table

 Bit 4 (xxxx 1xxx): dft_mon_buffpool

 Bit 5 (xxx1 xxxx): dft_mon_lock

 Bit 6 (xx1x xxxx): dft_mon_sort

 Bit 7 (x1xx xxxx): dft_mon_timestamp

3. Valid values (defined in sqlutil.h):

 SQLF_DSCVR_KNOWN (1)

 SQLF_DSCVR_SEARCH (2)

4. Valid values (defined in sqlutil.h):

 SQLF_INX_REC_SYSTEM (0)

 SQLF_INX_REC_REFERENCE (1)

5. Valid values (defined in sqlutil.h):

 SQLF_TRUST_ALLCLNTS_NO (0)

 SQLF_TRUST_ALLCLNTS_YES (1)

 SQLF_TRUST_ALLCLNTS_DRDAONLY (2)

 Table 67. Informational Database Manager Configuration Parameters

Parameter Token

Token

Value

Data

Type Additional Information

nodetype1 SQLF_KTN_NODETYPE 100 Uint16 “nodetype - Machine node type” on page 496

release SQLF_KTN_RELEASE 101 Uint16 “release - Configuration file release level” on page

501

Note:

1. Valid values (defined in sqlutil.h):

 SQLF_NT_STANDALONE (0)

 SQLF_NT_SERVER (1)

 SQLF_NT_REQUESTOR (2)

 SQLF_NT_STAND_REQ (3)

 SQLF_NT_MPP (4)

 SQLF_NT_SATELLITE (5)

Database Configuration Parameter Summary

The following table lists the parameters in the database configuration file. When

changing the database configuration parameters, consider the detailed information

for the parameter.

For some database configuration parameters, changes only take effect when the

database is reactivated. In these cases, all applications must first disconnect from

the database. (If the database was activated, then it must be deactivated and

reactivated.) The changes take effect at the next connection to the database. Other

parameters can be changed online; these are called configurable online configuration

parameters.

Refer to the Database Manager Configuration Parameter Summary section above

for a description of the “Auto.”, “Perf. Impact”, “Token”, “Token Value”, and

“Data Type” columns.

448 Data Servers, Databases, and Database Objects Guide

The AUTOMATIC keyword is also supported on the UPDATE DB CFG command.

In the following example, database_memory will be updated to AUTOMATIC and

the database manager will use 20000 as a starting value when making further

changes to this parameter:

db2 update db cfg using for sample using database_memory 20000 automatic

Starting with Version 9.5, you can update and reset database configuration

parameter values across some or all platforms without having to issue the db2_all

command, or without having to update or reset each partition individually. For

details, see Configuring databases across multiple partitions.

 Table 68. Configurable Database Configuration Parameters

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

alt_collate No No None SQLF_DBTN_ALT_COLLATE 809 Uint32 “alt_collate - Alternate

collating sequence” on page

517

applheapsz Yes Yes Medium SQLF_DBTN_APPLHEAPSZ 51 Uint16 “applheapsz - Application

heap size” on page 520

appl_memory Yes Yes Medium SQLF_DBTN_APPL_MEMORY 904 Uint64 “appl_memory - Application

Memory configuration

parameter” on page 519

archretrydelay Yes No None SQLF_DBTN_
ARCHRETRYDELAY

828 Uint16 “archretrydelay - Archive retry

delay on error” on page 521

v auto_maint

v auto_db_backup

v auto_tbl_maint

v auto_runstats

v auto_stats_prof

v auto_stmt_stats

v auto_prof_upd

v auto_reorg

Yes No Medium

v SQLF_DBTN_AUTO_MAINT

v SQLF_DBTN_AUTO_DB_
BACKUP

v SQLF_DBTN_AUTO_TBL_
MAINT

v SQLF_DBTN_AUTO_
RUNSTATS

v SQLF_DBTN_AUTO_STATS_
PROF

v SQLF_DBTN_AUTO_STMT_
STATS

v SQLF_DBTN_AUTO_PROF_
UPD

v SQLF_DBTN_AUTO_REORG

v 831

v 833

v 835

v 837

v 839

v 905

v 844

v 841

Uint16 “auto_maint - Automatic

maintenance” on page 522

auto_del_rec_obj Yes No Medium SQLF_DBTN_AUTO_DEL_
REC_OBJ

912 Uint16 “auto_del_rec_obj - Automated

deletion of recovery objects

configuration parameter” on

page 521

autorestart Yes No Low SQLF_DBTN_AUTO_RESTART 25 Uint16 “autorestart - Auto restart

enable” on page 524

avg_appls Yes Yes High SQLF_DBTN_AVG_APPLS 47 Uint16 “avg_appls - Average number

of active applications” on page

524

blk_log_dsk_ful Yes No None SQLF_DBTN_BLK_LOG_DSK_
FUL

804 Uint16 “blk_log_dsk_ful - Block on

log disk full” on page 525

catalogcache_sz Yes No Medium SQLF_DBTN_
CATALOGCACHE_SZ

56 Sint32 “catalogcache_sz - Catalog

cache size” on page 526

chngpgs_thresh No No High SQLF_DBTN_CHNGPGS_
THRESH

38 Uint16 “chngpgs_thresh - Changed

pages threshold” on page 527

database_memory Yes Yes Medium SQLF_DBTN_DATABASE_
MEMORY

803 Uint64 “database_memory - Database

shared memory size” on page

530

dbheap Yes Yes Medium SQLF_DBTN_DB_HEAP 58 Uint64 “dbheap - Database heap” on

page 533

db_mem_thresh Yes No Low SQLF_DBTN_DB_MEM_
THRESH

849 Uint16 “db_mem_thresh - Database

memory threshold” on page

532

Chapter 20. Configuration parameters 449

Table 68. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

decflt_rounding No No None SQLF_DBTN_DECFLT_
ROUNDING

913 Unit16 “decflt_rounding - Decimal

floating point rounding

configuration parameter” on

page 534

dft_degree Yes No High SQLF_DBTN_DFT_DEGREE 301 Sint32 “dft_degree - Default degree”

on page 536

dft_extent_sz Yes No Medium SQLF_DBTN_DFT_EXTENT_SZ 54 Uint32 “dft_extent_sz - Default extent

size of table spaces” on page

536

dft_loadrec_ses Yes No Medium SQLF_DBTN_DFT_LOADREC_
SES

42 Sint16 “dft_loadrec_ses - Default

number of load recovery

sessions” on page 537

dft_mttb_types No No None SQLF_DBTN_DFT_MTTB_
TYPES

843 Uint32 “dft_mttb_types - Default

maintained table types for

optimization” on page 537

dft_prefetch_sz Yes Yes Medium SQLF_DBTN_DFT_PREFETCH_
SZ

40 Sint16 “dft_prefetch_sz - Default

prefetch size” on page 538

dft_queryopt Yes No Medium SQLF_DBTN_DFT_QUERYOPT 57 Sint32 “dft_queryopt - Default query

optimization class” on page

539

dft_refresh_age No No Medium SQLF_DBTN_DFT_REFRESH_
AGE

702 char(22) “dft_refresh_age - Default

refresh age” on page 539

dft_sqlmathwarn No No None SQLF_DBTN_DFT_
SQLMATHWARN

309 Sint16 “dft_sqlmathwarn - Continue

upon arithmetic exceptions”

on page 540

discover_db Yes No Medium SQLF_DBTN_DISCOVER 308 Uint16 “discover_db - Discover

database” on page 541

dlchktime Yes No Medium SQLF_DBTN_DLCHKTIME 9 Uint32 “dlchktime - Time interval for

checking deadlock” on page

541

dyn_query_mgmt No No Low SQLF_DBTN_DYN_QUERY_
MGMT

604 Uint16 “dyn_query_mgmt - Dynamic

SQL and XQuery query

management” on page 542

enable_xmlchar Yes No None SQLF_DBTN_ENABLE_
XMLCHAR

853 Uint32 “enable_xmlchar - Enable

conversion to XML

configuration parameter” on

page 543

failarchpath Yes No None SQLF_DBTN_FAILARCHPATH 826 char(243) “failarchpath - Failover log

archive path” on page 543

hadr_local_host No No None SQLF_DBTN_HADR_LOCAL_
HOST

811 char(256) “hadr_local_host - HADR local

host name” on page 544

hadr_local_svc No No None SQLF_DBTN_HADR_LOCAL_
SVC

812 char(41) “hadr_local_svc - HADR local

service name” on page 545

hadr_peer_window No No Low (see

Note 4)

SQLF_DBTN_HADR_PEER_
WINDOW

914 Uint32 “hadr_peer_window - HADR

peer window configuration

parameter” on page 545

hadr_remote_host No No None SQLF_DBTN_HADR_REMOTE_
HOST

813 char(256) “hadr_remote_host - HADR

remote host name” on page

546

hadr_remote_inst No No None SQLF_DBTN_HADR_REMOTE_
INST

815 char(9) “hadr_remote_inst - HADR

instance name of the remote

server” on page 546

hadr_remote_svc No No None SQLF_DBTN_HADR_REMOTE_
SVC

814 char(41) “hadr_remote_svc - HADR

remote service name” on page

547

hadr_syncmode No No None SQLF_DBTN_HADR_
SYNCMODE

817 Uint32 “hadr_syncmode - HADR

synchronization mode for log

write in peer state” on page

547

hadr_timeout No No None SQLF_DBTN_HADR_TIMEOUT 816 Uint32 “hadr_timeout - HADR

timeout value” on page 548

indexrec2 Yes No Medium SQLF_DBTN_INDEXREC 30 Uint16 “indexrec - Index re-creation

time” on page 483

450 Data Servers, Databases, and Database Objects Guide

Table 68. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

locklist Yes Yes High

when it

affects

escala-

tion

SQLF_DBTN_LOCK_LIST 704 Uint64 “locklist - Maximum storage

for lock list” on page 551

locktimeout No No Medium SQLF_DBTN_LOCKTIMEOUT 34 Sint16 “locktimeout - Lock timeout”

on page 553

logarchmeth1 Yes No None SQLF_DBTN_
LOGARCHMETH1

822 char(252) “logarchmeth1 - Primary log

archive method” on page 555

logarchmeth2 Yes No None SQLF_DBTN_
LOGARCHMETH2

823 char(252) “logarchmeth2 - Secondary log

archive method” on page 556

logarchopt1 Yes No None SQLF_DBTN_LOGARCHOPT1 824 char(243) “logarchopt1 - Primary log

archive options” on page 557

logarchopt2 Yes No None SQLF_DBTN_LOGARCHOPT2 825 char(243) “logarchopt2 - Secondary log

archive options” on page 557

logbufsz No No High SQLF_DBTN_LOGBUFSZ 33 Uint16 “logbufsz - Log buffer size” on

page 558

logfilsiz No No Medium SQLF_DBTN_LOGFIL_SIZ 92 Uint32 “logfilsiz - Size of log files” on

page 558

logindexbuild Yes Yes None SQLF_DBTN_
LOGINDEXBUILD

818 Uint32 “logindexbuild - Log index

pages created” on page 560

logprimary No No Medium SQLF_DBTN_LOGPRIMARY 16 Uint16 “logprimary - Number of

primary log files” on page 560

logretain3 No No Low SQLF_DBTN_LOG_RETAIN 23 Uint16 “logretain - Log retain enable”

on page 562

logsecond Yes No Medium SQLF_DBTN_LOGSECOND 17 Uint16 “logsecond - Number of

secondary log files” on page

562

max_log Yes Yes SQLF_DBTN_MAX_LOG 807 Uint16 “max_log - Maximum log per

transaction” on page 564

maxappls Yes Yes Medium SQLF_DBTN_MAXAPPLS 6 Uint16 “maxappls - Maximum

number of active applications”

on page 564

maxfilop Yes No Medium SQLF_DBTN_MAXFILOP 3 Uint16 “maxfilop - Maximum

database files open per

application” on page 565

maxlocks Yes Yes High

when it

affects

escala-

tion

SQLF_DBTN_MAXLOCKS 15 Uint16 “maxlocks - Maximum percent

of lock list before escalation”

on page 566

min_dec_div_3 No No High SQLF_DBTN_MIN_DEC_DIV_3 605 Sint32 “min_dec_div_3 - Decimal

division scale to 3” on page

568

mincommit Yes No High SQLF_DBTN_MINCOMMIT 32 Uint16 “mincommit - Number of

commits to group” on page

569

mirrorlogpath No No Low SQLF_DBTN_
MIRRORLOGPATH

806 char(242) “mirrorlogpath - Mirror log

path” on page 570

newlogpath No No Low SQLF_DBTN_NEWLOGPATH 20 char(242) “newlogpath - Change the

database log path” on page

571

num_db_backups Yes No None SQLF_DBTN_NUM_DB_
BACKUPS

601 Uint16 “num_db_backups - Number

of database backups” on page

573

num_freqvalues Yes No Low SQLF_DBTN_NUM_
FREQVALUES

36 Uint16 “num_freqvalues - Number of

frequent values retained” on

page 573

num_iocleaners No Yes High SQLF_DBTN_NUM_
IOCLEANERS

37 Uint16 “num_iocleaners - Number of

asynchronous page cleaners”

on page 574

Chapter 20. Configuration parameters 451

Table 68. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

num_ioservers No Yes High SQLF_DBTN_NUM_
IOSERVERS

39 Uint16 “num_ioservers - Number of

I/O servers” on page 576

num_log_span Yes Yes SQLF_DBTN_NUM_LOG_
SPAN

808 Uint16 “num_log_span - Number log

span” on page 576

num_quantiles Yes No Low SQLF_DBTN_NUM_
QUANTILES

48 Uint16 “num_quantiles - Number of

quantiles for columns” on

page 577

numarchretry Yes No None SQLF_DBTN_
NUMARCHRETRY

827 Uint16 “numarchretry - Number of

retries on error” on page 578

overflowlogpath No No Medium SQLF_DBTN_
OVERFLOWLOGPATH

805 char(242) “overflowlogpath - Overflow

log path” on page 579

pckcachesz Yes Yes High SQLF_DBTN_PCKCACHE_SZ 505 Uint32 “pckcachesz - Package cache

size” on page 580

rec_his_retentn No No None SQLF_DBTN_REC_HIS_
RETENTN

43 Sint16 “rec_his_retentn - Recovery

history retention period” on

page 583

self_tuning_mem Yes No High SQLF_DBTN_SELF_TUNING_
MEM

848 Uint16 “self_tuning_mem- Self-tuning

memory” on page 584

seqdetect Yes No High SQLF_DBTN_SEQDETECT 41 Uint16 “seqdetect - Sequential

detection flag” on page 585

sheapthres_shr Yes Yes High SQLF_DBTN_SHEAPTHRES_
SHR

802 Uint32 “sheapthres_shr - Sort heap

threshold for shared sorts” on

page 586

softmax No No Medium SQLF_DBTN_SOFTMAX 5 Uint16 “softmax - Recovery range and

soft checkpoint interval” on

page 587

sortheap Yes Yes High SQLF_DBTN_SORT_HEAP 52 Uint32 “sortheap - Sort heap size” on

page 589

stat_heap_sz Yes Yes Low SQLF_DBTN_STAT_HEAP_SZ 45 Uint32 “stat_heap_sz - Statistics heap

size” on page 590

stmtheap Yes Yes Medium SQLF_DBTN_STMT_HEAP 821 Uint32 “stmtheap - Statement heap

size” on page 591

trackmod No No Low SQLF_DBTN_TRACKMOD 703 Uint16 “trackmod - Track modified

pages enable” on page 592

tsm_mgmtclass Yes No None SQLF_DBTN_TSM_
MGMTCLASS

307 char(30) “tsm_mgmtclass - Tivoli

Storage Manager management

class” on page 592

tsm_nodename Yes No None SQLF_DBTN_TSM_
NODENAME

306 char(64) “tsm_nodename - Tivoli

Storage Manager node name”

on page 592

tsm_owner Yes No None SQLF_DBTN_TSM_OWNER 305 char(64) “tsm_owner - Tivoli Storage

Manager owner name” on

page 593

tsm_password Yes No None SQLF_DBTN_TSM_PASSWORD 501 char(64) “tsm_password - Tivoli

Storage Manager password”

on page 593

userexit No No Low SQLF_DBTN_USER_EXIT 24 Uint16 “userexit - User exit enable”

on page 594

util_heap_sz Yes No Low SQLF_DBTN_UTIL_HEAP_SZ 55 Uint32 “util_heap_sz - Utility heap

size” on page 594

vendoropt Yes No None SQLF_DBTN_VENDOROPT 829 char(242) “vendoropt - Vendor options”

on page 595<

wlm_collect_int Yes No Low SQLF_DBTN_WLM_COLLECT_
INT

907 Sint32 “wlm_collect_int - Workload

management collection

interval configuration

parameter” on page 595

452 Data Servers, Databases, and Database Objects Guide

Table 68. Configurable Database Configuration Parameters (continued)

Parameter

Cfg.

Online Auto.

Perf.

Impact Token

Token

Value

Data

Type Additional Information

Note: The bits of SQLF_DBTN_AUTONOMIC_SWITCHES indicate the default settings for a number of auto-maintenance configuration parameters.

The individual bits making up this composite parameter are:

1.

Default => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint

Bit 2 off (xxxx xxxx xxxx xx0x): auto_db_backup

Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint

Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats

Bit 5 off (xxxx xxxx xxx0 xxxx): auto_stats_prof

Bit 6 off (xxxx xxxx xx0x xxxx): auto_prof_upd

Bit 7 off (xxxx xxxx x0xx xxxx): auto_reorg

Bit 8 off (xxxx xxxx 0xxx xxxx): auto_storage

Bit 9 off (xxxx xxx0 xxxx xxxx): auto_stmt_stats

0 0 0 D

Maximum => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint

Bit 2 off (xxxx xxxx xxxx xx1x): auto_db_backup

Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint

Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats

Bit 5 off (xxxx xxxx xxx1 xxxx): auto_stats_prof

Bit 6 off (xxxx xxxx xx1x xxxx): auto_prof_upd

Bit 7 off (xxxx xxxx x1xx xxxx): auto_reorg

Bit 8 off (xxxx xxxx 1xxx xxxx): auto_storage

Bit 9 off (xxxx xxx1 xxxx xxxx): auto_stmt_stats

0 1 F F

2. Valid values (defined in sqlutil.h):

 SQLF_INX_REC_SYSTEM (0)

 SQLF_INX_REC_REFERENCE (1)

 SQLF_INX_REC_RESTART (2)

3. Valid values (defined in sqlutil.h):

 SQLF_LOGRETAIN_NO (0)

 SQLF_LOGRETAIN_RECOVERY (1)

 SQLF_LOGRETAIN_CAPTURE (2)

4. If you set the hadr_peer_window parameter to a non-zero time value, then the primary database might seem to hang on transactions when it is

in disconnected peer state, because it is waiting for confirmation from the standby database even though it is not connected to the standby

database.

 Table 69. Informational Database Configuration Parameters

Parameter Token

Token

Value Data Type Additional Information

backup_pending SQLF_DBTN_BACKUP_PENDING 112 Uint16 “backup_pending - Backup

pending indicator” on page 525

codepage SQLF_DBTN_CODEPAGE 101 Uint16 “codepage - Code page for the

database” on page 528

codeset SQLF_DBTN_CODESET 120 char(9)1 “codeset - Codeset for the

database” on page 528

collate_info SQLF_DBTN_COLLATE_INFO 44 char(260) “collate_info - Collating

information” on page 528

country/region SQLF_DBTN_COUNTRY 100 Uint16 “country/region - Database

territory code” on page 529

database_consistent SQLF_DBTN_CONSISTENT 111 Uint16 “database_consistent - Database

is consistent” on page 529

database_level SQLF_DBTN_DATABASE_LEVEL 124 Uint16 “database_level - Database

release level” on page 530

hadr_db_role SQLF_DBTN_HADR_DB_ROLE 810 Uint32 “hadr_db_role - HADR database

role” on page 544

log_retain_status SQLF_DBTN_LOG_RETAIN_STATUS 114 Uint16 “log_retain_status - Log retain

status indicator” on page 554

loghead SQLF_DBTN_LOGHEAD 105 char(12) “loghead - First active log file”

on page 560

logpath SQLF_DBTN_LOGPATH 103 char(242) “logpath - Location of log files”

on page 560

multipage_alloc SQLF_DBTN_MULTIPAGE_ALLOC 506 Uint16 “multipage_alloc - Multipage file

allocation enabled” on page 571

numsegs SQLF_DBTN_NUMSEGS 122 Uint16 “numsegs - Default number of

SMS containers” on page 578

Chapter 20. Configuration parameters 453

Table 69. Informational Database Configuration Parameters (continued)

Parameter Token

Token

Value Data Type Additional Information

pagesize SQLF_DBTN_PAGESIZE 846 Uint32 “pagesize - Database default

page size” on page 580

release SQLF_DBTN_RELEASE 102 Uint16 “release - Configuration file

release level” on page 501

restore_pending SQLF_DBTN_RESTORE_PENDING 503 Uint16 “restore_pending - Restore

pending” on page 583

restrict_access SQLF_DBTN_RESTRICT_ACCESS 852 Sint32 “restrict_access - Database has

restricted access configuration

parameter” on page 583

rollfwd_pending SQLF_DBTN_ROLLFWD_PENDING 113 Uint16 “rollfwd_pending - Roll forward

pending indicator” on page 584

territory SQLF_DBTN_TERRITORY 121 char(5)2 “territory - Database territory”

on page 591

user_exit_status SQLF_DBTN_USER_EXIT_STATUS 115 Uint16 “user_exit_status - User exit

status indicator” on page 594

Note:

1. char(17) on HP-UX, Linux and Solaris Operating Environment.

2. char(33) on HP-UX, Linux and Solaris.

DB2 Administration Server (DAS) Configuration Parameter

Summary

 Table 70. DAS Configuration Parameters

Parameter Parameter Type Additional Information

authentication Configurable “authentication - Authentication type DAS” on page 596

contact_host Configurable Online “contact_host - Location of contact list” on page 597

das_codepage Configurable Online “das_codepage - DAS code page” on page 597

das_territory Configurable Online “das_territory - DAS territory” on page 598

dasadm_group Configurable “dasadm_group - DAS administration authority group name” on page 598

db2system Configurable Online “db2system - Name of the DB2 server system” on page 599

discover Configurable Online “discover - DAS discovery mode” on page 599

exec_exp_task Configurable “exec_exp_task - Execute expired tasks” on page 600

jdk_64_path Configurable Online “jdk_64_path - 64-Bit Software Developer’s Kit for Java installation path DAS” on

page 550

jdk_path Configurable Online “jdk_path - Software Developer’s Kit for Java installation path DAS” on page 600

sched_enable Configurable “sched_enable - Scheduler mode” on page 601

sched_userid Informational “sched_userid - Scheduler user ID” on page 601

smtp_server Configurable Online “smtp_server - SMTP server” on page 601

toolscat_db Configurable “toolscat_db - Tools catalog database” on page 602

toolscat_inst Configurable “toolscat_inst - Tools catalog database instance” on page 602

toolscat_schema Configurable “toolscat_schema - Tools catalog database schema” on page 602

Configuration parameter section headings

Each of the configuration parameter descriptions contain some or all of the

following section headings, as applicable. In some cases they are mutually

exclusive, for example, valid values are not needed if the [range] is specified. In

most cases, these headings are self-explanatory.

454 Data Servers, Databases, and Database Objects Guide

Table 71. Description of the configuration parameter section headings

Section heading Description and possible values

Configuration type Possible values are:

v Database manager

v Database

v DB2 Administration Server

Applies to If applicable, lists the data server types that the configuration parameter applies to.

Possible values are:

v Client

v Database server with local and remote clients

v Database server with local clients

v DB2 Administration Server

v OLAP functions

v Partitioned database server with local and remote clients

v Partitioned database server with local and remote clients when federation is

enabled.

v Satellite database server with local clients

Parameter type Possible values are:

v Configurable (the database manager must be restarted to have the changes take

effect)

v Configurable online (can be dynamically updated online without having to restart

the database manager)

v Informational (values are for your information only and cannot be updated)

Default [range] If applicable, lists the default value and the possible ranges, including NULL values or

automatic settings. If the range differs by platform, then the values are listed by

platform or platform type, for example, 32-bit or 64-bit platforms. Note that in most

cases the default value is not listed as part of the range.

Unit of measure If applicable, lists the unit of measure. Possible values are:

v Bytes

v Counter

v Megabytes per second

v Milliseconds

v Minutes

v Pages (4 KB)

v Percentage

v Seconds

Valid values If applicable, lists the valid value. This heading is mutually exclusive with the default

[range] heading.

Examples If applicable, lists examples.

Propagation class If applicable, possible values are:

v Immediate

v Statement boundary

When allocated If applicable, indicates when the configuration parameter is allocated by the database

manager.

When freed If applicable, indicates when the configuration parameter is freed by the database

manager.

Restrictions If applicable, lists any restrictions that apply to the configuration parameter.

Limitations If applicable, lists any limitations that apply to the configuration parameter.

Recommendations If applicable, lists any recommendations that apply to the configuration parameter.

Usage notes If applicable, lists any usage notes that apply to the configuration parameter.

Configuration parameters that affect the number of agents

There are a number of database manager configuration parameters related to

database agents and how they are managed.

Chapter 20. Configuration parameters 455

The following database manager configuration parameters determine how many

database agents are created and how they are managed:

v Agent Pool Size (num_poolagents): The total number of idle agents to pool that

are kept available in the system. The default value for this parameter is 100,

AUTOMATIC.

v Initial Number of Agents in Pool (num_initagents): When the database manager

is started, a pool of worker agents is created based on this value. This speeds up

performance for initial queries. The worker agents all begin as idle agents.

v Maximum Number of Connections (max_connections): specifies the maximum

number of connections allowed to the database manager system on each

database partition.

v Maximum Number of Coordinating Agents (max_coordagents): For partitioned

database environments and environments with intra-partition parallelism

enabled when Connection concentrator is enabled, this value limits the number

of coordinating agents.

Configuration parameters that affect query optimization

Several configuration parameters affect the access plan chosen by the SQL or

XQuery compiler. Many of these are appropriate to a single-partition database

environment and some are only appropriate to a partitioned database environment.

Assuming a homogeneous partitioned database environment, where the hardware

is the same, the values used for each parameter should be the same on all database

partitions.

Note: When you change a configuration parameter dynamically, the optimizer

might not read the changed parameter values immediately because of older access

plans in the package cache. To reset the package cache, execute the FLUSH

PACKAGE CACHE command.

In a federated system, if the majority of your queries access nicknames, evaluate

the types of queries that you send before you change your environment. For

example, in a federated database the buffer pool does not cache pages from data

sources, which are the DBMSs and data within the federated system. For this

reason, increasing the size of the buffer does not guarantee that the optimizer will

consider additional access-plan alternatives when it chooses an access plan for

queries that contain nicknames. However, the optimizer might decide that local

materialization of data source tables is the least-cost route or a necessary step for a

sort operation. In that case, increasing the resources available might improve

performance.

The following configuration parameters or factors affect the access plan chosen by

the SQL or XQuery compiler:

v The size of the buffer pools that you specified when you created or altered them.

When the optimizer chooses the access plan, it considers the I/O cost of fetching

pages from disk to the buffer pool and estimates the number of I/Os required to

satisfy a query. The estimate includes a prediction of buffer-pool usage, because

additional physical I/Os are not required to read rows in a page that is already

in the buffer pool.

The optimizer considers the value of the npages column in the

SYSCAT.BUFFERPOOLS system catalog tables and, in partitioned database

environments, the SYSCAT.BUFFERPOOLDBPARTITIONS system catalog tables.

The I/O costs of reading the tables can have an impact on:

– How two tables are joined

456 Data Servers, Databases, and Database Objects Guide

– Whether an unclustered index will be used to read the data
v Default Degree (dft_degree)

The dft_degree configuration parameter specifies parallelism by providing a

default value for the CURRENT DEGREE special register and the DEGREE bind

option. A value of one (1) means no intra-partition parallelism. A value of minus

one (-1) means the optimizer determines the degree of intra-partition parallelism

based on the number of processors and the type of query.

Note: Intra-parallel processing does not occur unless you enable it by setting the

intra_parallel database manager configuration parameter.

v Default Query Optimization Class (dft_queryopt)

Although you can specify a query optimization class when you compile SQL or

XQuery queries, you can also set a default query optimization class.

v Average Number of Active Applications (avg_appls)

The optimizer uses the avg_appls parameter to help estimate how much of the

buffer pool might be available at run-time for the access plan chosen. Higher

values for this parameter can influence the optimizer to choose access plans that

are more conservative in buffer pool usage. If you specify a value of 1, the

optimizer considers that the entire buffer pool will be available to the

application.

v Sort Heap Size (sortheap)

If the rows to be sorted occupy more than the space available in the sort heap,

several sort passes are performed, where each pass sorts a subset of the entire

set of rows. Each sort pass is stored in a system temporary table in the buffer

pool, which might be written to disk. When all the sort passes are complete,

these sorted subsets are merged into a single sorted set of rows. A sort is

considered to be “piped” if it does not require a system temporary table to store

the final, sorted list of data. That is, the results of the sort can be read in a

single, sequential access. Piped sorts result in better performance than non-piped

sorts and will be used if possible.

When choosing an access plan, the optimizer estimates the cost of the sort

operations, including evaluating whether a sort can be piped, by:

– Estimating the amount of data to be sorted

– Looking at the sortheap parameter to determine if there is enough space for

the sort to be piped.
v Maximum Storage for Lock List (locklist) and Maximum Percent of Lock List

Before Escalation (maxlocks)

When the isolation level is repeatable read (RR), the optimizer considers the

values of the locklist and maxlocks parameters to determine whether row level

locks might be escalated to a table level lock. If the optimizer estimates that lock

escalation will occur for a table access, then it chooses a table level lock for the

access plan, instead of incurring the overhead of lock escalation during the

query execution.

v CPU Speed (cpuspeed)

The optimizer uses the CPU speed to estimate the cost of performing certain

operations. CPU cost estimates and various I/O cost estimates help select the

best access plan for a query.

The CPU speed of a machine can have a significant influence on the access plan

chosen. This configuration parameter is automatically set to an appropriate value

when the database is installed or migrated. Do not adjust this parameter unless

you are modelling a production environment on a test system or assessing the

impact of a hardware change. Using this parameter to model a different

Chapter 20. Configuration parameters 457

hardware environment allows you to find out the access plans that might be

chosen for that environment. To have the database manager recompute the value

of this automatic configuration parameter, set it to -1.

v Statement Heap Size (stmtheap)

Although the size of the statement heap does not influence the optimizer in

choosing different access paths, it can affect the amount of optimization

performed for complex SQL or XQuery statements.

If the stmtheap parameter is not set large enough, you might receive a warning

indicating that there is not enough memory available to process the statement.

For example, SQLCODE +437 (SQLSTATE 01602) might indicate that the amount

of optimization that has been used to compile a statement is less than the

amount that you requested.

v Communications Bandwidth (comm_bandwidth)

Communications bandwidth is used by the optimizer to determine access paths.

The optimizer uses the value in this parameter to estimate the cost of

performing certain operations between the database partition servers in a

partitioned database environment.

v Application Heap Size (applheapsz)

Large schemas require sufficient space in the application heap.

Restrictions and behavior when configuring max_coordagents and

max_connections

The Version 9.5 default for the max_coordagents and max_connections parameters will

be AUTOMATIC, with max_coordagents set to 200 and max_connections set to -1

(that is, set to the value of max_coordagents). These settings set Concentrator to OFF.

While configuring max_coordagents or max_connections online, there will be some

restrictions and behavior to be aware of:

v If the value of max_coordagents is increased, the setting takes effect immediately

and new requests will be allowed to create new coordinating agents. If the value

is decreased, the number of coordinating agents will not be reduced

immediately. Rather, the number of coordinating agents will no longer increase,

and existing coordinating agents might terminate after finishing their current set

of work, in order to reduce the overall number of coordinating agents. New

requests for work that require a coordinating agent will not be serviced until the

total number of coordinating agents falls below the new value and a

coordinating agent becomes free.

v If the value for max_connections is increased, the setting takes effect immediately

and new connections previously blocked because of this parameter will be

allowed. If the value is decreased, the database manager will not actively

terminate existing connections; instead, new connections will not be allowed

until enough of the existing connections are terminated to bring the value down

below the new maximum.

v If max_connections is set to -1 (default), then the maximum number of

connections allowed is the same as max_coordagents, and when max_coordagents is

updated offline or online; the maximum number of connections allowed will be

updated as well.

While changing the value of max_coordagents or max_connections online, you cannot

change it such that connection Concentrator will be turned either ON, if it’s off, or

OFF, if it’s ON. For example, if at DB2START time max_coordagents is less than

max_connections (Concentrator is ON), then all updates done online to these two

458 Data Servers, Databases, and Database Objects Guide

parameters must maintain the relationship max_coordagents < max_connections.

Similarly, if at DB2START time, max_coordagents is greater than or equal to

max_connections (Concentrator is OFF), then all updates done online must maintain

this relationship.

When you perform this type of update online, the database manager does not fail

the operation, instead it defers the update. The warning SQL1362W message is

returned, similar to any case when updating the database manager configuration

parameters where IMMEDIATE is specified, but is not possible.

When setting max_coordagents or max_connections to AUTOMATIC, the following

behavior can be expected:

v Both of these parameters can be configured with a starting value and an

AUTOMATIC setting. For example, the following command associates a value of

200 and AUTOMATIC to the max_coordagents parameter:

 UPDATE DBM CONFIG USING max_coordagents 200 AUTOMATIC

These parameters will always have a value associated with them, either the

value set as default, or some value that you specified. If only AUTOMATIC is

specified when updating either parameter, that is, no value is specified, and the

parameter previously had a value associated with it, that value would remain.

Only the AUTOMATIC setting would be affected.

Note: When Concentrator is ON, the values assigned to these two configuration

parameters are important even when the parameters are set to AUTOMATIC.

v If both parameters are set to AUTOMATIC, the database manager allows the

number of connections and coordinating agents to increase as needed to suit the

workload. However, the following caveats apply:

1. When Concentrator is OFF, the database manager maintains a one-to-one

ratio: for every connection there will be only one coordinating agent.

2. When Concentrator is ON, the database manager tries to maintain the ratio

of coordinating agents to connections set by the values in the parameters.

Note:

– The approach used to maintain the ratio is designed to be unintrusive and

does not guarantee the ratio will be maintained perfectly. New

connections are always allowed in this scenario, though they may have to

wait for an available coordinating agent. New coordinating agents will be

created as needed to maintain the ratio. As connections are terminated, the

database manager might also terminate coordinating agents to maintain

the ratio

– The database manager will not reduce the ratio that you set. The initial

values of max_coordagents and max_connections that you set are considered

a lower bound.
v The current and delayed values of both these parameters can be displayed

through various means, such as CLP or APIs. The values displayed will always

be the values set by the user. For example, if the following command were

issued, and then 30 concurrent connections performing work on the instance

were started, the displayed values for max_connections and max_coordagents will

still be 20, AUTOMATIC:

 UPDATE DBM CFG USING max_connections 20 AUTOMATIC,

 max_coordagents 20 AUTOMATIC

Chapter 20. Configuration parameters 459

To determine the real number of connections and coordinating agents currently

running monitor elements, you can also use the Health Monitor.

v If max_connections is set to AUTOMATIC with a value greater than

max_coordagents (so that Concentrator is ON), and max_coordagents is not set to

AUTOMATIC, then the database manager allows an unlimited number of

connections that will use only a limited number of coordinating agents.

Note: Connections might have to wait for available coordinating agents.

The use of the AUTOMATIC option for the max_coordagents and max_connections

configuration parameters is only valid in the following two scenarios:″. :

1. Both parameters are set to AUTOMATIC

2. Concentrator is enabled with max_connections set to AUTOMATIC, while

max_coordagents is not.

All other configurations using AUTOMATIC for these parameters will be blocked

and will return SQL6112N, with a reason code that explains the valid settings of

AUTOMATIC for these two parameters.

Database Manager configuration parameters

agent_stack_sz - Agent stack size

This parameter determines the virtual memory that is allocated by DB2 for each

agent.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Linux (32-bit)

256 [16 – 1024]

Linux (64-bit) and UNIX

1024 [256 – 32768]

Windows

16 [8 – 1000]

Unit of measure

Pages (4 KB)

When allocated

When an agent is initialized to do work for an application

When freed

When an agent completes the work to be done for an application

You can use this parameter to optimize memory utilization of the server for a

given set of applications. More complex queries will use more stack space,

compared to the space used for simple queries.

460 Data Servers, Databases, and Database Objects Guide

This parameter is used to set the initial committed stack size for each agent in a

Windows environment. By default, each agent stack can grow up to the default

reserve stack size of 256 KB (64 4-KB pages). This limit is sufficient for most

database operations. On UNIX and Linux, agent_stack_sz will be rounded up to the

next larger power-of-2 based value. The default setting for UNIX should be

sufficient for most workloads

However, when preparing a large SQL or XQuery statement, the agent can run out

of stack space and the system will generate a stack overflow exception

(0xC00000FD). When this happens, the server will shut down because the error is

non-recoverable.

Note: In Version 9.5 and later, sqlcode -973 will be returned instead of a stack

overflow exception..

The agent stack size can be increased by setting agent_stack_sz to a value larger

than the default reserve stack size of 64 pages. Note that the value for

agent_stack_sz, when larger than the default reserve stack size, is rounded by the

Windows operating system to the nearest multiple of 1 MB; setting the agent stack

size to 128 4-KB pages actually reserves a 1 MB stack for each agent. Setting the

value for agent_stack_sz less than the default reserve stack size will have no effect

on the maximum limit because the stack still grows if necessary up to the default

reserve stack size. In this case, the value for agent_stack_sz is the initial committed

memory for the stack when an agent is created.

You can change the default reserve stack size by using the db2hdr utility to change

the header information for the db2syscs.exe file. Changing the default reserve stack

size will affect all threads while changing agent_stack_sz only affects the stack size

for agents. The advantage of changing the default stack size using the db2hdr

utility is that it provides a better granularity, therefore allowing the stack size to be

set at the minimum required stack size. However, you will have to stop and restart

DB2 for a change to db2syscs.exe to take effect.

Recommendation: If you will be working with large or complex XML data in a

32-bit environment, you should update agent_stack_sz to at least 256 4-KB pages.

Very complex XML schemas might require agent_stack_sz to be set much closer to

the limit in order to avoid stack overflow exceptions during schema registration or

during XML document validation.

You might be able to reduce the stack size in order to make more address space

available to other clients, if your environment matches the following:

v Contains only simple applications (for example light OLTP), in which there are

never complex queries

v Requires a relatively large number of concurrent clients (for example, more than

100).

On Windows, the agent stack size and the number of concurrent clients are

inversely related: a larger stack size reduces the potential number of concurrent

clients that can be running. This occurs because address space is limited on

Windows platforms.

agentpri - Priority of agents

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will continue to work exactly as it did in previous versions, and this parameter

Chapter 20. Configuration parameters 461

will continue to be fully supported. If this parameter is used for workload

management (WLM), then the WLM service class agent priority will be ignored.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter controls the priority given both to all agents, and to other database

manager instance processes and threads, by the operating system scheduler. This

priority determines how CPU time is given to the database manager processes,

agents, and threads relative to the other processes and threads running on the

machine.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

AIX -1 (system) [41 - 125]

Other UNIX

-1 (system) [41 - 128]

Windows

-1 (system) [0 - 6]

Solaris

-1 (system) [0 - 59]

When the parameter is set to -1 or system, no special action is taken and the

database manager is scheduled in the normal way that the operating system

schedules all processes and threads. When the parameter is set to a value other

than -1 or system, the database manager will create its processes and threads with

a static priority set to the value of the parameter. Therefore, this parameter allows

you to control the priority with which the database manager processes and threads

(in a partitioned database environment, this also includes coordinating and

subagents, the parallel system controllers, and the FCM daemons) will execute on

your machine.

You can use this parameter to increase database manager throughput. The values

for setting this parameter are dependent on the operating system on which the

database manager is running. For example, in a Linux or UNIX environment,

numerically low values yield high priorities. When the parameter is set to a value

between 41 and 125, the database manager creates its agents with a UNIX static

priority set to the value of the parameter. This is important in Linux and UNIX

environments because numerically low values yield high priorities for the database

manager, but other processes (including applications and users) might experience

delays because they cannot obtain enough CPU time. You should balance the

setting of this parameter with the other activity expected on the machine.

Restrictions:

462 Data Servers, Databases, and Database Objects Guide

v If you set this parameter to a non-default value on Linux and UNIX platforms,

you cannot use the governor to alter agent priorities.

v On the Solaris operating system, you should not change the default value (-1).

Changing the default value sets the priority of DB2 processes to real-time, which

can monopolize all available resources on the system.

Recommendation: The default value should be used initially. This value provides a

good compromise between response time to other users/applications and database

manager throughput.

If database performance is a concern, you can use benchmarking techniques to

determine the optimum setting for this parameter. You should take care when

increasing the priority of the database manager because performance of other user

processes can be severely degraded, especially when the CPU utilization is very

high. Increasing the priority of the database manager processes and threads can

have significant performance benefits.

aslheapsz - Application support layer heap size

The application support layer heap represents a communication buffer between the

local application and its associated agent. This buffer is allocated as shared

memory by each database manager agent that is started.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

15 [1 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the database manager agent process is started for the local

application

When freed

When the database manager agent process is terminated

If the request to the database manager, or its associated reply, do not fit into the

buffer they will be split into two or more send-and-receive pairs. The size of this

buffer should be set to handle the majority of requests using a single

send-and-receive pair. The size of the request is based on the storage required to

hold:

v The input SQLDA

v All of the associated data in the SQLVARs

v The output SQLDA

v Other fields which do not generally exceed 250 bytes.

Chapter 20. Configuration parameters 463

In addition to this communication buffer, this parameter is also used for two other

purposes:

v It is used to determine the I/O block size when a blocking cursor is opened.

This memory for blocked cursors is allocated out of the application’s private

address space, so you should determine the optimal amount of private memory

to allocate for each application program. If the Data Server Runtime Client

cannot allocate space for a blocking cursor out of an application’s private

memory, a non-blocking cursor will be opened.

v It is used to determine the communication size between agents and db2fmp

processes. (A db2fmp process can be a user-defined function or a fenced stored

procedure.) The number of bytes is allocated from shared memory for each

db2fmp process or thread that is active on the system.

The data sent from the local application is received by the database manager into a

set of contiguous memory allocated from the query heap. The aslheapsz parameter

is used to determine the initial size of the query heap (for both local and remote

clients). The maximum size of the query heap is defined by the query_heap_sz

parameter.

Recommendation: If your application’s requests are generally small and the

application is running on a memory constrained system, you might want to reduce

the value of this parameter. If your queries are generally very large, requiring more

than one send and receive request, and your system is not constrained by memory,

you might want to increase the value of this parameter.

Use the following formula to calculate a minimum number of pages for aslheapsz:

 aslheapsz >= (sizeof(input SQLDA)

 + sizeof(each input SQLVAR)

 + sizeof(output SQLDA)

 + 250) / 4096

where sizeof(x) is the size of x in bytes that calculates the number of pages of a

given input or output value.

You should also consider the effect of this parameter on the number and potential

size of blocking cursors. Large row blocks might yield better performance if the

number or size of rows being transferred is large (for example, if the amount of

data is greater than 4096 bytes). However, there is a trade-off in that larger record

blocks increase the size of the working set memory for each connection.

Larger record blocks might also cause more fetch requests than are actually

required by the application. You can control the number of fetch requests using the

OPTIMIZE FOR clause on the SELECT statement in your application.

audit_buf_sz - Audit buffer size

This parameter specifies the size of the buffer used when auditing the database.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

464 Data Servers, Databases, and Database Objects Guide

Parameter type

Configurable

Default [range]

0 [0 - 65 000]

Unit of measure

Pages (4 KB)

When allocated

When DB2 is started

When freed

When DB2 is stopped

The default value for this parameter is zero (0). If the value is zero (0), the audit

buffer is not used. If the value is greater than zero (0), space is allocated for the

audit buffer where the audit records will be placed when they are generated by the

audit facility. The value times 4 KB pages is the amount of space allocated for the

audit buffer. The audit buffer cannot be allocated dynamically; DB2 must be

stopped and then restarted before the new value for this parameter takes effect.

By changing this parameter from the default to some value larger than zero (0), the

audit facility writes records to disk asynchronously compared to the execution of

the statements generating the audit records. This improves DB2 performance over

leaving the parameter value at zero (0). The value of zero (0) means the audit

facility writes records to disk synchronously with (at the same time as) the

execution of the statements generating the audit records. The synchronous

operation during auditing decreases the performance of applications running in

DB2.

authentication - Authentication type

Specifies and determines how and where authentication of a user takes place.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

SERVER [CLIENT; SERVER; SERVER_ENCRYPT; DATA_ENCRYPT;

DATA_ENCRYPT_CMP; KERBEROS; KRB_SERVER_ENCRYPT;

GSSPLUGIN; GSS_SERVER_ENCRYPT]

If authentication is SERVER, the user ID and password are sent from the client to

the server so that authentication can take place on the server. The value

SERVER_ENCRYPT provides the same behavior as SERVER, except that any user

IDs and passwords sent over the network are encrypted.

Chapter 20. Configuration parameters 465

A value of DATA_ENCRYPT means the server accepts encrypted SERVER

authentication schemes and the encryption of user data. The authentication works

exactly the same way as SERVER_ENCRYPT.

The following user data are encrypted when using this authentication type:

v SQL statements

v SQL program variable data

v Output data from the server processing an SQL statement and including a

description of the data

v Some or all of the answer set data resulting from a query

v Large object (LOB) streaming

v SQLDA descriptors

A value of DATA_ENCRYPT_CMP means the server accepts encrypted SERVER

authentication schemes and the encryption of user data. In addition, this

authentication type allows compatibility with earlier products that do not support

DATA_ENCRYPT authentication type. These products are permitted to connect

with the SERVER_ENCRYPT authentication type and without encrypting user data.

Products supporting the new authentication type must use it. This authentication

type is only valid in the server’s database manager configuration file and is not

valid when used on the CATALOG DATABASE command.

Note: For a standards compliance (defined in the “Standards compliance” topic)

configuration, SERVER is the only supported value.

A value of CLIENT indicates that all authentication takes place at the client. No

authentication needs to be performed at the server.

A value of KERBEROS means that authentication is performed at a Kerberos server

using the Kerberos security protocol for authentication. With an authentication

type of KRB_SERVER_ENCRYPT at the server and clients that support the

Kerberos security system, the effective system authentication type is KERBEROS. If

the clients do not support the Kerberos security system, the system authentication

type is effectively equivalent to SERVER_ENCRYPT.

A value of GSSPLUGIN means that authentication is performed using an external

GSSAPI-based security mechanism. With an authentication type of

GSS_SERVER_ENCRYPT at the server and clients that support the GSSPLUGIN

security mechanism, the effective system authentication type is GSSPLUGIN (that

is, if the clients support one of the server’s plug-ins). If the clients do not support

the GSSPLUGIN security mechanism, the system authentication type is effectively

equivalent to SERVER_ENCRYPT.

Recommendation: Typically, the default value (SERVER) is adequate for local

clients. If remote clients are connecting to the database server then

SERVER_ENCRYPT is the suggested value to protect the user ID and password.

catalog_noauth - Cataloging allowed without authority

This parameter specifies whether users are able to catalog and uncatalog databases

and nodes, or DCS and ODBC directories, without SYSADM authority.

Configuration type

Database manager

Applies to

466 Data Servers, Databases, and Database Objects Guide

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Database server with local and remote clients

NO [NO (0) — YES (1)]

Client; Database server with local clients

YES [NO (0) — YES (1)]

The default value (0) for this parameter indicates that SYSADM authority is

required. When this parameter is set to 1 (yes), SYSADM authority is not required.

clnt_krb_plugin - Client Kerberos plug-in

This parameter specifies the name of the default Kerberos plug-in library to be

used for client-side authentication and local authorization.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null or IBMkrb5 [any valid string]

By default, the value is null on Linux and UNIX systems, and IBMkrb5 on

Windows operating systems. The plug-in is used when the client is authenticated

using KERBEROS authentication, or when local authorization is performed and the

authentication type in the DBM CFG is KERBEROS.

clnt_pw_plugin - Client userid-password plug-in

This parameter specifies the name of the userid-password plug-in library to be

used for client-side authentication and local authorization.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Chapter 20. Configuration parameters 467

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, the value is null and the DB2-supplied userid-password plug-in library

is used. The plug-in is used when the client is authenticated using CLIENT

authentication, or when local authorization is performed and the authentication

type in the DBM CFG is CLIENT, SERVER, SERVER_ENCRYPT or

DATA_ENCRYPT. For non-root installations, if the DB2 userid and password

plug-in library is used, the db2rfe command must be run before using your DB2

product.

cluster_mgr - Cluster manager name

This parameter enables the database manager to communicate incremental cluster

configuration changes to the specified cluster manager.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Multi-partitioned database server with local and remote clients

Parameter type

Informational

Default

No default

Valid values

v TSA

This parameter is set during high availability cluster configuration using the DB2

High Availability Instance Configuration Utility (db2haicu).

comm_bandwidth - Communications bandwidth

This parameter helps the query optimizer determine access paths by indicating the

bandwidth between database partition servers.

Configuration type

Database manager

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

-1 [.1 - 100 000]

468 Data Servers, Databases, and Database Objects Guide

A value of -1 causes the parameter value to be reset to the default. The

default value is calculated based on the speed of the underlying

communications adapter. A value of 100 can be expected for systems using

Gigabit Ethernet.

Unit of measure

Megabytes per second

The value calculated for the communications bandwidth, in megabytes per second,

is used by the query optimizer to estimate the cost of performing certain

operations between the database partition servers of a partitioned database system.

The optimizer does not model the cost of communications between a client and a

server, so this parameter should reflect only the nominal bandwidth between the

database partition servers, if any.

You can explicitly set this value to model a production environment on your test

system or to assess the impact of upgrading hardware.

Recommendation: You should only adjust this parameter if you want to model a

different environment.

The communications bandwidth is used by the optimizer in determining access

paths. You should consider rebinding applications (using the REBIND PACKAGE

command) after changing this parameter.

conn_elapse - Connection elapse time

This parameter specifies the number of seconds within which a TCP/IP connection

is to be established between two database partition servers.

Configuration type

Database manager

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [0–100]

Unit of measure

Seconds

If the attempt to connect succeeds within the time specified by this parameter,

communications are established. If it fails, another attempt is made to establish

communications. If the connection is attempted the number of times specified by

the max_connretries parameter and always times out, an error is issued.

cpuspeed - CPU speed

This parameter reflects the CPU speed of the machine(s) the database is installed

on.

Chapter 20. Configuration parameters 469

When the DB2 instance is created, a small unit of work is run multiple times

against the operating system. CPU speed is the average time taken to complete this

unit of work.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Propagation class

Statement boundary

Default [range]

-1 [1x10-10 — 1] A value of -1 will cause the parameter value to be reset

based on the running of the measurement program.

Unit of measure

Milliseconds

This program is executed if benchmark results are not available if the data for the

IBM RS/6000 model 530H is not found in the file, or if the data for your machine

is not found in the file.

You can explicitly set this value to model a production environment on your test

system or to assess the impact of upgrading hardware. By setting it to -1, cpuspeed

will be re-computed.

Recommendation: You should only adjust this parameter if you want to model a

different environment.

The CPU speed is used by the optimizer in determining access paths. You should

consider rebinding applications (using the REBIND PACKAGE command) after

changing this parameter.

dft_account_str - Default charge-back account

This parameter acts as the default suffix of accounting identifiers.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

470 Data Servers, Databases, and Database Objects Guide

Default [range]

Null [any valid string]

With each application connect request, an accounting identifier consisting of a DB2

Connect-generated prefix and the user supplied suffix is sent from the application

requester to a DRDA application server. This accounting information provides a

mechanism for system administrators to associate resource usage with each user

access.

Note: This parameter is only applicable to DB2 Connect.

The suffix is supplied by the application program calling the sqlesact() API or

the user setting the environment variable DB2ACCOUNT. If a suffix is not

supplied by either the API or environment variable, DB2 Connect uses the value of

this parameter as the default suffix value. This parameter is particularly useful for

earlier database clients (anything prior to version 2) that do not have the capability

to forward an accounting string to DB2 Connect.

Recommendation: Set this accounting string using the following:

v Alphabetics (A through Z)

v Numerics (0 through 9)

v Underscore (_).

dft_monswitches - Default database system monitor switches

This parameter allows you to set a number of switches which are each internally

represented by a bit of the parameter.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Note: The change takes effect immediately if you explicitly ATTACH to the

instance before modifying the dft_mon_xxxx switch settings. Otherwise the

setting takes effect the next time the instance is restarted.

Default

All switches turned off, except dft_mon_timestamp, which is turned on by

default

The parameter is unique in that you can update each of these switches

independently by setting the following parameters:

dft_mon_uow

Default value of the snapshot monitor’s unit of work (UOW) switch

dft_mon_stmt

Default value of the snapshot monitor’s statement switch

Chapter 20. Configuration parameters 471

dft_mon_table

Default value of the snapshot monitor’s table switch

dft_mon_bufpool

Default value of the snapshot monitor’s buffer pool switch

dft_mon_lock

Default value of the snapshot monitor’s lock switch

dft_mon_sort

Default value of the snapshot monitor’s sort switch

dft_mon_timestamp

Default value of the snapshot monitor’s timestamp switch

Recommendation: Any switch (except dft_mon_timestamp) that is turned ON

instructs the database manager to collect monitor data related to that switch.

Collecting additional monitor data increases database manager overhead which can

impact system performance. Turning the dft_mon_timestamp switch OFF becomes

important as CPU utilization approaches 100%. When this occurs, the CPU time

required for issuing timestamps increases dramatically. Furthermore, if the

timestamp switch is turned OFF, the overall cost of other data under monitor

switch control is greatly reduced.

All monitoring applications inherit these default switch settings when the

application issues its first monitoring request (for example, setting a switch,

activating the event monitor, taking a snapshot). You should turn on a switch in

the configuration file only if you want to collect data starting from the moment the

database manager is started. (Otherwise, each monitoring application can set its

own switches and the data it collects becomes relative to the time its switches are

set.)

dftdbpath - Default database path

This parameter contains the default file path used to create databases under the

database manager. If no path is specified when a database is created, the database

is created under the path specified by the dftdbpath parameter.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

UNIX Home directory of instance owner [any existing path]

Windows

Drive on which DB2 is installed [any existing path]

In a partitioned database environment, you should ensure that the path on which

the database is being created is not an NFS-mounted path (on Linix and UNIX

472 Data Servers, Databases, and Database Objects Guide

platforms), or a network drive (in a Windows environment). The specified path

must physically exist on each database partition server. To avoid confusion, it is

best to specify a path that is locally mounted on each database partition server.

The maximum length of the path is 205 characters. The system appends the

database partition name to the end of the path.

Given that databases can grow to a large size and that many users could be

creating databases (depending on your environment and intentions), it is often

convenient to be able to have all databases created and stored in a specified

location. It is also good to be able to isolate databases from other applications and

data both for integrity reasons and for ease of backup and recovery.

For Linux and UNIX environments, the length of the dftdbpath name cannot exceed

215 characters and must be a valid, absolute, path name. For Windows, the

dftdbpath can be a drive letter, optionally followed by a colon.

Recommendation: If possible, put high volume databases on a different disk than

other frequently accessed data, such as the operating system files and the database

logs.

diaglevel - Diagnostic error capture level

This parameter specifies the type of diagnostic errors that will be recorded in the

db2diag.log file.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

3 [0 — 4]

Valid values for this parameter are:

v 0 – No diagnostic data captured

v 1 – Severe errors only

v 2 – All errors

v 3 – All errors and warnings

v 4 – All errors, warnings and informational messages

The diagpath configuration parameter is used to specify the directory that will

contain the error file, alert log file, and any dump files that might be generated,

based on the value of the diaglevel parameter.

Recommendation: You might want to increase the value of this parameter to

gather additional problem determination data to help resolve a problem.

Chapter 20. Configuration parameters 473

diagpath - Diagnostic data directory path

This parameter allows you to specify the fully qualified path for DB2 diagnostic

information.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

Null [any valid path name]

This directory could possibly contain dump files, trap files, an error log, a

notification file, an alert log file, and first occurrence data collection (FODC)

packages, depending on your platform.

If this parameter is null, the diagnostic information will be written to files in one

of the following directories or folders:

v In Windows environments:

– User data files, for example, files under instance directories, are written to a

location that is different from where the code is installed, as follows:

- In Windows Vista environments, user data files are written to

ProgramData\IBM\DB2\.

- In Windows 2003 and XP environments, user data files are written to

Documents and Settings\All Users\Application Data\IBM\DB2\Copy

Name, where Copy Name is the name of your DB2 copy.
v In Linux and UNIX environments: Information is written to

INSTHOME/sqllib/db2dump, where INSTHOME is the home directory of the

instance.

In Version 9.5, the default value of DB2INSTPROF at the global level is stored at

the new location shown above. Other profile registry variables that specify the

location of the runtime data files should query the value of DB2INSTPROF. The

other variables include the following ones:

v DB2CLIINIPATH

v DIAGPATH

v SPM_LOG_PATH

Recommendation: Use the default setting for the diagpath configuration parameter

or use a centralized location for the diagpath value of multiple instances.

In a partitioned database environment, the diagpath parameter should use local

storage at the host to get the best performance from logging. This creates a

separate logging and diagnostic directory for each physical partition. You can use

474 Data Servers, Databases, and Database Objects Guide

the PD_GET_DIAG_HIST table function to retrieve the log records from the

different partitions, and the PD_GET_LOG_MSGS table function to retrieve the

notification log from all partitions.

dir_cache - Directory cache support

This parameter determines whether the database, node and DCS directory files will

be cached in memory.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Yes [Yes; No]

When allocated

v When an application issues its first connect, the application directory

cache is allocated

v When a database manager instance is started (db2start), the server

directory cache is allocated.

When freed

v When an the application process terminates, the application directory

cache is freed

v When a database manager instance is stopped (db2stop), the server

directory cache is freed.

The use of the directory cache reduces connect costs by eliminating directory file

I/O and minimizing the directory searches required to retrieve directory

information. There are two types of directory caches:

v An application directory cache that is allocated and used for each application

process on the machine at which the application is running.

v A server directory cache that is allocated and used for some of the internal

database manager processes.

For application directory caches, when an application issues its first connect, each

directory file is read and the information is cached in private memory for this

application. The cache is used by the application process on subsequent connect

requests and is maintained for the life of the application process. If a database is

not found in the application directory cache, the directory files are searched for the

information, but the cache is not updated. If the application modifies a directory

entry, the next connect within that application will cause the cache for this

application to be refreshed. The application directory cache for other applications

will not be refreshed. When the application process terminates, the cache is freed.

(To refresh the directory cache used by a command line processor session, issue a

db2 terminate command.)

Chapter 20. Configuration parameters 475

For server directory caches, when a database manager instance is started

(db2start), each directory file is read and the information is cached in the server

memory. This cache is maintained until the instance is stopped (db2stop). If a

directory entry is not found in this cache, the directory files are searched for the

information. This server directory cache is never refreshed during the time the

instance is running.

Recommendation: Use directory caching if your directory files do not change

frequently and performance is critical.

In addition, on remote clients, directory caching can be beneficial if your

applications issue several different connection requests. In this case, caching

reduces the number of times a single application must read the directory files.

Directory caching can also improve the performance of taking database system

monitor snapshots. In addition, you should explicitly reference the database name

on the snapshot call, instead of using database aliases.

Note: Errors might occur when performing snapshot calls if directory caching is

turned on and if databases are cataloged, uncataloged, created, or dropped after

the database manager is started.

discover - Discovery mode

This parameter determines what kind of discovery requests, if any, the client can

make.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

SEARCH [DISABLE, KNOWN, SEARCH]

From a client perspective, one of the following will occur:

v If discover = SEARCH, the client can issue search discovery requests to find DB2

server systems on the network. Search discovery provides a superset of the

functionality provided by KNOWN discovery. If discover = SEARCH, both search

and known discovery requests can be issued by the client.

v If discover = KNOWN, only known discovery requests can be issued from the

client. By specifying some connection information for the administration server

on a particular system, all the instance and database information on the DB2

system is returned to the client.

v If discover = DISABLE, discovery is disabled at the client.

The default discovery mode is SEARCH.

476 Data Servers, Databases, and Database Objects Guide

discover_inst - Discover server instance

This parameter specifies whether this instance can be detected by DB2 discovery.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

ENABLE [ENABLE, DISABLE]

The parameter’s default, enable, specifies that the instance can be detected, while

disable prevents the instance from being discovered.

fcm_num_buffers - Number of FCM buffers

This parameter specifies the number of 4 KB buffers that are used for internal

communications (messages) both among and within database servers.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

32-bit platforms

Automatic [128 - 65 300]

64-bit platforms

Automatic [128 - 524 288]
v Database server with local and remote clients: the default is 1024

v Database server with local clients: the default is 512

v Partitioned database server with local and remote clients: the default is

4096

On single-partition database systems, this parameter is used only if

intra-partition parallelism is enabled by changing the intra_parallel

parameter from its default value of NO to YES.

It is possible to set both an initial value and the AUTOMATIC attribute.

Chapter 20. Configuration parameters 477

When set to AUTOMATIC, FCM monitors resource usage and can either increase

or decrease resources, if they are not used within 30 minutes. The amount by

which resources can be increased or decreased depends on the platform, in

particular, that on Linux it can only be increased 25% above the starting value. If

the database manager cannot allocate the number of resources specified when an

instance is started, it scales back the configuration values incrementally until it can

start the instance.

If you have multiple logical nodes on the same machine, you might find it

necessary to increase the value of this parameter. You might also find it necessary

to increase the value of this parameter if you run out of message buffers because of

the number of users on the system, the number of database partition servers on the

system, or the complexity of the applications.

If you are using multiple logical nodes, one pool of fcm_num_buffers buffers is

shared by all the multiple logical nodes on the same machine. The size of the pool

will be determined by multiplying the fcm_num_buffers value times the number of

logical nodes on that physical machine. Re-examine the value you are using;

consider how many FCM buffers in total will be allocated on the machine (or

machines) where the multiple logical nodes reside.

fcm_num_channels - Number of FCM channels

This parameter specifies the number of FCM channels for each database partition.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

v Satellite database server with local clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

UNIX 32-bit platforms

Automatic, with starting values of 256, 512, 2 048 [128 - 120 000]

UNIX 64-bit platforms

Automatic, with starting values of 256, 512, 2 048 [128 - 524 288]

Windows 32-bit

Automatic, with a starting value 10 000 [128 - 120 000]

Windows 64-bit

Automatic, with starting values of 256, 512, 2 048 [128 - 524 288]
v For database server with local and remote clients, the starting value is

512.

v For database server with local clients, the starting value is 256.

v For partitioned database environment servers with local and remote

clients, the starting value is 2 048.

478 Data Servers, Databases, and Database Objects Guide

On non-partitioned database environments, the intra_parallel parameter

must be active before fcm_num_channels can be used.

An FCM channel represents a logical communication end point between EDUs

running in the DB2 engine. Both control flows (request and reply) and data flows

(table queue data) rely on channels to transfer data between partitions.

When set to AUTOMATIC, FCM monitors channel usage, incrementally allocating

and releasing resources as requirements change.

fed_noauth - Bypass federated authentication

This parameter determines whether federated authentication will be bypassed at

the instance.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

No [Yes; No]

When fed_noauth is set to yes, authentication is set to server or server_encrypt, and

federated is set to yes, then authentication at the instance is bypassed. It is assumed

that authentication will happen at the data source. Exercise caution when

fed_noauth is set to yes. Authentication is done at neither the client nor at DB2. Any

user who knows the SYSADM authentication name can assume SYSADM authority

for the federated server.

federated - Federated database system support

This parameter enables or disables support for applications submitting distributed

requests for data managed by data sources (such as the DB2 Family and Oracle).

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

No [Yes; No]

Chapter 20. Configuration parameters 479

federated_async - Maximum asynchronous TQs per query

configuration parameter

This parameter determines the maximum number of asynchrony table queues

(ATQs) in the access plan that the federated server supports.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients when

federation is enabled.

Parameter type

Configurable online

Default [range]

0 [0 to 32 767 inclusive, -1, ANY]

 When ANY or -1 is specified, the optimizer determines the number of

ATQs for the access plan. The optimizer assigns an ATQ to all eligible

SHIP or remote pushdown operators in the plan. The value that is

specified for DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option

limits the number of asynchronous requests.

Recommendation

The federated_async configuration parameter supplies the default or starting

value for the special register and the bind option. You can override the

value of this parameter by setting the value of the CURRENT FEDERATED

ASYNCHRONY special register, FEDERATED_ASYNCHRONY bind

option, or FEDERATED_ASYNCHRONY prepcompile option to a higher or

a lower number.

If the special register or the bind option do not override the federated_async

configuration parameter, the value of the parameter determines the maximum

number of ATQs in the access plan that the federated server allows. If the special

register or the bind option overrides this parameter, the value of the special

register or the bind option determines the maximum number of ATQs in the plan.

Any changes to the federated_async configuration parameter affect dynamic

statements as soon as the current unit of work commits. Subsequent dynamic

statements recognize the new value automatically. A restart of the federated

database is not needed. Embedded SQL packages are not invalidated nor implicitly

rebound when the value of the federated_async configuration parameter changes.

If you want the new value of the federated_async configuration parameter to affect

static SQL statements, you need to rebind the package.

fenced_pool - Maximum number of fenced processes

This parameter represents the number of threads cached in each db2fmp process

for threaded db2fmp processes (processes serving threadsafe stored procedures and

UDFs). For nonthreaded db2fmp processes, this parameter represents the number

of processes cached.

Configuration type

Database manager

480 Data Servers, Databases, and Database Objects Guide

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

-1 (max_coordagents), Automatic [-1; 0–64 000]

Unit of measure

Counter

Restrictions:

v If this parameter is updated dynamically, and the value is decreased, the

database manager does not proactively terminate db2fmp threads or processes,

instead it stops caching them as they are used in order to reduce the number of

cached db2fmp’s down to the new value.

v If this parameter is updated dynamically, and the value is increased, the

database manager caches more db2fmp threads and processes when they are

created.

v When this parameter is set to -1, the default, it assumes the value of the

max_coordagents configuration parameter. Note that only the value of

max_coordagents is assumed and not the automatic setting or behavior.

v When this parameter is set to AUTOMATIC, also the default:

– The database manager allows the number of db2fmp threads and processes

cached to increase based on the high water mark of coordinating agents.

Specifically, the automatic behavior of this parameter allows it to grow

depending on the maximum number of coordinating agents the database

manager has ever registered, at the same time, since it started.

– The value assigned to this parameter represents a lower bound for the

number of db2fmp threads and process to cache.

Recommendation: If your environment uses fenced stored procedures or user

defined functions, then this parameter can be used to ensure that an appropriate

number of db2fmp processes are available to process the maximum number of

concurrent stored procedures and UDFs that run on the instance, ensuring that no

new fenced mode processes need to be created as part of stored procedure and

UDF execution.

If you find that the default value is not appropriate for your environment because

an inappropriate amount of system resource is being given to db2fmp processes

and is affecting performance of the database manager, the following might be

useful in providing a starting point for tuning this parameter:

 fenced_pool = # of applications allowed to make stored procedure and

 UDF calls at one time

If keepfenced is set to YES, then each db2fmp process that is created in the cache

pool will continue to exist and will use system resources even after the fenced

routine call has been processed and returned to the agent.

If keepfenced is set to NO, then nonthreaded db2fmp processes will terminate when

they complete execution, and there is no cache pool. Multithreaded db2fmp

processes will continue to exist, but no threads will be pooled in these processes.

Chapter 20. Configuration parameters 481

This means that even when keepfenced is set to NO, you can have one threaded C

db2fmp process and one threaded Java db2fmp process on your system.

In previous versions, this parameter was known as maxdari.

group_plugin - Group plug-in

This parameter specifies the name of the group plug-in library.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, this value is null, and DB2 uses the operating system group lookup.

The plug-in will be used for all group lookups. For non-root installations, if the

DB2 userid and password plug-in library is used, the db2rfe command must be

run before using your DB2 product.

health_mon - Health monitoring

This parameter allows you to specify whether you want to monitor an instance, its

associated databases, and database objects according to various health indicators.

Configuration type

Database manager

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

On [On; Off]

Related Parameters

If health_mon is turned on (the default), an agent will collect information about the

health of the objects you have selected. If an object is considered to be in an

unhealthy position, based on thresholds that you have set, notifications can be

sent, and actions can be taken automatically. If health_mon is turned off, the health

of objects will not be monitored.

You can use the Health Center or the CLP to select the instance and database

objects that you want to monitor. You can also specify where notifications should

be sent, and what actions should be taken, based on the data collected by the

health monitor.

482 Data Servers, Databases, and Database Objects Guide

indexrec - Index re-creation time

This parameter indicates when the database manager will attempt to rebuild

invalid indexes, and whether or not any index build will be redone during DB2

rollforward or HADR log replay on the standby database.

Configuration type

Database and Database Manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

UNIX Database Manager

restart [restart; restart_no_redo; access; access_no_redo]

Windows Database Manager

restart [restart; restart_no_redo; access; access_no_redo]

Database

Use system setting [system; restart; restart_no_redo; access;

access_no_redo]

There are five possible settings for this parameter:

SYSTEM

use system setting specified in the database manager configuration file to

decide when invalid indexes will be rebuilt, and whether any index build

log records are to be redone during DB2 rollforward or HADR log replay.

(Note: This setting is only valid for database configurations.)

ACCESS

Invalid indexes are rebuilt when the index is first accessed. Any fully

logged index builds are redone during DB2 rollforward or HADR log

replay. When HADR is started and an HADR takeover occurs, any invalid

indexes are rebuilt after takeover when the underlying table is first

accessed.

ACCESS_NO_REDO

Invalid indexes will be rebuilt when the underlying table is first accessed.

Any fully logged index build will not be redone during DB2 rollforward or

HADR log replay and those indexes will be left invalid. When HADR is

started and an HADR takeover takes place, any invalid indexes will be

rebuilt after takeover when the underlying table is first accessed.

RESTART

The default value for indexrec. Invalid indexes will be rebuilt when a

RESTART DATABASE command is either explicitly or implicitly issued.

Any fully logged index build will be redone during DB2 rollforward or

HADR log replay. When HADR is started and an HADR takeover takes

place, any invalid indexes will be rebuilt at the end of takeover.

Chapter 20. Configuration parameters 483

Note that a RESTART DATABASE command is implicitly issued if the

autorestart parameter is enabled.

RESTART_NO_REDO

Invalid indexes will be rebuilt when a RESTART DATABASE command is

either explicitly or implicitly issued. (A RESTART DATABASE command is

implicitly issued if the autorestart parameter is enabled.) Any fully logged

index build will not be redone during DB2 rollforward or HADR log

replay and instead those indexes will be rebuilt when rollforward

completes or when HADR takeover takes place.

Indexes can become invalid when fatal disk problems occur. If this happens to the

data itself, the data could be lost. However, if this happens to an index, the index

can be recovered by re-creating it. If an index is rebuilt while users are connected

to the database, two problems could occur:

v An unexpected degradation in response time might occur as the index file is

re-created. Users accessing the table and using this particular index would wait

while the index was being rebuilt.

v Unexpected locks might be held after index re-creation, especially if the user

transaction that caused the index to be re-created never performed a COMMIT

or ROLLBACK.

Recommendation: The best choice for this option on a high-user server and if

restart time is not a concern, would be to have the index rebuilt at DATABASE

RESTART time as part of the process of bringing the database back online after a

crash.

Setting this parameter to “ACCESS” or to “ACCESS_NO_REDO” will result in a

degradation of the performance of the database manager while the index is being

re-created. Any user accessing that specific index or table would have to wait until

the index is recreated.

If this parameter is set to “RESTART”, the time taken to restart the database will be

longer due to index re-creation, but normal processing would not be impacted

once the database has been brought back online.

Note: At database recovery time, all SQL procedure executables on the file system

that belong to the database being recovered are removed. If indexrec is set to

RESTART, all SQL procedure executables are extracted from the database catalog

and put back on the file system at the next connection to the database. If indexrec is

not set to RESTART, an SQL executable is extracted to the file system only on first

execution of that SQL procedure.

The difference between the RESTART and the RESTART_NO_REDO values, or

between the ACCESS and the ACCESS_NO_REDO values, is only significant when

full logging is activated for index build operations, such as CREATE INDEX and

REORG INDEX operations, or for an index rebuild. You can activate logging by

enabling the logindexbuild database configuration parameter or by enabling LOG

INDEX BUILD when altering a table. By setting indexrec to either RESTART or

ACCESS, operations involving a logged index build can be rolled forward without

leaving the index object in an invalid state, which would require the index to be

rebuilt at a later time.

484 Data Servers, Databases, and Database Objects Guide

instance_memory - Instance memory

This parameter specifies the maximum amount of memory that can be allocated for

a database partition.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

32-bit platforms

Automatic [0 - 1 000 000]

64-bit platforms

Automatic [0 - 68 719 476 736]

Unit of measure

Pages (4 KB)

When allocated

When the instance is started

When freed

When the instance is stopped

The default value of instance_memory is AUTOMATIC, meaning that its actual

value is computed at database partition activation time (db2start). The actual value

used is between 75 percent and 95 percent of the physical RAM on the system,

divided by the number of configured local database partitions in the instance. This

value should be suitable for dedicated database server systems.

Note:

v If the specified value of instance_memory is larger than the amount of physical

memory on the system, then db2start fails with a SQL1220N (The database

manager shared memory set cannot be allocated.)

v If instance_memory is dynamically updated to a value less than the amount of

physical RAM, the request is processed and a new upper limit is set. Dynamic

decreases to instance_memory are allowed only if the new setting is larger than

the current amount of in-use instance_memory, otherwise, the request is

deferred to the next db2start.

v If instance_memory is dynamically updated to a value greater than the amount

of physical RAM while the instance is active, the request is deferred, and the

next db2start fails with a SQL1220N (The database manager shared memory set

cannot be allocated.)

When fast communication manager (FCM) shared memory is allocated, each local

database partition’s share of the overall FCM shared memory size for the system is

accounted for in that database partition’s instance_memory limit.

If memory is requested for a particular heap, and the database partition memory

limit (instance_memory) has already been reached, then DB2 will first attempt to

Chapter 20. Configuration parameters 485

reduce memory usage in all shared and private heaps by the requested amount of

memory. If there is still insufficient free instance_memory, then the request fails,

and the application that initiated the request receives an appropriate SQLCODE

that describes which heap experienced an out-of-memory failure.

The exception to this behavior is for memory requests that are known to be critical

to the operation of DB2 (that is, failing the memory request results the database is

marked as invalid, or the instance is shut down). Note that the critical requests

will first attempt to reduce current memory usage by the database partition. If

there is still insufficient free instance_memory, DB2 still requests that memory

from the operating system. If the operating system allows the memory request,

then the current value of instance_memory will exceed the configured limit,

however, all other non-critical memory requests will fail until enough memory has

been freed.

Note: Restriction for DPF instances: although instance_memory specifies the

amount of memory a single DB2 database partition might allocate, it is an

instance-level configuration parameter, so all database partitions have the same

instance_memory setting. However, if instance_memory is set to AUTOMATIC,

the actual upper bound is computed individually on each separate machine based

on the amount of RAM and the number of local partitions defined, so it is possible

for different partitions to have different memory limits in effect.

Controlling DB2 Memory consumption:

When instance_memory is set to AUTOMATIC, a fixed upper bound on

total memory consumption for the instance is set at instance startup

(db2start). Actual memory consumption by DB2 varies depending on the

workload. When STMM is enabled to perform database_memory tuning

(by default for new databases), during run-time, STMM dynamically

updates the size of performance-critical heaps within the database shared

memory set according to the free physical memory on the system, while

ensuring that there is sufficient free instance_memory available for

functional memory requirements.

 Depending on workload, DB2’s default memory configuration adapts to

the memory requirements of the instance without requiring explicit

self-tuning of overall instance memory. For instance:

v For heavily-used instances, STMM increases the size of

performance-critical heaps as needed. More functional memory is

consumed, as there are more database agents servicing applications and

consuming functional memory. If there is enough free instance_memory

but very little free physical memory on the system, STMM starts

decreasing the size of performance-critical heaps ensure that the system

does not start paging. As functional memory requirements drop, free

physical memory on the system should increase, and STMM will start

increasing the performance-critical heaps again.

v For less heavily-used instances, there is less functional memory

consumed by the instance, and if there is insufficient free physical

memory left on the system, STMM shrinks performance-critical heaps.

If instance_memory is set to a specific value, and at least one active

database has an AUTOMATIC value for database_memory, and STMM is

enabled for that database, then STMM increases the database_memory size

such that DB2 uses almost the entire amount of memory specified by

instance_memory, ensuring only that enough free instance_memory is

available for functional memory requests. In this scenario, STMM does not

486 Data Servers, Databases, and Database Objects Guide

monitor free physical memory on the machine, therefore, instance_memory

must be configured properly to ensure that paging will not occur.

Use the new admin_get_dbp_mem_usage user-defined function (UDF) to

get the total memory consumption by a DB2 instance for a specific

database partition, or for all database partitions. This UDF also returns the

current upper bound value.

Limitation on some Linux kernels:

Due to operating system limitations on some Linux kernels, STMM does

not allow setting database_memory to AUTOMATIC unless

instance_memory is set to a specific value (not AUTOMATIC). If

database_memory is set to AUTOMATIC, and instance_memory is later

set back to AUTOMATIC, the database_memory configuration parameter

will be updated to COMPUTED during the next database activation. If

some databases are already active, STMM stops tuning their overall

database_memory sizes. This limitation is removed on Red Hat Enterprise

Linux (RHEL) 5 and SUSE Linux Enterprise Server 10 SP1 or higher

platforms.

intra_parallel - Enable intra-partition parallelism

This parameter specifies whether the database manager can use intra-partition

parallelism.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

NO (0) [SYSTEM (-1), NO (0), YES (1)]

 A value of -1 causes the parameter value to be set to “YES” or “NO” based

on the hardware on which the database manager is running.

Some of the operations that can take advantage of parallel performance

improvements when this parameter is ″YES″ include database queries and index

creation.

Note:

v Parallel index creation does not use this configuration parameter.

v If you change this parameter value, packages might be rebound to the database,

and some performance degradation might occur.

java_heap_sz - Maximum Java interpreter heap size

This parameter determines the maximum size of the heap that is used by the Java

interpreter started to service Java DB2 stored procedures and UDFs.

Configuration type

Database manager

Applies to

Chapter 20. Configuration parameters 487

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

HP-UX

4096 [0 - 524 288]

All other operating systems

2048 [0 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When a Java stored procedure or UDF starts

When freed

When the db2fmp process (fenced) or the db2agent process (trusted)

terminates.

There is one heap for each DB2 process (one for each agent or subagent on Linux

and UNIX platforms, and one for each instance on other platforms). There is one

heap for each fenced UDF and fenced stored procedure process. There is one heap

per agent (not including sub-agents) for trusted routines. There is one heap per

db2fmp process running a Java stored procedure. For multithreaded db2fmp

processes, multiple applications using threadsafe fenced routines are serviced from

a single heap. In all situations, only the agents or processes that run Java UDFs or

stored procedures ever allocate this memory. On partitioned database systems, the

same value is used at each database partition.

XML data is materialized when passed to stored procedures as IN, OUT, or INOUT

parameters. When you are using Java stored procedures, the heap size might need

to be increased based on the quantity and size of XML arguments, and the number

of external stored procedures that are being executed concurrently.

jdk_path - Software Developer’s Kit for Java installation path

This parameter specifies the directory under which the Software Developer’s Kit

(SDK) for Java, to be used for running Java stored procedures and user-defined

functions, is installed. The CLASSPATH and other environment variables used by

the Java interpreter are computed from the value of this parameter.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

488 Data Servers, Databases, and Database Objects Guide

Default [range]

Null [Valid path]

If the SDK for Java was installed with your DB2 product, this parameter is set

properly. However, if you reset the database manager (dbm cfg) parameter, you

need to specify where the SDK for Java is installed.

keepfenced - Keep fenced process

This parameter indicates whether or not a fenced mode process is kept after a

fenced mode routine call is complete. Fenced mode processes are created as

separate system entities in order to isolate user-written fenced mode code from the

database manager agent process. This parameter is only applicable on database

servers.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Yes [Yes; No]

If keepfenced is set to no, and the routine being executed is not threadsafe, a new

fenced mode process is created and destroyed for each fenced mode invocation. If

keepfenced is set to no, and the routine being executed is threadsafe, the fenced

mode process persists, but the thread created for the call is terminated. If keepfenced

is set to yes, a fenced mode process or thread is reused for subsequent fenced

mode calls. When the database manager is stopped, all outstanding fenced mode

processes and threads will be terminated.

Setting this parameter to yes will result in additional system resources being

consumed by the database manager for each fenced mode process that is activated,

up to the value contained in the fenced_pool parameter. A new process is only

created when no existing fenced mode process is available to process a subsequent

fenced routine invocation. This parameter is ignored if fenced_pool is set to 0.

Recommendation: In an environment in which the number of fenced mode

requests is large relative to the number of non-fenced mode requests, and system

resources are not constrained, then this parameter can be set to yes. This will

improve the fenced mode process performance by avoiding the initial fenced mode

process creation overhead since an existing fenced mode process will be used to

process the call. In particular, for Java routines, this will save the cost of starting

the Java Virtual Machine (JVM), a very significant performance improvement.

For example, in an OLTP debit-credit banking transaction application, the code to

perform each transaction could be performed in a stored procedure which executes

in a fenced mode process. In this application, the main workload is performed out

of fenced mode processes. If this parameter is set to no, each transaction incurs the

overhead of creating a new fenced mode process, resulting in a significant

Chapter 20. Configuration parameters 489

performance reduction. If, however, this parameter is set to yes, each transaction

would try to use an existing fenced mode process, which would avoid this

overhead.

In previous versions of DB2, this parameter was known as keepdari.

local_gssplugin - GSS API plug-in used for local instance level

authorization

This parameter specifies the name of the default GSS API plug-in library to be

used for instance level local authorization when the value of the authentication

database manager configuration parameter is set to GSSPLUGIN or

GSS_SERVER_ENCRYPT.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

max_connections - Maximum number of client connections

This parameter indicates the maximum number of client connections allowed per

database partition.

Configuration type

Database manager

Parameter type

Configurable online

Applies to

v Database server with local and remote clients

v Database server with local clients

v Database Server or Connect Server with local and remote clients″ (for

max_connections, max_coordagents, num_initagents, num_poolagents, and

also federated_async, if you are using a Federated environment)

Default [range]

-1 and AUTOMATIC (max_coordagents) [-1 and AUTOMATIC; 1–64 000]

 A setting of -1 means that the value associated with max_coordagents will be

used, not the automatic setting or behavior. AUTOMATIC means that the

database manager picks the value for this parameter using whatever

technique works best. AUTOMATIC is an ON/OFF switch in the

configuration file and is independent of the value, hence both -1 and

AUTOMATIC can be the default setting.

For details, see: “Restrictions and behavior when configuring

max_coordagents and max_connections” on page 458.

490 Data Servers, Databases, and Database Objects Guide

The Concentrator

The Concentrator is OFF when max_connections is equal to or less than

max_coordagents. The Concentrator is ON when max_connections is greater than

max_coordagents.

This parameter controls the maximum number of client applications that can be

connected to a database partition in the instance. Typically, each application is

assigned a coordinator agent. The agent facilitates the operations between the

application and the database. When the default value for this parameter is used,

the Concentrator feature is not activated. As a result, each agent operates within its

own private memory and shares database manager and database global resources,

such as the buffer pool, with other agents. When the parameter is set to a value

greater than the default, the Concentrator feature is activated.

max_connretries - Node connection retries

This parameter specifies the maximum number of times an attempt will be made

to establish a TCP/IP connection between two database partition servers.

Configuration type

Database manager

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

5 [0–100]

If the attempt to establish communication between two database partition servers

fails (for example, the value specified by the conn_elapse parameter is reached),

max_connretries specifies the number of connection retries that can be made to a

database partition server. If the value specified for this parameter is exceeded, an

error is returned.

max_coordagents - Maximum number of coordinating agents

This parameter is used to limit the number of coordinating agents.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

200, Automatic [-1; 0–64 000]

 A setting of -1 translates into a value of 200.

Chapter 20. Configuration parameters 491

For details, see: “Restrictions and behavior when configuring

max_coordagents and max_connections” on page 458.

The Concentrator

When the Concentrator is OFF, that is, when max_connections is equal to or less

than max_coordagents, this parameter determines the maximum number of

coordinating agents that can exist at one time on a server node.

One coordinating agent is acquired for each local or remote application that

connects to a database or attaches to an instance. Requests that require an instance

attachment include CREATE DATABASE, DROP DATABASE, and Database System

Monitor commands.

When the Concentrator is ON, that is, when max_connections is greater than

max_coordagents, there might be more connections than coordinator agents to

service them. An application is in an active state only if there is a coordinator

agent servicing it. Otherwise, the application is in an inactive state. Requests from

an active application will be serviced by the database coordinator agent (and

subagents in SMP or MPP configurations). Requests from an inactive application

will be queued until a database coordinator agent is assigned to service the

application, when the application becomes active. As a result, this parameter might

be used to control the load on the system.

max_querydegree - Maximum query degree of parallelism

This parameter specifies the maximum degree of intra-partition parallelism that is

used for any SQL statement executing on this instance of the database manager. An

SQL statement will not use more than this number of parallel operations within a

database partition when the statement is executed.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

-1 (ANY) [ANY, 1 - 32 767] (ANY means system-determined)

The intra_parallel configuration parameter must be set to “YES” to enable the

database partition to use intra-partition parallelism for SQL statements. The

intra_parallel parameter is no longer required for parallel index creation.

The default value for this configuration parameter is -1. This value means that the

system uses the degree of parallelism determined by the optimizer; otherwise, the

user-specified value is used.

492 Data Servers, Databases, and Database Objects Guide

Note: The degree of parallelism for an SQL statement can be specified at statement

compilation time using the CURRENT DEGREE special register or the DEGREE

bind option.

The maximum query degree of parallelism for an active application can be

modified using the SET RUNTIME DEGREE command. The actual runtime degree

used is the lower of:

v max_querydegree configuration parameter

v Application runtime degree

v SQL statement compilation degree

This configuration parameter applies to queries only.

max_time_diff - Maximum time difference among nodes

This parameter specifies the maximum time difference, in minutes, that is

permitted among the database partition servers listed in the node configuration

file.

Configuration type

Database manager

Applies to

Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

60 [1 - 1 440]

Unit of measure

Minutes

Each database partition server has its own system clock. If two or more database

partition servers are associated with a transaction, and their clocks are not

synchronized to within the time specified by this parameter, the transaction is

rejected and an SQLCODE is returned. (The transaction is rejected only if data

modification is associated with it.)

DB2 uses Coordinated Universal Time (UTC), so different time zones are not a

consideration when you set this parameter. The Coordinated Universal Time is the

same as Greenwich Mean Time.

maxagents - Maximum number of agents

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter indicates the maximum number of database manager agents,

whether coordinator agents or subagents, available at any given time to accept

application requests

Configuration type

Database manager

Chapter 20. Configuration parameters 493

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

200 [1 - 64 000]

 400® [1 - 64 000] on partitioned database server with local and remote

clients

Unit of measure

Counter

If you want to limit the number of coordinating agents, use the max_coordagents

parameter.

This parameter can be useful in memory constrained environments to limit the

total memory usage of the database manager, because each additional agent

requires additional memory.

Recommendation: The value of maxagents should be at least the sum of the values

for maxappls in each database allowed to be accessed concurrently. If the number of

databases is greater than the numdb parameter, then the safest course is to use the

product of numdb with the largest value for maxappls.

Each additional agent requires some resource overhead that is allocated at the time

the database manager is started.

If you are encountering memory errors when trying to connect to a database, try

making the following configuration adjustments:

v In a non-partitioned database environment with no intra-query parallelism

enabled, increase the value of the maxagents database configuration parameter.

v In a partitioned database environment or an environment where intra-query

parallelism is enabled, increase the larger of maxagents or max_coordagents.

maxcagents - Maximum number of concurrent agents

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter is used to control the load on the system during periods of high

simultaneous application activity by limiting the maximum number of database

manager agents that can be concurrently executing a database manager transaction

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

494 Data Servers, Databases, and Database Objects Guide

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

-1 (max_coordagents) [-1; 1 – max_coordagents]

Unit of measure

Counter

This parameter does not limit the number of applications that can have

connections to a database. It only limits the number of database manager agents

that can be processed concurrently by the database manager at any one time,

thereby limiting the usage of system resources during times of peak processing.

For example, you might have a system requiring a large number of connections

but with a limited amount of memory to serve those connections. Adjusting this

parameter can be useful in such an environment, where a period of high

simultaneous activity could cause excessive operating system paging.

A value of -1 indicates that the limit is max_coordagents.

Recommendation: In most cases the default value for this parameter will be

acceptable. In cases where the high concurrency of applications is causing

problems, you can use benchmark testing to tune this parameter to optimize the

performance of the database.

mon_heap_sz - Database system monitor heap size

This parameter determines the amount of the memory, in pages, to allocate for

database system monitor data. Memory is allocated from the monitor heap when

you perform database monitoring activities such as taking a snapshot, turning on a

monitor switch, resetting a monitor, or activating an event monitor.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that the monitor heap can increase as needed until the

instance_memory limit is reached.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

Automatic [0 - 60 000]

Unit of measure

Pages (4 KB)

When allocated

When the database manager is started with the db2start command

When freed

When the database manager is stopped with the db2stop command

Chapter 20. Configuration parameters 495

A value of zero prevents the database manager from collecting database system

monitor data.

Recommendation: The amount of memory required for monitoring activity

depends on the number of monitoring applications (applications taking snapshots

or event monitors), which switches are set, and the level of database activity.

If the configured memory in this heap runs out and no more unreserved memory

is available in the instance shared memory region, one of the following will occur:

v When the first application connects to the database for which this event monitor

is defined, an error message is written to the administration notification log.

v If an event monitor being started dynamically using the SET EVENT MONITOR

statement fails, an error code is returned to your application.

v If a monitor command or API subroutine fails, an error code is returned to your

application.

nodetype - Machine node type

This parameter provides information about the DB2 products which you have

installed on your machine and, as a result, information about the type of database

manager configuration.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Informational

The following are the possible values returned by this parameter and the products

associated with that node type:

v Database server with local and remote clients – a DB2 server product,

supporting local and remote Data Server Runtime Clients, and capable of

accessing other remote database servers.

v Client – a Data Server Runtime Client capable of accessing remote database

servers.

v Database server with local clients – a DB2 relational database management

system, supporting local Data Server Runtime Clients and capable of accessing

other, remote database servers.

v Partitioned database server with local and remote clients – a DB2 server

product, supporting local and remote Data Server Runtime Clients, and capable

of accessing other remote database servers, and capable of parallelism.

notifylevel - Notify level

This parameter specifies the type of administration notification messages that are

written to the administration notification log.

Configuration type

Database manager

Applies to

496 Data Servers, Databases, and Database Objects Guide

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

3 [0 — 4]

On Linux and UNIX platforms, the administration notification log is a text file

called instance.nfy. On Windows, all administration notification messages are

written to the Event Log. The errors can be written by DB2, the Health Monitor,

the Capture and Apply programs, and user applications.

Valid values for this parameter are:

v 0 — No administration notification messages captured. (This setting is not

recommended.)

v 1 — Fatal or unrecoverable errors. Only fatal and unrecoverable errors are

logged. To recover from some of these conditions, you might need assistance

from DB2 service.

v 2 — Immediate action required. Conditions are logged that require immediate

attention from the system administrator or the database administrator. If the

condition is not resolved, it could lead to a fatal error. Notification of very

significant, non-error activities (for example, recovery) might also be logged at

this level. This level will capture Health Monitor alarms.

v 3 — Important information, no immediate action required. Conditions are

logged that are non-threatening and do not require immediate action but might

indicate a non-optimal system. This level will capture Health Monitor alarms,

Health Monitor warnings, and Health Monitor attentions.

v 4 — Informational messages.

The administration notification log includes messages having values up to and

including the value of notifylevel. For example, setting notifylevel to 3 will cause the

administration notification log to include messages applicable to levels 1, 2, and 3.

For a user application to be able to write to the notification file or Windows Event

Log, it must call the db2AdminMsgWrite API.

Recommendation: You might want to increase the value of this parameter to

gather additional problem determination data to help resolve a problem. Note that

you must set notifylevel to a value of 2 or higher for the Health Monitor to send

any notifications to the contacts defined in its configuration.

num_initagents - Initial number of agents in pool

This parameter determines the initial number of idle agents that are created in the

agent pool at DB2START time.

Configuration type

Database manager

Applies to

Chapter 20. Configuration parameters 497

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

0 [0–64 000]

The database manager always starts the num_initagents idle agents as part of the

db2start command, except if the value of this parameter is greater than

num_poolagents during start up and num_poolagents is not set to AUTOMATIC. In

this case, the database manager only starts the num_poolagents idle agents since

there is no reason to start more idle agents than can be pooled.

num_initfenced - Initial number of fenced processes

This parameter indicates the initial number of nonthreaded, idle db2fmp processes

that are created in the db2fmp pool at DB2START time.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

0 [0–64 000]

Setting this parameter will reduce the initial startup time for running

non-threadsafe C and Cobol routines. This parameter is ignored if keepfenced is not

specified.

It is much more important to set fenced_pool to an appropriate size for your system

than to start up a number of db2fmp processes at DB2START time.

In previous versions, this parameter was known as num_initdaris.

num_poolagents - Agent pool size

This parameter sets the maximum size of the idle agent pool.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

498 Data Servers, Databases, and Database Objects Guide

Default

100, Automatic [-1, 0–64 000]

This configuration parameter is set to AUTOMATIC with a value of 100 as the

default. A setting of -1 is still supported, and translates into a value of 100. When

this parameter is set to AUTOMATIC, the database manager automatically

manages the number of idle agents to pool. Typically, this means that once an

agent completes its work, it is not terminated, but becomes idle for a period of

time. Depending on the workload and type of agent, it might be terminated after a

certain amount of time.

When using AUTOMATIC, you can still specify a value for the num_poolagents

configuration parameter. Additional idle agents will always be pooled when the

current number of pooled idle agents is less than or equal to the value that you

specified.

Examples:

num_poolagents is set to 100 and AUTOMATIC

As an agent becomes free, it is added to the idle agent pool, where at some

point the database manager evaluates whether it should be terminated or

not. At the time when the database manager considers terminating the

agent, if the total number of idle agents pooled is greater than 100, this

agent will be terminated. If there are less than 100 idle agents, the idle

agent will remain awaiting work. Using the AUTOMATIC setting allows

additional idle agents beyond 100 to be pooled, which might be useful

during periods of heavier system activity when the frequency of work can

fluctuate on a larger scale. For cases where there are likely to be less than

100 idle agents at any given time, agents are guaranteed to be pooled.

Periods of light system activity can benefit from this by incurring a less

start up cost for new work.

num_poolagents is configured dynamically

If the parameter value is increased to a value greater than the number of

pooled agents, the effects are immediate. As new agents become idle, they

are pooled. If the parameter value is decreased, the database manager does

not immediately reduce the number of agents in the pool. Rather, the pool

size remains as it is, and agents are terminated as they are used and

become idle again–gradually reducing the number of agents in the pool to

the new limit.

Recommendation: For most environments the default of 0 and AUTOMATIC will

be sufficient. If you have a specific workload where you feel too many agents are

being created and terminated, you can consider increasing the value of

num_poolagents while leaving the parameter set to AUTOMATIC.

numdb - Maximum number of concurrently active databases

including host and System i databases

This parameter specifies the number of local databases that can be concurrently

active (that is, have applications connected to them), or the maximum number of

different database aliases that can be cataloged on a DB2 Connect server.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

Chapter 20. Configuration parameters 499

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

UNIX 8 [1 — 256]

Windows Database server with local and remote clients

8 [1 — 256]

Windows Database server with local clients

3 [1 — 256]

Unit of measure

Counter

Each database takes up storage, and an active database uses a new shared memory

segment.

Recommendation: It is generally best to set this value to the actual number of

databases that are already defined to the database manager, and to add about 10%

to this value to allow for growth.

Changing the numdb parameter can impact the total amount of memory allocated.

As a result, frequent updates to this parameter are not recommended. When

updating this parameter, you should consider the other configuration parameters

that can allocate memory for a database or an application connected to that

database.

query_heap_sz - Query heap size

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

1 000 [2 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When an application (either local or remote) connects to the database

500 Data Servers, Databases, and Database Objects Guide

When freed

When the application disconnects from the database, or detaches from the

instance

This parameter specifies the maximum amount of memory that can be allocated

for the query heap, ensuring that an application does not consume unnecessarily

large amounts of virtual memory within an agent.

A query heap is used to store each query in the agent’s private memory. The

information for each query consists of the input and output SQLDA, the statement

text, the SQLCA, the package name, creator, section number, and consistency

token.

The query heap is also used for the memory allocated for blocking cursors. This

memory consists of a cursor control block and a fully resolved output SQLDA.

The initial query heap allocated will be the same size as the application support

layer heap, as specified by the aslheapsz parameter. The query heap size must be

greater than or equal to two (2), and must be greater than or equal to the aslheapsz

parameter. If this query heap is not large enough to handle a given request, it will

be reallocated to the size required by the request (not exceeding query_heap_sz). If

this new query heap is more than 1.5 times larger than aslheapsz, the query heap

will be reallocated to the size of aslheapsz when the query ends.

Recommendation: In most cases the default value will be sufficient. As a

minimum, you should set query_heap_sz to a value at least five times larger than

aslheapsz. This will allow for queries larger than aslheapsz and provide additional

memory for three or four blocking cursors to be open at a given time.

If you have very large LOBs, you might need to increase the value of this

parameter so the query heap will be large enough to accommodate those LOBs.

release - Configuration file release level

This parameter specifies the release level of the configuration file.

Configuration type

Database manager, Database

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Informational

resync_interval - Transaction resync interval

This parameter specifies the time interval in seconds for which a transaction

manager (TM), resource manager (RM) or sync point manager (SPM) should retry

the recovery of any outstanding indoubt transactions found in the TM, the RM, or

the SPM. This parameter is applicable when you have transactions running in a

distributed unit of work (DUOW) environment. This parameter also applies to

recovery of federated database systems.

Configuration type

Database manager

Chapter 20. Configuration parameters 501

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

180 [1 - 60 000]

Unit of measure

Seconds

Recommendation: If, in your environment, indoubt transactions will not interfere

with other transactions against your database, you might want to increase the

value of this parameter. If you are using a DB2 Connect gateway to access DRDA2

application servers, you should consider the effect indoubt transactions might have

at the application servers even though there will be no interference with local data

access. If there are no indoubt transactions, the performance impact will be

minimal.

rqrioblk - Client I/O block size

This parameter specifies the size of the communication buffer between remote

applications and their database agents on the database server. It is also used to

determine the I/O block size at the Data Server Runtime Client when a blocking

cursor is opened.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

32 767 [4 096 - 65 535]

Unit of measure

Bytes

When allocated

v When a remote client application issues a connection request for a server

database

v When a blocking cursor is opened, additional blocks are opened at the

client

When freed

v When the remote application disconnects from the server database

v When the blocking cursor is closed

When a Data Server Runtime Client requests a connection to a remote database,

this communication buffer is allocated on the client. On the database server, a

502 Data Servers, Databases, and Database Objects Guide

communication buffer of 32 767 bytes is initially allocated, until a connection is

established and the server can determine the value of rqrioblk at the client. Once

the server knows this value, it will reallocate its communication buffer if the

client’s buffer is not 32 767 bytes.

The memory for blocked cursors is allocated out of the application’s private

address space, so you should determine the optimal amount of private memory to

allocate for each application program. If the Data Server Runtime Client cannot

allocate space for a blocking cursor out of an application’s private memory, a

non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value of

this parameter would be if the data (for example, large object data) to be

transmitted by a single query statement is so large that the default value is

insufficient.

You should also consider the effect of this parameter on the number and potential

size of blocking cursors. Large row blocks might yield better performance if the

number or size of rows being transferred is large (for example, if the amount of

data is greater than 4 096 bytes). However, there is a trade-off in that larger record

blocks increase the size of the working set memory for each connection.

Larger record blocks might also cause more fetch requests than are actually

required by the application. You can control the number of fetch requests using the

OPTIMIZE FOR clause on the SELECT statement in your application.

sheapthres - Sort heap threshold

This parameter is an instance-wide soft limit on the total amount of memory that

can be consumed by private sorts at any given time. When the total private sort

memory consumption for an instance reaches this limit, the memory allocated for

additional incoming private sort requests is considerably reduced.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

v OLAP functions

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

UNIX 32-bit platforms

0 [0 - 2 097 152]

Windows 32-bit platforms

0 [0 - 2 097 152]

64-bit platforms

0 [0 - 2 147 483 647]

Chapter 20. Configuration parameters 503

Unit of measure

Pages (4 KB)

Examples of operations that use the sort heap include: sorts, hash joins, dynamic

bitmaps (used for index ANDing and Star Joins), and table in-memory operations.

Explicit definition of the threshold prevents the database manager from using

excessive amounts of memory for large numbers of sorts.

There is no reason to increase the value of this parameter when moving from a

non-partitioned to a partitioned database environment. Once you have tuned the

database and database manager configuration parameters on a single database

partition environment, the same values will in most cases work well in a

partitioned database environment. The only way to set this parameter to different

values on different nodes or database partitions is to create more than one DB2

instance. This will require managing different DB2 databases over different

database partition groups. Such an arrangement defeats the purpose of many of

the advantages of a partitioned database environment.

When the instance-level sheapthres is set to 0, then the tracking of sort memory

consumption is done at the database level only and memory allocation for sorts is

constrained by the value of the database-level sheapthres_shr configuration

parameter.

Automatic tuning of sheapthres_shr is allowed only when the database manager

configuration parameter sheapthres is set to 0.

This parameter will not be dynamically updatable if any of the following are true:

v The starting value for sheapthres is 0 and the target value is a value different

from 0.

v The starting value for sheapthres is a value different from 0 and the target value

is 0.

Recommendation: Ideally, you should set this parameter to a reasonable multiple

of the largest sortheap parameter you have in your database manager instance. This

parameter should be at least two times the largest sortheap defined for any

database within the instance.

If you are doing private sorts and your system is not memory constrained, an ideal

value for this parameter can be calculated using the following steps:

1. Calculate the typical sort heap usage for each database:

 (typical number of concurrent agents running against the database)

 * (sortheap, as defined for that database)

2. Calculate the sum of the above results, which provides the total sort heap that

could be used under typical circumstances for all databases within the instance.

You should use benchmarking techniques to tune this parameter to find the proper

balance between sort performance and memory usage.

You can use the database system monitor to track the sort activity, using the post

threshold sorts (post_threshold_sorts) monitor element.

spm_log_file_sz - Sync point manager log file size

This parameter identifies the sync point manager (SPM) log file size in 4 KB pages.

504 Data Servers, Databases, and Database Objects Guide

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

256 [4 - 1000]

Unit of measure

Pages (4 KB)

The log file is contained in the spmlog sub-directory under sqllib and is created

the first time SPM is started.

Recommendation: The sync point manager log file size should be large enough to

maintain performance, but small enough to prevent wasted space. The size

required depends on the number of transactions using protected conversations,

and how often COMMIT or ROLLBACK is issued.

To change the size of the SPM log file:

1. Determine that there are no indoubt transactions by using the LIST DRDA

INDOUBT TRANSACTIONS command.

2. If there are none, stop the database manager.

3. Update the database manager configuration with a new SPM log file size.

4. Go to the $HOME/sqllib directory and issue rm -fr spmlog to delete the current

SPM log. (Note: This shows the AIX command. Other systems might require a

different remove or delete command.)

5. Start the database manager. A new SPM log of the specified size is created

during the startup of the database manager.

spm_log_path - Sync point manager log file path

This parameter specifies the directory where the sync point manager (SPM) logs

are written.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

sqllib/spmlog [any valid path or device]

By default, the logs are written to the sqllib/spmlog directory, which, in a

high-volume transaction environment, can cause an I/O bottleneck. Use this

Chapter 20. Configuration parameters 505

parameter to have the SPM log files placed on a faster disk than the current

sqllib/spmlog directory. This allows for better concurrency among the SPM agents.

spm_max_resync - Sync point manager resync agent limit

This parameter identifies the number of agents that can simultaneously perform

resync operations.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

20 [10 — 256]

spm_name - Sync point manager name

This parameter identifies the name of the sync point manager (SPM) instance to

the database manager.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Derived from the TCP/IP hostname

srvcon_auth - Authentication type for incoming connections at

the server

This parameter specifies how and where user authentication is to take place when

handling incoming connections at the server; it is used to override the current

authentication type.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

506 Data Servers, Databases, and Database Objects Guide

Default [range]

Null [CLIENT; SERVER; SERVER_ENCRYPT; KERBEROS;

KRB_SERVER_ENCRYPT; GSSPLUGIN; GSS_SERVER_ENCRYPT]

If a value is not specified, DB2 uses the value of the authentication database

manager configuration parameter.

For a description of each authentication type, see “authentication - Authentication

type” on page 465.

srvcon_gssplugin_list - List of GSS API plug-ins for incoming

connections at the server

This parameter specifies the GSS API plug-in libraries that are supported by the

database server. It handles incoming connections at the server when the

srvcon_auth parameter is specified as KERBEROS, KRB_SERVER_ENCRYPT,

GSSPLUGIN or GSS_SERVER_ENCRYPT, or when srvcon_auth is not specified, and

authentication is specified as KERBEROS, KRB_SERVER_ENCRYPT, GSSPLUGIN

or GSS_SERVER_ENCRYPT.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, the value is null. If the authentication type is GSSPLUGIN and this

parameter is NULL, an error is returned. If the authentication type is KERBEROS

and this parameter is NULL, the DB2-supplied kerberos module or library is used.

This parameter is not used if another authentication type is used.

When the authentication type is KERBEROS and the value of this parameter is not

NULL, the list must contain exactly one Kerberos plug-in, and that plug-in is used

for authentication (all other GSS plug-ins in the list are ignored). If there is more

than one Kerberos plug-in, an error is returned.

Each GSS API plug-in name must be separated by a comma (,) with no space

either before or after the comma. Plug-in names should be listed in the order of

preference.

srvcon_pw_plugin - Userid-password plug-in for incoming

connections at the server

This parameter specifies the name of the default userid-password plug-in library to

be used for server-side authentication. It handles incoming connections at the

server when the srvcon_auth parameter is specified as CLIENT, SERVER,

SERVER_ENCRYPT, or DATA_ENCRYPT or when srvcon_auth is not specified, and

authentication is specified as CLIENT, SERVER, SERVER_ENCRYPT, or

DATA_ENCRYPT.

Chapter 20. Configuration parameters 507

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [any valid string]

By default, the value is null and the DB2-supplied userid-password plug-in library

is used. The plug-in will be used for all group lookups. For non-root installations,

if the DB2 userid and password plug-in library is used, the db2rfe command must

be run before using your DB2 product.

srv_plugin_mode - Server plug-in mode

This parameter specifies whether plug-ins are to run in fenced mode or unfenced

mode. Unfenced mode is the only supported mode.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

UNFENCED

start_stop_time - Start and stop timeout

This parameter specifies the time, in minutes, within which all database partition

servers must respond to a DB2START or a DB2STOP command. It is also used as

the timeout value during an ADD DBPARTITIONNUM operation.

Configuration type

Database manager

Applies to

Database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [1 - 1 440]

Unit of measure

Minutes

508 Data Servers, Databases, and Database Objects Guide

Database partition servers that do not respond to a DB2START command within

the specified time send a message to the db2start error log in the log subdirectory

of the sqllib subdirectory of the home directory for the instance. You should issue

a DB2STOP on these nodes before restarting them.

Database partition servers that do not respond to a DB2STOP command within the

specified time send a message to the db2stop error log in the log subdirectory of

the sqllib subdirectory of the home directory for the instance. You can either issue

db2stop for each database partition server that does not respond, or for all of them.

(Those that are already stopped will return stating that they are stopped.)

If a db2start or db2stop operation in a multi-partition database is not completed

within the value specified by the start_stop_time database manager configuration

parameter, the database partitions that have timed out will be killed internally.

Environments with many database partitions with a low value for start_stop_time

might experience this behavior. To resolve this behavior, increase the value of

start_stop_time.

When adding a new database partition using one of the DB2START, START

DATABASE MANAGER, or ADD DBPARTITIONNUM commands, the add

database partition operation must determine whether or not each database in the

instance is enabled for automatic storage. This is done by communicating with the

catalog partition for each database. If automatic storage is enabled, the storage

path definitions are retrieved as part of that communication. Likewise, if system

temporary table spaces are to be created with the database partitions, the operation

might have to communicate with another database partition server to retrieve the

table space definitions for the database partitions that reside on that server. These

factors should be considered when determining the value of the start_stop_time

parameter.

svcename - TCP/IP service name

This parameter contains the name of the TCP/IP port which a database server will

use to await communications from remote client nodes. This name must be the

reserved for use by the database manager.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

In order to accept connection requests from a Data Server Runtime Client using

TCP/IP, the database server must be listening on a port designated to that server.

The system administrator for the database server must reserve a port (number n)

and define its associated TCP/IP service name in the services file at the server.

The database server port (number n) and its TCP/IP service name need to be

defined in the services file on the database client.

Chapter 20. Configuration parameters 509

On Linux and UNIX systems, the services file is located in: /etc/services

The svcename parameter should be set to the service name associated with the main

connection port so that when the database server is started, it can determine on

which port to listen for incoming connection requests.

sysadm_group - System administration authority group name

This parameter defines the group name with SYSADM authority for the database

manager instance.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

System administration (SYSADM) authority is the highest level of authority within

the database manager and controls all database objects.

SYSADM authority is determined by the security facilities used in a specific

operating environment.

v For the Windows operating system, this parameter can be set to any local group,

and is defined in the Windows security database. Group names must adhere to

the length limits specified in SQL and XML limits. If “NULL” is specified for

this parameter, all members of the Administrators group have SYSADM

authority.

v For Linux and UNIX systems, if “NULL” is specified as the value of this

parameter, the SYSADM group defaults to the primary group of the instance

owner.

If the value is not “NULL”, the SYSADM group can be any valid UNIX group

name.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSADM_GROUP NULL. You must specify the keyword “NULL” in

uppercase.

sysctrl_group - System control authority group name

This parameter defines the group name with system control (SYSCTRL) authority.

SYSCTRL has privileges allowing operations affecting system resources, but does

not allow direct access to data.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

510 Data Servers, Databases, and Database Objects Guide

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

Group names on all platforms are accepted as long as they adhere to the length

limits specified in SQL and XML limits.

Attention: This parameter must be NULL for Windows clients when system

security is used (that is, authentication is CLIENT, SERVER, or any other valid

authentication). This is because the Windows operating systems do not store group

information, thereby providing no way of determining if a user is a member of a

designated SYSCTRL group. When a group name is specified, no user can be a

member of it.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSCTRL_GROUP NULL. You must specify the keyword NULL in

uppercase.

sysmaint_group - System maintenance authority group name

This parameter defines the group name with system maintenance (SYSMAINT)

authority.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

SYSMAINT has privileges to perform maintenance operations on all databases

associated with an instance without having direct access to data.

Group names on all platforms are accepted as long as they adhere to the length

limits specified in SQL and XML limits.

Attention: This parameter must be NULL for Windows clients when system

security is used (that is, authentication is CLIENT, SERVER, or any other valid

authentication). This is because the Windows operating systems do not store group

information, thereby providing no way of determining if a user is a member of a

designated SYSMAINT group. When a group name is specified, no user can be a

member of it.

Chapter 20. Configuration parameters 511

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSMAINT_GROUP NULL. You must specify the keyword NULL in

uppercase.

sysmon_group - System monitor authority group name

This parameter defines the group name with system monitor (SYSMON) authority.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

Null

Users having SYSMON authority at the instance level have the ability to take

database system monitor snapshots of a database manager instance or its

databases. SYSMON authority includes the ability to use the following commands:

v GET DATABASE MANAGER MONITOR SWITCHES

v GET MONITOR SWITCHES

v GET SNAPSHOT

v LIST ACTIVE DATABASES

v LIST APPLICATIONS

v LIST DCS APPLICATIONS

v RESET MONITOR

v UPDATE MONITOR SWITCHES

Users with SYSADM, SYSCTRL, or SYSMAINT authority automatically have the

ability to take database system monitor snapshots and to use these commands.

Group names on all platforms are accepted as long as they adhere to the length

limits specified in SQL and XML limits.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG

USING SYSMON_GROUP NULL. You must specify the keyword NULL in

uppercase.

tm_database - Transaction manager database name

This parameter identifies the name of the transaction manager (TM) database for

each DB2 instance.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

512 Data Servers, Databases, and Database Objects Guide

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

1ST_CONN [any valid database name]

A TM database can be:

v A local DB2 database

v A remote DB2 database that does not reside on a host or AS/400 system

v A DB2 for OS/390 Version 5 database if accessed via TCP/IP and the sync point

manager (SPM) is not used.

The TM database is a database that is used as a logger and coordinator, and is

used to perform recovery for indoubt transactions.

You can set this parameter to 1ST_CONN, which will set the TM database to be

the first database to which a user connects.

Recommendation: For simplified administration and operation, you might want to

create a few databases over a number of instances and use these databases

exclusively as TM databases.

tp_mon_name - Transaction processor monitor name

This parameter identifies the name of the transaction processing (TP) monitor

product being used.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default

No default

Valid values

v CICS®

v MQ

v ENCINA

v CB

v SF

v TUXEDO

v TOPEND

v blank or some other value (for UNIX and Windows; no other possible

values for Solaris or SINIX)

Chapter 20. Configuration parameters 513

v If applications are run in a WebSphere Enterprise Server Edition CICS

environment, this parameter should be set to “CICS”

v If applications are run in a WebSphere Enterprise Server Edition Encina®

environment, this parameter should be set to “ENCINA”

v If applications are run in a WebSphere Enterprise Server Edition Component

Broker environment, this parameter should be set to “CB”

v If applications are run in an IBM MQSeries® environment, this parameter should

be set to “MQ”

v If applications are run in a BEA Tuxedo environment, this parameter should be

set to “TUXEDO”

v If applications are run in an IBM San Francisco environment, this parameter

should be set to “SF”.

IBM WebSphere EJB and Microsoft Transaction Server users do not need to

configure any value for this parameter.

If none of the above products are being used, this parameter should not be

configured but left blank.

In previous versions of IBM DB2 on Windows, this parameter contained the path

and name of the DLL which contained the XA Transaction Manager’s functions

ax_reg and ax_unreg. This format is still supported. If the value of this parameter

does not match any of the above TP Monitor names, it will be assumed that the

value is a library name which contains the ax_reg and ax_unreg functions. This is

true for UNIX and Windows environments.

TXSeries® CICS and Encina Users: In previous versions of this product on

Windows it was required to configure this parameter as “libEncServer:C” or

“libEncServer:E”. While this is still supported, it is no longer required. Configuring

the parameter as “CICS” or “ENCINA” is sufficient.

MQSeries Users: In previous versions of this product on Windows it was required

to configure this parameter as “mqmax”. While this is still supported, it is no

longer required. Configuring the parameter as “MQ” is sufficient.

Component Broker Users: In previous versions of this product on Windows it was

required to configure this parameter as “somtrx1i”. While this is still supported, it

is no longer required. Configuring the parameter as “CB” is sufficient.

San Francisco Users: In previous versions of this product on Windows it was

required to configure this parameter as “ibmsfDB2”. While this is still supported, it

is no longer required. Configuring the parameter as “SF” is sufficient.

The maximum length of the string that can be specified for this parameter is 19

characters.

It is also possible to configure this information in IBM DB2 Version 9.1’s XA OPEN

string. If multiple Transaction Processing Monitors are using a single DB2 instance,

then it will be required to use this capability.

trust_allclnts - Trust all clients

This parameter and trust_clntauth are used to determine where users are validated

to the database environment.

514 Data Servers, Databases, and Database Objects Guide

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

YES [NO, YES, DRDAONLY]

This parameter is only active when the authentication parameter is set to CLIENT.

By accepting the default of “YES” for this parameter, all clients are treated as

trusted clients. This means that the server assumes that a level of security is

available at the client and the possibility that users can be validated at the client.

This parameter can only be changed to “NO” if the authentication parameter is set

to CLIENT. If this parameter is set to “NO”, the untrusted clients must provide a

userid and password combination when they connect to the server. Untrusted

clients are operating system platforms that do not have a security subsystem for

authenticating users.

Setting this parameter to “DRDAONLY” protects against all clients except clients

from DB2 for OS/390 and z/OS, DB2 for VM and VSE, and DB2 for OS/400®.

Only these clients can be trusted to perform client-side authentication. All other

clients must provide a user ID and password to be authenticated by the server.

When trust_allclnts is set to “DRDAONLY”, the trust_clntauth parameter is used to

determine where the clients are authenticated. If trust_clntauth is set to “CLIENT”,

authentication occurs at the client. If trust_clntauth is set to “SERVER”,

authentication occurs at the client if no password is provided, and at the server if a

password is provided.

trust_clntauth - Trusted clients authentication

This parameter specifies whether a trusted client is authenticated at the server or

the client when the client provides a userid and password combination for a

connection. This parameter (and trust_allclnts) is only active if the authentication

parameter is set to CLIENT. If a user ID and password are not provided, the client

is assumed to have validated the user, and no further validation is performed at

the server.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Chapter 20. Configuration parameters 515

Default [range]

CLIENT [CLIENT, SERVER]

If this parameter is set to CLIENT (the default), the trusted client can connect

without providing a user ID and password combination, and the assumption is

that the operating system has already authenticated the user. If it is set to SERVER,

the user ID and password will be validated at the server.

The numeric value for CLIENT is 0. The numeric value for SERVER is 1.

util_impact_lim - Instance impact policy

This parameter allows the database administrator (DBA) to limit the performance

degradation of a throttled utility on the workload.

Configuration type

Database manager

Applies to

v Database server with local clients

v Database server with local and remote clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [1 - 100]

Unit of measure

Percentage of allowable impact on workload

If the performance degradation is limited, the DBA can then run online utilities

during critical production periods, and be guaranteed that the performance impact

on production work will be within acceptable limits.

For example, a DBA specifying a util_impact_lim (impact policy) value of 10 can

expect that a throttled backup invocation will not impact the workload by more

than 10 percent.

If util_impact_lim is 100, no utility invocations will be throttled. In this case, the

utilities can have an arbitrary (and undesirable) impact on the workload. If

util_impact_lim is set to a value that is less than 100, it is possible to invoke utilities

in throttled mode. To run in throttled mode, a utility must also be invoked with a

non-zero priority.

Recommendation: Most users will benefit from setting util_impact_lim to a low

value (for example, between 1 and 10).

A throttled utility will usually take longer to complete than an unthrottled utility.

If you find that a utility is running for an excessively long time, increase the value

of util_impact_lim, or disable throttling altogether by setting util_impact_lim to 100.

516 Data Servers, Databases, and Database Objects Guide

Database configuration parameters

alt_collate - Alternate collating sequence

This parameter specifies the collating sequence that is to be used for Unicode

tables in a non-Unicode database.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

Null [IDENTITY_16BIT]

Until this parameter is set, Unicode tables and routines cannot be created in a

non-Unicode database. Once set, this parameter cannot be changed or reset.

This parameter cannot be set for Unicode databases.

app_ctl_heap_sz - Application control heap size

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager. In Version 9.5, it has

been replaced by the appl_memory configuration parameter.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

For partitioned databases, and for non-partitioned databases with intra-parallelism

enabled (intra_parallel=ON), this parameter specifies the average size of the shared

memory area allocated for an application. For non-partitioned databases where

intra-parallelism is disabled (intra_parallel=OFF), this is the maximum private

memory that will be allocated for the heap. There is one application control heap

per connection per database partition.

Configuration type

Database

Parameter type

Configurable

Default [range]

Database server with local and remote clients

v 128 [1 - 64 000] when INTRA_PARALLEL is not enabled

v 512 [1 - 64 000] when INTRA_PARALLEL is enabled

Database server with local clients

v 64 [1 - 64 000] (for non-UNIX platforms) when

INTRA_PARALLEL is not enabled

Chapter 20. Configuration parameters 517

v 512 [1 - 64 000] (for non-UNIX platforms) when

INTRA_PARALLEL is enabled

v 128 [1 - 64 000] (for Linux and UNIX platforms) when

INTRA_PARALLEL is not enabled

v 512 [1 - 64 000] (for Linux and UNIX platforms) when

INTRA_PARALLEL is enabled

Partitioned database server with local and remote clients

512 [1 - 64 000]

Unit of measure

Pages (4 KB)

When allocated

When an application starts

When freed

When an application completes

The application control heap is required primarily for sharing information between

agents working on behalf of the same request. Usage of this heap is minimal for

non-partitioned databases when running queries with a degree of parallelism equal

to 1.

This heap is also used to store descriptor information for declared temporary

tables. The descriptor information for all declared temporary tables that have not

been explicitly dropped is kept in this heap’s memory and cannot be dropped until

the declared temporary table is dropped.

Recommendation: Initially, start with the default value. You might have to set the

value higher if you are running complex applications, if you have a system that

contains a large number of database partitions, or if you use declared temporary

tables. The amount of memory needed increases with the number of concurrently

active declared temporary tables. A declared temporary table with many columns

has a larger table descriptor size than a table with few columns, so having a large

number of columns in an application’s declared temporary tables also increases the

demand on the application control heap.

appgroup_mem_sz - Maximum size of application group

memory set

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager. In Version 9.5, it has

been replaced by the appl_memory configuration parameter.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter determines the size of the application group shared memory

segment.

Configuration type

Database

Parameter type

Configurable

Default [range]

518 Data Servers, Databases, and Database Objects Guide

UNIX Database server with local clients (other than 32-bit HP-UX)

20 000 [1 - 1 000 000]

32-bit HP-UX

v Database server with local clients

v Database server with local and remote clients

v Partitioned database server with local and remote clients

10 000 [1 - 1 000 000]

Windows Database server with local clients

10 000 [1 - 1 000 000]

Database server with local and remote clients (other than 32-bit HP-UX)

30 000 [1 - 1 000 000]

Partitioned database server with local and remote clients (other than

32-bit HP-UX)

40 000 [1 - 1 000 000]

Unit of measure

Pages (4 KB)

Information that needs to be shared between agents working on the same

application is stored in the application group shared memory segment.

In a partitioned database, or in a non-partitioned database with intra-partition

parallelism enabled or concentrator enabled, multiple applications share one

application group. One application group shared memory segment is allocated for

the application group. Within the application group shared memory segment, each

application will have its own application control heap, and all applications will

share one application group shared heap.

The number of applications in one application group is calculated by:

appgroup_mem_sz / app_ctl_heap_sz

The application group shared heap size is calculated by:

appgroup_mem_sz * groupheap_ratio / 100

The size of each application control heap is calculated by:

app_ctl_heap_sz * (100 - groupheap_ratio) / 100

Recommendation: Retain the default value of this parameter unless you are

experiencing performance problems.

appl_memory - Application Memory configuration parameter

This parameter allows DBAs and ISVs to control the maximum amount of

application memory that is allocated by DB2 database agents to service application

requests. By default, its value is set to AUTOMATIC, meaning that all application

memory requests will be allowed as long as the total amount of memory allocated

by the database partition is within the instance_memory limits.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Chapter 20. Configuration parameters 519

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

Automatic [128 - 4 294 967 295]

Unit of measure

Pages (4 KB)

When allocated

During database activation

When freed

During database deactivation

Note: When appl_memory is set to AUTOMATIC, the initial application memory

allocation at database activation time is minimal, and increases (or decreases) as

needed. The change is applied in memory and the value of appl_memory does not

change on disk as shown by db2 get db cfg show detail. On next activation, the

value will be recalculated. If appl_memory is set to a specific value, then the

requested amount of memory is allocated initially during database activation, and

the application memory size does not change. If the initial amount of application

memory cannot be allocated from the operating system, or exceeds the

instance_memory limit, database activation fails with an SQL1084C error (Shared

memory segments cannot be allocated).

applheapsz - Application heap size

In previous releases, the applheapsz database configuration parameter referred to

the amount of application memory each individual database agent working for

that application could consume. With Version 9.5, applheapsz refers to the total

amount of application memory that can be consumed by the entire application. For

DPF, Concentrator, or SMP configurations, this means that the applheapsz value

used in previous releases may need to be increased under similar workloads,

unless the AUTOMATIC setting is used.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that it increases as needed until either the appl_memory

limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable online

Default [range]

Automatic [16 - 60 000]

Unit of measure

Pages (4 KB)

When allocated

When an application associates with, or connects to, a database.

When freed

When the application disassociates or disconnects from the database.

Note: This parameter defines the maximum size of the application heap. One

application heap is allocated per database application when the application first

520 Data Servers, Databases, and Database Objects Guide

connects with the database. The heap is shared by all database agents working for

that application. (In previous releases, each database agent allocated its own

application heap.) Memory is allocated from the application heap as needed to

process the application, up to the limit specified by this parameter. When set to

AUTOMATIC, the application heap is allowed to grow as needed up to either the

appl_memory limit for the database, or the instance_memory limit for the database

partition. The entire application heap is freed when the application disconnects

with the database.

The online changed value takes effect at an application connection boundary, that

is, after it is changed dynamically, currently connected applications still use the old

value, but all newly connected applications will use the new value.

archretrydelay - Archive retry delay on error

This parameter specifies the number of seconds to wait after a failed archive

attempt before trying to archive the log file again.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

20 [0 - 65 535]

Subsequent retries will only take affect if the value of the numarchretry database

configuration parameter is at least 1.

auto_del_rec_obj - Automated deletion of recovery objects

configuration parameter

This parameter specifies whether database log files, backup images, and load copy

images should be deleted when their associated recovery history file entry is

pruned.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

OFF [ON; OFF]

You can prune the entries in the recovery history file using the PRUNE HISTORY

command or the db2Prune API. You can also configure the IBM Data Server

database manager to automatically prune the recovery history file after each full

database backup. If you set the auto_del_rec_obj database configuration parameter

to ON, then the database manager will also delete the corresponding physical log

Chapter 20. Configuration parameters 521

files, backup images, and load copy images when it prunes the history file. The

database manager can only delete recovery objects such as database logs, backup

images, and load copy images when your storage media is disk, or if you are using

a storage manager, such as the Tivoli Storage Manager.

auto_maint - Automatic maintenance

This parameter is the parent of all the other automatic maintenance database

configuration parameters (auto_db_backup, auto_tbl_maint, auto_runstats,

auto_stats_prof, auto_stmt_stats, auto_prof_upd, and auto_reorg).

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

ON [ON; OFF]

When this parameter is disabled, all of its child parameters are also disabled, but

their settings, as recorded in the database configuration file, do not change. When

this parent parameter is enabled, recorded values for its child parameters take

effect. In this way, automatic maintenance can be enabled or disabled globally.

By default, this parameter is set to ON.

You can enable or disable individual automatic maintenance features

independently by setting the following parameters:

auto_db_backup

This automated maintenance parameter enables or disables automatic

backup operations for a database. A backup policy (a defined set of rules

or guidelines) can be used to specify the automated behavior. The objective

of the backup policy is to ensure that the database is being backed up

regularly. The backup policy for a database is created automatically when

the DB2 Health Monitor first runs. By default, this parameter is set to OFF.

To be enabled, this parameter must be set to ON, and its parent parameter

must also be enabled.

auto_tbl_maint

This parameter is the parent of all table maintenance parameters

(auto_runstats, auto_stats_prof, auto_prof_upd, and auto_reorg). When this

parameter is disabled, all of its child parameters are also disabled, but their

settings, as recorded in the database configuration file, do not change.

When this parent parameter is enabled, recorded values for its child

parameters take effect. In this way, table maintenance can be enabled or

disabled globally.

 By default, this parameter is set to ON.

522 Data Servers, Databases, and Database Objects Guide

auto_runstats

This automated table maintenance parameter enables or disables automatic

table runstats operations for a database. A runstats policy (a defined set of

rules or guidelines) can be used to specify the automated behavior.

Statistics collected by the runstats utility are used by the optimizer to

determine the most efficient plan for accessing the physical data. To be

enabled, this parameter must be set to On, and its parent parameters must

also be enabled.

 By default, this parameter is set to ON.

auto_stats_prof

When enabled, this automated table maintenance parameter turns on

statistical profile generation, designed to improve applications whose

workloads include complex queries, many predicates, joins, and grouping

operations over several tables. To be enabled, this parameter must be set to

ON, and its parent parameters must also be enabled.

 By default, this parameter is set to OFF.

auto_stmt_stats

 This parameter enables and disables the collection of real-time statistics. It

is a child of the auto_runstats configuration parameter. This feature is

enabled only if the parent, auto_runstats configuration parameter, is also

enabled. For example, to enable auto_stmt_stats, set auto_maint,

auto_tbl_maint, and auto_runstats to ON. To preserve the child value, the

auto_runstats configuration parameter can be ON while the auto_maint

configuration parameter is OFF. The corresponding Auto Runstats feature

will still be OFF.

Assuming that both Auto Runstats and Auto Reorg are enabled, the

settings are as follows:

 Automatic maintenance (AUTO_MAINT) = ON

 Automatic database backup (AUTO_DB_BACKUP) = OFF

 Automatic table maintenance (AUTO_TBL_MAINT) = ON

 Automatic runstats (AUTO_RUNSTATS) = ON

 Automatic statement statistics (AUTO_STMT_STATS) = OFF

 Automatic statistics profiling (AUTO_STATS_PROF) = OFF

 Automatic profile updates (AUTO_PROF_UPD) = OFF

 Automatic reorganization (AUTO_REORG) = ON

You can disable both Auto Runstats and Auto Reorg features temporarily

by setting auto_tbl_maint to OFF. Both features can be enabled later by

setting auto_tbl_maint back to ON. You do not need to issue db2stop or

db2start commands to have the changes take effect.

By default, this parameter is set to OFF.

auto_prof_upd

When enabled, this automated table maintenance parameter (a child of

auto_stats_prof) specifies that the runstats profile is to be updated with

recommendations. When this parameter is disabled, recommendations are

stored in the opt_feedback_ranking table, which you can inspect when

manually updating the runstats profile. To be enabled, this parameter must

be set to ON, and its parent parameters must also be enabled.

 By default, this parameter is set to OFF.

auto_reorg

This automated table maintenance parameter enables or disables automatic

table and index reorganization for a database. A reorganization policy (a

Chapter 20. Configuration parameters 523

defined set of rules or guidelines) can be used to specify the automated

behavior. To be enabled, this parameter must be set to ON, and its parent

parameters must also be enabled.

 By default, this parameter is set to OFF.

autorestart - Auto restart enable

This parameter determines whether the database manager can, in the event of an

abnormal termination of the database, automatically call the restart database utility

when an application connects to a database.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

On [On; Off]

The restart database utility performs a Crash recovery if the database terminated

abnormally (because, for example, of a power failure or a system software failure)

while applications were connected to it. It applies any committed transactions that

were in the database buffer pool but were not written to disk at the time of the

failure. It also backs out any uncommitted transactions that might have been

written to disk.

If autorestart is not enabled, then an application that attempts to connect to a

database which needs to have crash recovery performed (needs to be restarted)

will receive a SQL1015N error. In this case, the application can call the restart

database utility, or you can restart the database by selecting the restart operation of

the recovery tool.

avg_appls - Average number of active applications

This parameter is used by the query optimizer to help estimate how much buffer

pool will be available at run-time for the access plan chosen.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

Automatic [1 – maxappls]

Unit of measure

Counter

Recommendation: When running DB2 in a multi-user environment, particularly

with complex queries and a large buffer pool, you might want the query optimizer

to know that multiple query users are using your system so that the optimizer

should be more conservative in assumptions of buffer pool availability.

524 Data Servers, Databases, and Database Objects Guide

When setting this parameter, you should estimate the number of complex query

applications that typically use the database. This estimate should exclude all light

OLTP applications. If you have trouble estimating this number, you can multiply

the following:

v An average number of all applications running against your database. The

database system monitor can provide information about the number of

applications at any given time and using a sampling technique, you can

calculate an average over a period of time. The information from the database

system monitor includes both OLTP and non-OLTP applications.

v Your estimate of the percentage of complex query applications.

As with adjusting other configuration parameters that affect the optimizer, you

should adjust this parameter in small increments. This allows you to minimize

path selection differences.

You should consider rebinding applications (using the REBIND PACKAGE

command) after changing this parameter.

backup_pending - Backup pending indicator

This parameter indicates whether you need to do a full backup of the database

before accessing it.

Configuration type

Database

Parameter type

Informational

This parameter is only on if the database configuration is changed so that the

database moves from being nonrecoverable to recoverable (that is, initially both the

logretain and userexit parameters were set to NO, then either one or both of these

parameters is set to YES, and the update to the database configuration is accepted).

blk_log_dsk_ful - Block on log disk full

This parameter can be set to prevent disk full errors from being generated when

DB2 cannot create a new log file in the active log path.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

No [Yes; No]

Instead of generating a disk full error, DB2 will attempt to create the log file every

five minutes until it succeeds. After each attempt, DB2 writes a message to the

Administration Notification log. The only way that you can confirm that your

application is hanging because of a log disk full condition is to monitor the

Administration Notification log. Until the log file is successfully created, any user

application that attempts to update table data will not be able to commit

transactions. Read-only queries might not be directly affected; however, if a query

Chapter 20. Configuration parameters 525

needs to access data that is locked by an update request, or a data page that is

fixed in the buffer pool by the updating application, read-only queries will also

appear to hang.

Setting blk_log_dsk_ful to yes causes applications to hang when DB2 encounters a

log disk full error, thus allowing you to resolve the error and allowing the

transaction to complete. You can resolve a disk full situation by moving old log

files to another file system or by enlarging the file system, so that hanging

applications can complete.

If blk_log_dsk_ful is set to no, then a transaction that receives a log disk full error

will fail and will be rolled back. In some situations, the database will come down if

a transaction causes a log disk full error.

catalogcache_sz - Catalog cache size

This parameter specifies the maximum space in pages that the catalog cache can

use from the database heap.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

-1 [MAXAPPLS*5]

Unit of measure

Pages (4 KB)

When allocated

When the database is initialized

When freed

When the database is shut down

This parameter is allocated out of the database shared memory, and is used to

cache system catalog information. In a partitioned database system, there is one

catalog cache for each database partition.

Caching catalog information at individual database partitions allows the database

manager to reduce its internal overhead by eliminating the need to access the

system catalogs (or the catalog node in a partitioned database environment) to

obtain information that has previously been retrieved. The use of the catalog cache

can help improve the overall performance of:

v Binding packages and compiling SQL and XQuery statements

v Operations that involve checking database-level privileges, routine privileges,

global variable privileges and role authorizations

v Applications that are connected to non-catalog nodes in a partitioned database

environment

By taking the default (-1) in a server or partitioned database environment, the

value used to calculate the page allocation is five times the value specified for the

526 Data Servers, Databases, and Database Objects Guide

maxappls configuration parameter. The exception to this occurs if five times

maxappls is less than 8. In this situation, the default value of -1 will set

catalogcache_sz to 8.

Recommendation: Start with the default value and tune it by using the database

system monitor. When tuning this parameter, you should consider whether the

extra memory being reserved for the catalog cache might be more effective if it

was allocated for another purpose, such as the buffer pool or package cache.

Tuning this parameter is particularly important if a workload involves many SQL

or XQuery compilations for a brief period of time, with few or no compilations

thereafter. If the cache is too large, memory might be wasted holding copies of

information that will no longer be used.

In an partitioned database environment, consider if the catalogcache_sz at the

catalog node needs to be set larger since catalog information that is required at

non-catalog nodes will always first be cached at the catalog node.

The cat_cache_lookups (catalog cache lookups), cat_cache_inserts (catalog cache

inserts), cat_cache_overflows (catalog cache overflows), and cat_cache_size_top (catalog

cache high water mark) monitor elements can help you determine whether you

should adjust this configuration parameter.

Note: The catalog cache exists on all nodes in a partitioned database environment.

Since there is a local database configuration file for each node, each node’s

catalogcache_sz value defines the size of the local catalog cache. In order to provide

efficient caching and avoid overflow scenarios, you need to explicitly set the

catalogcache_sz value at each node and consider the feasibility of possibly setting

the catalogcache_sz on non-catalog nodes to be smaller than that of the catalog

node; keep in mind that information that is required to be cached at non-catalog

nodes will be retrieved from the catalog node’s cache. Hence, a catalog cache at a

non-catalog node is like a subset of the information in the catalog cache at the

catalog node.

In general, more cache space is required if a unit of work contains several dynamic

SQL or XQuery statements or if you are binding packages that contain a large

number of static SQL or XQuery statements.

chngpgs_thresh - Changed pages threshold

This parameter specifies the level (percentage) of changed pages at which the

asynchronous page cleaners will be started, if they are not currently active.

Configuration type

Database

Parameter type

Configurable

Default [range]

60 [5 – 99]

Unit of measure

Percentage

Asynchronous page cleaners will write changed pages from the buffer pool (or the

buffer pools) to disk before the space in the buffer pool is required by a database

agent. As a result, database agents should not have to wait for changed pages to

Chapter 20. Configuration parameters 527

be written out so that they might use the space in the buffer pool. This improves

overall performance of the database applications.

When the page cleaners are started, they will build a list of the pages to write to

disk. Once they have completed writing those pages to disk, they will become

inactive again and wait for the next trigger to start.

When the DB2_USE_ALTERNATE_PAGE_CLEANING registry variable is set (that

is, the alternate method of page cleaning is used), the chngpgs_thresh parameter has

no effect, and the database manager automatically determines how many dirty

pages to maintain in the buffer pool.

Recommendation: For databases with a heavy update transaction workload, you

can generally ensure that there are enough clean pages in the buffer pool by

setting the parameter value to be equal-to or less-than the default value. A

percentage larger than the default can help performance if your database has a

small number of very large tables.

codepage - Code page for the database

This parameter shows the code page that was used to create the database. The

codepage parameter is derived based on the codeset parameter.

Configuration type

Database

Parameter type

Informational

codeset - Codeset for the database

This parameter shows the codeset that was used to create the database. Codeset is

used by the database manager to determine codepage parameter values.

Configuration type

Database

Parameter type

Informational

collate_info - Collating information

This parameter determines the database’s collating sequence. For a language-aware

collation, the first 256 bytes contain the string representation of the collation name

(for example, ″SYSTEM_819_US″).

This parameter can only be displayed using the db2CfgGet API. It cannot be

displayed through the command line processor or the Control Center.

Configuration type

Database

Parameter type

Informational

This parameter provides 260 bytes of database collating information. The first 256

bytes specify the database collating sequence, where byte “n” contains the sort

weight of the code point whose underlying decimal representation is “n” in the

code page of the database.

528 Data Servers, Databases, and Database Objects Guide

The last 4 bytes contain internal information about the type of the collating

sequence. The last four bytes of the parameter is an integer. The integer is sensitive

to the endian order of the platform. The possible values are:

v 0 – The sequence contains non-unique weights

v 1 – The sequence contains all unique weights

v 2 – The sequence is the identity sequence, for which strings are compared byte

for byte.

v 3 – The sequence is NLSCHAR, used for sorting characters in a TIS620-1 (code

page 874) Thai database.

v 4 – The sequence is IDENTITY_16BIT, which implements the “CESU-8

Compatibility Encoding Scheme for UTF–16: 8–bit” algorithm as specified in the

Unicode Technical Report #26 available at the Unicode Technical Consortium

Web site at http://www.unicode.org

v X’8001’ – The sequence is UCA400_NO, which implements the Unicode

Collation® Algorithm (UCA) based on the Unicode Standard version 4.00, with

normalization implicitly set to ON.

v X’8002’ – The sequence is UCA400_LTH, which implements the Unicode

Collation Algorithm (UCA) based on the Unicode Standard version 4.00, and

sorts all Thai characters as per the Royal Thai Dictonary order.

v X’8003’ – The sequence is UCA400_LSK, which implements the Unicode

Collation Algorithm (UCA) based on the Unicode Standard version 4.00, and

sorts all Slovakian characters properly.

Note: For a language-aware collation, the first 256 bytes contain the string

representation of the collation name.

If you use this internal type information, you need to consider byte reversal when

retrieving information for a database on a different platform.

You can specify the collating sequence at database creation time.

country/region - Database territory code

This parameter shows the territory code used to create the database.

Configuration type

Database

Parameter type

Informational

database_consistent - Database is consistent

This parameter indicates whether the database is in a consistent state.

Configuration type

Database

Parameter type

Informational

YES indicates that all transactions have been committed or rolled back so that the

data is consistent. If the system “crashes” while the database is consistent, you do

not need to take any special action to make the database usable.

NO indicates that a transaction is pending or some other task is pending on the

database and the data is not consistent at this point. If the system “crashes” while

Chapter 20. Configuration parameters 529

the database is not consistent, you will need to restart the database using the

RESTART DATABASE command to make the database usable.

database_level - Database release level

This parameter indicates the release level of the database manager which can use

the database.

Configuration type

Database

Parameter type

Informational

In the case of an incomplete or failed migration, this parameter will reflect the

release level of the unmigrated database and might differ from the release

parameter (the release level of the database configuration file). Otherwise the value

of database_level will be identical to value of the release parameter.

database_memory - Database shared memory size

This parameter specifies the amount of memory that is reserved for the database

shared memory region. If this amount is less than the amount calculated from the

individual memory parameters (for example, locklist, utility heap, bufferpools, and

so on), the larger amount will be used.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable online

Default [range]

Automatic [Computed, 0 - 4 294 967 295]

Unit of measure

Pages (4 KB)

When allocated

When the database is activated

When freed

When the database is deactivated

Setting this parameter to AUTOMATIC enables self-tuning. When enabled, the

memory tuner determines the overall memory requirements for the database and

increases or decreases the amount of memory allocated for database shared

memory depending on the current database requirements. For example, if the

current database requirements are high, and there is sufficient free memory on the

system, more memory will be consumed by database shared memory. Once the

database memory requirements drop, or the amount of free memory on the system

drops too low, some database shared memory is released.

The memory tuner will always leave a minimum amount of memory free based on

the calculated benefit to providing additional memory to the instance. If there is a

great benefit to providing an instance with more memory, then the memory tuner

530 Data Servers, Databases, and Database Objects Guide

will maintain a lower amount of free memory. If the benefit is lower, then more

free memory will be maintained. This allows databases to cooperate in the

distribution of system memory.

Because the memory tuner trades memory resources between different memory

consumers, there must be at least two memory consumers enabled for self-tuning

to be active.

Automatic tuning of this configuration parameter will only occur when self-tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ON).

To simplify the management of this parameter, the COMPUTED setting instructs

the database manager to calculate the amount of memory needed, and to allocate it

at database activation time. The database manager will also allocate some

additional memory to satisfy peak memory requirements for any heap in the

database shared memory region whenever a heap exceeds its configured size.

Other operations, such as dynamic configuration updates, also have access to this

additional memory. The db2pd command, with the -memsets option, can be used

to monitor the amount of unused memory left in the database shared memory

region.

Recommendation: This value will usually remain at AUTOMATIC. For

environments that do not support the AUTOMATIC setting, this should be set to

COMPUTED. For example, the additional memory can be used for creating new

buffer pools, or for increasing the size of existing buffer pools.

Note: In Version 9.5, when you set database_memory configuration parameter to

AUTOMATIC, the initial database shared memory allocation is the configured size

of all heaps and buffer pools defined for the database, and the memory increases

as needed. If database_memory is set to a specific value, then that requested

amount of memory is allocated initially, during database activation. If the initial

amount of memory cannot be allocated from the operating system, or exceeds the

instance_memory limit, database activation fails with an SQL1084C error (Shared

memory segments cannot be allocated).

As of DB2 Version 9.5 Fix Pack 2, if you set database_memory to AUTOMATIC on

Solaris Operating Environment, the database manager uses pageable memory for

the database shared memory. This use of smaller memory pages might result in

some performance degradation. In Solaris operating systems on UltraSPARC, the

database manager attempts to use 64 KB memory pages if they are available. If 64

KB memory pages are not available, the database manager will use 8 KB memory

pages. In Solaris operating systems on Sun x64 systems, the database manager will

use 4 KB memory pages. To maintain the use of large pages in shared memory on

Solaris, set database_memory to COMPUTED or a numeric value.

Controlling DB2 Memory consumption:

When instance_memory is set to AUTOMATIC, a fixed upper bound on

total memory consumption for the instance is set at instance startup

(db2start). Actual memory consumption by the database manager varies

depending on the workload. When self-tuning memory manager is enabled

to perform database_memory tuning (by default for new databases),

during run-time, self-tuning memory manager dynamically updates the

size of performance-critical heaps within the database shared memory set

according to the free physical memory on the system, while ensuring that

Chapter 20. Configuration parameters 531

there is sufficient free instance_memory available for functional memory

requirements. For more information, see the instance_memory

configuration parameter.

Limitation on some Linux1 kernels:

Due to operating system limitations on some Linux kernels, self-tuning

memory manager currently does not allow setting database_memory to

AUTOMATIC. However, this setting is now allowed on these kernels only

when instance_memory is set to a specific value, and not AUTOMATIC. If

database_memory is set to AUTOMATIC, and instance_memory is later

set back to AUTOMATIC, the database_memory configuration parameter

is automatically updated to COMPUTED during the next database

activation. If some databases are already active, self-tuning memory

manager stops tuning the overall database_memory sizes.

1On Linux, this parameter supports the AUTOMATIC setting on RHEL5 and on

SUSE 10 SP1 and newer. All other validated Linux distributions will return to

COMPUTED if the kernel does not support this feature.

db_mem_thresh - Database memory threshold

This parameter represents the maximum percentage of committed, but currently

unused, database shared memory that the database manager will allow before

starting to release committed pages of memory back to the operating system.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [0–100]

Unit of measure

Percentage

This database configuration parameter relates to how the database manager

handles excess unused database shared memory. Typically, as pages of memory are

touched by a process, they are committed, meaning that a page of memory has

been allocated by the operating system and occupies space either in physical

memory or in a page file on disk. Depending on the database workload, there

might be peak database shared memory requirements at a certain times of day.

Once the operating system has enough committed memory to meet those peak

requirements, that memory remains committed, even after peak memory

requirements have subsided.

Acceptable values are whole numbers in the range of 0 (immediately release any

unused database shared memory) to 100 (never release any unused database

shared memory). The default is 10 (release unused memory only when more than

10% of database shared memory is currently unused), which should be suitable for

most workloads.

This configuration parameter can be updated dynamically. Care should be taken

when updating this parameter, as setting the value too low could cause excessive

memory thrashing on the box (memory pages constantly being committed and

532 Data Servers, Databases, and Database Objects Guide

then released), and setting the value too high might prevent the database manager

from returning any database shared memory back to the operating system for

other processes to use.

This configuration parameter will be ignored (meaning that unused database

shared memory pages will remain committed) if the database shared memory

region is pinned through the DB2_PINNED_BP registry variable, configured for

large pages through the DB2_LARGE_PAGE_MEM registry variable, or if releasing

of memory is explicitly disabled through the DB2MEMDISCLAIM registry variable.

Some versions of Linux do not support releasing subranges of a shared memory

segment back to the operating system. On such platforms, this parameter will be

ignored.

dbheap - Database heap

This parameter determines the maximum memory used by the database heap.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that the database heap can increase as needed until either

the database_memory limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

Automatic [32 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the database is activated

When freed

When the database is deactivated

There is one database heap per database, and the database manager uses it on

behalf of all applications connected to the database. It contains control block

information for tables, indexes, table spaces, and buffer pools. It also contains

space for the log buffer (logbufsz) and temporary memory used by utilities.

Therefore, the size of the heap will be dependent on a large number of variables.

The control block information is kept in the heap until all applications disconnect

from the database.

The minimum amount the database manager needs to get started is allocated at

the first connection. The data area is expanded as needed until either the

configured upper limit is reached, or, if set to AUTOMATIC, until all

database_memory or instance_memory, or memory for both, is exhausted.

The following formula can be used as a rough guideline when deciding on a value

to assign to the dbheap configuration parameter:

 10K per tablespace + 4K per table + (1K + 4*extents used),

 per range clustered table (RCT)

Chapter 20. Configuration parameters 533

The dbheap value that you configure represents only a portion of the database heap

that is allocated. The database heap is the main memory area used to satisfy global

database memory requirements. It is sized to include basic allocations needed for

the startup of a database in addition to the dbheap value. Tools which report

memory usage such as Memory Tracker, Snapshot Monitor, and db2pd report the

statistics of this larger database heap. There is no separate tracking of the

allocations that are represented by the dbheap configuration parameter. Therefore, it

is normal for the statistics on database heap memory usage reported from these

tools to exceed the configured value for the dbheap parameter.

You can use the database system monitor to track the highest amount of memory

that was used for the database heap, using the db_heap_top (maximum database

heap allocated) element.

Note:

v Workload Management (WLM) work class sets and work action sets are stored

in the database heap. However, a very small part of the memory is consumed

for this.

v Trusted contexts, Workload Management, and Audit policy information is cached

in memory for fast processing. This memory is allocated from the database heap.

Therefore, user-defined trusted contexts, workload management, and audit

policy objects would impose more memory requirements on the database heap.

In this case, it is suggested that you set your database heap configuration to

AUTOMATIC so that the database manager automatically manages the database

heap size.

decflt_rounding - Decimal floating point rounding

configuration parameter

This parameter allows you to specify the rounding mode for decimal floating point

(DECFLOAT). The rounding mode affects decimal floating-point operations in the

server, and in LOAD.

Configuration type

Database

Parameter type

Configurable

 See “Consequences of changing decflt_rounding” on page 535 below.

Default [range]

ROUND_HALF_EVEN [ROUND_CEILING, ROUND_FLOOR,

ROUND_HALF_UP, ROUND_DOWN]

DB2 supports five IEEE-compliant decimal floating point rounding modes. The

rounding mode specifies how to round the result of a calculation when the result

exceeds the precision. The definitions for all the rounding modes are as follows:

ROUND_CEILING

Round towards +infinity. If all of the discarded digits are zero or if the

sign is negative the result is unchanged. Otherwise, the result coefficient

should be incremented by 1 (rounded up).

ROUND_FLOOR

Round towards -infinity. If all of the discarded digits are zero or if the sign

is positive the result is unchanged. Otherwise, the sign is negative and the

result coefficient should be incremented by 1.

534 Data Servers, Databases, and Database Objects Guide

ROUND_HALF_UP

Round to nearest; if equidistant, round up 1. If the discarded digits

represent greater than or equal to half (0.5) of the value of a 1 in the next

left position then the result coefficient should be incremented by 1

(rounded up). Otherwise, the discarded digits (0.5 or less) are ignored.

ROUND_HALF_EVEN

Round to nearest; if equidistant, round so that the final digit is even. If the

discarded digits represent greater than half (0.5) the value of a one in the

next left position, then the result coefficient should be increment by 1

(rounded up). If they represent less than half, then the result coefficient is

not adjusted, that is, the discarded digits are ignored. Otherwise, if they

represent exactly half, the result coefficient is unaltered if its rightmost

digit is even, or incremented by 1 (rounded up) if its rightmost digit is

odd, to make an even digit. This rounding mode is the default rounding

mode as per IEEE decimal floating point specification and is the default

rounding mode in DB2 products.

ROUND_DOWN

Round towards 0 (truncation). The discarded digits are ignored.

Table 72 shows the result of rounding of 12.341, 12.345, 12.349, 12.355, and -12.345,

each to 4 digits, under different rounding modes:

 Table 72. Decimal floating point rounding modes

Rounding mode 12.341 12.345 12.349 12.355 -12.345

ROUND_DOWN 12.34 12.34 12.34 12.35 -12.34

ROUND_HALF_UP 12.34 12.35 12.35 12.36 -12.35

ROUND_HALF_EVEN 12.34 12.34 12.35 12.36 -12.34

ROUND_FLOOR 12.34 12.34 12.34 12.35 -12.35

ROUND_CEILING 12.35 12.35 12.35 12.36 -12.34

Consequences of changing decflt_rounding

v Previously constructed materialized query tables (MQTs) could contain results

that differ from what would be produced with the new rounding mode. To

correct this problem, refresh potentially impacted MQTs.

v The results of a trigger may be affected by the new rounding mode. Changing it

has no effect on data that has already been written.

v Constraints that allowed data to be inserted into a table, if reevaluated, might

reject that same data. Similarly constraints that did not allow data to be inserted

into a table, if reevaluated, might accept that same data. Use the SET

INTEGRITY statement to check for and correct such problems. The value of a

generated column whose calculation is dependent on decflt_rounding could be

different for two identical rows except for the generated column value, if one

row was inserted before the change to decflt_rounding and the other was

inserted after.

v The rounding mode is not compiled into sections. Therefore, static SQL does not

need to be recompiled after changing decflt_rounding.

Note: The value of this configuration parameter is not changed dynamically but

will become effective only after all applications disconnect from the database. If the

database is activated, it must be deactivated.

Chapter 20. Configuration parameters 535

dft_degree - Default degree

This parameter specifies the default value for the CURRENT DEGREE special

register and the DEGREE bind option.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Connection

Default [range]

1 [-1(ANY), 1 - 32 767]

The default value is 1.

A value of 1 means no intra-partition parallelism. A value of -1 (or ANY) means

the optimizer determines the degree of intra-partition parallelism based on the

number of processors and the type of query.

The degree of intra-partition parallelism for an SQL statement is specified at

statement compilation time using the CURRENT DEGREE special register or the

DEGREE bind option. The maximum runtime degree of intra-partition parallelism

for an active application is specified using the SET RUNTIME DEGREE command.

The Maximum Query Degree of Parallelism (max_querydegree) configuration

parameter specifies the maximum query degree of intra-partition parallelism for all

SQL queries.

The actual runtime degree used is the lowest of:

v max_querydegree configuration parameter

v application runtime degree

v SQL statement compilation degree

dft_extent_sz - Default extent size of table spaces

This parameter sets the default extent size of table spaces.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

32 [2 – 256]

Unit of measure

Pages

When a table space is created, EXTENTSIZE n can be optionally specified, where n is

the extent size. If you do not specify the extent size on the CREATE TABLESPACE

statement, the database manager uses the value given by this parameter.

536 Data Servers, Databases, and Database Objects Guide

Recommendation: In many cases, you will want to explicitly specify the extent size

when you create the table space. Before choosing a value for this parameter, you

should understand how you would explicitly choose an extent size for the

CREATE TABLESPACE statement.

dft_loadrec_ses - Default number of load recovery sessions

This parameter specifies the default number of sessions that will be used during

the recovery of a table load.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

1 [1 - 30 000]

Unit of measure

Counter

The value should be set to an optimal number of I/O sessions to be used to

retrieve a load copy. The retrieval of a load copy is an operation similar to restore.

You can override this parameter through entries in the copy location file specified

by the environment variable DB2LOADREC.

The default number of buffers used for load retrieval is two more than the value of

this parameter. You can also override the number of buffers in the copy location

file.

This parameter is applicable only if roll forward recovery is enabled.

dft_mttb_types - Default maintained table types for

optimization

This parameter specifies the default value for the CURRENT MAINTAINED

TABLE TYPES FOR OPTIMIZATION special register. The value of this register

determines what types of refresh deferred materialized query tables will be used

during query optimization.

Configuration type

Database

Parameter type

Configurable

Default [range]

SYSTEM [ALL, NONE, FEDERATED_TOOL, SYSTEM, USER, or a list of

values]

You can specify a list of values separated by commas; for example,

‘USER,FEDERATED_TOOL’. ALL or NONE cannot be listed with other values, and

you cannot specify the same value more than once. For use with the db2CfgSet

and db2CfgGet APIs, the acceptable parameter values are: 8 (ALL), 4 (NONE), 16

(FEDERATED_TOOL), 1 (SYSTEM) and 2 (USER). Multiple values can be specified

Chapter 20. Configuration parameters 537

together using bitwise OR; for example, 18 would be the equivalent of

USER,FEDERATED_TOOL. As before, the values 4 and 8 cannot be used with

other values.

dft_prefetch_sz - Default prefetch size

This parameter sets the default prefetch size of table spaces.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Automatic [0 - 32 767]

Unit of measure

Pages

When a table space is created, PREFETCHSIZE n can optionally be specified,

where n represents the number of pages the database manager will read if

prefetching is being performed. If you do not specify the prefetch size on

invocation of the CREATE TABLESPACE statement, the database manager uses the

current value of the dft_prefetch_sz parameter.

If a table space is created with AUTOMATIC DFT_PREFETCH_SZ, the prefetch

size of the table space will become AUTOMATIC, which means that DB2 will

automatically calculate and update the prefetch size of the table space, using the

following equation:

 prefetch size = (# containers) * (# physical spindles) * extent size

where the number of physical spindles defaults to 1 and can be specified through

the DB2 registry variable DB2_PARALLEL_IO. This calculation is performed:

v At database start-up time

v When a table space is first created with AUTOMATIC prefetch size

v When the number of containers for a table space changes through execution of

an ALTER TABLESPACE statement

v When the prefetch size for a table space is updated to be AUTOMATIC through

execution of an ALTER TABLESPACE statement

The AUTOMATIC state of the prefetch size can be turned on or off as soon as the

prefetch size is updated manually through invocation of the ALTER TABLESPACE

statement.

Recommendation: Using system monitoring tools, you can determine if your CPU

is idle while the system is waiting for I/O. Increasing the value of this parameter

can help if the table spaces being used do not have a prefetch size defined for

them.

This parameter provides the default for the entire database, and it might not be

suitable for all table spaces within the database. For example, a value of 32 might

be suitable for a table space with an extent size of 32 pages, but not suitable for a

table space with an extent size of 25 pages. Ideally, you should explicitly set the

prefetch size for each table space.

538 Data Servers, Databases, and Database Objects Guide

To help minimize I/O for table spaces defined with the default extent size

(dft_extent_sz), you should set this parameter as a factor or whole multiple of the

value of the dft_extent_sz parameter. For example, if the dft_extent_sz parameter is

32, you could set dft_prefetch_sz to 16 (a fraction of 32) or to 64 (a whole multiple of

32). If the prefetch size is a multiple of the extent size, the database manager might

perform I/O in parallel, if the following conditions are true:

v The extents being prefetched are on different physical devices

v Multiple I/O servers are configured (num_ioservers).

dft_queryopt - Default query optimization class

The query optimization class is used to direct the optimizer to use different

degrees of optimization when compiling SQL and XQuery queries. This parameter

provides additional flexibility by setting the default query optimization class used

when neither the SET CURRENT QUERY OPTIMIZATION statement nor the

QUERYOPT option on the bind command are used.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Connection

Default [range]

5 [0 — 9]

Unit of measure

Query Optimization Class (see below)

The query optimization classes currently defined are:

v 0 - minimal query optimization.

v 1 - roughly comparable to DB2 Version 1.

v 2 - slight optimization.

v 3 - moderate query optimization.

v 5 - significant query optimization with heuristics to limit the effort expended on

selecting an access plan. This is the default.

v 7 - significant query optimization.

v 9 - maximal query optimization

dft_refresh_age - Default refresh age

This parameter represents the maximum time duration since a REFRESH TABLE

statement has been processed on a specific REFRESH DEFERRED materialized

query table. After this time limit is exceeded, the materialized query table is not

used to satisfy queries until the materialized query table is refreshed.

Configuration type

Database

Parameter type

Configurable

Default [range]

0 [0, 99999999999999 (ANY)]

Chapter 20. Configuration parameters 539

This parameter has the default value used for the REFRESH AGE if the CURRENT

REFRESH AGE special register is not specified. This parameter specifies a time

stamp duration value with a data type of DECIMAL(20,6). If the CURRENT

REFRESH AGE has a value of 99999999999999 (ANY), and the QUERY

OPTIMIZATION class has a value of two, or five or more, REFRESH DEFERRED

materialized query tables are considered to optimize the processing of a dynamic

query.

dft_sqlmathwarn - Continue upon arithmetic exceptions

This parameter sets the default value that determines the handling of arithmetic

errors and retrieval conversion errors as errors or warnings during SQL statement

compilation.

Configuration type

Database

Parameter type

Configurable

Default [range]

No [No, Yes]

For static SQL statements, the value of this parameter is associated with the

package at bind time. For dynamic SQL DML statements, the value of this

parameter is used when the statement is prepared.

Attention: If you change the dft_sqlmathwarn value for a database, the behavior of

check constraints, triggers, and views that include arithmetic expressions might

change. This might, in turn, have an impact on the data integrity of the database.

You should only change the setting of dft_sqlmathwarn for a database after carefully

evaluating how the new arithmetic exception handling behavior might impact

check constraints, triggers, and views. Once changed, subsequent changes require

the same careful evaluation.

As an example, consider the following check constraint, which includes a division

arithmetic operation:

A/B > 0

When dft_sqlmathwarn is “No” and an INSERT with B=0 is attempted, the division

by zero is processed as an arithmetic error. The insert operation fails because DB2

cannot check the constraint. If dft_sqlmathwarn is changed to “Yes”, the division by

zero is processed as an arithmetic warning with a NULL result. The NULL result

causes the predicate to evaluate to UNKNOWN and the insert operation succeeds.

If dft_sqlmathwarn is changed back to “No”, an attempt to insert the same row will

fail, because the division by zero error prevents DB2 from evaluating the

constraint. The row inserted with B=0 when dft_sqlmathwarn was “Yes” remains in

the table and can be selected. Updates to the row that cause the constraint to be

evaluated will fail, while updates to the row that do not require constraint

re-evaluation will succeed.

Before changing dft_sqlmathwarn from “No” to “Yes”, you should consider

rewriting the constraint to explicitly handle nulls from arithmetic expressions. For

example:

 (A/B > 0) AND (CASE

 WHEN A IS NULL THEN 1

 WHEN B IS NULL THEN 1

540 Data Servers, Databases, and Database Objects Guide

WHEN A/B IS NULL THEN 0

 ELSE 1

 END

 = 1)

can be used if both A and B are nullable. And, if A or B is not-nullable, the

corresponding IS NULL WHEN-clause can be removed.

Before changing dft_sqlmathwarn from “Yes” to “No”, you should first check for

data that might become inconsistent by using, for example, predicates such as the

following:

 WHERE A IS NOT NULL AND B IS NOT NULL AND A/B IS NULL

When inconsistent rows are isolated, you should take appropriate action to correct

the inconsistency before changing dft_sqlmathwarn. You can also manually re-check

constraints with arithmetic expressions after the change. To do this, first place the

affected tables in a check pending state (with the OFF clause of the SET

CONSTRAINTS statement), then request that the tables be checked (with the

IMMEDIATE CHECKED clause of the SET CONSTRAINTS statement). Inconsistent

data will be indicated by an arithmetic error, which prevents the constraint from

being evaluated.

Recommendation: Use the default setting of no, unless you specifically require

queries to be processed that include arithmetic exceptions. Then specify the value

of yes. This situation can occur if you are processing SQL statements that, on other

database managers, provide results regardless of the arithmetic exceptions that

occur.

discover_db - Discover database

This parameter is used to prevent information about a database from being

returned to a client when a discovery request is received at the server.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Enable [Disable, Enable]

The default for this parameter is that discovery is enabled for this database.

By changing this parameter value to “Disable”, it is possible to hide databases with

sensitive data from the discovery process. This can be done in addition to other

database security controls on the database.

dlchktime - Time interval for checking deadlock

This parameter defines the frequency at which the database manager checks for

deadlocks among all the applications connected to a database.

Configuration type

Database

Chapter 20. Configuration parameters 541

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

10 000 (10 seconds) [1 000 - 600 000]

Unit of measure

Milliseconds

A deadlock occurs when two or more applications connected to the same database

wait indefinitely for a resource. The waiting is never resolved because each

application is holding a resource that the other needs to continue.

Note:

1. In a partitioned database environment, this parameter applies to the catalog

node only.

2. In a partitioned database environment, a deadlock is not flagged until after the

second iteration.

Recommendation: Increasing this parameter decreases the frequency of checking

for deadlocks, thereby increasing the time that application programs must wait for

the deadlock to be resolved.

Decreasing this parameter increases the frequency of checking for deadlocks,

thereby decreasing the time that application programs must wait for the deadlock

to be resolved but increasing the time that the database manager takes to check for

deadlocks. If the deadlock interval is too small, it can decrease runtime

performance, because the database manager is frequently performing deadlock

detection. If this parameter is set lower to improve concurrency, you should ensure

that maxlocks and locklist are set appropriately to avoid unnecessary lock escalation,

which can result in more lock contention and as a result, more deadlock situations.

dyn_query_mgmt - Dynamic SQL and XQuery query

management

This parameter determines whether Query Patroller will capture information about

submitted queries.

Configuration type

Database

Parameter type

Configurable Online

Default [range]

0 (DISABLE) [1(ENABLE), 0 (DISABLE)]

This parameter is relevant where DB2 Query Patroller is installed. If this parameter

is set to “ENABLE”, Query Patroller captures information about the query, such as

the submitter ID and the estimated cost of execution, as calculated by the

optimizer. These values are used to determine whether the query should be

managed by Query Patroller, based on user- and system-level thresholds.

If this parameter is set to “DISABLE”, Query Patroller does not capture any

information about submitted queries, and no query management takes place.

542 Data Servers, Databases, and Database Objects Guide

enable_xmlchar - Enable conversion to XML configuration

parameter

This parameter determines whether XMLPARSE operations can be performed on

non-BIT DATA CHAR (or CHAR-type) expressions in an SQL statement.

Configuration type

Database

Parameter type

Configurable

Default [range]

Yes [Yes; No]

When pureXML™ features are used in a non-Unicode database, the XMLPARSE

function can cause character substitutions to occur as SQL string data is converted

from the client code page into the database code page, and then into Unicode for

internal storage. Setting enable_xmlchar to NO blocks the usage of character data

types during XML parsing, and any attempts to insert character types into a

non-Unicode database will generate an error. The BLOB data type and FOR BIT

DATA data types are still allowed when enable_xmlchar is set to NO, as code page

conversion does not occur when these data types are used to pass XML data into a

database.

By default, enable_xmlchar is set to YES so that parsing of character data types is

allowed. In this case, you should ensure that any XML data to be inserted contains

only code points that are part of the database code page, in order to avoid

substitution characters being introduced during insertion of the XML data.

Note: The client needs to disconnect and reconnect to the agent for this change to

be reflected.

failarchpath - Failover log archive path

This parameter specifies a path to which DB2 will try to archive log files if the log

files cannot be archived to either the primary or the secondary (if set) archive

destinations because of a media problem affecting those destinations. This specified

path must reference a disk.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Null []

If there are log files in the path specified by the current value of failarchpath, any

updates to failarchpath will not take effect immediately. Instead, the update will

take effect when all applications disconnect.

Chapter 20. Configuration parameters 543

groupheap_ratio - Percent of memory for application group

heap

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager. In Version 9.5, it has

been replaced by the appl_memory configuration parameter..

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter specifies the percentage of memory in the application control

shared memory set devoted to the application group shared heap.

Configuration type

Database

Parameter type

Configurable

Default [range]

70 [1 – 99]

Unit of measure

Percentage

This parameter does not have any effect on a non-partitioned database with

concentrator OFF and intra-partition parallelism disabled.

Recommendation: Retain the default value of this parameter unless you are

experiencing performance problems.

hadr_db_role - HADR database role

This parameter indicates the current role of a database, whether the database is

online or offline.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Informational

Valid values are: STANDARD, PRIMARY, or STANDBY.

Note: When a database is active, the HADR role of the database can also be

determined using the GET SNAPSHOT FOR DATABASE command.

hadr_local_host - HADR local host name

This parameter specifies the local host for high availability disaster recovery

(HADR) TCP communication.

Configuration type

Database

Applies to

544 Data Servers, Databases, and Database Objects Guide

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

Either a host name or an IP address can be used. If a host name is specified and it

maps to multiple IP addresses, an error is returned, and HADR will not start up. If

the host name maps to multiple IP addresses (even if you specify the same host

name on primary and standby), primary and standby can end up mapping this

host name to different IP addresses, because some DNS servers return IP address

lists in non-deterministic order.

A host name is in the form: myserver.ibm.com. An IP address is in the form:

″12.34.56.78″.

hadr_local_svc - HADR local service name

This parameter specifies the TCP service name or port number for which the local

high availability disaster recovery (HADR) process accepts connections.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

The value for hadr_local_svc on the Primary or Standby database systems cannot

be the same as the value of svcename or svcename +1 on their respective nodes.

hadr_peer_window - HADR peer window configuration

parameter

When you set hadr_peer_window to a non-zero time value, then a HADR

primary-standby database pair continues to behave as though still in peer state, for

the configured amount of time, if the primary database loses connection with the

standby database. This helps ensure data consistency.

Configuration type

Database

Parameter type

Configurable

Default [range]

0 [0 − 4 294 967 295]

Unit of measure

Seconds

Usage notes:

Chapter 20. Configuration parameters 545

v The value will need to be the same on both primary and standby

databases.

v A recommended minimum value is 120 seconds.

v The hadr_peer_window value is ignored when the hadr_syncmode

value is set to ASYNC. That is, the value is treated as if it were set to

zero (0), since it is not meaningful in ASYNC mode.

v To avoid impacting the availability of the primary database when the

standby database is intentionally shut down, for example, for

maintenance, the peer window is not invoked if the standby database is

explicitly deactivated while the HADR pair is in peer state.

v The TAKEOVER HADR command with the PEER WINDOW ONLY

option will launch a takeover operation only if the HADR standby is

presently inside the defined peer window.

v The takeover operation with the PEER WINDOW ONLY option may

behave incorrectly if the primary database clock and the standby

database clock are not synchronized to within 5 seconds of each other.

That is, the operation may succeed when it should fail, or fail when it

should succeed. You should use a time synchronization service (for

example, NTP) to keep the clocks synchronized to the same source.

v On the standby databases, the peer window end time is based on the

last heartbeat message received from the primary database rather than

disconnection. Therefore, the standby database’s remaining time in

S-DisconnectedPeer state before transition to S-RemoteCatchupPending

ranges from (hadr_peer_window - hadr_timeout) seconds to

(hadr_peer_window) seconds, depending on when and how the

disconnection occurred.

hadr_remote_host - HADR remote host name

This parameter specifies the TCP/IP host name or IP address of the remote high

availability disaster recovery (HADR) database server.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

Similar to hadr_local_host, this parameter must map to only one IP address.

hadr_remote_inst - HADR instance name of the remote server

This parameter specifies the instance name of the remote server. Administration

tools, such as the DB2 Control Center, use this parameter to contact the remote

server. High availability disaster recovery (HADR) also checks whether a remote

database requesting a connection belongs to the declared remote instance.

Configuration type

Database

Applies to

546 Data Servers, Databases, and Database Objects Guide

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

hadr_remote_svc - HADR remote service name

This parameter specifies the TCP service name or port number that will be used by

the remote high availability disaster recovery (HADR) database server.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default

Null

hadr_syncmode - HADR synchronization mode for log write in

peer state

This parameter specifies the synchronization mode, which determines how primary

log writes are synchronized with the standby when the systems are in peer state.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default [range]

NEARSYNC [ASYNC; SYNC]

Valid values for this parameter are:

SYNC This mode provides the greatest protection against transaction loss, but at a

higher cost of transaction response time.

 In this mode, log writes are considered successful only when logs have

been written to log files on the primary database and when the primary

database has received acknowledgement from the standby database that

the logs have also been written to log files on the standby database. The

log data is guaranteed to be stored at both sites.

NEARSYNC

This mode provides somewhat less protection against transaction loss, in

exchange for a shorter transaction response time than that of SYNC mode.

Chapter 20. Configuration parameters 547

In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

when the primary database has received acknowledgement from the

standby system that the logs have also been written to main memory on

the standby system. Loss of data occurs only if both sites fail

simultaneously and if the target site has not transferred to nonvolatile

storage all of the log data that it has received.

ASYNC

This mode has the highest probability of transaction loss in the event of

primary failure, in exchange for the shortest transaction response time

among the three modes.

 In this mode, log writes are considered successful only when the log

records have been written to the log files on the primary database and

have been delivered to the TCP layer of the primary system’s host

machine. Because the primary system does not wait for acknowledgement

from the standby system, transactions might be considered committed

when they are still on their way to the standby.

hadr_timeout - HADR timeout value

This parameter specifies the time (in seconds) that the high availability disaster

recovery (HADR) process waits before considering a communication attempt to

have failed.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Database server with local clients

Parameter type

Configurable

Default [range]

120 [1 - 4 294 967 295]

indexrec - Index re-creation time

This parameter indicates when the database manager will attempt to rebuild

invalid indexes, and whether or not any index build will be redone during DB2

rollforward or HADR log replay on the standby database.

Configuration type

Database and Database Manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

548 Data Servers, Databases, and Database Objects Guide

UNIX Database Manager

restart [restart; restart_no_redo; access; access_no_redo]

Windows Database Manager

restart [restart; restart_no_redo; access; access_no_redo]

Database

Use system setting [system; restart; restart_no_redo; access;

access_no_redo]

There are five possible settings for this parameter:

SYSTEM

use system setting specified in the database manager configuration file to

decide when invalid indexes will be rebuilt, and whether any index build

log records are to be redone during DB2 rollforward or HADR log replay.

(Note: This setting is only valid for database configurations.)

ACCESS

Invalid indexes are rebuilt when the index is first accessed. Any fully

logged index builds are redone during DB2 rollforward or HADR log

replay. When HADR is started and an HADR takeover occurs, any invalid

indexes are rebuilt after takeover when the underlying table is first

accessed.

ACCESS_NO_REDO

Invalid indexes will be rebuilt when the underlying table is first accessed.

Any fully logged index build will not be redone during DB2 rollforward or

HADR log replay and those indexes will be left invalid. When HADR is

started and an HADR takeover takes place, any invalid indexes will be

rebuilt after takeover when the underlying table is first accessed.

RESTART

The default value for indexrec. Invalid indexes will be rebuilt when a

RESTART DATABASE command is either explicitly or implicitly issued.

Any fully logged index build will be redone during DB2 rollforward or

HADR log replay. When HADR is started and an HADR takeover takes

place, any invalid indexes will be rebuilt at the end of takeover.

 Note that a RESTART DATABASE command is implicitly issued if the

autorestart parameter is enabled.

RESTART_NO_REDO

Invalid indexes will be rebuilt when a RESTART DATABASE command is

either explicitly or implicitly issued. (A RESTART DATABASE command is

implicitly issued if the autorestart parameter is enabled.) Any fully logged

index build will not be redone during DB2 rollforward or HADR log

replay and instead those indexes will be rebuilt when rollforward

completes or when HADR takeover takes place.

Indexes can become invalid when fatal disk problems occur. If this happens to the

data itself, the data could be lost. However, if this happens to an index, the index

can be recovered by re-creating it. If an index is rebuilt while users are connected

to the database, two problems could occur:

v An unexpected degradation in response time might occur as the index file is

re-created. Users accessing the table and using this particular index would wait

while the index was being rebuilt.

Chapter 20. Configuration parameters 549

v Unexpected locks might be held after index re-creation, especially if the user

transaction that caused the index to be re-created never performed a COMMIT

or ROLLBACK.

Recommendation: The best choice for this option on a high-user server and if

restart time is not a concern, would be to have the index rebuilt at DATABASE

RESTART time as part of the process of bringing the database back online after a

crash.

Setting this parameter to “ACCESS” or to “ACCESS_NO_REDO” will result in a

degradation of the performance of the database manager while the index is being

re-created. Any user accessing that specific index or table would have to wait until

the index is recreated.

If this parameter is set to “RESTART”, the time taken to restart the database will be

longer due to index re-creation, but normal processing would not be impacted

once the database has been brought back online.

Note: At database recovery time, all SQL procedure executables on the file system

that belong to the database being recovered are removed. If indexrec is set to

RESTART, all SQL procedure executables are extracted from the database catalog

and put back on the file system at the next connection to the database. If indexrec is

not set to RESTART, an SQL executable is extracted to the file system only on first

execution of that SQL procedure.

The difference between the RESTART and the RESTART_NO_REDO values, or

between the ACCESS and the ACCESS_NO_REDO values, is only significant when

full logging is activated for index build operations, such as CREATE INDEX and

REORG INDEX operations, or for an index rebuild. You can activate logging by

enabling the logindexbuild database configuration parameter or by enabling LOG

INDEX BUILD when altering a table. By setting indexrec to either RESTART or

ACCESS, operations involving a logged index build can be rolled forward without

leaving the index object in an invalid state, which would require the index to be

rebuilt at a later time.

jdk_64_path - 64-Bit Software Developer’s Kit for Java

installation path DAS

This parameter specifies the directory under which the 64-Bit Software Developer’s

Kit (SDK) for Java, to be used for running DB2 administration server functions, is

installed.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid path]

Note: This is different from the jdk_path configuration parameter, which specifies

a 32-bit SDK for Java.

550 Data Servers, Databases, and Database Objects Guide

Environment variables used by the Java interpreter are computed from the value of

this parameter. This parameter is only used on those platforms that support both

32- and 64-bit instances.

Those platforms are:

v 64-bit kernels of AIX, HP-UX, and Solaris operating systems

v 64-bit Windows on X64 and IPF

v 64-bit Linux kernel on AMD64 and Intel® EM64T systems (x64), POWER, and

zSeries.

On all other platforms, only jdk_path is used.

Because there is no default value for this parameter, you should specify a value

when you install the SDK for Java.

This parameter can only be updated from a Version 8 command line processor

(CLP).

locklist - Maximum storage for lock list

This parameter indicates the amount of storage that is allocated to the lock list.

There is one lock list per database and it contains the locks held by all applications

concurrently connected to the database.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

UNIX Automatic [4 - 524 288]

Windows Database server with local and remote clients

Automatic [4 - 524 288]

Windows 64-bit Database server with local clients

Automatic [4 - 524 288]

Windows 32-bit Database server with local clients

Automatic [4 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the first application connects to the database

When freed

When last application disconnects from the database

Locking is the mechanism that the database manager uses to control concurrent

access to data in the database by multiple applications. Both rows and tables can

be locked. The database manager can also acquire locks for internal use.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change. Because the memory tuner trades

Chapter 20. Configuration parameters 551

memory resources between different memory consumers, there must be at least

two memory consumers enabled for self tuning in order for self tuning to be active

The value of locklist is tuned together with the maxlocks parameter, therefore

disabling self tuning of the locklist parameter automatically disables self tuning of

the maxlocks parameter. Enabling self tuning of the locklist parameter automatically

enables self tuning of the maxlocks parameter.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ″ON.″)

On 32-bit platforms, each lock requires 48 or 96 bytes of the lock list, depending on

whether other locks are held on the object:

v 96 bytes are required to hold a lock on an object that has no other locks held on

it

v 48 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit platforms (except HP-UX/PA-RISC), each lock requires 64 or 128 bytes of

the lock list, depending on whether other locks are held on the object:

v 128 bytes are required to hold a lock on an object that has no other locks held on

it

v 64 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit HP-UX/PA-RISC, each lock requires 80 or 160 bytes of the lock list,

depending on whether or not other locks are held on the object.

When the percentage of the lock list used by one application reaches maxlocks, the

database manager will perform lock escalation, from row to table, for the locks

held by the application. Although the escalation process itself does not take much

time, locking entire tables (versus individual rows) decreases concurrency, and

overall database performance might decrease for subsequent accesses against the

affected tables. Suggestions of how to control the size of the lock list are:

v Perform frequent COMMITs to release locks.

v When performing many updates, lock the entire table before updating (using the

SQL LOCK TABLE statement). This will use only one lock, keeps others from

interfering with the updates, but does reduce concurrency of the data.

You can also use the LOCKSIZE option of the ALTER TABLE statement to

control how locking is done for a specific table.

Use of the Repeatable Read isolation level might result in an automatic table

lock.

v Use the Cursor Stability isolation level when possible to decrease the number of

share locks held. If application integrity requirements are not compromised use

Uncommitted Read instead of Cursor Stability to further decrease the amount of

locking.

v Set locklist to AUTOMATIC. The lock list will increase synchronously to avoid

lock escalation or a lock list full situation.

Once the lock list is full, performance can degrade since lock escalation will

generate more table locks and fewer row locks, thus reducing concurrency on

shared objects in the database. Additionally there might be more deadlocks

between applications (since they are all waiting on a limited number of table

552 Data Servers, Databases, and Database Objects Guide

locks), which will result in transactions being rolled back. Your application will

receive an SQLCODE of -912 when the maximum number of lock requests has

been reached for the database.

Recommendation: If lock escalations are causing performance concerns you might

need to increase the value of this parameter or the maxlocks parameter. You can use

the database system monitor to determine if lock escalations are occurring. Refer to

the lock_escals (lock escalations) monitor element.

The following steps might help in determining the number of pages required for

your lock list:

1. Calculate a lower bound for the size of your lock list, using one of the following

calculations, depending on your environment:

a.

 (512 * x * maxappls) / 4096

b. with Concentrator enabled:

 (512 * x * max_coordagents) / 4096

c. in a partitioned database with Concentrator enabled:

 (512 * x * max_coordagents * number of database partitions) / 4096

where 512 is an estimate of the average number of locks per application and x

is the number of bytes required for each lock against an object that has an

existing lock (40 bytes on 32-bit platforms, 64 bytes on 64-bit platforms).

2. Calculate an upper bound for the size of your lock list:

 (512 * y * maxappls) / 4096

where y is the number of bytes required for the first lock against an object (80

bytes on 32-bit platforms, 128 bytes on 64-bit platforms).

3. Estimate the amount of concurrency you will have against your data and based

on your expectations, choose an initial value for locklist that falls between the

upper and lower bounds that you have calculated.

4. Using the database system monitor, as described below, tune the value of this

parameter.

If maxappls or max_coordagents are set to AUTOMATIC in your applicable scenario,

you should also set locklist to AUTOMATIC.

You can use the database system monitor to determine the maximum number of

locks held by a given transaction. Refer to the locks_held_top (maximum number of

locks held) monitor element.

This information can help you validate or adjust the estimated number of locks per

application. In order to perform this validation, you will have to sample several

applications, noting that the monitor information is provided at a transaction level,

not an application level.

You might also want to increase locklist if maxappls is increased, or if the

applications being run perform infrequent commits.

You should consider rebinding applications (using the REBIND command) after

changing this parameter.

locktimeout - Lock timeout

This parameter specifies the number of seconds that an application will wait to

obtain a lock, helping avoid global deadlocks for applications.

Chapter 20. Configuration parameters 553

Configuration type

Database

Parameter type

Configurable

Default [range]

-1 [-1; 0 - 32 767]

Unit of measure

Seconds

If you set this parameter to 0, locks are not waited for. In this situation, if no lock

is available at the time of the request, the application immediately receives a -911.

If you set this parameter to -1, lock timeout detection is turned off. In this

situation a lock will be waited for (if one is not available at the time of the request)

until either of the following:

v The lock is granted

v A deadlock occurs.

Recommendation: In a transaction processing (OLTP) environment, you can use an

initial starting value of 30 seconds. In a query-only environment you could start

with a higher value. In both cases, you should use benchmarking techniques to

tune this parameter.

The value should be set to quickly detect waits that are occurring because of an

abnormal situation, such as a transaction that is stalled (possibly as a result of a

user leaving their workstation). You should set it high enough so valid lock

requests do not time out because of peak workloads, during which time, there is

more waiting for locks.

You can use the database system monitor to help you track the number of times an

application (connection) experienced a lock timeout or that a database detected a

timeout situation for all applications that were connected.

High values of the lock_timeout (number of lock timeouts) monitor element can be

caused by:

v Too low a value for this configuration parameter.

v An application (transaction) that is holding locks for an extended period. You

can use the database system monitor to further investigate these applications.

v A concurrency problem, that could be caused by lock escalations (from row-level

to a table-level lock).

log_retain_status - Log retain status indicator

If set (when the logretain parameter setting is equal to Recovery), this parameter

indicates that log files are being retained for use in roll-forward recovery.

Configuration type

Database

Parameter type

Informational

554 Data Servers, Databases, and Database Objects Guide

logarchmeth1 - Primary log archive method

This parameter specifies the media type of the primary destination for archived

logs.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

OFF [LOGRETAIN, USEREXIT, DISK, TSM, VENDOR]

OFF Specifies that the log archiving method is not to be used. If both

logarchmeth1 and logarchmeth2 are set to OFF, the database is

considered to be using circular logging and will not be rollforward

recoverable. This is the default.

LOGRETAIN

This value can only be used for logarchmeth1 and is equivalent to

setting the logretain configuration parameter to RECOVERY. If you

specify this value, the logretain configuration parameters will

automatically be updated.

USEREXIT

This value is only valid for logarchmeth1 and is equivalent to

setting the userexit configuration parameter to ON. If specify this

value, the userexit configuration parameter will be automatically

updated.

DISK This value must be followed by a colon(:) and then a fully

qualified existing path name where the log files will be archived.

For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory

called /u/dbuser/archived_logs.

Note: If you are archiving to tape, you can use the db2tapemgr

utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this

value indicates that log files should be archived on the local TSM

server using the default management class. If followed by a

colon(:) and a TSM management class, the log files will be archived

using the specified management class.

 When archiving logs using TSM, before using the management

class specified by the database configuration parameter, TSM first

attempts to bind the object to the management class specified in

the INCLUDE-EXCLUDE list found in the TSM client options file.

If a match is not found, the default TSM management class

specified on the TSM server will be used. TSM will then rebind the

object to the management class specified by the database

configuration parameter.

Chapter 20. Configuration parameters 555

Thus, the default management class, as well as the management

class specified by the database configuration parameter, must

contain an archive copy group, or the archive operation will fail.

VENDOR

Specifies that a vendor library will be used to archive the log files.

This value must be followed by a colon(:) and the name of the

library. The APIs provided in the library must use the backup and

restore APIs for vendor products.

Note:

1. If either logarchmeth1 or logarchmeth2 is set to a value other than

OFF, the database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration parameters

logarchmeth1 will automatically be updated and vice versa.

However, if you are using either userexit or logretain,

logarchmeth2 must be set to OFF.

logarchmeth2 - Secondary log archive method

This parameter specifies the media type of the secondary destination for archived

logs.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

OFF [LOGRETAIN, USEREXIT, DISK, TSM, VENDOR]

OFF Specifies that the log archiving method is not to be used. If both

logarchmeth1 and logarchmeth2 are set to OFF, the database is

considered to be using circular logging and will not be rollforward

recoverable. This is the default.

LOGRETAIN

This value can only be used for logarchmeth1 and is equivalent to

setting the logretain configuration parameter to RECOVERY. If you

specify this value, the logretain configuration parameters will

automatically be updated.

USEREXIT

This value is only valid for logarchmeth1 and is equivalent to

setting the userexit configuration parameter to ON. If specify this

value, the userexit configuration parameter will be automatically

updated.

DISK This value must be followed by a colon(:) and then a fully

qualified existing path name where the log files will be archived.

For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory

called /u/dbuser/archived_logs.

556 Data Servers, Databases, and Database Objects Guide

Note: If you are archiving to tape, you can use the db2tapemgr

utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this

value indicates that log files should be archived on the local TSM

server using the default management class. If followed by a

colon(:) and a TSM management class, the log files will be archived

using the specified management class.

VENDOR

Specifies that a vendor library will be used to archive the log files.

This value must be followed by a colon(:) and the name of the

library. The APIs provided in the library must use the backup and

restore APIs for vendor products.

Note:

1. If either logarchmeth1 or logarchmeth2 is set to a value other than

OFF, the database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration parameters

logarchmeth1 will automatically be updated and vice versa.

However, if you are using either userexit or logretain,

logarchmeth2 must be set to OFF.

If this path is specified, log files will be archived to both this destination and the

destination specified by the logarchmeth1 database configuration parameter.

logarchopt1 - Primary log archive options

This parameter specifies the options field for the primary destination for archived

logs (if required).

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Null [not applicable]

logarchopt2 - Secondary log archive options

This parameter specifies the options field for the secondary destination for

archived logs (if required).

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Chapter 20. Configuration parameters 557

Parameter type

Configurable Online

Default [range]

Null [not applicable]

logbufsz - Log buffer size

This parameter allows you to specify the amount of the database heap (defined by

the dbheap parameter) to use as a buffer for log records before writing these records

to disk.

Configuration type

Database

Parameter type

Configurable

Default [range]

32-bit platforms

8 [4 - 4 096]

64-bit platforms

8 [4 - 65 535]

 Starting from Version 9.5 Fix Pack 3, the range has been increased

to 8 [4 - 131 070]

Unit of measure

Pages (4 KB)

Log records are written to disk when one of the following occurs:

v A transaction commits or a group of transactions commit, as defined by the

mincommit configuration parameter

v The log buffer is full

v As a result of some other internal database manager event.

This parameter must also be less than or equal to the dbheap parameter. Buffering

the log records will result in more efficient logging file I/O because the log records

will be written to disk less frequently and more log records will be written at each

time.

Recommendation: Increase the size of this buffer area if there is considerable read

activity on a dedicated log disk, or there is high disk utilization. When increasing

the value of this parameter, you should also consider the dbheap parameter since

the log buffer area uses space controlled by the dbheap parameter.

You can use the database system monitor to determine how much of the log buffer

space is used for a particular transaction (or unit of work). Refer to the

log_space_used (unit of work log space used) monitor element.

logfilsiz - Size of log files

This parameter defines the size of each primary and secondary log file. The size of

these log files limits the number of log records that can be written to them before

they become full and a new log file is required.

Configuration type

Database

558 Data Servers, Databases, and Database Objects Guide

Parameter type

Configurable

Default [range]

UNIX 1000 [4 - 524 286]

 Starting from Version 9.5 Fix Pack 3, the range has been increased

to 1000 [4 - 1 048 572]

Windows

1000 [4 - 524 286]

 Starting from Version 9.5 Fix Pack 3, the range has been increased

to 1000 [4 - 1 048 572]

Unit of measure

Pages (4 KB)

The use of primary and secondary log files as well as the action taken when a log

file becomes full are dependent on the type of logging that is being performed:

v Circular logging

A primary log file can be reused when the changes recorded in it have been

committed. If the log file size is small and applications have processed a large

number of changes to the database without committing the changes, a primary

log file can quickly become full. If all primary log files become full, the database

manager will allocate secondary log files to hold the new log records.

v Log retention logging

When a primary log file is full, the log is archived and a new primary log file is

allocated.

Recommendation: You must balance the size of the log files with the number of

primary log files:

v The value of the logfilsiz should be increased if the database has a large number

of update, delete, or insert transactions running against it which will cause the

log file to become full very quickly.

Note: The upper limit of log file size, combined with the upper limit of the

number of log files (logprimary + logsecond), gives an upper limit of 512 GB of

active log space. Starting from Version 9.5 Fix Pack 3, there is now 1024 GB of

active log space available.

A log file that is too small can affect system performance because of the

overhead of archiving old log files, allocating new log files, and waiting for a

usable log file.

v The value of the logfilsiz should be reduced if disk space is scarce, since primary

logs are preallocated at this size.

A log file that is too large can reduce your flexibility when managing archived

log files and copies of log files, since some media might not be able to hold an

entire log file.

If you are using log retention, the current active log file is closed and truncated

when the last application disconnects from a database. When the next connection

to the database occurs, the next log file is used. Therefore, if you understand the

logging requirements of your concurrent applications, you might be able to

determine a log file size that will not allocate excessive amounts of wasted space.

Chapter 20. Configuration parameters 559

loghead - First active log file

This parameter contains the name of the log file that is currently active.

Configuration type

Database

Parameter type

Informational

logindexbuild - Log index pages created

This parameter specifies whether index creation, recreation, or reorganization

operations are to be logged so that indexes can be reconstructed during DB2

rollforward operations or high availability disaster recovery (HADR) log replay

procedures.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Off [On; Off]

logpath - Location of log files

This parameter contains the current path being used for logging purposes.

Configuration type

Database

Parameter type

Informational

You cannot change this parameter directly as it is set by the database manager

after a change to the newlogpath parameter becomes effective.

When a database is created, the recovery log file for it is created in a subdirectory

of the directory containing the database. The default is a subdirectory named

SQLOGDIR under the directory created for the database.

logprimary - Number of primary log files

This parameter allows you to specify the number of primary log files to be

preallocated. The primary log files establish a fixed amount of storage allocated to

the recovery log files.

Configuration type

Database

Parameter type

Configurable

560 Data Servers, Databases, and Database Objects Guide

Default [range]

3 [2 - 256]

Unit of measure

Counter

When allocated

v The database is created

v A log is moved to a different location (which occurs when the logpath

parameter is updated)

v When the database is next started following an increase following an

increase in the value of this parameter (logprimary), provided that the

database is not started as an HADR standby database

v A log file has been archived and a new log file is allocated (the logretain

or userexit parameter must be enabled)

v If the logfilsiz parameter has been changed, the log files are re-sized

during the next database startup, provided that it is not started as an

HADR standby database

When freed

Not freed unless this parameter decreases. If decreased, unneeded log files

are deleted during the next connection to the database.

Under circular logging, the primary logs are used repeatedly in sequence. That is,

when a log is full, the next primary log in the sequence is used if it is available. A

log is considered available if all units of work with log records in it have been

committed or rolled-back. If the next primary log in sequence is not available, then

a secondary log is allocated and used. Additional secondary logs are allocated and

used until the next primary log in the sequence becomes available or the limit

imposed by the logsecond parameter is reached. These secondary log files are

dynamically deallocated as they are no longer needed by the database manager.

The number of primary and secondary log files must comply with the following:

v If logsecond has a value of -1, logprimary <= 256.

v If logsecond does not have a value of -1, (logprimary + logsecond) <= 256.

Recommendation: The value chosen for this parameter depends on a number of

factors, including the type of logging being used, the size of the log files, and the

type of processing environment (for example, length of transactions and frequency

of commits).

Increasing this value will increase the disk requirements for the logs because the

primary log files are preallocated during the very first connection to the database.

If you find that secondary log files are frequently being allocated, you might be

able to improve system performance by increasing the log file size (logfilsiz) or by

increasing the number of primary log files.

For databases that are not frequently accessed, in order to save disk storage, set the

parameter to 2. For databases enabled for roll-forward recovery, set the parameter

larger to avoid the overhead of allocating new logs almost immediately.

You can use the database system monitor to help you size the primary log files.

Observation of the following monitor values over a period of time will aid in

better tuning decisions, as average values might be more representative of your

ongoing requirements.

Chapter 20. Configuration parameters 561

v sec_log_used_top (maximum secondary log space used)

v tot_log_used_top (maximum total log space used)

v sec_logs_allocated (secondary logs allocated currently)

logretain - Log retain enable

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

This parameter determines whether active log files are retained and available for

roll-forward recovery.

Configuration type

Database

Parameter type

Configurable

Default [range]

No [Recovery; No]

The values are as follows:

v No, to indicate that logs are not retained.

v Recovery, to indicate that the logs are retained, and can be used for forward

recovery.

If logretain is set to Recovery or userexit is set to Yes, the active log files will be

retained and become online archive log files for use in roll-forward recovery. This

is called log retention logging.

After logretain is set to Recovery or userexit is set to Yes (or both), you must make

a full backup of the database. This state is indicated by the backup_pending flag

parameter.

Note:

Both logarchmeth1 or logretain will enable rollforward recovery. However, only

one method should be enabled for a database at one time.

If using logarchmeth1, do not set the logretain and userexit configuration

parameters. If the logretain configuration parameter is set to recover, the value for

logarchmeth1 will automatically be set to logretain.

It is recommended that logarchmeth1 (and logarchmeth2) be used rather than

logretain and userexit to activate archive logging and rollforward recovery. The

logretain and userexit options have been kept to support users who have not yet

migrated to logarchmeth1.

logsecond - Number of secondary log files

This parameter specifies the number of secondary log files that are created and

used for recovery log files (only as needed).

562 Data Servers, Databases, and Database Objects Guide

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

2 [-1; 0 – 254]

Unit of measure

Counter

When allocated

As needed when logprimary is insufficient (see detail below)

When freed

Over time as the database manager determines they will no longer be

required.

When the primary log files become full, the secondary log files (of size logfilsiz) are

allocated one at a time as needed, up to a maximum number as controlled by this

parameter. An error code will be returned to the application, and the database will

be shut down, if more secondary log files are required than are allowed by this

parameter.

If you set logsecond to -1, the database is configured with infinite active log space.

There is no limit on the size or the number of in-flight transactions running on the

database. If you set logsecond to -1, you still use the logprimary and logfilsiz

configuration parameters to specify how many log files the database manager

should keep in the active log path. If the database manager needs to read log data

from a log file, but the file is not in the active log path, the database manager

retrieves the log file from the archive to the active log path. (The database manager

retrieves the files to the overflow log path, if you have configured one.) Once the

log file is retrieved, the database manager will cache this file in the active log path

so that other reads of log data from the same file will be fast. The database

manager will manage the retrieval, caching, and removal of these log files as

required.

If your log path is a raw device, you must configure the overflowlogpath

configuration parameter in order to set logsecond to -1.

By setting logsecond to -1, you will have no limit on the size of the unit of work or

the number of concurrent units of work. However, rollback (both at the savepoint

level and at the unit of work level) could be very slow due to the need to retrieve

log files from the archive. Crash recovery could also be very slow for the same

reason. The database manager writes a message to the administration notification

log to warn you that the current set of active units of work has exceeded the

primary log files. This is an indication that rollback or crash recovery could be

extremely slow.

To set logsecond to -1, the logarchmeth1 configuration parameter must be set to a

value other than OFF or LOGRETAIN.

Recommendation: Use secondary log files for databases that have periodic needs

for large amounts of log space. For example, an application that is run once a

Chapter 20. Configuration parameters 563

month might require log space beyond that provided by the primary log files.

Since secondary log files do not require permanent file space they are

advantageous in this type of situation.

max_log - Maximum log per transaction

This parameter specifies if there is a limit to the percentage of log space that a

transaction can consume, and what that limit is.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

0 [0 — 100]

Unit of measure

Percentage

If the value is not 0, this parameter indicates the percentage of primary log space

that can be consumed by one transaction.

If the value is set to 0, there is no limit regarding how much space (as a percentage

of total primary log space) one single transaction can consume. This was the

behavior of transactions prior to Version 8.

maxappls - Maximum number of active applications

This parameter specifies the maximum number of concurrent applications that can

be connected (both local and remote) to a database. Since each application that

attaches to a database causes some private memory to be allocated, allowing a

larger number of concurrent applications will potentially use more memory.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Automatic [1 - 60 000]

Unit of measure

Counter

Setting maxappls to automatic has the effect of allowing any number of connected

applications. The database manager will dynamically allocate the resources it needs

to support new applications.

If you do not want to set this parameter to automatic, the value of this parameter

must be equal to or greater than the sum of the connected applications, plus the

number of these same applications that might be concurrently in the process of

completing a two-phase commit or rollback. Then add to this sum the anticipated

number of indoubt transactions that might exist at any one time.

564 Data Servers, Databases, and Database Objects Guide

When an application attempts to connect to a database, but maxappls has already

been reached, an error is returned to the application indicating that the maximum

number of applications have been connected to the database.

In a partitioned database environment, this is the maximum number of

applications that can be concurrently active against a database partition. This

parameter limits the number of active applications against the database partition

on a database partition server, regardless of whether the server is the coordinator

node for the application or not. The catalog node in a partitioned database

environment requires a higher value for maxappls than is the case for other types of

environments because, in the partitioned database environment, every application

requires a connection to the catalog node.

Recommendation: Increasing the value of this parameter without lowering the

maxlocks parameter or increasing the locklist parameter could cause you to reach the

database limit on locks (locklist) rather than the application limit and as a result

cause pervasive lock escalation problems.

To a certain extent, the maximum number of applications is also governed by

max_coordagents. An application can only connect to the database, if there is an

available connection (maxappls) as well as an available coordinating agent

(max_coordagents).

maxfilop - Maximum database files open per application

This parameter specifies the maximum number of file handles that can be open for

each database.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Transaction boundary

Default [range]

AIX, Sun, HP, and Linux 64-bit

61 440 [64 - 61 440]

Linux 32-bit

30 720 [64 - 30 720]

Windows 32-bit

32 768 [64 - 32 768]

Windows 64-bit

65 335 [64 - 65 335]

Unit of measure

Counter

If opening a file causes this value to be exceeded, some files in use by this

database are closed. If maxfilop is too small, the overhead of opening and closing

files will become excessive and might degrade performance.

Both SMS table spaces and DMS table space file containers are treated as files in

the database manager’s interaction with the operating system, and file handles are

required. More files are generally used by SMS table spaces compared to the

Chapter 20. Configuration parameters 565

number of containers used for a DMS file table space. Therefore, if you are using

SMS table spaces, you will need a larger value for this parameter compared to

what you would require for DMS file table spaces.

You can also use this parameter to ensure that the overall total of file handles used

by the database manager does not exceed the operating system limit by limiting

the number of handles per database to a specific number; the actual number will

vary depending on the number of databases running concurrently.

maxlocks - Maximum percent of lock list before escalation

This parameter defines a percentage of the lock list held by an application that

must be filled before the database manager performs lock escalation.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

Automatic [1 - 100]

Unit of measure

Percentage

Lock escalation is the process of replacing row locks with table locks, reducing the

number of locks in the list. When the number of locks held by any one application

reaches this percentage of the total lock list size, lock escalation will occur for the

locks held by that application. Lock escalation also occurs if the lock list runs out

of space.

The database manager determines which locks to escalate by looking through the

lock list for the application and finding the table with the most row locks. If after

replacing these with a single table lock, the maxlocks value is no longer exceeded,

lock escalation will stop. If not, it will continue until the percentage of the lock list

held is below the value of maxlocks. The maxlocks parameter multiplied by the

maxappls parameter cannot be less than 100.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change. Because the memory tuner trades

memory resources between different memory consumers, there must be at least

two memory consumers enabled for self tuning in order for self tuning to be

active.

The value of locklist is tuned together with the maxlocks parameter, therefore

disabling self tuning of the locklist parameter automatically disables self tuning of

the maxlocks parameter. Enabling self tuning of the locklist parameter

automatically enables self tuning of the maxlocks parameter.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ON).

566 Data Servers, Databases, and Database Objects Guide

On 32-bit platforms, each lock requires 48 or 96 bytes of the lock list, depending on

whether other locks are held on the object:

v 96 bytes are required to hold a lock on an object that has no other locks held on

it

v 48 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit platforms (except HP-UX/PA-RISC), each lock requires 64 or 128 bytes of

the lock list, depending on whether other locks are held on the object:

v 128 bytes are required to hold a lock on an object that has no other locks held on

it.

v 64 bytes are required to record a lock on an object that has an existing lock held

on it.

On 64-bit HP-UX/PA-RISC, each lock requires 80 or 160 bytes of the lock list,

depending on whether or not other locks are held on the object.

Recommendation: The following formula allows you to set maxlocks to allow an

application to hold twice the average number of locks:

 maxlocks = 2 * 100 / maxappls

Where 2 is used to achieve twice the average and 100 represents the largest

percentage value allowed. If you have only a few applications that run

concurrently, you could use the following formula as an alternative to the first

formula:

 maxlocks = 2 * 100 / (average number of applications running

concurrently)

One of the considerations when setting maxlocks is to use it in conjunction with

the size of the lock list (locklist). The actual limit of the number of locks held by

an application before lock escalation occurs is:

v maxlocks * locklist * 4096 /(100 * 48) on a 32-bit system

v maxlocks * locklist * 4096 /(100 * 80) on a 64-bit system

HP-UX/PA-RISC environment

v maxlocks * locklist * 4096 /(100 * 64) on other 64-bit systems

Where 4096 is the number of bytes in a page, 100 is the largest percentage value

allowed for maxlocks, and 48 is the number of bytes per lock on a 32-bit system,

80 is the number of bytes per lock on a HP-UX/PA-RISC 64-bit system, and 64 is

the number of bytes per lock on other 64-bit systems. If you know that one of your

applications requires 1000 locks, and you do not want lock escalation to occur, then

you should choose values for maxlocks and locklist in this formula so that the

result is greater than 1000. (Using 10 for maxlocks and 100 for locklist, this

formula results in greater than the 1000 locks needed.)

If maxlocks is set too low, lock escalation happens when there is still enough lock

space for other concurrent applications. If maxlocks is set too high, a few

applications can consume most of the lock space, and other applications will have

to perform lock escalation. The need for lock escalation in this case results in poor

concurrency.

You can use the database system monitor to help you track and tune this

configuration parameter.

Chapter 20. Configuration parameters 567

min_dec_div_3 - Decimal division scale to 3

This parameter is provided as a quick way to enable a change to computation of

the scale for decimal division in SQL.

Configuration type

Database

Parameter type

Configurable

Default [range]

No [Yes, No]

The min_dec_div_3 database configuration parameter changes the resulting scale of

a decimal arithmetic operation involving division. It can be set to ″Yes″ or ″No″.

The default value for min_dec_div_3 is ″No″. If the value is ″No″, the scale is

calculated as 31-p+s-s’. If set to ″Yes″, the scale is calculated as MAX(3, 31-p+s-s’).

This causes the result of decimal division to always have a scale of at least 3.

Precision is always 31.

Changing this database configuration parameter might cause changes to

applications for existing databases. This can occur when the resulting scale for

decimal division would be impacted by changing this database configuration

parameter. Listed below are some possible scenarios that might impact

applications. These scenarios should be considered before changing the

min_dec_div_3 on a database server with existing databases.

v If the resulting scale of one of the view columns is changed, a view that is

defined in an environment with one setting could fail with SQLCODE -344 when

referenced after the database configuration parameter is changed. The message

SQL0344N refers to recursive common table expressions, however, if the object

name (first token) is a view, then you will need to drop the view and create it

again to avoid this error.

v A static package will not change behavior until the package is rebound, either

implicitly or explicitly. For example, after changing the value from NO to YES,

the additional scale digits might not be included in the results until rebind

occurs. For any changed static packages, an explicit REBIND command can be

used to force a rebind.

v A check constraint involving decimal division might restrict some values that

were previously accepted. Such rows now violate the constraint but will not be

detected until one of the columns involved in the check constraint row is

updated or the SET INTEGRITY statement with the IMMEDIATE CHECKED

option is processed. To force checking of such a constraint, perform an ALTER

TABLE statement in order to drop the check constraint and then perform an

ALTER TABLE statement to add the constraint again.

Note: min_dec_div_3 also has the following limitations:

1. The command GET DB CFG FOR DBNAME will not display the min_dec_div_3

setting. The best way to determine the current setting is to observe the

side-effect of a decimal division result. For example, consider the following

statement:

VALUES (DEC(1,31,0)/DEC(1,31,5))

If this statement returns sqlcode SQL0419N, the database does not have

min_dec_div_3 support, or it is set to ″No″. If the statement returns 1.000,

min_dec_div_3 is set to ″Yes″.

568 Data Servers, Databases, and Database Objects Guide

2. min_dec_div_3 does not appear in the list of configuration keywords when you

run the following command: ? UPDATE DB CFG

mincommit - Number of commits to group

This parameter allows you to delay the writing of log records to disk until a

minimum number of commits have been performed, helping reduce the database

manager overhead associated with writing log records.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

1 [1 – 25]

Unit of measure

Counter

This delay will improve performance when you have multiple applications

running against a database and many commits are requested by the applications

within a very short time frame.

This grouping of commits will only occur when the value of this parameter is

greater than one and when the number of applications connected to the database is

greater than or equal to the value of this parameter. When commit grouping is

being performed, application commit requests could be held until either one

second has elapsed or the number of commit requests equals the value of this

parameter.

This parameter should be incremented by small amounts only; for example one (1).

You should also use multi-user tests to verify that increasing the value of this

parameter provides the expected results.

Changes to the value specified for this parameter take effect immediately; you do

not have to wait until all applications disconnect from the database.

Recommendation: Increase this parameter from its default value if multiple

read/write applications typically request concurrent database commits. This will

result in more efficient logging file I/O as it will occur less frequently and write

more log records each time it does occur.

You could also sample the number of transactions per second and adjust this

parameter to accommodate the peak number of transactions per second (or some

large percentage of it). Accommodating peak activity would minimize the

overhead of writing log records during transaction intensive periods.

If you increase mincommit, you might also need to increase the logbufsz parameter

to avoid having a full log buffer force a write during these transaction intensive

periods. In this case, the logbufsz should be equal to:

 mincommit * (log space used, on average, by a transaction)

You can use the database system monitor to help you tune this parameter in the

following ways:

Chapter 20. Configuration parameters 569

v Calculating the peak number of transactions per second:

Taking monitor samples throughout a typical day, you can determine your

transaction intensive periods. You can calculate the total transactions by adding

the following monitor elements:

– commit_sql_stmts (commit statements attempted)

– rollback_sql_stmts (rollback statements attempted)

Using this information and the available timestamps, you can calculate the

number of transactions per second.

v Calculating the log space used per transaction:

Using sampling techniques over a period of time and a number of transactions,

you can calculate an average of the log space used with the following monitor

element:

– log_space_used (unit of work log space used)

mirrorlogpath - Mirror log path

This parameter allows you to specify a string of up to 242 bytes for the mirror log

path. The string must point to a path name, and it must be a fully qualified path

name, not a relative path name.

Configuration type

Database

Parameter type

Configurable

Default [range]

Null [any valid path or device]

Note: In a single or multi-partition DB2 ESE environment, the node number is

automatically appended to the path. This is done to maintain the uniqueness of the

path in multiple logical node configurations.

If mirrorlogpath is configured, DB2 will create active log files in both the log path

and the mirror log path. All log data will be written to both paths. The mirror log

path has a duplicated set of active log files, such that if there is a disk error or

human error that destroys active log files on one of the paths, the database can still

function.

If the mirror log path is changed, there might be log files in the old mirror log

path. These log files might not have been archived, so you might need to archive

these log files manually. Also, if you are running replication on this database,

replication might still need the log files from before the log path change. If the

database is configured with the User Exit Enable (userexit) database configuration

parameter set to Yes, and if all the log files have been archived either by DB2

automatically or by yourself manually, then DB2 will be able to retrieve the log

files to complete the replication process. Otherwise, you can copy the files from the

old mirror log path to the new mirror log path.

If logpath or newlogpath specifies a raw device as the location where the log files are

stored, mirror logging, as indicated by mirrorlogpath, is not allowed. If logpath or

newlogpath specifies a file path as the location where the log files are stored, mirror

logging is allowed and mirrorlogpath must also specify a file path.

Recommendation: Just like the log files, the mirror log files should be on a

physical disk that does not have high I/O.

570 Data Servers, Databases, and Database Objects Guide

It is strongly recommended that this path be on a separate device than the primary

log path.

You can use the database system monitor to track the number of I/Os related to

database logging.

The following data elements return the amount of I/O activity related to database

logging. You can use an operating system monitor tool to collect information about

other disk I/O activity, then compare the two types of I/O activity.

v log_reads (number of log pages read)

v log_writes (number of log pages written).

multipage_alloc - Multipage file allocation enabled

Multipage file allocation is used to improve insert performance. It applies to SMS

table spaces only. If enabled, all SMS table spaces are affected: there is no selection

possible for individual SMS table spaces.

Configuration type

Database

Parameter type

Informational

The default for the parameter is Yes: multipage file allocation is enabled.

Following database creation, this parameter cannot be set to No. Multipage file

allocation cannot be disabled once it has been enabled. The db2empfa tool can be

used to enable multipage file allocation for a database that currently has it

disabled.

newlogpath - Change the database log path

This parameter allows you to specify a string of up to 242 bytes to change the

location where the log files are stored.

Configuration type

Database

Parameter type

Configurable

Default [range]

Null [any valid path or device]

The string can point to either a path name or to a raw device. Note that as of DB2

Version 9, the use of raw devices for database logging is deprecated. As an

alternative to using raw logs, you can use either direct input/output (DIO) or

concurrent input/output (CIO).

If the string points to a path name, it must be a fully qualified path name, not a

relative path name.

In a single or multi-partition DB2 ESE environment, the node number is

automatically appended to the path. This is done to maintain the uniqueness of the

path in multiple logical node configurations.

If you want to use replication, and your log path is a raw device, the

overflowlogpath configuration parameter must be configured.

Chapter 20. Configuration parameters 571

To specify a device, specify a string that the operating system identifies as a

device. For example:

v On Windows, \\.\d: or \\.\PhysicalDisk5

Note: You must have Windows Version 4.0 with Service Pack 3 or later installed

to be able to write logs to a device.

v On Linux and UNIX platforms, /dev/rdblog8

Note: You can only specify a device on AIX, Windows 2000, Windows, Solaris,

HP-UX, and Linux platforms.

The new setting does not become the value of logpath until both of the following

occur:

v The database is in a consistent state, as indicated by the database_consistent

parameter.

v All applications are disconnected from the database

When the first new connection is made to the database, the database manager will

move the logs to the new location specified by logpath.

There might be log files in the old log path. These log files might not have been

archived. You might need to archive these log files manually. Also, if you are

running replication on this database, replication might still need the log files from

before the log path change. If the database is configured with the User Exit Enable

(userexit) database configuration parameter set to Yes, and if all the log files have

been archived either by DB2 automatically or by yourself manually, then DB2 will

be able to retrieve the log files to complete the replication process. Otherwise, you

can copy the files from the old log path to the new log path.

If logpath or newlogpath specifies a raw device as the location where the log files are

stored, mirror logging, as indicated by mirrorlogpath, is not allowed. If logpath or

newlogpath specifies a file path as the location where the log files are stored, mirror

logging is allowed and mirrorlogpath must also specify a file path.

Recommendation: Ideally, the log files will be on a physical disk which does not

have high I/O. For instance, avoid putting the logs on the same disk as the

operating system or high volume databases. This will allow for efficient logging

activity with a minimum of overhead such as waiting for I/O.

You can use the database system monitor to track the number of I/Os related to

database logging.

The monitor elements log_reads (number of log pages read) and log_writes (number

of log pages written) return the amount of I/O activity related to database logging.

You can use an operating system monitor tool to collect information about other

disk I/O activity, then compare the two types of I/O activity.

Do not use a network or local file system that is shared as the log path for both the

primary and standby databases in a DB2 High Availability Disaster Recovery

(HADR) database pair. The primary and standby databases each have copies of the

transaction logs – the primary database ships logs to the standby database. If the

log path for both the primary and standby databases points to the same physical

location, then the primary and standby database would use the same physical files

for their respective copies of the logs. The database manager returns an error if the

database manager detects a shared log path.

572 Data Servers, Databases, and Database Objects Guide

num_db_backups - Number of database backups

This parameter specifies the number of database backups to retain for a database.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Transaction boundary

Default [range]

12 [1 - 32 767]

After the specified number of backups is reached, old backups are marked as

expired in the recovery history file. Recovery history file entries for the table space

backups and load copy backups that are related to the expired database backup are

also marked as expired. When a backup is marked as expired, the physical

backups can be removed from where they are stored (for example, disk, tape,

TSM). The next database backup will prune the expired entries from the recovery

history file.

The rec_his_retentn configuration parameter should be set to a value compatible

with the value of num_db_backups. For example, if num_db_backup is set to a large

value, the value for rec_his_retentn should be large enough to support that number

of backups.

num_freqvalues - Number of frequent values retained

This parameter allows you to specify the number of “most frequent values” that

will be collected when the WITH DISTRIBUTION option is specified on the

RUNSTATS command.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

10 [0 - 32 767]

Unit of measure

Counter

Increasing the value of this parameter increases the amount of statistics heap

(stat_heap_sz) used when collecting statistics.

The “most frequent value” statistics help the optimizer understand the distribution

of data values within a column. A higher value results in more information being

available to the query optimizer but requires additional catalog space. When 0 is

specified, no frequent-value statistics are retained, even if you request that

distribution statistics be collected.

You can also specify the number of frequent values retained as part of the

RUNSTATS command at the table or the column level. by using the

Chapter 20. Configuration parameters 573

NUM_FREQVALUES option. If none is specified, the num_freqvalues configuration

parameter value is used. Changing the number of frequent values retained through

the RUNSTATS command is easier than making the change using the

num_freqvalues database configuration parameter.

Updating this parameter can help the optimizer obtain better selectivity estimates

for some predicates (=, <, >) over data that is non-uniformly distributed. More

accurate selectivity calculations might result in the choice of more efficient access

plans.

After changing the value of this parameter, you need to:

v Run the RUNSTATS command again to collect statistics with the changed

number of frequent values

v Rebind any packages containing static SQL or XQuery statements.

When using RUNSTATS, you have the ability to limit the number of frequent

values collected at both the table level and the column level. This allows you to

optimize on space occupied in the catalogs by reducing the distribution statistics

for columns where they could not be exploited and yet still using the information

for critical columns.

Recommendation: In order to update this parameter you should determine the

degree of non-uniformity in the most important columns (in the most important

tables) that typically have selection predicates. This can be done using an SQL

SELECT statement that provides an ordered ranking of the number of occurrences

of each value in a column. You should not consider uniformly distributed, unique,

long, or LOB columns. A reasonable practical value for this parameter lies in the

range of 10 to 100.

Note that the process of collecting frequent value statistics requires significant CPU

and memory (stat_heap_sz) resources.

num_iocleaners - Number of asynchronous page cleaners

This parameter allows you to specify the number of asynchronous page cleaners

for a database.

Configuration type

Database

Parameter type

Configurable

Default [range]

Automatic [0 – 255]

Unit of measure

Counter

These page cleaners write changed pages from the buffer pool to disk before the

space in the buffer pool is required by a database agent. As a result, database

agents should not have to wait for changed pages to be written out so that they

might use the space in the buffer pool. This improves overall performance of the

database applications.

If you set the parameter to zero (0), no page cleaners are started and as a result,

the database agents will perform all of the page writes from the buffer pool to

disk. This parameter can have a significant performance impact on a database

574 Data Servers, Databases, and Database Objects Guide

stored across many physical storage devices, since in this case there is a greater

chance that one of the devices will be idle. If no page cleaners are configured, your

applications might encounter periodic log full conditions.

If this parameter is set to AUTOMATIC, the number of page cleaners started will

be based on the number of CPUs configured on the current machine, as well as the

number of local logical database partitions in a partitioned database environment.

There will always be at least one page cleaner started when this parameter is set to

AUTOMATIC.

The number of page cleaners to start when this parameter is set to AUTOMATIC

will be calculated using the following formula:

number of page cleaners = max(ceil(# CPUs / # local logical DPs) – 1, 1)

This formula ensures that the number of page cleaners is distributed almost evenly

across your logical database partitions, and that there are no more page cleaners

than there are CPUs.

If the applications for a database primarily consist of transactions that update data,

an increase in the number of cleaners will speed up performance. Increasing the

page cleaners will also decrease recovery time from soft failures, such as power

outages, because the contents of the database on disk will be more up-to-date at

any given time.

Recommendation: Consider the following factors when setting the value for this

parameter:

v Application type

– If it is a query-only database that will not have updates, set this parameter to

be zero (0). The exception would be if the query work load results in many

TEMP tables being created (you can determine this by using the explain

utility).

– If transactions are run against the database, set this parameter to be between

one and the number of physical storage devices used for the database.
v Workload

Environments with high update transaction rates might require more page

cleaners to be configured.

v Buffer pool sizes

Environments with large buffer pools might also require more page cleaners to

be configured.

You can use the database system monitor to help you tune this configuration

parameter using information from the event monitor about write activity from a

buffer pool:

v The parameter can be reduced if both of the following conditions are true:

– pool_data_writes is approximately equal to pool_async_data_writes

– pool_index_writes is approximately equal to pool_async_index_writes.
v The parameter should be increased if either of the following conditions are true:

– pool_data_writes is much greater than pool_async_data_writes

– pool_index_writes is much greater than pool_async_index_writes.

Chapter 20. Configuration parameters 575

num_ioservers - Number of I/O servers

This parameter specifies the number of I/O servers for a database. No more than

this number of I/Os for prefetching and utilities can be in progress for a database

at any time.

Configuration type

Database

Parameter type

Configurable

Default [range]

Automatic [1 – 255]

Unit of measure

Counter

When allocated

When an application connects to a database

When freed

When an application disconnects from a database

I/O servers, also called prefetchers, are used on behalf of the database agents to

perform prefetch I/O and asynchronous I/O by utilities such as backup and

restore. An I/O server waits while an I/O operation that it initiated is in progress.

Non-prefetch I/Os are scheduled directly from the database agents and as a result

are not constrained by num_ioservers.

If this parameter is set to AUTOMATIC, the number of prefetchers started will be

based on the parallelism settings of the table spaces in the current database

partition. (Parallelism settings are controlled by the DB2_PARALLEL_IO

environment variable.) For each DMS table space, the value of this parallelism

setting will be multiplied by the maximum number of containers in the table space

stripe set. For each SMS table space, the value of this parallelism setting will be

multiplied by the number of containers in the table space. The largest result over

all table spaces in the current database partition will be used as the number of

prefetchers to start. There will always be at least three prefetchers started when

this parameter is set to AUTOMATIC.

When this parameter is set to AUTOMATIC, the number of prefetchers to start will

be calculated at database activation time based on the following formula:

number of prefetchers = max(max over all table spaces

(parallelism setting * [SMS: # containers;

 DMS: max # containers in stripe set]), 3)

Recommendation: In order to fully exploit all the I/O devices in the system, a

good value to use is generally one or two more than the number of physical

devices on which the database resides. It is better to configure additional I/O

servers, since there is minimal overhead associated with each I/O server and any

unused I/O servers will remain idle.

num_log_span - Number log span

This parameter specifies whether there is a limit to how many log files one

transaction can span, and what that limit is.

Configuration type

Database

576 Data Servers, Databases, and Database Objects Guide

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

0 [0 - 65 535]

Unit of measure

Counter

If the value is not 0, this parameter indicates the number of active log files that one

active transaction is allowed to span.

If the value is set to 0, there is no limit to how many log files one single

transaction can span. This was the behavior of transactions prior to Version 8.

num_quantiles - Number of quantiles for columns

This parameter controls the number of quantiles that will be collected when the

WITH DISTRIBUTION option is specified on the RUNSTATS command.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

20 [0 - 32 767]

Unit of measure

Counter

Increasing the value of this parameter increases the amount of statistics heap

(stat_heap_sz) used when collecting statistics.

The “quantile” statistics help the optimizer understand the distribution of data

values within a column. A higher value results in more information being available

to the query optimizer but requires additional catalog space. When 0 or 1 is

specified, no quantile statistics are retained, even if you request that distribution

statistics be collected.

You can also specify the number of quantiles collected as part of the RUNSTATS

command at the table or the column level, by using the NUM_QUANTILES

option. If none is specified, the num_quantiles configuration parameter value is

used. Changing the number of quantiles that will be collected through the

RUNSTATS command is easier than making the change using the num_quantiles

database configuration parameter.

Updating this parameter can help obtain better selectivity estimates for range

predicates over data that is non-uniformly distributed. Among other optimizer

decisions, this information has a strong influence on whether an index scan or a

table scan will be chosen. (It is more efficient to use a table scan to access a range

of values that occur frequently and it is more efficient to use an index scan for a

range of values that occur infrequently.)

Chapter 20. Configuration parameters 577

After changing the value of this parameter, you need to:

v Run the RUNSTATS command again to collect statistics with the changed

number of frequent values

v Rebind any packages containing static SQL or XQuery statements.

When using RUNSTATS, you have the ability to limit the number of quantiles

collected at both the table level and the column level. This allows you to optimize

on space occupied in the catalogs by reducing the distribution statistics for

columns where they could not be exploited and yet still using the information for

critical columns.

Recommendation: This default value for this parameter guarantees a maximum

estimation error of approximately 2.5% for any single-sided range predicate (>, >=,

<, or <=), and a maximum error of 5% for any BETWEEN predicate. A simple way

to approximate the number of quantiles is:

v Determine the maximum error that is tolerable in estimating the number of rows

of any range query, as a percentage, P.

v The number of quantiles should be approximately 100/P if most of your

predicates are BETWEEN predicates, and 50/P if most of your predicates are

other types of range predicates (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for

BETWEEN predicates and of 2% for ″>″ predicates. A reasonable practical value for

this parameter lies in the range of 10 to 50.

numarchretry - Number of retries on error

This parameter specifies the number of times that DB2 is to try archiving a log file

to the primary or the secondary archive directory before trying to archive log files

to the failover directory.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

5 [0 - 65 535]

This parameter is only used if the failarchpath database configuration parameter is

set. If numarchretry is not set, DB2 will continuously retry archiving to the primary

or the secondary log path.

numsegs - Default number of SMS containers

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

578 Data Servers, Databases, and Database Objects Guide

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

Configuration type

Database

Parameter type

Informational

Unit of measure

Counter

This parameter indicates the number of containers that will be created within the

default table spaces. It also shows the information used when you created your

database, whether it was specified explicitly or implicitly on the CREATE

DATABASE command.

This parameter only applies to SMS table spaces; the CREATE TABLESPACE

statement does not use it in any way.

overflowlogpath - Overflow log path

This parameter specifies a location for DB2 to find log files needed for a

rollforward operation, as well as where to store active log files retrieved from the

archive. It also gives a location for finding and storing log files needed for using

db2ReadLog API.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

NULL [any valid path]

This parameter can be used for several functions, depending on your logging

requirements.

v This parameter allows you to specify a location for DB2 to find log files that are

needed for a rollforward operation. It is similar to the OVERFLOW LOG PATH

option on the ROLLFORWARD command. Instead of always specifying

OVERFLOW LOG PATH on every ROLLFORWARD command, you can set this

configuration parameter once. However, if both are used, the OVERFLOW LOG

PATH option will overwrite the overflowlogpath configuration parameter, for that

particular rollforward operation.

v If logsecond is set to -1, overflowlogpath allows you to specify a directory for DB2

to store active log files retrieved from the archive. (Active log files have to be

retrieved for rollback operations if they are no longer in the active log path).

Without overflowlogpath, DB2 will retrieve the log files into the active log path.

Using overflowlogpath allows you to provide additional resource for DB2 to store

the retrieved log files. The benefit includes spreading the I/O cost to different

disks, and allowing more log files to be stored in the active log path.

v If you need to use the db2ReadLog API (prior to DB2 V8, db2ReadLog was

called sqlurlog) for replication, for example, overflowlogpath allows you to specify

a location for DB2 to search for log files that are needed for this API. If the log

file is not found (in either the active log path or the overflow log path) and the

Chapter 20. Configuration parameters 579

database is configured with userexit enabled, DB2 will retrieve the log file.

overflowlogpath also allows you to specify a directory for DB2 to store the log

files retrieved. The benefit comes from reducing the I/O cost on the active log

path and allowing more log files to be stored in the active log path.

v If you have configured a raw device for the active log path, overflowlogpath must

be configured if you want to set logsecond to -1, or if you want to use the

db2ReadLog API.

To set overflowlogpath, specify a string of up to 242 bytes. The string must point to a

path name, and it must be a fully qualified path name, not a relative path name.

The path name must be a directory, not a raw device.

Note: In a single or multi-partition DB2 ESE environment, the node number is

automatically appended to the path. This is done to maintain the uniqueness of the

path in multiple logical node configurations.

pagesize - Database default page size

This parameter contains the value that was used as the default page size when the

database was created. Possible values are: 4 096, 8 192, 16 384 and 32 768. When a

buffer pool or table space is created in that database, the same default page size

applies.

Configuration type

Database

Parameter type

Informational

pckcachesz - Package cache size

This parameter is allocated out of the database shared memory, and is used for

caching of sections for static and dynamic SQL and XQuery statements on a

database.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

32-bit platforms

Automatic [-1, 32 - 128 000]

64-bit platforms

Automatic [-1, 32 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the database is initialized

When freed

When the database is shut down

580 Data Servers, Databases, and Database Objects Guide

In a partitioned database system, there is one package cache for each database

partition.

Caching packages allows the database manager to reduce its internal overhead by

eliminating the need to access the system catalogs when reloading a package; or, in

the case of dynamic SQL or XQuery statements, eliminating the need for

compilation. Sections are kept in the package cache until one of the following

occurs:

v The database is shut down

v The package or dynamic SQL or XQuery statement is invalidated

v The cache runs out of space.

This caching of the section for a static or dynamic SQL or XQuery statement can

improve performance, especially when the same statement is used multiple times

by applications connected to a database. This is particularly important in a

transaction processing environment.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. When

self_tuning_mem is set to ON, the memory tuner will dynamically size the memory

area controlled by pckcachesz as the workload requirements change. Because the

memory tuner trades memory resources between different memory consumers,

there must be at least two memory consumers enabled for self tuning in order for

self tuning to be active.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ″ON.″)

When this parameter is set to -1, the value used to calculate the page allocation is

eight times the value specified for the maxappls configuration parameter. The

exception to this occurs if eight times maxappls is less than 32. In this situation, the

default value of -1 will set pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether the

extra memory being reserved for the package cache might be more effective if it

was allocated for another purpose, such as the buffer pool or catalog cache. For

this reason, you should use benchmarking techniques when tuning this parameter.

Tuning this parameter is particularly important when several sections are used

initially and then only a few are run repeatedly. If the cache is too large, memory

is wasted holding copies of the initial sections.

The following monitor elements can help you determine whether you should

adjust this configuration parameter:

v pkg_cache_lookups (package cache lookups)

v pkg_cache_inserts (package cache inserts)

v pkg_cache_size_top (package cache high water mark)

v pkg_cache_num_overflows (package cache overflows)

Note: The package cache is a working cache, so you cannot set this parameter to

zero. There must be sufficient memory allocated in this cache to hold all sections of

the SQL or XQuery statements currently being executed. If there is more space

Chapter 20. Configuration parameters 581

allocated than currently needed, then sections are cached. These sections can

simply be executed the next time they are needed without having to load or

compile them.

The limit specified by the pckcachesz parameter is a soft limit. This limit can be

exceeded, if required, if memory is still available in the database shared set. You

can use the pkg_cache_size_top monitor element to determine the largest that the

package cache has grown, and the pkg_cache_num_overflows monitor element to

determine how many times the limit specified by the pckcachesz parameter has

been exceeded.

priv_mem_thresh - Private memory threshold

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

Configuration type

Database manager

Applies to

v Database server with local and remote clients

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable

Default [range]

20 000 [-1; 32 - 112 000]

Unit of measure

Pages (4 KB)

This parameter is used to determine the amount of unused agent private memory

that will be kept allocated, ready to be used by new agents that are started. It does

not apply to Linux and UNIX platforms.

A value of -1 will cause this parameter to use the value of the min_priv_mem

parameter.

Recommendation: When setting this parameter, you should consider the client

connection/disconnection patterns as well as the memory requirements of other

processes on the same machine.

If there is only a brief period during which many clients are concurrently

connected to the database, a high threshold will prevent unused memory from

being decommitted and made available to other processes. This case results in poor

memory management which can affect other processes which require memory.

If the number of concurrent clients is more uniform and there are frequent

fluctuations in this number, a high threshold will help to ensure memory is

available for the client processes and reduce the overhead to allocate and

deallocate memory.

582 Data Servers, Databases, and Database Objects Guide

rec_his_retentn - Recovery history retention period

This parameter specifies the number of days that historical information on backups

will be retained.

Configuration type

Database

Parameter type

Configurable

Default [range]

366 [-1; 0 - 30 000]

Unit of measure

Days

If the recovery history file is not needed to keep track of backups, restores, and

loads, this parameter can be set to a small number.

If value of this parameter is -1, the number of entries indicating full database

backups (and any table space backups that are associated with the database

backup) will correspond with the value specified by the num_db_backups parameter.

Other entries in the recovery history file can only be pruned by explicitly using the

available commands or APIs.

No matter how small the retention period, the most recent full database backup

plus its restore set will always be kept, unless you use the PRUNE utility with the

FORCE option.

restore_pending - Restore pending

This parameter states whether a RESTORE PENDING status exists in the database.

Configuration type

Database

Parameter type

Informational

restrict_access - Database has restricted access configuration

parameter

This parameter indicates whether the database was created using the restrictive set

of default actions. In other words, if it was created with the RESTRICTIVE clause

in the CREATE DATABASE command.

Configuration type

Database

Parameter type

Informational

YES The RESTRICTIVE clause was used in the CREATE DATABASE command

when this database was created.

NO The RESTRICTIVE clause was not used in the CREATE DATABASE command

when this database was created.

Chapter 20. Configuration parameters 583

rollfwd_pending - Roll forward pending indicator

This parameter informs you whether or not a roll-forward recovery is required,

and where it is required.

Configuration type

Database

Parameter type

Informational

This parameter can indicate one of the following states:

v DATABASE, meaning that a roll-forward recovery procedure is required for this

database

v TABLESPACE, meaning that one or more table spaces need to be rolled forward

v NO, meaning that the database is usable and no roll-forward recovery is

required.

The recovery (using ROLLFORWARD DATABASE) must complete before you can

access the database or table space.

self_tuning_mem- Self-tuning memory

This parameter determines whether the memory tuner will dynamically distribute

available memory resources as required between memory consumers that are

enabled for self-tuning.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Single-database partition environments

ON [ON; OFF]

Multi-database partition environments

OFF [ON; OFF]

In a database that is migrated from an earlier version, self_tuning_mem will

be set to OFF.

Because memory is being traded between memory consumers, there must be at

least two memory consumers enabled for self-tuning in order for the memory

tuner to be active. When self_tuning_mem is set to ON, but there are less than two

memory consumers enabled for self-tuning, the memory tuner is inactive. (The

exception to this is the sort heap memory area, which can be tuned regardless of

whether other memory consumers are enabled for self-tuning or not.) When

database_memory is set to a numeric value, it is considered enabled for self-tuning.

This parameter is ON by default in single database partition environments. In

multi-database partition environments, it is OFF by default.

The memory consumers that can be enabled for self-tuning include:

584 Data Servers, Databases, and Database Objects Guide

v Buffer pools (controlled by the size parameter of the ALTER BUFFERPOOL and

CREATE BUFFERPOOL statements)

v Package cache (controlled by the pckcachesz configuration parameter)

v Lock List (controlled by the locklist and maxlocks configuration parameters)

v Sort heap (controlled by the sheapthres_shr and sortheap configuration parameters)

v Database shared memory (controlled by the database_memory configuration

parameter)

To view the current setting for this parameter, use the GET DATABASE

CONFIGURATION command specifying the SHOW DETAIL parameter. The

possible settings returned for this parameter are:

Self Tuning Memory (SELF_TUNING_MEM) = OFF

Self Tuning Memory (SELF_TUNING_MEM) = ON (Active)

Self Tuning Memory (SELF_TUNING_MEM) = ON (Inactive)

Self Tuning Memory (SELF_TUNING_MEM) = ON

The following values indicate:

v ON (Active) - the memory tuner is actively tuning the memory on the system

v ON (Inactive) - that although the parameter is set ON, self-tuning is not

occurring because there are less than two memory consumers enabled for

self-tuning

v ON without (Active) or (Inactive) - from a query without the SHOW DETAIL

option, or without a database connection.

In partitioned environments, the self_tuning_mem configuration parameter will only

show ON (Active) for the database partition on which the tuner is running. On all

other nodes self_tuning_mem will show ON (Inactive). As a result, to determine if

the memory tuner is active in a partitioned database, you must check the

self_tuning_mem parameter on all database partitions.

If you have migrated to DB2 Version 9 from an earlier version of DB2 and you

plan to use the self-tuning memory feature, you should configure the following

health indicators to disable threshold or state checking:

v Shared Sort Memory Utilization - db.sort_shrmem_util

v Percentage of sorts that overflowed - db.spilled_sorts

v Long Term Shared Sort Memory Utilization - db.max_sort_shrmem_util

v Lock List Utilization - db.locklist_util

v Lock Escalation Rate - db.lock_escal_rate

v Package Cache Hit Ratio - db.pkgcache_hitratio

One of the objectives of the self-tuning memory feature is to avoid having memory

allocated to a memory consumer when it is not immediately required. Therefore,

utilization of the memory allocated to a memory consumer might approach 100%

before more memory is allocated. By disabling these health indicators, you will

avoid unnecessary alerts triggered by the high rate of memory utilization by a

memory consumer.

Instances created in DB2 Version 9 will have these health indicators disabled by

default.

seqdetect - Sequential detection flag

This parameter controls whether the database manager is allowed to detect

sequential page reading during I/O activity.

Chapter 20. Configuration parameters 585

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

Yes [Yes; No]

The database manager can monitor I/O, and if sequential page reading is

occurring the database manager can activate I/O prefetching. This type of

sequential prefetch is known as sequential detection.

If this parameter is set to No, prefetching takes place only if the database manager

knows it will be useful, for example table sorts, table scans, or list prefetch.

Recommendation: In most cases, you should use the default value for this

parameter. Try turning sequential detection off, only if other tuning efforts were

unable to correct serious query performance problems.

sheapthres_shr - Sort heap threshold for shared sorts

This parameter represents a soft limit on the total amount of database shared

memory that can be used by sort memory consumers at any one time.

Configuration type

Database

Applies to

OLAP functions

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

32-bit platforms

Automatic [250 - 524 288]

64-bit platforms

Automatic [250 - 2 147 483 647]

Unit of measure

Pages (4 KB)

There are other sort memory consumers in addition to sort, like hash join, index

ANDing, block index ANDing, merge join, and in-memory tables. When the total

amount of shared memory for shared sort memory consumers approaches the

sheapthres_shr limit, a memory throttling mechanism is activated and the future

shared sort memory consumer requests might be granted less memory than

requested, but will always be granted more than the minimum they need for

finishing the task. Once the sheapthres_shr limit is exceeded, all requests of shared

sort memory from sort memory consumers will be granted the minimum amount

of memory required to finish the task. When the total amount of shared memory

for active shared sort memory consumers reaches this limit, subsequent sorts could

fail (SQL0955C).

586 Data Servers, Databases, and Database Objects Guide

When the value of the database manager configuration parameter sheapthres is 0,

all sort memory consumers for the database will use the database shared memory

with sheapthres_shr instead of private sort memory.

When sheapthres_shr is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change. Because the memory tuner trades

memory resources between different memory consumers, there must be at least

two memory consumers enabled for self tuning in order for self tuning to be

active. Memory consumers include SHEAPTHRES_SHR, PCKCACHESZ, BUFFER

POOL (each buffer pool counts as one), LOCKLIST, and DATABASE_MEMORY.

Automatic tuning of sheapthres_shr is allowed only when the database manager

configuration parameter sheapthres is set to 0.

The value of sortheap is tuned together with the sheapthres_shr parameter therefore

disabling self tuning of the sortheap parameter automatically disables self tuning of

the sheapthres_shr parameter. Enabling self tuning of the sheapthres_shr parameter

automatically enables self tuning of the sortheap parameter.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ″ON.″)

When the value of this parameter is updated online, only new requests of

shared-sort memory made after the update will use the new value. It is

recommended that you reduce the value of sortheap before reducing the value of

sheapthres_shr and to increase the value of sheapthres_shr before increasing the value

of sortheap.

When the database manager configuration parameter sheapthres is greater than 0,

sheapthres_shr is only meaningful in two cases:

v if the intra_parallel database manager configuration parameter is set to yes,

because when intra_parallel is set to no, there will be no shared sorts.

v if the Concentrator is on (that is, when max_connections is greater than

max_coordagents), because sorts that use a cursor declared with the WITH HOLD

option will be allocated from shared memory.

softmax - Recovery range and soft checkpoint interval

This parameter determines the frequency of soft checkpoints and the recovery

range, which help out in the crash recovery process.

Configuration Type

Database

Parameter Type

Configurable

Default [range]

100 [1 – 100 * logprimary]

Unit of Measure

Percentage of the size of one primary log file

This parameter is used to:

v Influence the number of logs that need to be recovered following a crash (such

as a power failure). For example, if the default value is used, the database

Chapter 20. Configuration parameters 587

manager will try to keep the number of logs that need to be recovered to 1. If

you specify 300 as the value of this parameter, the database manager will try to

keep the number of logs that need to be recovered to 3.

To influence the number of logs required for crash recovery, the database

manager uses this parameter to trigger the page cleaners to ensure that pages

older than the specified recovery window are already written to disk.

v Determine the frequency of soft checkpoints.

At the time of a database failure resulting from an event such as a power failure,

there might have been changes to the database which:

v Have not been committed, but updated the data in the buffer pool

v Have been committed, but have not been written from the buffer pool to the

disk

v Have been committed and written from the buffer pool to the disk.

When a database is restarted, the log files will be used to perform a crash recovery

of the database which ensures that the database is left in a consistent state (that is,

all committed transactions are applied to the database and all uncommitted

transactions are not applied to the database).

To determine which records from the log file need to be applied to the database,

the database manager uses information recorded in a log control file. (The database

manager actually maintains two copies of the log control file, SQLOGCTL.LFH.1

and SQLOGCTL.LFH.2, so that if one copy is damaged, the database manager can

still use the other copy.) These log control files are periodically written to disk,

and, depending on the frequency of this event, the database manager might be

applying log records of committed transactions or applying log records that

describe changes that have already been written from the buffer pool to disk.

These log records have no impact on the database, but applying them introduces

some overhead into the database restart process.

The log control files are always written to disk when a log file is full, and during

soft checkpoints. You can use this configuration parameter to trigger additional soft

checkpoints.

The timing of soft checkpoints is based on the difference between the “current

state” and the “recorded state”, given as a percentage of the logfilsiz. The “recorded

state” is determined by the oldest valid log record indicated in the log control files

on disk, while the “current state” is determined by the log control information in

memory. (The oldest valid log record is the first log record that the recovery

process would read.) The soft checkpoint will be taken if the value calculated by

the following formula is greater than or equal to the value of this parameter:

 ((space between recorded and current states) / logfilsiz) * 100

Recommendation: You might want to increase or reduce the value of this

parameter, depending on whether your acceptable recovery window is greater than

or less than one log file. Lowering the value of this parameter will cause the

database manager both to trigger the page cleaners more often and to take more

frequent soft checkpoints. These actions can reduce both the number of log records

that need to be processed and the number of redundant log records that are

processed during crash recovery.

Note however, that more page cleaner triggers and more frequent soft checkpoints

increase the overhead associated with database logging, which can impact the

588 Data Servers, Databases, and Database Objects Guide

performance of the database manager. Also, more frequent soft checkpoints might

not reduce the time required to restart a database, if you have:

v Very long transactions with few commit points.

v A very large buffer pool and the pages containing the committed transactions

are not written back to disk very frequently. (Note that the use of asynchronous

page cleaners can help avoid this situation.)

In both of these cases, the log control information kept in memory does not change

frequently and there is no advantage in writing the log control information to disk,

unless it has changed.

sortheap - Sort heap size

This parameter defines the maximum number of private memory pages to be used

for private sorts, or the maximum number of shared memory pages to be used for

shared sorts.

Configuration type

Database

Applies to

OLAP functions

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

32-bit platforms

Automatic [16 - 524 288]

64-bit platforms

Automatic [16 - 4 194 303]

Unit of measure

Pages (4 KB)

When allocated

As needed to perform sorts

When freed

When sorting is complete

If the sort is a private sort, then this parameter affects agent private memory. If the

sort is a shared sort, then this parameter affects the database shared memory. Each

sort has a separate sort heap that is allocated as needed, by the database manager.

This sort heap is the area where data is sorted. If directed by the optimizer, a

smaller sort heap than the one specified by this parameter is allocated using

information provided by the optimizer.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This

allows the memory tuner to dynamically size the memory area controlled by this

parameter as the workload requirements change.

The value of sortheap is tuned together with the sheapthres_shr parameter, therefore

disabling self tuning of the sortheap parameter can not be done without disabling

self tuning of the sheapthres_shr parameter. Enabling self tuning of the sheapthres_shr

Chapter 20. Configuration parameters 589

parameter automatically enables self tuning of the sortheap parameter. The sortheap

parameter can, however, be enabled for self tuning without the sheapthres_shr

parameter being AUTOMATIC.

Automatic tuning of sortheap is allowed only when the database manager

configuration parameter sheapthres is set to 0.

Automatic tuning of this configuration parameter will only occur when self tuning

memory is enabled for the database (the self_tuning_mem configuration parameter

is set to ″ON.″)

Recommendation: When working with the sort heap, you should consider the

following:

v Appropriate indexes can minimize the use of the sort heap.

v Hash join buffers, block index ANDing, merge join, table in memory and

dynamic bitmaps (used for index ANDing and Star Joins) use sort heap memory.

Increase the size of this parameter when these techniques are used.

v Increase the size of this parameter when frequent large sorts are required.

v When increasing the value of this parameter, you should examine whether the

sheapthres and sheapthres_shr parameters in the database manager configuration

file also need to be adjusted.

v The sort heap size is used by the optimizer in determining access paths. You

should consider rebinding applications (using the REBIND command) after

changing this parameter.

When the sortheap value is updated, the database manager will immediately start

using this new value for any current or new sorts.

stat_heap_sz - Statistics heap size

This parameter indicates the maximum size of the heap used in collecting statistics

using the RUNSTATS command.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that it increases as needed until either the appl_memory

limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable online

Default [range]

Automatic [1 096 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

When the RUNSTATS utility is started

When freed

When the RUNSTATS utility is completed

Recommendation: The default setting of AUTOMATIC is recommended.

590 Data Servers, Databases, and Database Objects Guide

stmtheap - Statement heap size

This parameter specifies the size of the statement heap, which is used as a work

space for the SQL or XQuery compiler during compilation of an SQL or XQuery

statement.

With Version 9.5, this database configuration parameter has a default value of

AUTOMATIC, meaning that it increases as needed until either the appl_memory

limit is reached, or the instance_memory limit is reached.

Configuration type

Database

Parameter type

Configurable Online

Propagation class

Statement boundary

Default [range]

For both 32-bit and 64-bit platforms

Automatic [128 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

For each statement during precompiling or binding

When freed

When precompiling or binding of each statement is complete

This area does not stay permanently allocated, but is allocated and released for

every SQL or XQuery statement handled. Note that for dynamic SQL or XQuery

statements, this work area will be used during execution of your program;

whereas, for static SQL or XQuery statements, it is used during the bind process

but not during program execution.

Recommendation: In most cases the default AUTOMATIC setting for this

parameter is acceptable. When set to AUTOMATIC, there is an internal limit on the

total amount of memory allocated during the dynamic programming join

enumeration phase of compilation. If this limit is exceeded, the statement is

compiled using greedy join enumeration, and is only limited by the amount of

remaining appl_memory or instance_memory, or both. If your application is receiving

SQL0437W warnings, and the runtime performance for your query is not

acceptable, you might want to consider setting a sufficiently large manual stmtheap

value to ensure that dynamic join enumeration is always used.

Note: Dynamic join enumeration occurs only at optimization classes 3 and higher

(5 is the default).

territory - Database territory

This parameter shows the territory used to create the database. territory is used by

the database manager when processing data that is territory sensitive.

Configuration type

Database

Parameter type

Informational

Chapter 20. Configuration parameters 591

trackmod - Track modified pages enable

This parameter specifies whether the database manager will track database

modifications so that the backup utility can detect which subsets of the database

pages must be examined by an incremental backup and potentially included in the

backup image.

Configuration type

Database

Parameter type

Configurable

Default [range]

No [Yes, No]

After setting this parameter to ″Yes″, you must take a full database backup in

order to have a baseline against which incremental backups can be taken. Also, if

this parameter is enabled and if a table space is created, then a backup must be

taken which contains that table space. This backup could be either a database

backup or a table space backup. Following the backup, incremental backups will

be permitted to contain this table space.

tsm_mgmtclass - Tivoli Storage Manager management class

The Tivoli Storage Manager management class determines how the TSM server

should manage the backup versions of the objects being backed up.

Configuration type

Database

Parameter type

Configurable

Default [range]

Null [any string]

The default is that there is no DB2-specified management class.

When performing any TSM backup, before using the management class specified

by the database configuration parameter, TSM first attempts to bind the backup

object to the management class specified in the INCLUDE-EXCLUDE list found in

the TSM client options file. If a match is not found, the default TSM management

class specified on the TSM server will be used. TSM will then rebind the backup

object to the management class specified by the database configuration parameter.

Thus, the default management class, as well as the management class specified by

the database configuration parameter, must contain a backup copy group, or the

backup operation will fail.

tsm_nodename - Tivoli Storage Manager node name

This parameter is used to override the default setting for the node name associated

with the Tivoli Storage Manager (TSM) product.

Configuration type

Database

Parameter type

Configurable online

592 Data Servers, Databases, and Database Objects Guide

Propagation class

Statement boundary

Default [range]

Null [any string]

The node name is needed to allow you to restore a database that was backed up to

TSM from another node.

The default is that you can only restore a database from TSM on the same node

from which you did the backup. It is possible for the tsm_nodename to be

overridden during a backup done through DB2 (for example, with the BACKUP

DATABASE command).

tsm_owner - Tivoli Storage Manager owner name

This parameter is used to override the default setting for the owner associated

with the Tivoli Storage Manager (TSM) product.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Statement boundary

Default [range]

Null [any string]

The owner name is needed to allow you to restore a database that was backed up

to TSM from another node. It is possible for the tsm_owner to be overridden during

a backup done through DB2 (for example, with the BACKUP DATABASE

command).

Note: The owner name is case sensitive.

The default is that you can only restore a database from TSM on the same node

from which you did the backup.

tsm_password - Tivoli Storage Manager password

This parameter is used to override the default setting for the password associated

with the Tivoli Storage Manager (TSM) product.

Configuration type

Database

Parameter type

Configurable online

Propagation class

Statement boundary

Default [range]

Null [any string]

The password is needed to allow you to restore a database that was backed up to

TSM from another node.

Chapter 20. Configuration parameters 593

Note: If the tsm_nodename is overridden during a backup done with DB2 (for

example, with the BACKUP DATABASE command), the tsm_password might also

have to be set.

The default is that you can only restore a database from TSM on the same node

from which you did the backup. It is possible for the tsm_nodename to be

overridden during a backup done with DB2.

user_exit_status - User exit status indicator

If set to On, this parameter indicates that the database manager is enabled for

roll-forward recovery and that the user exit program will be used to archive and

retrieve log files when called by the database manager.

Configuration type

Database

Parameter type

Informational

userexit - User exit enable

This parameter is deprecated in Version 9.5, but is still being used by pre-Version

9.5 data servers and clients. Any value specified for this configuration parameter

will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and

clients.

If this parameter is enabled, log retention logging is performed regardless of how

the logretain parameter is set. This parameter also indicates that a user exit

program should be used to archive and retrieve the log files.

Configuration type

Database

Parameter type

Configurable

Default [range]

Off [On; Off]

Log files are archived when the log file is full. They are retrieved when the

ROLLFORWARD utility needs to use them to restore a database.

After logretain, or userexit, or both of these parameters are enabled, you must make

a full backup of the database. This state is indicated by the backup_pending flag

parameter.

If both of these parameters are de-selected, roll-forward recovery becomes

unavailable for the database because logs will no longer be retained. In this case,

the database manager deletes all log files in the logpath directory (including online

archive log files), allocates new active log files, and reverts to circular logging.

util_heap_sz - Utility heap size

This parameter indicates the maximum amount of memory that can be used

simultaneously by the BACKUP, RESTORE, and LOAD (including load recovery)

utilities.

594 Data Servers, Databases, and Database Objects Guide

Configuration type

Database

Parameter type

Configurable online

Propagation class

Immediate

Default [range]

5000 [16 - 524 288]

Unit of measure

Pages (4 KB)

When allocated

As required by the database manager utilities

When freed

When the utility no longer needs the memory

Recommendation: Use the default value unless your utilities run out of space, in

which case you should increase this value. If memory on your system is

constrained, you might want to lower the value of this parameter to limit the

memory used by the database utilities. If the parameter is set too low, you might

not be able to run utilities concurrently. You should update this parameter

dynamically as needed. For a small number of utilities, set this parameter to a

small value. For a large number of utilities, or for memory intensive utilities, you

should set this parameter to a larger value.

vendoropt - Vendor options

This parameter specifies additional parameters that DB2 might need to use to

communicate with storage systems during backup, restore, or load copy

operations.

Configuration type

Database

Applies to

v Database server with local and remote clients

v Client

v Database server with local clients

v Partitioned database server with local and remote clients

Parameter type

Configurable Online

Default [range]

Null []

Restriction

You cannot use the vendoropt configuration parameter to specify

vendor-specific options for snapshot backup or restore operations. You

must use the OPTIONS parameter of the backup or restore utilities instead.

wlm_collect_int - Workload management collection interval

configuration parameter

This parameter specifies a collect and reset interval, in minutes, for workload

management (WLM) statistics.

Chapter 20. Configuration parameters 595

Every x wlm_collect_int minutes, (where x is the value of the wlm_collect_int

parameter) all workload management statistics are collected and sent to any active

statistics event monitor; then the statistics are reset. If an active event monitor

exists, depending on how it was created, the statistics are written either to file or

to a table. If it does not exist, the statistics are only reset and not collected.

The collect and reset process is initiated from the catalog partition. The

wlm_collect_int parameter must be specified on the catalog partition. It is not used

on other partitions.

Configuration type

Database

Parameter type

Configurable online

Default [range]

0 [0 (no collection performed), 5 - 32 767]

The workload management statistics collected by a statistics event monitor can be

used to monitor both short term and long term system behavior. A small interval

can be used to obtain both short term and long term system behavior because the

results can be merged together to obtain long term behavior. However, having to

manually merge the results from different intervals complicates the analysis. If it’s

not required, a small interval unnecessarily increases the overhead. Therefore,

reduce the interval to capture shorter term behavior, and increase the interval to

reduce overhead when only analysis of long term behavior is sufficient.

The interval needs to be customized per database, not for each SQL request, or

command invocation, or application. There are no other configuration parameters

that need to be considered.

Note: All WLM statistics table functions return statistics that have been

accumulated since the last time the statistics were reset. The statistics will be reset

regularly on the interval specified by this configuration parameter.

DB2 Administration Server (DAS) configuration parameters

authentication - Authentication type DAS

Determines how and where authentication of a user takes place.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

SERVER_ENCRYPT [SERVER_ENCRYPT; KERBEROS_ENCRYPT]

If authentication is SERVER_ENCRYPT, then the user ID and password are sent

from the client to the server so authentication can take place on the server. User

IDs and passwords sent over the network are encrypted.

596 Data Servers, Databases, and Database Objects Guide

A value of KERBEROS_ENCRYPT means that authentication is performed at a

Kerberos server using the Kerberos security protocol for authentication.

Note: The KERBEROS_ENCRYPT authentication type is only supported on servers

running Windows.

This parameter can only be updated from a Version 9 command line processor

(CLP).

contact_host - Location of contact list

This parameter specifies the location where the contact information used for

notification by the Scheduler and the Health Monitor is stored.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid DB2 administration server TCP/IP hostname]

The location is defined to be a DB2 administration server’s TCP/IP hostname.

Allowing contact_host to be located on a remote DAS provides support for sharing

a contact list across multiple DB2 administration servers. If contact_host is not

specified, the DAS assumes the contact information is local.

This parameter can only be updated from a Version 8 command line processor

(CLP).

das_codepage - DAS code page

This parameter indicates the code page used by the DB2 administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid DB2 code page]

If the parameter is null, then the default code page of the system is used. This

parameter should be compatible with the locale of the local DB2 instances.

Otherwise, the DB2 administration server cannot communicate with the DB2

instances.

Chapter 20. Configuration parameters 597

This parameter can only be updated from a Version 8 command line processor

(CLP).

das_territory - DAS territory

This parameter shows the territory used by the DB2 administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Null [any valid DB2 territory]

If the parameter is null, then the default territory of the system is used.

This parameter can only be updated from a Version 8 command line processor

(CLP).

dasadm_group - DAS administration authority group name

This parameter defines the group name with DAS Administration (DASADM)

authority for the DAS.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid group name]

DASADM authority is the highest level of authority within the DAS.

DASADM authority is determined by the security facilities used in a specific

operating environment.

v For the Windows operating systems, this parameter can be set to any local group

that is defined in the Windows security database. Group names are accepted as

long as they are 30 bytes or less in length. If “NULL” is specified for this

parameter, all members of the Administrators group have DASADM authority.

v For Linux and UNIX systems, if “NULL” is specified as the value of this

parameter, the DASADM group defaults to the primary group of the instance

owner.

If the value is not “NULL”, the DASADM group can be any valid UNIX group

name.

This parameter can only be updated from a Version 8 command line processor

(CLP).

598 Data Servers, Databases, and Database Objects Guide

db2system - Name of the DB2 server system

This parameter specifies the name that is used by your users and database

administrators to identify the DB2 server system.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Default [range]

TCP/IP host name [any valid system name]

If possible, this name should be unique within your network.

This name is displayed in the system level of the Control Center’s object tree to aid

administrators in the identification of server systems that can be administered from

the Control Center.

When using the ’Search the Network’ function of the Configuration Assistant, DB2

discovery returns this name and it is displayed at the system level in the resulting

object tree. This name aids users in identifying the system that contains the

database they want to access. A value for db2system is set at installation time as

follows:

v On Windows, the setup program sets it equal to the computer name specified

for the Windows system.

v On UNIX systems, it is set equal to the UNIX system’s TCP/IP hostname.

discover - DAS discovery mode

This parameter determines the type of discovery mode that is started when the

DB2 Administration Server starts.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

SEARCH [DISABLE; KNOWN; SEARCH]
v If discover = SEARCH, the administration server handles SEARCH discovery

requests from clients. SEARCH provides a superset of the functionality provided

by KNOWN discovery. When discover = SEARCH, the administration server

will handle both SEARCH and KNOWN discovery requests from clients.

v If discover = KNOWN, the administration server handles only KNOWN

discovery requests from clients.

v If discover = DISABLE, then the administration server will not handle any type

of discovery request. The information for this server system is essentially hidden

from clients.

Chapter 20. Configuration parameters 599

The default discovery mode is SEARCH.

This parameter can only be updated from a Version 8 command line processor

(CLP).

exec_exp_task - Execute expired tasks

This parameter specifies whether or not the Scheduler will execute tasks that have

been scheduled in the past, but have not yet been executed.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

No [Yes; No]

The Scheduler only detects expired tasks when it starts up. For example, if you

have a job scheduled to run every Saturday, and the Scheduler is turned off on

Friday and then restarted on Monday, the job scheduled for Saturday is now a job

that is scheduled in the past. If exec_exp_task is set to Yes, your Saturday job will

run when the Scheduler is restarted.

This parameter can only be updated from a Version 8 command line processor

(CLP).

jdk_path - Software Developer’s Kit for Java installation path

DAS

This parameter specifies the directory under which the Software Developer’s Kit

(SDK) for Java, to be used for running DB2 administration server functions, is

installed.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Default [range]

Default Java install path [any valid path]

Environment variables used by the Java interpreter are computed from the value of

this parameter.

On Windows operating systems, Java files (if needed) are placed under the sqllib

directory (in java\jdk) during DB2 installation. The jdk_path configuration

parameter is then set to sqllib\java\jdk. Java is never actually installed by DB2 on

Windows platforms; the files are merely placed under the sqllib directory, and this

is done regardless of whether or not Java is already installed.

600 Data Servers, Databases, and Database Objects Guide

This parameter can only be updated from a Version 8 command line processor

(CLP).

sched_enable - Scheduler mode

This parameter indicates whether or not the Scheduler is started by the

administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Off [On; Off]

The Scheduler allows tools such as the Task Center to schedule and execute tasks

at the administration server.

This parameter can only be updated from a Version 8 command line processor

(CLP).

sched_userid - Scheduler user ID

This parameter specifies the user ID used by the Scheduler to connect to the tools

catalog database. This parameter is only relevant if the tools catalog database is

remote to the DB2 administration server.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Informational

Default [range]

Null [any valid user ID]

The userid and password used by the Scheduler to connect to the remote tools

catalog database are specified using the db2admin command.

smtp_server - SMTP server

When the Scheduler is on, this parameter identifies the SMTP server that the

Scheduler will use to send e-mail and pager notifications.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable Online

Propagation class

Immediate

Chapter 20. Configuration parameters 601

Default [range]

Null [any valid SMTP server TCP/IP hostname]

This parameter is used by the Scheduler and the Health Monitor.

This parameter can only be updated from a Version 8 command line processor

(CLP).

toolscat_db - Tools catalog database

This parameter indicates the tools catalog database used by the Scheduler.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid database alias]

This database must be in the database directory of the instance specified by

toolscat_inst.

This parameter can only be updated from a Version 8 command line processor

(CLP).

toolscat_inst - Tools catalog database instance

This parameter indicates the instance name that is used by the Scheduler, along

with toolscat_db and toolscat_schema, to identify the tools catalog database.

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid instance]

The tools catalog database contains task information created by the Task Center

and the Control Center. The tools catalog database must be listed in the database

directory of the instance specified by this configuration parameter. The database

can be local or remote. If the tools catalog database is local, the instance must be

configured for TCP/IP. If the database is remote, the database partition cataloged

in the database directory must be a TCP/IP node.

This parameter can only be updated from a Version 8 command line processor

(CLP).

toolscat_schema - Tools catalog database schema

This parameter indicates the schema of the tools catalog database used by the

Scheduler.

602 Data Servers, Databases, and Database Objects Guide

Configuration type

DB2 Administration Server

Applies to

DB2 Administration Server

Parameter type

Configurable

Default [range]

Null [any valid schema]

The schema is used to uniquely identify a set of tools catalog tables and views

within the database.

This parameter can only be updated from a Version 8 command line processor

(CLP).

Chapter 20. Configuration parameters 603

604 Data Servers, Databases, and Database Objects Guide

Part 5. Appendixes

© Copyright IBM Corp. 1993, 2009 605

606 Data Servers, Databases, and Database Objects Guide

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

If you would like to help IBM make the IBM Information Management products

easier to use, take the Consumability Survey: http://www.ibm.com/software/
data/info/consumability-survey/.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

© Copyright IBM Corp. 1993, 2009 607

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/software/data/info/consumability-survey/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Although the tables identify books available in print, the books might not be

available in your country or region.

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 73. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC23-5842-02 Yes April, 2009

Administrative Routines

and Views

SC23-5843-02 No April, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC23-5844-02 Yes April, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC23-5845-02 Yes April, 2009

Command Reference SC23-5846-02 Yes April, 2009

Data Movement Utilities

Guide and Reference

SC23-5847-02 Yes April, 2009

Data Recovery and High

Availability Guide and

Reference

SC23-5848-02 Yes April, 2009

Data Servers, Databases,

and Database Objects

Guide

SC23-5849-02 Yes April, 2009

Database Security Guide SC23-5850-02 Yes April, 2009

Developing ADO.NET

and OLE DB

Applications

SC23-5851-02 Yes April, 2009

Developing Embedded

SQL Applications

SC23-5852-02 Yes April, 2009

Developing Java

Applications

SC23-5853-02 Yes April, 2009

Developing Perl and

PHP Applications

SC23-5854-02 No April, 2009

Developing User-defined

Routines (SQL and

External)

SC23-5855-02 Yes April, 2009

Getting Started with

Database Application

Development

GC23-5856-02 Yes April, 2009

Getting Started with

DB2 installation and

administration on Linux

and Windows

GC23-5857-02 Yes April, 2009

Internationalization

Guide

SC23-5858-02 Yes April, 2009

608 Data Servers, Databases, and Database Objects Guide

Table 73. DB2 technical information (continued)

Name Form Number Available in print Last updated

Message Reference,

Volume 1

GI11-7855-01 No April, 2009

Message Reference,

Volume 2

GI11-7856-01 No April, 2009

Migration Guide GC23-5859-02 Yes April, 2009

Net Search Extender

Administration and

User’s Guide

SC23-8509-02 Yes April, 2009

Partitioning and

Clustering Guide

SC23-5860-02 Yes April, 2009

Query Patroller

Administration and

User’s Guide

SC23-8507-01 Yes April, 2009

Quick Beginnings for

IBM Data Server Clients

GC23-5863-02 No April, 2009

Quick Beginnings for

DB2 Servers

GC23-5864-02 Yes April, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC23-8508-02 Yes April, 2009

SQL Reference, Volume 1 SC23-5861-02 Yes April, 2009

SQL Reference, Volume 2 SC23-5862-02 Yes April, 2009

System Monitor Guide

and Reference

SC23-5865-02 Yes April, 2009

Text Search Guide SC23-5866-01 Yes April, 2009

Troubleshooting Guide GI11-7857-02 No April, 2009

Tuning Database

Performance

SC23-5867-02 Yes April, 2009

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-02 Yes April, 2009

Workload Manager

Guide and Reference

SC23-5870-02 Yes April, 2009

pureXML Guide SC23-5871-02 Yes April, 2009

XQuery Reference SC23-5872-02 No April, 2009

 Table 74. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Quick Beginnings for

DB2 Connect Personal

Edition

GC23-5839-02 Yes April, 2009

Quick Beginnings for

DB2 Connect Servers

GC23-5840-02 Yes April, 2009

DB2 Connect User’s

Guide

SC23-5841-02 Yes April, 2009

Appendix A. Overview of the DB2 technical information 609

Table 75. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes March, 2008

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-02 Yes March, 2008

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-01 No

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-01 Yes March, 2008

Information Integration:

Introduction to

Replication and Event

Publishing

SC19-1028-01 Yes March, 2008

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

610 Data Servers, Databases, and Database Objects Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 607.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

Appendix A. Overview of the DB2 technical information 611

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. Non-Administrative and Non-Root

DB2 Information Centers always run in stand-alone mode. .

2. Use the update feature to see what updates are available. If there are updates

that you would like to install, you can use the update feature to obtain and

install them.

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the update feature to get the packages.

However, the update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center

on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

612 Data Servers, Databases, and Database Objects Guide

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

Program_files\IBM\DB2 Information Center\Version 9.5 directory, where

Program_files represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

Appendix A. Overview of the DB2 technical information 613

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click on the title.

“pureXML” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Database fundamentals section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 database products.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

614 Data Servers, Databases, and Database Objects Guide

http://publib.boulder.ibm.com/infocenter/db2luw/v9
http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 615

616 Data Servers, Databases, and Database Objects Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© Copyright IBM Corp. 1993, 2009 617

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

618 Data Servers, Databases, and Database Objects Guide

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at Copyright and

trademark information at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or

registered trademarks of Intel Corporation or its subsidiaries in the United States

and other countries. Intel trademark information

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 619

www.ibm.com/legal/copytrade.shtml
www.ibm.com/legal/copytrade.shtml

620 Data Servers, Databases, and Database Objects Guide

Index

A
active directory

configuring DB2 95

DB2 objects 96

extending the directory schema 97

Lightweight Directory Access Protocol (LDAP) 77

security 96

support 95

ADC (automatic dictionary creation) 47

ADMIN_COPY_SCHEMA procedure
example of schema copy 218

AFTER triggers 303

agent pool size configuration parameter 498

agent process
applheapsz configuration parameter 520

aslheapsz configuration parameter 463

maximum number of agents 493

maximum number of concurrent agents 494

priority of agents configuration parameter 462

agent_stack_sz database manager configuration

parameter 460

agentpri database manager configuration parameter 462

agents
configuration 35

configuration parameters affecting number of 456

overview 36

AIX
large page support 4

system commands
vmo 4

vmtune 4

alert summaries
DB2 Health Monitor 124

aliases
chaining process 261

creating 130

dropping 139

overview 261

alt_collate configuration parameter 517

ALTER COLUMN clause
in table columns 259

alter materialized query table properties 257

ALTER TABLESPACE statement
examples 193

ALTER triggers
description 302

app_ctl_heap_sz database configuration parameter 517

append mode tables
comparison with other table types 225

appgroup_mem_sz database manager configuration

parameter 518

appl_memory configuration parameter
interaction between memory parameters 25

appl_memory database configuration parameter 519

application control heap size configuration parameter 517

application performance
comparison of sequences and identity columns 324

sequences 323

application process
connection states 135

application programs
controlling sequences 322

application support layer heap size configuration

parameter 463

application-directed distributed unit of work 134

applications
control heap, setting 517

maximum number of coordinating agents at node 491

requesters 131

archretrydelay configuration parameter 521

aslheapsz configuration parameter 463

ATTACH command 72

attributes
Netscape LDAP 91

audit_buf_sz configuration parameter 464

authentication
trust all clients configuration parameter 515

trusted clients authentication configuration parameter 515

authentication configuration parameter 465

authentication DAS configuration parameter 596

AUTHID identifier
restrictions 347

authorities
defining group names

system administration authority group name

configuration parameter 510

system control authority group name configuration

parameter 510

system maintenance authority group name

configuration parameter 511

auto restart enable configuration parameter 524

auto_del_rec_obj database configuration parameter 521

auto_maint configuration parameter 522

Autoconfigure API 56

AUTOCONFIGURE command 56

sample output 56

automatic
prefetch size adjustment

after adding or dropping containers 175

table space re-sizing 40, 171

automatic dictionary creation (ADC) 47

automatic features 17

enabled by default 17

automatic maintenance
about 19

windows 19

automatic memory tuning 28

automatic statistics collection 54

description 17

automatic storage
about 38

description 17

for databases 44, 121

restrictions 47, 124

table spaces 38, 163

automatic storage path
adding 46, 124

automatic storage table spaces
altering 206

autonomic computing
about 17

© Copyright IBM Corp. 1993, 2009 621

avg_appls configuration parameter 524

B
backup

track modified pages 592

backup_pending configuration parameter 525

base tables
comparison with other table types 225

BEFORE DELETE triggers
description 302

BEFORE triggers 303

comparison with check constraints 276

description 302

bi-directional indexes 290

binding
changing configuration parameters 439, 440

database utilities 129

blank data type 235

blk_log_dsk_ful configuration parameter
details 525

block-structured devices 189

books
printed

ordering 610

buffer pools
about 143

creating 146

designing 143

dropping 148

effect on query optimization 456

memory (protection) 145

modifying 147

built-in functions 245

bypass federated authentication configuration parameter 479

C
caching

file system for table spaces 176

call level interface (CLI)
binding to a database 129

capacity
expansion 3

catalog cache size configuration parameter 526

CATALOG DATABASE command
example 128

catalog views
description 336

catalog_noauth configuration parameter 466

catalogcache_sz database configuration parameter 526

change the database log path configuration parameter 571

character serial devices 189

check constraints 267

comparison with BEFORE triggers 276

description 235

designing 275

check option
in views

examples 337

chngpgs_thresh configuration parameter 527

CIO/DIO
using as the default 178

client I/O block size configuration parameter 502

client interface copy
default 7

client support
client I/O block size configuration parameter 502

TCP/IP service name configuration parameter 509

clnt_krb_plugin configuration parameter 467

clnt_pw_plugin configuration parameter 467

cluster managers
cluster manager name configuration parameter 468

cluster_mgr configuration parameter 468

clustered indexes 290

clustering indexes
guidelines and considerations 292

code pages
database configuration parameter 528

codepage database configuration parameter 528

codeset databse configuration parameter 528

collate_info database configuration parameter 528

column data
constraining 234

column data type
specifying 227

column properties
changing 258

columns
altering 259

definition
modifying 259

implicitly hidden 253

implictly hidden 246

ordering 242

comm_bandwidth database manager configuration parameter
description 468

effect on query optimization 456

command line processor (CLP)
binding to a database 129

commit
number of commits to group (mincommit) 569

communications
connection elapse time 469

compression
data rows 49, 243

compression dictionary creation
automated 17

concurrency control
maximum number of active applications 564

concurrent transactions 131

configuration
agent and process model 35

changing database parameters 440

file system caching 179

memory heaps 32

Configuration Advisor
about 55

defining the scope of configuration parameters 55

description 17

generating recommended values 56

sample output 56

configuration file release level configuration parameter 501

configuration files
description 439

location 439

configuration parameters
affecting number of agents 456

affecting query optimization 456

agent_stack_sz 460

agentpri 462

alt_collate 517

app_ctl_heap_sz 517

622 Data Servers, Databases, and Database Objects Guide

configuration parameters (continued)
appgroup_mem_sz 518

appl_memory 519

applheapsz 520

archretrydelay 521

aslheapsz 463

audit_buf_sz 464

authentication 465

authentication (DAS) 596

auto_del_rec_obj 521

auto_maint 522

autorestart 524

avg_appls 524

backup_pending 525

blk_log_dsk_ful 525

catalog_noauth 466

catalogcache_sz 526

chngpgs_thresh 527

clnt_krb_plugin 467

clnt_pw_plugin 467

cluster_mgr 468

codepage 528

codeset 528

collate_info 528

comm_bandwidth 468

conn_elapse 469

contact_host 597

cpuspeed 470

das_codepage 597

das_territory 598

dasadm_group 598

database
changing 439

database_consistent 529

database_level 530

database_memory 530

db_mem_thresh 532

db2system 599

dbheap 533

decflt_rounding 534

description 439

dft_account_str 470

dft_degree 536

dft_extent_sz 536

dft_loadrec_ses 537

dft_monswitches 471

dft_mttb_types 537

dft_prefetch_sz 538

dft_queryopt 539

dft_refresh_age 539

dft_sqlmathwarn 540

dftdbpath 472

diaglevel 473

diagpath 474

dir_cache 475

discover 476

discover (DAS) 599

discover_db 541

discover_inst 477

dlchktime 541

dyn_query_mgmt 542

enable_xmlchar 543

exec_exp_task 600

failarchpath 543

fcm_num_buffers 477

fcm_num_channels 478

fed_noauth 479

configuration parameters (continued)
federated 479

federated_async 480

fenced_pool 480

group_plugin 482

groupheap_ratio 544

hadr_db_role 544

hadr_local_host 544

hadr_local_svc 545

hadr_peer_window 545

hadr_remote_host 546

hadr_remote_inst 546

hadr_remote_svc 547

hadr_syncmode 547

hadr_timeout 548

health_mon 482

indexrec 483, 548

instance_memory 485

interaction between memory parameters 25

intra_parallel 487

java_heap_sz 487

jdk_64_path 550

jdk_path 488

jdk_path (DAS) 600

keepfenced 489

local_gssplugin 490

locklist 551

locktimeout 554

log_retain_status 554

logarchmeth1 555

logarchmeth2 556

logarchopt1 557

logarchopt2 557

logbufsz 558

logfilsiz 558

loghead 560

logindexbuild 560

logpath 560

logprimary 560

logretain 562

logsecond 563

max_connections 490

restrictions 458

max_connretries 491

max_coordagents 491

restrictions 458

max_querydegree 492

max_time_diff 493

maxagents 493

maxappls 564

maxcagents 494

maxfilop 565

maxlocks 566

maxlog 564

min_dec_div_3 568

mincommit 569

mirrorlogpath 570

mon_heap_sz 495

multipage_alloc 571

newlogpath 571

nodetype 496

notifylevel 496

num_db_backups 573

num_freqvalues 573

num_initagents 497

num_initfenced 498

num_iocleaners 574

Index 623

configuration parameters (continued)
num_ioservers 576

num_poolagents 498

num_quantiles 577

numarchretry 578

numdb 499

numlogspan 576

numsegs 579

overflowlogpath 579

pagesize 580

pckcachesz 580

priv_mem_thresh 582

query_heap_sz 500

rec_his_retentn 583

release 501

restore_pending 583

restrict_access 583

resync_interval 501

rollfwd_pending 584

rqrioblk 502

sched_enable 601

sched_userid 601

self_tuning_mem 584

seqdetect 586

sheapthres 503

sheapthres_shr 586

smtp_server 601

softmax 587

sortheap 589

spm_log_file_sz 505

spm_log_path 505

spm_max_resync 506

spm_name 506

srv_plugin_mode 508

srvcon_auth 506

srvcon_gssplugin_list 507

srvcon_pw_plugin 508

start_stop_time 508

stat_heap_sz 590

stmtheap 591

summary
database 443

database manager 443

section heading descriptions 443

svcename 509

sysadm_group 510

sysctrl_group 510

sysmaint_group 511

sysmon_group 512

territory 591

tm_database 512

toolscat_db 602

toolscat_inst 602

toolscat_schema 603

tp_mon_name 513

trackmod 592

trust_allclnts 515

trust_clntauth 515

tsm_mgmtclass 592

tsm_nodename 592

tsm_owner 593

tsm_password 593

user_exit_status 594

userexit 594

using the Configuration Advisor to define the scope 55

util_heap_sz 595

util_impact_lim 516

configuration parameters (continued)
vendoropt 595

wlm_collect_int configuration parameter 596

configuring
LDAP user for applications 102

conn_elapse configuration parameter 469

connection elapse time configuration parameter 469

connection states
application processes 135

description 136

connections
elapse time 469

constraints
(table) check 269

comparison with BEFORE triggers 276

creating 284

defining
foreign keys 277

referential constraints 277

description 267

designing 274

check constraints 275

dropping 286

informational 269, 274, 282

interaction with foreign keys 280

modifying 284

NOT NULL 268

primary key 269

referential 269

table check 269

unique 269

unique (key) 268

viewing definitions for a table 285

contact_host configuration parameter 597

containers
DMS table spaces 193

dropping containers from 203

modifying containers in 202

rebalancing and dropping 194

reduction of containers in 203

contraints
types 267

Coordinated Universal Time 493

copy schema
operation, restarting 219

cpuspeed configuration parameter
described 470

effect on query optimization 456

CREATE DATABASE command
example of 120

CREATE TABLE statement
defining referential constraints 277

CREATE TABLESPACE statement
adjusting system temporary table spaces page sizes 166

creating
LDAP users 101

CURRENT SCHEMA special register 215

D
DAS discovery mode configuration parameter 599

das_codepage configuration parameter 597

das_territory configuration parameter 598

dasadm_group configuration parameter 598

data
representation 138

624 Data Servers, Databases, and Database Objects Guide

data access optimization
overview 19

Data Definition Language (DDL)
description 109

statements
description 109

data defragmentation
overview 19

data organization schemes
table partitioning 253

data partitions
creating 255

data row compression
enabling 49, 243

data servers
capacity management 3

overview 3

data types
default values 235

database configuration file
changing 116

creating 113

database configuration parameters
recommended values 56

database directories
structure 110

database heap configuration parameter 533

database manager
binding utilities 129

limits 353

machine node type configuration parameter 496

multiple instances 12

start timeout 508

stop timeout 508

database manager configuration parameters
recommended values 56

summary 443

database objects
naming rules

NLS 350

overview 348

Unicode 351

overview 223

statement dependencies when modifying objects 281

database partitions
cataloging

node directory 113

node directory 113

overview 141

database recovery log
allocating during database creation 117

database system monitor
default database system monitor switches configuration

parameter 471

database territory code configuration parameter 529

database_consistent configuration parameter 529

database_level configuration parameter 530

database_memory configuration parameter
interaction between memory parameters 25

database_memory database configuration parameter
description 530

self-tuning 20

database-managed space (DMS)
containers

dropping 194

rebalancing 194

reducing size 203

database-managed space (DMS) (continued)
description 156

devices 169

table space containers 194

table space maps 159

table spaces
altering 193

compared to SMS table spaces 167

containers (dropping) 203

containers (reducing) 203

creating 189

workloads 168

databases
aliases

creating 130

appl_memory configuration parameter 519

automatic storage 44, 121

autorestart configuration parameter 524

backup_pending configuration parameter 525

backups
automated 17, 19

cataloging
overview 128

codepage configuration parameter 528

codeset configuration parameter 528

collating information 528

configuration parameter summary 443

configuring across multiple partitions 36

designing
overview 109

distributed 109

dropping
DROP DATABASE command 138

estimating size requirements 118

maximum number of concurrently active databases 499

package dependencies 281

partitioned 109

relational 109

release level configuration parameter 501

restoring 125

territory code configuration parameter 529

territory configuration parameter 591

DATE data type
default value 235

db_mem_thresh configuration parameter 532

DB2 administration server (DAS)
configuration parameters

authentication 596

contact_host 597

das_codepage 597

das_territory 598

dasadm_group 598

db2system 599

exec_exp_task 600

jdk_64_path 550

jdk_path 600

sched_enable 601

sched_userid 601

smtp_server 601

toolscat_db 602

toolscat_inst 602

toolscat_schema 603

multiple DB2 copies setup 10

ownership rules 369

DB2 copies
default IBM database client interface copy 7

Index 625

DB2 copies (continued)
multiple on same computer

DB2 administration server (DAS) setting 10

default instance setting 11

updating 13

DB2 Information Center
languages 611

updating 612

versions 611

viewing in different languages 611

DB2 servers
post-migration tasks

adjusting system temporary table space page sizes 166

DB2_ALLOCATION_SIZE registry variable
description 404

DB2_ALTERNATE_GROUP_LOOKUP environment

variable 385

DB2_ANTIJOIN variable 399

DB2_APM_PERFORMANCE variable 404

DB2_ASYNC_IO_MAXFILOP registry variable
description 404

DB2_ATS_ENABLE registry variable 421

DB2_AVOID_PREFETCH variable 404

DB2_CAPTURE_LOCKTIMEOUT registry variable
description 377

DB2_CLP_EDITOR variable 385

DB2_CLPHISTSIZE variable 385

DB2_CLPPROMPT registry variable 397

DB2_COLLECT_TS_REC_INFO registry variable 377

DB2_COMMIT_ON_EXIT registry variable 421

DB2_CONNRETRIES_INTERVAL registry variable
description 377

DB2_COPY_NAME environment variable 385

DB2_CREATE_DB_ON_PATH registry variable 421

DB2_DIAGPATH variable
description 385

DB2_DISABLE_FLUSH_LOG registry variable 421

DB2_DISPATCHER_PEEKTIMEOUT registry variable 421

DB2_DJ_INI variable 421

DB2_DOCHOST variable 421

DB2_DOCPORT variable 421

DB2_ENABLE_AUTOCONFIG_DEFAULT variable 421

DB2_ENABLE_LDAP variable
description 421

DB2_EVALUNCOMMITTED registry variable
description 404

DB2_EVMON_EVENT_LIST_SIZE registry variable
description 421

DB2_EVMON_STMT_FILTER registry variable 421

DB2_EXTENDED_IN2JOIN variable 404

DB2_EXTENDED_IO_FEATURES variable
description 404

DB2_EXTENDED_OPTIMIZATION variable 404

DB2_EXTSECURITY registry variable 421

DB2_FALLBACK variable 421

DB2_FMP_COMM_HEAPSZ variable 421

DB2_FORCE_APP_ON_MAX_LOG registry variable 377

DB2_FORCE_NLS_CACHE registry variable
description 394

DB2_GRP_LOOKUP variable 421

DB2_HADR_BUF_SIZE variable 421

DB2_HADR_NO_IP_CHECK variable 421

DB2_HADR_SORCVBUF registry variable 421

DB2_HADR_SOSNDBUF registry variable 421

DB2_HASH_JOIN registry variable
description 404

DB2_INLIST_TO_NLJN registry variable 399

DB2_IO_PRIORITY_SETTING registry variable 404

DB2_KEEPTABLELOCK registry variable 404

DB2_LARGE_PAGE_MEM registry variable
description 404

DB2_LIC_STAT_SIZE registry variable 377

DB2_LIKE_VARCHAR registry variable 399

DB2_LOAD_COPY_NO_OVERRIDE variable 421

DB2_MAP_XML_AS_CLOB_FOR_DLC registry variable
description 421

DB2_MAX_CLIENT_CONNRETRIES registry variable
description 377

DB2_MAX_INACT_STMTS variable 404

DB2_MAX_LOB_BLOCK_SIZE variable 421

DB2_MAX_NON_TABLE_LOCKS variable 404

DB2_MDC_ROLLOUT registry variable
description 404

DB2_MEM_TUNING_RANGE variable 404

DB2_MEMORY_PROTECT registry variable
description 421

DB2_MINIMIZE_LISTPREFETCH registry variable 399

DB2_MMAP_READ variable 404

DB2_MMAP_WRITE variable 404

DB2_NEW_CORR_SQ_FF variable 399

DB2_NO_FORK_CHECK registry variable
description 404

DB2_NUM_CKPW_DAEMONS registry variable 421

DB2_NUM_FAILOVER_NODES registry variable 398

DB2_OPT_MAX_TEMP_SIZE variable 399

DB2_OPTSTATS_LOG registry variable
description 421

DB2_OVERRIDE_BPF variable 404

DB2_PARALLEL_IO registry variable
description 207, 385

DB2_PARTITIONEDLOAD_DEFAULT registry variable
description 398

DB2_PINNED_BP registry variable
description 404

DB2_REDUCED_OPTIMIZATION registry variable 399

DB2_RESOLVE_CALL_CONFLICT registry variable 421

DB2_RESOURCE_POLICY registry variable
description 404

DB2_SELECTIVITY registry variable 399

DB2_SELUDI_COMM_BUFFER registry variable 404

DB2_SERVER_CONTIMEOUT registry variable 421

DB2_SERVER_ENCALG registry variable 421

DB2_SET_MAX_CONTAINER_SIZE registry variable
description 404

DB2_SKIPDELETED registry variable 404

DB2_SKIPINSERTED registry variable 404

DB2_SMS_TRUNC_TMPTABLE_THRESH variable 404

DB2_SORT_AFTER_TQ variable 404

DB2_SQLROUTINE_PREPOPTS registry variable 399

DB2_SYSTEM_MONITOR_SETTINGS registry variable
description 377

DB2_THREAD_SUSPENSION registry variable
description 421

DB2_TRUNCATE_REUSESTORAGE registry variable 421

DB2_TRUSTED_BINDIN registry variable
description 404

DB2_UPDDBCFG_SINGLE_DBPARTITION variable
description 385

DB2_USE_ALTERNATE_PAGE_CLEANING registry variable
description 404

DB2_USE_DB2JCCT2_JROUTINE variable
description 421

DB2_USE_PAGE_CONTAINER_TAG variable
description 385

626 Data Servers, Databases, and Database Objects Guide

DB2_USE_PAGE_CONTAINER_TAG variable (continued)
performance impact 207

DB2_UTIL_MSGPATH registry variable 421

DB2_VENDOR_INI registry variable
description 421

DB2_VIEW_REOPT_VALUES registry variable 377

DB2_WORKLOAD aggregate registry variable
description 371, 385

DB2_XBSA_LIBRARY registry variable 421

DB2ACCOUNT registry variable
description 377

DB2ADMINSERVER variable 421

DB2ASSUMEUPDATE registry variable 404

DB2AUTH
registry variables 421

DB2BIDI registry variable
description 377

DB2BPVARS registry variable
description 404

DB2BQTIME variable 397

DB2BQTRY variable 397

DB2CHECKCLIENTINTERVAL variable 394

DB2CHGPWD_EEE registry variable 398

DB2CHKPTR variable 404

DB2CHKSQLDA variable 404

DB2CLIINIPATH variable
description 421

DB2CODEPAGE registry variable
description 377

DB2COMM variable 394

DB2CONNECT_DISCONNECT_ON_INTERRUPT

variable 421

DB2CONNECT_IN_APP_PROCESS environment variable 385

DB2CONSOLECP registry variable 377

DB2COUNTRY registry variable
description 377

DB2DBDFT registry variable 377

DB2DBMSADDR registry variable 377

DB2DEFPREP registry variable
description 421

DB2DISCOVERYTIME registry variable 377

DB2DMNBCKCTLR registry variable
description 421

DB2DOMAINLIST variable
description 385

db2envar.bat command
using to switch DB2 copies 11

DB2ENVLIST environment variable 385

DB2FCMCOMM variable 394

DB2FODC registry variable
description 377

DB2GRAPHICUNICODESERVER registry variable
description 377

db2icrt command
creating instances 68

db2idrop command
dropping instances 75

DB2INCLUDE registry variable 377

DB2INSTANCE
setting 11

DB2INSTANCE environment variable
defining default instance 12

description 385

DB2INSTDEF
setting 11

DB2INSTDEF registry variable 377

DB2INSTOWNER registry variable 377

DB2INSTPROF registry variable
description 385

location 439

DB2IQTIME variable 397

db2iupdt command
updating instance configuration

Linux 69

UNIX 69

Windows 70

DB2LDAP_BASEDN variable
description 421

DB2LDAP_CLIENT_PROVIDER registry variable
description 421

IBM LDAP client 88

DB2LDAP_KEEP_CONNECTION registry variable
description 421

DB2LDAP_SEARCH_SCOPE variable
description 421

DB2LDAPCACHE variable 421

DB2LDAPHOST variable
description 421

DB2LDAPSecurityConfig environment variable 385

db2ldcfg command
configuring LDAP user 102

DB2LIBPATH environment variable 385

DB2LOADREC registry variable
description 421

DB2LOCALE registry variable
description 377

DB2LOCK_TO_RB variable 421

DB2LOGINRESTRICTIONS variable 385

DB2MAXFSCRSEARCH variable 404

DB2MEMDISCLAIM registry variable 404

DB2MEMMAXFREE registry variable
description 404

db2move command
COPY schema errors 219

schema copying examples 218

DB2NODE environment variable
description 385

db2nodes.cfg file
creating 114

overview 66

DB2NOEXITLIST registry variable
description 421

DB2NTMEMSIZE variable 404

DB2NTNOCACHE registry variable
description 404

NO FILE SYSTEM CACHING clause comparison 176

DB2NTPRICLASS registry variable
description 404

DB2NTWORKSET variable 404

DB2OPTIONS environment variable
description 385

DB2PATH environment variable 385

DB2PORTRANGE registry variable 398

DB2PRIORITIES registry variable
description 404

DB2PROCESSORS environment variable 385

DB2RCMD_LEGACY_MODE environment variable 385

DB2REMOTEPREG variable 421

DB2ROUTINE_DEBUG registry variable 421

DB2RQTIME variable 397

DB2RSHCMD registry variable 394

DB2RSHTIMEOUT registry variable 394

DB2SATELLITEID variable 421

Index 627

db2SelectDB2Copy API
using to switch DB2 copies 11

db2set command
managing registry and environment variables 363, 365

DB2SORCVBUF variable
description 394

DB2SORT variable 421

DB2SOSNDBUF variable
description 394

db2system configuration parameter 599

DB2SYSTEM environment variable 385

DB2TCP_CLIENT_CONTIMEOUT registry variable 394

DB2TCP_CLIENT_RCVTIMEOUT registry variable
description 394

DB2TCPCONNMGRS registry variable 394

DB2TERRITORY registry variable
description 377

DBCS (double-byte character set)
See double-byte character set (DBCS) 350

dbheap database configuration parameter
overview 533

DDL (Data Definition Language)
See Data Definition Language (DDL) 109

deadlocks
checking for 541

dlchktime configuration parameter 541

decflt_rounding database configuration parameter 534

decimal division scale to 3 configuration parameter 568

DECLARE GLOBAL TEMPORARY TABLE statement
overview 254

default database path configuration parameter 472

default number of SMS containers configuration

parameter 579

deferred index cleanup
monitoring 60

deletable views
description 339

delete rule
description 269

delimited identifiers
naming rules 349

dependent rows
overview 269

dependent tables
overview 269

descendent row
overview 269

descendent table
overview 269

DETACH command
detaching from instances 72

dft_account_str configuration parameter 470

dft_degree configuration parameter
description 536

effect on query optimization 456

dft_extent_sz configuration parameter 536

dft_loadrec_ses configuration parameter 537

dft_mon_bufpool configuration parameter 471

dft_mon_lock configuration parameter 471

dft_mon_sort configuration parameter 471

dft_mon_stmt configuration parameter 471

dft_mon_table configuration parameter 471

dft_mon_timestamp configuration parameter 471

dft_mon_uow configuration parameter 471

dft_monswitches configuration parameter 471

dft_mttb_types configuration parameter 537

dft_prefetch_sz configuration parameter 538

dft_queryopt configuration parameter 539

dft_refresh_age configuration parameter 539

dft_sqlmathwarn configuration parameter 540

dftdbpath configuration parameter 472

diaglevel configuration parameter
description 473

diagpath configuration parameter 474

dictionaries
automated creation 17, 47

dir_cache configuration parameter 475

directories
instance 66

local database
description 113

viewing 138

node
cataloguing database partition 113

viewing 113

system database
description 114

viewing 138

directory cache support configuration parameter
description 475

directory schema
extending

IBM Tivoli Directory Server 90

Sun One Directory Server 93

discover server instance configuration parameter 477

discover_db configuration parameter 541

discover_inst configuration parameter 477

discovery feature
discovery mode configuration parameter 476

discovery mode configuration parameter 476

distinct user-defined data type 235

distributed relational databases
connecting to 131

remote units of work 131

dlchktime configuration parameter 541

DMS (database-managed space)
See database-managed space (DMS) 156

documentation
overview 607

PDF 607

printed 607

terms and conditions of use 614

double-byte character set (DBCS)
naming rules 350

dyn_query_mgmt configuration parameter
description 542

E
enable_xmlchar database configuration parameter

description 543

environment variables
declaring 365

Linux 369

overview 372

profile registry 363

setting
Linux 369

UNIX 369

Windows 367

UNIX
setting 369

Windows 367

exec_exp_task configuration parameter 600

628 Data Servers, Databases, and Database Objects Guide

expressions
NEXT VALUE 321

PREVIOUS VALUE 321

extent sizes
table spaces 182

F
failarchpath configuration parameter 543

FCM (Fast Communications Manager)
channels 478

monitor elements
fcm_num_channels 478

fcm_num_buffers configuration parameter 477

fcm_num_channel configuration parameter 478

fed_noauth configuration parameter 479

federated configuration parameter 479

federated databases
system support configuration parameter 479

federated_async database manager configuration

parameter 480

fenced_pool database manager configuration parameter 480

fenced-mode processes
running vendor library functions 37

FILE SYSTEM CACHING clause 176

file systems
caching for table spaces 176, 179

first active log file configuration parameter 560

first-fit order 238

foreign key constraints
referential constraints 277

referential integrity rules 269

rules for defining 277

foreign key contraint 267

foreign keys
composite 277

constraint name 277

constraints 269

interaction with referential constraints 280

referential integrity implications 281

rules for defining 277

G
generated columns

defining 232

examples 232

modifying 258

global (user-defined) temporary tables
creating 254

global level profile registry 363

global temporary tables
comparison with other table types 225

group_plugin configuration parameter 482

groupheap_ratio database manager configuration

parameter 544

groups
naming rules 350

H
hadr_db_role configuration parameter 544

hadr_local_host configuration parameter 544

hadr_local_svc configuration parameter 545

hadr_peer_window database configuration parameter
description 545

hadr_remote_host configuration parameter 546

hadr_remote_inst configuration parameter 546

hadr_remote_svc configuration parameter 547

hadr_syncmode configuration parameter 547

hadr_timeout configuration parameter 548

health monitor
description 17

health_mon configuration parameter 482

health_mon configuration parameter 482

heaps
configuring 32

help
configuring language 611

SQL statements 611

I
I/O

parallelism
using RAID devices 207

table space considerations 183

IBM database client interface copies
default 7

IBM eNetwork Directory
object classes and attributes 78

IBM SecureWay Directory Server
extending the directory schema for 90

identifiers
length limits 353

identity columns
comparing with sequences 326

comparison with sequences 324

defining on a new table 233

example 233

modifying 258

IMPLICIT_SCHEMA authority 211

indexes
asynchronous cleanup 58, 60

bi-directional 290

cleaning up 58, 60

clustered 290

creating 298

deferred cleanup 60

description 289

Design Advisor 294

designing 292

dropping 300

guidelines and considerations 292

improving performance 290

modifying 298

non-clustered 290

non-unique 290

overview 289

rebuilding 299

renaming 298

space requirements 294

tools for designing 294

unique 290

indexrec configuration parameter 483, 548

informational constraints 267

description 269, 274

designing 282

initial number of agents in pool configuration parameter 497

initial number of fenced processes configuration

parameter 498

insert rule
for referential integrity 269

Index 629

insert rule (continued)
referential constraints 269

insertable views
using 340

instance level profile registry 363

instance profile registry 363

instance_memory configuration parameter
interaction between memory parameters 25

instances
auto-starting 71

creating 63

creating additional 68

default 63, 65

default, setting 11

designing 64

directory 66

instance_memory configuration parameter 485

modifying 69

multiple 12

multiple (Linux, UNIX) 66

multiple (Windows) 13, 67

overview 12

removing 75

running concurrently 15, 73

running multiple (Windows) 14

setting the current 370

starting (Linux, UNIX) 71

starting (Windows) 72

stopping (Linux, UNIX) 73

stopping (Windows) 74

updating the configuration
UNIX 69

Windows 70

working with 71

INSTEAD OF triggers 304

description 302

intra_parallel database manager configuration parameter 487

J
java_heap_sz database manager configuration parameter 487

jdk_64_path configuration parameter 550

jdk_path configuration parameter
description 488

jdk_path DAS configuration parameter 600

K
keepfenced configuration parameter

description 489

keys
foreign constraints 269

parent constraints 269

L
label-based access control (LBAC)

limits 353

large objects (LOBs)
caching behavior 169

large page support
AIX 64-bit environment 4

larger RID
adjusting system temporary table space page sizes 166

LBAC (label-based access control)
limits 353

LBAC (label-based access control) (continued)
optimistic locking 246

security labels
component name length 353

name length 353

security policies
name length 353

LDAP (Lightweight Directory Access Protocol)
attaching remotely 104

cataloging a node entry 100

DB2 Connect 89

deregistering
databases 101

servers 101

description 77

directory service 119

disabling 102

enabling 98

extending directory schema 88

object classes and attributes 78

refreshing entries 104

registering
databases 100

DB2 servers 99

host databases 89

rerouting clients 103

searching
directory domains 105

directory partitions 105

security 77

setting registry variables 102

supporting 88

updating protocol information 103

user creation 101

Windows 2003 active directory 97

library functions
running in fenced-mode processes 37

Lightweight Directory Access Protocol (LDAP)
attaching remotely 104

cataloging node entries 100

creating a user 101

DB2 Connect 89

deregistering
databases 101

servers 101

description 77

directory service 119

disabling 102

enabling 98

extending directory schema 88

object classes and attributes 78

refreshing entries 104

registering
databases 100

DB2 servers 99

host databases 89

searching
directory domains 105

directory partitions 105

security 77

setting registry variables 102

supporting 88

updating protocol information 103

Windows 2003 active directory 97

limits
identifier length 353

SQL 353

630 Data Servers, Databases, and Database Objects Guide

LOBs (large objects)
caching behavior 169

local database directory
description 113

viewing 138

local_gssplugin configuration parameter 490

locklist configuration parameter
description 551

query optimization 456

locks
maximum percent of lock list before escalation 566

maximum storage for lock list 551

optimistic locking 245

time interval for checking deadlock configuration

parameter 541

locktimeout configuration parameter 554

log files
space requirements 118

log_retain_status configuration parameter 554

logarchmeth1 configuration parameter 555

logarchmeth2 configuration parameter 556

logarchopt1 configuration parameter 557

logarchopt2 configuration parameter 557

LOGBUFSZ configuration parameter 558

logfilsiz configuration parameter 558

loghead configuration parameter 560

logindexbuild configuration parameter 560

logpath configuration parameter 560

logprimary configuration parameter 560

logretain database configuration parameter 562

logs
block on log disk full configuration parameter 525

first active log file configuration parameter 560

location of log files configuration parameter 560

log buffer size configuration parameter 558

log retain enable configuration parameter 562

log retain status indicator configuration parameter 554

mirror log path configuration parameter 570

newlogpath configuration parameter 571

number of primary log files configuration parameter 560

number of secondary log files configuration

parameter 563

overflow log path configuration parameter 579

raw devices 186

recovery range and soft checkpoint interval configuration

parameter 587

size of log files configuration parameter 558

user exit enable configuration parameter 594

logsecond configuration parameter 563

LONG data
caching behavior 169

long fields
caching behavior 169

M
maintenance

automatic 19

windows 19

maintenance windows
automatic 19

materialized query tables (MQTs)
altering properties 257

dropping 262

refreshing data 257

max_connections database manager configuration parameter
restrictions 458

max_connretries configuration parameter 491

max_coordagents database manager configuration

parameter 491

restrictions 458

max_logicagents configuration parameter 490

max_querydegree configuration parameter 492

max_time_diff configuration parameter 493

maxagents database manager configuration parameter 493

maxappls configuration parameter 564

effect on memory use 21

maxcagents database manager configuration parameter 494

maxcoordagents configuration parameter 21

MAXDARI configuration parameter
renamed to fenced_pool configuration parameter 480

maxfilop database configuration parameter 565

maximum database files open per application configuration

parameter 565

maximum Java interpreter heap size configuration

parameter 487

maximum log per transaction configuration parameter 564

maximum number of active applications configuration

parameter 564

maximum number of agents configuration parameter 493

maximum number of concurrent agents configuration

parameter 494

maximum number of concurrently active databases

configuration parameter 499

maximum number of coordinating agents configuration

parameter 491

maximum number of fenced processes configuration

parameter 480

maximum percent of lock list before escalation configuration

parameter 566

maximum query degree of parallelism configuration

parameter 492

effect on query optimization 456

maximum size of application group memory set configuration

parameter 518

maximum storage for lock list configuration parameter 551

maximum time difference among nodes configuration

parameter 493

maxlocks configuration parameter 566

maxlog configuration parameter 564

memory
applheapsz configuration parameter 520

application memory configuration parameter 519

aslheapsz configuration parameter 463

configuration 32

self-tuning memory 20

dbheap configuration parameter 533

instance memory configuration parameter 485

interaction between memory parameters 25

organization of use 21

package cache size configuration parameter 580

sort heap size configuration parameter 589

sort heap threshold configuration parameter 503

statement heap size configuration parameter 591

when allocated 21

memory configuration
overview 36

memory tuner
partitioned database environments 31

min_dec_div_3 configuration parameter 568

mincommit configuration parameter 569

mirror log path configuration parameter 570

mirrorlogpath configuration parameter 570

mon_heap_sz database manager configuration parameter 495

Index 631

MQTs (materialized query tables)
altering properties 257

refreshing data 257

multidimensional clustering (MDC) tables
comparison with other table types 225

deferred index cleanup 60

multipage_alloc configuration parameter 571

multiple DB2 copies
default IBM database client interface copy 7

overview 7

running instances concurrently 15, 73

setting the default instance 11

multiple instances 66

overview 12

Windows 13, 67

N
naming rules

DB2 objects 348

delimited identifiers and object names 349

national languages 350

restrictions 347

schema name restrictions 215

Unicode 351

users, user IDs and groups 350

nested views
definition 339

Netscape
LDAP directory support 91

newlogpath configuration parameter 571

NEXT VALUE expression
sequences 321

using identity columns 326

NO FILE SYSTEM CACHING clause 176

NO_SORT_MGJOIN 399

NO_SORT_NLJOIN 399

node configuration files
creating 114

node connection retries configuration parameter 491

node directories
cataloguing database partition 113

description 113

viewing 113

node level profile registry 363

nodes
connection elapse time 469

coordinating agents 491

maximum time difference among 493

nodetype configuration parameter 496

non-buffered I/O
enabling/disabling 176

non-clustered indexes 290

non-unique indexes 290

NOT NULL constraints
overview 268

NOT NULL contraints
types 267

notices 617

notify level configuration parameter
overview 496

NULL data type 235

num_db_backups configuration parameter
overview 573

num_freqvalues configuration parameter 573

num_initfenced database manager configuration

parameter 498

num_iocleaners configuration parameter 574

num_ioservers configuration parameter 576

num_poolagents database manager configuration

parameter 498

num_quantiles configuration parameter 577

numarchretry configuration parameter 578

number log span configuration parameter 576

number of commits to group configuration parameter 569

number of database backups configuration parameter 573

NUMDB
configuration parameter 499

effect on memory use 21

numinitagents configuration parameter 497

numlogspan configuration parameter 576

numsegs database configuration parameter
overview 579

O
object names

rules 349

offline maintenance 19

OLTP (online transaction processing)
table space design 168

online maintenance 19

online transaction processing (OLTP)
table space design 168

optimistic locking
about 245

conditions 252

enabling 253

implicitly hidden columns 253

implictly hidden columns 246

LBAC considerations 246

overview 244

planning enablement 252

restrictions 246

row change token 253

scenario A
optimistic locking enabled 263

scenario C
using implicitly hidden columns 265

time-based update detection 248, 253

usage scenarios 263

using RID() functions 253

ordering DB2 books 610

overflowlogpath configuration parameter 579

P
packages

inoperative 281

page sizes
tables 238

pages
sizes

database default 580

table spaces 183

pagesize configuration parameter 580

parallelism
configuration parameters

dft_degree 536

intra_parallel 487

max_querydegree 492

632 Data Servers, Databases, and Database Objects Guide

parallelism (continued)
I/O

Redundant Array of Independent Disks (RAID)

devices 207

parent key
overview 269

parent row
overview 269

parent tables
overview 269

partitioned database environments
self-tuning memory 29, 31

partitioned tables
comparison with other table types 225

creating 255

pckcachesz configuration parameter 580

performance
improving with indexes 290

managing sequences 322

table spaces 207

Performance Configuration wizard
renamed to Configuration Advisor 116

pool size for agents
controlling 498

post-migration tasks
DB2 servers

adjusting system temporary table space page sizes 166

prefetch size
automatic adjustment 175

PREVIOUS VALUE expression
identity columns 326

overview 321

primary key constraint
overview 267

primary keys
description 235, 269

designing 275

priv_mem_thresh database manager configuration parameter
description 582

problem determination
information available 614

tutorials 614

process model
configuration simplification 35

overview 36

processors
adding 3

profiles
registry 363

properties
columns

changing 258

protocols
TCP/IP service name configuration parameter 509

Q
queries

statement heap size configuration parameter 591

query optimization
configuration parameters 456

query workload
table space design 168

query_heap_sz database manager configuration

parameter 500

R
RAID (Redundant Array of Independent Disks) devices

optimizing table space performance 207

range-clustered tables
comparison with other table types 225

raw devices 189

raw I/O
setting up on Linux 187

specifying 186

raw logs 186

read-only views
using 341

rebalancing
across containers 193

rec_his_retentn configuration parameter 583

recovery
auto restart enable configuration parameter 524

backup pending indicator configuration parameter 525

default number of load recovery sessions configuration

parameter 537

index re-creation time configuration parameter 483, 548

log retain status indicator configuration parameter 554

number of database backups configuration parameter 573

restore pending configuration parameter 583

roll forward pending indicator configuration

parameter 584

summary tables
inoperative 260

user exit status indicator configuration parameter 594

views
inoperative 343

recovery history file
retention period configuration parameter 583

recovery log
allocating during database creation 117

recovery range and soft checkpoint interval configuration

parameter 587

Redundant Array of Independent Disks (RAID)
optimizing performance 207

referential constraints
defining 277

description 269

interaction with foreign keys 280

PRIMARY KEY clause, CREATE/ALTER TABLE

statements 277

REFERENCES clause, CREATE/ALTER TABLE

statements 277

referential integrity
constraints 269

delete rule 269

description 235

insert rule 269

update rule 269

registry variables
aggregate 371

DB2_ALLOCATION_SIZE 404

DB2_ALTERNATE_GROUP_LOOKUP 385

DB2_ANTIJOIN 399

DB2_APM_PERFORMANCE 404

DB2_ASYNC_IO_MAXFILOP 404

DB2_ATS_ENABLE 421

DB2_AVOID_PREFETCH 404

DB2_CAPTURE_LOCKTIMEOUT 377

DB2_CLP_EDITOR 385

DB2_CLPHISTSIZE 385

DB2_CLPPROMPT 397

DB2_COLLECT_TS_REC_INFO 377

Index 633

registry variables (continued)
DB2_COMMIT_ON_EXIT 421

DB2_CONNRETRIES_INTERVAL 377

DB2_COPY_NAME 385

DB2_CREATE_DB_ON_PATH 421

DB2_DIAGPATH 385

DB2_DISABLE_FLUSH_LOG 421

DB2_DISPATCHER_PEEKTIMEOUT 421

DB2_DJ_INI 421

DB2_DOCHOST 421

DB2_DOCPORT 421

DB2_ENABLE_AUTOCONFIG_DEFAULT 421

DB2_ENABLE_LDAP 421

DB2_EVALUNCOMMITTED 404

DB2_EVMON_EVENT_LIST_SIZE 421

DB2_EVMON_STMT_FILTER 421

DB2_EXTENDED_IO_FEATURES 404

DB2_EXTENDED_OPTIMIZATION 404

DB2_EXTSECURITY 421

DB2_FALLBACK 421

DB2_FCM_SETTINGS 398

DB2_FMP_COMM_HEAPSZ 421

DB2_FORCE_APP_ON_MAX_LOG 377

DB2_FORCE_NLS_CACHE 394

DB2_GRP_LOOKUP 421

DB2_HADR_BUF_SIZE 421

DB2_HADR_NO_IP_CHECK 421

DB2_HADR_SORCVBUF 421

DB2_HADR_SOSNDBUF 421

DB2_HASH_JOIN 404

DB2_INLIST_TO_NLJN 399

DB2_IO_PRIORITY_SETTING 404

DB2_KEEP_AS_AND_DMS_CONTAINERS_OPEN 404

DB2_KEEPTABLELOCK 404

DB2_LARGE_PAGE_MEM 404

DB2_LIC_STAT_SIZE 377

DB2_LIKE_VARCHAR 399

DB2_LOAD_COPY_NO_OVERRIDE 421

DB2_MAP_XML_AS_CLOB_FOR_DLC 421

DB2_MAX_CLIENT_CONNRETRIES 377

DB2_MAX_INACT_STMTS 404

DB2_MAX_LOB_BLOCK_SIZE 421

DB2_MAX_NON_TABLE_LOCKS 404

DB2_MDC_ROLLOUT 404

DB2_MEM_TUNING_RANGE 404

DB2_MEMORY_PROTECT 421

DB2_MINIMIZE_LISTPREFETCH 399

DB2_MMAP_READ 404

DB2_MMAP_WRITE 404

DB2_NEW_CORR_SQ_FF 399

DB2_NO_FORK_CHECK 404

DB2_NUM_CKPW_DAEMONS 421

DB2_NUM_FAILOVER_NODES 398

DB2_OBJECT_TABLE_ENTRIES 404

DB2_OPT_MAX_TEMP_SIZE 399

DB2_OPTSTATS_LOG 421

DB2_OVERRIDE_BPF 404

DB2_PARALLEL_IO 385

DB2_PARTITIONEDLOAD__DEFAULT 398

DB2_PINNED_BP 404

DB2_REDUCED_ OPTIMIZATION 399

DB2_RESOLVE_CALL_CONFLICT 421

DB2_RESOURCE_POLICY 404

DB2_SELECTIVITY 399

DB2_SELUDI_COMM_BUFFER 404

DB2_SERVER_CONTIMEOUT 421

DB2_SERVER_ENCALG 421

registry variables (continued)
DB2_SET_MAX_CONTAINER_SIZE 404

DB2_SKIPDELETED 404

DB2_SKIPINSERTED 404

DB2_SMS_TRUNC_TMPTABLE_THRESH 404

DB2_SORT_AFTER_TQ 404

DB2_SQLROUTINE_PREPOPTS 399

DB2_SYSTEM_MONITOR_SETTINGS 377

DB2_THREAD_SUSPENSION 421

DB2_TRUNCATE_REUSESTORAGE 421

DB2_TRUSTED_BINDIN 404

DB2_UPDDBCFG_SINGLE_DBPARTITION 385

DB2_USE_ALTERNATE_PAGE_CLEANING 404

DB2_USE_DB2JCCT2_JROUTINE 421

DB2_USE_PAGE_CONTAINER_TAG 385

DB2_UTIL_MSGPATH 421

DB2_VENDOR_INI 421

DB2_VIEW_REOPT_VALUES 377

DB2_WORKLOAD 385

DB2_XBSA_LIBRARY 421

DB2ACCOUNT 377

DB2ADMINSERVER 421

DB2ASSUMEUPDATE 404

DB2BIDI 377

DB2BPVARS 404

DB2BQTIME 397

DB2BQTRY 397

DB2CHECKCLIENTINTERVAL 394

DB2CHGPWD_ESE 398

DB2CHKPTR 404

DB2CHKSQLDA 404

DB2CLIINIPATH 421

DB2CODEPAGE 377

DB2COMM 394

DB2CONNECT_DISCONNECT_ON_INTERRUPT 421

DB2CONNECT_IN_APP_PROCESS 385

DB2CONSOLECP 377

DB2COUNTRY 377

DB2DBDFT 377

DB2DBMSADDR 377

DB2DEFPREP 421

DB2DISCOVERYTIME 377

DB2DMNBCKCTLR 421

DB2DOMAINLIST 385

DB2ENVLIST 385

DB2FCMCOMM 394

DB2FODC 377

DB2GRAPHICUNICODESERVER 377

DB2INCLUDE 377

DB2INSTANCE 385

DB2INSTDEF 377

DB2INSTOWNER 377

DB2INSTPROF 385

DB2IQTIME 397

DB2LDAP_BASEDN 421

DB2LDAP_CLIENT_PROVIDER 421

DB2LDAP_KEEP_CONNECTION 421

DB2LDAP_SEARCH_SCOPE 421

DB2LDAPCACHE 421

DB2LDAPHOST 421

DB2LDAPSecurityConfig 385

DB2LIBPATH 385

DB2LOADREC 421

DB2LOCALE 377

DB2LOCK_TO_RB 421

DB2LOGINRESTRICTIONS 385

DB2MAXFSCRSEARCH 404

634 Data Servers, Databases, and Database Objects Guide

registry variables (continued)
DB2MEMDISCLAIM 404

DB2MEMMAXFREE 404

DB2NODE 385

DB2NOEXITLIST 421

DB2NTMEMSIZE 404

DB2NTNOCACHE 404

DB2NTPRICLASS 404

DB2NTWORKSET 404

DB2OPTIONS 385

DB2PATH 385

DB2PORTRANGE 398

DB2PRIORITIES 404

DB2PROCESSORS 385

DB2RCMD_LEGACY_MODE 385

DB2REMOTEPREG 421

DB2ROUTINE_DEBUG 421

DB2RQTIME 397

DB2RSHCMD 394

DB2RSHTIMEOUT 394

DB2SATELLITEID 421

DB2SLOGON 377

DB2SORCVBUF 394

DB2SORT 421

DB2SOSNDBUF 394

DB2SYSTEM 385

DB2TCP_CLIENT_CONTIMEOUT 394

DB2TCP_CLIENT_RCVTIMEOUT 394

DB2TCPCONNMGRS 394

DB2TERRITORY 377

declaring 365

environment variables 363

NO_SORT_MGJOIN keyword 399

NO_SORT_NLJOIN keyword 399

overview 372

registry variable
DB2_LOGGER_NON_BUFFERED_IO 404

registry variables
DB2_HADR_PEER_WAIT_LIMIT 421

regular tables
comparison with other table types 225

release configuration parameter 501

remote units of work
distributed relational databases 131

reorganization utility
binding to a database 129

rerouting clients
LDAP 103

restore database
implications 125

restore_pending configuration parameter 583

restrict_access configuration parameter 583

restrictions
automatic storage 47, 124

naming rules 347

RESTRICTIVE option
CREATE DATABASE

database configuration parameter 583

result tables
comparison with other table types 225

resync_interval configuration parameter 501

RID_BIT() and RID()
built-in functions 250

RID_BIT() and RID() built-in function 250

RID_BIT() built-in function 248

rollforward utility
roll forward pending indicator 584

rollfwd_pending configuration parameter 584

rollout
deferred cleanup 60

ROW CHANGE TIMESTAMP column 248

row change timestamps 249

row compression
enabling 49, 243

update logs 242

row identifier (RID_BIT or RID) 245

row identifier (RID_BIT or RID) built-in function 245

rows
change tokens 248

dependent 269

descendent 269

parent 269

self-referencing 269

rqrioblk configuration parameter 502

RUNSTATS command
automatic statistics collection 50, 54

S
scenarios

time-based update detection 266

sched_enable configuration parameter 601

sched_userid configuration parameter 601

schemas
copying 216

creating 216

db2move COPY errors 219

description 211, 215

designing 212

dropping 222

naming restrictions and recommendations 215

restarting failed copy schema operation 219

troubleshooting tips 216

scope
adding 259

security
plug-ins

configuration parameters 465, 467, 506, 508

security labels (LBAC)
component name length 353

name length 353

policies
name length 353

self tuning memory
description 17

disabling 27

enabling 27, 584

non-uniform environments 31

limitations 24

monitoring 28

overview 20

partitioned database environments 29, 31

self_tuning_mem
configuration parameter 584

self-referencing row 269

self-referencing table 269

seqdetect configuration parameter 586

sequence expressions
description 326

sequences
application performance 323

comparing with identify columns 326

comparison with identity columns 324

creating 325

Index 635

sequences (continued)
designing 321

dropping 328

examples 329

generating 321

managing behavior 322

modifying 327

recovering databases that use sequences 325

using 326

values 330

viewing 328

sequential values
generating 326

set integrity pending state 269

shared file handle table 37

sheapthres configuration parameter 503

sheapthres_shr configuration parameter 586

size limits
identifier length 353

SQL 353

size requirements
estimating 118

SMS (system managed space)
device considerations 169

table spaces
compared to DMS table spaces 167

creating 189

description 154

workload considerations 168

SMS directories
in non-automatic storage databases 110

SMS table spaces
altering 193

smtp_server configuration parameter 601

softmax configuration parameter 587

sortheap database configuration parameter
description 589

effect on query optimization 456

sorting
sort heap size configuration parameter 589

sort heap threshold configuration parameter 503

sort heap threshold for shared sorts 586

source tables
creating 255

space compression
tables 240

spm_log_file_sz configuration parameter 505

spm_log_path configuration parameter 505

spm_max_resync configuration parameter 506

spm_name configuration parameter 506

SQL (Structured Query Language)
limits 353

SQL PL statements
supported in trigger-actions 311

SQL statements
displaying help 611

inoperative 281

optimization
configuration parameters 456

statement heap size configuration parameter 591

SQLDBCON configuration file 439, 440

SQLDBCON database configuration file 113

SQLDBCONF configuration file 439, 440

SQLDBCONF database configuration file 113

srv_plugin_mode configuration parameter 508

srvcon_auth configuration parameter 506

srvcon_gssplugin_list configuration parameter 507

srvcon_pw_plugin configuration parameter 508

staging tables
creating 256

dropping 262

start and stop timeout configuration parameter 508

start_stop_time configuration parameter 508

stat_heap_sz database configuration parameter 590

statement heap size configuration parameter 591

statistics
automatic collection 50, 54

statistics profiling
about 19

STMM (Self Tuning Memory Manager)
enabling 27

limitations 24

monitoring 28

STMM (Self-Tuning Memory Manager)
enabling 584

stmtheap database configuration parameter 591

effect on query optimization 456

storage
automatic

table spaces 38, 163

automatic for databases 44, 121

storage paths
automatic

adding 46, 124

monitoring 124

string
data types

zero-length 235

stripe sets 159

DMS table spaces 193

summary tables
comparison with other table types 225

recovering inoperative 260

Sun One Directory Server
extending directory schema for 93

svcename configuration parameter 509

SWITCH ONLINE clause 207

switching DB2 copies 11

sysadm_group configuration parameter 510

SYSCAT.INDEXES view
viewing constraint definitions for a table 285

SYSCATSPACE table spaces 185

sysctrl_group configuration parameter 510

sysmaint_group configuration parameter 511

sysmon_group configuration parameter 512

system catalog views
description 336

system clock
change considerations 249

system database directory
description 114

viewing 138

system managed space (SMS)
table spaces

description 154

system temporary table spaces 189

page sizes
post-migration tasks for DB2 servers 166

T
table check constraints 269

table partitioning
data organization schemes 253

636 Data Servers, Databases, and Database Objects Guide

table space maps 159

table spaces
adding

containers 193

altering 193

automatic storage 206

DMS containers 193

SMS containers 193

automatic re-sizing 40, 171

automatic storage 38, 163

choosing extent sizes 182

containers
extending 202

file example 189

creating 189

database managed space (DMS) 156

description 151

designing 152

device container example 189

disk I/O considerations 183

dropping 208

initial 185

mapping to tables 170

maps 159

page sizes 183

performance 207

renaming 206

resizing container 202

switching states 207

system managed space (SMS) 154

system temporary 189

temporary
recommendations 165

types 154

SMS or DMS 167

user temporary 189

without file system caching 176, 179

workload considerations 168

tables
adding columns 258

aliases 261

append mode 225

base 225

check constraints
overview 235

types 269

creating
overview 253

data type definitions 235

default columns 235

defining
referential constraints 277

dependent 269

descendent 269

description 225

design concepts 227

designing 227

dropping 261

dropping columns 258

estimating size requirements 118

examples 263

generated columns 232

global temporary 225

identity columns 233

mapping to table spaces 170

mismatch 255

modifying 257

tables (continued)
modifying DEFAULT clause column definitions 258

multidimensional clustering 225

page sizes 238

parent 269

partitioned 225

primary keys 235

range-clustered 225

referential integrity 235

refreshing 257

regular 225

renaming tables 260

result 225

scenarios 263

self-referencing 269

shared file handle 37

source 255

space compression 240

space requirements 236

summary 225

target 255

temporary 225

typed 225

Unicode table and data considerations 236

unique constraints 235

user 238

viewing definitions 261

TCP/IP service name configuration parameter 509

temporary table spaces
recommendations 165

temporary tables
comparison with other table types 225

global (user-defined) 254

TEMPSPACE1 table space 185

terms and conditions
use of publications 614

territory configuration parameter 591

time
deadlock configuration parameter, interval for

checking 541

difference among nodes, maximum 493

time-based update detection 248

scenarios 266

TIMESTAMP data type
overview 235

timestamps
row changes 249

Tivoli Storage Manager (TSM)
management class configuration parameter 592

node name configuration parameter 592

owner name configuration parameter 593

password configuration parameter 593

tm_database configuration parameter 512

toolscat_db configuration parameter 602

toolscat_inst configuration parameter 602

toolscat_schema configuration parameter 603

tp_mon_name configuration parameter 513

track modified pages enable configuration parameter 592

trackmod configuration parameter 592

transaction processing monitors
transaction processing monitor name configuration

parameter 513

transition tables
for triggers, referencing old and new table result sets 313

transition variables
using triggers, accessing old and new column values 312

Index 637

triggered-actions
coding 311

conditions
WHEN clause 311

supported SQL PL statements 311

triggers
accessing old and new column values 312

activation time 308

AFTER
example 303

AFTER clause 308

BEFORE
examples 303

BEFORE clause 308

cascading 301

coding triggered-actions 311

comparison with check contraints 276

conditions 311

constraints, interaction 278, 316

creating 314

description 301

designing 305

dropping 316

examples
defining actions 318

defining business rules 319

preventing operations on tables 320

granularity rules 307

INSTEAD OF
example 304

INSTEAD OF clause 308

interactions 278, 316

maximum name length 353

modifying 316

referencing old and new table result sets 313

triggering events 307

types 302

troubleshooting
online information 614

tutorials 614

trust_allclnts configuration parameter 515

trust_clntauth configuration parameter 515

tsm_mgmtclass configuration parameter 592

tsm_nodename configuration parameter 592

tsm_owner configuration parameter 593

tsm_password configuration parameter 593

tuning partition
determining 31

tutorials
problem determination 614

troubleshooting 614

Visual Explain 614

typed tables
comparison with other table types 225

typed views
description 335

modifying 343

U
Unicode

table and data considerations 236

Unicode (UCS-2)
identifiers 351

naming rules 351

unique constraints 268

definition 269

unique constraints (continued)
description 235

designing 274

unique contraint 267

unique indexes 290

unique keys
description 269

generating using sequences 321

UNIQUERULE column
viewing constraint definitions for a table 285

units of work (UOW)
application-directed distributed 134

semantics 137

updatable views
using 341

update rule
for referential integrity 269

referential constraints 269

updates
DB2 Information Center 612

user data
directories 474

user exit enable configuration parameter 594

user exit status indicator configuration parameter 594

user IDs
naming rules 350

user table page limits 238

user temporary table spaces
creating 189

user_exit_status configuration parameter 594

user-defined (global) temporary tables
creating 254

user-defined functions
used with views 342

userexit database configuration parameter 594

USERSPACE1 table space 185

util_heap_sz configuration parameter 595

util_impact_lim configuration parameter
described 516

utility operations
constraint implications 281

utility throttling
about 58

description 17

V
values

sequence 330

VARCHAR data type
in table columns 259

vendor code
in fenced vendor processes 37

vendoropt configuration parameter 595

view
aliases 261

views
creating 341

definition of nested views 339

deletable
using 339

description 335

designing 336

dropping 344

inoperative 343

insertablex 340

modifying 343

638 Data Servers, Databases, and Database Objects Guide

views (continued)
overview 335

read-only
using 341

recovering inoperative 343

updatablex 341

using user-defined functions 342

with check option
examples 337

Vista
user data directories 474

Visual Explain
tutorial 614

vmo AIX system command 4

vmtune AIX system command 4

W
Windows operating systems

active directory
DB2 object creation 96

LDAP object classes and attributes 78

extending the directory schema
Windows 2003 97

wizards
Configuration Advisor 116

wlm_collect_int database configuration parameter
description 596

X
XQuery statements

inoperative 281

optimization
configuration parameters 456

statement heap size configuration parameter 591

Index 639

640 Data Servers, Databases, and Database Objects Guide

����

Printed in USA

SC23-5849-02

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

Da
ta

Se

rv
er

s,

Da

ta
ba

se
s,

an

d
Da

ta
ba

se

Ob

je
ct

s
Gu

id
e

�
�

�

	Contents
	About this book
	Part 1. Data servers
	Chapter 1. DB2 data servers
	Management of data server capacity
	Enabling large page support in a 64-bit environment (AIX)

	Chapter 2. Multiple DB2 copies
	Default IBM database client interface copy
	Setting the DAS when running multiple DB2 copies
	Setting the default instance when using multiple DB2 copies (Windows)
	Multiple instances of the database manager
	Multiple instances (Windows)
	Updating DB2 copies (Windows)
	Running multiple instances concurrently (Windows)
	Working with instances on the same or different DB2 copies

	Chapter 3. Autonomic computing
	Automatic features
	Automatic maintenance
	Maintenance windows

	Self-tuning memory
	Memory allocation in DB2
	Self tuning memory operational details and limitations
	Operational details, limitations, and interaction between memory parameters
	Enabling self tuning memory
	Disabling self tuning memory
	Determining which memory consumers are enabled for self tuning
	Self tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Configuring memory and memory heaps
	Agent and process model configuration
	Agent, process model, and memory configuration
	Configuring databases across multiple partitions
	Shared file handle table
	Running vendor library functions in fenced-mode processes

	Automatic storage
	Automatic storage table spaces
	Automatic re-sizing of table spaces

	Automatic storage databases
	Adding automatic storage paths to databases enabled for automatic storage

	Automatic storage restrictions

	Automatic (compression) dictionary creation (ADC)
	Data row compression

	Automatic statistics collection
	Enabling automatic statistics collection

	Configuration Advisor
	Tuning configuration parameters using the Configuration Advisor
	Generating database configuration recommendations
	Example: Requesting configuration recommendations using the Configuration Advisor

	Utility throttling
	Asynchronous index cleanup
	Asynchronous index cleanup for MDC tables

	Chapter 4. Instances
	Designing instances
	Default instance
	Instance directory
	Multiple instances (Linux, UNIX)
	Multiple instances (Windows)

	Creating instances
	Modifying instances
	Updating the instance configuration (Linux, UNIX)
	Updating the instance configuration (Windows)

	Working with instances
	Auto-starting instances
	Starting instances (Linux, UNIX)
	Starting instances (Windows)
	Attaching to and detaching from instances
	Working with instances on the same or different DB2 copies
	Stopping instances (Linux, UNIX)
	Stopping instances (Windows)

	Dropping instances

	Chapter 5. Lightweight Directory Access Protocol (LDAP)
	Security considerations in an LDAP environment
	LDAP object classes and attributes used by DB2
	Extending the LDAP directory schema with DB2 object classes and attributes
	Supported LDAP client and server configurations
	LDAP support and DB2 Connect
	Registering host databases in LDAP

	Extending the directory schema for IBM Tivoli Directory Server
	Netscape LDAP directory support and attribute definitions
	Extending the directory schema for Sun One Directory Server
	Windows Active Directory
	Configuring the DB2 database manager to use Active Directory
	Security considerations for Active Directory
	DB2 objects in the Active Directory
	Extending the directory schema for Active Directory

	Enabling LDAP support after DB2 installation is complete

	Registering LDAP entries
	Registration of DB2 servers after installation
	Catalog a node alias for ATTACH
	Registration of databases in the LDAP directory

	Deregistering LDAP entries
	Deregistering the DB2 server
	Deregistering the database from the LDAP directory

	Configuring LDAP users
	Creating an LDAP user
	Configuring the LDAP user for DB2 applications
	Setting DB2 registry variables at the user level in the LDAP environment

	Disabling LDAP support
	Updating the protocol information for the DB2 server
	Rerouting LDAP clients to another server
	Attaching to a remote server in the LDAP environment
	Refreshing LDAP entries in local database and node directories
	Searching the LDAP servers

	Part 2. Databases
	Chapter 6. Databases
	Designing databases
	Database directories and files
	Database configuration file
	Node directory
	Local database directory
	System database directory
	Creating node configuration files
	Changing node and database configuration files
	Database recovery log

	Space requirements for database objects
	Space requirements for log files
	Lightweight Directory Access Protocol (LDAP) directory service

	Creating databases
	Automatic storage databases
	Automatic storage restrictions
	Adding automatic storage paths to databases enabled for automatic storage
	Monitoring storage paths
	Restore database implications

	Cataloging databases
	Binding utilities to the database
	Creating database aliases

	Connecting to distributed relational databases
	Remote unit of work for distributed relational databases
	Application-directed distributed unit of work
	Application process connection states
	Connection states
	Options that govern unit of work semantics
	Data representation considerations

	Viewing the local or system database directory files
	Dropping databases
	Dropping aliases

	Chapter 7. Database partitions
	Chapter 8. Buffer pools
	Designing buffer pools
	Buffer pool memory protection (AIX running on POWER6)
	Creating buffer pools
	Modifying buffer pools
	Dropping buffer pools

	Chapter 9. Table spaces
	Designing table spaces
	Types of table spaces
	System managed space
	Database managed space
	Automatic storage table spaces
	Temporary table spaces

	Comparison of SMS and DMS table spaces
	SMS and DMS workload considerations
	SMS and DMS device considerations

	Considerations when choosing table spaces for your tables
	Automatic re-sizing of table spaces
	Automatic prefetchsize adjustment after adding or dropping containers
	Table spaces without file system caching
	Using CIO/DIO as the default file system caching mechanism for new table space containers
	File system caching configurations

	Table space extent sizes
	Table space page sizes
	Table space disk I/O

	Defining initial table spaces
	Attaching DMS direct disk access devices
	Configuring and setting up DMS direct disk access (Linux)

	Creating table spaces
	Altering table spaces
	Altering SMS table spaces
	Altering DMS table spaces
	Adding or extending DMS containers
	Rebalancing DMS containers
	Resizing DMS containers
	Dropping or reducing DMS containers

	Altering automatic storage table spaces

	Renaming a table space
	Switching table spaces from offline to online
	Optimizing table space performance when data is on RAID devices
	Dropping table spaces

	Chapter 10. Schemas
	Designing schemas
	Grouping objects by schema
	Schema name restrictions and recommendations

	Creating schemas
	Copying schemas
	Example of schema copy using the ADMIN_COPY_SCHEMA procedure
	Examples of schema copy using the db2move utility

	Restarting a failed copy schema operation
	Dropping schemas

	Part 3. Database objects
	Chapter 11. Tables
	Types of tables
	Designing tables
	Table design concepts
	Specifying column data types
	Generated columns
	Auto numbering and identifier columns
	Constraining column data with constraints, defaults, and null settings
	Primary key, referential integrity, check, and unique constraints
	Unicode table and data considerations

	Space requirements for tables
	Table page sizes

	Space requirements for user table data
	Space compression for tables
	Ordering columns to minimize update logging
	Data row compression

	Optimistic locking
	Optimistic locking
	Optimistic locking restrictions and considerations
	Granularity of row change tokens and false negatives
	Time-based update detection
	Time values generated for ROW CHANGE TIMESTAMPs
	RID_BIT() and RID() built-in function
	Planning the enablement of optimistic locking
	Enabling optimistic locking in applications

	Table partitioning and data organization schemes
	Creating tables
	Declaring global temporary tables
	Creating tables like existing tables
	Creating tables for staging data

	Modifying tables
	Altering materialized query table properties
	Refreshing the data in a materialized query table
	Changing column properties
	Adding and dropping columns
	Modifying DEFAULT clause column definitions
	Modifying the generated or identity property of a column
	Modifying column definitions

	Renaming tables
	Recovering inoperative summary tables
	Viewing table definitions
	Table or view aliases

	Dropping tables
	Dropping materialized query or staging tables

	Scenarios and examples of tables
	Scenarios: Optimistic locking and time-based detection
	Scenario: Using optimistic locking in an application program
	Scenarios: Optimistic locking using implicitly hidden columns
	Scenario: Time-based update detection

	Chapter 12. Constraints
	Types of constraints
	NOT NULL constraints
	Unique constraints
	Primary key constraints
	(Table) Check constraints
	Foreign key (referential) constraints
	Informational constraints

	Designing constraints
	Designing unique constraints
	Designing primary key constraints
	Designing check constraints
	Comparison of check constraints and BEFORE triggers

	Designing foreign key (referential) constraints
	Examples of interaction between triggers and referential constraints
	Foreign keys in referential constraints
	Table constraint implications for utility operations
	Statement dependencies when changing objects

	Designing informational constraints

	Creating and modifying constraints
	Viewing constraint definitions for a table
	Dropping constraints

	Chapter 13. Indexes
	Types of indexes
	Designing indexes
	Tools for designing indexes
	Space requirements for indexes

	Creating indexes
	Modifying indexes
	Renaming indexes
	Rebuilding indexes
	Dropping indexes

	Chapter 14. Triggers
	Types of triggers
	BEFORE triggers
	AFTER triggers
	INSTEAD OF triggers

	Designing triggers
	Specifying what makes a trigger fire (triggering statement or event)
	Specifying when a trigger fires (BEFORE, AFTER, and INSTEAD OF clauses)
	Defining conditions for when trigger-action will fire (WHEN clause)
	Supported SQL PL statements in triggers
	Accessing old and new column values in triggers using transition variables
	Referencing old and new table result sets using transition tables

	Creating triggers
	Modifying and dropping triggers
	Examples of triggers and trigger use
	Examples of interaction between triggers and referential constraints
	Examples of defining actions using triggers
	Example of defining business rules using triggers
	Example of preventing operations on tables using triggers

	Chapter 15. Sequences
	Designing sequences
	Managing sequence behavior
	Application performance and sequences
	Sequences compared to identity columns

	Creating sequences
	Generating sequential values
	Determining when to use identity columns or sequences

	Modifying sequences
	Viewing sequence definitions
	Dropping sequences
	Examples of how to code sequences
	Sequence reference

	Chapter 16. Views
	Designing views
	System catalog views
	Views with the check option
	Nested view definitions

	Deletable views
	Insertable views
	Updatable views
	Read-only views

	Creating views
	Creating views that use user-defined functions (UDFs)

	Modifying typed views
	Recovering inoperative views
	Dropping views

	Part 4. Reference
	Chapter 17. Conforming to naming rules
	Naming rules
	DB2 object naming rules
	Delimited identifiers and object names
	User, user ID and group naming rules
	Naming rules in an NLS environment
	Naming rules in a Unicode environment

	Chapter 18. SQL and XML limits
	Chapter 19. Registry and environment variables
	Environment variables and the profile registry
	Declaring, showing, changing, resetting, and deleting registry and environment variables
	Setting environment variables on Windows
	Setting environment variables on Linux and UNIX operating systems
	Setting the current instance environment variables

	Aggregate registry variables
	DB2 registry and environment variables
	General registry variables
	System environment variables
	Communications variables
	Command-line variables
	Partitioned database environment variables
	Query compiler variables
	Performance variables
	Miscellaneous variables

	Chapter 20. Configuration parameters
	Configuring the DB2 database manager with configuration parameters
	Configuration parameters summary
	Configuration parameters that affect the number of agents
	Configuration parameters that affect query optimization
	Restrictions and behavior when configuring max_coordagents and max_connections
	Database Manager configuration parameters
	agent_stack_sz - Agent stack size
	agentpri - Priority of agents
	aslheapsz - Application support layer heap size
	audit_buf_sz - Audit buffer size
	authentication - Authentication type
	catalog_noauth - Cataloging allowed without authority
	clnt_krb_plugin - Client Kerberos plug-in
	clnt_pw_plugin - Client userid-password plug-in
	cluster_mgr - Cluster manager name
	comm_bandwidth - Communications bandwidth
	conn_elapse - Connection elapse time
	cpuspeed - CPU speed
	dft_account_str - Default charge-back account
	dft_monswitches - Default database system monitor switches
	dftdbpath - Default database path
	diaglevel - Diagnostic error capture level
	diagpath - Diagnostic data directory path
	dir_cache - Directory cache support
	discover - Discovery mode
	discover_inst - Discover server instance
	fcm_num_buffers - Number of FCM buffers
	fcm_num_channels - Number of FCM channels
	fed_noauth - Bypass federated authentication
	federated - Federated database system support
	federated_async - Maximum asynchronous TQs per query configuration parameter
	fenced_pool - Maximum number of fenced processes
	group_plugin - Group plug-in
	health_mon - Health monitoring
	indexrec - Index re-creation time
	instance_memory - Instance memory
	intra_parallel - Enable intra-partition parallelism
	java_heap_sz - Maximum Java interpreter heap size
	jdk_path - Software Developer's Kit for Java installation path
	keepfenced - Keep fenced process
	local_gssplugin - GSS API plug-in used for local instance level authorization
	max_connections - Maximum number of client connections
	max_connretries - Node connection retries
	max_coordagents - Maximum number of coordinating agents
	max_querydegree - Maximum query degree of parallelism
	max_time_diff - Maximum time difference among nodes
	maxagents - Maximum number of agents
	maxcagents - Maximum number of concurrent agents
	mon_heap_sz - Database system monitor heap size
	nodetype - Machine node type
	notifylevel - Notify level
	num_initagents - Initial number of agents in pool
	num_initfenced - Initial number of fenced processes
	num_poolagents - Agent pool size
	numdb - Maximum number of concurrently active databases including host and System i databases
	query_heap_sz - Query heap size
	release - Configuration file release level
	resync_interval - Transaction resync interval
	rqrioblk - Client I/O block size
	sheapthres - Sort heap threshold
	spm_log_file_sz - Sync point manager log file size
	spm_log_path - Sync point manager log file path
	spm_max_resync - Sync point manager resync agent limit
	spm_name - Sync point manager name
	srvcon_auth - Authentication type for incoming connections at the server
	srvcon_gssplugin_list - List of GSS API plug-ins for incoming connections at the server
	srvcon_pw_plugin - Userid-password plug-in for incoming connections at the server
	srv_plugin_mode - Server plug-in mode
	start_stop_time - Start and stop timeout
	svcename - TCP/IP service name
	sysadm_group - System administration authority group name
	sysctrl_group - System control authority group name
	sysmaint_group - System maintenance authority group name
	sysmon_group - System monitor authority group name
	tm_database - Transaction manager database name
	tp_mon_name - Transaction processor monitor name
	trust_allclnts - Trust all clients
	trust_clntauth - Trusted clients authentication
	util_impact_lim - Instance impact policy

	Database configuration parameters
	alt_collate - Alternate collating sequence
	app_ctl_heap_sz - Application control heap size
	appgroup_mem_sz - Maximum size of application group memory set
	appl_memory - Application Memory configuration parameter
	applheapsz - Application heap size
	archretrydelay - Archive retry delay on error
	auto_del_rec_obj - Automated deletion of recovery objects configuration parameter
	auto_maint - Automatic maintenance
	autorestart - Auto restart enable
	avg_appls - Average number of active applications
	backup_pending - Backup pending indicator
	blk_log_dsk_ful - Block on log disk full
	catalogcache_sz - Catalog cache size
	chngpgs_thresh - Changed pages threshold
	codepage - Code page for the database
	codeset - Codeset for the database
	collate_info - Collating information
	country/region - Database territory code
	database_consistent - Database is consistent
	database_level - Database release level
	database_memory - Database shared memory size
	db_mem_thresh - Database memory threshold
	dbheap - Database heap
	decflt_rounding - Decimal floating point rounding configuration parameter
	dft_degree - Default degree
	dft_extent_sz - Default extent size of table spaces
	dft_loadrec_ses - Default number of load recovery sessions
	dft_mttb_types - Default maintained table types for optimization
	dft_prefetch_sz - Default prefetch size
	dft_queryopt - Default query optimization class
	dft_refresh_age - Default refresh age
	dft_sqlmathwarn - Continue upon arithmetic exceptions
	discover_db - Discover database
	dlchktime - Time interval for checking deadlock
	dyn_query_mgmt - Dynamic SQL and XQuery query management
	enable_xmlchar - Enable conversion to XML configuration parameter
	failarchpath - Failover log archive path
	groupheap_ratio - Percent of memory for application group heap
	hadr_db_role - HADR database role
	hadr_local_host - HADR local host name
	hadr_local_svc - HADR local service name
	hadr_peer_window - HADR peer window configuration parameter
	hadr_remote_host - HADR remote host name
	hadr_remote_inst - HADR instance name of the remote server
	hadr_remote_svc - HADR remote service name
	hadr_syncmode - HADR synchronization mode for log write in peer state
	hadr_timeout - HADR timeout value
	indexrec - Index re-creation time
	jdk_64_path - 64-Bit Software Developer's Kit for Java installation path DAS
	locklist - Maximum storage for lock list
	locktimeout - Lock timeout
	log_retain_status - Log retain status indicator
	logarchmeth1 - Primary log archive method
	logarchmeth2 - Secondary log archive method
	logarchopt1 - Primary log archive options
	logarchopt2 - Secondary log archive options
	logbufsz - Log buffer size
	logfilsiz - Size of log files
	loghead - First active log file
	logindexbuild - Log index pages created
	logpath - Location of log files
	logprimary - Number of primary log files
	logretain - Log retain enable
	logsecond - Number of secondary log files
	max_log - Maximum log per transaction
	maxappls - Maximum number of active applications
	maxfilop - Maximum database files open per application
	maxlocks - Maximum percent of lock list before escalation
	min_dec_div_3 - Decimal division scale to 3
	mincommit - Number of commits to group
	mirrorlogpath - Mirror log path
	multipage_alloc - Multipage file allocation enabled
	newlogpath - Change the database log path
	num_db_backups - Number of database backups
	num_freqvalues - Number of frequent values retained
	num_iocleaners - Number of asynchronous page cleaners
	num_ioservers - Number of I/O servers
	num_log_span - Number log span
	num_quantiles - Number of quantiles for columns
	numarchretry - Number of retries on error
	numsegs - Default number of SMS containers
	overflowlogpath - Overflow log path
	pagesize - Database default page size
	pckcachesz - Package cache size
	priv_mem_thresh - Private memory threshold
	rec_his_retentn - Recovery history retention period
	restore_pending - Restore pending
	restrict_access - Database has restricted access configuration parameter
	rollfwd_pending - Roll forward pending indicator
	self_tuning_mem- Self-tuning memory
	seqdetect - Sequential detection flag
	sheapthres_shr - Sort heap threshold for shared sorts
	softmax - Recovery range and soft checkpoint interval
	sortheap - Sort heap size
	stat_heap_sz - Statistics heap size
	stmtheap - Statement heap size
	territory - Database territory
	trackmod - Track modified pages enable
	tsm_mgmtclass - Tivoli Storage Manager management class
	tsm_nodename - Tivoli Storage Manager node name
	tsm_owner - Tivoli Storage Manager owner name
	tsm_password - Tivoli Storage Manager password
	user_exit_status - User exit status indicator
	userexit - User exit enable
	util_heap_sz - Utility heap size
	vendoropt - Vendor options
	wlm_collect_int - Workload management collection interval configuration parameter

	DB2 Administration Server (DAS) configuration parameters
	authentication - Authentication type DAS
	contact_host - Location of contact list
	das_codepage - DAS code page
	das_territory - DAS territory
	dasadm_group - DAS administration authority group name
	db2system - Name of the DB2 server system
	discover - DAS discovery mode
	exec_exp_task - Execute expired tasks
	jdk_path - Software Developer's Kit for Java installation path DAS
	sched_enable - Scheduler mode
	sched_userid - Scheduler user ID
	smtp_server - SMTP server
	toolscat_db - Tools catalog database
	toolscat_inst - Tools catalog database instance
	toolscat_schema - Tools catalog database schema

	Part 5. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

