
DB2 Version 9.5

for Linux, UNIX, and Windows

Tuning Database Performance

SC23-5867-00

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Tuning Database Performance

SC23-5867-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 427.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Part 1. Elements of performance . . . 1

Chapter 1. Performance tuning

guidelines 3

Chapter 2. Developing a performance

improvement process 5

Chapter 3. Performance information that

users can provide 7

Chapter 4. Performance tuning limits . . 9

Chapter 5. DB2 architecture and

process overview 11

The DB2 Process Model 12

Deadlocks 17

Disk storage overview 20

Disk-storage performance factors 20

Part 2. Tables and indexes 21

Chapter 6. Table and index

management for standard tables . . . 23

Chapter 7. Table and index

management for MDC tables 27

Chapter 8. Asynchronous index

cleanup for MDC tables 31

Chapter 9. Index structure 33

Part 3. Processes 35

Chapter 10. Reducing logging overhead

to improve query performance 37

Chapter 11. Improving insert

performance 39

Chapter 12. Update processing 41

Chapter 13. Client-server processing

model 43

Part 4. Quick-start tips for

performance tuning 49

Chapter 14. Operational performance 51

Memory allocation in DB2 51

Database manager shared memory 53

The FCM buffer pool and memory requirements 56

Tuning memory allocation parameters 56

Self-tuning memory overview 57

Self-tuning memory 58

Enabling self tuning memory 59

Disabling self tuning memory 59

Determining which memory consumers are

enabled for self tuning 60

Self tuning memory operational details and

limitations 61

Self tuning memory in partitioned database

environments 62

Buffer pool management 65

Buffer pool management of data pages 66

Management of multiple database buffer pools 69

Proactive page cleaning 71

Prefetching data into the buffer pool 72

Maintaining the organization of your tables and

indexes 81

Table reorganization 81

Index reorganization 92

Determining when to reorganize tables and

indexes 93

Costs of table and index reorganization 97

Reducing the need to reorganize tables and

indexes 98

Automatic reorganization 99

Using relational indexes to improve performance 100

Relational index planning tips 101

Relational index performance tips 104

Index cleanup and maintenance 106

Understanding index behavior on partitioned

tables 107

Asynchronous index cleanup 110

Online index defragmentation 112

Understanding clustering index behavior on

partitioned tables 113

Database agents 115

Database agent management 116

Connection-concentrator improvements for

client connections 118

Agents in a partitioned database 119

The database system monitor information 120

Efficient SELECT statements 123

Chapter 15. The Governor utility . . . 125

Starting and stopping the governor 125

The Governor daemon 126

Configuring the Governor 127

The governor configuration file 128

Governor rule elements 130

Example of a Governor configuration file . . . 134

© Copyright IBM Corp. 1993, 2007 iii

Governor log files 135

Governor log file queries 138

Chapter 16. Benchmark testing 141

Benchmark preparation 142

Benchmark test creation 143

Benchmark test execution 144

Benchmark test analysis example 146

Chapter 17. The Design Advisor . . . 149

Using the Design Advisor 152

Defining a workload for the Design Advisor . . . 153

Using the Design Advisor to migrate from a

single-partition to a multiple-partition database . . 154

Design Advisor limitations and restrictions . . . 154

Part 5. Tuning database

application performance 157

Chapter 18. Application

considerations 159

Concurrency issues 159

Isolation levels and performance 160

Specifying the isolation level 163

Locks and concurrency control 165

Lock attributes 167

Lock granularity 168

Lock waits and timeouts 169

Lock timeout reporting 169

Lock conversion 173

Preventing lock-related performance issues . . 173

Correcting lock escalation problems 175

Evaluate uncommitted data via lock deferral 176

Option to disregard uncommitted insertions . . 179

Lock type compatibility 179

Lock modes and access paths for standard

tables 180

Lock modes for table and RID index scans of

MDC tables 184

Locking for block index scans for MDC tables 188

Locking behavior on partitioned tables 191

Factors that affect locking 193

Locks and types of application processing . . . 193

Locks and data-access methods 194

Index types and next-key locking 194

Specifying a lock wait mode strategy 196

Tuning applications 196

Guidelines for restricting select statements . . 196

Specifying row blocking to reduce overhead . . 199

Query tuning guidelines 201

Query optimization using the REOPT bind

option 201

Improving performance by binding with REOPT 201

Data sampling in SQL and XQuery queries . . 202

Parallel processing for applications 203

Chapter 19. Environmental

considerations 205

Table space impact on query optimization 205

Server options affecting federated databases . . . 207

Chapter 20. Catalog statistics 209

Automatic statistics collection 211

Enabling automatic statistics collection 215

Storage used by automatic statistics collection and

profiling 216

Automatic statistics collection activity logging . . 216

Improving query performance for large statistics

logs 221

Guidelines for collecting and updating statistics 222

Collecting catalog statistics 224

Collecting distribution statistics for specific

columns 225

Collecting index statistics 226

Collecting statistics on a sample of the table

data 227

Collecting statistics using a statistics profile . . 228

Catalog statistics tables 230

Distribution statistics 235

Optimizer use of distribution statistics 237

Extended examples of distribution-statistics use 238

Detailed index statistics 242

Sub-element statistics 243

Catalog statistics that users can update 244

Statistics for user-defined functions 244

Catalog statistics for modeling and what-if

planning 245

Statistics for modeling production databases . . 246

General rules for updating catalog statistics

manually 248

Rules for updating column statistics manually 249

Rules for updating distribution statistics

manually 250

Rules for updating table and nickname statistics

manually 251

Rules for updating index statistics manually . . 251

Chapter 21. Routines 253

Guidelines for stored procedures 253

Improving the performance of SQL procedures . . 253

Chapter 22. Query access plans . . . 259

The SQL and XQuery compiler process 259

Query rewriting methods and examples . . . 261

Predicate typology and access plans 267

Federated database query-compiler phases . . 269

Data-access methods 278

Data access through index scans 279

Types of index access 281

Index access and cluster ratios 284

Joins 284

Join methods 285

Strategies for selecting optimal joins 288

Replicated materialized query tables in

partitioned database environments 291

Join strategies in partitioned databases 292

Join methods in partitioned database

environments 294

Effects of sorting and grouping 299

iv Tuning Database Performance

Optimization strategies 301

Optimization strategies for intra-partition

parallelism 301

Optimization strategies for MDC tables 303

Optimization strategies for partitioned tables 305

Materialized query tables 310

Explain facility 312

Guidelines for using explain information . . . 312

Guidelines for capturing explain information 314

Guidelines for analyzing explain information 315

Using access plans to self-diagnose performance

problems from REFRESH TABLE and SET

INTEGRITY statements 317

Explain tools 318

SQL and XQuery Explain tools 319

The explain tables and organization of explain

information 352

Explain information for data objects 354

Explain information for data operators 354

Explain information for instances 355

db2exfmt - Explain table format 357

Optimizing query access plans 360

Optimization classes 360

Optimizer profiles and guidelines overview . . 365

Configuration parameters that affect query

optimization 401

Database database partition group impact on

query optimization 403

Column correlation for multiple predicates . . 404

Using index and column group statistics to

compute grouping keycard 406

Statistical views 406

Using statistical views 407

View statistics relevant to optimization 408

Scenario: Improving cardinality estimates using

statistical views 409

Part 6. Appendixes 415

Appendix A. Overview of the DB2

technical information 417

DB2 technical library in hardcopy or PDF format 417

Ordering printed DB2 books 420

Displaying SQL state help from the command line

processor 420

Accessing different versions of the DB2

Information Center 421

Displaying topics in your preferred language in the

DB2 Information Center 421

Updating the DB2 Information Center installed on

your computer or intranet server 422

DB2 tutorials 423

DB2 troubleshooting information 424

Terms and Conditions 424

Appendix B. Notices 427

Index 431

Contents v

vi Tuning Database Performance

Part 1. Elements of performance

Performance is the way a computer system behaves given a particular workload.

Performance is measured in terms of system response time, throughput, and

availability. Performance is also affected by:

v The resources available in your system

v How well those resources are used and shared.

In general, you tune your system to improve its cost-benefit ratio. Specific goals

could include:

v Processing a larger, or more demanding, work load without increasing

processing costs

For example, to increase the work load without buying new hardware or using

more processor time

v Obtaining faster system response times, or higher throughput, without

increasing processing costs

v Reducing processing costs without degrading service to your users

Translating performance from technical terms to economic terms is difficult.

Performance tuning certainly costs money in terms of user time as well as

processor time, so before you undertake a tuning project, weigh its costs against its

possible benefits. Some of these benefits are tangible:

v More efficient use of resources

v The ability to add more users to the system.

Other benefits, such as greater user satisfaction because of quicker response time,

are intangible. All of these benefits should be considered.

© Copyright IBM Corp. 1993, 2007 1

2 Tuning Database Performance

Chapter 1. Performance tuning guidelines

The following guidelines should help you develop an overall approach to

performance tuning.

Remember the law of diminishing returns: Your greatest performance benefits

usually come from your initial efforts. Further changes generally produce smaller

and smaller benefits and require more and more effort.

Do not tune just for the sake of tuning: Tune to relieve identified constraints. If

you tune resources that are not the primary cause of performance problems, this

has little or no effect on response time until you have relieved the major

constraints, and it can actually make subsequent tuning work more difficult. If

there is any significant improvement potential, it lies in improving the performance

of the resources that are major factors in the response time.

Consider the whole system: You can never tune one parameter or system in

isolation. Before you make any adjustments, consider how it will affect the system

as a whole.

Change one parameter at a time: Do not change more than one performance

tuning parameter at a time. Even if you are sure that all the changes will be

beneficial, you will have no way of evaluating how much each change contributed.

You also cannot effectively judge the trade-off you have made by changing more

than one parameter at a time. Every time you adjust a parameter to improve one

area, you almost always affect at least one other area that you may not have

considered. By changing only one at a time, this allows you to have a benchmark

to evaluate whether the change does what you want.

Measure and reconfigure by levels: For the same reasons that you should only

change one parameter at a time, tune one level of your system at a time. You can

use the following list of levels within a system as a guide:

v Hardware

v Operating System

v Application Server and Requester

v Database Manager

v SQL and XQuery Statements

v Application Programs

Check for hardware as well as software problems: Some performance problems

may be corrected by applying service either to your hardware, or to your software,

or to both. Do not spend excessive time monitoring and tuning your system when

simply applying service may make it unnecessary.

Understand the problem before you upgrade your hardware: Even if it seems that

additional storage or processor power could immediately improve performance,

take the time to understand where your bottlenecks are. You may spend money on

additional disk storage only to find that you do not have the processing power or

the channels to exploit it.

© Copyright IBM Corp. 1993, 2007 3

Put fall-back procedures in place before you start tuning: As noted earlier, some

tuning can cause unexpected performance results. If this leads to poorer

performance, it should be reversed and alternative tuning tried. If the former setup

is saved in such a manner that it can be simply recalled, the backing out of the

incorrect information becomes much simpler.

4 Tuning Database Performance

Chapter 2. Developing a performance improvement process

The performance improvement process is an iterative, long term approach to

monitoring and tuning aspects of performance. Depending on the result of

monitoring, you and your performance team adjust the configuration of the

database server and make changes to the applications that use the database server.

Base your performance monitoring and tuning decisions on your knowledge of the

kinds of applications that use the data and the patterns of data access. Different

kinds of applications have different performance requirements.

Consider the following outline of the performance improvement process as a

guideline.

To develop a performance improvement process:

1. Define performance objectives.

2. Establish performance indicators for the major constraints in the system.

3. Develop and execute a performance monitoring plan.

4. Continually analyze the results of monitoring to determine which resources

require tuning.

5. Make one adjustment at a time.

Even if you think that more than one resource requires tuning, or if several

tuning options are available for the resource you want to tune, make only one

change at a time so that you can make sure that your tuning efforts are

producing the effect you want. At some point, you can no longer improve

performance by tuning the database server and applications. Then you need to

upgrade your hardware.

Actual performance tuning requires trade-offs among system resources. For

example, to provide improved I/O performance you might increase buffer pool

sizes, but larger buffer pools require more memory, which might degrade other

aspects of performance.

© Copyright IBM Corp. 1993, 2007 5

6 Tuning Database Performance

Chapter 3. Performance information that users can provide

The first sign that your system requires tuning might be complaints from users. If

you do not have enough time to set performance objectives and to monitor and

tune in a comprehensive manner, you can address performance by listening to

your users. You can usually determine where to start looking for a problem by

asking a few simple questions. For example, you might ask your users:

v What do you mean by “slow response”? Is it 10 % slower than you expect it to

be, or tens of times slower?

v When did you notice the problem? Is it recent or has it always been there?

v Do other users have the same problem? Are these users one or two individuals

or a whole group?

v If a group of users is experiencing the same problems, are they connected to the

same local area network?

v Do the the problems seem to be related to a specific transaction or application

program?

v Do you notice any pattern in the problem occurrence? For example, does the

problem occur at a specific time of day, such as during lunch hour, or is it more

or less continuous?

© Copyright IBM Corp. 1993, 2007 7

8 Tuning Database Performance

Chapter 4. Performance tuning limits

Tuning can make only a certain amount of change in the efficiency of a system.

Consider how much time and money you should spend on improving system

performance, and how much spending additional time and money will help the

users of the system.

For example, tuning can often improve performance if the system encounters a

performance bottleneck. If you are close to the performance limits of your system

and the number of users increases by about ten percent, the response time is likely

to increase by much more than ten percent. In this situation, you need to

determine how to counterbalance this degradation in performance by tuning your

system.

However, there is a point beyond which tuning cannot help. At this point, consider

revising your goals and expectations within the limits of your environment. For

significant performance improvements, you might need to add more disk storage,

faster CPU, additional CPUs, more main memory, faster communication links, or a

combination of these.

© Copyright IBM Corp. 1993, 2007 9

10 Tuning Database Performance

Chapter 5. DB2 architecture and process overview

General information about DB2® architecture and processes can help you

understand detailed information provided for specific topics.

The following figure shows a general overview of the architecture and processes

for IBM® DB2 Version 9.1.

 On the client side, either local or remote applications, or both, are linked with the

DB2 client library. Local clients communicate using shared memory and

semaphores; remote clients use a protocol such as Named Pipes (NPIPE) or

TCP/IP

On the server side, activity is controlled by engine dispatchable units (EDUs). In all

figures in this section, EDUs are shown as circles or groups of circles. EDUs are

implemented as threads on all platforms in Version 9.5. DB2 agents are the most

Figure 1. Architecture and Processes Overview

© Copyright IBM Corp. 1993, 2007 11

common type of EDUs. These agents perform most of the SQL and XQuery

processing on behalf of applications. Prefetchers and page cleaners are other

common EDUs.

A set of subagents might be assigned to process the client application requests.

Multiple subagents can be assigned if the machine where the server resides has

multiple processors or is part of a partitioned database. For example, in a

symmetric multiprocessing (SMP) environment, multiple SMP subagents can

exploit the many processors.

All agents and subagents are managed using a pooling algorithm that minimizes

the creation and destruction of EDUs.

Buffer pools are areas of database server memory where database pages of user

table data, index data, and catalog data are temporarily moved and can be

modified. Buffer pools are a key determinant of database performance because

data can be accessed much faster from memory than from disk. If more of the data

needed by applications is present in a buffer pool, less time is required to access

the data than to find it on disk.

The configuration of the buffer pools, as well as prefetcher and page cleaner EDUs,

controls how quickly data can be accessed and how readily available it is to

applications.

v Prefetchers retrieve data from disk and move it into the buffer pool before

applications need the data. For example, applications needing to scan through

large volumes of data would have to wait for data to be moved from disk into

the buffer pool if there were no data prefetchers. Agents of the application send

asynchronous read-ahead requests to a common prefetch queue. As prefetchers

become available, they implement those requests by using big-block or

scatter-read input operations to bring the requested pages from disk to the

buffer pool. If you have multiple disks for storage of the database data, the data

can be striped across the disks. Striping data lets the prefetchers use multiple

disks at the same time to retrieve data.

v Page cleaners move data from the buffer pool back out to disk. Page cleaners

are background EDUs that are independent of the application agents. They look

for pages that have been modified and write those changed pages out to disk.

Page cleaners ensure that there is room in the buffer pool for the pages being

retrieved by the prefetchers.

Without the independent prefetchers and the page cleaner EDUs, the application

agents would have to do all of the reading and writing of data between the buffer

pool and disk storage.

The DB2 Process Model

Knowledge of the DB2 process model can help you determine the nature of a

problem because it helps you to understand how the database manager and its

associated components interact.

The process model used by all DB2 servers facilitates the communication that

occurs between database servers and clients and local applications. It also ensures

that database applications are isolated from resources such as database control

blocks and critical database files.

12 Tuning Database Performance

The DB2 server must perform many different tasks, for example processing

database application requests or ensuring log records are written out to disk. Each

task is typically performed by a separate engine dispatchable unit (EDU). In

previous releases, most EDUs were implemented using separate processes in

Linux® and UNIX® environments, and using operating system threads within a

main DB2 server process in Windows. Starting with Version 9.5, the DB2 server on

Linux and UNIX environments is now also threaded, and as such, EDUs are now

implemented using operating system threads on both UNIX and Windows.

There are many advantages to using a multithreaded architecture in the DB2

server. A new thread requires less memory and operating system resources than a

process, as some operating system resources can be shared among all threads

within the same process. Also, on some platforms, the context switch time for

threads is cheaper than for processes, which can improve performance. Most

significantly though, using a threaded model on all platforms makes the DB2

server easier to configure, as it is simpler to allocate more EDUs as needed, and it

is possible to dynamically allocate memory that needs to be shared by multiple

EDUs (in a process-based model, one EDU cannot see memory allocated from a

different EDU). See the Simplified Memory Configuration and the Agent and

Process Model Configuration sections for further details on these enhancements.

In previous releases, on Linux and UNIX systems, the ps system command or the

db2_local_ps command could be used to list all active DB2 EDUs. Starting in

version 9.5, those commands will no longer list any EDU threads within the

db2sysc process. As an alternative, you can now use the db2pd command, with the

-edus option, to list all EDU threads that are active. This command works on both

UNIX and Windows systems.

For each database being accessed, various EDUs are started to deal with the

various database tasks such as prefetching, communication, and logging. Database

Agents are a special class of EDUs that are created to handle application requests

for a database.

Each client application connection has a single coordinator agent that operates on

a database. A coordinator agent works on behalf of an application, and

communicates to other agents, using private memory, interprocess communication

(IPC), or remote communication protocols, as needed.

The DB2 architecture provides a firewall so that applications run in a different

address space from DB2. The firewall protects the database and the database

manager from applications, stored procedures, and user-defined functions (UDFs).

A firewall maintains the integrity of the data in the databases, because it disables

application programming errors from overwriting internal buffers or files of the

database manager. The firewall also improves reliability, because application errors

cannot crash the database manager.

Chapter 5. Architecture and processes 13

The following list provides additional details on the objects shown in the figure:

Client Programs

Client programs run remotely or on the same machine as the database server. They

make their first contact with the database through a listener. A coordinator agent

(db2agent) is then assigned to them.

Listeners

Client programs make initial contact with communication listeners, which are

started when DB2 is started. There is a listener for each configured communication

protocol, and an interprocess communications (IPC) listener (db2ipccm) for local

client programs. Listeners include:

v db2ipccm, for local client connections

v db2tcpcm, for TCP/IP connections

v db2tcpdm, for TCP/IP discovery tool requests

Agents

All connection requests from client applications, whether they are local or remote,

are allocated a corresponding coordinator agent (db2agent). When the coordinator

agent is created, it performs all database requests on behalf of the application.

In environments where the database partitioning feature (DPF) is enabled or those

where intra_query parallelism has been enabled, the coordinator agent will

distribute database requests to subagents (db2agntp and db2agnts respectively).

db2pfchr

db2pclnr

db2loggr

db2loggw

db2logts

db2dlock

db2fmp

db2vend

db2ipccm

db2sysc

Remote client
program

Local client
program

Per databasePer connectionPer instance

db2agent

db2agent

db2agntp

db2agntp

db2agntp

db2agntp

and p
Other threads

rocesses

Agent pool

Firewall

db2tcpcm

Figure 2. Process model for DB2 systems

14 Tuning Database Performance

These agents perform the requests for the application. Once the coordinator agent

is created, it handles all database requests on behalf of its application by

coordinating subagents (db2agntp) that perform requests on the database.

Subagents that are associated with an application but are currently idle are

identified by the name db2agnta.

A coordinator agent may be:

v Connected to the database with an alias. For example, ″db2agent (DATA1)″ is

connected to the database alias ″DATA1″.

v Attached to an instance. For example, ″db2agent (user1)″ is attached to the

instance ″user1″.

The DB2 process model will instantiate other types of agents to execute specific

operations such as independent coordinator agents or subcoordinator agents. For

example, the independent coordinator agent db2agnti is used to run event

monitors and the subcoordinator agent db2agnsc is used to parallelize execution of

the restart of a database following an abrupt shutdown.

Idle agents reside in an agent pool. These agents are available for requests from

coordinator agents operating on behalf of client programs, or from subagents

operating on behalf of existing coordinator agents. Having an appropriately-sized

idle agent pool can help performance in configurations that have significant

application workloads, as idle agents can be immediately used as needed, rather

than having to allocate a completely new agent for each application connection,

which involves creating a thread and allocating and initializing memory and other

resources. Starting with version 9.5, DB2 can also automatically manage the size of

the idle agent pool if desired.

db2fmp

The fenced mode process. It is responsible for executing fenced stored procedures

and user-defined functions outside the firewall. The db2fmp process is always a

separate process but may be multithreaded depending on the types of routines it

executes.

db2vend

This is a process to execute vendor code on behalf of an EDU, for instance to

execute the user-exit program for log archiving (UNIX-only).

Database EDUs

The following list includes some of the important EDUs used by each database:

v db2pfchr, for buffer pool prefetchers

v db2pclnr, for buffer pool page cleaners

v db2loggr, for manipulating log files to handle transaction processing and

recovery

v db2loggw, for writing log records to the log files.

v db2logts, tracks which table spaces have log records in which log files. This

information is recorded in the DB2TSCHG.HIS file in the database directory. It is

used to speed up the forward phase of table space rollforward recovery.

Chapter 5. Architecture and processes 15

v db2dlock, for deadlock detection. In a multi-partitioned database environment,

an additional thread called db2glock is used to coordinate the information

gathered from the db2dlock EDU on each partition. db2glock runs only on the

catalog partition.

v db2taskd, for distribution of background database tasks. The tasks are executed

by threads called db2taskp.

v db2hadrp, HADR primary server thread

v db2hadrs, HADR standby server thread

v db2lfr, for log file readers that processes individual log files

v db2shred processes individual log records within log pages

v db2redom, for the redo master. During recovery, processes redo log records and

assigns log records to redo workers for processing.

v db2redow, for the redo worker. During recovery, processes redo log records at

the request of the redo master.

v db2logmgr, for the log manager. Manages log files for a recoverable database

v db2wlmd, for automatic collection of workload management statistics.

v event monitor threads are identified as follows:

– db2evm%1%2 (%3) where %1 can be

- g- global file event monitor

- l - local file event monitor

- t - table event monitor

- gp - global piped event monitor

- lp - local piped event monitor
where %2 can be

- i - coordinator

- p - not coordinator

and %3 is the event monitor name
v backup and restore threads are identified as follows:

– db2bm.%1.%2 backup and restore buffer manipulator, and db2med.%1.%2,

backup and restore media controller, where

- %1- the EDU ID of the agent that controls the backup or restore session

- %2- a sequential value used to disambiguate among (possibly many)

threads belonging to a particular backup or restore session

For example: db2bm.13579.2 identifies the second db2bm thread that is

controlled by the db2agent thread with EDU ID 13579.

Database Server Threads and Processes

The system controller (db2sysc on UNIX, db2syscs.exe on Windows) must exist in

order for the database server to function. Also, the following threads and processes

may be started to carry out various tasks:

v db2resync, the resync agent that scans the global resync list

v db2wdog, the watchdog on UNIX and Linux operating systems that handles

abnormal terminations

v db2fcms, the fast communications manager sender daemon

v db2fcmr, the fast communications manager receiver daemon

v db2pdbc, the parallel system controller, which handles parallel requests from

remote nodes (used only in a partitioned database environment).

16 Tuning Database Performance

v db2cart, for archiving log files when accessing a database configured with

USEREXIT enabled

v db2fmtlg, for formatting log files, when accessing a database configured with

LOGRETAIN enabled, but with USEREXIT disabled

v db2panic, the panic agent, which handles urgent requests after agent limits have

been reached at a particular node (used only in a partitioned database

environment)

v db2srvlst, manages lists of addresses for systems such as DB2 for z/OS.

v db2fmd, the fault monitor daemon

v db2disp, the client connection concentrator dispatcher

v db2acd, autonomic computing daemon hosting the health monitor and

automatic maintenance utilities. This process was formerly called db2hmon.

v db2licc, manages installed DB2 licenses

v db2thcln, recycles resources when an EDU terminates (UNIX-only)

v db2aiothr, manages Asynchronous I/O requests for the database partition

(UNIX-only)

v db2alarm, notifies EDUs when their requested timer has expired (UNIX-only)

v db2sysc, main system controller EDU, handles critical DB2 server events

Deadlocks

A deadlock is created when two applications are each locking data needed by the

other, resulting in a situation when neither application can continue execution. For

example, in the following diagram, there are two applications running

concurrently: Application A and Application B. The first step of application A is to

update the first row of Table 1, and the second step is to update the second row of

Table 2. Application B updates the second row of Table 2 first, and then the first

row of Table 1. At one point in time, T1, Application A is executing its first step,

locking the first row of Table 1 to update it. At the same time, Application B locks

the second row in Table 2 to make an update. At T2, Application A tries to execute

the next step and requests a lock on the second row in Table 2 for an update.

However, at the same time, Application B is trying to lock and update the first row

in Table 1. Since Application A will not release its lock on the first row of Table 1

until it is able to complete an update of the second row in Table 2, and Application

B will not release its lock on the second row on Table 2 until it can lock and

update the first row of Table 1, a deadlock occurs. The applications can wait

forever until one application releases the lock on the held data.

Chapter 5. Architecture and processes 17

Because applications do not voluntarily release locks on data that they need, a

deadlock detector process is required to break deadlocks and allow application

processing to continue. As its name suggests, the deadlock detector monitors the

information about agents waiting on locks, awakening at intervals specified by the

dlchktime configuration parameter.

If it finds a deadlock, the deadlock detector arbitrarily selects one deadlocked

process as the victim process to roll back. The victim process is awakened, and

returns SQLCODE -911 (SQLSTATE 40001), with reason code 2, to the calling

application. The database manager rolls back uncommitted transactions from the

selected process automatically. When the rollback is complete, the locks that

belonged to the victim process are released, and the other processes involved in

the deadlock can continue.

To ensure good performance, select the proper interval for the deadlock detector.

An interval that is too short causes unnecessary overhead, and an interval that is

too long allows a deadlock to delay a process for an unacceptable amount of time.

For example, a wake-up interval of 5 minutes may allow a deadlock to exist for

almost 5 minutes, which can seem like a long time for short transaction processing.

It is important to balance the possible delays in resolving deadlocks with the

overhead of detecting them.

Note:

1. In a partitioned database environment, the dlchktime configuration parameter

interval is applied only at the catalog node. If a large number of deadlocks are

detected in a partitioned database environment, increase the value of the

dlchktime parameter to account for lock waits and communication waits.

2. In a partitioned database, each database partition sends lock graphs to the

database partition that contains the system catalog views. Global deadlock

detection takes place on this database partition.

A different problem occurs when an application with more than one independent

process that accesses the database is structured to make deadlocks likely. For

example, an application in which several processes access the same table for reads

and then writes. If the processes do read-only SQL or XQuery queries and then do

SQL updates on the same table, the chance of deadlocks increases because of

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure 3. Deadlock between applications

18 Tuning Database Performance

potential contention between the processes for the same data. For instance, if two

processes read the table and then update the table, process A might try to get an X

lock on a row on which process B has an S lock. To avoid such deadlocks,

applications that access data with the intention of modifying it should do one of

the following:

v Use the FOR UPDATE OF clause when performing a select operation. This

clause ensures that a U lock is imposed when process A attempts to read the

data. Row blocking is disabled.

v Use the WITH RR USE AND KEEP UPDATE LOCKS clause or the WITH RS

USE AND KEEP UPDATE LOCKS clause when performing the query. Either

clause ensures that a U lock is imposed when process A attempts to read the

data and allows row blocking.

At the same time a database is created, a detailed deadlocks event monitor is

created. As with any monitor, there is some overhead associated with this event

monitor.

To limit the amount of disk space that this event monitor consumes, the event

monitor deactivates and a message is written to the administration notification log

when it has reached its maximum number of output files. Removing output files

that are no longer needed allows the event monitor to reactivate on the next

database activation.

If you do not want the detailed deadlocks event monitor, the event monitor can be

dropped using the command:

 DROP EVENT MONITOR db2detaildeadlock

In a federated system environment in which an application accesses nicknames, the

data requested by the application might not be available because of a deadlock at a

data source. When this happens, DB2 relies on the deadlock handling facilities at

the data source. If deadlocks occur across more than one data source, DB2 relies on

data source timeout mechanisms to break the deadlock.

To log more information about deadlocks, set the database manager configuration

parameter diaglevel to four. The logged information includes the locked object, the

lock mode, and the application holding the lock. The current dynamic SQL and

XQuery statements or static package names might also be logged. Dynamic SQL

and XQuery statements are logged only at diaglevel four.

Default deadlock event monitor

At database creation time, a deadlock event monitor called

DB2DETAILDEADLOCK is created and activated by default . It starts

automatically when the instance activates. When this monitor is active, diagnostic

information is collected on the first occurrence of a deadlock, allowing for

investigation into the cause without requiring a reproduction.

To limit the amount of disk space that this event monitor consumes, the event

monitor deactivates and a message is written to the administration notification log

when it has reached its maximum number of output files. Removing output files

that are no longer needed allows the event monitor to reactivate on the next

database activation.

The command is created using the following statement:

Chapter 5. Architecture and processes 19

db2 create event monitor db2detaildeadlock for deadlocks with details write to file

’db2detaildeadlock’ maxfiles 20 maxfilesize 512 buffersize 17 blocked append autostart

The WITH DETAILS clause provides information such as the statement that was

executing at the time the deadlock occurred, and the locklist (provided sufficient

memory exists in the dbmon heap).

The output files are created under the directory ’db2event’ in your database

directory. If you do not specify a location when you create the database, then the

location of the database directory can be determined by viewing the database

manager configuration parameter dftdbpath. For example, on a sample database on

AIX®, the event monitor output files might be found in the directory:

NODE0000/SQL00001/db2event/db2detaildeadlock

The event monitor writes to a file up to a maximum of 20 files, each with a size of

2M (512 4K pages). When the maxfilesize (2M) is reached, the output file is closed

and a new one is opened. When the number of files created reaches maxfiles (20),

the monitor shuts itself down and a message similar to the following is recorded in

the administration notification log:

2004-12-01-22.58.24.968000 Instance: DB2 Node: 000 PID: 1116(db2syscs.exe) TID: 2540

Appid: *LOCAL.DB2.041202080328 database monitor sqm__evmgr::log_ev_err Probe:2

Databse:XXX ADM2001W The Event Monitor "DB2DETAILDEADLOCK" was deactivated because the

MAXFILES and MAXFILES CREATE EVENT MONITOR parameters’ limits have been reached.

Removing output files that are no longer needed allows the monitor to start up

again on the next database activation. If you do not want the detailed deadlocks

event monitor, then the event monitor can be dropped using the command:

 DROP EVENT MONITOR db2detaildeadlock

If you are concerned about deadlocks, do not drop this monitor.

Disk storage overview

Disk-storage performance factors

The hardware that makes up your system can influence the performance of your

system. As an example of the influence of hardware on performance, consider

some of the implications associated with disk storage.

Four aspects of disk-storage management affect performance:

v Division of storage

How you divide a limited amount of storage between indexes and data and

among table spaces determines to a large degree how each will perform in

different situations.

v Wasted storage

Wasted storage in itself may not affect the performance of the system that is

using it, but wasted storage is a resource that could be used to improve

performance elsewhere.

v Distribution of disk I/O

How well you balance the demand for disk I/O across several disk storage

devices, and controllers can affect how fast the database manager can retrieve

information from disks.

v Lack of available storage

Reaching the limit of available storage can degrade overall performance.

20 Tuning Database Performance

Part 2. Tables and indexes

© Copyright IBM Corp. 1993, 2007 21

22 Tuning Database Performance

Chapter 6. Table and index management for standard tables

 In standard tables, data is logically organized as a list of data pages. These data

pages are logically grouped together based on the extent size of the table space.

For example, if the extent size is four, pages zero to three are part of the first

extent, pages four to seven are part of the second extent, and so on.

The number of records contained within each data page can vary based on the size

of the data page and the size of the records. The maximum number of records

which can fit on one page can be found in Table 1. Most pages contain only user

records. However, a small number of pages include special internal records, that

are used by DB2 to manage the table. For example, in a standard table there is a

Free Space Control Record (FSCR) on every 500th data page. These records map

the free space for new records on each of the following 500 data pages (until the

next FSCR). This available free space is used when inserting records into the table.

Logically, index pages are organized as a B-tree which can efficiently locate records

in the table that have a given key value. The number of entities on an index page

is not fixed but depends on the size of the key. For tables in DMS table spaces,

record identifiers (RIDs) in the index pages use table space-relative page numbers,

Logical indexview ofLogical
table view

Physical
table view

. . .

. . .

. . .

. . .

0 4020

4021

4022

4023

252

1

2

3

4

876500

... ...

Data page format
Page Header

3800 -1 3400

Record 2

Record 1

Legend

user records

reserved for system records

FSCR

A
C

K S

K

RID

K
RID

4023,2

C
RID

RID RID

RID

...

RID (record ID) = Page 4023, Slot 2

Figure 4. Logical table, record, and index structure for standard tables

© IBM Corporation 1993, 2007 23

not object-relative page numbers. This allows an index scan to directly access the

data pages without requiring an Extent Map page (EMP) for mapping.

Each data page has the same format. A page header begins each data page. After

the page header there is a slot directory. Each entry in the slot directory

corresponds to a different record on the page. The entry itself is the byte-offset into

the data page where the record begins. Entries of minus one (-1) correspond to

deleted records.

Record identifiers and pages

Record identifiers (RIDs) are a page number followed by a slot number. Type-2

index records also contain an additional field called the ridFlag. The ridFlag stores

information about the status of keys in the index, such as whether this key has

been marked deleted. Once the index is used to identify a RID, the RID is used to

get to the correct data page and slot number on that page. Once a record is

assigned a RID, it does not change until a table reorganization.

 When a table page is reorganized, embedded free space that is left on the page

after a record is physically deleted is converted to usable free space. RIDs are

redefined based on movement of records on a data page to take advantage of the

usable free space.

DB2 supports different page sizes. Use larger page sizes for workloads that tend to

access rows sequentially. For example, sequential access is used for Decision

Support applications or where temporary tables are extensively used. Use smaller

page sizes for workloads that tend to be more random in their access. For example,

random access is used in OLTP environments.

Index management in standard tables

DB2 indexes use an optimized B-tree implementation based on an efficient and

high concurrency index management method using write-ahead logging.

The optimized B-tree implementation has bi-directional pointers on the leaf pages

that allows a single index to support scans in either forward or reverse direction.

Index page are usually split in half except at the high-key page where a 90/10 split

Figure 5. Data page and record-id (RID) format

24 Tuning Database Performance

is used. That is, the high ten percent of the index keys are placed on a new page.

This type of index page split is useful for workloads where INSERT requests are

often completed with new high-keys.

Starting in Version 8.1, DB2 uses type-2 indexes. If you migrate from earlier

versions of DB2, both type-1 and type-2 indexes are in use until you reorganize

indexes or perform other actions that convert type-1 indexes to type-2. The index

type determines how deleted keys are physically removed from the index pages.

v For type-1 indexes, keys are removed from the index pages during key deletion

and index pages are freed when the last index key on the page is removed.

v For type-2 indexes, index keys are removed from the page during key deletion

only if there is an X lock on the table. If keys cannot be removed immediately,

they are marked deleted and physically removed later. For more information,

refer to the section that describes type-2 indexes.

If you have enabled online index defragmentation by setting the MINPCTUSED

clause to a value greater than zero when you created the index, index leaf pages

can be merged online. The value that you specify is the threshold for the minimum

percentage of space used on the index leaf pages. After a key is removed from an

index page, if the percentage of space used on the page is at or below the value

given, then the database manager attempts to merge the remaining keys with those

of a neighboring page. If there is sufficient room, the merge is performed and an

index leaf page is deleted. Online index defragmentation can improve space reuse,

but if the MINPCTUSED value is too high then the time taken to attempt a merge

increases and becomes less likely to succeed. The recommended value for this

clause is fifty percent or less.

Note: Because online defragmentation occurs only when keys are removed from

an index page, in a type-2 index it does not occur if keys are merely marked

deleted, but have not been physically removed from the page.

The INCLUDE clause of the CREATE INDEX statement allows the inclusion of a

specified column or columns on the index leaf pages in addition to the key

columns. This can increase the number of queries that are eligible for index-only

access. However, this can also increase the index space requirements and, possibly,

index maintenance costs if the included columns are updated frequently. The

maintenance cost of updating include columns is less than that of updating key

columns, but more than that of updating columns that do not appear in the index.

Ordering the index B-tree is only done using the key columns and not the included

columns.

Chapter 6. Table and index management for standard tables 25

26 Tuning Database Performance

Chapter 7. Table and index management for MDC tables

Table and index organization for multi-dimensional clustering (MDC) tables is

based on the same logical structures as standard table organization. Like standard

tables, MDC tables are organized into pages that contain rows of data, divided into

columns, and the rows on each page are identified by row IDs (RIDs). In addition,

however, the pages of MDC tables are grouped into extent-sized blocks. For

example, in the illustration below, which shows a table with an extent size of four,

the first four pages, numbered 0 through 3, are the first block in the table. The next

set of pages, numbered 4 through 7, are the second block in the table.

© IBM Corporation 1993, 2007 27

The first block contains special internal records that are used by DB2 to manage

the table, including the free-space control record (FSCR). In subsequent blocks, the

first page contains the FSCR. An FSCR maps the free space for new records that

exists on each of the pages in the block. This available free space is used when

inserting records into the table.

As the name implies, MDC tables cluster data on more than one dimension. Each

dimension is determined by a column or set of columns that you specify in the

ORGANIZE BY DIMENSIONS clause of the CREATE TABLE statement. When you

create an MDC table, the following two kinds of indexes are created automatically:

v A dimension-block index, which contains pointers to each occupied block for a

single dimension.

Legend

user records

reservedX

U

F

in use

free

Logical view of block map
for first 3 blocks

Logical
index

view of
dimension block

reserved for system records

FSCR

A
C

K S

K

X

0

U

1

F

2 ...

BID

K
BID

252,0

C
BID

BID BID

BID

Logical
table view

Physical
table view

...

0 4020

4021

4022

4023

1

2

3

4 252

253

254

255

5

6

7

1488

1489

1490

1491

8

9

10

11

block 0

block 2

block 1

BID (block Id) = Page 252, slot 0
(first physical page of block, slot always 0)

Figure 6. Logical table, record, and index structure for MDC tables

28 Tuning Database Performance

v A composite block index, which contains all dimension key columns. The

composite block index is used to maintain clustering during insert and update

activity.

The optimizer considers access plans which utilize dimension-block indexes when

it determines the most efficient access plan for a particular query. When queries

have predicates on dimension values, the optimizer can use the dimension block

index to identify, and fetch from, the extents that contain these values. Because

extents are physically contiguous pages on disk, this results in more efficient

performance and minimizes I/O.

In addition, you can create specific RID indexes if analysis of data access plans

indicates that such indexes would improve query performance.

Along with the dimension block indexes and the composite block index, MDC

tables maintain a block map that contains a bitmap that indicates the availability

status of each block. The following attributes are coded in the bitmap list:

v X (reserved): the first block contains only system information for the table.

v U (in use): this block is used and associated with a dimension block index

v L (loaded): this block has been loaded by a current load operation

v C (check constraint): this block is set by the load operation to specify

incremental constraint checking during the load.

v T (refresh table): this block is set by the load operation to specify that AST

maintenance is required.

v F (free): If no other attribute is set, the block is considered free.

Because each block has an entry in the block map file, the file grows as the table

grows. This file is stored as a separate object. In an SMS table space it is a new file

type. In a DMS table space, it has a new object descriptor in the object table.

Chapter 7. Table and index management for MDC tables 29

30 Tuning Database Performance

Chapter 8. Asynchronous index cleanup for MDC tables

You can enhance the performance of a rollout deletion, an efficient method of

deleting qualifying blocks of data from multidimensional clustering (MDC) tables,

by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of

indexes following operations that invalidate index entries.

During a standard rollout delete, indexes are cleaned up synchronously with the

delete. For tables that contain many record ID (RID) indexes, a significant portion

of the delete time is spent removing index keys that reference the table rows being

deleted. You can speed up the rollout by specifying that these indexes are to be

cleaned up after the delete has been committed.

To take advantage of AIC for MDC tables, you need to explicitly enable the deferred

index cleanup rollout mechanism. There are two methods of specifying a deferred

rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER and issuing

the SET CURRENT MDC ROLLOUT MODE statement. During a deferred index

cleanup rollout, blocks are marked as rolled out without an update to the RID

indexes until after the transaction commits. Block identifier (BID) indexes are still

cleaned up during the delete because they don’t require row-level processing.

Rollout AIC is invoked when a rollout delete is committed or, if the database was

shut down, when the table is first accessed following a restart of the database.

While AIC is in progress, any queries against the indexes work, including those

accessing the index being cleaned up.

There one coordinating cleaner per MDC table. The index cleanup for multiple

rollouts is consolidated in the cleaner. The cleaner spawns a cleanup agent for each

RID index, and the cleanup agents update the RID indexes in parallel. Cleaners are

also integrated with the utility throttling facility. By default, each cleaner has a

utility impact priority of 50 (acceptable values are between 1 and 100, with 0

indicating no throttling). You can change the priority by using the SET

UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring

Because the rolled-out blocks on an MDC table are not reusable until after the

cleanup is complete, it is useful to monitor the progress of a deferred index

cleanup rollout. Use the LIST UTILITIES monitor command to display a utility

monitor entry for each index being cleaned up. You can also query the number of

blocks in the table currently being cleaned up through deferred index cleanup

rollout (BLOCKS_PENDING_CLEANUP) by using the

SYSPROC.ADMIN_GET_TAB_INFO_V95 table function. To query the number of

MDC table blocks pending cleanup at the database level, use the GET SNAPSHOT

command.

In the following sample output for the LIST UTILITIES, progress is indicated by

the number of pages in each index that have been cleaned up. Each phase listed in

the output represents one of the RID indexes being cleaned for the table.

db2 LIST UTILITIES SHOW DETAILS output.

ID = 2

Type = MDC ROLLOUT INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

© IBM Corporation 1993, 2007 31

Description = TABLE.<schema_name>.<table_name>

Start Time = 06/12/2006 08:56:33.390158

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Estimated Percentage Complete = 83

 Phase Number = 1

 Description = <schema_name>.<index_name>

 Total Work = 13 pages

 Completed Work = 13 pages

 Start Time = 06/12/2006 08:56:33.391566

 Phase Number = 2

 Description = <schema_name>.<index_name>

 Total Work = 13 pages

 Completed Work = 13 pages

 Start Time = 06/12/2006 08:56:33.391577

 Phase Number = 3

 Description = <schema_name>.<index_name>

 Total Work = 9 pages

 Completed Work = 3 pages

 Start Time = 06/12/2006 08:56:33.391587

32 Tuning Database Performance

Chapter 9. Index structure

The database manager uses a B+ tree structure for index storage. A B+ tree has one

or more levels, as shown in the following diagram, in which RID means row ID:

 The top level is called the root node. The bottom level consists of leaf nodes in which

the index key values are stored with pointers to the row in the table that contains

the key value. Levels between the root and leaf node levels are called intermediate

nodes.

When it looks for a particular index key value, the index manager searches the

index tree, starting at the root node. The root contains one key for each node at the

next level. The value of each of these keys is the largest existing key value for the

corresponding node at the next level. For example, if an index has three levels as

shown in the figure, then to find an index key value, the index manager searches

the root node for the first key value greater than or equal to the key being looked

for. The root node key points to a specific intermediate node. The index manager

follows this procedure through the intermediate nodes until it finds the leaf node

that contains the index key that it needs.

The figure shows the key being looked for as “I”. The first key in the root node

greater than or equal to “I” is “N”. This points to the middle node at the next

level. The first key in that intermediate node that is greater than or equal to “I” is

“L”. This points to a specific leaf node where the index key for “I” and its

'E'

'F'

'N'

'L'

'Z'

'N'

('G',rid)
('I',rid)
('K',rid)

('F',rid) ('M',rid)
('N',rid).

INTERMEDIATE
NODES

ROOT NODE

LEAF
NODES

Figure 7. B+ Tree Structure

© Copyright IBM Corp. 1993, 2007 33

corresponding row ID is found. The row ID identifies the corresponding row in the

base table. The leaf node level can also contain pointers to previous leaf nodes.

These pointers allow the index manager to scan across leaf nodes in either

direction to retrieve a range of values after it finds one value in the range. The

ability to scan in either direction is only possible if the index was created with the

ALLOW REVERSE SCANS clause.

For multi-dimensional clustering (MDC) tables, a block index is created

automatically for each clustering dimension that you specify for the table. An

additional composite block index is also created, which contains a key part for

each column involved in any dimension of the table. These indexes contain

pointers to block IDs (BIDs) instead of RIDs, and provide data-access

improvements.

In DB2 Version 8.1 and later, indexes can be of either type 1 or type 2. A type-1

index is the older index style. Indexes that you created in earlier versions of DB2

are of this kind.

A type-2 index is somewhat larger than a type-1 index and provides features that

minimize next-key locking. The one-byte ridFlag byte stored for each RID on the

leaf page of a type-2 index is used to mark the RID as logically deleted so that it

can be physically removed later. For each variable length column included in the

index, one additional byte stores the actual length of the column value. Type-2

indexes might also be larger than type-1 indexes because some keys might be

marked deleted but not yet physically removed from the index page. After the

DELETE or UPDATE transaction is committed, the keys marked deleted can be

cleaned up.

34 Tuning Database Performance

Part 3. Processes

© Copyright IBM Corp. 1993, 2007 35

36 Tuning Database Performance

Chapter 10. Reducing logging overhead to improve query

performance

All databases maintain log files that keep records of database changes. There are

two logging strategy choices:

v Circular logging, in which the log records fill the log files and then overwrite

the initial log records in the initial log file. The overwritten log records are not

recoverable.

v Retain log records, in which a log file is archived when it fills with log records.

New log files are made available for log records. Retaining log files enables

roll-forward recovery. Roll-forward recovery reapplies changes to the database

based on completed units of work (transactions) that are recorded in the log.

You can specify that roll-forward recovery is to the end of the logs, or to a

particular point in time before the end of the logs.

Regardless of the logging strategy, all changes to regular data and index pages are

written to the log buffer. The data in the log buffer is written to disk by the logger

process. In the following circumstances, query processing must wait for log data to

be written to disk:

v On COMMIT

v Before the corresponding data pages are written to disk, because DB2 uses

write-ahead logging. The benefit of write-ahead logging is that when a

transaction completes by executing the COMMIT statement, not all of the

changed data and index pages need to be written to disk.

v Before some changes are made to metadata, most of which result from executing

DDL statements

v On writing log records into the log buffer, if the log buffer is full

DB2 manages writing log data to disk in this way in order to minimize processing

delay. In an environment in which many short concurrent transactions occur, most

of the processing delay is caused by COMMIT statements that must wait for log

data to be written to disk. As a result, the logger process frequently writes small

amounts of log data to disk, with additional delay caused by log I/O overhead. To

balance application response time against such logging delay, set the mincommit

database configuration parameter to a value greater than 1. This setting might

cause longer delay for COMMIT from some applications, but more log data might

be written in one operation.

Changes to large objects (LOBs) and LONG VARCHARs are tracked through

shadow paging. LOB column changes are not logged unless you specify log retain

and the LOB column is defined on the CREATE TABLE statement without the

NOT LOGGED clause. Changes to allocation pages for LONG or LOB data types

are logged like regular data pages.

© IBM Corporation 1993, 2007 37

38 Tuning Database Performance

Chapter 11. Improving insert performance

When SQL statements use INSERT to place new information in a table, an INSERT

search algorithm first searches the Free Space Control Records (FSCRs) to find a

page with enough space. However, even when the FSCR indicates a page has

enough free space, the space may not be usable because it is reserved by an

uncommitted DELETE from another transaction. To ensure that uncommitted free

space is usable, you should COMMIT transactions frequently.

The setting of the DB2MAXFSCRSEARCH registry variable determines the number

of FSCRs in a table that are searched for an INSERT. The default value for this

registry variable is five. If no space is found within the specified number of FSCRs,

the inserted record is appended at the end of the table. To optimize INSERT speed,

subsequent records are also appended to the end of the table until two extents are

filled. After the two extents are filled, the next INSERT resumes searching at the

FSCR where the last search ended.

Note: To optimize for INSERT speed at the possible expense of faster table

growth, set the DB2MAXFSCRSEARCH registry variable to a small number. To

optimize for space reuse at the possible expense of INSERT speed, set

DB2MAXFSCRSEARCH to a larger number.

After all FSCRs in the entire table have been searched in this way, the records to be

inserted are appended without additional searching. Searching using the FSCRs is

not done again until space is created somewhere in the table, such as following a

DELETE.

There are two other INSERT algorithm options, as follows:

v APPEND MODE

In this mode, new rows are always appended to the end of the table. No

searching or maintenance of FSCRs takes place. This option is enabled using the

ALTER TABLE APPEND ON statement, and can improve performance for tables

that only grow, like journals.

v A clustering index is defined on the table.

In this case, the database manager attempts to insert records on the same page

as other records with similar index key values. If there is no space on that page,

the attempt is made to put the record into the surrounding pages. If there is still

no success, the FSCR search algorithm, described above, is used, except that a

worst-fit approach is used instead of a first-fit approach. This worst-fit approach

tends to choose pages with more free space. This method establishes a new

clustering area for rows with this key value.

When you define a clustering index on a table, use ALTER TABLE... PCTFREE

before you either load or reorganize the table. The PCTFREE clause specifies the

percentage of free space that should remain on the data page of the table after

loading and reorganizing. This increases the probability that the cluster index

operation will find free space on the appropriate page.

© IBM Corporation 1993, 2007 39

40 Tuning Database Performance

Chapter 12. Update processing

When an agent updates a page, the database manager uses the following protocol

to minimize the I/O required by the transaction and ensure recoverability.

1. The page to be updated is pinned and latched with an exclusive lock. A log

record is written to the log buffer describing how to redo and undo the change.

As part of this action, a log sequence number (LSN) is obtained and is stored in

the page header of the page being updated.

2. The change is made to the page.

3. The page is unlatched and unfixed.

The page is considered to be “dirty” because changes to the page have not

been written out to disk.

4. The log buffer is updated.

Both the data in the log buffer and the “dirty” data page are forced to disk.

For better performance, these I/Os are delayed until a convenient point, such as

during a lull in the system load, or until necessary to ensure recoverability, or to

limit recovery time. Specifically, a “dirty” page is forced to disk at the following

times:

v When another agent chooses it as a victim.

v When a page cleaner acts on the page as the result of:

– Another agent choosing it as a victim.

– The chngpgs_thresh database configuration parameter percentage value is

exceeded. When this value is exceeded, asynchronous page cleaners wake up

and write changed pages to disk.

If proactive page cleaning is enabled, this value is irrelevant and does not

trigger page cleaning.

– The softmax database configuration parameter percentage value is exceeded.

Once exceeded, asynchronous page cleaners wake up and write changed

pages to disk.

If proactive page cleaning is enabled for the database, and the number of

page cleaners has been properly configured for the database, this value

should never be exceeded.

– The number of clean pages on the hate list drops too low. Page cleaners only

react to this condition under the proactive page cleaning method.

– When a dirty page currently contributes to, or is projected to contribute to an

LSNGAP condition. Page cleaners only react to this condition under the

proactive page cleaning method.
v When the page was updated as part of a table which has the NOT LOGGED

INITIALLY clause invoked and a COMMIT statement is issued. When the

COMMIT statement is executed, all changed pages are flushed to disk to ensure

recoverability.

© Copyright IBM Corp. 1993, 2007 41

42 Tuning Database Performance

Chapter 13. Client-server processing model

Local and remote application processes can work with the same database. A

remote application is one that initiates a database action from a machine that is

remote from the database machine. Local applications are directly attached to the

database at the server machine.

How DB2 manages client connections depends on whether the connection

concentrator is on or off. The connection concentrator is ON when the

max_connections database manager configuration parameter is set larger than the

max_coordagents configuration parameter.

v If the connection concentrator is OFF, each client application is assigned a

unique EDU called a coordinator agent that coordinates the processing for that

application and communicates with it.

v If the connection concentrator is ON, each coordinator agent can manage many

client connections, one at a time, and might coordinate the other worker agents

to do this work. For Internet applications with many relatively transient

connections, or similar applications with many relatively small transactions, the

connection concentrator improves performance by allowing many more client

applications to be connected. It also reduces system resource use for each

connection.

Each of the circles in the DB2 server of the following figure represent engine

dispatchable units (EDUs) which are implemented using operating system threads.

A means of communicating between an application and the database manager

must be established before the work the application wants done at the database

can be carried out.

At A1 in the figure below, a local client establishes communications first through

the db2ipccm. At A2, the db2ipccm works with a db2agent EDU, which becomes

the coordinator agent for the application requests from the local client. The

coordinator agent then contacts the client application at A3 to establish shared

memory communications between the client application and the coordinator. The

application at the local client is connected to the database at A4.

At B1 in the figure below, a remote client establishes communications through the

db2tcpcm EDU. If any other communications protocol is chosen, the appropriate

communication manager is used. The db2tcpcm EDU establishes TCP/IP

communication between the client application and the db2tcpcm. It then works

with a db2agent at B2, which becomes the coordinator agent for the application

and passes the connection to this agent. At B4 the coordinator agent contacts the

remote client application, which is then connected to the database at B5.

© Copyright IBM Corp. 1993, 2007 43

Other things to notice in this figure:

v Worker agents carry out application requests.

v There are four types of worker agents: active coordinator agents, active

subagents, associated subagents, and idle agents.

v Each client connection is linked to an active coordinator agent.

v In a partitioned database environment, and enabled intra-partition parallelism

environments, the coordinator agents distribute database requests to subagents

(db2agntp). The subagents perform the requests for the application.

v There is an agent pool (db2agent) where idle and pooled agents wait for new

work.

v Other EDUs manage client connections, logs, two-phase COMMITs, backup and

restore tasks, and other tasks.

A1

Application A

Local client

Application A

EDUs per connectionEDUs per instance

db2agntp

db2agntp

Coordinator
agent

Application B

Active subagents

db2agntp

Idle subagents

db2agntp

Coordinator
agent

db2agent

logical
agents

db2tcpcm

A2

shared memory
and semaphores

Application B

Remote client

B1
B2

db2ipccm

A3

A4

B3

B4

B5

Unassociated
idle agents

db2agent

Server machine

db2agent

Figure 8. Process model overview

44 Tuning Database Performance

This figure shows additional engine dispatchable units (EDUs) that are part of the

server machine environment. Each active database has its own shared pool of

prefetchers (db2pfchr) and page cleaners (db2pclnr), and its own logger (db2loggr)

and deadlock detector (db2dlock).

Fenced user-defined functions (UDFs) and stored procedures, which are not shown

in the figure, are managed to minimize costs associated with their creation and

destruction. The default for the keepfenced database manager configuration

parameter is “YES”, which keeps the stored procedure process available for re-use

at the next stored procedure call.

Note: Unfenced UDFs and stored procedures run directly in an agent’s address

space for better performance. However, because they have unrestricted access to

the agent’s address space, they need to be rigorously tested before being used.

The multiple database partition processing model is a logical extension of the

single database partition processing model. In fact, a single common code base

supports both modes of operation. The following figure shows the similarities and

differences between the single database partition processing model as seen in the

previous two figures, and the multiple database partition processing model.

Figure 9. Process model, part 2

Chapter 13. Client-server processing model 45

Most engine dispatchable units (EDUs) are the same between the single database

partition processing model and the multiple database partition processing model.

In a multiple database partition (or node) environment, one of the database

partitions is the catalog node. The catalog keeps all of the information relating to

the objects in the database.

As shown in the figure above, because Application A creates the PROD database

on Node0000, the catalog for the PROD database is created on this node. Similarly,

because Application B creates the TEST database on Node0001, the catalog for the

TEST database is created on this node. You might want to create your databases on

different nodes to balance the extra activity associated with the catalogs for each

database across the nodes in your system environment.

Catalog node for TEST
db2glock

App A App B 2 create database
2 connect to TEST
2 load. . .
2 select . . .

DB TEST
DB
DB
DB

DB2 create database PROD
2 connect to PROD
2 load. . .
2 select . . .

DB
DB
DB

Catalog node for PROD
db2glock

db2pdbc db2pdbcdb2fcmd db2fcmd

App A App A

PROD database PROD databaseTEST database TEST database

App B App B

Node0000 Node0001

Figure 10. Process model and multiple database partitions

46 Tuning Database Performance

There are additional EDUs (db2pdbc and db2fcmd) associated with the instance

and these are found on each node in a multiple partition database environment.

These EDUs are needed to coordinate requests across database partitions and to

enable the Fast Communication Manager (FCM).

There is also an additional EDU (db2glock) associated with the catalog node for

the database. This EDU controls global deadlocks across the nodes where the

active database is located.

Each CONNECT from an application is represented by a connection that is

associated with a coordinator agent to handle the connection. The coordinator agent

is the agent that communicates with the application, receiving requests and

sending replies. It can either satisfy the request itself or coordinate multiple

subagents to work on the request. The database partition where the coordinator

agent exists is called the coordinator node of that application. The coordinator node

can also be set with the SET CLIENT CONNECT_NODE command.

Parts of the database requests from the application are sent by the coordinator

node to subagents at the other database partitions; and all results from the other

database partitions are consolidated at the coordinator node before being sent back

to the application.

The database partition where the CREATE DATABASE command was issued is

called the “catalog node” for the database. It is at this database partition that the

catalog tables are stored. Typically, all user tables are distributed across a set of

nodes.

Note: Any number of database partitions can be configured to run on the same

machine. This is known as a “multiple logical partition”, or “multiple logical

node”, configuration. Such a configuration is very useful on large symmetric

multiprocessor (SMP) machines with very large main memory. In this environment,

communications between database partitions can be optimized to use shared

memory and semaphores.

Chapter 13. Client-server processing model 47

48 Tuning Database Performance

Part 4. Quick-start tips for performance tuning

When you start a new instance of DB2, consider the following suggestions for a

basic configuration:

v Use the Configuration Advisor in the Control Center to get advice about

reasonable beginning defaults for your system. The defaults shipped with DB2

should be tuned for your unique hardware environment.

Gather information about the hardware at your site so you can answer the

wizard questions. You can apply the suggested configuration parameter settings

immediately or let the wizard create a script based on your answers and run the

script later.

This script also provides a list of the most commonly tuned parameters for later

reference.

v Use other wizards in the Control Center and Client Configuration Assistant for

performance-related administration tasks. These tasks are usually those in which

you can achieve significant performance improvements by spending spend a

little time and effort.

Other wizards can help you improve performance of individual tables and

general data access. These wizards include the Create Database, Create Table,

Index, and Configure Multisite Update wizards. The Health Center provides a

set of monitoring and tuning tools.

v Use the Design Advisor tool from the Control Center or using the db2advis

command to find out what indexes, materialized query tables, multi-dimensional

clustering tables, and database partitions will improve query performance.

v Use the ACTIVATE DATABASE command to start databases. In a partitioned

database, this command activates the database on all database partitions and

avoids the startup time required to initialize the database when the first

application connects.

Note: If you use the ACTIVATE DATABASE command, you must shut down

the database with the DEACTIVATE DATABASE command. The last application

that disconnects from the database does not shut it down.

v Consult the summary tables that list and briefly describe each configuration

parameter available for the database manager and each database.

These summary tables contain a column that indicates whether tuning the

parameter results in high, medium,low, or no performance changes, either for

better or for worse. Use this table to find the parameters that you might tune for

the largest performance improvements.

© Copyright IBM Corp. 1993, 2007 49

50 Tuning Database Performance

Chapter 14. Operational performance

Memory allocation in DB2

Memory allocation and de-allocation occurs at various times in DB2. Memory may

be allocated to a particular memory area when a specified event occurs, such as

when an application connects, or it may be re-allocated based on a change in a

configuration parameter setting.

The figure below shows the different areas of memory that the database manager

allocates for various uses and the configuration parameters that allow you to

control the size of this memory. Note that in an Enterprise Server Edition

environment that comprises multiple logical database partitions, each database

partition has its own Database Manager Shared Memory set.

 Memory is allocated for each instance of the database manager when the following

events occur:

v When the database manager is started (db2start): Database manager global

shared memory (also known as instance shared memory) is allocated and

remains allocated until the database manager is stopped (db2stop). This area

contains information that the database manager uses to manage activity across

all database connections. DB2 automatically controls the database manager

global shared memory size.

v When a database is activated or connected to for the first time: Database global

memory is allocated. Database global memory is used across all applications that

connect to the database. The size of the database global memory is specified by

Database Manager
Shared Memory

(1)

Application Global Memory

Application
Heap

Application
Heap

(1) (numdb)

(max_connections)

Database Global Memory

Application
Global Memory

Database
Global Memory

Figure 11. Types of memory used by the Database Manager

© Copyright IBM Corp. 1993, 2007 51

the database_memory configuration parameter. By default, this parameter is set

to automatic, allowing DB2 to calculate the initial amount of memory allocated

for the database and to automatically configure the database memory size

during runtime based on the needs of the database. You can set

database_memory to allocate more memory than is needed initially so that the

additional memory can be dynamically distributed later.

The following memory areas can be dynamically adjusted, for example, to

decrease memory allocated to one area and increase memory in another area.

– Buffer pools (using the ALTER BUFFERPOOL DDL statement)

– Database heap (including log buffers)

– Utility heap

– Package cache

– Catalog cache

– Lock list (This memory area can only be increased dynamically, and not

decreased.)

In an environment in which the database manager intra-partition parallelism

configuration parameter (intra_parallel) is enabled, in an environment in which

the connection concentrator is enabled, or in an environment where the database

partitioning feature (DPF) is enabled, the shared sort heap is also allocated as

part of the database global memory. Also, if the sheapthres database manager

configuration parameter is set to 0 (default), all sorts will use database global

memory.

v When an application connects to a database: An application heap is allocated.

Each application has its own application heap. If desired, you can limit the

amount of memory any one application can allocate using the applheapsz

configuration parameter, or limit overall application memory consumption using

the appl_memory configuration parameter.

The database manager configuration parameter max_connections sets an upper

limit on the number of applications that can attach to the instance or connect to

any databases that exist in the instance. Since each application that attaches to a

database involves the allocation of some memory, allowing a larger number of

concurrent applications will potentially use more memory.

v When an agent is created: Agent private memory is allocated for an agent when

the agent is assigned as the result of a connect request or a new SQL request in

a parallel environment. Agent private memory is allocated for the agent and

contains memory that is used only by this specific agent, such as the private sort

heap.

The figure also specifies the following configuration parameter settings, which

limit the amount of memory that is allocated for each type of memory area. Note

that in a partitioned database environment, this memory is allocated on each

database partition.

v numdb

This parameter specifies the maximum number of concurrent active databases

that different applications can use. Because each database has its own global

memory area, the amount of memory that might be allocated increases if you

increase the value of this parameter.

v maxappls

This parameter specifies the maximum number of applications that can

simultaneously connect to a single database. It affects the amount of memory

52 Tuning Database Performance

that might be allocated for agent private memory and application global

memory for that database. Note that this parameter can be set differently for

every database.

Two other parameters that need to be considered are max_coordagents and

max_connections both of which apply at the instance level (per node on a DPF

instance).

v max_connections

This parameter limits the number of connections or instance attachments that

can access the DB2 server at any one time (per node on a DPF instance).

v max_coordagents

This parameter limits the number of database manager coordinating agents that

can exist simultaneously across all active databases in an instance (per node on a

DPF instance). Together with maxappls and max_connections, this parameter

limits the amount of memory allocated for agent private memory and

application global memory.

The memory tracker, invoked by the db2mtrk command, allows you to view the

current allocation of memory within the instance, including the following types of

information for each memory pool:

v Current size

v Maximum size (hard limit)

v Largest size (high water mark)

Database manager shared memory

Database manager memory is organized into several different memory areas. The

following figure shows how database manager memory is allocated. The

configuration parameters shown allow you to control the sizes of the various

memory areas.

Chapter 14. Operational performance 53

Audit buffer

This memory area is used in database auditing activities. The size of this

buffer is determined by the audit_buf_sz configuration parameter.

Monitor heap

This memory area is used for database system monitoring data. The size of

this area is determined by the mon_heap_sz configuration parameter.

Database manager shared memory (including FCM)

Monitor heap ()mon_heap_sz

Database global memory (database_memory)

Lock list ()locklist

Application global memory (appl_memory)

Agent stack
()agent_stack_sz

Client I/O block
()rqrioblk (remote)

Java heap
()java_heap_sz

Agent/Application shared memory

Note: Box size does not indicate relative size of memory.

Agent private memory

Application support
layer heap (aslheapsz)

Client I/O block
()rqrioblk (local)

Utility heap
()util_heap_sz

Backup buffer

Package cache
()pckcachesz

Database heap
()dbheap

Log buffer ()logbufsz

Sort heap threshold
for private sorts
(sheapthres)

Sort heap ()sortheap

Catalog cache
()catalogcache_sz

Audit buffer size ()audit_buf_sz

Sort heap threshold
for shared sorts
(sheapthres_shr)

Sort heap ()sortheap

Buffer pools

Shared application memory Application-specific memory

Application heap (applheapsz)

Statistics heap (stat_heap_sz)

Statement heap (stmtheap)

Figure 12. How memory is used by the database manager

54 Tuning Database Performance

Fast communication manager (FCM) buffer pool

 For partitioned database systems, the fast communications manager (FCM)

requires substantial memory space, especially if the value of

fcm_num_buffers is large. The FCM memory requirements are allocated

from the FCM Buffer Pool.

Database Global Memory

Database Global Memory is affected by the following configuration

parameters:

v The database_memory parameter provides a lower bound for the size of

the database global memory.

v The following parameters or factors control the size of the database

global memory area:

– The size of the buffer pools.

– Maximum Storage for Lock List (locklist)

– Database Heap (dbheap)

– Utility Heap Size (util_heap_sz)

– Package Cache Size (pckcachesz)

– Shared Sort Heap (sheapthres_shr)

– Catalog cache (catalogcache_sz)

Application Global Memory

Application global memory can be controlled by the appl_memory

configuration parameter. The following configuration parameters can be

used to limit the amount of memory any one application can consume:

v Application Heap Size (applheapsz)

v Statement Heap Size (stmtheap)

v Statistics Heap Size (stat_heap_sz)

Agent Private Memory

v Each agent requires its own private memory region. The DB2 server will

create as many agents as it needs and accommodate given configured

memory resources. You can control the maximum number of coordinator

agents using the max_coordagents parameter.

v The maximum size of each agent’s private memory region is determined

by the values of the following parameters:

– Private Sort Heap Size (sheapthres and sortheap)

– Agent Stack Size (agent_stack_sz)

Agent/Application Shared Memory

v The total number of agent/application shared memory segments for

local clients is limited by the lower of the following database

configuration parameters:

– The total of maxappls for all active databases

– The value of max_coordagents.

Note: In configurations where engine concentration is enabled

(max_connections > max_coordagents), application memory

consumption will be limited by max_connections.

v Agent/Application Shared Memory is also affected by the following

database configuration parameters:

– The Application Support Layer Heap Size (aslheapsz) parameter

Chapter 14. Operational performance 55

– The Client I/O Block Size (rqrioblk) parameter

The FCM buffer pool and memory requirements

In a partitioned database system, the Database Manager Shared Memory and FCM

Buffer Pool are as shown below.

 The number of FCM buffers for each database partition is controlled by the

fcm_num_buffers configuration parameter. By default, this parameter is set to

AUTOMATIC. To tune this parameter manually, use the data from the buff_free -

Buffers currently free and buff_free_bottom - Minimum buffers free system monitor

elements.

The number of FCM channels for each database partition is controlled by the

fcm_num_channels configuration parameter. By default, this parameter is set to

AUTOMATIC. To manually tune this parameter manually, use the data from the

ch_free - Channels currently free and ch_free_bottom - Minimum channels free

system monitor elements.

Tuning memory allocation parameters

The first rule for setting memory-allocation parameters is never to set them at their

highest values unless such a value has been carefully justified. This rule applies

even to systems with the maximum amount of memory. Many parameters that

affect memory can allow the database manager easily and quickly to take up all of

the available memory on a computer. In addition, managing large amounts of

memory requires additional work on the part of the database manager and thus

incurs more overhead.

Some UNIX operating systems allocate swap space when a process allocates

memory and not when a process is paged out to swap space. For these systems,

make sure that you provide as much paging space as total shared memory space.

Figure 13. FCM buffer pool when multiple logical nodes are used

56 Tuning Database Performance

For most configuration parameters, memory is only committed as it is required

and the parameter settings determine the maximum size of a particular memory

heap. In the following cases, however, the full amount of memory specified by the

parameter is allocated:

v Maximum Storage for Lock List (locklist)

v Application Support Layer Heap Size (aslheapsz)

v Number of FCM Buffers (fcm_num_buffers)

v Number of FCM Channels (fcm_num_channels)

v Buffer Pools

Notes:

v Benchmark tests provide the best information about setting appropriate values

for memory parameters. In benchmarking, typical and worst-case SQL

statements are run against the server and the values of the parameters are

modified until the point of diminishing return for performance is found. If

performance versus parameter value is graphed, the point at which the curve

begins to plateau or decline indicates the point at which additional allocation

provides no additional value to the application and is therefore simply wasting

memory.

v The upper limits of memory allocation for several parameters may be beyond

the memory capabilities of existing hardware and operating systems. These

limits allow for future growth.

v For valid parameter ranges, refer to the detailed information about each

parameter.

Self-tuning memory overview

Self-tuning memory simplifies the task of memory configuration by automatically

setting values for memory configuration parameters and sizing buffer pools. When

enabled, the memory tuner dynamically distributes available memory resources

among several memory consumers including sort memory, package cache, lock list

memory, and buffer pools.

The following table lists the self-tuning memory topics by category:

 Table 1. Overview of self-tuning memory information

Category Related topics

General information

and restrictions

v “Self-tuning memory” on page 58

v “Self tuning memory operational details and limitations” on page

61

v self_tuning_mem-self_tuning_mem - Self-tuning memory

configuration parameter

Enablement and

disablement

v “Enabling self tuning memory” on page 59

v “Disabling self tuning memory” on page 59

Monitoring v “Determining which memory consumers are enabled for self

tuning” on page 60

DPF considerations v “Self tuning memory in partitioned database environments” on

page 62

v “Using self-tuning memory in partitioned database

environments” on page 64

Chapter 14. Operational performance 57

Table 1. Overview of self-tuning memory information (continued)

Category Related topics

Configuration

parameters that can be

automatically tuned

v “database_memory - Database shared memory size” in

Configuration Parameter Reference

v “locklist - Maximum storage for lock list” in Configuration

Parameter Reference

v “maxlocks - Maximum percent of lock list before escalation” in

Configuration Parameter Reference

v “pckcachesz - Package cache size” in Configuration Parameter

Reference

v “sheapthres_shr - Sort heap threshold for shared sorts in”

Configuration Parameter Reference

v “sortheap - Sort heap size” in Configuration Parameter Reference

Self-tuning memory

Starting in DB2 Version 9, a new memory-tuning feature simplifies the task of

memory configuration by automatically setting values for several memory

configuration parameters. When enabled, the memory tuner dynamically

distributes available memory resources among the following memory consumers:

buffer pools, package cache, locking memory and sort memory.

The tuner works within the memory limits defined by the database_memory

configuration parameter. The value of database_memory itself can be automatically

tuned as well. When self-tuning is enabled for database_memory (when you set it

to AUTOMATIC), the tuner determines the overall memory requirements for the

database and increases or decreases the amount of memory allocated for database

shared memory depending on the current database requirements. For example, if

the current database requirements are high and there is sufficient free memory on

the system, more memory will be consumed by database shared memory. If the

database memory requirements decrease or if the amount of free memory on the

system becomes too low, some database shared memory is released.

If you do not enable the database_memory parameter for self-tuning (you do not

set it to AUTOMATIC), the entire database uses the amount of memory that you

specify for the parameter, distributing it across the database memory consumers as

required. You can specify the amount of memory used by the database in two

ways: by setting database_memory to a numeric value or by setting it to

COMPUTED. In the second case, the total amount of memory is computed based

on the sum of the initial values of the database memory heaps at database startup

time.

In addition to tuning database shared memory by using the database_memory

configuration parameter, you can enable other memory consumers for self-tuning

as follows:

v For buffer pools, use the ALTER BUFFERPOOL and CREATE BUFFERPOOL

statements.

v For the package cache, use the pckcachesz configuration parameter.

v For locking memory, use the locklist and maxlocks configuration parameters.

v For sort memory, use the sheapthres_shr and sortheap configuration parameters.

58 Tuning Database Performance

Enabling self tuning memory

Self tuning memory simplifies the task of memory configuration by automatically

setting values for memory configuration parameters and sizing buffer pools. When

enabled, the memory tuner dynamically distributes available memory resources

between several memory consumers including sort, package cache and lock list

areas and buffer pools.

1. Enable self tuning for the database by setting self_tuning_mem to ON. You can

set self_tuning_mem to ON using the UPDATE DATABASE CONFIGURATION

command, the SQLFUPD API, or through the Change Database Configuration

Parameter window in the Control Center.

2. To enable self tuning of memory areas controlled by memory configuration

parameters, set the relevant configuration parameters to AUTOMATIC using

the UPDATE DATABASE CONFIGURATION command, the SQLFUPD API, or

through the Change Database Configuration Parameter window in the Control

Center.

3. To enable self tuning of buffer pools, set the buffer pool size to AUTOMATIC.

You can do this using the ALTER BUFFER POOL statement for existing buffer

pools or the CREATE BUFFER POOL statement for new buffer pools. If the size

of a buffer pool is set to AUTOMATIC in the DPF environment, that buffer

pool should not have any entries defined in sysibm.sysbufferpoolnodes.

Note:

1. Because self tuning redistributes memory between different memory areas,

there must be at least two memory areas enabled for self tuning to occur, for

example the lock memory area and the database shared memory area. The only

exception to this is the memory controlled by the sortheap configuration

parameter. When sortheap alone is set to AUTOMATIC, self tuning of sortheap is

enabled.

2. In order to enable the locklist configuration parameter for self tuning, maxlocks

must also be enabled for self tuning, therefore maxlocks is set to AUTOMATIC

when locklist is set to AUTOMATIC. In order to enable the sheapthres_shr

configuration parameter for self tuning, sortheap must also be enabled for self

tuning, therefore sortheap is set to AUTOMATIC when sheapthres_shr is set to

AUTOMATIC.

3. Automatic tuning of sheapthres_shr or sortheap is allowed only when the

database manager configuration parameter sheapthres is set to 0.

4. Self tuning memory runs only on the HADR primary server. When self tuning

memory is activated on an HADR system, it will never run on the secondary

server and it will run on the primary server only if the configuration is set

properly. If a command is run that switches the HADR database roles, self

tuning memory operations will also switch so that they run on the new

primary server.

Disabling self tuning memory

Self tuning can be disabled for the entire database by setting self_tuning_mem to

OFF. When self_tuning_mem is set to OFF, the memory configuration parameters

and buffer pools that are set to AUTOMATIC remain AUTOMATIC and the

memory areas remain at their current size.

You can set self_tuning_mem to OFF using the UPDATE DATABASE

CONFIGURATION command, the SQLFUPD API, or through the Change

Database Configuration Parameter window in the Control Center.

Chapter 14. Operational performance 59

Self tuning can also be effectively deactivated for the entire database if only a

single memory consumer is enabled for self tuning. This is because memory cannot

be redistributed when only one memory area is enabled.

For example, to disable self tuning of the sortheap configuration parameter, you

could enter the following:

UPDATE DATABASE CONFIGURATION USING SORTHEAP MANUAL

To disable self tuning of the sortheap configuration parameter and change the

current value of sortheap to 2000 at the same time, enter the following:

UPDATE DATABASE CONFIGURATION USING SORTHEAP 2000

In some cases, one memory configuration parameter can only be enabled for self

tuning if another related memory configuration parameter is also enabled. For

example, self tuning of the maxlocks configuration parameter is only permitted

when the locklist configuration parameter is also enabled. Similarly, self tuning of

the sheapthres_shr configuration parameter can only be enabled if self tuning of the

sortheap configuration parameter is also enabled. This means that disabling self

tuning of the locklist or sortheap parameters disables self tuning of the maxlocks or

sheapthres_shr parameters, respectively.

Self tuning can be disabled for a buffer pool by setting the buffer pool to a specific

size. For example, the following statement will disable self tuning for bufferpool1:

ALTER BUFFERPOOL bufferpool1 SIZE 1000

Determining which memory consumers are enabled for self

tuning

To view the self tuning settings for memory consumers controlled by configuration

parameters, use one of the following methods.

v To view the self tuning settings for configuration parameters from the command

line, use the GET DATABASE CONFIGURATION command specifying the

SHOW DETAIL parameter.

The memory consumers that can be enabled for self tuning are grouped together

in the output as follows:

 Description Parameter Current Value Delayed Value

 --

 Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON

 Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)

 Max storage for lock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)

 Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)

 Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)

 Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)

 Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

v You can also use the db2CfgGet API to determine whether or not tuning is

enabled. The following values are returned:

SQLF_OFF 0

SQLF_ON_ACTIVE 2

SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE describes a situation where self tuning is enabled and active

while SQLF_ON_INACTIVE indicates that self tuning is enabled but is currently

inactive.

v You can also view the configuration settings in the Database Configuration

window in the Control Center.

To view the self tuning settings for buffer pools, use one of the following methods.

60 Tuning Database Performance

v To retrieve the list of buffer pools that are enabled for self tuning from the

command line, enter:

db2 "select BPNAME, NPAGES from sysibm.sysbufferpools"

When self tuning is enabled for a buffer pool, the NPAGES field in the

sysibm.sysbufferpools table for that particular buffer pool will be set to -2. When

self tuning is disabled, the NPAGES field will be set to the buffer pool’s current

size.

v To determine the current size of buffer pools that have been enabled for self

tuning, use the snapshot monitor as follows and examine the current size of the

buffer pool (the value of the bp_cur_buffsz monitor element):

db2 get snapshot for bufferpools on db_name

v To view the self tuning settings of your buffer pools using the Control Center,

right-click on a buffer pool and view the attributes of the buffer pools in the

object details pane.

It is important to note that responsiveness of the memory tuner is limited by the

time required to resize a memory consumer. For example, reducing the size of a

buffer pool can be a lengthy process and therefore the performance benefits of

trading buffer pool memory for sort area memory may not be immediately

realized.

Self tuning memory operational details and limitations

Determining tuning requirements

In order to ensure a fair and relevant comparison between memory consumers, a

new common metric has been developed. Each tuned memory consumer calculates

the predicted benefit from additional memory, and reports this to the self tuning

memory process. Self tuning memory uses these figures as the basis for memory

tuning, taking memory from consumers with the least need and reallocating it to

those memory areas that will benefit the most.

Frequency of memory tuning

When enabled, self tuning memory will periodically check the variability of

database workload. If the workload is not constant (that is, if the queries being run

do not exhibit similar memory characteristics), the memory tuner will reallocate

memory less frequently - up to 10 minutes between tuning cycles - to achieve more

stable trend prediction. For workloads with more constant memory profiles, the

memory tuner will tune memory more frequently - as little as 30 seconds between

tuning cycles - in order to converge more quickly.

Tracking the progress of self tuning memory

Your current memory configuration can be obtained using the GET DATABASE

CONFIGURATION command, or using a snapshot. Changes made by self tuning

are recorded in the memory tuning log files in the stmmlog directory. The memory

tuning log files contain summaries of the resource demands for each memory

consumer at each tuning interval. These intervals can be determined based on the

timestamps in the log entries.

Expected time to converge on best configuration

Leaving this feature enabled should result in quick tuning of parameters to

optimize memory usage. A system can be tuned from an initial configuration in as

Chapter 14. Operational performance 61

little as one hour. In most cases, tuning will usually be complete in at most 10

hours. This worst case occurs when queries run against the database exhibit

markedly different memory characteristics.

Limitations of self tuning memory

In cases where low amounts of memory are available (for example, because the

value of database_memory is set very low, or because multiple databases, instances

or other applications are running on the server) performance benefits of self tuning

memory will be limited.

Because self tuning memory bases tuning decisions on database workload,

workloads with changing memory characteristics limit the ability of self tuning

memory to tune effectively. If your workload’s memory characteristics are

constantly changing, self tuning memory will tune memory less frequently, and

will repeatedly tune towards shifting target conditions. In this case, self tuning

memory will not achieve absolute convergence, but will instead try to maintain a

memory configuration that is tuned to the current workload.

Self tuning memory in partitioned database environments

When using the self tuning memory feature in partitioned database environments,

there are a few factors that determine whether the feature will tune the system

appropriately.

When self tuning memory is enabled in partitioned databases, a single database

partition is designated as the tuning partition, and all memory tuning decisions are

based on the memory and workload characteristics of that database partition. Once

tuning decisions are made on the tuning partition, the memory adjustments are

distributed to all other database partitions to ensure that all database partitions

maintain similar configurations.

The single tuning partition model necessitates that the feature be used only on

database partitions that have similar memory requirements. The following are

guidelines to use when determining whether to enable self tuning memory on your

partitioned database.

Cases where self tuning is recommended in partitioned

databases

When all database partitions have similar memory requirements and are running

on similar hardware, self tuning memory can be enabled without any

modifications. These types of environments share the following characteristics:

v All database partitions on identical hardware, including an even distribution of

multiple logical nodes to multiple physical nodes

v Perfect or near-perfect distribution of data

v Workload running on the database partitions is distributed evenly across

database partitions. This means that no one database partition has elevated

memory requirements for one or more heaps.

In such an environment, it is desirable to have all database partitions configured

equally, and self tuning memory will properly configure the system.

62 Tuning Database Performance

Cases where self tuning is recommended in partitioned

databases with care

In cases where most of the database partitions in an environment have similar

memory requirements and are running on similar hardware, it is possible to use

self tuning memory as long as some care is taken with the initial configuration.

These system might have a set of database partitions for data, and a much smaller

set of coordinator partitions and a catalog partitions. In such environments, it

might be beneficial to configure the coordinator partitions and catalog partitions

differently than the database partitions that contain your data.

In this environment, it is still possible to benefit from the self tuning memory

feature with some minor setup. Since the database partitions containing the data

comprise the bulk of the database partitions, self tuning should be enabled on all

of these database partitions and one of these database partitions should be

specified as the tuning partition. Additionally, since the catalog and coordinator

partitions might be configured differently, self tuning memory should be disabled

on these partitions. To disable self tuning on the catalog and coordinator partitions,

update the self_tuning_mem database configuration parameter on these partitions to

OFF.

Cases where self tuning is not recommended in partitioned

databases

In environments where the memory requirements of each database partition are

different or when different database partitions are running on dramatically

different hardware, it is advisable to disable the self tuning memory feature. This

can be done by setting the self_tuning_mem database configuration parameter to

OFF on all partitions.

Comparing memory requirements of different database partitions

The best way to determine if the memory requirements of different database

partitions are sufficiently similar is to consult the snapshot monitor. If the

following snapshot elements are similar on all partitions (differing by no more

than 20%), then the partitions can be considered similar.

Collect the following data by issuing the command get snapshot for database on

<dbname>.

Total Shared Sort heap allocated = 0

Shared Sort heap high water mark = 0

Post threshold sorts (shared memory) = 0

Sort overflows = 0

Package cache lookups = 13

Package cache inserts = 1

Package cache overflows = 0

Package cache high water mark (Bytes) = 655360

Number of hash joins = 0

Number of hash loops = 0

Number of hash join overflows = 0

Number of small hash join overflows = 0

Post threshold hash joins (shared memory) = 0

Locks held currently = 0

Lock waits = 0

Time database waited on locks (ms) = 0

Chapter 14. Operational performance 63

Lock list memory in use (Bytes) = 4968

Lock escalations = 0

Exclusive lock escalations = 0

Collect the following data by issuing the command get snapshot for bufferpools

on <dbname>

Buffer pool data logical reads = 0

Buffer pool data physical reads = 0

Buffer pool index logical reads = 0

Buffer pool index physical reads = 0

Total buffer pool read time (milliseconds) = 0

Total buffer pool write time (milliseconds)= 0

Using self-tuning memory in partitioned database environments

When self-tuning is enabled in partitioned database environments, there is a single

database partition, known as the tuning partition, that monitors the memory

configuration and propagates any configuration changes to all other database

partitions to maintain a consistent configuration across all the participating

database partitions.

The tuning partition is selected based on a number of characteristics, such as the

number of database partitions in the partition group and the number of buffer

pools defined.

v To determine which database partition is currently specified as the tuning

partition, use the following ADMIN_CMD:

CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

v To change the tuning partition, use the following ADMIN_CMD:

CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum <db_partition_num>’)

When you issue this command, the tuning partition will be updated

asynchronously or at the next database startup.

v To have the memory tuner automatically re-select the tuning partition, enter -1

for the <db_partition_num> value.

Starting the memory tuner on DPF systems

The memory tuner will only be started in a DPF environment if the database is

activated by an explicit ACTIVATE DATABASE command because self-tuning

requires all partitions to be active before it can properly tune the memory on a

multi-partition system.

Disabling self-tuning for a given database partition

v To disable self-tuning for a subset of database partitions, set the self_tuning_mem

configuration parameter to OFF for the database partitions you want to leave

untuned.

v

To disable self-tuning for a subset of the memory consumers controlled by

configuration parameters on a particular database partition, set the value of the

relevant configuration parameter or buffer pool size to MANUAL or a specific

value on that database partition. However, it is recommended that self-tuning

configuration parameter values be consistent across all running partitions.

v To disable tuning for a particular buffer pool on a database partition, issue an

ALTER BUFFER POOL command specifying a size value and a value for the

PARTITIONNUM parameter for the partition where self-tuning is to be disabled.

64 Tuning Database Performance

An ALTER BUFFERPOOL statement that specifies the size on a particular

database partition using the PARTITIONNUM clause will create an exception

entry for the given buffer pool in the SYSCAT.SYSBUFFERPOOLNODES catalog,

or update the exception entry if one already exists. When an exception entry

exists for a buffer pool in this catalog, that buffer pool will not participate in

self-tuning when the default buffer pool size is set to AUTOMATIC. To remove

an exception entry so that a buffer pool can be re-enabled for self-tuning:

1. Disable tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement setting the buffer pool size to a specific value.

2. Issue another ALTER BUFFERPOOL statement with the PARTITIONNUM

clause specified to set the size of the buffer pool on this database partition to

the default buffer pool size.

3. Enable self-tuning by issuing another ALTER BUFFERPOOL statement

setting the size to AUTOMATIC.

Enabling self-tuning memory in non-uniform environments

Ideally, your data should be distributed evenly across all of your database

partitions and the workload run on each partition should have similar memory

requirements. If the data distribution is skewed so that one or more of your

database partitions contain significantly more or less data than other database

partitions, these anomalous database partitions should not be enabled for

self-tuning. The same is true if the memory requirements are skewed across the

database partitions, which can happen, for example, if resource-intensive sorts are

only performed on one partition, or if some database partitions are associated with

different hardware and more available memory than others. Self-tuning can still be

enabled on some database partitions in this type of environment. To take

advantage of self-tuning memory in environments with skew, identify a set of

database partitions that have similar data and memory requirements and enable

them for self-tuning. Memory configuration in the remaining partitions should be

configured manually.

Buffer pool management

A buffer pool provides working memory and cache for database pages. The buffer

pool improves database system performance by allowing data to be accessed from

memory instead of from disk. Because memory access is much faster than disk

access, the less often the database manager needs to read from or write to a disk,

the better the database will perform. Because most page data manipulation takes

place in buffer pools, configuring buffer pools is the single most important tuning

area.

When an application accesses a row of a table, the database manager looks for the

page containing that row in the buffer pool. If the page does not exist in the buffer

pool, the database manager will read the page from disk and place it in the buffer

pool. Once the page is in the buffer pool, the data can be used by the database

manager to process the query.

Memory is allocated for the buffer pool when a database is activated. The first

application to connect may cause an implicit database activation. Buffer pools can

also be created, dropped, and re-sized while the database is manager is running.

The ALTER BUFFERPOOL statement can be used to increase the size of the buffer

pool. By default, the IMMEDIATE keyword is specified for the ALTER

BUFFERPOOL statement and memory is allocated as soon as you enter the

command if the memory is available. If the memory is unavailable, the statement

Chapter 14. Operational performance 65

will execute as DEFERRED and the memory will be allocated when the database is

reactivated. If you decrease the size of the buffer pool, memory is deallocated

when the transaction commits. The buffer pool memory is freed when the database

is deactivated. The database may implicitly deactivate when the last application

exits depending on how the database was activated.

Note: To reduce the necessity of increasing the size of the dbheap database

configuration parameter when buffer pool sizes increase, nearly all buffer pool

memory comes out of the database shared memory set and is sized automatically.

To ensure that an appropriate buffer pool is available in all circumstances, DB2

creates small system buffer pools, one with each page size: 4K, 8K, 16K, and 32K.

The size of each buffer pool is 16 pages. These buffer pools are hidden from the

user. They are not present in the system catalogs or in the buffer pool system files.

You cannot use or alter them directly, but DB2 uses these buffer pools in the

following circumstances:

v When the specified buffer pool is not started because it was created using the

DEFERRED keyword, or because a buffer pool of the required page size is

inactive due to insufficient memory being available to create it.

A message is written to the administration notification log. If necessary, table

spaces are remapped to a system buffer pool. Performance might be drastically

reduced.

v When the ordinary buffer pools cannot be brought up during a database connect

This problem is likely to have a serious cause, such as out-of-memory condition.

Although DB2 will be fully functional because of the system buffer pools,

performance will degrade drastically. You should address this problem

immediately. You receive a warning when this occurs and a message is written

to the administration notification log.

When you create a buffer pool, the page size will be the one specified when the

database was created unless you explicitly specified a different page size. Because

pages can be read into a buffer pool only if the table space page size is the same as

the buffer pool page size, the page size of your table spaces should determine the

page size that you specify for buffer pools. You cannot alter the page size of the

buffer pool after you create it. You must create a new buffer pool with a different

page size.

The memory tracker, invoked by db2mtrk, allows you to view the amount of

database memory allocated to the buffer pools. The following sample db2mtrk

output shows one user-created buffer pool, identified by the number ″1″ in

parentheses, and four system buffer pools, identified by the page size in

parentheses:

> db2mtrk -d

Tracking Memory on: 2005/10/24 at 12:47:26

Memory for database: XMLDB

 utilh pckcacheh catcacheh bph (1) bph (S32K) bph (S16K) bph (S8K)

 64.0K 576.0K 64.0K 4.2M 576.0K 320.0K 192.0K

 bph (S4K) shsorth lockh dbh other

 128.0K 0 640.0K 4.2M 192.0K

Buffer pool management of data pages

Pages in the buffer pool can be either in-use or not, and they can be dirty or clean:

66 Tuning Database Performance

v In-use pages are pages that are currently being read or updated. If a page is

being updated, it cannot be accessed by anyone other than the updater.

However, if the page is not being updated, there can be numerous concurrent

readers.

v “Dirty” pages contain data that has been changed but has not yet been written

to disk.

Pages remain in the buffer pool until the database is shut down, until the space

occupied by a page is required for another page, or the page is explicitly purged

from the buffer pool, for example, as part of dropping an object. The following

criteria determine which page is removed to bring in another page:

v How recently the page was referenced

v The probability that the page will be referenced again

v The type of data on the page

v Whether the page was changed in memory but not written out to disk (Changed

pages are always written to disk before being overwritten.)

Changed pages that are written to disk are not automatically removed from the

buffer pool unless the space is needed.

Page-cleaner agents

In a well-tuned system, it is usually the page-cleaner agents that write changed or

″dirty″ pages to disk. Page-cleaner agents perform I/O as background processes

and allow applications to run faster because their agents can perform actual

transaction work. Page-cleaner agents are sometimes referred to as asynchronous

page cleaners or asynchronous buffer writers because they are not coordinated with the

work of other agents and work only when required.

To improve performance in update-intensive workloads, you might want to enable

proactive page cleaning. Performance can improve because page cleaners behave

more proactively in choosing which dirty pages get written out at any given point

in time. This is particularly true if snapshots reveal that there are a significant

number of synchronous data-page or index-page writes in relation to the number

of asynchronous data-page or index-page writes.

For more information see: “Proactive page cleaning” on page 71

Illustration of buffer pool data-page management

The following figure illustrates how the work of managing the buffer pool can be

shared between page-cleaner agents and database agents, compared to the

database agents performing all of the I/O.

Chapter 14. Operational performance 67

Page cleaning and fast recovery

If more pages have been written to disk, recovery of the database is faster after a

system crash because the database manager can rebuild more of the buffer pool

from disk instead of having to replay transactions from the database log files.

The size of the log that must be read during recovery is the difference between the

location of the following records in the log:

v The most recently written log record

v The log record that describes the oldest change to data in the buffer pool.

The page cleaners write dirty pages to disk such that the size of the log that would

need to be replayed during recovery never exceeds the following:

 logfilsiz * softmax / 100 (in 4K pages)

Without Page Cleaners

With Page Cleaners

Buffer Pool

Buffer Pool

Database Agent

Database Agent

Asynchronous
Page Cleaner

Database Agent

Database Agent

Oops, there is no
room for this page

1.

There is room for
this page

Write the
pages to disk

Take out
dirty pages

Now I can
put this page in

3.

2. I have to move a
dirty page

A

A

Buffer Pool

A

AA

Figure 14. Asynchronous page cleaner. “Dirty” pages are written out to disk.

68 Tuning Database Performance

where:

v logfilsiz represents the size of the log files

v softmax represents the percentage of log files to be recovered following a

database crash. For example, if the value of softmax is 250, then 2.5 log files will

contain the changes that need to be recovered if a crash occurs.

To minimize log read time during recovery, use the database system monitor to

track the number of times that page cleaning is performed. The system monitor

pool_lsn_gap_clns (buffer pool log space cleaners triggered) monitor element provides

this information if you have not enabled proactive page cleaning for your database.

If you have enabled this alternate page cleaning, this condition should not occur

and the pool_lsn_gap_clns monitor element is always 0.

The log_held_by_dirty_pages monitor element can be used to determine if the page

cleaners are not cleaning enough pages to meet the recovery criteria set by the

user. If log_held_by_dirty_pages is consistently and significantly greater than logfilsiz

* softmax, then either more page cleaners are required, or softmax needs to be

adjusted.

Management of multiple database buffer pools

Although each database requires at least one buffer pool, you can create several

buffer pools, each of a different size or with a different page size, for a single

database that has table spaces of more than one page size. Each buffer pool has a

minimum size, depending on the platform. You can use the ALTER BUFFERPOOL

command to resize a buffer pool.

A new database has a default buffer pool called IBMDEFAULTBP with an overall

size determined by the platform and a default page size based on the page size

specified when the database was created. The default page size is stored as an

informational database configuration parameter called pagesize. When you create a

table space with the default page size and you do not assign it to a specific buffer

pool, the table space is assigned to the default buffer pool. You can resize the

default buffer pool and change its attributes, but you cannot drop it.

Page sizes for buffer pools

After you create or migrate a database, you can create additional buffer pools. You

can create the database with 8 KB page size as the default and the default buffer

pool will be created with the default page size (in this case, an 8 KB page size).

Alternatively, you can create a buffer pool with an 8 KB page size as well as one or

more table spaces with the same page size. This method does not require that you

change the 4 KB default page size when you create the database. You cannot assign

a table space to a buffer pool that uses a different page size.

Note: If you create a table space with a page size greater than 4 KB, such as 8 KB,

16 KB, or 32 KB, you need to assign it to a buffer pool that uses the same page

size. If this buffer pool is currently not active, DB2 attempts to assign the table

space temporarily to another active buffer pool that uses the same page size if one

exists or to one of the default system buffer pools that DB2 creates when the first

client connects to the database. When the database is activated again, and the

originally specified buffer pool is active, then DB2 assigns the table space to that

buffer pool.

Chapter 14. Operational performance 69

When you create a buffer pool with the CREATE BUFFERPOOL statement, you can

specify a specific buffer pool size. If you do not specify a size, it will be set to

AUTOMATIC and managed by DB2. To change the buffer-pool size later, use the

ALTER BUFFERPOOL statement.

In a partitioned database environment, each buffer pool for a database has the

same default definition on all database partitions unless it was otherwise specified

in the CREATE BUFFERPOOL statement, or the buffer-pool size was changed by

the ALTER BUFFERPOOL statement for a particular database partition.

Advantages of large buffer pools

Large buffer pools provide the following advantages:

v They enable frequently requested data pages to be kept in the buffer pool, which

allows quicker access. Fewer I/O operations can reduce I/O contention, thereby

providing better response time and reducing the processor resource needed for

I/O operations.

v They provide the opportunity to achieve higher transaction rates with the same

response time.

v They prevent I/O contention for frequently used disk storage devices such as

catalog tables and frequently referenced user tables and indexes. Sorts required

by queries also benefit from reduced I/O contention on the disk storage devices

that contain the temporary table spaces.

Advantages of many buffer pools

If any of the following conditions apply to your system, you should use only a

single buffer pool:

v The total buffer space is less than 10 000 4 KB pages.

v People with the application knowledge to do specialized tuning are not

available.

v You are working on a test system.

In all other circumstances, consider using more than one buffer pool for the

following reasons:

v Temporary table spaces can be assigned to a separate buffer pool to provide

better performance for queries that require temporary storage, especially

sort-intensive queries.

v If data must be accessed repeatedly and quickly by many short

update-transaction applications, consider assigning the table space that contains

the data to a separate buffer pool. If this buffer pool is sized appropriately, its

pages have a better chance of being found, contributing to a lower response time

and a lower transaction cost.

v You can isolate data into separate buffer pools to favor certain applications, data,

and indexes. For example, you might want to put tables and indexes that are

updated frequently into a buffer pool that is separate from those tables and

indexes that are frequently queried but infrequently updated. This change will

reduce the impact that frequent updates on the first set of tables have on

frequent queries on the second set of tables.

v You can use smaller buffer pools for the data accessed by applications that are

seldom used, especially for an application that requires very random access into

a very large table. In such a case, data need not be kept in the buffer pool for

70 Tuning Database Performance

longer than a single query. It is better to keep a small buffer pool for this data,

and free the extra memory for other uses, such as for other buffer pools.

v After separating different activities and data into separate buffer pools, good and

relatively inexpensive performance diagnosis data can be produced from

statistics and accounting traces.

Buffer pool memory allocation at startup

When you use the CREATE BUFFERPOOL command to create a buffer pool or use

the ALTER BUFFERPOOL statement to alter buffer pools, the total memory that is

required by all buffer pools must be available to the database manager so all of the

buffer pools can be allocated when the database is started. If you create or modify

buffer pools while the database manager is online, additional memory should be

available in database global memory. If you specify the DEFERRED keyword when

you create a new buffer pool or increase the size of an existing buffer pool and the

required memory is unavailable, the database manager makes the change the next

time the database is activated.

If this memory is not available when a database starts, the database manager will

only start with system buffer pools (one for each page size) with a minimal size of

16 pages, and an SQL1478W (SQLSTATE01626) warning is returned. The database

continues in this operational state until its configuration is changed and the

database can be fully restarted. Performance may be suboptimal. The database

manager starts with minimal-sized values only to allow you to connect to the

database so that you can re-configure the buffer pool sizes or perform other critical

tasks. As soon as you perform these tasks, restart the database. Do not operate the

database for an extended time in such a state.

To avoid starting the database with system buffer pools only, you can use the

DB2_OVERRIDE_BPF registry variable to adjust the memory required so that it fits

into what is available.

Proactive page cleaning

Starting in Version 8.1.4, there is an alternate method of configuring page cleaning

in your system. This alternate method differs from the default behavior in that

page cleaners behave more proactively in choosing which dirty pages get written

out at any given point in time. This new method of page cleaning differs from the

default page cleaning method in two major ways:

1. Page cleaners do not respect the chngpgs_thresh configuration parameter.

In this alternative method of page cleaning, page cleaners will no longer react

in response to value of the chngpgs_thresh configuration parameter. Instead of

attempting to keep some percentage of the buffer pool clean, the alternate

method of page cleaning provides a mechanism whereby the agents are

informed of the location of good victim pages that have just been written out,

so that agents do not have to search the buffer pool to look for a victim. When

the number of good victim pages drops below an acceptable value, the page

cleaners are triggered, and proceed to search the entire buffer pool, writing out

potential victim pages, and informing the agents of the location of these pages.

2. Page cleaners no longer respond to LSN gap triggers issued by the logger.

When the amount of log space encompassing the log record which has updated

the oldest page in the buffer pool and the current log position exceeds that

allowed by the softmax parameter, it is said that the database is in an ’LSN

gap’ situation. Under the default method of page cleaning, when the logger

detects than an LSN gap has occurred, it will trigger the page cleaners to write

Chapter 14. Operational performance 71

out all the pages which are contributing to the LSN gap situation. That is, it

will write out those pages which are older than what is allowed by the softmax

parameter. Page cleaners will be idle for some period of time while no LSN gap

is occurring. Then, once an LSN gap occurs, the page cleaners are activated to

write a large number of pages before going back to sleep. This can result in the

saturation of the I/O subsystem, which then affects other agents which are

reading or writing pages. Furthermore, by the time an LSN gap is triggered, it

is possible that the page cleaners will not be able to clean fast enough and DB2

might run out of log space.

The alternate method of page cleaning modulates this behavior by spreading

out the same number of writes over a greater period of time. The cleaners do

this by proactively cleaning not only pages the pages that are currently in an

LSN gap situation, but also the pages that will come into an LSN gap situation

soon, based on the current level of activity.

To use the new method of page cleaning, set the

DB2_USE_ALTERNATE_PAGE_CLEANING registry variable to ″ON″.

Prefetching data into the buffer pool

Prefetching pages means that one or more pages are retrieved from disk in the

expectation that they will be required by an application. Prefetching index and

data pages into the buffer pool can help improve performance by reducing the I/O

wait time. In addition, parallel I/O enhances prefetching efficiency.

There are two categories of prefetching:

v Sequential prefetch: A mechanism that reads consecutive pages into the buffer

pool before the pages are required by the application.

v List prefetch: Sometimes called list sequential prefetch. Prefetches a set of

non-consecutive data pages efficiently.

These two methods of reading data pages are in addition to a database manager

agent read. A database manager agent read is used when only one or a few

consecutive pages are retrieved, but only one page of data is transferred.

Prefetching and Intra-Partition Parallelism

Prefetching is important to the performance of intra-partition parallelism, which

uses multiple subagents when scanning an index or a table. Such parallel scans

introduce larger data-consumption rates, which require higher prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than serial scans. If

prefetching does not occur for a serial scan, the query runs more slowly because

the agent always needs to wait for I/O. If prefetching does not occur for a parallel

scan, all subagents might need to wait because one subagent is waiting for I/O.

Because of its importance, prefetching is performed more aggressively with

intra-partition parallelism. The sequential detection mechanism tolerates larger

gaps between adjacent pages so that the pages can be considered sequential. The

width of these gaps increases with the number of subagents involved in the scan.

Sequential prefetching

Reading several consecutive pages into the buffer pool using a single I/O

operation can greatly reduce your application overhead. In addition, multiple

parallel I/O operations to read several ranges of pages into the buffer pool can

help reduce I/O wait time.

72 Tuning Database Performance

Prefetching starts when the database manager determines that sequential I/O is

appropriate and that prefetching might improve performance. In cases such as

table scans and table sorts, the database manager can easily determine that

sequential prefetch will improve I/O performance. In these cases, the database

manager automatically starts sequential prefetch. The following example, which

probably requires a table scan, would be a good candidate for sequential prefetch:

 SELECT NAME FROM EMPLOYEE

Implications of the PREFETCHSIZE for table spaces

To define the number of prefetched pages for each table space, use the

PREFETCHSIZE clause in either the CREATE TABLESPACE or ALTER

TABLESPACE statements. The value that you specify is maintained in the

PREFETCHSIZE column of the SYSCAT.TABLESPACES system catalog table.

It is a good practice to explicitly set the PREFETCHSIZE value as a multiple of the

number of table space containers, the number of physical disks under each

container (if a RAID device is used) and the EXTENTSIZE value for your table

space, which is the number of pages that the database manager writes to a

container before it uses a different container. For example, if the extent size is 16

pages and the table space has two containers, you might set the prefetch quantity

to 32 pages. If there are 5 physical disks per container, then you might set the

prefetch quantity to 160 pages.

The database manager monitors buffer-pool usage to ensure that prefetching does

not remove pages from the buffer pool if another unit of work needs them. To

avoid problems, the database manager can limit the number of prefetched pages to

less than you specify for the table space.

The prefetch size can have significant performance implications, particularly for

large table scans. Use the database system monitor and other system monitor tools

to help you tune PREFETCHSIZE for your table spaces. You might gather

information about whether:

v There are I/O waits for your query, using monitoring tools available for your

operating system.

v Prefetch is occurring, by looking at the pool_async_data_reads (buffer pool

asynchronous data reads) data element provided by the database system monitor.

If there are I/O waits and the query is prefetching data, you might increase the

value of PREFETCHSIZE. If the prefetcher is not the cause of the I/O wait,

increasing the PREFETCHSIZE value will not improve the performance of your

query.

In all types of prefetch, multiple I/O operations might be performed in parallel

when the prefetch size is a multiple of the extent size for the table space and the

extents of the table space are in separate containers. For better performance,

configure the containers to use separate physical devices.

Sequential detection

In some cases it is not immediately obvious that sequential prefetch will improve

performance. In these cases, the database manager can monitor I/O and activate

prefetching if sequential page reading is occurring. In this case, prefetching is

activated and deactivated by the database manager as appropriate. This type of

sequential prefetch is known as sequential detection and applies to both index and

Chapter 14. Operational performance 73

data pages. Use the seqdetect configuration parameter to control whether the

database manager performs sequential detection.

For example, if sequential detection is turned on, the following SQL statement

might benefit from sequential prefetch:

 SELECT NAME FROM EMPLOYEE

 WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer might have started to scan the table using an index

on the EMPNO column. If the table is highly clustered with respect to this index,

then the data-page reads will be almost sequential and prefetching might improve

performance, so data-page prefetch will occur.

Index-page prefetch might also occur in this example. If many index pages must be

examined and the database manager detects that sequential page reading of the

index pages is occurring, then index-page prefetching occurs.

Block-based buffer pools for improved sequential prefetching

Prefetching pages from disk is expensive because of I/O overhead. Throughput

can be significantly improved if processing is overlapped with I/O. Most platforms

provide high-performance primitives that read contiguous pages from disk into

non-contiguous portions of memory. These primitives are usually called scattered

read or vectored I/O. On some platforms, performance of these primitives cannot

compete with doing I/O in large block sizes.

By default, the buffer pools are page-based, which means that contiguous pages on

disk are prefetched into non-contiguous pages in memory. Sequential prefetching

can be enhanced if contiguous pages can be read from disk into contiguous pages

within a buffer pool.

You can create block-based buffer pools for this purpose. A block-based buffer pool

consist of both a page area and a block area. The page area is required for

non-sequential prefetching workloads. The block area consist of blocks where each

block contains a specified number of contiguous pages, which is referred to as the

block size.

The optimal usage of a block-based buffer pool depends on the specified block

size. The block size is the granularity at which I/O servers doing sequential

prefetching consider doing block-based I/O. The extent is the granularity at which

table spaces are striped across containers. Because multiple table spaces with

different extent sizes can be bound to a buffer pool defined with the same block

size, consider how the extent size and the block size interact for efficient use of

buffer-pool memory. Buffer-pool memory can be wasted in the following

circumstances:

v If the extent size, which determines the prefetch request size, is smaller than

BLOCK_SIZE specified for the buffer pool.

v If some pages requested in the prefetch request are already present in the page

area of the buffer pool.

The I/O server allows some wasted pages in each buffer-pool block, but if too

much of a block would be wasted, the I/O server does non-block-based

prefetching into the page area of the buffer pool. This is not optimal performance.

74 Tuning Database Performance

For optimal performance, bind table spaces of the same extent size to a buffer pool

with a block size that equals the table-space extent size. Good performance can be

achieved if the extent size is larger than the block size, but not when the extent

size is smaller than the block size.

To create block-based buffer pools, use the CREATE and ALTER BUFFERPOOL

statements.

Note: Block-based buffer pools are intended for sequential prefetching. If your

applications do not use sequential prefetching, then the block area of the buffer

pool is wasted.

List prefetching

List prefetch, or list sequential prefetch, is a way to access data pages efficiently even

when the data pages needed are not contiguous. List prefetch can be used in

conjunction with either single or multiple index access.

If the optimizer uses an index to access rows, it can defer reading the data pages

until all the row identifiers (RIDs) have been obtained from the index. For

example, the optimizer could perform an index scan to determine the rows and

data pages to retrieve, given the previously defined index IX1:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

and the following search criteria:

 WHERE NAME BETWEEN ’A’ and ’I’

If the data is not clustered according to this index, list prefetch includes a step that

sorts the list of RIDs obtained from the index scan.

I/O server configuration for prefetching and parallelism

To enable prefetching, the database manager starts separate threads of control,

known as I/O servers, to read data pages. As a result, the query processing is

divided into two parallel activities: data processing (CPU) and data page I/O. The

I/O servers wait for prefetch requests from the CPU processing activity. These

prefetch requests contain a description of the I/O needed to satisfy the query. The

possible prefetch methods determine when and how the database manager

generates the prefetch requests.

Configuring enough I/O servers with the num_ioservers configuration parameter

can greatly enhance the performance of queries for which prefetching of data can

be used. To maximize the opportunity for parallel I/O, set num_ioservers to at least

the number of physical disks in the database.

It is better to overestimate the number of I/O servers than to underestimate. If you

specify extra I/O servers, these servers are not used, and their memory pages are

paged out. As a result, performance does not suffer. Each I/O server process is

numbered. The database manager always uses the lowest numbered process, so

some of the upper numbered processes might never be used.

To estimate the number of I/O servers that you might need, consider the

following:

Chapter 14. Operational performance 75

v The number of database agents that could be writing prefetch requests to the

I/O server queue concurrently.

v The highest degree to which the I/O servers can work in parallel.

It is worthwhile to consider setting the value of the num_ioservers database

configuration parameter to AUTOMATIC so that DB2 can pick intelligent values

based on the system configuration.

Configuration for asynchronous I/O

On some platforms, DB2 uses asynchronous I/O (AIO) to improve performance of

activities such as page cleaning and prefetching. AIO is most effective if data in

containers is distributed across multiple disks. Performance also benefits from

tuning the underlying operating system AIO infrastructure.

For example, on AIX®, you might tune AIO on the operating system. When AIO

works on either SMS or DMS file containers, operating system processes called

AIO servers manage the I/O. A small number of such servers might restrict the

benefit of AIO by limiting the number of AIO requests. To configure the number of

AIO servers on AIX, use the smit AIO minservers and maxservers parameters.

Illustration of prefetching with parallel I/O: The following figure illustrates how

I/O servers are used to prefetch data into a buffer pool.

76 Tuning Database Performance

�1� The user application passes the request to the database agent that has been

assigned to the user application by the database manager.

�2�, �3�

The database agent determines that prefetching should be used to obtain

the data required to satisfy the request and writes a prefetch request to the

I/O server queue.

�4�, �5�

The first available I/O server reads the prefetch request from the queue

and then reads the data from the table space into the buffer pool. The

number of I/O servers that can fetch data from a table space at the same

time depends on the number of prefetch requests in the queue and the

number of I/O servers configured by the num_ioservers database

configuration parameter.

�6� The database agent performs the necessary operations on the data pages in

the buffer pool and returns the result to the user application.

Buffer Pool

Database Agent Database Agent

Asynchronous
Prefetch

Request

Database Agent

I/O ServerI/O Server

I/O Server
Queue

5

6

4

3

2

Logical
Buffer

Read

Big
Block
Read

Create
4K pages

User
Application

User
Application

User
Application

1

Figure 15. Prefetching data using I/O servers

Chapter 14. Operational performance 77

Parallel I/O management: If multiple containers exist for a table space, the

database manager can initiate parallel I/O, in which database manager uses

multiple I/O servers to process the I/O requirements of a single query. Each I/O

server processes the I/O workload for a separate container, so that several

containers can be read in parallel. Performing I/O in parallel can result in

significant improvements to I/O throughput.

Although a separate I/O server can handle the workload for each container, the

actual number of I/O servers that can perform I/O in parallel is limited to the

number of physical devices over which the requested data is spread. For this

reason, you need as many I/O servers as physical devices.

Parallel I/O is initiated differently in the following cases:

v Sequential prefetch

For sequential prefetch, parallel I/O is initiated when the prefetch size is a

multiple of the extent size for a table space. Each prefetch request is then broken

into many small requests along the extent boundaries. These small requests are

then assigned to different I/O servers.

v List prefetch

For list prefetch, each list of pages is divided into smaller lists according to the

container in which the data pages are stored. These smaller lists are then

assigned to different I/O servers.

v Database or table space backup and restore

For backing up or restoring data, the number of parallel I/O requests are equal

to the backup buffer size divided by the extent size up to a maximum value

equal to the number of containers.

v Database or table space restore

For restoring data, the parallel I/O requests are initiated and split the same way

as that used for sequential prefetch. Instead of restoring the data into the buffer

pool, the data is moved directly from the restore buffer to disk.

v Load

When you load data, you can specify the level of I/O parallelism with the

LOAD command DISK_PARALLELISM option. If you do not specify this option,

the database manager uses a default value based on the cumulative number of

table space containers for all table spaces associated with the table.

For optimal performance of parallel I/O, ensure that:

v There are enough I/O servers. Specify slightly more I/O servers than the

number of containers used for all table spaces within the database.

v The extent size and prefetch size are sensible for the table space. To prevent

over-use of the buffer pool, prefetch size should not be too large. An ideal size is

a multiple of the extent size, the number of physical disks under each container

(if a RAID device is used) and the number of table space containers. The extent

size should be fairly small, with a good value being in the range of 8 to 32

pages.

v The containers reside on separate physical drives.

v All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they reduce the potential

for optimized parallel prefetch. Consider the following examples:

– After a smaller container is filled, additional data is stored in the remaining

containers, causing the containers to become unbalanced. Unbalanced

78 Tuning Database Performance

containers reduce the performance of parallel prefetching, because the number

of containers from which data can be prefetched might be less than the total

number of containers.

– If a smaller container is added at a later date and the data is rebalanced, the

smaller container will contain less data than the other containers. Its small

amount of data relative to the other containers will not optimize parallel

prefetching.

– If one container is larger and all of the other containers fill up, it is the only

container to store additional data. The database manager cannot use parallel

prefetch to access this additional data.
v There is adequate I/O capacity when using intra-partition parallelism. On SMP

machines, intra-partition parallelism can reduce the elapsed time for query by

running the query on multiple processors. Sufficient I/O capacity is required to

keep each processor busy. Usually additional physical drives are required to

provide the I/O capacity.

The prefetch size must be larger for prefetching to occur at higher rates and use

I/O capacity effectively.

The number of physical drives required depends on the speed and capacity of

the drives and the I/O bus and on the speed of the processors.

Tuning sort performance: Because queries often require sorted or grouped results,

sorting is often required, and the proper configuration of the sort heap areas is

crucial to good query performance. Sorting is required when:

v No index exists to satisfy a requested ordering (for example a SELECT statement

that uses the ORDER BY clause).

v An index exists but sorting would be more efficient than using the index

v An index is created.

v An index is dropped, which causes index page numbers to be sorted.

Elements that affect sorting

The following factors affect sort performance:

v The settings for the following database configuration parameters:

– Sort heap size, (sortheap), which specifies the amount of memory to be used

for each sort

– Sort heap threshold (sheapthres) and the sort heap threshold for shared sorts

(sheapthres_shr), which control the total amount of memory for sorting

available across the entire instance for all sorts
v The number of statements in a workload which require a large amount of

sorting.

v The existence or absence of indexes that could help avoid unnecessary sorting

v The use of application logic that does not minimize sorting

v Parallel sorting, which improves the performance of sorts but can only occur if

the statement uses intra-partition parallelism.

v Whether the sort is overflowed or non-overflowed. If the sorted data cannot fit

entirely into the sort heap, which is a block of memory that is allocated each

timea sort is performed, it overflows into a temporary table owned by the

database. Sorts that do not overflow always perform better than those that do.

v Whether the results of the sort are piped or non-piped. If sorted information can

return directly without requiring a temporary table to store a final, sorted list of

Chapter 14. Operational performance 79

data, it is a piped sort. If the sorted information requires a temporary table to be

returned, it is a non-piped sort. A piped sort always performs better than a

non-piped sort.

Also note that in a piped sort, the sort heap is not freed until the application

closes the cursor associated with that sort. A piped sort can continue to use up

memory until the cursor is closed.

In general, overall sort memory available across the instance (sheapthres) should be

as large as possible without causing excessive paging. Although a sort can be

performed entirely in sort memory, this might cause excessive page swapping. In

this case, you lose the advantage of a large sort heap. For this reason, you should

use an operating system monitor to track changes in system paging whenever you

adjust the sorting configuration parameters.

Techniques for managing sorting performance

Identify particular applications and statements where sorting is a significant

performance problem:

1. Set up event monitors at the application and statement level to help you

identify applications with the longest total sort time.

2. Within each of these applications, find the statements with the longest total sort

time.

You can also search through the explain tables to identify the queries that have

sort operations.

3. Use these statements as input to the Design Advisor, which will identify and

optionally create indexes to reduce the need for sorting.

Use the database system monitor and benchmarking techniques to help set the

sortheap and sheapthres configuration parameters. For each database manager and

for each database:

1. Set up and run a representative workload.

2. For each applicable database, collect average values for the following

performance variables over the benchmark workload period:

v Total sort heap in use (the value of the sort_heap_allocated monitor element)

v Active sorts and active hash joins (the values of the active_sorts and

active_hash_joins monitor elements).
3. Set sortheap to the average total sort heap in use for each database.

Note: With the improvement in the DB2 partial-key binary sorting technique to

include non-integer data type keys, some additional memory is required when

sorting long keys. If long keys are used for sorts, you may need to increase the

sortheap configuration parameter.

4. Set the sheapthres. To estimate an appropriate size:

a. Determine which database in the instance has the largest sortheap value.

b. Determine the average size of the sort heap for this database.

If this is too difficult to determine, use 80% of the maximum sort heap

c. Set sheapthres to the average number of active sorts times the average size of

the sort heap computed above.

This is a recommended initial setting. You can then use benchmark

techniques to refine this value.

80 Tuning Database Performance

You can also use the self tuning memory feature to automatically and dynamically

allocate and de-allocate memory resources required for sorting. To use this feature:

v Enable self tuning memory for the database by setting the self_tuning_mem

configuration parameter to ″ON.″

v Set the sortheap and sheapthres_shr configuration parameters to ″AUTOMATIC.″

v Set the sheapthres configuration parameter to ″0″.

Maintaining the organization of your tables and indexes

Over time, data in your tables can become fragmented, increasing the size of your

tables and indexes as the records become distributed over more and more data

pages. This can increase the number of pages that need to be read during query

execution. Reorganization of your tables and indexes compacts your data,

reclaiming wasted space and improving data access.

The steps to perform an index or table reorganization are as follows:

1. Determine whether you need to reorganize any tables or indexes.

2. Choose a reorganization method.

3. Perform reorganization on identified objects.

4. Monitor progress of reorganization

5. For online table reorganization, you may pause the reorganization process if

necessary, which will allow you to then resume at a later time.

6. Evaluate the outcome of the reorganization, determining whether the operation

succeeded or failed. For offline table reorganization and any index

reorganization the operation is synchronous and the outcome of the

reorganization will be apparent upon return of the command. Online table

reorganization is processed asynchronously, therefore, to evaluate the outcome

you will need to refer to the history file.

7. If you performed an online table reorganization, you can choose to recover it.

See: “Recovery of a failed online table reorganization” on page 89

8. Collect statistics on reorganized objects.

9. Rebind applications that access reorganized objects.

Table reorganization

After many changes to table data, logically sequential data may be on

non-sequential physical data pages so that the database manager must perform

additional read operations to access data. Additional read operations are also

required if a significant number of rows have been deleted. In such a case, you

might consider reorganizing the table to match the index and to reclaim space. You

can reorganize the system catalog tables as well as database tables.

Note: Because reorganizing a table usually takes more time than running statistics,

you might execute RUNSTATS to refresh the current statistics for your data and

rebind your applications. If refreshed statistics do not improve performance,

reorganization might help. For detailed information about the options and

behavior of the REORG TABLE utility, refer to its command reference.

Consider the following factors, which might indicate that you should reorganize a

table:

v A high volume of insert, update, and delete activity on tables accessed by

queries

Chapter 14. Operational performance 81

v Significant changes in the performance of queries that use an index with a high

cluster ratio

v Executing RUNSTATS to refresh statistical information does not improve

performance

v The REORGCHK command indicates a need to reorganize your table

v The tradeoff between the cost of increasing degradation of query performance

and the cost of reorganizing your table, which includes the CPU time, the

elapsed time, and the reduced concurrency resulting from the REORG utility

locking the table until the reorganization is complete.

Reducing the need to reorganize tables

To reduce the need for reorganizing a table, perform these tasks after you create

the table:

v Alter table to add PCTFREE

v Create clustering index with PCTFREE on index

v Sort the data

v Load the data

After you have performed these tasks, the table with its clustering index and the

setting of PCTFREE on table helps preserve the original sorted order. If enough

space is allowed in table pages, new data can be inserted on the correct pages to

maintain the clustering characteristics of the index. As more data is inserted and

the pages of the table become full, records are appended to the end of the table so

that the table gradually becomes unclustered.

If you perform a REORG TABLE or a sort and LOAD after you create a clustering

index, the index attempts to maintain a particular order of data, which improves

the CLUSTERRATIO or CLUSTERFACTOR statistics collected by the RUNSTATS

utility.

Note: Creating multi-dimensional clustering (MDC) tables might reduce the need

to reorganize tables. For MDC tables, clustering is maintained on the columns that

you specify as arguments to the ORGANIZE BY DIMENSIONS clause of the

CREATE TABLE statement. However, REORGCHK might recommend

reorganization of an MDC table if it considers that there are too many unused

blocks or that blocks should be compacted.

Choosing a table reorganization method

There are two different methods of table reorganization: classic or offline REORG

and inplace or online REORG.

The INPLACE option of the REORG command specifies an online reorganization.

If this is not specified, an offline REORG is run.

Each method of reorganizing has advantages and trade-offs. These are summarized

below. When choosing a reorganization method, consider which method offers

advantages that align with your priorities, for example if recoverability in case of

failure is more important than having the reorganization complete quickly, the

online reorganization method might be the best approach to take.

Advantages of offline reorganization

v Provides fastest table reorganization, especially if reorganization of LOB/LONG

data is not required.

82 Tuning Database Performance

v Tables and indexes are perfectly clustered upon completion.

v Indexes are rebuilt once the table has been reorganized. No separate step is

required to rebuild indexes.

v Shadow copy can be built in temporary table space. This reduces the amount of

space required in table space containing target table or index.

v Permits specification and use of an index other than the clustering index to

re-cluster the data, while online reorganization must use the existing clustering

index if one exists.

Disadvantages of offline reorganization

v Limited table access. Applications allowed only read access to the table and only

during the sort and build phase of the reorganization.

v Large space requirement since shadow copy approach is used.

v Less control over the REORG process than with online REORG: offline

reorganization cannot be paused and restarted.

Advantages of online reorganization

v Allows applications full access to the table during REORG except during

truncate phase.

v You have more control over the REORG process: process running

asynchronously in background and can be paused, resumed, and stopped. For

example, if a large number of updates or deletes are being run against the table,

you can pause the REORG process.

v Recoverable process if failures occur.

v Requires less working storage since table is incrementally processed.

v Benefits of reorganization can be realized immediately as REORG progresses.

Disadvantages of online reorganization

v Can result in imperfect data clustering or imperfect index clustering, depending

on the type of transactions accessing the table during the REORG.

v Pages reorganized in the beginning of the reorganization might have more

updates, and therefore be more fragmented than tables that are reorganized later

in the process.

v Slower performance than offline reorg. For a normal clustering REORG (not just

space reclaiming) it might take 10-20 times longer to perform an online REORG.

(A table with applications running against it concurrently, or with a large

number of indexes defined could take significantly longer.)

v Online REORG is a recoverable process, but this comes at the expense of

increased logging requirements. It is possible that a significant amount of log

space is required (up to several times the size of the table). This is dependent on

the number of rows moved during the REORG, the number of indexes defined

on the table, and the size of the indexes.

v Indexes are maintained, not rebuilt, so subsequent index reorganization might be

required.

 Table 2. Comparison of online and offline reorganization

Characteristic Offline Reorganization Online reorganization

Performance Fast Slow

Clustering factor of data at

completion

Good Not perfectly clustered

Chapter 14. Operational performance 83

Table 2. Comparison of online and offline reorganization (continued)

Characteristic Offline Reorganization Online reorganization

Concurrency (access to the

table)

Ranges from NO ACCESS to

READ ONLY

Ranges from READ ONLY to

full access

Data storage space

requirement

Significant Not significant

Logging storage space

requirement

Not significant Could be significant

User control (ability to

pause, restart process)

Less control More control

Recoverability All or nothing: succeeds or

fails.

Recoverable

Index rebuild Done Not done

Supported for all types of

tables

Yes No

Specify index other than

clustering index

Yes No

Use of temporary table space Yes No

 Table 3. Table types supported for online and offline reorganization

Table type

Offline reorganization

supported

Online reorganization

supported

Multi-dimensional clustering

tables (MDC)

Yes1 No

Range-clustered tables (RCT) No2 No

Append mode tables No No3

Tables with LONG/LOB data Yes4 No

Tables with type-1 indexes Yes5 No

System catalog tables:

SYSIBM.SYSTABLES,

SYSIBM.SYSSEQUENCES,

SYSIBM.SYSDBAUTH,

SYSIBM.SYSROUTINEAUTH

Yes No

1. Since clustering is automatically maintained via MDC block indexes,

reorganization of an MDC table involves space reclamation only. No index can

be specified since block index is used.

2. The range area of an RCT always remains clustered.

3. After append mode is turned off, online reorganization can be performed.

4. Reorganizing LONG/LOB data can take a significant amount of time.

Reorganizing LONG/LOB data does not help query performance; it should

only be done for space reclamation.

5. After reorganization, all indexes are rebuilt as type-2 indexes.

Refer to the REORG TABLE syntax descriptions for detailed information about

executing these table reorganization methods.

84 Tuning Database Performance

Monitoring the progress of table reorganization

Information about the current progress of table reorganization is written to the

history file for database activity. The history file contains a record for each

reorganization event. To view this file, execute the db2 list history command for

the database that contains the table you are reorganizing.

You can also use table snapshots to monitor the progress of table reorganization.

Table reorganization monitoring data is recorded regardless of the Database

Monitor Table Switch setting.

If an error occurs, an SQLCA dump is written to the history file. For an inplace

table reorganization, the status is recorded as PAUSED.

Offline table reorganization

Offline table reorganization uses a shadow copy approach, building a full copy of

the table that is being reorganized.

There are four phases in a classic or offline table reorganization:

1. SORT
If an index is specified with the REORG TABLE command, or if a clustering

index is defined on the table, the rows of the table are first sorted according to

that index. If the INDEXSCAN option is specified, an index scan is used to sort

the table, otherwise, a table scan sort is used. This phase only applies to a

clustering REORG. Space reclaiming reorganizations begin at the build phase.

2. BUILD
In this phase, a reorganized copy of the entire table is build, either in the table

space that the table being reorganized resides, or in a temporary table space

specified with the REORG command.

3. REPLACE
In this phase, the original table object is replaced by either copying back from

the temporary table space, or by pointing to the newly built object within the

table space of the table being reorganized.

4. RECREATE ALL INDEXES
All indexes defined on the table are recreated.

You can monitor the progress of the REORG TABLE and determine which phase

the reorganization is currently in using the snapshot monitor or snapshot

administrative views.

The locking conditions are more restrictive in offline table REORG than in online

REORG. Read access is available on the table while the copy is being built.

However, exclusive access to the table is required while replacing the original table

with the reorganized copy and while rebuilding the indexes.

An IX table space lock is required during entire REORG process. During the

BUILD phase, a U lock is acquired and held on the table. A U lock allows the lock

owner to update the data in the table. However, no other application can update

any data. (Read access is allowed.) The U lock is upgraded to a Z lock once the

REPLACE phase is started. During this phase, no other applications can access the

data. This lock is held until REORG completes.

Chapter 14. Operational performance 85

A number of files are created by the offline reorganization process. These files are

stored in your database directory and are prefixed with the table space and object

ids, for example, 0030002.ROR is the state file for the reorganization of a table with

a table space id of 3 and a table id of 2.

The following are temporary files created during offline REORG for an SMS table:

v .DTR Data shadow copy file

v .LFR Long field file

v .LAR Long field allocation file

v .RLB LOB data file

v .RBA LOB allocation file

v .BMR Block object file (for MDC tables)

The following temporary file is created during an index reorganization:

v .IN1 Shadow copy file

The following temporary files are created in the system temporary table space

during the sort phase:

v .TDA Data file

v .TIX Index file

v .TLF Long field file

v .TLA Long field allocation file

v .TLB LOB file

v .TBA LOB allocation file

v .TBM Block object file

The files associated with the reorganization process should not be manually

removed from your system.

Reorganizing tables offline:

Reorganizing tables offline is the fastest way to defragment your tables.

Reorganization reduces the amount of space required for the table and improves

data access and query performance.

 You must have SYSADM, SYSCTRL, SYSMAINT, or DBADM authority, or you

must have CONTROL privilege on the table to reorganize a table. You must have a

database connection to reorganize a table.

Once you have identified the tables that require reorganization, you can run the

REORG utility on those tables and, optionally, on any indexes defined on those

tables.

1. To reorganize a table using the CLP, issue the REORG TABLE command:

db2 reorg table test.employee

To reorganize a table using the temporary table space mytemp, enter:

db2 reorg table test.employee use mytemp

To reorganize the table and have the rows reordered according to the index

myindex, enter:

db2 reorg table test.employee index myindex

86 Tuning Database Performance

2. To reorganize a table using an SQL call statement , issue the REORG TABLE

command using the ADMIN_CMD procedure:

call sysproc.admin_cmd (’reorg table employee index myindex’)

3. To reorganize a table using a DB2 administrative API, use the db2REORG API.

After reorganizing a table, you should collect statistics on the table so that the

optimizer has the most accurate data for evaluating query access plans.

Recovery of an offline table reorganization:

An offline table reorganization is an all-or-nothing process up until the REPLACE

phase has begun. This means that if your system crashes during the SORT or

BUILD phases, the REORG TABLE operation is rolled back and will not be redone

on crash recovery. Instead, the REORG TABLE command will have to be reissued

after the recovery.

 If your system crashes after entering the REPLACE phase, then the REORG TABLE

operation has to complete. This is because all of the REORG TABLE work has been

done and the original table may no longer be available. During crash recovery, the

temporary file for the reorganized object is required but not the temporary table

space used for the sort. Recovery will restart the REPLACE phase from the

beginning and all the data in the copy object is required for recovery. There is a

difference between SMS and DMS table spaces in this case: the SMS object will

have to be copied from one object to the other, while in DMS, the newly

reorganized object is simply pointed to and the original table dropped, if the

reorganization was done in the same table space. Indexes are not rebuilt, but are

marked invalid during crash recovery, and the database will follow the normal

rules to determine when they are rebuilt, either at database restart or upon first

access to the indexes.

A crash in the index rebuild phase means we already have the new object so

nothing is redone. (As above, indexes are not rebuilt, but are marked invalid

during crash recovery, and the database will follow the normal rules to determine

when they are rebuilt, either at database restart or upon first access to the indexes.)

For rollforward recovery, REORG TABLE is redone if the old version of the table is

on disk. Rollforward uses the RIDs that are logged during the BUILD phase to

reapply the order of operations that created the reorganized table, repeating the

BUILD and REPLACE phases. Again, indexes are marked invalid as described

above. This means that there is no index scan or scan sort performed, and the only

temporary table space required is for the copy of the reorganized object, if a

temporary table space was used originally. During rollforward, multiple REORG

TABLE operations can be redone concurrently due to parallel recovery. In this case,

the disk space usage will be greater than at runtime.

Improving the performance of offline table reorganization:

The performance of an offline table reorganization is largely determined by the

characteristics of the database environment.

 There is virtually no difference in performance between REORG TABLE run in NO

ACCESS mode and REORG TABLE run in ALLOW READ ACCESS mode. The

only difference is that for READ ACCESS mode, DB2 upgrades the lock on the

table before replacing it, therefore the utility might have to wait for existing scans

to complete and release their locks. The table is unavailable during the index

rebuild phase of the REORG TABLE operation in both cases.

Chapter 14. Operational performance 87

Tips for improving performance

If enough space exists in the table space, use the same table space for the original

table and the reorganized copy of the table, instead of using a temporary table

space. This saves the time taken to copy the table from the temporary table space.

v Consider dropping unnecessary indexes before reorganizing a table so that fewer

indexes need to be maintained during the REORG TABLE operation.

v Ensure the prefetch size of the table spaces where the reorganized table resides

is set properly.

v Enable INTRA_PARALLEL so that the index rebuilding is done with parallel

processing.

v Tune the sortheap and sheapthres database configuration parameters to control

space for sorts. Since each processor will perform a private sort, the value of

sheapthres should be at least sortheap x the number of processors used.

v Ensure dirty index pages are getting cleaned from the buffer pool as soon as

possible by tuning the number of page cleaners.

Online table reorganization

Online or inplace table reorganization allows the user to reorganize a table while

permitting full access to that table. While online REORG TABLE provides

uninterrupted user access to the data, the performance of online REORG TABLE is

slower than offline REORG TABLE.

During an online table reorganization, the entire table is not reorganized at once.

Instead, portions of the table are reorganized sequentially. Data is not copied out to

a temporary table space: rows are moved within the existing table object to

re-establish clustering, reclaim free spaces, and eliminate overflow rows.

There are four primary phases for online REORG TABLE:

1. SELECT N pages

During this phase, DB2 selects N pages, where N is the extent size with a

minimum of 32 sequential pages for REORG TABLE processing.

2. Vacate the range

With the N pages selected, online REORG TABLE moves all rows within this

range to free pages within the table. Each row that is moved leaves behind an

RP (REORG TABLE pointer) record that contains the RID of the row’s new

location. The row is inserted to free pages in the table as a RO (REORG TABLE

overflow) record that contains the data.

Once REORG TABLE finishes moving a set of rows, it waits for all existing data

accesses that are occurring in the table (for example, by currently executing

applications) to complete. These existing accesses, called old scanners, use old

the RIDs when accessing the table data. Any accesses that start during this

waiting period, called new scanners, use the new RIDs to access the data. Once

all of the old scanners have completed, REORG TABLE cleans up the moved

rows, deleting the RP records and converting the RO records to normal records.

3. Fill the range

After all rows have been vacated, the rows are written back, in a reorganized

format, sorted according to any indexes used, and obeying any PCTFREE

restrictions defined. When all the pages in the range are filled, the next N

sequential pages are selected in the table, and the process begins again.

4. Truncate the table

When all pages in the table have been reorganized, the table will be truncated

to reclaim space by default. If the NOTRUNCATE option is specified, the

reorganized table is not truncated.

88 Tuning Database Performance

Files created during an online table REORG

During an online table reorganization, an .OLR state file is created for each

database partition. This file is a binary file with the name xxxxyyy.OLR, where xxxx

is the pool ID and yyyy is the object ID in hex format. This file contains

information required to resume an online reorganization from a paused state.

The state file includes the following information:

v The type of REORG

v The life LSN of the table being reorganized

v The next range to be vacated

v Whether the reorganization is clustering the data or just reclaiming space

v The ID of the index used to cluster the data

A checksum is held on the .OLR file. If the file becomes corrupted, causing

checksum errors, or if the table LSN does not match the life LSN, a new REORG

will have to be initiated, and a new state file will be created.

If the .OLR state file is deleted, the REORG TABLE process cannot be resumed and

an SQL2219 error is returned. A new REORG TABLE process will have to be

initiated.

The files associated with the reorganization process should not be manually

removed from your system.

Reorganizing tables online:

An online or inplace table reorganization allows users to access the table while it is

being reorganized.

 You must have SYSADM, SYSCTRL, SYSMAINT, or DBADM authority, or you

must have CONTROL privilege on the table to reorganize a table. You must have a

database connection to reorganize a table.

You can perform an online table reorganization using a CLP command, using an

SQL call statement, or through a DB2 API.

1. To reorganize a table online using the CLP, issue the REORG TABLE command

using the INPLACE option :

db2 reorg table test.employee inplace

2. To reorganize a table online using an SQL call statement , issue the REORG

TABLE command using the ADMIN_CMD procedure:

call sysproc.admin_cmd (’reorg table employee inplace’)

3. To reorganize a table using a DB2 administrative API, use the db2REORG API.

After reorganizing a table, you should collect statistics on the table so that the

optimizer has the most accurate data for evaluating query access plans.

Recovery of a failed online table reorganization:

The failure of an online table reorganization is often due to processing errors such

as disk full or logging errors. If an online table reorganization fails, an SQLCA

message is written to the history file.

Chapter 14. Operational performance 89

If one or more database partitions in a partitioned database environment

encounters an error, the sqlcode returned will be the one from the first node that

reports an error.

If the failure is during runtime, the online table reorganization is paused and rolled

back. If the system goes down, on restart, crash recovery begins and the

reorganization is paused and rolled back. Later on, you can resume the

reorganization by specifying the RESUME option with the REORG TABLE

command. Since the online table reorganization process is fully logged, it is

guaranteed that reorganization is recoverable.

Under some circumstances, for example, online table reorganization might exceed

the num_log_span limit. In this case, DB2 will force REORG TABLE and put it into

PAUSE status. In the snapshot output, the state of the REORG TABLE utility will

appear as “PAUSED”.

The online table reorganization pause is interrupt-driven, which means that it can

be paused either by the user (using the pause option of the REORG TABLE

command, or the force application command) or by DB2 in certain circumstances,

for example in the case of a system crash.

Pausing and restarting an online table reorganization:

An online table reorganization that is in progress can be paused and restarted by

the user.

 To pause or restart an online table reorganization you must have one of the

following:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table.
1. To pause an online table reorganization, issue the REORG TABLE command

using the PAUSE option:

 db2 reorg table homer.employee inplace pause

2. To restart a paused online table reorganization, issue the REORG TABLE

command with the RESUME option:

 db2 reorg table homer.employee inplace resume

Note:

v When an online table reorganization is paused, you cannot begin a new

reorganization of that table. You must either resume the paused

reorganization, or stop the paused reorganization before beginning a new

reorganization process.

v When a RESUME request is issued, the reorganization process respects the

TRUNCATE option specified in the original REORG command, regardless of

what TRUNCATE options are specified with subsequent START or any

intermediate RESUME requests. However, if a reorganization is in the

TRUNCATE phase and the user issues a RESUME request specifying

NOTRUNCATE, the table is not truncated and the reorganization completes.

v A reorganization cannot RESUME after a restore and rollforward operation.

90 Tuning Database Performance

Locking and concurrency considerations for online table reorganization:

One of the most important aspects of online table reorganization is how locking is

controlled, as it is crucial to application concurrency.

 At a given point during an online REORG TABLE the operation may hold the

following locks:

v To ensure write access to the table space, an IX lock is acquired on the table

spaces affected by the REORG TABLE operation.

v A table lock is acquired and held during the entire REORG TABLE operation.

The level of locking is dependant on the access mode allowed on that table

during reorganization:

If ALLOW WRITE ACCESS is specified, an IS lock on the table will be acquired

If ALLOW READ ACCESS is specified, an S lock on the table will be acquired.

v During the truncation phase, an S lock on the table is requested while the

reorganization moves rows out of the truncate range, as new rows can be

inserted by old scanners (data accesses that exist during the REORG TABLE

operation and access the old RIDs for the records). DB2 waits until this lock is

achieved before beginning truncation. At the very end of the truncate phase

when REORG TABLE does the physical truncation of the table, the S lock will be

upgraded to a special Z lock. This means that the REORG TABLE operation

cannot complete until there are no table locks held by any existing applications,

including IN locks from a UR scanner.

v A row lock might also be acquired depending on the type of table lock:

If an S lock is held on the table, there is no need for individual row level S

locks, and therefore no further locking is needed.

If an IS lock is held on the table, then a row-level S lock is acquired before the

row is moved, and released after the move is complete.

v Internal locks might be required to control access to the object of an online

REORG TABLE and other online DB2 utilities, such as online backup.

Locking has an impact on the performance of both REORG TABLE and on

concurrent user applications. It is strongly recommended that you examine lock

snapshot data to understand the locking activity when performing online table

reorganizations.

Monitoring a table reorganization

You can use the GET SNAPSHOT command, the SNAPTAB_REORG

administrative view or the SNAP_GET_TAB_REORG table function to get

information about the status of your table reorganization operations.

You must be connected to the database and have the following authorization:

v SYSMON authority

v SELECT or CONTROL privilege on the SNAPTAB_REORG administrative view

or EXECUTE privilege on the SNAP_GET_TAB_REORG table function.
v To access information about reorganization operations using SQL, use the

SNAPTAB_REORG administrative view. For example, the following select

statement returns details on table reorganization operations for all database

partitions on the currently connected database:

SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)

 AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,

 REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM

 FROM SYSIBMADM.SNAPTAB_REORG ORDER BY DBPARTITIONNUM

Chapter 14. Operational performance 91

If no tables have been reorganized, 0 rows are returned.

v To access information about reorganization operations using the snapshot

monitor, issue the GET SNAPSHOT FOR TABLES ON database command and

examine the values of the table reorganization monitor elements (prefixed with

″reorg_″).

Since offline REORG TABLE is synchronous, any errors in an offline table

reorganization are returned to the caller of the utility (either an application or the

command line.)

Error handling in online table reorganization is slightly different from error

handling in an offline table reorganization. Since online table reorganization is

asynchronous, no SQL messages are written to the CLP. To view SQL errors

returned during an online table reorganization, issue a “LIST HISTORY REORG”

command.

An online table reorganization runs in the background as the db2Reorg process.

This means that a successful return from the REORG TABLE process to the calling

application does not mean that the reorganization completed successfully. Even if

the calling application terminates its database connection, the db2Reorg process will

continue.

Index reorganization

As tables are updated with deletes and inserts, index performance degrades in the

following ways:

v Fragmentation of leaf pages

When leaf pages are fragmented, I/O costs increase because more leaf pages

must be read to fetch table pages.

v The physical index page order no longer matches the sequence of keys on those

pages, which is referred to as a badly clustered index.

When leaf pages are badly clustered, sequential prefetching is inefficient and

results in more I/O waits.

v The index develops more than its maximally efficient number of levels.

In this case, the index should be reorganized.

If you set the MINPCTUSED parameter when you create an index, the database

server automatically merges index leaf pages if a key is deleted and the free space

is less than the specified percent. This process is called online index defragmentation.

However, to restore index clustering, free space, and reduce leaf levels, you can use

one of the following methods:

v Drop and recreate the index.

v Use the REORG INDEXES command to reorganize indexes online.

You might choose this method in a production environment because it allows

users to read from and write to the table while its indexes are being rebuilt.

v Use the REORG TABLE command with options that allow you to reorganize

both the table and its indexes off-line.

Online index reorganization

When you use the REORG INDEXES command with the ALLOW WRITE ACCESS

option, all indexes on the specified table are rebuilt while read and write access to

the table is allowed. Any changes made to the underlying table that would affect

indexes while the reorganization is in progress are logged in the DB2 logs. In

92 Tuning Database Performance

addition, the same changes are placed in the internal memory buffer space, if there

is any such memory space available for use. The reorganization will process the

logged changes to catch up with current writing activity while rebuilding the

indexes. The internal memory buffer space is a designated memory area allocated

on demand from the utility heap to store the changes to the index being created or

reorganized. The use of the memory buffer space allows the index reorganization

to process the changes by directly reading from memory first, and then reading

through the logs if necessary, but at a much later time. The allocated memory is

freed once the reorganization operation completes. Following the completion of the

reorganization, the rebuilt index might not be perfectly clustered. If PCTFREE is

specified for an index, that percent of space is preserved on each page during

reorganization.

For partitioned tables, online index reorganization and cleanup of individual

indexes is supported. For reorganization of individual indexes specify the index

name: REORG INDEX index_name for TABLE table_name

Online index reorganization in ALLOW WRITE mode is not supported for spatial

indexes or multi-dimensionally clustered (MDC) tables.

Note: The CLEANUP ONLY option of the REORG INDEXES/INDEX command

does not fully reorganize indexes. The CLEANUP ONLY ALL option removes keys

that are marked deleted and are known to be committed. It also frees pages in

which all keys are marked deleted and are known to be committed. When pages

are freed, adjacent leaf pages are merged if doing so can leave at least PCTFREE

free space on the merged page. PCTFREE is the percentage of free space defined

for the index when it is created. The CLEANUP ONLY PAGES option deletes only

pages in which all keys are marked deleted and are known to be committed.

When reorganizing indexes on partitioned tables using the CLEANUP ONLY

option, any access level is supported. If the CLEANUP ONLY option is not

specified, the default access level ALLOW NO ACCESS is the only supported

access level.

Index reorganization has the following requirements:

v SYSADM, SYSMAINT, SYSCTRL or DBADM authority, or CONTROL privilege

on the indexes and table

v An amount of free space in the table space where the indexes are stored equal to

the current size of the index

Consider placing indexes subject to reorganization in a large table space when

you issue the CREATE TABLE statement.

v Additional log space

Index reorganization logs its activity. As a result, the reorganization might fail,

especially if the system is busy and other concurrent activity is logged.

Note: If a REORG INDEXES ALL with the ALLOW NO ACCESS option fails,

the indexes are marked invalid and the operation is not undone. However, if a

REORG with the ALLOW READ ACCESS or a REORG with the ALLOW WRITE

ACCESS option fails, the original index object is restored.

Determining when to reorganize tables and indexes

After many changes to table data, logically sequential data might be located on

non-sequential physical data pages, especially if many update operations have

created overflow records. When the data is organized in this way, the database

Chapter 14. Operational performance 93

manager must perform additional read operations to access sequential data.

Additional read operations are also required if a significant number of rows have

been deleted.

Table reorganization defragments the data, eliminating wasted space, and reorders

the rows to incorporate overflow records, improving data access and ultimately

query performance. You can also specify that the data be reordered according to a

particular index, so that queries can access the data with minimal data reads.

Many changes to table data will cause updates to the indexes and index

performance can degrade. Index leaf pages can become fragmented or badly

clustered and the index could develop more level than necessary for optimal

performance. All of these issues will cause more I/O’s and will degrade

performance

Any of the following factors might indicate that you should reorganize a table or

index:

v A high volume of insert, update, and delete activity on a table since the table

was last reorganized

v Significant changes in the performance of queries that use an index with a high

cluster ratio

v Executing RUNSTATS to refresh statistical information does not improve

performance

v The REORGCHK command indicates a need to reorganize your table or index

(NOTE: In some cases REORGCHK will always recommend a table

reorganization, even after a table reorganization has been performed. For

example, using a 32kb page size with an average record length of 15 bytes and a

maximum of 253 records per page means that each page has 32700- (15 x

253)=28905 non-usable bytes. This means that approximately 88% of the page is

free space. Users should analyze the recommendations of REORGCHK and

balance the benefit against the cost to perform the reorganization.

v The db.tb_reorg_req (Reorganization Required) health indicator is in

ATTENTION state. The collection details for this health indicator describes the

list of tables and indexes that could benefit from reorganization.

The REORGCHK command returns statistical information about data organization

and can advise you about whether particular tables or indexes need to be

reorganized. However, running specific queries against the catalog statistics tables

at regular intervals or specific times can provide a performance history that allows

you to spot trends that might have wider implications for performance.

To determine whether you need to reorganize tables or indexes, query the catalog

statistics tables and monitor the following statistics:

1. Overflow of rows

Query the OVERFLOW column in the SYSSTAT.TABLES view to monitor the

overflow value. The values in this column represent the number of rows that

do not fit on their original pages. Row data can overflow when variable length

columns in the table cause the record length to expand such that they no longer

fit into their assigned locations on the data page. Length changes can also occur

if a column is added to the table definition and later materialized by updating

the row. In such cases, a pointer is kept at the original location in the row and

the actual value is stored in another location that is indicated by the pointer.

This can impact performance because the database manager must follow the

94 Tuning Database Performance

pointer to find the contents of the row. This two-step process increases the

processing time and might also increase the number of I/Os required.

Reorganizing the table data will eliminate the row overflows; therefore, as the

number of overflow rows increases, the potential benefit of reorganizing your

table data increases.

2. Fetch statistics

Query the three following columns in the SYSCAT.INDEXES and

SYSSTAT.INDEXES catalog statistics tables to determine the effectiveness of the

prefetchers when the table is accessed in index order. These statistics

characterize the average performance of the prefetchers against the underlying

table.

v The AVERAGE_SEQUENCE_FETCH_PAGES column stores the average

number of pages that can be accessed in sequence in the table. Pages that can

be accessed in sequence are eligible for prefetching. A small number indicates

that the prefetchers are not as effective as they could be because they cannot

read in the full number of pages specified by the PREFETCHSIZE setting for

the table space. A large number indicates that the prefetchers are performing

effectively. For a clustered index and table, this number should approach the

value of NPAGES, the number of pages that contain rows.

v The AVERAGE_RANDOM_FETCH_PAGES column stores the average

number of random table pages between sequential page accesses when

fetching table rows using the index. The prefetchers ignore small numbers of

random pages when most pages are in sequence, and continue to prefetch to

the configured prefetch size. As the table becomes more disorganized, the

number of random fetch pages increases. Such disorganization is usually

caused by inserts that occur out of sequence, either at the end of the table or

in overflow pages. This causes fetches that slow query performance when the

index is used to access a range of values.

v The AVERAGE_SEQUENCE_FETCH_GAP column stores the average gap

between table page sequences when fetching using the index. Detected

through a scan of index leaf pages, each gap represents the average number

of table pages that must be randomly fetched between sequences of table

pages. These occur when many pages are accessed randomly, which

interrupts the prefetchers. A large number indicates a table that is

disorganized or poorly clustered to the index.
3. Number of index leaf pages that contain RIDs marked deleted but not removed

In type-2 indexes, RIDs are not usually physically deleted when the RID is

marked deleted. This means that useful space might be occupied by these

logically deleted RIDs. To retrieve the number of leaf pages on which every

RID is marked deleted, query the NUM_EMPTY_LEAFS column of the

SYSCAT.INDEXES and SYSSTAT.INDEXES statistics tables. For leaf pages on

which not all RIDs are marked deleted, the total number of logically deleted

RIDs is stored in the NUMRIDS_DELETED column.

Use this information to estimate how much space might be reclaimed by

executing REORG INDEXES with the CLEANUP ALL option. To reclaim only

the space in pages on which all RIDs are marked deleted, execute REORG

INDEXES with the CLEANUP ONLY PAGES option.

4. Cluster-ratio and cluster-factor statistics for indexes

A cluster-ratio statistic is stored in the CLUSTERRATIO column of the

SYSTCAT.INDEXES catalog table. This value, between 0 and 100, represents the

degree of data clustering with the index. If you collect DETAILED index

statistics, a finer cluster-factor statistic between 0 and 1 is stored in the

CLUSTERFACTOR column instead, and the value of CLUSTERRATIO is -1.

Chapter 14. Operational performance 95

Only one of these two clustering statistics can be recorded in the

SYSCAT.INDEXES catalog table. To compare CLUSTERFACTOR values with the

CLUSTERRATIO values, multiply the CLUSTERFACTOR by 100 to obtain a

percentage.

Note: In general, only one of the indexes in a table can have a high degree of

clustering.

Index scans that are not index-only accesses might perform better with higher

cluster ratios. A low cluster ratio leads to more I/O for this type of scan, since

after the first access of each data page, it is less likely that the page is still in

the buffer pool the next time it is accessed. Increasing the buffer size might also

improve the performance of an unclustered index.

If table data was initially clustered on a certain index, and the clustering

statistics information indicates that the data is now poorly clustered for that

same index, you may want to reorganize the table to cluster the data again.

5. Number of leaf pages

Query the NLEAF column in the SYSCAT.INDEXES table to find out the

number of leaf pages occupied by an index. The number tells you how many

index page I/Os are needed for a complete scan of an index.

Ideally, an index should take up the minimum amount of space possible to

reduce the I/Os required for an index scan. Random update activity can cause

page splits that increase the size of the index. When indexes are rebuilt during

the reorganization of a table, each index can be built with the minimum

amount of space.

Note: By default, ten percent free space is left on each index page when the

indexes are built. To increase the free space amount, specify the PCTFREE

parameter when you create the index. Whenever you reorganize the index, the

PCTFREE value is used. Free space greater than ten percent might reduce

frequency of index reorganization because the additional space can

accommodate additional index inserts.

6. Number of empty data pages

To calculate the number of empty pages in a table, query the FPAGES and

NPAGES columns in SYSCAT.TABLES and subtract the NPAGES number from

the FPAGES number. The FPAGES column stores the total number of pages in

use; the NPAGES column stores the number of pages that contain rows. Empty

pages can occur when entire ranges of rows are deleted.

As the number of empty pages increases, the need for a table reorganization

increases. Reorganizing the table reclaims the empty pages and reduces the

amount of space used by a table. In addition, because empty pages are read

into the buffer pool for a table scan, reclaiming unused pages can improve the

performance of a table scan.

When the total number of pages (FPAGES) in a table is smaller than or equal to

NPARTITIONS *1 extent size, table reorganization is not recommended.

NPARTITIONS is the number of data partitions if this is a partitioned table,

otherwise it is 1. In a partitioned database environment, after the number of

database partitions in a database partition group of the table is factored in, the

condition changes to FPAGES <= the number of database partitions in a

database partition group of a table * NPARTITIONS * 1 extent size

Before reorganizing, consider the trade-off between the cost of increasing

degradation of query performance and the cost of reorganizing your table or

96 Tuning Database Performance

indexes, which includes the CPU time, the elapsed time, and the reduced

concurrency resulting from the REORG utility locking the table until the

reorganization is complete.

Costs of table and index reorganization

Performing a reorganization on a table or index incurs a certain amount of

overhead that must be considered when deciding whether to reorganize an object.

The costs of reorganizing tables and indexes include:

v CPU consumption of the executing utility

v Reduction in concurrency while running the REORG utility. Concurrency is

reduced because of the locking requirements of REORG.

v Extra storage requirements. (Offline table reorganization requires extra storage

space to hold a shadow copy of the table. Online or inplace table reorganizations

require additional logging space. Online index reorganization requires extra

storage space to hold a shadow copy of the index or indexes and additional log

space. Offline index reorganization will use less log space and does not involve

a shadow copy.)

In some cases, a reorganized table might be larger than the original table,

increasing the space requirements accordingly. A table may grow after

reorganization in the following situations:

v In a clustering REORG TABLE where an index is used to determine the order of

the rows, if the table records are of a variable length (for example, using

varchars) then you might end up using more space since some pages may

contain fewer rows than in the original table.

v If the table had columns added prior to the reorganization but after table

creation the additional column might be realized for the first time in some rows

after the reorganization.

v If the amount of free space left on each page (represented by the value of the

PCTFREE attribute) been increased since the last reorganization.

v If the table has a LOB, then there is a possibility that the LOB uses more space

than previously.

Space requirements for an offline table reorganization

Since offline reorganization uses a shadow copy approach, you need enough

additional storage to accommodate another copy of the table. The shadow copy is

built either in the table space that the original table resides in or in a user-specified

temporary table space.

Additional temporary table space storage may be required for sort processing if a

table scan sort is used. The additional space required could be as large as the size

of the table being reorganized. If the clustering index is SMS type or unique DMS

type, the recreation of this index will not require a sort. Instead, this index is

rebuilt by scanning the newly reorganized data. Any other indexes that require

recreating will involve a sort, potentially requiring space the temporary table space

up to the size of the table being reorganized.

Offline table REORG generates few control log records, and therefore consumes a

relatively small amount of log space. If the REORG does not use an index, then the

only log records are the table data log records. If an index is specified, or if a

clustering index exists on the table, then the RIDs of the rows are logged in the

order that they are placed into the new version of the table. Each log record for the

Chapter 14. Operational performance 97

RIDs holds a maximum of 8000 RIDs, with each RID consuming 4 bytes. This can

be a contributing factor in running out of log space during an offline table

reorganization. Note that RIDs are only logged if the database is recoverable

(LOGRETAIN=ON).

Log space requirements for an online table reorganization

The log space required for an online table REORG is typically larger than what is

required for an offline table REORG. The amount of space required is determined

by the number of rows being reorganized, the number of indexes, the size of the

index keys, and how poorly organized the table is at the outset. It is a good idea to

establish a typical benchmark for log space utilization for your tables.

For every row in the table, it will likely be moved twice during an online table

reorganization. Given one index, each row has to update the index key to reflect

the new location, and once all accesses to the old location are complete, the key is

updated again to remove the reference to the old RID. When the row is moved

back, these updates to the index key are performed again. All of this activity is

logged to make online table reorganization fully recoverable, therefore there is a

minimum of two data log records (each instance including the row data) and four

index log records (each instance including the key data). The clustering index in

particular is prone to filling up the index pages, causing index splits and merges

which also must be logged.

Since online table reorganization frequently issues internal commits, it usually does

not hold significant logs as active. If there is a time when an online REORG does

hold a large number of active logs, it is during the truncate phase, since it acquires

an S table lock at the truncate phase. If the table reorganization cannot acquire the

lock, it waits and holds the log, and other transactions might fill up the logs

quickly.

Reducing the need to reorganize tables and indexes

You can employ different strategies to reduce the frequency with which you need

to reorganize your tables and indexes, avoiding the cost of performing unnecessary

reorganization operations.

Reducing the need to reorganize tables

v Use multi-partition tables. The smaller the table is, the less likely it will need to

be reorganized.

v Create multi-dimensional clustering (MDC) tables, for which clustering is

automatically maintained on the columns specified in the ORGANIZE BY

DIMENSION clause of the CREATE TABLE statement.

v Turn on APPEND mode on tables. If the index key values of these new rows are

always new high key values for example, then the clustering attribute of the

table will try to place them at the end of the table. In this case, placing the table

in append mode may be a better choice than a clustering index.

v After you create a table:

– Alter table to add PCTFREE

– Create a clustering index with PCTFREE specified on index.

– Sort the data before loading it into the table

A clustering index with an appropriate setting for PCTFREE on a table helps

preserve the original sorted order. If enough space is allowed in table pages,

new data can be inserted on the correct pages to maintain the clustering

98 Tuning Database Performance

characteristics of the index. As more data is inserted and the pages of the table

become full, records are appended to the end of the table so that the table

gradually becomes unclustered.

If you perform a REORG TABLE or a sort and LOAD after you create a

clustering index, the index attempts to maintain a particular order of data,

which improves the CLUSTERRATIO or CLUSTERFACTOR statistics collected

by the RUNSTATS utility.

Reducing the need to reorganize indexes

v Create clustering indexes with PCTFREE or LEVEL2 PCTFREE on index pages.

The range is from 0 to 99% with a default value of 10%.

v Create indexes with MINPCTUSED. The possible range is from 0 to 99%, with a

recommended value of 50%. However, consider using the CLEANUP ONLY ALL

option of the REORG INDEXES command to merge leaf pages instead.

Automatic reorganization

After many changes to table data, the table and indexes can become fragmented.

Logically sequential data may be on non-sequential physical pages and so the

database manager has to perform additional read operations to access data.

Among other information, the statistical information collected by RUNSTATS

shows the data distribution within a table. In particular, analysis of these statistics

can indicate when and what kind of reorganization is necessary. Automatic

reorganization determines the need for reorganization on tables and indexes by

using the REORGCHK formulas. It periodically evaluates tables and indexes that

have had their statistics updated to see if reorganization is required. If so, it

internally schedules an index reorganization or a classic table reorganization for

the table. This requires that your applications function without write access to the

tables being reorganized.

The automatic reorganization feature can be enabled or disabled by using the

AUTO_REORG, AUTO_TBL_MAINT, and AUTO_MAINT database configuration

parameters.

In a partitioned database environment, the determination to carry out automatic

reorganization and the inititation of automatic reorganization, is done on the

catalog partition. The database configuration parameters need to be enabled on the

catalog partition only. The reorganization runs on all of the database partitions on

which the target tables reside.

If you are unsure about when and how to reorganize your tables and indexes, you

can incorporate automatic reorganization as part of your overall database

maintenance plan.

Tables and indexes considered for automatic reorganization are configurable by

you using the Automatic Maintenance wizard from the Control Center or Health

Center.

Enabling automatic table and index reorganization

Having well-organized table and index data is critical to efficient data access and

optimal workload performance. After many changes to table data, logically

sequential data may be on non-sequential physical data pages so that the database

manager must perform additional read operations to access data. Additional read

operations are also required if a significant number of rows have been deleted. Use

Chapter 14. Operational performance 99

automated table reorganization to enable DB2 to manage offline table and index

reorganization so that you don’t have to worry about when and how to reorganize

the data. You can enable DB2 to reorganize the system catalog tables as well as

database tables.

You can turn this feature on using either the graphical user interface tools or the

command line interface.

v To set up your database for automatic reorganization using the graphical user

interface tools:

1. Open the Configure Automatic Maintenance wizard either from the Control

Center by right-clicking on a database object or from the Health Center by

right-clicking on the database instance that you want to configure for

automatic reorganization. Select Configure Automatic Maintenance from the

pop-up window.

2. Within this wizard, you can enable automatic reorganization to defragment

data, specify the tables that you want to automatically reorganize, and

specify a maintenance window for the execution of the REORG utility.
v To set up your database for automatic reorganization using the command line

interface, set each of the following configuration parameters to ″ON″:

– AUTO_MAINT

– AUTO_TBL_MAINT

– AUTO_REORG

Using relational indexes to improve performance

Indexes can be used to improve performance when accessing table data. Relational

indexes are used when working with relational data. For XML data access, indexes

over XML data are used.

Although the optimizer decides whether to use a relational index to access

relational table data, except in the following case, you must decide which indexes

might improve performance and create these indexes. Exceptions are the

dimension block indexes and the composite block index that are created

automatically for each dimension that you specify when you create a

multi-dimensional clustering (MDC) table.

You must also execute the RUNSTATS utility to collect new statistics about the

relational indexes in the following circumstances:

v After you create a relational index

v After you change the prefetch size

You should also execute the RUNSTATS utility at regular intervals to keep the

statistics current. Without up-to-date statistics about indexes, the optimizer cannot

determine the best data-access plan for queries.

Note: To determine whether a relational index is used in a specific package, use

the Explain facility. To plan relational indexes, use the Design Advisor from the

Control Center or the db2advis tool to get advice about relational indexes that

might be used by one or more SQL statements.

Advantages of a relational index over no index

If no index exists on a table, a table scan must be performed for each table

referenced in an SQL query. The larger the table, the longer a table scan takes

100 Tuning Database Performance

because a table scan requires each table row to be accessed sequentially. Although

a table scan might be more efficient for a complex query that requires most of the

rows in a table, an index scan can access table rows more efficiently for a query

that returns only some table rows.

The optimizer chooses an index scan if the relational index columns are referenced

in the SELECT statement and if the optimizer estimates that an index scan will be

faster than a table scan. Index files generally are smaller and require less time to

read than an entire table, particularly as tables grow larger. In addition, the entire

index may not need to be scanned. The predicates that are applied to the index

reduce the number of rows to be read from the data pages.

If an ordering requirement on the output can be matched with an index column,

then scanning the index in column order will allow the rows to be retrieved in the

correct order without a sort.

Each relational index entry contains a search-key value and a pointer to the row

containing that value. If you specify the ALLOW REVERSE SCANS parameter in

the CREATE INDEX statement, the values can be searched in both ascending and

descending order. It is therefore possible to bracket the search, given the right

predicate. A relational index can also be used to obtain rows in an ordered

sequence, eliminating the need for the database manager to sort the rows after they

are read from the table.

In addition to the search-key value and row pointer, a relational index can contain

include columns, which are non-indexed columns in the indexed row. Such

columns might make it possible for the optimizer to get required information only

from the index, without accessing the table itself.

Note: The existence of a relational index on the table being queried does not

guarantee an ordered result set. Only an ORDER BY clause ensures the order of a

result set.

Although indexes can reduce access time significantly, they can also have adverse

effects on performance. Before you create indexes, consider the effects of multiple

indexes on disk space and processing time:

v Each index requires storage or disk space. The exact amount depends on the size

of the table and the size and number of columns in the relational index.

v Each INSERT or DELETE operation performed on a table requires additional

updating of each index on that table. This is also true for each UPDATE

operation that changes the value of an index key.

v The LOAD utility rebuilds or appends to any existing relational indexes.

The indexfreespace MODIFIED BY parameter can be specified on the LOAD

command to override the index PCTFREE used when the relational index was

created.

v Each relational index potentially adds an alternative access path for an SQL

query for the optimizer to consider, which increases the compilation time.

Choose indexes carefully to address the needs of the application program.

Relational index planning tips

The relational indexes that you create should depend on the relational data and the

queries that access it.

Chapter 14. Operational performance 101

Use the Design Advisor from the Control Center or the db2advis tool to find the

best indexes for a specific query or for the set of queries that defines a workload.

This tool recommends relational indexes with such performance enhancing features

as INCLUDE columns, inherited unique indexes, and ALLOW REVERSE SCANS

indexes.

The following guidelines can help you determine how to create useful relational

indexes for various purposes:

v To avoid some sorts, define primary keys and unique keys, wherever possible,

by using the CREATE UNIQUE INDEX statement.

v To improve data-retrieval, add INCLUDE columns to unique indexes. Good

candidates are columns that:

– Are accessed frequently and therefore would benefit from index-only access

– Are not required to limit the range of index scans

– Do not affect the ordering or uniqueness of the index key.
v To access small tables efficiently, use relational indexes to optimize frequent

queries to tables with more than a few data pages, as recorded in the NPAGES

column in the SYSCAT.TABLES catalog view. You should:

– Create an index on any column you will use when joining tables.

– Create an index on any column from which you will be searching for

particular values on a regular basis.
v To search efficiently, decide between ascending and descending ordering of keys

depending on the order that will be used most often. Although the values can be

searched in reverse direction if you specify the ALLOW REVERSE SCANS

parameter in the CREATE INDEX statement, scans in the specified index order

perform slightly better than reverse scans.

v To save index maintenance costs and space:

– Avoid creating relational indexes that are partial keys of other index keys on

the columns. For example, if there is an index on columns a, b, and c, then a

second index on columns a and b is not generally useful.

– Do not create relational indexes arbitrarily on all columns. Unnecessary

indexes not only use space, but also cause large prepare times. This is

especially important for complex queries, when an optimization class with

dynamic programming join enumeration is used.

Use the following general rule for the typical number of relational indexes

that you define for a table. This number is based on the primary use of your

database:

- For online transaction processing (OLTP) environments, create one or two

indexes

- For read-only query environments, you might create more than five indexes

- For mixed query and OLTP environments, you might create between two

and five indexes.
v To improve performance of delete and update operations on the parent table,

create relational indexes on foreign keys.

v To improve performance of DELETE and UPDATE operations involving

IMMEDIATE and INCREMENTAL MQTs, create unique relational indexes on

the implied unique key of the MQT, which is the columns in the GROUP BY

clause of the MQT definition.

v For fast sort operations, create relational indexes on columns that are frequently

used to sort the relational data.

102 Tuning Database Performance

v To improve join performance with a multiple-column relational index, if you

have more than one choice for the first key column, use the column most often

specified with the “=” (equijoin) predicate or the column with the greatest

number of distinct values as the first key.

v To help keep newly inserted rows clustered according to an index and avoid

page splits, define a clustering index. A clustering index should significantly

reduce the need for reorganizing the table.

Use the PCTFREE keyword when you define the table to specify how much free

space should be left on the page to allow inserts to be placed appropriately on

pages. You can also specify the pagefreespace MODIFIED BY clause of the

LOAD command.

v To enable online index defragmentation, use the MINPCTUSED option when

you create relational indexes. MINPCTUSED specifies the threshold for the

minimum amount of used space on an index leaf page as well as enabling

online index defragmentation. This might reduce the need for reorganization at

the cost of a performance penalty during key deletions if these deletions

physically remove keys from the index page.

Consider creating a relational index in the following circumstances:

v Create a relational index on columns that are used in WHERE clauses of the

queries and transactions that are most frequently processed.

The WHERE clause:

 WHERE WORKDEPT=’A01’ OR WORKDEPT=’E21’

will generally benefit from an index on WORKDEPT, unless the WORKDEPT column

contains many duplicate values.

v Create a relational index on a column or columns to order the rows in the

sequence required by the query. Ordering is required not only in the ORDER BY

clause, but also by other features, such as the DISTINCT and GROUP BY

clauses.

The following example uses the DISTINCT clause:

 SELECT DISTINCT WORKDEPT

 FROM EMPLOYEE

The database manager can use an index defined for ascending or descending

order on WORKDEPT to eliminate duplicate values. This same index could also be

used to group values in the following example with a GROUP BY clause:

 SELECT WORKDEPT, AVERAGE(SALARY)

 FROM EMPLOYEE

 GROUP BY WORKDEPT

v Create a relational index with a compound key that names each column

referenced in a statement. When an index is specified in this way, relational data

can be retrieved from the index only, which is more efficient than accessing the

table.

For example, consider the following SQL statement:

 SELECT LASTNAME

 FROM EMPLOYEE

 WHERE WORKDEPT IN (’A00’,’D11’,’D21’)

If a relational index is defined for the WORKDEPT and LASTNAME columns of the

EMPLOYEE table, the statement might be processed more efficiently by scanning

the index than by scanning the entire table. Note that since the predicate is on

WORKDEPT, this column should be the first column of the relational index.

Chapter 14. Operational performance 103

v Create a relational index with INCLUDE columns to improve the use of indexes

on tables. Using the previous example, you could define a unique relational

index as:

 CREATE UNIQUE INDEX x ON employee (workdept) INCLUDE (lastname)

Specifying lastname as an INCLUDE column rather than as part of the index

key means that lastname is stored only on the leaf pages of the index.

Relational index performance tips

Consider the following suggestions for using and managing relational indexes:

v Specify a large utility heap

Write access by other users or applications to the underlying table is supported

for both CREATE INDEX and REORG INDEXES. When you expect a lot of

update activity on the underlying table for the relational index being created or

reorganized, consider configuring a large utility heap. A large utility heap will

speed up the index creation or index reorganization during the catch up phase.

All writing activity on the index or indexes being created or reorganized is

logged in the DB2 logs and in the internal memory buffer space. The internal

memory buffer space is a designated memory area allocated on demand from

the utility heap to store the changes to the index being created or reorganized. It

is the use of this memory that allows the catch up phase to work quickly. The

allocated memory is freed once the create or reorganization operations complete.

Ensuring that there is enough utility heap to accommodate all or most of the

changes to the indexes that are being created or reorganized can have a very

positive performance impact on the catch up phase.

v Increase sheapthres configuration parameter if running on an SMP machine

Each subagent will acquire the amount of memory specified by thesortheap

configuration parameter in order to scan the table to avoid sort overflow. You

should monitor the number of sort overflows and increase sheapthres

accordingly.

v Specify separate table spaces for relational indexes

Indexes can be stored in a different table space from the table data. This can

allow for more efficient use of disk storage by reducing the movement of

read/write heads during index access. You can also create index table spaces on

faster physical devices. In addition, you can assign the index table space to a

different buffer pool, which might keep the index pages in the buffer longer

because they do not compete with table data pages.

When you do not place indexes in separate table spaces, both data and index

pages use the same extent size and prefetch quantity. If you use a different table

space for indexes, you can select different values for all the characteristics of a

table space. Because indexes are usually smaller than tables and are spread over

fewer containers, indexes often have smaller extent sizes, such as 8 and 16

pages. The query optimizer considers the speed of the device for a table space

when it chooses an access plan.

v Ensure the degree of clustering

If your SQL statement requires ordering (for example, if it contains ORDER BY,

GROUP BY, and DISTINCT SQL clauses), the optimizer might not choose the

index even though it satisfies the ordering in the following cases:

– Index clustering is poor. For information, examine the CLUSTERRATIO and

CLUSTERFACTOR columns of SYSCAT.INDEXES.

– The table is so small that it is cheaper to scan the table and sort the answer

set in memory.

104 Tuning Database Performance

– There are competing indexes for accessing the table.
After you create a clustering index, perform a REORG TABLE in classic mode,

which creates a perfectly organized index. To recluster the table, you might

perform a sort and LOAD instead. In general, a table can only be clustered on

one index. Build additional indexes after you build the clustering index. A

clustering index attempts to maintain a particular order of data, improving the

CLUSTERRATIO or CLUSTERFACTOR statistics collected by the RUNSTATS

utility.

To help maintain the clustering ratio, specify an appropriate PCTFREE when you

alter a table before you load or reorganize that table. The free space on each

page specified by PCTFREE provides space for inserts, so that these inserts can

be clustered appropriately. If you do not specify PCTFREE for the table,

reorganization eliminates all extra space.

Note: Clustering is not currently maintained during updates unless you are

using range-clustered tables. That is, if you update a record so that its key value

changes in the clustering index, the record is not necessarily moved to a new

page to maintain the clustering order. To maintain clustering, use DELETE and

then INSERT instead of UPDATE.

v Keep table and index statistics up-to-date

After you create a new relational index, run the RUNSTATS utility to collect

index statistics. These statistics allow the optimizer to determine whether using

the index can improve access performance.

v Enable online index defragmentation

Online index defragmentation is enabled if the MINPCTUSED clause is set to

greater than zero for the relational index. Online index defragmentation allows

indexes to be compacted by merging leaf pages when the free space on a page

falls at or below the specified level while the index remains available.

v Reorganize relational indexes as necessary

To get the best performance from your indexes, consider reorganizing your

indexes periodically because updates to tables can cause index page prefetch to

become less effective.

To reorganize the index, either drop it and re-create it or use the REORG utility.

To reduce the need for frequent reorganization, when you create a relational

index specify an appropriate PCTFREE to leave a percentage of free space on

each index leaf page as it is created. During future activity, records can be

inserted into the index with less likelihood of causing index page splits. Page

splits cause index pages not to be contiguous or sequential, which in turn results

in decreased efficiency of index page prefetching.

Note: The PCTFREE specified when you create the relational index is retained

when the index is reorganized.

Dropping and re-creating or reorganizing the relational index also creates a new

set of pages that are roughly contiguous and sequential and improves index

page prefetch. Although more costly in time and resources, the REORG TABLE

utility also ensures clustering of the data pages. Clustering has greater benefit

for index scans that access a significant number of data pages.

In a symmetric multi-processor (SMP) environment, the “classic” REORG TABLE

mode, which uses a shadow table for fast table reorganization, can use multiple

processors to rebuild the indexes.

v Analyze EXPLAIN information about relational index usage

Chapter 14. Operational performance 105

Periodically, run EXPLAIN on your most frequently used queries and verify that

each of your relational indexes is used at least once. If an index is not used in

any query, consider dropping that index.

EXPLAIN information also lets you see if table scans on large tables are

processed as the inner table of nested loop joins. If they are, an index on the

join-predicate column is either missing or considered ineffective for applying the

join predicate.

v Use volatile tables for tables that vary widely in size

A volatile table is a table that might vary in size at run time from empty to very

large. For this kind of table, in which the cardinality varies greatly, the optimizer

might generate an access plan that favors a table scan instead of an index scan.

Declaring a table “volatile” using the ALTER TABLE...VOLATILE statement

allows the optimizer to use an index scan on the volatile table. The optimizer

will use an index scan instead of a table scan regardless of the statistics in the

following circumstances:

– All columns referenced are in the index

– The index can apply a predicate in the index scan.
If the table is a typed table, using the ALTER TABLE...VOLATILE statement is

supported only on the root table of the typed table hierarchy.

Index cleanup and maintenance

After you create indexes, performance degrades unless you keep the index

compact and organized. Consider the following suggestions to keep indexes as

small and efficient as possible:

v Enable online index defragmentation

Create indexes with the MINPCTUSED clause. Drop and recreate existing

indexes, if necessary.

v Perform frequent COMMITs or get X locks on tables, either explicitly or by lock

escalation, if frequent COMMITS are not possible.

Index keys marked deleted can be physically removed from the table after the

COMMIT. X locks on tables allow the deleted key to be physically removed

when it is marked deleted, as explained below.

v Use REORGCHK to help determine when to reorganize indexes or tables, or

both, and when to use the REORG INDEXES with the CLEANUP ONLY option.

To allow read and write access to the index during reorganization, run REORG

INDEXES with the ALLOW WRITE ACCESS option.

Note: In DB2 Version 8.1 and later, all new indexes are created as type-2 indexes.

The one exception is when you add an index on a table that already has type-1

indexes. In this case only, the new index will also be a type-1 index. To find out

what type of index exists for a table, execute the INSPECT command. To convert

type-1 indexes to type-2 indexes, execute the REORG INDEXES command.

The primary advantages of type-2 indexes are as follows:

v An index can be created on columns whose length is greater than 255 bytes.

v The use of next-key locking is reduced to a minimum, which improves

concurrency. Most next-key locking is eliminated because a key is marked

deleted instead of being physically removed from the index page. For

information about key locking, refer to topics that discuss the performance

implications of locks.

Index keys that are marked deleted are cleaned up in the following circumstances:

106 Tuning Database Performance

v During subsequent insert, update, or delete activity

During key insertion, keys that are marked deleted and are known to be

committed are cleaned up if such a cleanup might avoid the need to perform a

page split and prevent the index from increasing in size.

During key deletion, when all keys on a page have been marked deleted an

attempt is made to find another index page where all the keys are marked

deleted and all those deletions have committed. If such a page is found, it is

deleted from the index tree.

If there is an X lock on the table when a key is deleted, the key is physically

deleted instead of just being marked deleted. During this physical deletion, any

deleted keys on the same page are also removed if they are marked deleted and

known to be committed.

v When you execute the REORG INDEXES command with CLEANUP options

The CLEANUP ONLY PAGES option searches for and frees index pages on

which all keys are marked deleted and known to be committed.

The CLEANUP ONLY ALL option frees not only index pages on which all keys

are marked deleted and known to be committed, but it also removes RIDs

marked deleted and known to be committed on pages that contain some

undeleted RIDs.

This option also tries to merge adjacent leaf pages if doing so results in a

merged leaf page that has at least PCTFREE free space on the merged leaf page.

The PCTFREE value is the percent of free space defined for the index when it is

created. The default PCTFREE is ten percent. If two pages can be merged, one of

the pages will be freed.

For partitioned tables, you are encouraged to execute RUNSTATS after an

asynchronous index cleanup has completed in order to generate accurate index

statistics in the presence of detached data partitions. To determine whether or

not there are detached data partitions in the table, you can check the status field

in the SYSDATAPARTITIONS table and look for the value ″I″ (index cleanup) or

″D″ (detached with dependant MQT).

v Any rebuild of an index

Utilities that rebuild indexes include the following:

– REORG INDEXES when not using one of the CLEANUP options

– REORG TABLE when not using the INPLACE option

– IMPORT with the REPLACE option

– LOAD with the INDEXING MODE REBUILD option

Understanding index behavior on partitioned tables

Indexes on partitioned tables are similar to indexes for ordinary tables, that is each

index contains pointers to rows in all the data partitions of the table. One

important difference however is that each index on a partitioned table is an

independent object. In partitioned database environments, the index is distributed

across the database partitions in the same manner as the table. Because an index

on a partitioned table can act independently of other indexes, some special

considerations are needed with respect to which table space is used when creating

an index on a partitioned table.

An index on a partitioned table is created in a single table space even if the table’s

data partitions span multiple table spaces. Both DMS and SMS table spaces

support the use of indexes in a different location than the table. All table spaces

specified must be in the same database partition group. Each index can be placed

in its own table space, including large table spaces. Each index table space must

Chapter 14. Operational performance 107

use the same storage mechanism as the data partitions, either DMS or SMS.

Indexes in large table spaces can contain up to 2^29 pages.

Additional benefits of an index on a partitioned table include:

v Improved performance of drop index and online index create.

v The ability to use different values for any of the table space characteristics

between each index on the table (for example, different page sizes for each index

may be appropriate to ensure better space utilization).

v Reduced IO contention providing more efficient concurrent access to the index

data for the table.

v When individual indexes are dropped space will immediately become available

to the system without the need for an index reorganization.

v If you choose to perform index reorganization, an individual index can be

reorganized.

Figure 16 shows a non-partitioned index on a partitioned table residing in a single

table space.

 Figure 17 on page 109 shows index behavior on a partitioned table that is also

distributed across multiple database partitions.

Figure 16. Index behavior on a partitioned table

108 Tuning Database Performance

You can specify an index table space for a partitioned table in the CREATE INDEX

...IN <tbspace1> statement, which can be different from the index table space

specified in the CREATE TABLE .. INDEX IN <tbspace2> statement.

For partitioned tables only, you can override the index location by using the IN

clause on the CREATE INDEX statement, which allows you to specify a table space

location for the index. This approach allows you to place different indexes on a

partitioned table in a different table space as required. When you create a

partitioned table without specifying where to place its non-partitioned indexes, and

you create an index using the CREATE INDEX statement which does not specify a

specific table space, the index is created in the table space of the first attached or

Figure 17. Index behaviour on a table that is both distributed and partitioned.

Chapter 14. Operational performance 109

visible data partition. Each of the following three possible cases is evaluated in

order, starting with case 1, to determine where the index is created. The evaluation

stops when there is a match to one of the cases:

Case 1:

When an index table space is specified in CREATE INDEX ... IN

<tbspace1> statement the table space specified in <tbspace1>

is used for this index.

Case 2:

When an index table space is specified in the CREATE TABLE .. INDEX IN

<tbspace2> statement the table space specified in <tbspace2>

is used for this index.

Case 3:

When no table space is specified, use the table space used by the first

attached or visible data partition.

Where the index is created depends on what is done during the CREATE TABLE

statement. For non-partitioned tables, if you do not specify any INDEX IN clause,

the database fills it in for you and is the same as your data table space. For

partitioned tables, if you leave it blank, it remains as blank, and case 3 applies.

Example 1: This example assumes the existence of a partitioned table sales (a int, b

int, c int), and creates a unique index ’a_idx’ in the table space ’ts1’.

CREATE UNIQUE INDEX a_idx ON sales (a) IN ts1

Example 2: This example assumes the existence of a partitioned table sales (a int, b

int, c int), and creates an index ’b_idx’ in the table space ’ts2’.

CREATE INDEX b_idx ONsales (b) IN ts2

Asynchronous index cleanup

Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following

operations that invalidate index entries. Depending on the type of index, the

entries can be row identifiers (RIDs) or block identifiers (BIDs). Either way, these

entries are removed by the index cleaners, which operate asynchronously in the

background.

AIC accelerates the detach of a data partition from a partitioned table. If the

partitioned table contains one or more non-partitioned indexes, AIC is initiated. In

this case, AIC removes all non-partitioned index entries that refer to the detached

data partition and any pseudo-deleted entries. After all of the indexes have been

cleaned, the identifier associated with the detached data partition is removed from

the system catalog.

Note: If the partitioned table has dependent materialized query tables (MQTs)

defined, AIC is not initiated until after a SET INTEGRITY operation is performed.

While AIC is in progress, normal table access is maintained. Queries accessing the

indexes ignore any non-valid entries that have not yet been cleaned.

In most cases, one cleaner is started for each non-partitioned index associated with

the partitioned table. An internal task distribution daemon is responsible for

distributing the AIC tasks to the appropriate database partitions and assigning

database agents.

Both the distribution daemon and cleaner agents are internal system applications.

They appear in the LIST APPLICATION output with the application names

110 Tuning Database Performance

db2taskd and db2aic, respectively. To prevent accidental disruption, system

applications cannot be forced. The distribution daemon remains online as long as

the database is active. The cleaners remain active until the cleaning is complete. If

the database is deactivated while cleaning is in progress, AIC resumes when you

reactivate the database.

Performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted

entry is committed. However, because the lock is never acquired, concurrency is

unaffected.

Each cleaner acquires a minimal table space lock (IX) and table lock (IS). These

locks are released if the cleaner determines that other applications are waiting for

the locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner

has a utility impact priority of 50. You can change the priority by using the SET

UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring

You can monitor AIC with the LIST UTILITIES command. Each index cleaner

appears in the monitor as a separate utility.

The following example demonstrates AIC activity in the WSDB database at the

current database partition using the Command Line Processor (CLP) interface:

$ db2 list utilities show detail

ID = 2

Type = ASYNCHRONOUS INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

Description = Table: USER1.SALES, Index: USER1.I2

Start Time = 12/15/2005 11:15:01.967939

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Total Work = 5 pages

 Completed Work = 0 pages

 Start Time = 12/15/2005 11:15:01.979033

ID = 1

Type = ASYNCHRONOUS INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

Description = Table: USER1.SALES, Index: USER1.I1

Start Time = 12/15/2005 11:15:01.978554

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Total Work = 5 pages

 Completed Work = 0 pages

 Start Time = 12/15/2005 11:15:01.980524

Chapter 14. Operational performance 111

In this case, there are two cleaners operating on the USERS1.SALES table. One

cleaner is processing index I1; the other is processing index I2. The progress

monitoring section shows the estimated total number of index pages that need

cleaning and the current number of clean index pages.

The State field indicates the current state of the cleaner.Normally, the state is

Executing. The cleaner might be in the Waiting state if the cleaner is waiting to be

assigned to an available database agent or if the cleaner is temporarily suspended

due to lock contention.

Note: Different tasks on different database partitions can have the same utility ID

because each database partition assigns IDs to tasks on that database partition only.

Online index defragmentation

Online index defragmentation is enabled by the user-definable threshold for the

minimum amount of used space on an index leaf page. When an index key is

deleted from a leaf page and the threshold is exceeded, the neighboring index leaf

pages are checked to determine if two leaf pages can be merged. If there is

sufficient space on a page for a merge of two neighboring pages to take place, the

merge occurs immediately in the background.

Online defragmentation of the index is only possible with indexes created in

Version 6 and later. If existing indexes require the ability to be merged online, they

must be dropped and then re-created with the MINPCTUSED clause. Set the

MINPCTUSED value to less than one hundred (100). The recommended value for

MINPCTUSED is less than 50 because the goal is to merge two neighboring index leaf

pages. A value of zero for MINPCTUSED, which is also the default, disables online

defragmentation.

Pages in the index are freed when the last index key on the page is removed. The

exception to this rule occurs when you specify MINPCTUSED clause in the CREATE

INDEX statement. The MINPCTUSED clause specifies a percent of space on an index

leaf page. When an index key is deleted, if the percent of filled space on the page

is at or below the specified value, then the database manager tries to merge the

remaining keys with keys on an adjacent page. If there is sufficient space on an

adjacent page, the merge is performed and an index leaf page is deleted.

Index non-leaf pages are not merged during an online index defragmentation.

However, empty non-leaf pages are deleted and made available for re-use by other

indexes on the same table. To free these non-leaf pages for other objects in a DMS

storage model or to free disk space in an SMS storage model, perform a full

reorganization of the table or indexes. Full reorganization of the table and indexes

can make the index as small as possible. Index non-leaf pages are not merged

during an online index defragmentation, but are deleted and freed for re-use if

they become empty. The number of levels in the index and the number of leaf and

non-leaf pages might be reduced.

For type-2 indexes, keys are removed from a page during key deletion only when

there is an X lock on the table. During such an operation, online index

defragmentation will be effective. However, if there is not an X lock on the table

during key deletion, keys are marked deleted but are not physically removed from

the index page. As a result, no defragmentation is attempted.

To defragment type-2 indexes in which keys are marked deleted but remain in the

physical index page, execute the REORG INDEXES command with the CLEANUP

112 Tuning Database Performance

ONLY ALL option. The CLEANUP ONLY ALL option defragments the index,

regardless of the value of MINPCTUSED. If you execute REORG INDEXES with

the CLEANUP ONLY ALL, two neighbouring leaf pages are merged if such a

merge can leave at least PCTFREE free space on the merged page. PCTFREE is

specified at index creation time and defaults to ten percent.

Understanding clustering index behavior on partitioned tables

Clustering indexes offer the same benefits for partitioned tables as they do for

regular tables. However, care must be taken in choosing a clustering index with

regards to the table partitioning key definitions.

You can create clustering indexes on a partitioned table using any clustering key.

The database server attempts to use the clustering index to cluster data locally

within each data partition. During a clustered insert, a lookup is done in the index

to look for a suitable row identifier (RID). This RID is used as a starting point

when looking for space in the table to insert the record. To achieve

well-maintained clustering with good performance, there should be a correlation

between the index columns and the table partitioning key columns. One way to

ensure such correlation is to prefix the index columns by the table partitioning key

columns, as shown in the following example :

PARTITION BY RANGE (Month, Region)

CREATE INDEX ...(Month, Region, Department) CLUSTER

Although the database server does not enforce this correlation, there is an

expectation that all keys in the index are grouped together by partition IDs to

achieve good clustering. For example, if a table is partitioned on quarter, and a

clustering index is defined on date, because the relation between quarter and date

exists, optimal clustering of the data with good performance can be achieved

because all keys of any data partition are grouped together within the index.

Chapter 14. Operational performance 113

As Figure 18 shows, given the layout of the index and data in each example,

optimal scan performance is achieved when the clustering correlates to the table

partitioning key. When clustering is not correlated to the table partitioning key it is

unlikely that the index will be locally clustered. Because a correlation between the

table partitioning columns and index columns is expected, a perfect locally

clustered scenario is highly unlikely.

Figure 18. The possible effects of a clustered index on a partitioned table. In the first figure,

data is both globally and locally clustered.

114 Tuning Database Performance

Benefits of clustering include:

v Within each data partition, rows are in key order.

v Clustering indexes improve the performance of scans that traverse the table in

the order of the keys. This is because the scan fetches the first row of the first

page, then each row in that same page until it has fetched all of the rows for

that page and moves on to the next. This means that only one page of the table

needs to be in the buffer pool at any given time. In contrast, if the table is not

clustered, then each row fetched is likely to be from a different page. Unless

there is room in the buffer pool to hold the entire table, this will result in each

page being fetched more than once, greatly slowing the scan.

For partitioned tables, the ideal case of fetching each page only once during the

scan can be guaranteed only if the table partitioning key is a prefix of the

clustering key (see first figure in Figure 18 on page 114). However, if the

clustering key is not correlated to the table partitioning key as described

previously, and the data is locally clustered, you can still achieve the full benefit

of the clustered index if there is enough space to hold one page of each data

partition in the buffer pool. This is because each row fetched for a given data

partition is near the previous row fetched for that same data partition. (see the

second figure of Figure 18 on page 114). As previously mentioned, the clustering

may not be well maintained in the case where the clustering key is unrelated to

the table partitioning key, but if you do not expect a high level of insert, update

and delete activity on your table this approach should be beneficial.

Even if there is not sufficient space for a page of every data partition to be held

in the buffer pool, there is still some benefit to be gained from defining a

clustered index.

Database agents

For each database that an application accesses, various processes or threads start to

perform the various application tasks. These tasks include logging, communication,

and prefetching.

Database agents are threads withing the database manager that are used to service

application requests. In Version 9.5, agents are run as threads on all platforms.

The maximum number of application connections is controlled by the

max_connections database manager configuration parameter. The work of each

application connection is coordinated by a single worker agent.

A worker agent carries out application requests but has no permanent attachment to

any particular application. Coordinator agents exhibit the longest association to an

application as they remain attached to it until the application disconnects. The only

exception to this rule is when engine concentrator is enabled in which case a

coordinator agent may terminate that association at transaction boundaries

(transaction COMMIT, ROLLBACK)

There are four types of worker agents:

v Idle agents

v Active coordinator agents

v Subagents

Idle agents

This is the simplest form of worker agent. It does not have an outbound

connection and it does not have a local database connection or an instance

attachment.

Chapter 14. Operational performance 115

Active coordinator agents

Each database connection from a client application has a single active

agent that coordinates its work on a database. After the coordinator agent

is created, it performs all database requests on behalf of its application, and

communicates to other agents using inter-process communication (IPC) or

remote communication protocols. Each agent operates with its own private

memory and shares database manager and database global resources such

as the buffer pool with other agents. When a transaction completes, the

active coordinator agent may become an inactive agent.

 When a client disconnects from a database or detaches from an instance its

coordinating agent will be:

v An active agent. If other connections are waiting, the worker agent

becomes an active coordinator agent.

v Freed and marked as idle, if no connections are waiting and the

maximum number of pool agents is being automatically managed or has

not been reached.

v Terminated and its storage freed, if no connections are waiting and the

maximum number of pool agents has been reached.

Subagents

The coordinator agent distributes database requests to subagents, and these

agents perform the requests for the application. After the coordinator agent

is created, it handles all database requests on behalf of its application by

coordinating the subagents that perform requests on the database. In DB2

Version 9.5, subagents may also exist in non-partitioned environments and

in environments where intra-query-parallelism is not enabled.

 Agents that are not performing work for any applications and that are waiting to

be assigned are considered to be idle agents and reside in an agent pool. These

agents are available for requests from coordinator agents operating for client

programs or for subagents operating for existing coordinator agents. The number

of available agents depends on the database manager configuration parameter

num_poolagents.

If no idle agents exist when an agent is required, a new agent is created

dynamically. Because creating a new agent requires a certain amount of overhead

CONNECT and ATTACH performance is better if an idle agent can be activated

for a client.

When a subagent is performing work for an application, it is associated with that

application. After it completes the assigned work, it can be placed in the agent

pool, but it remains associated with the original application. When the application

requests additional work, the database manager first checks the idle pool for

associated agents before it creates a new agent.

Database agent management

Most applications establish a one-to-one relationship between the number of

connected applications and the number of application requests that can be

processed by the database. However, it may be that your work environment is

such that you require a many-to-one relationship between the number of connected

applications and the number of application requests that can be processed.

The ability to control these factors separately is provided by two database manager

configuration parameters:

116 Tuning Database Performance

v The max_connections parameter, which specifies the number of connected

applications allowed

v The max_coordagents parameter, which specifies the number of application

requests that can be processed concurrently

The connection concentrator is enabled when the value of max_connections is

greater than the value of max_coordagents.

Because each active coordinator agent requires global resource overhead, the

greater the number of these agents the greater the chance that the upper limits of

available database global resources will be reached. To prevent reaching the upper

limits of available database global resources, you might set the value of

max_connections higher than the value of max_coordagents.

When setting the values of max_connections and max_coordagents, you can also

specify AUTOMATIC. There are two specific scenario’s where using automatic will

be advantageous:

v If you are confident that your system can handle all the connections that might

be needed, but you want to limit the amount of global resources used (by

limiting the number of coordinating agents), then you should specify

AUTOMATIC for only the max_connections parameter. When max_connections is

set as AUTOMATIC with a value greater than max_coordagents it means

connection concentrator is enabled where any number of connections will be

allowed (as long as there are enough system resources), however, the maximum

number of coordinating agents will remain limited. This can be used to control

both memory and disk constraints by limiting the number of concurrently

executing applications.

v If you do not want to place artificial limits on your system whereby you limit

the maximum number of connections and coordinating agents, but you know

that your system requires or would benefit from a many-to-one relationship

(between connected applications and application requests processed), then you

should enable the connection concentrator and set both parameters to

AUTOMATIC. When both parameters are set to AUTOMATIC, the database

manager uses the values you specify as a ratio representing the ideal number of

coordinating agents to connections.

Example

Consider the following setup:

v The max_connections parameter is set to AUTOMATIC with a value of 300

v The max_coordagents parameter is set to AUTOMATIC with a value of 100

The ratio of max_connections to max_coordagents is 300 to 100. The database manager

will favor new coordinating agents as connections come in, therefore concentration

is only applied when needed. The settings above translate into:

v Connections 1 to 100 will create new coordinating agents

v Connections 101 to 300 will not create new coordinating agents, they share the

100 agents already created

v Connections 301 to 400 will create new coordinating agents

v Connections 401 to 600 will not create new coordinating agents, they will share

the 200 agents already created

v and so forth...

Chapter 14. Operational performance 117

Note: This example assumes that the connected applications are driving enough

work to warrant creation of new coordinating agents at each step. After some

period of time, if the connected applications are no longer driving any work, the

coordinating agents will become inactive and might be terminated.

If the number of connections are reduced, but the amount of work being driven by

the remaining connections is high, the number of coordinating agents may not be

reduced right away. The max_connections and max_coordagents parameters do not

directly affect agent pooling, or agent termination. Normal agent termination rules

still apply, meaning that the number of connections to coordinating agents may not

exactly represent the ratio that you specified. Agents might return to the agent

pool to be reused before they are terminated.

If a finer granularity of control is needed, a simplified ratio is recommended. For

example, the ratio of 300 to 100 above can be reduced to a 3 to 1 ratio. If

max_connections is set to 3 (AUTOMATIC) and max_coordagents is set to 1

(AUTOMATIC) then for every 3 connections, 1 coordinating agent is allowed to be

created.

Connection-concentrator improvements for client connections

For Internet applications with many relatively transient connections, or similar

kinds of applications, the connection concentrator improves performance by

allowing many more client connections to be processed efficiently. It also reduces

memory use for each connection and decreases the number of context switches.

Note: The connection concentrator is enabled when the value of max_connections is

greater than the value of max_coordagents.

In an environment that requires many simultaneous user connections, you can

enable the connection concentrator for more efficient use of system resources. This

feature incorporates advantages formerly found only in DB2 Connect™ connection

pooling. Both connection pooling and the connection concentrator are described in

the DB2 Connect User’s Guide. After the first connection, the connection

concentrator reduces the connect time to a host. When a disconnection from a host

is requested, the inbound connection is dropped, but the outbound connection to

the host is kept in a pool. When a new request is made to connect to the host, the

database manager tries to reuse an existing outbound connection from the pool.

Note: When applications use connection pooling or the connection concentrator,

for best performance tune the parameters that control the size of the block of data

that is cached. For more information, refer to the DB2 Connect User’s Guide.

When using connection pooling, DB2 Connect is restricted to inbound TCP/IP and

to outbound TCP/IP connections.

Usage examples

Example 1:

Consider an ESE environment with a single database partition in which, on

average, 1000 users are connected to the database. At times, the number of

users connected may be higher, therefore, a restriction of 1000 should not

be set. The number of concurrent transactions is as high as 200, but never

higher than 250. Transactions are short.

 For this workload, you could set the following database manager

configuration parameters:

118 Tuning Database Performance

v max_coordagents is set to 250 to support the maximum number of

concurrent transactions

v max_connections is set as AUTOMATIC with a value of 1000 to ensure

support for any number of connections (in this example, any value

greater than 250 will suffice to ensure that the connection concentrator is

turned on)

v num_poolagents is set as the default, which should ensure database

agents are available to service incoming client requests with little

overhead of creating new ones

Example 2:

In a system similar to that of Example 1, where a seemingly unrestricted

number of connections is allowed, it is possible to have the number

coordinating agents to also increase based on the number of connections.

For this example, assume that on average 1000 users are connected, with

about 250 concurrent transactions running, however, the peak number of

users is sometimes unpredictable. On occasion there could be 2000 users

connected, for which probably 500 on average are expected to be executing

work. 500 coordinating agents should not be allowed for most of the time,

since normally only 1000 users are connected, and 250 coordinating agents

is normally sufficient for them.

 For this workload, you could update database manager configuration as

follows:

 db2 update dbm cfg using MAX_COORDAGENTS 250 AUTOMATIC

 db2 update dbm cfg using MAX_CONNECTIONS 1000 AUTOMATIC

This means that as the number of connections increase beyond 1000,

additional coordinating agents will be created as needed, with a maximum

determined by the total number of connections. With both parameters

specifying a value and both set as AUTOMATIC, as the workload

increases, the database manager maintains an approximate ratio of

coordinating agents to connections.

Example 3:

 In a system for which you do not want to enable the connection

concentrator but you do want to limit the number of connected users, for

example you want to allow for only 250 connected users at one time, set

the database manager configuration parameters as follows:

v max_connections is set to 250.

v max_coordagents is set to 250.

Example 4:

 In a system for which you do not want to enable the connection

concentrator and you do not want to limit the number of connected users,

set the database manager configuration parameters as follows:

 db2 update dbm cfg using MAX_COORDAGENTS AUTOMATIC

 db2 update dbm cfg using MAX_CONNECTIONS AUTOMATIC

Agents in a partitioned database

For partitioned database environments and environments with intra-partition

parallelism enabled, each database partition (that is, each database server or node)

has its own pool of agents from which subagents are drawn. Because of this pool,

subagents do not have to be created and destroyed each time one is needed or is

Chapter 14. Operational performance 119

finished its work. The subagents can remain as associated agents in the pool and

be used by the database manager for new requests from the application they are

associated with or from new applications.

For partitioned database environments and environments with intra-partition

parallelism enabled, the impact to performance and memory costs within the

system is strongly related to how your agent pool is tuned:

v The database manager configuration parameter for agent pool size

(num_poolagents) affects the total number of both agents and subagents that can

be kept associated with applications on a database partition, which is also called

a node. If the pool size is too small and the pool is full, a subagent disassociates

itself from the application it is working on and terminates. Because subagents

must be constantly created and re-associated to applications, performance

suffers.

By default num_poolagents is set to AUTOMATIC with a value of 100. When this

parameter is set to AUTOMATIC, the database manager automatically manages

the number of idle agents to pool.

In addition, if the value of num_poolagents is too small, one application may fill

the pool with associated subagents. Then when another application requires a

new subagent and has no subagents in its associated agent pool, it will recycle

inactive subagents from the agent pools of other applications. This behavior

ensures that resources are fully utilized.

v Weigh concerns about having too few agents against the resource costs of

allowing too many agents to be active at any given time.

For example, if the value of num_poolagents is too large, associated subagents

may sit unused in the pool for long periods of time, using database manager

resources that are not available for other tasks.

Note: When the connection concentrator is enabled, the number of agents

specified by num_poolagents does not necessarily reflect the exact number of

agents that may sit idle in the pool at any one time. The number of agents may

be exceeded temporarily to handle occurrences of higher workload activity.

Other asynchronous processes and threads

In addition to the database agents, other asynchronous database-manager activities

run as their own process or thread including:

v Database I/O servers or I/O prefetchers

v Database asynchronous page cleaners

v Database loggers

v Database deadlock detectors

v Communication and IPC listeners

v Table space container rebalancers.

The database system monitor information

The DB2 database manager maintains data about its operation, its performance,

and the applications using it. This data is maintained as the database manager

runs, and can provide important performance and troubleshooting information. For

example, you can find out:

v The number of applications connected to a database, their status, and which SQL

and XQuery statements each application is executing, if any.

120 Tuning Database Performance

v Information that shows how well the database manager and database are

configured, and helps you to tune them.

v When deadlocks occurred for a specified database, which applications were

involved, and which locks were in contention.

v The list of locks held by an application or a database. If the application cannot

proceed because it is waiting for a lock, there is additional information on the

lock, including which application is holding it.

Because collecting some of this data introduces overhead on the operation of DB2,

monitor switches are available to control which information is collected. To set

monitor switches explicitly, use the UPDATE MONITOR SWITCHES command or

the sqlmon() API. (You must have SYSADM, SYSCTRL, SYSMAINT, or SYSMON

authority.)

You can access the data that the database manager maintains either by taking a

snapshot or by using an event monitor.

Taking a snapshot

You can take a snapshot in one of the following three ways:

v Use the GET SNAPSHOT command from the command line.

v Write your own application, using the db2GetSnapshot() API call.

v Use snapshot table functions to return monitor data about a specific area of the

database system.

Using an event monitor

An event monitor captures system monitor information after particular events have

occurred, such as the end of a transaction, the end of a statement, or the detection

of a deadlock. This information can be written to files or to a named pipe.

To use an event monitor:

1. Create its definition with the Control Center or the SQL statement CREATE

EVENT MONITOR. This statement stores the definition in database system

catalogs.

2. Activate the event monitor through the Control Center, or with the SQL

statement:

 SET EVENT MONITOR evname STATE 1

If writing to a named pipe, start the application reading from the named pipe

before activating the event monitor. You can either write your own application

to do this, or use db2evmon. Once the event monitor is active and starts

writing events to the pipe, db2evmon will read them as they are being

generated and write them to standard output.

3. Read the trace. If using a file event monitor, you can view the binary trace that

it creates in either of the following ways:

v Use the db2evmon tool to format the trace to standard output.

v Click on the Event Analyzer icon in the Control Center on a Windows-based

operating system to use a graphical interface to view the trace, search for

keywords, and filter out unwanted data.

Note: If the database system that you are monitoring is not running on the

same machine as the Control Center, you must copy the event monitor file to

Chapter 14. Operational performance 121

the same machine as the Control Center before you can view the trace. An

alternative method is to place the file in a shared file system accessible to

both machines.

Performance impact when using a deadlock event monitor

When a deadlock event monitor is active with the HISTORY option enabled, the

general performance of a DB2 database system is impacted in the following ways:

v Memory used in the package cache for cached dynamic SQL and XQuery

statements that are listed in the the statement history is not released until that

particular statement history is no longer needed (that is, the current unit of work

ends). This can cause the package cache size to grow due to the increased use of

space in the cache that cannot be freed.

v There is a minor impact in system performance, resulting from the copying of

statement information to the statement history list.

v There is an increased use of the DB2 system monitor heap, at each database

partition, in order to keep a statement history list for each active application at

that database partition. The amount of the increase depends on the number of

statements executed in each unit of work by each application. A suggested

computation for monitor heap follows:

If an event monitor is of type DEADLOCK

 and the WITH DETAILS HISTORY option is running,

add X*100 bytes times the maximum number of concurrent applications

 you expect to be running,

where X is the expected maximum number of statements in your

 application’s unit of work.

If the event monitor is of type DEADLOCK

 and the WITH DETAILS HISTORY VALUES option is running,

also add X*Y bytes times the maximum number of concurrent applications

 you expect to be running,

where Y is the sum of the expected maximum size of parameter values being

 bound into your SQL and XQuery statements.

When a deadlock event monitor is active with the VALUES option enabled, the

general performance of a DB2 database system is impacted in the following ways

(in addition to the ones listed previously for the HISTORY option):

v There is a very minor impact in system performance resulting from the copying

of statement information to the statement history list.

v There is an increased use of the DB2 system monitor heap at each database

partition in order to keep a statement history list for each active application at

that database partition. The increase depends on the number of data values used

per statement as well as the number of statements executed in each unit of work

by each application.

v The database manager maintains an extra copy of the data values which,

depending on the size and number of the variables, may have an impact on

performance.

The memory impact on the DB2 system monitor heap can become substantial

when both the HISTORY and the VALUES options are specified for the deadlock

event monitor. To decrease the impact, use these options only when they are

needed. Another way to decrease the impact is to increase the configured size of

the DB2 System Monitor heap at all database partitions prior to enabling the event

monitor.

When an actual deadlock occurs and there is a deadlock event monitor active,

system performance is impacted by the generation of the event monitor records.

122 Tuning Database Performance

The degree of impact and its duration depends on the number of applications and

database partitions involved in the deadlock as well as the number of statements

and data values in the relevant statement history lists.

Efficient SELECT statements

Because SQL is a flexible high-level language, you can write several different

SELECT statements to retrieve the same data. However, the performance might

vary for the different forms of the statement as well as for the different classes of

optimization.

Consider the following guidelines for SELECT statements:

v Specify only columns that you need. Although it is simpler to specify all

columns with an asterisk (*), unnecessary processing and return of unneeded

columns results.

v Use predicates that restrict the answer set to only those rows that you require

v When the number of rows you need is significantly less than the total number of

rows that might be returned, specify the OPTIMIZE FOR clause. This clause

affects both the choice of access plans and the number of rows that are blocked

in the communication buffer.

v When the number of rows to be retrieved is small, specify only the OPTIMIZE

FOR k ROWS clause. You do not need the FETCH FIRST n ROWS ONLY clause.

However, if n is large and you want the first k rows quickly with a possible

delay for the subsequent k rows, specify both clauses. The size of the

communication buffers is based on the lesser of n and k. The following example

shows both clauses:

SELECT EMPNAME, SALARY FROM EMPLOYEE

 ORDER BY SALARY DESC

 FETCH FIRST 100 ROWS ONLY

 OPTIMIZE FOR 20 ROWS

v To take advantage of row blocking, specify the FOR READ ONLY or FOR

FETCH ONLY clause to improve performance. In addition, concurrency

improves because exclusive locks are never held on the rows retrieved.

Additional query rewrites can also occur. Specifying the FOR READ ONLY or

FOR FETCH ONLY clause as well as the BLOCKING ALL BIND option can

improve the performance of queries against nicknames in a federated system in

a similar way.

v For cursors that will be updated with positioned updates, specify the FOR

UPDATE OF clause to allow the database manager to choose more appropriate

locking levels initially and avoid potential deadlocks. Note that FOR UPDATE

cursors cannot take advantage of row blocking.

v For cursors that will be updated with searched updates, you can avoid

deadlocks and still allow row blocking by forcing U locks on affected rows with

the FOR READ ONLY and the USE AND KEEP UPDATE LOCKS clauses.

v Avoid numeric data type conversions whenever possible. When comparing

values, it might be more efficient to use items that have the same data type. If

conversions are necessary, inaccuracies due to limited precision and performance

costs due to run-time conversions might result.

If possible, use the following data types:

– Character instead of varying character for short columns

– Integer instead of float or decimal

– Datetime instead of character

– Numeric instead of character

Chapter 14. Operational performance 123

v To decrease the possibility that a sort operation will occur, omit clauses or

operations such as DISTINCT or ORDER BY if such operations are not required.

v To check for existence of rows in a table, select a single row. Either open a cursor

and fetch one row or perform a a single-row (SELECT INTO) selection.

Remember to check for the SQLCODE -811 error if more than one row is found.

Unless you know that the table is very small, do not use the following statement

to check for a non-zero value:

SELECT COUNT(*) FROM TABLENAME

For large tables, counting all the rows impacts performance.

v If update activity is low and tables are large, define indexes on columns that are

frequently used as predicates.

v Consider using an IN list if the same column appears in multiple predicate

clauses. For large IN lists used with host variables, looping a subset of the host

variables might improve performance.

The following suggestions apply specifically to SELECT statements that access

several tables.

v Use join predicates to join tables. A join predicate is a comparison between two

columns from different tables in a join.

v Define indexes on the columns in the join predicate to allow the join to be

processed more efficiently. Indexes also benefit UPDATE and DELETE

statements that contain SELECT statements that access several tables.

v If possible, avoid using expressions or OR clauses with join predicates because

the database manager cannot use some join techniques. As a result, the most

efficient join method may not be chosen.

v In a partitioned database environment, if possible ensure that both of the tables

joined are partitioned on the join column.

124 Tuning Database Performance

Chapter 15. The Governor utility

The governor can monitor the behavior of applications that run against a database

and can change certain behavior, depending on the rules that you specify in the

governor configuration file.

A governor instance consists of a front-end utility and one or more daemons. Each

instance of the governor that you start is specific to an instance of the database

manager. By default, when you start the governor a governor daemon starts on

each database partition of a partitioned database. However, you can specify that a

daemon be started on a single database partition that you want to monitor.

Note: When the governor is active, its snapshot requests might affect database

manager performance. To improve performance, increase the governor wake-up

interval to reduce its CPU usage.

Each governor daemon collects information about the applications that run against

the database. It then checks this information against the rules that you specify in

the governor configuration file for this database.

The governor manages application transactions as specified by the rules in the

configuration file. For example, applying a rule might indicate that an application

is using too much of a particular resource. The rule would specify the action to

take, such as to change the priority of the application or force it to disconnect from

the database.

If the action associated with a rule changes the priority of the application, the

governor changes the priority of agents on the database partition where the

resource violation occurred. In a partitioned database, if the application is forced to

disconnect from the database, the action occurs even if the daemon that detected

the violation is running on the coordinator node of the application.

The governor logs any actions that it takes. To review the actions, you query the

log files.

Starting and stopping the governor

The governor utility monitors applications that connect to a database and changes

their behavior according to rules that you specify in a governor configuration file

for that database.

Before you start the governor, you must create the configuration file.

To start or stop the governor, you must have sysadm or sysctrl authorization.

To start or stop the governor:

1. To start the governor, execute the db2gov command at the DB2 command line.

Enter the following required parameters:

v START database_name

The database name that you specify must match the name of the database in

the configuration file that you specify. An error is returned if the names are

© Copyright IBM Corp. 1993, 2007 125

not the same. Note that if a governor is running for more than one database,

daemons will be started for each database.

v config_file_name

The name of the configuration file for the governor on this database. If the

file is not in the default location, which is the sqllib directory, you must

include the path as well as the file name.

v log_file_name

The base name of the log file for this governor. On a partitioned database,

the database partition number is added for each database partition where a

daemon runs for this instance of the governor.

To start the governor on a single database partition for a partitioned database,

add the nodenum option.

For example, to start the governor for a database called sales on only node 3 of

a partitioned database with a configuration file called salescfg and a log file

called saleslog, enter the following command:

db2gov START sales nodenum 3 salescfg saleslog

To start the governor on all database partitions of the sales database, enter the

following command:

db2gov START sales salescfg saleslog

2. To stop the governor, enter the db2gov command with the STOP option.

For example, to stop the governor on all database partitions of the sales

database, enter the following command:

db2gov STOP sales

To stop the governor on only database partition 3, enter the following

command:

db2gov START sales nodenum 3

The Governor daemon

When the governor daemon starts, either when you execute by the db2gov utility

or when it wakes up, it runs the following task loop.

1. It checks whether its governor configuration file has changed or has not yet

been read. If either condition is true, the daemon reads the rules in the file.

This allows you to change the behavior of the governor daemon while it is

running.

2. It requests snapshot information about resource-use statistics for each

application and agent that is working on the database.

Note: On some platforms, the CPU statistics are not available from the DB2

Monitor. In this case, the account rule and the CPU limit are not available.

3. It checks the statistics for each application against the rules in the governor

configuration file. If a rule applies to an application, the governor performs the

specified action.

Note: The governor compares accumulated information with the values

defined in the configuration file. This means that if the configuration file is

updated with new values that an application may have already breached, the

governor rules concerning that breach are applied immediately to the

application at the next governor interval.

4. It writes a record in the governor log file for any action that it takes.

126 Tuning Database Performance

Note: The governor cannot be used to adjust agent priorities if the agentpri

database manager configuration parameter is anything other than the system

default.

When the governor finishes its tasks, it sleeps for the interval specified in the

configuration file. when the interval elapses, the governor wakes up and begins the

task loop again.

When the governor encounters an error or stop signal, it does cleanup processing

before it ends. Using a list of applications whose priorities have been set, the

cleanup processing resets all application agent priorities. It then resets the priorities

of any agents that are no longer working on an application. This ensures that

agents do not remain running with nondefault priorities after the governor ends. If

an error occurs, the governor writes a message to the administration notification

log to indicate that it ended abnormally.

Note: Although the governor daemon is not a database application, and therefore

does not maintain a connection to the database, it does have an instance

attachment. Because it can issue snapshot requests, the governor daemon can

detect when the database manager ends.

Configuring the Governor

To configure the Governor, you create a configuration file that determines the

database that an instance of the Governor monitors and how it manages queries.

The configuration file consists of a set of rules. The first three rules specify the

database to monitor, the interval at which to write log records, and the interval at

which to wake up for monitoring. The remaining rules specify how to monitor the

database server and what actions to take in specific circumstances.

To create a Governor configuration file:

1. In a directory that is mounted or available from all database partitions, create

an ASCII file with a descriptive name. For example, the configuration file for a

governor instance that monitors the sales database might be called govcfgsales.

2. Open the file in any text editor and enter configuration information and action

conditions.

End each rule with a semicolon (;). The following configuration information is

recommended:

v dbname: The name or alias of the database to be monitored.

v account: The number of minutes after which the governor instance writes

CPU usage statistics to its log file.

v interval: The number of seconds after which the governor daemon wakes up

to monitor activity. If you do not specify an interval, the default value of 120

seconds is used.

For example, the first three rules in the configuration file might look like this:

{ Wake up once a second, the database name is sales,

 do accounting every 30 minutes. }

interval 1; dbname sales; account 30;

Add rules that specify the conditions to monitor and the action to take if the

rule evaluates to true. For example, you might add a rule that limits to an hour

the amount of time that a unit of work (UOW) can run before being forced to

disconnect from the database, as follows:

Chapter 15. Governing database activity 127

setlimit uowtime 3600 action force;

3. Save the file.

The governor configuration file

When you start the governor, you specify the configuration file that contains the

rules that govern applications running against the database. The governor

evaluates each rule and acts as specified when the rule evaluates to true.

If your rule requirements change, you edit the configuration file without stopping

the governor. Each governor daemon detects that the file has changed, and rereads

it.

The configuration file must be created in a directory that is mounted across all the

database partitions so that the governor daemon on each database partition can

read the same configuration file.

The configuration file consists of three required rules that identify the database to

be monitored, the interval at which log records are written, and the sleep interval

of the governor daemons. Following these parameters, the configuration file

contains a set of optional application-monitoring rules and actions. The following

comments apply to all rules:

v Delimit comments inside { } braces.

v Most entries can be specified in uppercase, lowercase, or mixed case characters.

The exception is the application name, specified as an argument to the applname

rule, which is case sensitive.

v Each rule ends with a semicolon (;).

Required rules

The following rules specify the database to be monitored and the interval at which

the daemon wakes up after each loop of activities. Each of these rules is specified

only once in the file.

dbname

The name or alias of the database to be monitored.

account nnn

Account records are written containing CPU usage statistics for each

connection at the specified number of minutes.

Note: This option is not available in the Windows® environment.

If a short connect session occurs entirely within the account interval, no log

record is written. When log records are written, they contain CPU statistics

that reflect CPU usage since the previous log record for the connection. If

the governor is stopped then restarted, CPU usage may be reflected in two

log records; these can be identified through the application IDs in the log

records.

interval

The interval, in seconds, at which the daemon wakes up. If you do not

specify an interval, the default value, 120 seconds, is used.

Rules that govern actions

128 Tuning Database Performance

Following the required rules, you can add rules that specify how to govern the

applications. These rules are made of smaller components called rule clauses. If

used, the clauses must be entered in a specific order in the rule statement, as

follows:

1. desc (optional): a comment about the rule, enclosed in quotation marks

2. time (optional): the time during the day when the rule is evaluated

3. authid (optional): one or more authorization IDs under which the application

executes statements

4. applname (optional): the name of the executable or object file that connects to

the database. This name is case sensitive. The application name must be

surrounded by double quotes if the application contains spaces.

5. setlimit: the limits that the governor checks. These can be one of several, for

example, CPU time, number of rows returned, or idle time..

6. action (optional): the action to take if a limit is reached. If no action is

specified, the governor reduces the priority of agents working for the

application by 10 when a limit is reached. Actions against the application can

include reducing its agent priority, forcing it to disconnect from the database, or

setting scheduling options for its operations.

You combine the rule clauses to form a rule, using each clause only once in each

rule, and end the rule with a semicolon, as shown in the following examples:

desc "Allow no UOW to run for more than an hour"

setlimit uowtime 3600 action force;

desc "Slow down the use of db2 CLP by the novice user"

authid novice

applname db2bp.exe

setlimit cpu 5 locks 100 rowssel 250;

If more than one rule applies to an application, all are applied. Usually, the action

associated with the rule limit encountered first is the action that is applied first. An

exception occurs you specify if -1 for a clause in a rule. In this case, the value

specified for the clause in the subsequent rule can only override the value

previously specified for the same clause: other clauses in the previous rule are still

operative. For example, one rule uses the rowssel 100000 uowtime 3600 clauses to

specify that the priority of an application is decreased either if its elapsed time is

greater than 1 hour or if it selects more than 100 000 rows. A subsequent rule uses

the uowtime -1 clause to specify that the same application can have unlimited

elapsed time. In this case, if the application runs for more than 1 hour, its priority

is not changed. That is, uowtime -1 overrides uowtime 3600. However, if it selects

more than 100 000 rows, its priority is lowered because rowssel 100000 is still

valid.

Order of rule application

The governor processes rules in the configuration file from the top of the file to the

bottom. However, if a later rule’s setlimit clause is more relaxed than a preceding

rule, the more restrictive rule still applies. For example, in the following

configuration file, admin will be limited to 5000 rows despite the later rule because

the first rule is more restrictive.

 desc "Force anyone selecting 5000 or more rows"

 setlimit rowssel 5000 action force;

 desc "Allow user admin to select more rows"

 authid admin

 setlimit rowssel 10000 action force;

Chapter 15. Governing database activity 129

To ensure that a less restrictive rule overrides a more restrictive rule that occurs

earlier in the file, you can specify the -1 option to clear the previous rule before

applying the new one. For example, in the following configuration file, the initial

rule limits all users to 5000 rows. The second rule clears this limit for admin, and

the third rule resets the limit for admin to 10000 rows.

 desc "Force anyone selecting 5000 or more rows"

 setlimit rowssel 5000 action force;

 desc "Clear the rowssel limit for admin"

 authid admin

 setlimit rowssel -1;

 desc "Now set the higher rowssel limit for admin"

 authid admin

 setlimit rowssel 10000 action force;

Governor rule elements

Each rule in the governor configuration file is made up of clauses that specify the

conditions for applying the rule and the action that results if the rule evaluates to

true. The clauses must be specified in the order shown. In the clause descriptions, [

] indicates an optional clause.

Optional beginning elements

[desc] Specifies a text description for the rule. The description must be enclosed

by either single or double quotation marks.

[time] Specifies the time period during which the rule is to be evaluated.

 The time period must be specified in the following format time hh:mm

hh:mm, for example, time 8:00 18:00. If this clause is not specified, the rule

is valid 24 hours a day.

[authid]

Specifies one or more authorization IDs (authid) under which the

application is executing. Multiple authids must be separated by a comma

(,), for example authid gene, michael, james. If this clause does not

appear in a rule, the rule applies to all authids.

[applname]

Specifies the name of the executable (or object file) that makes the

connection to the database.

 Multiple application names must be separated by a comma (,), for

example, applname db2bp, batch, geneprog. If this clause does not appear

in a rule, the rule applies to all application names.

Note:

1. Application names are case sensitive.

2. The database manager truncates all application names to 20 characters.

You should ensure that the application you want to govern is uniquely

identified by the first 20 characters of its application name; otherwise,

an unintended application may be governed.

Application names specified in the governor configuration file are

truncated to 20 characters to match their internal representation.

 Limit clauses

setlimit

Specifies one or more limits for the governor to check. The limits can only

130 Tuning Database Performance

be -1 or greater than 0 (for example, cpu -1 locks 1000 rowssel 10000). At

least one of the limits (cpu, locks, rowsread, uowtime) must be specified,

and any limit not specified by the rule is not limited by that particular

rule. The governor can check the following limits:

cpu nnn

Specifies the number of CPU seconds that can be consumed by an

application. If you specify -1, the governor does not limit the

application’s CPU usage.

locks nnn

Specifies the number of locks that an application can hold. If you

specify -1, the governor does not limit the number of locks held by

the application.

rowssel nnn

Specifies the number of rows that are returned to the application.

This value will only be non-zero at the coordinator node. If you

specify -1, the governor does not limit the number of rows that

can be selected. The maximum value that can be specified for nnn

is 4 294 967 298.

uowtime nnn

Specifies the number of seconds that can elapse from the time that

a unit of work (UOW) first becomes active. If you specify -1, the

elapsed time is not limited.

Note: If you used the sqlmon (Database System Monitor Switch)

API to deactivate the unit of work monitor switch or the

timestamp monitor switch, this will affect the ability of the

governor to govern applications based on the unit of work elapsed

time. The governor uses the monitor to collect information about

the system. If you turn off the switches in the database manager

configuration file, then it is turned off for the entire instance, and

governor will no longer receive this information.

idle nnn

Specifies the number of idle seconds allowed for a connection

before a specified action is taken. If you specify -1, the

connection’s idle time is not limited.

Note: Some database utilities, such as backup and restore, establish

a connection to the database and then perform work through EDUs

not visible to the governor. These database connections will appear

to be idle and might exceed the idle time limit. To prevent the

governor from taking action against these utilities, you can specify

-1 for them through the authorization id which invoked them. For

example, to prevent the governor from acting against utilities run

by authorization id DB2SYS, specify ″authid DB2SYS setlimit idle

-1″.

rowsread nnn

Specifies the number of rows an application can select. If you

specify -1, there is no limit on the number of rows the application

can select. The maximum value that can be specified for nnn is

4 294 967 298.

Note: This limit is not the same as rowssel. The difference is that

rowsread is the count of the number of rows that had to be read in

Chapter 15. Governing database activity 131

order to return the result set. The number of rows read includes

reads of the catalog tables by the engine and may be diminished

when indices are used.

 Action clauses

[action]

Specifies the action to take if one or more of the specified limits is

exceeded. You can specify the following actions.

Note: If a limit is exceeded and the action clause is not specified, the

governor reduces the priority of agents working for the application by 10.

nice nnn

Specifies a change to the relative priority of agents working for the

application. Valid values are from -20 to +20.

 For this parameter to be effective:

v On UNIX -based platforms, the agentpri database manager

parameter must be set to the default value; otherwise, it

overrides the priority clause.

v On Windows platforms, the agentpri database manager

parameter and priority action may be used together.

You can use the governor to control the priority of applications

that run in the default user service superclass,

SYSDEFAULTUSERCLASS. If you use the governor to lower the

priority of an application that runs in this service superclass, the

agent will disassociate itself from its outbound correlator (if it is

associated with one) and set its relative priority according to the

agent priority specified by the governor. You cannot use the

governor to alter the priority of agents in user-defined service

superclasses and subclasses. Instead, you must use the agent

priority setting for the service superclass or subclass to control

applications that run in these service classes. You can, however, use

the governor to force connections in any service class.

force Specifies to force the agent that is servicing the application. (Issues

a FORCE APPLICATION to terminate the coordinator agent.)

Note: In multi-partition database environments, the force action is

only carried out when the governor daemon is running on the

application’s coordinating database partition. Therefore if a

governor daemon is running on database partition A and a limit is

exceeded for some application whose coordinating database

partition is database partition B, then the force action is skipped.

schedule [class]

Scheduling improves the priorities of the agents working on the

applications with the goal of minimizing the average response

times while maintaining fairness across all applications.

 The governor chooses the top applications for scheduling based on

the following three criteria:

v The application holding the most locks

This choice is an attempt to reduce the number of lockwaits.

v The oldest application

132 Tuning Database Performance

v The application with the shortest estimated remaining running

time.

This choice is an attempt to allow as many short-lived

statements as possible to complete during the interval.

 The top three applications in each criteria are given higher

priorities than all other applications That is, the top application in

each criterion group is given the highest priority, the next highest

applications are given the second highest priority and the

third-ranked applications are given the third highest priority. If a

single application is ranked in the top three in more than one of

the criteria, it is given the appropriate priority for the criterion in

which it ranked highest, and the next highest application is given

the next highest priority for the other criteria. For example, if

application A holds the most locks but has the third shortest

estimated remaining running time, it is given the highest priority

for the first criterion, and the fourth ranked application with the

shortest estimated remaining running time is given the third

highest priority for that criterion.

 The applications selected by this governor rule are divided in up to

three classes. For each class, the governor chooses nine

applications, which are the top three applications from each class,

based on the criteria listed above. If you specify the class option,

all applications selected by this rule are considered a single class,

and nine applications are chosen and given higher priorities as

described above.

 If an application is selected in more than one governor rule, it is

governed by the last rule in which is it selected.

Note: If you used the sqlmon (Database System Monitor Switch)

API to deactivate the statement switch, this will affect the ability of

the governor to govern applications based on the statement

elapsed time. The governor uses the monitor to collect information

about the system. If you turn off the switches in the database

manager configuration file, then it is turned off for the entire

instance, and governor will no longer receive this information.

The schedule action can:

v Ensure that applications in different groups each get time

without all applications splitting time evenly.

For instance, if 14 applications (three short, five medium, and six

long) are running at the same time, they may all have poor

response times because they are splitting the CPU. The database

administrator can set up two groups, medium-length

applications and long-length applications. Using priorities, the

governor permits all the short applications to run, and ensures

that at most three medium and three long applications run

simultaneously. To achieve this, the governor configuration file

contains one rule for medium-length applications, and another

rule for long applications.

The following example shows a portion of a governor

configuration file that illustrates this point:

Chapter 15. Governing database activity 133

desc "Group together medium applications in 1 schedule class"

applname medq1, medq2, medq3, medq4, medq5

setlimit cpu -1

action schedule class;

desc "Group together long applications in 1 schedule class"

applname longq1, longq2, longq3, longq4, longq5, longq6

setlimit cpu -1

action schedule class;

v Ensure that each of several user groups (for example,

organizational departments) gets equal prioritization.

If one group is running a large number of applications, the

administrator can ensure that other groups are still able to obtain

reasonable response times for their applications. For instance, in

a case involving three departments (Finance, Inventory, and

Planning), all the Finance users could be put into one group, all

the Inventory users could be put into a second, and all the

Planning users could be put into a third group. The processing

power would be split more or less evenly among the three

departments. The following example shows a portion of a

governor configuration file that illustrates this point:

desc "Group together Finance department users"

authid tom, dick, harry, mo, larry, curly

setlimit cpu -1

action schedule class;

desc "Group together Inventory department users"

authid pat, chris, jack, jill

setlimit cpu -1

action schedule class;

desc "Group together Planning department users"

authid tara, dianne, henrietta, maureen, linda, candy

setlimit cpu -1

action schedule class;

v Let the governor schedule all applications.

If the class option is not included with the action, the governor

creates its own classes based on how many active applications

fall under the schedule action, and puts applications into

different classes based on the DB2 query compiler’s cost estimate

for the query the application is running. The administrator can

choose to have all applications scheduled by not qualifying

which applications are chosen. That is, no applname or authid

clauses are supplied, and the setlimit clause causes no

restrictions.

Note: If a limit is exceeded and the action clause is not specified, the

governor reduces the priority of agents working for the application.

Example of a Governor configuration file

The following example shows a governor configuration file that sets several rules

with actions:

 Wake up once a second, the database name is ibmsampl,

 do accounting every 30 minutes. }

interval 1; dbname ibmsampl; account 30;

desc "CPU restrictions apply 24 hours a day to everyone"

setlimit cpu 600 rowssel 1000000 rowsread 5000000;

134 Tuning Database Performance

desc "Allow no UOW to run for more than an hour"

setlimit uowtime 3600 action force;

desc ’Slow down a subset of applications’

applname jointA, jointB, jointC, quryA

setlimit cpu 3 locks 1000 rowssel 500 rowsread 5000;

desc "Have governor prioritize these 6 long apps in 1 class"

applname longq1, longq2, longq3, longq4, longq5, longq6

setlimit cpu -1

action schedule class;

desc "Schedule all applications run by the planning dept"

authid planid1, planid2, planid3, planid4, planid5

setlimit cpu -1

action schedule;

desc "Schedule all CPU hogs in one class which will control consumption"

setlimit cpu 3600

action schedule class;

desc "Slow down the use of db2 CLP by the novice user"

authid novice

applname db2bp.exe

setlimit cpu 5 locks 100 rowssel 250;

desc "During day hours do not let anyone run for more than 10 seconds"

time 8:30 17:00 setlimit cpu 10 action force;

desc "Allow users doing performance tuning to run some of

 their applications during lunch hour"

time 12:00 13:00 authid ming, geoffrey, john, bill

applname tpcc1, tpcc2, tpcA, tpvG setlimit cpu 600 rowssel 120000 action force;

desc "Some people should not be limited -- database administrator

 and a few others. As this is the last specification in the

 file, it will override what came before."

authid gene, hershel, janet setlimit cpu -1 locks -1 rowssel -1 uowtime -1;

desc "Increase the priority of an important application so it always

 completes quickly"

applname V1app setlimit cpu 1 locks 1 rowssel 1 action priority -20;

Governor log files

Whenever a governor daemon performs an action, it writes a record to its log file.

Actions include the following:

v Forcing an application

v Reading the governor configuration file

v Changing an application priority

v Encountering an error or warning

v Starting or ending

Each governor daemon has a separate log file. Separate log files prevent

file-locking bottlenecks that might result when many governor daemons write to

the same file at the same time. To merge the log files together and query them, use

the db2govlg utility.

The log files are stored in the log subdirectory of the sqllib directory, except on

Windows Operating systems, where the log subdirectory is under the instance

directory. You provide the base name for the log file when you start the governor

with the db2gov command. Make sure that the log file name contains the database

Chapter 15. Governing database activity 135

name to distinguish log files on each database partition that is governed. To ensure

that the filename is unique for each governor in a partitioned database

environment, the database partition number where the governor daemon runs is

automatically appended to the log file name.

Log file record format

Each record in the log file has the following format:

 Date Time NodeNum RecType Message

Note: The format of the Date and Time fields is yyyy-mm-dd hh.mm.ss. You can

merge the log files for each database partition by sorting on this field.

The NodeNum field indicates the number of the database partition on which the

governor is running.

The RecType field contains different values, depending on the type of log record

being written to the log. The values that can be recorded are:

v START: the governor was started

v STOP: the governor was stopped

v FORCE: an application was forced

v NICE: the priority of an application was changed

v ERROR: an error occurred

v WARNING: a warning occurred

v READCFG: the governor read the configuration file

v ACCOUNT: the application accounting statistics.

v SCHEDGRP: a change in agent priorities occurred.

Some of these values are described in more detail below.

START

The START record is written when the governor is started. It has the

following format:

 Database = <database_name>

STOP The STOP record is written when the governor is stopped. It has the

following format:

 Database = <database_name>

FORCE

The FORCE record is written out whenever the governor determines that

an application is to be forced as required by a rule in the governor

configuration file. The FORCE record has the following format:

 <appl_name> <auth_id> <appl_id> <coord_partition> <cfg_line>

<restriction_exceeded>

 where:

<coord_partition>

Specifies the number of the application’s coordinating database

partition.

<cfg_line>

Specifies the line number in the governor configuration file where

the rule causing the application to be forced is located.

136 Tuning Database Performance

<restriction_exceeded>

Provides details about how the rule was exceeded. This can contain

the following values:

v CPU: the total application USR cpu plus SYS cpu time in seconds

v Locks: the total locks held by the application

v Rowssel: the total rows selected by the application

v Rowsread: the total rows read by the application

v Idle: amount of time the application was idle

v ET (elapsed time): elapsed time since the application’s current

unit of work started (the uowtime setlimit was exceeded)

NICE The NICE record is written when the priority of an application is changed

via a priority action specified in the governor configuration file. The NICE

record has the following format:

 <appl_name> <auth_id> <appl_id> <nice value> (<cfg_line>)

<restriction_exceeded>

 where:

<nice value>

Specifies the increment (or decrement) that will be made to the

priority value for the application’s agent process.

<cfg_line>

Specifies the line number in the governor configuration file where

the rule causing the application’s priority to be changed is located.

<restriction_exceeded>

Provides details about how the rule was exceeded. This can contain

the following values:

v CPU: the total application USR cpu plus SYS cpu time in seconds

v Locks: the total locks held by the application

v Rowssel: the total rows selected by the application

v Rowsread: the total rows read by the application

v Idle: amount of time the application was idle

v ET (elapsed time): elapsed time since the application’s current

unit of work started (the uowtime setlimit was exceeded)

ERROR

The ERROR record is written when the governor daemon needs to shut

down.

WARNING

The WARNING record is written to the governor log in the following

situations:

v The sqlefrce API was called to force an application, but it returned a

positive SQLCODE.

v A snapshot call returned a positive SQLCODE that was not 1611

(″SQL1661 No data was returned″).

v A snapshot call returned a negative SQLCODE that was not -1224 (″SQL

1224N A database agent could not be started to service a request, or was

terminated as a result of a database system shutdown or a force

command″) or -1032 (″SQL1032N No start database manager command

was issued″). These return codes occur when a previously active

instance has been brought down.

Chapter 15. Governing database activity 137

v In a UNIX environment, an attempt was made to install a signal handler

and the attempt failed.

ACCOUNT

The ACCOUNT record is written to the governor log in the following

situations:

v The value of agent_usr_cpu or agent_sys_cpu for this application has

changed since the last ACCOUNT record was written for this

application.

v An application is found to be no longer active

The ACCOUNT record has the following format:

<auth_id> <appl_id> <applname> <connect time> <agent_usr_cpu delta>

<agent_sys_cpu delta>

SCHEDGRP

The SCHEDGRP record is written whenever:

v An application is added to a scheduling group

v An application is moved from one scheduling group to another.

The SCHEDGRP record has the following format:

 <appl_name> <auth_id> <appl_id> <cfg_line> <restriction_exceeded>

 where:

<cfg_line>

Specifies the line number in the governor configuration file where

the rule causing the application to be scheduled is located.

<restriction_exceeded>

Provides details about how the rule was exceeded. This can contain

the following values:

v CPU: the total application USR cpu plus SYS cpu time in seconds

v Locks: the total locks held by the application

v Rowssel: the total rows selected by the application

v Rowsread: the total rows read by the application

v Idle: amount of time the application was idle

v ET (elapsed time): elapsed time since the application’s current

unit of work started (the uowtime setlimit was exceeded)

 Because standard values are written, you can query the log files for different types

of actions. The Message field provides other nonstandard information that varies

according to the value under the RecType field. For instance, a FORCE or NICE record

indicates application information in the Message field, while an ERROR record

includes an error message.

An example log file is as follows:

1995-12-11 14.54.52 0 START Database = TQTEST

1995-12-11 14.54.52 0 READCFG Config = /u/db2instance/sqllib/tqtest.cfg

1995-12-11 14.54.53 0 ERROR SQLMON Error: SQLCode = -1032

1995-12-11 14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

Governor log file queries

Each governor daemon writes to its own log file. You can use db2govlg utility to

query the log file. You can list the log files for a single database partition, or for all

database partitions, sorted by date and time. You can also query on the basis of the

138 Tuning Database Performance

RecType log field. The syntax for db2govlg is as follows:

 The parameters are as follows:

log-file The base name of the log file (or files) that you want to query.

nodenum node-num

The node number of the database partition on which the governor is

running.

rectype record-type

The type of record that you want to query. The record types are:

v START

v READCFG

v STOP

v FORCE

v NICE

v ERROR

v WARNING

v ACCOUNT

There are no authorization restrictions for using this utility. This allows all users to

query whether the governor has affected their application. If you want to restrict

access to this utility, you can change the group permissions for the db2govlg file.

�� db2govlg log-file

nodenum

node-num

rectype

record-type
 ��

Figure 19. Syntax for db2govlg

Chapter 15. Governing database activity 139

140 Tuning Database Performance

Chapter 16. Benchmark testing

Benchmark testing is a normal part of the application development life cycle. It is a

team effort that involves both application developers and database administrators

(DBAs), and should be performed against your application in order to determine

current performance and improve it. If the application code has been written as

efficiently as possible, additional performance gains might be realized from tuning

the database and database manager configuration parameters. You can even tune

application parameters to meet the requirements of the application better.

You run different types of benchmark tests to discover specific kinds of

information:

v A transaction per second benchmark determines the throughput capabilities of the

database manager under certain limited laboratory conditions.

v An application benchmark tests the same throughput capabilities under

conditions that are closer production conditions.

Benchmarking tuning configuration parameters is based upon these “real-world”

conditions, and requires repeatedly running SQL taken from your application with

varying parameter values until the application runs as efficiently as possible.

The benchmarking methods described here are oriented toward tuning

configuration parameters. However, the same basic technique can be used for

tuning other factors that affect performance, such as:

v SQL statements

v Indexes

v Table space configuration

v Application code

v Hardware configuration.

Benchmarking is helpful in understanding how the database manager responds

under varying conditions. You can create scenarios that test deadlock handling,

utility performance, different methods of loading data, transaction rate

characteristics as more users are added, and even the effect on the application of

using a new release of the product.

Benchmark testing methods

Benchmark tests are based on a repeatable environment so that the same test run

under the same conditions will yield results that you can legitimately compare.

You might begin benchmarking by running the test application in a normal

environment. As you narrow down a performance problem, you can develop

specialized test cases that limit the scope of the function that you are testing. The

specialized test cases need not emulate an entire application to obtain valuable

information. Start with simple measurements, and increase the complexity only

when necessary.

Characteristics of good benchmarks or measurements include:

v Tests are repeatable.

v Each iteration of a test starts in the same system state.

© Copyright IBM Corp. 1993, 2007 141

v No other functions or applications are active in the system unless the scenario

includes some amount of other activity going on in the system.

Note: Started applications use memory even when they are minimized or idle.

This increases the probability that paging will skew the results of the benchmark

and violates the repeatability rule.

v The hardware and software used for benchmarking match your production

environment.

For benchmarking, you create a scenario and then applications in this scenario

several times, capturing key information during each run. Capturing key

information after each run is of primary importance in determining the changes

that might improve performance of both the application and the database.

Benchmark preparation

Complete the logical design of the database against which the application runs

before you start performance benchmarking. Set up and populate tables, views,

and indexes. Normalize tables, bind application packages, and populate tables with

realistic data.

You should also have determined the final physical design of the database. Place

database manager objects in their final disk locations, size log files, determining

the location of work files and backup, and test backup procedures. In addition,

check packages to make sure that performance options such as row blocking are

enabled when possible.

You should have reached a point in application programming and testing phases

that will enable you to create your benchmark programs. Although the practical

limits of an application might be revealed during the benchmark testing, the

purpose of the benchmark described here is to measure performance, not to detect

defects or abends.

Your benchmarking test program will need to run in as accurate a representation of

the final production environment as possible. Ideally, it should run on the same

model of server with the same memory and disk configurations. This is especially

important when the application will ultimately involve large numbers of users and

large amounts of data. The operating system itself and any communications or

file-serving facilities used directly by the benchmark should also have been tuned.

Make sure that you run benchmark tests with a production-size database. An

individual SQL statement should return as much data and require as much sorting

as in production. This rule ensures that the application will test representative

memory requirements.

SQL statements to be benchmarked should be either representative or worst-case, as

described below:

Representative SQL

Representative SQL includes those statements that are executed during

typical operations of the application being benchmarked. The statements

that are selected will depend on the nature of the application. For example,

a data-entry application might test an INSERT statement, while a banking

transaction might test a FETCH, an UPDATE, and several INSERTs.

Consider the frequency of execution and volume of data processed by the

142 Tuning Database Performance

statements chosen average. If the volumes are excessive, consider the

statements under the worst-case category, even if they are typical SQL

statements.

Worst-case SQL

Statements falling in this category include:

v Statements that are executed frequently.

v Statements that have high volumes of data being processed.

v Statements that are time-critical.

For example, an application that is run when a telephone call is received

from a customer and the statements must be run to retrieve and update

the customer’s information while the customer is waiting.

v Statements with the largest number of tables being joined or with the

most complex SQL in the application.

For example, a banking application that produces combined customer

statements of monthly activity for all their different types of accounts. A

common table may list customer address and account numbers;

however, several other tables must be joined to process and integrate all

of the necessary account transaction information. Multiply the work

necessary for one account by the several thousand accounts that must be

processed during the same period, and the potential time savings drives

the performance requirements.

v Statements that have a poor access path, such as one that is not executed

very often and is not supported by the indexes that have been created

for the tables involved.

v Statements that have a long elapsed time.

v A statement that is only executed at application initialization but has

disproportionate resource requirements.

For example, an application that generates a list of account work that

must be processed during the day. When the application is started, the

first major SQL statement causes a 7-way join, which creates a very large

list of all the accounts for which this application user is responsible. The

statement might only be run a few times per day, but takes several

minutes to run when it has not been tuned properly.

Benchmark test creation

Consider a variety of factors when you design and implement a benchmark

program. Because the main purpose of the program is to simulate a user

application, the overall structure of the program varies. You might use the entire

application as the benchmark and simply introduce a means for timing the SQL

statements to be analyzed. For large or complex applications, it might be more

practical to include only blocks that contain the important statements.

To test the performance of specific SQL statements, you might include these

statements alone in the benchmark program along with the necessary CONNECT,

PREPARE, OPEN, and other statements and a timing mechanism.

Another factor to consider is the type of benchmark to use. One option is to run a

set of SQL statements repeatedly over a time interval. The ratio of the number of

statements executed and this time interval would give the throughput for the

application. Another option is simply to determine the time required to execute

individual SQL statements.

Chapter 16. Benchmark testing 143

For all benchmark testing, you need an efficient timing system to calculate the

elapsed time, whether for individual SQL statements or the application as a whole.

To simulate applications in which individual SQL statements are executed in

isolation, it might be important to track times for CONNECT, PREPARE, and

COMMIT statements. However, for programs that process many different

statements, perhaps only a single CONNECT or COMMIT is necessary, and

focusing on just the execution time for an individual statement might be the

priority.

Although the elapsed time for each query is an important factor in performance

analysis, it might not necessarily reveal bottlenecks. For example, information on

CPU usage, locking, and buffer pool I/O might show that the application is I/O

bound and is not using the CPU to its full capacity. A benchmark program should

allow you to obtain this kind of data for a more detailed analysis if needed.

Not all applications send the entire set of rows retrieved from a query to some

output device. For example, the whole answer set might be input for another

program, so that none of the rows from the first application are sent as output.

Formatting data for screen output usually has high CPU cost and might not reflect

user need. To provide an accurate simulation, a benchmark program should reflect

the row handling of the specific application. If rows are sent to an output device,

inefficient formatting could consume the majority of CPU processing time and

misrepresent the actual performance of the SQL statement itself.

The db2batch Benchmark Tool: A benchmark tool (db2batch) is provided in the

bin subdirectory of your instance sqllib directory. This tool uses many of

guidelines for creating a benchmark program. This tool can read SQL statements

from either a flat file or standard input, dynamically describe and prepare the

statements, and return an answer set. It also allows you to control the size of the

answer set, as well as the number of rows that are sent from this answer set to an

output device.

You can specify the level of performance-related information supplied, including

the elapsed time, CPU and buffer pool usage, locking, and other statistics collected

from the database monitor. If you are timing a set of SQL statements, db2batch also

summarizes the performance results and provides both arithmetic and geometric

means. For syntax and options, type db2batch -h on a command line.

Benchmark test execution

For one type of database benchmark, you choose a configuration parameter and

run the test with different values for that parameter until the maximum benefit is

achieved. A single test should include executing the application through several

iterations (for example, 20 or 30 times) with the same parameter value to get an

average timing, which shows the effect of parameter changes more clearly.

When you run the benchmark, the first iteration, which is called a warm-up run,

should be considered a separate case from the subsequent iterations, which are

called normal runs. Because the warm-up run includes some start-up activities,

such as initializing the buffer pool, and consequently, takes somewhat longer than

normal runs. Although the information from the warm-up run might be

realistically valid, it is not statistically valid. When you calculate the average

timing or CPU for a specific set of parameter values, use only the results from

normal runs.

144 Tuning Database Performance

You might consider using the Configuration Advisor to create the warm-up run of

the benchmark. The questions that the Configuration Advisor asks can provide

insight into some things to consider when you adjust the configuration of your

environment for the normal runs during your benchmark activity. You can start the

Configuration Advisor from the Control Center or by executing the db2

autoconfigure command with appropriate options.

If benchmarking uses individual queries, ensure that you minimize the potential

effects of previous queries by flushing the buffer pool. To flush the buffer pool,

read a number of pages that irrelevant to your query and to fill the buffer pool.

After you complete the iterations for a single set of parameter values, you can

change a single parameter. However, between each iteration, perform the following

tasks to restore the benchmark environment to its original state:

v . If the catalog statistics were updated for the test, make sure that the same

values for the statistics are used for every iteration.

v The data used in the tests must be consistent if it is updated by the tests. This

can be done by:

– Using the RESTORE utility to restore the entire database. The backup copy of

the database contains its previous state, ready for the next test.

– Using the IMPORT or LOAD utility to restore an exported copy of the data.

This method allows you to restore only the data that has been affected.

REORG and RUNSTATS utilities should be run against the tables and indexes

that contain this data.
v To return the application to its original state, re-bind it to the database.

In summary, follow these steps or iterations to benchmark a database application:

Step 1 Leave the database and database manager tuning parameters at their

default values except for:

v Those parameters significant to the workload and the objectives of the

test. (You rarely have enough time to perform benchmark testing to tune

all of the parameters, so you may want to start by using your best guess

for some of the parameters and tune from that point.)

v Log sizes, which should be determined during unit and system testing

of your application.

v Any parameters that must be changed to enable your application to run

(that is, the changes needed to prevent negative SQL return codes from

such events as running out of memory for the statement heap).

Run your set of iterations for this initial case and calculate the average

timing or CPU.

Step 2 Select one and only one tuning parameter to be tested, and change its

value.

Step 3 Run another set of iterations and calculate the average timing or CPU.

Step 4 Depending on the results of the benchmark test, do one of the following:

v If performance improves, change the value of the same parameter and

return to Step 3. Keep changing this parameter until the maximum

benefit is shown.

v If performance degrades or remains unchanged, return the parameter to

its previous value, return to Step 2, and select a new parameter. Repeat

this procedure until all parameters have been tested.

Chapter 16. Benchmark testing 145

Note: If you were to graph the performance results, you would be

looking for the point where the curve begins to plateau or decline.

You can write a driver program to help you with your benchmark testing. This

driver program could be written using a language such as REXX or, for Linux and

UNIX platforms, using shell scripts.

This driver program would execute the benchmark program, pass it the

appropriate parameters, drive the test through multiple iterations, restore the

environment to a consistent state, set up the next test with new parameter values,

and collect/consolidate the test results. These driver programs can be flexible

enough that they could be used to run the entire set of benchmark tests, analyze

the results, and provide a report of the final and best parameter values for the

given test.

Benchmark test analysis example

Output from the benchmark program should include an identifier for each test, the

iteration of the program execution, the statement number, and the timing for the

execution.

A summary of benchmarking results after a series of measurements might look like

the following:

Note: The data in the above report is shown for illustration purposes only. It does

not represent measured results.

Analysis shows that the CONNECT (statement 01) took 1.34 seconds, the OPEN

CURSOR (statement 10) took 2 minutes and 8.15 seconds, the FETCHES (statement

15) returned seven rows with the longest delay being .28 seconds, the CLOSE

CURSOR (statement 20) took .84 seconds, and the CONNECT RESET (statement

99) took .03 seconds.

If your program can output data in a delimited ASCII format, it could later be

imported into a database table or a spreadsheet for further statistical analysis.

Sample output for a benchmark report might be:

 Test Iter. Stmt Timing SQL Statement

 Numbr Numbr Numbr (hh:mm:ss.ss)

 002 05 01 00:00:01.34 CONNECT TO SAMPLE

 002 05 10 00:02:08.15 OPEN cursor_01

 002 05 15 00:00:00.24 FETCH cursor_01

 002 05 15 00:00:00.23 FETCH cursor_01

 002 05 15 00:00:00.28 FETCH cursor_01

 002 05 15 00:00:00.21 FETCH cursor_01

 002 05 15 00:00:00.20 FETCH cursor_01

 002 05 15 00:00:00.22 FETCH cursor_01

 002 05 15 00:00:00.22 FETCH cursor_01

 002 05 20 00:00:00.84 CLOSE cursor_01

 002 05 99 00:00:00.03 CONNECT RESET

Figure 20. Benchmark Sample Results

146 Tuning Database Performance

Note: The data in the above report is shown for illustration purposes only. It does

not represent any measured results.

 PARAMETER VALUES FOR EACH BENCHMARK TEST

 TEST NUMBER 001 002 003 004 005

 locklist 63 63 63 63 63

 maxappls 8 8 8 8 8

 applheapsz 48 48 48 48 48

 dbheap 128 128 128 128 128

 sortheap 256 256 256 256 256

 maxlocks 22 22 22 22 22

 stmtheap 1024 1024 1024 1024 1024

 SQL STMT AVERAGE TIMINGS (seconds)

 01 01.34 01.34 01.35 01.35 01.36

 10 02.15 02.00 01.55 01.24 01.00

 15 00.22 00.22 00.22 00.22 00.22

 20 00.84 00.84 00.84 00.84 00.84

 99 00.03 00.03 00.03 00.03 00.03

Figure 21. Benchmark Sample Timings Report

Chapter 16. Benchmark testing 147

148 Tuning Database Performance

Chapter 17. The Design Advisor

The DB2 Design Advisor is a tool that can help you significantly improve your

workload performance. The task of selecting which indexes, MQTs, clustering

dimensions, or database partitions to create for a complex workload can be quite

daunting. The Design Advisor identifies all of the objects needed to improve the

performance of your workload. Given a set of SQL statements in a workload, the

Design Advisor will generate recommendations for:

v New indexes

v New materialized query tables (MQTs)

v Determine the addition of clustering indexes

v Conversion to multidimensional clustering (MDC) tables

v Redistribution of tables

v Deletion of indexes and MQTs unused by the specified workload (through the

GUI tool)

You can have the Design Advisor implement some or all of these recommendations

immediately or schedule them for a later time.

Using either the Design Advisor GUI or the command-line tool, the Design

Advisor can help simplify the following tasks:

Planning for or setting up a new database

While designing your database use the Design Advisor to:

v Generate design alternatives in a test environment of a partitioned

database environment, and of indexes, MQTs, and MDC tables.

v For partitioned database environments, you can use the Design Advisor

to:

– Determine the database partitioning strategy before loading data into

a database.

– Assist in migrating from a single-partition DB2 database to a

multiple-partition DB2 database.

– Assist in migrating from another database product to a

multiple-partition DB2 database.
v Evaluate indexes, MQTs, MDC tables, or database partitioning strategies

that have been generated manually.

Workload performance tuning

After your database is set up, you can use the Design Advisor to:

v Improve performance of a particular statement or workload.

v Improve general database performance, using the performance of a

sample workload as a gauge.

v Improve performance of the most frequently executed queries, for

example, as identified by the Activity Monitor.

v Determine how to optimize the performance of a new key query.

v Respond to Health Center recommendations regarding shared memory

utility or sort heap problems in a sort-intensive workload.

v Find objects that are not used in a workload.

© Copyright IBM Corp. 1993, 2007 149

Design Advisor output

If you use the Design Advisor GUI, you can view, save, or implement the

recommendations from within the Design Advisor. If you run the Design Advisor

from the command line, the output is printed to stdout by default, and saved in

the ADVISE_TABLE and ADVISE_INDEX tables:

v The ADVISE_TABLE contains USE_TABLE=’Y’ for MQT, MDC tables, and

database partitioning strategy recommendations.

The MQT recommendations can also be found in the ADVISE_MQT table; the

MDC recommendations can also be found in the ADVISE_TABLE table; and the

database partitioning strategy recommendations can also be found in the

ADVISE_PARTITION table. The RUN_ID value in these tables corresponds to

the START_TIME value in the ADVISE_INSTANCE table for each execution of

the Design Advisor.

v The ADVISE_INDEX table contains USE_INDEX=’Y’ or ’R’ for index

recommendations.

The ADVISE_INSTANCE table is also updated with one row each time that the

Design Advisor runs:

v The START_TIME field and the END_TIME field show the start and stop times

of the utility, respectively.

v The STATUS field will contain ’COMPLETED’ if the utility ended successfully.

v The MODE field indicates whether the -m option was used.

v The COMPRESSION field indicates the type of compression used.

You can save the Design Advisor recommendations to a file using the -o option.

The saved Design Advisor output consists of the following elements:

v CREATE STATEMENTS given for new indexes, MQTs, database partitioning

strategies, and MDC tables.

v REFRESH statements for MQTs.

v RUNSTATS commands for new objects.

v Existing MQTs and indexes will appear in the recommended script if they were

and are used to execute the workload.

Note: The COLSTATS column of the ADVISE_MQT table contains the column

statistics for an MQT. The statistics are in an XML structure as follows:

<?xml version=\"1.0\" encoding=\"USASCII\"?>

<colstats>

 <column>

 <name>COLNAME1</name>

 <colcard>1000</colcard>

 <high2key>999</high2key>

 <low2key>2</low2key>

 </column>

 <column>

 <name>COLNAME100</name>

 <colcard>55000</colcard>

 <high2key>49999</high2key>

 <low2key>100</low2key>

 </column>

</colstats>

The base table on which an index is defined is also added. Ranking of indexes

and MQTs can be done using the benefit value. You can also rank MQTs using

150 Tuning Database Performance

benefit - 0.5*overhead and indexes using benefit-overhead. Following the list of

indexes and MQTs, is the list of statements in the workload including the SQL

text, the statement number for the statement, the estimated performance

improvement (benefit) from the recommendations, as well as the list of tables,

indexes and MQTs that were used by the statement.

Note: The original spacing in the SQL text is preserved in this output but the

SQL text is split into 80 character commented lines for readability.

MDC and partitioning is not explicitly shown in this XML output. An example

of this output is as follows:

--<?xml version="1.0"?>

--<design-advisor>

--<mqt>

--<identifier>

--<name>MQT612152202220000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<statementlist>3</statementlist>

--<benefit>1013562.481682</benefit>

--<overhead>1468328.200000</overhead>

--<diskspace>0.004906</diskspace>

--</mqt>

.....

--<index>

--<identifier>

--<name>IDX612152221400000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<table><identifier>

--<name>PART</name>

--<schema>TPCD </schema>

--</identifier></table>

--<statementlist>22</statementlist>

--<benefit>820160.000000</benefit>

--<overhead>0.000000</overhead>

--<diskspace>9.063500</diskspace>

--</index>

.....

--<statement>

--<statementnum>11</statementnum>

--<statementtext>

--

-- select

-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice,

-- sum(l_quantity) from tpcd.customer, tpcd.orders,

-- tpcd.lineitem where o_orderkey in(select

-- l_orderkey from tpcd.lineitem group by l_orderkey

-- having sum(l_quantity) > 300) and c_custkey

-- = o_custkey and o_orderkey = l_orderkey group by

-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice

-- order by o_totalprice desc, o_orderdate fetch first

-- 100 rows only

--</statementtext>

--<objects>

--<identifier>

--<name>MQT612152202490000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<identifier>

--<name>ORDERS</name>

--<schema>TPCD </schema>

--</identifier>

--<identifier>

--<name>CUSTOMER</name>

--<schema>TPCD </schema>

Chapter 17. Design Advisor 151

--</identifier>

--<identifier>

--<name>IDX612152235020000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<identifier>

--<name>IDX612152235030000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<identifier>

--<name>IDX612152211360000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--</objects>

--<benefit>2091459.000000</benefit>

--<frequency>1</frequency>

--</statement>

Note that the XML structure can contain more than one column. For each

column, the column cardinality (that is, the number of values in the column) is

shown, and optionally, the high2 and low2 keys.

When MQT, database partitions, or MDC recommendations are provided, the

relevant ALTER TABLE stored procedure call command is placed in the

ALTER_COMMAND column of the ADVISE_TABLE.

Note: The ALTER TABLE stored procedure call command may not succeed due to

restrictions on the table for the ALTOBJ stored procedure.

After some minor modifications, you can run this output file as a CLP script to

create the recommended objects. The modifications that you might want to

perform include:

v Combining all of the RUNSTATS command statements into a single RUNSTATS

invocation on the new or modified objects.

v Providing more usable object names than the system-generated IDs.

v Removing or commenting out any DDL for objects that you do not want to

implement immediately.

Using the Design Advisor

You can run the Design Advisor from the command line or by using the Design

Advisor GUI in the Control Center.

v Control Center method:

1. “Defining a workload for the Design Advisor” on page 153.

2. Open the Control Center.

3. Run the Design Advisor from the Control Center by right-clicking on the

appropriate database or on a particular index in the database, and selecting

Design Advisor from the pop-up menu.

4. Once the Design Advisor has finished generating recommendations, you can

choose to save these recommendations in a report, or you can have the

Design Advisor implement some or all of the recommendations for you.
v Command line method:

1. “Defining a workload for the Design Advisor” on page 153.

2. Run the db2advis command on the workload.

152 Tuning Database Performance

Note: If the statistics on your database are not current, the generated

recommendations will be less reliable.

3. Interpret the output from db2advis and make any necessary modifications.

4. Implement the selected Design Advisor recommendations.

Defining a workload for the Design Advisor

A workload is a set of SQL statements that the database manager has to process

during a given period of time. For example, during one month your database

manager may have to process 1000 INSERTs, 10000 UPDATEs, 10000 SELECTs, and

1000 DELETEs. The Design Advisor analyzes a specified workload and considers

factors such as the type of workload statements, the frequency with which a

particular statement occurs, and characteristics of your database to generate

recommendations that minimize the total cost to run the workload.

From the Design Advisor GUI workload page, you can create a new workload file,

or modify a previously existing workload file. You can import statements into the

file from several sources:

v A delimited text file

v An Event Monitor table

v Query Patroller historical data tables by using the -qp option from the command

line

v Explained statements in the EXPLAINED_STATEMENT table

v Recent SQL statements that have been captured with a DB2 snapshot.

v Workload manager activity tables

v Workload manager event monitor tables by using the -wlm option from the

command line

After you import your SQL statements, you can add, change, modify, or remove

statements and modify their frequency.

From the command line, run the Design Advisor using:

v A single SQL statement that you enter in-line with the command

v A set of dynamic SQL statements captured in a DB2 snapshot

v A set of SQL statements contained in a workload file.
v To run the Design Advisor on dynamic SQL statements:

1. Reset the database monitor with the following command:

 db2 reset monitor for database database-name

2. Wait for an appropriate interval of time for the execution of dynamic SQL

statements against the database.

3. Issue the db2advis command with the -g option. If you want to save the

dynamic SQL statements in the ADVISE_WORKLOAD table for later

reference, use the -p option as well.
v To run the Design Advisor on a set of SQL statements contained in a workload

file:

1. Create a workload file manually, separating each SQL statement with a

semicolon, or import SQL statements from one or more of the sources listed

above.

2. Set the frequency of the statements in the workload. Every statement in the

workload file is assigned a frequency of 1 by default. The frequency of an

Chapter 17. Design Advisor 153

SQL statement represents the number of times the statement occurs within a

workload relative to the number of times that other statements occur. For

example, a particular SELECT statement might occur 100 times in a

workload, while another SELECT statement occurs 10 times. To represent the

relative frequency of these two statements, you could assign the first SELECT

statement a frequency of 10, while the second select statement has a

frequency of 1. You can manually change the frequency or weight that a

particular statement has in the workload by inserting the following line after

the statement - - # SET FREQUENCY n where n is the frequency value that

you want to assign to the statement.

3. Run the db2advis command using the -i option followed by the name of the

workload file.
v To run the Design Advisor on a workload contained in the

ADVISE_WORKLOAD table, run db2advis with the -w option followed by the

workload name.

Using the Design Advisor to migrate from a single-partition to a

multiple-partition database

You can use the Design Advisor to help you migrate from a single-partition to a

multiple-partition database. The Design Advisor can provide you with

recommendations for distributing your data and, at the same time, provide you

with recommendations for new indexes, materialized query tables (MQTs), and

multi-dimensional clustering (MDC) tables.

1. Registering a DB2 product or feature license key using the db2licm command

2. Create at least one table space in a multiple-partition database partition group.

Note: Because the Design Advisor can only recommend data redistribution to

existing table spaces, the table spaces that you want the Design Advisor to

consider must exist in the partitioned database before the Design Advisor is

run.

3. Run the Design Advisor, with the database partitioning feature selected in the

Design Advisor GUI, or with the partitioning option specified for the db2advis

command.

4. If you are using the Design Advisor in the Control Center, you can implement

the database partitioning recommendations automatically. If you are using the

db2advis command you will need to modify the db2advis output file slightly

before running the DDL statements generated by the Design Advisor.

Design Advisor limitations and restrictions

1. Restrictions on index recommendations

v Indexes recommended on materialized query tables (MQTs) are to improve

the workload performance as opposed to REFRESH TABLE performance.

Also if updates, inserts, or deletes are not included in the workload, the

performance of changing (for example, updating) the MQT would not be

included for IMMEDIATE MQTs.

v The clustering RID index is only recommended when multidimensional

clustering is to be selected. The advisor will include RID clustering indexes

as an option instead of creating an MDC structure for a table.
2. Restrictions on MQT recommendations

154 Tuning Database Performance

v The Design Advisor will not recommend incremental MQTs. If you want to

create incremental MQTs, you can take REFRESH IMMEDIATE MQTs and

convert these to incrementals with your choice of staging tables.

v Indexes recommended for MQTs are designed to improve workload

performance and not MQT refresh performance.

v If updates, inserts, or deletes are not included in the specified workload, the

performance impact of updating a recommended REFRESH IMMEDIATE

MQT is not considered. It is recommended that REFRESH IMMEDIATE

MQTs have unique indexes created on the implied unique key, which is

composed of the columns in the GROUP BY clause of the MQT query

definition.
3. Restrictions on MDC recommendations

v Existing tables must be populated with a representative set of data, otherwise

the Design Advisor will not consider MDC for the table. A minimum of two

to three dozen megabytes of data is recommended. Tables smaller than 12

extents will always be excluded.

v MDC recommendations for new MQTs will not be considered unless the

sampling option, -r, is used with the command, or MQT sampling is selected

in the GUI tool.

v The Design Advisor does not make MDC recommendations for typed or

temporary tables.

v The Design Advisor does not make MDC recommendations for federated

tables.

v Storage space (approximately 1% of the table data for large tables) must exist

for the sampling data used during the execution of the Design Advisor,

otherwise the sampled table will be examined only for base columns under

the uncorrelated assumption. A warning message will be generated in this

case.

v Tables without statistics collected will be skipped for consideration.

v The Design Advisor does not make recommendations for multicolumn

dimensions.

v Existing tables must have data in them for sampling to work in MDC

selection.
4. Restrictions on database partitioning recommendations

The Design Advisor can only recommend database partitioning on DB2

Enterprise Server Edition. If the database partitioning options are specified with

the db2advis command, an error is returned. In the Design Advisor GUI, the

database partitioning feature is not selectable in a single-partition database

environment.

5. Additional restrictions

Simulation catalog tables are created during the execution of the Design

Advisor. These tables are dropped when the Design Advisor execution

completes. Incomplete Design Advisor execution may result in some of these

tables not being dropped. In this situation, you can use the Design Advisor to

drop these tables by restarting the utility from the command line. To remove

the simulation catalog tables, specify both the -f option and the -n option (for

-n, specifying the same user name that was used for the incomplete execution).

If you do not specify the -f option, the Design Advisor will generate the DROP

statements that are required to remove the tables.

Chapter 17. Design Advisor 155

Note: As of Version 9.5, the -f option is the default. This means that if you run

db2advis with the MQT selection, the database manager automatically drops all

local simulation catalog tables using the same userid as the schema name.

You should create a separate table space for storing these simulated catalog

tables and set DROP TABLE RECOVERY to ″OFF″. This allows for easier

cleanup and for faster Design Advisor execution. The separate table space for

the simulation catalog tables must only be defined on the catalog node.

156 Tuning Database Performance

Part 5. Tuning database application performance

© Copyright IBM Corp. 1993, 2007 157

158 Tuning Database Performance

Chapter 18. Application considerations

Concurrency issues

Because many users access and change data in a relational database, the database

manager must be able both to allow users to make these changes and to ensure

that data integrity is preserved. Concurrency refers to the sharing of resources by

multiple interactive users or application programs at the same time. The database

manager controls this access to prevent undesirable effects, such as:

v Lost updates. Two applications, A and B, might both read the same row from

the database and both calculate new values for one of its columns based on the

data these applications read. If A updates the row with its new value and B then

also updates the row, the update performed by A is lost.

v Access to uncommitted data. Application A might update a value in the

database, and application B might read that value before it was committed.

Then, if the value of A is not later committed, but backed out, the calculations

performed by B are based on uncommitted (and presumably invalid) data.

v Nonrepeatable reads. Some applications involve the following sequence of

events: application A reads a row from the database, then goes on to process

other requests. In the meantime, application B either modifies or deletes the row

and commits the change. Later, if application A attempts to read the original row

again, it receives the modified row or discovers that the original row has been

deleted.

v Phantom Read Phenomenon. The phantom read phenomenon occurs when:

1. Your application executes a query that reads a set of rows based on some

search criterion.

2. Another application inserts new data or updates existing data that would

satisfy your application’s query.

3. Your application repeats the query from step 1 (within the same unit of

work).

Some additional (“phantom”) rows are returned as part of the result set that

were not returned when the query was initially executed (step 1).

Note: Declared temporary tables have no concurrency issues because they are

available only to the application that declared them. This type of table only exists

from the time that the application declares it until the application completes or

disconnects.

Concurrency control in federated database systems

A federated database system supports applications and users submitting SQL

statements that reference two or more database management systems (DBMSs) or

databases in a single statement. To reference the data sources, which consist of a

DBMS and data, DB2 uses nicknames. Nicknames are aliases for objects in other

database managers. In a federated system, DB2 relies on the concurrency control

protocols of the database manager that hosts the requested data.

A DB2 federated system provides location transparency for database objects. For

example, with location transparency if information about tables and views is

moved, references to that information through nicknames can be updated without

changing applications that request the information. When an application accesses

© Copyright IBM Corp. 1993, 2007 159

data through nicknames, DB2 relies on the concurrency control protocols of

data-source database managers to ensure isolation levels. Although DB2 tries to

match the requested level of isolation at the data source with a logical equivalent,

results may vary depending on data source capabilities.

Isolation levels and performance

An isolation level determines how data is locked or isolated from other processes

while the data is being accessed. The isolation level will be in effect for the

duration of the unit of work. Applications that use a cursor declared with a

DECLARE CURSOR statement using the WITH HOLD clause will keep the chosen

isolation level for the duration of the unit of work in which the OPEN CURSOR

was performed. DB2 supports the following isolation levels:

v Repeatable Read

v Read Stability

v Cursor Stability

v Uncommitted Read.

Note: Some host database servers support the no commit isolation level. On other

databases, this isolation level behaves like the uncommitted read isolation level.

Detailed explanations for each of the isolation levels follows in decreasing order of

performance impact, but in increasing order of care required when accessing and

updating data.

Repeatable Read

Repeatable Read (RR) locks all the rows an application references within a unit of

work. Using Repeatable Read, a SELECT statement issued by an application twice

within the same unit of work in which the cursor was opened returns the same

result each time. With Repeatable Read, lost updates, access to uncommitted data,

and phantom rows are not possible.

The Repeatable Read application can retrieve and operate on the rows as many

times as needed until the unit of work completes. However, no other applications

can update, delete, or insert a row that would affect the result table, until the unit

of work completes. Repeatable Read applications cannot see uncommitted changes

of other applications.

With Repeatable Read, every row that is referenced is locked, not just the rows that

are retrieved. Appropriate locking is performed so that another application cannot

insert or update a row that would be added to the list of rows referenced by a

query if that query were to be re-executed. This prevents phantom rows from

occurring. For example, if you scan 10 000 rows and apply predicates to them,

locks are held on all 10 000 rows, even though only 10 rows qualify.

Note: The Repeatable Read isolation level ensures that all returned data remains

unchanged until the time the application sees the data, even when temporary

tables or row blocking are used.

Since Repeatable Read may acquire and hold a considerable number of locks, these

locks may exceed the number of locks available as a result of the locklist and

maxlocks configuration parameters. In order to avoid lock escalation, the optimizer

may elect to acquire a single table-level lock immediately for an index scan, if it

believes that lock escalation is very likely to occur. This functions as though the

160 Tuning Database Performance

database manager has issued a LOCK TABLE statement on your behalf. If you do

not want a table-level lock to be obtained ensure that enough locks are available to

the transaction or use the Read Stability isolation level.

When evaluating referential constraints, there are a few situations where DB2 will

internally upgrade the isolation level used on the scan on the child table to

Repeatable Read (RR), regardless of the isolation level set by the user. This will

result in additional locks being held until commit, which increases the likelihood of

a deadlock or lock timeout occurring. To avoid this, it is recommended that you

create an index that only contains the column or columns of the foreign key,

allowing the RI scan to use this index instead.

Read Stability

Read Stability (RS) locks only those rows that an application retrieves within a unit

of work. It ensures that any qualifying row read during a unit of work is not

changed by other application processes until the unit of work completes, and that

any row changed by another application process is not read until the change is

committed by that process. That is, “nonrepeatable read” behavior is not possible.

Unlike repeatable read, with Read Stability, if your application issues the same

query more than once, you may see additional phantom rows (the phantom read

phenomenon). Recalling the example of scanning 10 000 rows, Read Stability only

locks the rows that qualify. Thus, with Read Stability, only 10 rows are retrieved,

and a lock is held only on those ten rows. Contrast this with Repeatable Read,

where in this example, locks would be held on all 10 000 rows. The locks that are

held can be share, next share, update, or exclusive locks.

Note: The Read Stability isolation level ensures that all returned data remains

unchanged until the time the application sees the data, even when temporary tables

or row blocking are used.

One of the objectives of the Read Stability isolation level is to provide both a high

degree of concurrency as well as a stable view of the data. To assist in achieving

this objective, the optimizer ensures that table level locks are not obtained until

lock escalation occurs.

The Read Stability isolation level is best for applications that include all of the

following:

v Operate in a concurrent environment

v Require qualifying rows to remain stable for the duration of the unit of work

v Do not issue the same query more than once within the unit of work, or do not

require that the query get the same answer when issued more than once in the

same unit of work.

Cursor Stability

Cursor Stability (CS) locks any row accessed by a transaction of an application

while the cursor is positioned on the row. This lock remains in effect until the next

row is fetched or the transaction is terminated. However, if any data on a row is

changed, the lock must be held until the change is committed to the database.

Chapter 18. Application considerations 161

No other applications can update or delete a row that a Cursor Stability

application has retrieved while any updatable cursor is positioned on the row.

Cursor Stability applications cannot see uncommitted changes of other

applications.

Recalling the example of scanning 10 000 rows, if you use Cursor Stability, you

will only have a lock on the row under your current cursor position. The lock is

removed when the cursor moves off that row (unless you update that row).

With Cursor Stability, both nonrepeatable read and the phantom read phenomenon

are possible. Cursor Stability is the default isolation level and should be used when

you want the maximum concurrency while seeing only committed rows from other

applications.

Uncommitted Read

Uncommitted Read (UR) allows an application to access uncommitted changes of

other transactions. The application also does not lock other applications out of the

row it is reading, unless the other application attempts to drop or alter the table.

Uncommitted Read works differently for read-only and updatable cursors.

Read-only cursors can access most uncommitted changes of other transactions.

However, tables, views, and indexes that are being created or dropped by other

transactions are not available while the transaction is processing. Any other

changes by other transactions can be read before they are committed or rolled

back.

Note: Cursors that are updatable operating under the Uncommitted Read isolation

level will behave as if the isolation level was cursor stability.

When it runs a program using isolation level UR, an application can use isolation

level CS. This happens because the cursors used in the application program are

ambiguous. The ambiguous cursors can be escalated to isolation level CS because

of a BLOCKING option. The default for the BLOCKING option is UNAMBIG. This

means that ambiguous cursors are treated as updatable and the escalation of the

isolation level to CS occurs. To prevent this escalation, you have the following two

choices:

v Modify the cursors in the application program so that they are unambiguous.

Change the SELECT statements to include the FOR READ ONLY clause.

v Leave cursors ambiguous in the application program, but precompile the

program or bind it with the BLOCKING ALL and STATICREADONLY YES

options to allow any ambiguous cursors to be treated as read-only when the

program is run.

As in the example given for Repeatable Read, of scanning 10 000 rows, if you use

Uncommitted Read, you do not acquire any row locks.

With Uncommitted Read, both nonrepeatable read behavior and the phantom read

phenomenon are possible. The Uncommitted Read isolation level is most

commonly used for queries on read-only tables, or if you are executing only select

statements and you do not care whether you see uncommitted data from other

applications.

Summary of isolation levels

162 Tuning Database Performance

The following table summarizes the different isolation levels in terms of their

undesirable effects.

 Table 4. Summary of isolation levels

Isolation Level

Access to

uncommitted

data

Nonrepeatable

reads

Phantom read

phenomenon

Repeatable Read (RR) Not possible Not possible Not possible

Read Stability (RS) Not possible Not possible Possible

Cursor Stability (CS) Not possible Possible Possible

Uncommitted Read (UR) Possible Possible Possible

The table below provides a simple heuristic to help you choose an initial isolation

level for your applications. Consider this table a starting point, and refer to the

previous discussions of the various levels for factors that might make another

isolation level more appropriate.

 Table 5. Guidelines for choosing an isolation level

Application Type High data stability required

High data stability not

required

Read-write transactions RS CS

Read-only transactions RR or RS UR

Choosing the appropriate isolation level for an application is very important to

avoid the phenomena that are intolerable for that application. The isolation level

affects not only the degree of isolation among applications but also the

performance characteristics of an individual application since the CPU and

memory resources that are required to obtain and free locks vary with the isolation

level. The potential for deadlock situations also varies with the isolation level.

Specifying the isolation level

Because the isolation level determines how data is locked and isolated from other

processes while the data is being accessed, you should select an isolation level that

balances the requirements of concurrency and data integrity. The isolation level

that you specify is in effect for the duration of the unit of work.

Note: Isolation levels cannot be specified for XQuery statements at the statement

level.

The isolation level can be specified in several different ways. The following

heuristics are used in determining which isolation level will be used in compiling

an SQL or XQuery statement:

Static SQL:

v If an isolation clause is specified in the statement, then the value of that clause is

used.

v If no isolation clause is specified in the statement, then the isolation level used is

the one specified for the package at the time when the package was bound to

the database.

Dynamic SQL:

Chapter 18. Application considerations 163

v If an isolation clause is specified in the statement, then the value of that clause is

used.

v If no isolation clause is specified in the statement, and a SET CURRENT

ISOLATION statement has been issued within the current session, then the value

of the CURRENT ISOLATION special register is used.

v If no isolation clause is specified in the statement, and no SET CURRENT

ISOLATION statement has been issued within the current session, then the

isolation level used is the one specified for the package at the time when the

package was bound to the database.

Static or dynamic XQuery statements:

v The isolation level of the environment determines the isolation level when the

XQuery expression is evaluated.

Note: Many commercially written applications provide a method for choosing the

isolation level. Refer to the application documentation for information.

To specify the isolation level:

v At precompile or bind time:

For an application written in a supported compiled language, use the

ISOLATION option of the command line processor PREP or BIND commands.

You can also use the PREP or BIND APIs to specify the isolation level.

– If you create a bind file at precompile time, the isolation level is stored in the

bind file. If you do not specify an isolation level at bind time, the default is

the isolation level used during precompilation.

– If you do not specify an isolation level, the default of cursor stability is used.

Note: To determine the isolation level of a package, execute the following query:

 SELECT ISOLATION FROM SYSCAT.PACKAGES

 WHERE PKGNAME = ’XXXXXXXX’

 AND PKGSCHEMA = ’YYYYYYYY’

where XXXXXXXX is the name of the package and YYYYYYYY is the schema name of

the package. Both of these names must be in all capital letters.

v On database servers that support REXX™:

When a database is created, multiple bind files that support the different

isolation levels for SQL in REXX are bound to the database. Other command-line

processor packages are also bound to the database when a database is created.

REXX and the command line processor connect to a database using a default

isolation level of cursor stability. Changing to a different isolation level does not

change the connection state. It must be executed in the CONNECTABLE AND

UNCONNECTED state or in the IMPLICITLY CONNECTABLE state.

To verify the isolation level in use by a REXX application, check the value of the

SQLISL REXX variable. The value is updated every time the CHANGE SQLISL

command is executed.

v At the statement level:

Use the WITH clause. The statement-level isolation level overrides the isolation

level specified for the package in which the statement appears.

You can specify an isolation level for the following SQL statements:

– SELECT

– SELECT INTO

– Searched DELETE

164 Tuning Database Performance

– INSERT

– Searched UPDATE

– DECLARE CURSOR
The following conditions apply to isolation levels specified for statements:

– The WITH clause cannot be used on subqueries

– The WITH UR option applies only to read-only operations. In other cases, the

statement is automatically changed from UR to CS.
v From CLI or ODBC at runtime:

Use the CHANGE ISOLATION LEVEL command. For DB2 Call Level Interface

(DB2 Call Level Interface), you can change the isolation level as part of the DB2

Call Level Interface configuration. At runtime, use the SQLSetConnectAttr

function with the SQL_ATTR_TXN_ISOLATION attribute to set the transaction

isolation level for the current connection referenced by the ConnectionHandle. You

can also use the TXNISOLATION keyword in the db2cli.ini file .

v When working with JDBC or SQLJ at run time:

Note: JDBC and SQLJ are implemented with CLI on DB2, which means the

db2cli.ini settings might affect what is written and run using JDBC and SQLJ.

In SQLJ, you use the SQLJ profile customizer (db2sqljcustomize command) to

create a package. The options that you can specify for this package include its

isolation level.

v For dynamic SQL within the current session:

Use the SET CURRENT ISOLATION statement to set the isolation level for

dynamic SQL issued within a session. Issuing this statement sets the CURRENT

ISOLATION special register to a value that specifies the level of isolation for any

dynamic SQL statements issued within the current session. Once set, the

CURRENT ISOLATION special register provides the isolation level for any

subsequent dynamic SQL statement compiled within the session, regardless of

the package issuing the statement. This isolation level will apply until the

session is ended or until a SET CURRENT ISOLATION statement is issued with

the RESET option.

Locks and concurrency control

To provide concurrency control and prevent uncontrolled data access, the database

manager places locks on buffer pools, tables, data partitions, table blocks, or table

rows. A lock associates a database manager resource with an application, called the

lock owner, to control how other applications access the same resource.

The database manager uses row-level locking or table-level locking as appropriate

based on:

v The isolation level specified at precompile time or when an application is bound

to the database. The isolation level can be one of the following:

– Uncommitted Read (UR)

– Cursor Stability (CS)

– Read Stability (RS)

– Repeatable Read (RR)

The different isolation levels are used to control access to uncommitted data,

prevent lost updates, allow non-repeatable reads of data, and prevent phantom

reads. To minimize performance impact, use the minimum isolation level that

satisfies your application needs.

Chapter 18. Application considerations 165

v The access plan selected by the optimizer. Table scans, index scans, and other

methods of data access each require different types of access to the data.

v The LOCKSIZE attribute for the table. The LOCKSIZE clause on the ALTER

TABLE statement indicates the granularity of the locks used when the table is

accessed. The choices are either ROW for row locks, TABLE for table locks, or

BLOCKINSERT for block locks on MDC tables only. When the BLOCKINSERT

clause is used on an MDC table, row-level locking is performed except on an

INSERT operation where block-level locking is done instead. Use the ALTER

TABLE ... LOCKSIZE BLOCKINSERT statement for MDC tables when

transactions perform large inserts into disjoint cells. Use the ALTER TABLE ...

LOCKSIZE TABLE statement for read-only tables. This reduces the number of

locks required by database activity. For partitioned tables, table locks are first

acquired and then data partition locks are acquired, as dictated by the data

accessed.

v The amount of memory devoted to locking. The amount of memory devoted to

locking is controlled by the locklist database configuration parameter. If the

lock list fills, performance can degrade due to lock escalations and reduced

concurrency on shared objects in the database. If lock escalations occur

frequently, increase the value of either locklist or maxlocks, or both. Also, to

reduce number of locks held at one time, ensure that transactions COMMIT

frequently to free held locks.

Although most locking occurs on tables, when a buffer pool is created, altered, or

dropped, a buffer pool lock is set. The mode used with this lock is EXCLUSIVE

(X). You may encounter this type of lock when collecting system monitoring data.

When viewing the snapshot, you will see that the lock name used is the identifier

(ID) of the buffer pool itself.

In general, row-level locking is used unless one of the following is the case:

v The isolation level chosen is uncommitted read (UR).

v The isolation level chosen is repeatable read (RR) and the access plan requires a

scan with no predicates.

v The table LOCKSIZE attribute is “TABLE”.

v The lock list fills, causing escalation.

v There is an explicit table lock acquired via the LOCK TABLE statement. The

LOCK TABLE statement prevents concurrent application processes from either

changing a table or using a table.

If this is an MDC table, there are several other cases where block-level locking is

used instead of row-level locking, including:

v The table LOCKSIZE attribute is “BLOCKINSERT”

v The isolation level chosen is repeatable read (RR) and the access plan involves

predicates

v A searched update or delete operation that involves only predicates on

dimension columns

Lock escalations reduce concurrency. Conditions that might cause lock escalations

should be avoided.

The duration of row locking varies with the isolation level being used:

v UR scans: No row locks are held unless row data is changing.

v CS scans: Row locks are only held while the cursor is positioned on the row.

v RS scans: Only qualifying row locks are held for the duration of the transaction.

166 Tuning Database Performance

v RR scans: All row locks are held for the duration of the transaction.

Lock attributes

Database manager locks have the following basic attributes:

Mode The type of access allowed for the lock owner as well as the type of access

permitted for concurrent users of the locked object. It is sometimes referred

to as the state of the lock.

Object

The resource being locked. The only type of object that you can lock

explicitly is a table. The database manager also imposes locks on other

types of resources, such as rows, tables, and table spaces. For

multidimensional clustering (MDC) tables, block locks can also be

imposed; for partitioned tables, data partition locks can be imposed. The

object being locked determines the granularity of the lock.

Duration

The length of time a lock is held. The isolation level in which the query

runs affects the lock duration.

 The following table shows the modes and their effects in order of increasing

control over resources. For detailed information about locks at various levels, refer

to the lock-mode reference tables.

 Table 6. Lock Mode Summary

Lock Mode

Applicable Object

Type Description

IN (Intent None) Table spaces, blocks,

tables, data partitions

The lock owner can read any data in the object, including

uncommitted data, but cannot update any of it. Other concurrent

applications can read or update the table.

IS (Intent Share) Table spaces, blocks,

tables, data partitions

The lock owner can read data in the locked table, but cannot update

this data. Other applications can read or update the table.

NS (Next Key Share) Rows The lock owner and all concurrent applications can read, but not

update, the locked row. This lock is acquired on rows of a table,

instead of an S lock, where the isolation level of the application is

either RS or CS. NS lock mode is not used for next-key locking. It is

used instead of S mode during CS and RS scans to minimize the

impact of next-key locking on these scans.

S (Share) Rows, blocks, tables,

data partitions

The lock owner and all concurrent applications can read, but not

update, the locked data.

IX (Intent Exclusive) Table spaces, blocks,

tables, data partitions

The lock owner and concurrent applications can read and update

data. Other concurrent applications can both read and update the

table.

SIX (Share with

Intent Exclusive)

Tables, blocks, data

partitions

The lock owner can read and update data. Other concurrent

applications can read the table.

U (Update) Rows, blocks, tables,

data partitions

The lock owner can update data. Other units of work can read the

data in the locked object, but cannot attempt to update it.

NW (Next Key Weak

Exclusive)

Rows When a row is inserted into an index, an NW lock is acquired on

the next row. For type 2 indexes, this occurs only if the next row is

currently locked by an RR scan. The lock owner can read but not

update the locked row. This lock mode is similar to an X lock,

except that it is also compatible with W and NS locks.

Chapter 18. Application considerations 167

Table 6. Lock Mode Summary (continued)

Lock Mode

Applicable Object

Type Description

X (Exclusive) Rows, blocks, tables,

buffer pools, data

partitions

The lock owner can both read and update data in the locked object.

Only uncommitted read applications can access the locked object.

W (Weak Exclusive) Rows This lock is acquired on the row when a row is inserted into a table

that does not have type-2 indexes defined. The lock owner can

change the locked row. To determine if a duplicate value has been

committed when a duplicate value is found, this lock is also used

during insertion into a unique index. This lock is similar to an X

lock except that it is compatible with the NW lock. Only

uncommitted read applications can access the locked row.

Z (Super Exclusive) Table spaces, tables,

data partitions

This lock is acquired on a table in certain conditions, such as when

the table is altered or dropped, an index on the table is created or

dropped, or for some types of table reorganization. No other

concurrent application can read or update the table.

Lock granularity

If one application holds a lock on a database object, another application might not

be able to access that object. For this reason, row-level locks, which minimize the

amount of data that is locked and therefore inaccessible, are better for maximum

concurrency than block-level, data partition-level or table-level locks. However,

locks require storage and processing time, so a single table lock minimizes lock

overhead.

The LOCKSIZE clause of the ALTER TABLE statement specifies the scope

(granularity) of locks at the row, data partition, block, or table level. By default,

row locks are used. Only S (Shared) and X (Exclusive) locks are requested by these

defined table locks. The ALTER TABLE statement LOCKSIZE ROW clause does not

prevent normal lock escalation from occurring.

A permanent table lock defined by the ALTER TABLE statement might be

preferable to a single-transaction table lock using LOCK TABLE statement in the

following cases:

v The table is read-only, and will always need only S locks. Other users can also

obtain S locks on the table.

v The table is usually accessed by read-only applications, but is sometimes

accessed by a single user for brief maintenance, and that user requires an X lock.

While the maintenance program runs, the read-only applications are locked out,

but in other circumstances, read-only applications can access the table

concurrently with a minimum of locking overhead.

For an MDC table, you can specify BLOCKINSERT for the LOCKSIZE clause in

order to use block-level locking during INSERT operations only. When this is

specified, row-level locking is performed for all other operations, but only

minimally for INSERT operations. That is, block-level locking is used during the

insertion of rows, but row-level locking is used for next-key locking if RR scans are

encountered in the indexes as they are being updated. BLOCKINSERT locking

might be beneficial in the following cases:

v There are multiple transactions doing mass insertions into separate cells.

168 Tuning Database Performance

v Concurrent insertions to the same cell by multiple transactions is not occurring,

or it is occurring with enough data inserted per cell by each of the transactions

that the user is not concerned that each transaction will insert into separate

blocks.

The ALTER TABLE statement specifies locks globally, affecting all applications and

users that access that table. Individual applications might use the LOCK TABLE

statement to specify table locks at an application level instead.

Lock waits and timeouts

Lock timeout detection is a database manager feature that prevents applications

from waiting indefinitely for a lock to be released in an abnormal situation. For

example, a transaction might be waiting for a lock held by another user’s

application, but the other user has left the workstation without allowing the

application to commit the transaction that would release the lock. To avoid stalling

an application in such a case, set the locktimeout configuration parameter to the

maximum time that any application should wait to obtain a lock.

Setting this parameter helps avoid global deadlocks, especially in distributed unit

of work (DUOW) applications. If the time that the lock request is pending is

greater than the locktimeout value, the requesting application receives an error

and its transaction is rolled back. For example, if APPL1 tries to acquire a lock

which is already held by APPL2, APPL1 returns SQLCODE -911 (SQLSTATE 40001)

with reason code 68 if the timeout period expires. The default value for

locktimeout is -1, which turns off lock timeout detection.

Note: For table, row, data partition and MDC block locks, an application can

override the database level locktimeout setting by using SET CURRENT LOCK

TIMEOUT.

To generate a report file about the lock timeout, set the

DB2_CAPTURE_LOCKTIMEOUT registry variable to ON. The lock timeout

report includes information about the key applications involved in the lock

contention that resulted in the lock timeout, as well as details about the lock itself,

such as lock name, lock type, row ID, table space ID, and table ID.

To log more information about lock-request timeouts in the db2diag.log file, set the

database manager configuration parameter diaglevel to four. The logged

information includes the locked object, the lock mode, and the application holding

the lock. The current dynamic SQL or XQuery statement or static package name

might also be logged. A dynamic SQL or XQuery statement is logged only at

diaglevel four.

You can get information about lock waits and lock timeouts from the lock wait

information system monitor elements, or from the db.apps_waiting_locks health

indicator.

Lock timeout reporting

The lock timeout reporting function captures information about lock timeout

events, including information about the key applications involved in the lock

contention that resulted in the lock timeout. This function is controlled by the

DB2_CAPTURE_LOCKTIMEOUT registry variable.

Chapter 18. Application considerations 169

Information is captured for both the lock requestor (the application that received

the lock timeout error) and the current lock owner, and the report is stored in a

directory determined by a database configuration parameter.

When a lock timeout occurs and the lock timeout reporting function is active, the

following information is captured and placed in a lock timeout report file.

Lock in contention

v Lock name and type

v Lock specifics, including row ID, table space ID, and table ID. Use this

information to query the SYSCAT.TABLES system catalog view to

identify the name of the table.

Lock Requestor

v Application identification information, such as application name and

coordinator partition

v Lock timeout value

v Lock mode requested

v Request SQL context, if applicable

v Package ID

v Section entry number

v SQL information, such as whether the statement is dynamic or static,

type of statement

v Effective lock isolation

v Relevant statement text, if available (Refer to “Function limitations” on

page 172 for details.)

v Application status

v Current operation

v Lock escalation

Lock owner or representative

There can be more than one lock owner. For example, when a lock is held

in share mode by more than one application, only information about the

first lock owner encountered is reported. The first lock owner is the

representative for other lock owners.

v Application identification information, such as application name and

coordinator partition

v Lock mode held

v List of currently active SQL statements at this partition

1. Package ID

2. Section entry number

3. SQL information, such as whether the statement is dynamic or static,

type of statement

4. Effective lock isolation

5. Relevant statement text, when available
v List of inactive SQL statements from the current unit of work at this

database partition (available only if a deadlock event monitor with

statement history is active)

1. Package ID

2. Section entry number

170 Tuning Database Performance

3. SQL information, such as whether the statement is dynamic or static,

type of statement

4. Effective lock isolation

5. Relevant statement text, when available

To collect additional information, such as the operating system or other related

environment information, use the customized db2cos script.

Function usage

The DB2_CAPTURE_LOCKTIMEOUT registry variable controls the lock timeout

reporting function.

When this registry variable is set to ON, the function captures basic information

about each lock timeout that happens within the DB2 instance, and a lock timeout

report is created. If the registry variable is set to empty, the function is disabled.

To enable lock timeout reporting, issue the following command:

db2set DB2_CAPTURE_LOCKTIMEOUT=ON

To disable lock timeout reporting, issue the following command:

db2set DB2_CAPTURE_LOCKTIMEOUT=

In some cases, you may want to capture all statements that have executed in the

lock owner’s unit of work prior to the occurrence of the lock timeout. For example,

this is useful if the lock timeout is being caused by a previously executed SQL

statement. To have the past history of a unit of work included in the lock timeout

information for the current lock owner, activate a deadlock event monitor using the

statement history clause. For example, use one of the following statements:

create event monitor testit for deadlocks with details history write to file path global

create event monitor testit for deadlocks with details history write to table

The CREATE EVENT MONITOR statement has additional options, such as the

ability to specify the name of the tablespace and table into which data will be

written. For details, see the CREATE EVENT MONITOR statement description.

The event monitor with statement history capability affects all applications and

increases the monitor heap usage by the DB2 database manager. Only use it in

cases where the cause of the lock contention is not the current statement being

executed by the applications involved or if the goal of the report is more than

simple identification of the applications involved in the lock timeout.

For example, application APPL1 executes the following statements:

INSERT INTO T1 VALUES (1)

SELECT * FROM T5

Subsequently, APPL2 executes the following statement:

SELECT * FROM T1

In this example, the SELECT statement executed by APPL2 is waiting for the row

lock acquired in the previous INSERT statement executed by APPL1. In this case,

seeing only the SELECT statement currently executed by APPL1 would not help

identify the specific cause of the lock contention. The statement history for the lock

owner would reveal the previous INSERT statement and the cause of the lock

contention.

Chapter 18. Application considerations 171

Creating an event monitor with statement history capability would also help if the

application holding the lock is not running an SQL statement at the time of the

lock timeout. If a deadlock event monitor with history is active, the application’s

previous SQL statements in the unit of work will be written to the report.

Function limitations

The lock timeout report might not always capture the required details about lock

contention and lock timeout events. In some cases, such as those listed below, not

all information is available to the lock timeout reporting function:

v The SQL statement text may not be available in all cases, such as when static

SQL statements are involved in the lock timeout.

v DB2 utilities and internal functions can acquire locks without running SQL. For

example, online backup acquires table space and table locks while processing

these objects during online backup. An application could time out waiting for a

lock while a table is being backed up. If the backup command was executed

from CLP, the application name would be reported as ″db2bp″ (CLP), and there

would be no active SQL statement for the lock owner. A DB2 utility or an

internal function could also timeout waiting for an application to free a lock, and

there would be no active SQL statement for the lock requestor.

v Subagents acting on an application’s behalf at remote partitions may have

incomplete information about the application’s SQL statements and other

information. In particular, if the lock owner is a remote subagent, it will not

have the complete statement history for the application available to it.

v Internal catalog table processing performed during regular DB2 operation does

not use SQL. The function will simply identify the table involved but not the

component of DB2 that is either causing or encountering the conflict.

v Some locks are not acquired by specific SQL statements. They can represent

non-table objects (such as packages) or are used for other internal DB2

processing.

Lock timeout report files

When the lock timeout reporting function is active and a lock timeout occurs, the

agent receiving the lock timeout error generates a report file. This file is placed in

the diagnostic data directory path, at the database partition where the lock timeout

was encountered.

The diagnostic data directory path is defined by the database manager

configuration parameter diagpath. If this parameter is null, see the diagpath

parameter description for the report file location.

In a partitioned database environment, an application can be executing work and

acquiring locks at one or more database partitions at the same time. The lock

timeout reporting function helps isolate the specific database partition at which

each lock timeout problem occurs by generating a report at that database partition.

The report includes relevant information for the unique context of the lock timeout

problem at that partition.

The report is stored in a file using the following name format:

db2locktimeout.par.AGENTID.yyyy-mm-dd-hh-mm-ss, where

v par is the database partition number. In non-partitioned database environments,

par is set to 0.

v AGENTID is the Agent ID.

172 Tuning Database Performance

v yyyy-mm-dd-hh-mm-ss is the timestamp consisting of the year, month, day, hour,

minute and second.

An example of a lock timeout report file name is /home/juntang/sqllib/
db2dump/db2locktimeout.000.4944050.2006-08-11-11-09-43.

Note: When the lock timeout report files are no longer needed, delete them from

the directory. Since the report files are in the same location as other diagnostics

logs, the DB2 system could shut down if the directory is allowed to get full. If you

need to keep some lock timeout report files for a long period of time, move them

to a different directory or folder.

Lock conversion

Changing the mode of a lock already held is called a conversion. Lock conversion

occurs when a process accesses a data object on which it already holds a lock, and

the access mode requires a more restrictive lock than the one already held. A

process can hold only one lock on a data object at any time, although it can

request a lock many times on the same data object indirectly through a query.

Some lock modes apply only to tables, others only to rows or blocks. For rows or

blocks, conversion usually occurs if an X is needed and an S or U (Update) lock is

held.

IX (Intent Exclusive) and S (Shared) locks are special cases with regard to lock

conversion, however. Neither S nor IX is considered to be more restrictive than the

other, so if one of these is held and the other is required, the resulting conversion

is to a SIX (Share with Intent Exclusive) lock. All other conversions result in the

requested lock mode becoming the mode of the lock held if the requested mode is

more restrictive.

A dual conversion might also occur when a query updates a row. If the row is read

through an index access and locked as S, the table that contains the row has a

covering intention lock. But if the lock type is IS instead of IX and the row is

subsequently changed, the table lock is converted to an IX and the row to an X.

Lock conversion usually takes place implicitly as a query is executed.

Understanding the kinds of locks obtained for different queries and table and

index combinations can assist you in designing and tuning your application.

The system monitor elements lock_current_mode and lock_mode can provide

information about lock conversions occurring in your database.

Preventing lock-related performance issues

Consider the following guidelines when you tune locking for concurrency and data

integrity:

v Create small units of work with frequent COMMIT statements to promote

concurrent access of data by many users.

Include COMMIT statements when your application is logically consistent, that

is, when the data you have changed is consistent. When a COMMIT is issued,

locks are released except for table locks associated with cursors declared WITH

HOLD.

v Close a CURSOR WITH HOLD before issuing a COMMIT statement

Chapter 18. Application considerations 173

In some situations, locks remain after the result set is closed and the transaction

is committed. Closing a CURSOR WITH HOLD before issuing a COMMIT

statement, ensures locks are released.

v Execute INSERT statements as separate units of work

In some situations, locks remain after the result set is closed and the transaction

is committed. Executing INSERT statements as separate units of work, ensures

locks are released.

v Specify an appropriate isolation level.

Locks are acquired even if your application merely reads rows, so it is still

important to commit read-only units of work. This is because shared locks are

acquired by repeatable read, read stability, and cursor stability isolation levels in

read-only applications. With repeatable read and read stability, all locks are held

until a COMMIT is issued, preventing other processes from updating the locked

data, unless you close your cursor using the WITH RELEASE clause. In

addition, catalog locks are acquired even in uncommitted read applications

using dynamic SQL or XQuery statements.

The database manager ensures that your application does not retrieve

uncommitted data (rows that have been updated by other applications but are

not yet committed) unless you are using the uncommitted read isolation level.

v Use the LOCK TABLE statement appropriately.

The statement locks an entire table. Only the table specified in the LOCK TABLE

statement is locked. Parent and dependent tables of the specified table are not

locked. You must determine whether locking other tables that can be accessed is

necessary to achieve the desired result in terms of concurrency and performance.

The lock is not released until the unit of work is committed or rolled back.

LOCK TABLE IN SHARE MODE

You want to access data that is consistent in time; that is, data current for

a table at a specific point in time. If the table experiences frequent

activity, the only way to ensure that the entire table remains stable is to

lock it. For example, your application wants to take a snapshot of a

table. However, during the time your application needs to process some

rows of a table, other applications are updating rows you have not yet

processed. This is allowed with repeatable read, but this action is not

what you want.

 As an alternative, your application can issue the LOCK TABLE IN

SHARE MODE statement: no rows can be changed, regardless of

whether you have retrieved them or not. You can then retrieve as many

rows as you need, knowing that the rows you have retrieved have not

been changed just before you retrieved them.

 With LOCK TABLE IN SHARE MODE, other users can retrieve data

from the table, but they cannot update, delete, or insert rows into the

table.

LOCK TABLE IN EXCLUSIVE MODE

You want to update a large part of the table. It is less expensive and

more efficient to prevent all other users from accessing the table than it

is to lock each row as it is updated, and then unlock the row later when

all changes are committed.

 With LOCK TABLE IN EXCLUSIVE MODE, all other users are locked

out; no other applications can access the table unless they are

uncommitted read applications.
v Use ALTER TABLE statements in applications.

174 Tuning Database Performance

The ALTER TABLE statement with the LOCKSIZE parameter is an alternative to

the LOCK TABLE statement. The LOCKSIZE parameter lets you specify a lock

granularity of either ROW locks or TABLE locks for the next table access. For

MDC tables, it also lets you specify a lock granularity of the BLOCKINSERT

clause.

The selection of ROW locks is no different from selecting the default lock size

when a table is created. The selection of TABLE locks may improve query

performance by limiting the number of locks that need to be acquired. However,

concurrency might be reduced because all locks are on the complete table. For

MDC tables, the selection of the BLOCKINSERT clause may improve the

performance of INSERT operations by locking at the block level and avoiding

row locks for insertions. Row-level locking is still performed for all other

operations and is performed on key insertions to protect Repeatable Read (RR)

scanners. The BLOCKINSERT option is useful for large insertions into cells by

individual transactions. None of the LOCKSIZE choices prevent normal lock

escalation.

v Close cursors to release the locks that they hold.

When you close a cursor with the CLOSE CURSOR statement that includes the

WITH RELEASE clause, the database manager attempts to release all read locks

that have been held for the cursor. Table read locks are IS, S, and U table locks.

Row-read locks are S, NS, and U row locks. Block-read locks are IS, S, and U

block locks.

The WITH RELEASE clause has no effect on cursors that are operating under

the CS or UR isolation levels. When specified for cursors that are operating

under the RS or RR isolation levels, the WITH RELEASE clause ends some of

the guarantees of those isolation levels. Specifically, a RS cursor may experience

the nonrepeatable read phenomenon, and a RR cursor may experience either the

nonrepeatable read or phantom read phenomenon.

If a cursor that is originally RR or RS is reopened after being closed using the

WITH RELEASE clause, then new read locks are acquired.

In CLI applications, the DB2 CLI connection attribute

SQL_ATTR_CLOSE_BEHAVIOR can be used to achieve the same results as

CLOSE CURSOR WITH RELEASE.

v In a partitioned database environment, when you change the configuration

parameters that affecting locking, ensure that the changes are made to all of the

database partitions.

Correcting lock escalation problems

The database manager can automatically escalate locks from row or block level to

table level. For partitioned tables, the database manager can automatically escalate

locks from row or block level to data partition level. The maxlocks database

configuration parameter specifies when lock escalation is triggered. The table that

acquires the lock that triggers lock escalation might not be affected. Locks are first

escalated for the table with the most locks, beginning with tables for which long

object (LOBs) and long VARCHAR descriptors are locked, then the table with the

next highest number of locks, and so on, until the number of locks held is

decreased to about half of the value specified by maxlocks.

In a well designed database, lock escalation rarely occurs. If lock escalation reduces

concurrency to an unacceptable level (indicated by the lock_escalation monitor

element or the db.lock_escal_rate health indicator) you need to analyze the problem

and decide how to solve it.

Chapter 18. Application considerations 175

Ensure that lock escalation information is recorded. Set the database manager

configuration parameter notifylevel to 3, which is the default, or to 4. At notifylevel

of 2, only the error SQLCODE is reported. At notifylevel of 3 or 4, when lock

escalation fails, information is recorded for the error SQLCODE and the table for

which the escalation failed. The current query statement is logged only if it is a

currently executing, dynamic query statement and notifylevelis set to 4.

Follow these general steps to diagnose the cause of unacceptable lock escalations

and apply a remedy:

1. Analyze in the administration notification log on all tables for which locks are

escalated. This log file includes the following information:

v The number of locks currently held.

v The number of locks needed before lock escalation is completed.

v The table identifier information and table name of each table being escalated.

v The number of non-table locks currently held.

v The new table level lock to be acquired as part of the escalation. Usually, an

“S,” or Share lock, or an “X,” or eXclusive lock is acquired.

v The internal return code of the result of the acquisition of the new table lock

level.
2. Use the information in administration notification log to decide how to resolve

the escalation problem. Consider the following possibilities:

v Increase the number of locks allowed globally by increasing the value of the

maxlocks or the locklist parameters, or both, in the database configuration file.

In a partitioned database, make this change on all database partitions.

You might choose this method if concurrent access to the table by other

processes is most important. However, the overhead of obtaining record level

locks can induce more delay to other processes than is saved by concurrent

access to a table.

v Adjust the process or processes that caused the escalation. For these

processes, you might issue LOCK TABLE statements explicitly.

v Change the degree of isolation. Note that this may lead to decreased

concurrency, however.

v Increase the frequency of commits to reduce the number of locks held at a

given time.

v Consider frequent COMMIT statements for transactions that require long

VARCHAR or various kinds of long object (LOB) data. Although this kind of

data is not retrieved from disk until the result set is materialized, the

descriptor is locked when the data is first referenced. As a result, many more

locks might be held than for rows that contain more ordinary kinds of data.

Evaluate uncommitted data via lock deferral

To improve concurrency, DB2 now permits the deferral of row locks for CS or RS

isolation scans in some situations until a record is known to satisfy the predicates

of a query. By default, when row-locking is performed during a table or index

scan, DB2 locks each row that is scanned before determining whether the row

qualifies for the query. To improve the concurrency of scans, it may be possible to

defer row locking until after it is determined that a row qualifies for a query.

To take advantage of this feature, enable the DB2_EVALUNCOMMITTED registry

variable.

176 Tuning Database Performance

With this variable enabled, predicate evaluation can occur on uncommitted data.

This means that a row that contains an uncommitted update may not satisfy the

query, whereas if the predicate evaluation waited until the updated transaction

completed, the row may satisfy the query. Additionally, uncommitted deleted rows

are skipped during table scans. DB2 will skip deleted keys in type-2 index scans if

the DB2_SKIPDELETED registry variable is enabled.

These registry variable settings apply at compile time for dynamic SQL or XQuery

statements and at bind time for static SQL or XQuery statements. This means that

even if the registry variable is enabled at runtime, the lock avoidance strategy is

not employed unless DB2_EVALUNCOMMITTED was enabled at bind time. If the

registry variable is enabled at bind time but not enabled at runtime, the lock

avoidance strategy is still in effect. For static SQL or XQuery statements, if a

package is rebound, the registry variable setting at bind time is the setting that

applies. An implicit rebind of static SQL or XQuery statements will use the current

setting of the DB2_EVALUNCOMMITTED.

Applicability of evaluate uncommitted for different access plans

 Table 7. RID Index Only Access

Predicates Evaluate Uncommitted

None No

SARGable Yes

 Table 8. Data Only Access (relational or deferred RID list)

Predicates Evaluate Uncommitted

None No

SARGable Yes

 Table 9. RID Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No No

SARGable None Yes No

SARGable SARGable Yes No

 Table 10. Block Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No Yes

SARGable None Yes No

SARGable SARGable Yes Yes

Chapter 18. Application considerations 177

Example

The following example provides a comparison of the default locking behavior and

the new evaluate uncommitted behavior.

The table below is the ORG table from the SAMPLE database.

DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

-------- -------------- ------- ---------- -------------

 10 Head Office 160 Corporate New York

 15 New England 50 Eastern Boston

 20 Mid Atlantic 10 Eastern Washington

 38 South Atlantic 30 Eastern Atlanta

 42 Great Lakes 100 Midwest Chicago

 51 Plains 140 Midwest Dallas

 66 Pacific 270 Western San Francisco

 84 Mountain 290 Western Denver

The following transactions are acting on this table, with the default Cursor Stability

(CS) isolation level.

 Table 11. Transactions on the ORG table with the CS isolation level

SESSION 1 SESSION 2

connect to SAMPLE connect to SAMPLE

+c update org set deptnumb=5 where

manager=160

select * from org where deptnumb >= 10

The uncommitted UPDATE in Session 1 holds an exclusive record lock on the first

row in the table, prohibiting the SELECT query in Session 2 from returning even

though the row being updated in Session 1 does not currently satisfy the query in

Session 2. This is because the CS isolation level dictates that any row accessed by a

query must be locked while the cursor is positioned on that row. Session 2 cannot

obtain a lock on the first row until Session 1 releases its lock.

When scanning the table, the lock-wait in Session 2 can be avoided using the

evaluate uncommitted feature which first evaluates the predicate and then locks

the row for a true predicate evaluation. As such, the query in Session 2 would not

attempt to lock the first row in the table thereby increasing application

concurrency. Note that this would also mean that predicate evaluation in Session 2

would occur with respect to the uncommitted value of deptnumb=5 in Session 1.

The query in Session 2 would omit the first row in its result set despite the fact

that a rollback of the update in Session 1 would satisfy the query in Session 2.

If the order of operations were reversed, concurrency could still be improved with

evaluate uncommitted. Under default locking behavior, Session 2 would first

acquire a row lock prohibiting the searched UPDATE in Session 1 from executing

even though the UPDATE in Session 1 would not change the row locked by the

query of Session 2. If the searched UPDATE in Session 1 first attempted to examine

rows and then only lock them if they qualified, the query in Session 1 would be

non-blocking.

Restrictions

The following external restrictions apply to this new functionality:

v The registry variable DB2_EVALUNCOMMITTED must be enabled.

178 Tuning Database Performance

v The isolation level must be CS or RS.

v Row locking is to occur.

v SARGable evaluation predicates exist.

v Evaluation uncommitted is not applicable to scans on the catalog tables.

v For MDC tables, block locking can be deferred for an index scan; however, block

locking will not be deferred for table scans.

v Deferred locking will not occur on a table which is executing an inplace table

reorg.

v Deferred locking will not occur for an index scan where the index is type-1.

v For Iscan-Fetch plans, row locking is not deferred to the data access but rather

the row is locked during index access before moving to the row in the table.

v Deleted rows are unconditionally skipped for table scans while deleted type-2

index keys are only skipped if the registry variable DB2_SKIPDELETED is

enabled.

Option to disregard uncommitted insertions

The DB2_SKIPINSERTED registry variable controls whether uncommitted

insertions can be ignored for cursors using the Cursor Stability (CS) or Read

Stability (RS) isolation levels. The DB2 database system can handle uncommitted

insertions in the following ways:

v The DB2 database system can wait until the INSERT transaction completes

(commits or rolls back) and process data accordingly. This is the default option,

OFF.

The following examples show instances when the default option, OFF, is

preferred:

– Suppose that two applications use a table to pass data between themselves

with the first application inserting data into the table and the second one

reading it. The data must be processed by the second application in the order

presented in the table such that if the next row to be read is being inserted by

the first application, the second application must wait until the insert is

committed. In such cases, the default value for DB2_SKIPINSERTED should

be used.

– Suppose that an application modifies data by deleting the data and inserting

the new image of the data. In such cases that avoid UPDATE statements, the

default value for DB2_SKIPINSERTED should be used.
v The DB2 database system can ignore uncommitted insertions, which in many

cases can improve concurrency. If you want this behavior, the registry variable

must be specified as ON.

In general, ON produces greater concurrency and is preferred for most

applications. When the registry variable is enabled, uncommitted inserted rows

are treated as if they had not yet been inserted.

Lock type compatibility

Lock compatibility becomes an issue when one application currently has a lock on

an object and another application requests a lock on the same object. When the two

lock modes are compatible, the request for a second lock on the object can be

granted.

If the lock mode of the requested lock is not compatible with the lock already held,

the lock request cannot be granted. Instead, the request must wait until the first

application releases its lock, and all other existing incompatible locks are released.

Chapter 18. Application considerations 179

The following table displays information about the circumstances in which a lock

request can be granted when another process holds or is requesting a lock on the

same resource in a given state. A no indicates that the requestor must wait until all

incompatible locks are released by other processes. Note that a timeout can occur

when a requestor is waiting for a lock. A yes indicates that the lock is granted

unless an earlier requestor is waiting for the resource.

 Table 12. Lock Type Compatibility

State of Held Resource

State Being

Requested none IN IS NS S IX SIX U X Z NW W

none yes yes yes yes yes yes yes yes yes yes yes yes

IN yes yes yes yes yes yes yes yes yes no yes yes

IS yes yes yes yes yes yes yes yes no no no no

NS yes yes yes yes yes no no yes no no yes no

S yes yes yes yes yes no no yes no no no no

IX yes yes yes no no yes no no no no no no

SIX yes yes yes no no no no no no no no no

U yes yes yes yes yes no no no no no no no

X yes yes no no no no no no no no no no

Z yes no no no no no no no no no no no

NW yes yes no yes no no no no no no no yes

W yes yes no no no no no no no no yes no

Note:

I Intent

N None

NS Next Key Share

S Share

X Exclusive

U Update

Z Super Exclusive

NW Next Key Weak Exclusive

W Weak Exclusive

Note:

v yes - grant lock requested immediately

v no - wait for held lock to be released or timeout to occur

Lock modes and access paths for standard tables

This topic includes reference information about locking methods for standard

tables for different data-access plans.

The following tables list the types of locks obtained for standard tables at each

level for different access plans. Each entry is made up of two parts: table lock and

row lock. A dash indicates that a particular level of locking is not done.

180 Tuning Database Performance

Note:

1. In a multi-dimensional clustering (MDC) environment, an additional lock level,

BLOCK, is used.

2. Lock modes can be changed explicitly with the lock-request-clause of a select

statement.

 Table 13. Lock Modes for Table Scans with No Predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR S/- U/- SIX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 14. Lock Modes for Table Scans with Predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR S/- U/- SIX/X U/- SIX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Note: At UR isolation level with IN lock for type-1 indexes or if there are

predicates on include columns in the index, the isolation level is upgraded to CS

and the locks to an IS table lock and NS row locks.

 Table 15. Lock Modes for RID Index Scans with no Predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

Delete

RR S/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 16. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

Delete

RR IS/S IX/U IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

Chapter 18. Application considerations 181

Table 16. Lock Modes for RID Index Scans with a Single Qualifying Row (continued)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

Delete

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 17. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

Delete

RR IS/S IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 18. Lock Modes for RID Index Scans with Index and Other Predicates (sargs, resids)

Only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

Delete

RR IS/S IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

The following tables shows the lock modes for cases in which reading of the data

pages is deferred to allow the list of rows to be:

v Further qualified using multiple indexes

v Sorted for efficient prefetching

 Table 19. Lock modes for index scans used for deferred data page access: RID index scan

with no predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S X/-

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

182 Tuning Database Performance

Table 20. Lock modes for index scans used for deferred data page access: after a RID index

scan with no predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 21. Lock modes for index scans used for deferred data page access: RID index scan

with predicates (sargs, resids)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S IX/S

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

 Table 22. Lock modes for index scans used for deferred data page access: RID index scan

with start and stop predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S IX/X

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

 Table 23. Lock modes for index scans used for deferred data page access, after a RID index

scan with start and stop predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/- IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IS/- IX/U IX/X IX/U IX/X

Chapter 18. Application considerations 183

Table 24. Lock modes for index scans used for deferred data page access, after a RID index

scan with predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/- IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Lock modes for table and RID index scans of MDC tables

In a multi-dimensional clustering (MDC) environment, an additional lock level,

BLOCK, is used. The following tables list the types of locks obtained at each level

for different access plans. Each entry is made up of three parts: table lock, block

lock, and row lock. A dash indicates that a particular level of locking is not used.

Note: Lock modes can be changed explicitly with the lock-request-clause of a

select statement.

 Table 25. Lock Modes for Table Scans with No Predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operation Searched update or delete

Scan Where current

of

Scan or

delete

Update

RR S/-/- U/-/- SIX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/U IX/X/- IX/I/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

 Table 26. Lock Modes for Table Scans with Predicates on Dimension Columns Only

Isolation

Level

Read-only and

ambiguous scans

Cursored operation Searched update or delete

Scan Where current

of

Scan or

delete

Update

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/X/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/U/- X/X/-

 Table 27. Lock Modes for Table Scans with Other Predicates (sargs, resids)

Isolation

Level

Read-only and

ambiguous scans

Cursored operation Searched update or delete

Scan Where current

of

Scan or

delete

Update

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

184 Tuning Database Performance

Table 27. Lock Modes for Table Scans with Other Predicates (sargs, resids) (continued)

Isolation

Level

Read-only and

ambiguous scans

Cursored operation Searched update or delete

Scan Where current

of

Scan or

delete

Update

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

The following two tables show lock modes for RID indexes on MDC tables.

 Table 28. Lock Modes for RID Index Scans with No Predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR S/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

 Table 29. Lock Modes for RID Index Scans with Single Qualifying Row

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/IS/S IX/IX/U IX/IX/X X/X/X X/X/X

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

 Table 30. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/IS/S IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

 Table 31. Lock Modes for RID Index Scans with Index Predicates Only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Chapter 18. Application considerations 185

Table 31. Lock Modes for RID Index Scans with Index Predicates Only (continued)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

 Table 32. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Note: In the following tables, which shows lock modes for RID index scans used

for deferred data-page access, at UR isolation level with IN lock for type-1 indexes

or if there are predicates on include columns in the index, the isolation level is

upgraded to CS and the locks are upgraded to an IS table lock, an IS block lock,

and NS row locks.

 Table 33. Lock modes for RID index scans used for deferred data-page access: RID index

scan with no predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/S IX/IX/S X/-/-

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

 Table 34. Lock modes for RID index scans used for deferred data-page access: Deferred

data-page access after a RID index scan with no predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IN/IN/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

186 Tuning Database Performance

Table 35. Lock modes for RID index scans used for deferred data-page access: RID index

scan with predicates (sargs, resids)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/- IX/IX/S IX/IX/S

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

 Table 36. Lock modes for RID index scans used for deferred data-page access: Deferred

data-page access after a RID index scan with predicates (sargs, resids)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

 Table 37. Lock modes for RID index scans used for deferred data-page access: RID index

scan with start and stop predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/IS/S IX/IX/S IX/IX/X

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

 Table 38. Lock modes for RID index scans used for deferred data-page access: Deferred

data-page access after a RID index scan with start and stop predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IS/-/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Chapter 18. Application considerations 187

Locking for block index scans for MDC tables

The following tables list the types of locks obtained at each level for different

access plans. Each entry is made up of three parts: table lock, block lock, and row

lock. A dash indicates that a particular level of locking is not done.

Note: Lock modes can be changed explicitly with the lock-request-clause of a

select statement.

 Table 39. Lock Modes for Index Scans with No Predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR S/--/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/- IX/IX/U IX/IX/X X/X/-- X/X/--

 Table 40. Lock Modes for Index Scans with Dimension Predicates Only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

 Table 41. Lock Modes for Index Scans with Start and Stop Predicates Only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/- IX/IX/S IX/IX/S IX/IX/S IX/IX/S

RS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

CS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/- IX/IX/-

 Table 42. Lock Modes for Index Scans with Predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

188 Tuning Database Performance

Table 42. Lock Modes for Index Scans with Predicates (continued)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

The following table lists lock modes for block index scans used for deferred

data-page access:

 Table 43. Lock modes for block index scans used for deferred data-page access: Block index

scan with no predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/-- IX/IX/S X/--/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

 Table 44. Lock modes for block index scans used for deferred data-page access: Deferred

data-page access after a block index scan with no predicates

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IN/IN/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/-- IX/IX/U IX/IX/X X/X/-- X/X/--

 Table 45. Lock modes for block index scans used for deferred data-page access: Block index

scan with dimension predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/-- IX/IX/-- IX/S/--

RS IS/IS/NS IX/--/-- IX/--/--

CS IS/IS/NS IX/--/-- IX/--/--

UR IN/IN/-- IX/--/-- IX/--/--

Chapter 18. Application considerations 189

Table 46. Lock modes for block index scans used for deferred data-page access: Deferred

data-page access after a block index scan with dimension predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IN/IN/-- IX/IX/S IX/IX/X IX/S/-- IX/X/--

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

UR IN/IN/-- IX/IX/U IX/IX/X IX/U/-- IX/X/--

 Table 47. Lock modes for block index scans used for deferred data-page access: Block index

scan with start and stop predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/-- IX/IX/-- IX/X/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

 Table 48. Lock modes for block index scans used for deferred data-page access: Deferred

data-page access after a block index scan with start and stop predicates only

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IN/IN/-- IX/IX/X IX/X/--

RS IS/IS/NS IN/IN/-- IN/IN/--

CS IS/IS/NS IN/IN/-- IN/IN/--

UR IS/--/-- IN/IN/-- IN/IN/--

 Table 49. Lock modes for block index scans used for deferred data-page access: Block index

scan other predicates (sargs, resids)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IS/S/-- IX/IX/-- IX/IX/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

190 Tuning Database Performance

Table 50. Lock modes for block index scans used for deferred data-page access: Deferred

data-page access after a block index scan with other predicates (sargs, resids)

Isolation

Level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan

Delete

Update

RR IN/IN/-- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/-- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Locking behavior on partitioned tables

In addition to an overall table lock, there is a lock for each data partition of a

partitioned table. This allows for finer granularity and increased concurrency

compared to a non-partitioned table. The new data partition lock is identified in

the output of the db2pd command, event monitors, administrative views, and table

functions.

When accessing a table, locking behavior obtains the table lock first, and then

acquires data partition locks as dictated by the data accessed. Access methods and

isolation levels might require locking of data partitions not in the result set. Once

these data partition locks are acquired they might be held as long as the table lock.

For example, a Cursor stability (CS) scan over an index might keep the locks on

previously accessed data partitions to reduce the costs of re-acquiring the data

partition lock if that data partition is referenced in subsequent keys. The data

partition lock also carries the cost of ensuring access to the table spaces. For

non-partitioned tables, table space access is handled by the table lock. Therefore,

data partition locking occurs even if there is an exclusive or share lock at the table

level for a partitioned table.

Finer granularity allows one transaction to have exclusive access to a given data

partition and avoid row locking while other transactions are able to access other

data partitions. This can be a result of the plan chosen for a mass update or due to

escalation of locks to the data partition level. The table lock for many access

methods is normally an intent lock, even if the data partitions are locked in share

or exclusive. This allows for increased concurrency. However, if non-intent locks

are required at the data partition level and the plan indicates that all data

partitions may be accessed, then a non-intent might be chosen at the table level to

prevent deadlocks between data partition locks from concurrent transactions.

Locking for SQL LOCK TABLE statements

For partitioned tables, the only lock acquired for the LOCK TABLE statement is at

the table level; no data partition locks are acquired. This ensures no row locking to

the table for subsequent DML statements as well as avoiding deadlocks at the row,

block, or data partition level. Using LOCK TABLE IN EXCLUSIVE MODE can also

be used to guarantee exclusive access when updating indexes, which is useful in

limiting the growth of type 2 indexes during a large update.

Chapter 18. Application considerations 191

Effect of the LOCKSIZE TABLE parameter of the ALTER TABLE

statement

The ALTER TABLE statement has an option for setting LOCKSIZE TABLE, which

ensures that the table is locked share or exclusive with no intent locks. For a

partitioned table this lock strategy is applied to both the table lock and to the data

partition locks for any data partitions accessed.

Row and block lock escalation

For partitioned tables, the unit of escalation of row and block locks is to the data

partition level. This again means that a table is more accessible to other

transactions even if a data partition is escalated to share, exclusive, or super

exclusive, leaving other non-escalated data partitions are unaffected. The

transaction might continue to row lock on other data partitions after escalation for

a given data partition. The notification log message for escalations includes the

data partition escalated as well as the partitioned table’s name. Therefore, exclusive

access to an index cannot be ensured by lock escalation. Either the statement must

use an exclusive table level lock, an explicit LOCK TABLE IN EXCLUSIVE MODE

statement must be issued, or the table must use the LOCKSIZE TABLE attribute.

The overall table lock for the access method is chosen by the optimizer, and

depends upon data partition elimination. A large update to a table might choose

an exclusive table lock if there is no data partition elimination occurring.

Interpreting lock information

The following example from the SNAPLOCK administrative view can help you

interpret lock information returned for a partitioned table.

Example 1:

This SNAPLOCK administrative view was captured during an offline index

reorganization.

SELECT SUBSTR(TABNAME, 1, 15) TABNAME, TAB_FILE_ID, SUBSTR(TBSP_NAME, 1, 15) TBSP_NAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE,

LOCK_MODE, LOCK_ESCALATION FROM SYSIBMADM.SNAPLOCK where TABNAME like ’TP1’ and LOCK_OBJECT_TYPE like ’TABLE_%’

ORDER BY TABNAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE, TAB_FILE_ID, LOCK_MODE

TABNAME TAB_FILE_ID TBSP_NAME DATA_PARTITION_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_ESCALATION

--------------- -------------------- --------------- ----------------- ------------------ ---------- ---------------

TP1 32768 - -1 TABLE_LOCK Z 0

TP1 4 USERSPACE1 0 TABLE_PART_LOCK Z 0

TP1 5 USERSPACE1 1 TABLE_PART_LOCK Z 0

TP1 6 USERSPACE1 2 TABLE_PART_LOCK Z 0

TP1 7 USERSPACE1 3 TABLE_PART_LOCK Z 0

TP1 8 USERSPACE1 4 TABLE_PART_LOCK Z 0

TP1 9 USERSPACE1 5 TABLE_PART_LOCK Z 0

TP1 10 USERSPACE1 6 TABLE_PART_LOCK Z 0

TP1 11 USERSPACE1 7 TABLE_PART_LOCK Z 0

TP1 12 USERSPACE1 8 TABLE_PART_LOCK Z 0

TP1 13 USERSPACE1 9 TABLE_PART_LOCK Z 0

TP1 14 USERSPACE1 10 TABLE_PART_LOCK Z 0

TP1 15 USERSPACE1 11 TABLE_PART_LOCK Z 0

TP1 4 USERSPACE1 - TABLE_LOCK Z 0

TP1 5 USERSPACE1 - TABLE_LOCK Z 0

TP1 6 USERSPACE1 - TABLE_LOCK Z 0

TP1 7 USERSPACE1 - TABLE_LOCK Z 0

TP1 8 USERSPACE1 - TABLE_LOCK Z 0

TP1 9 USERSPACE1 - TABLE_LOCK Z 0

TP1 10 USERSPACE1 - TABLE_LOCK Z 0

TP1 11 USERSPACE1 - TABLE_LOCK Z 0

TP1 12 USERSPACE1 - TABLE_LOCK Z 0

TP1 13 USERSPACE1 - TABLE_LOCK Z 0

TP1 14 USERSPACE1 - TABLE_LOCK Z 0

192 Tuning Database Performance

TP1 15 USERSPACE1 - TABLE_LOCK Z 0

TP1 16 USERSPACE1 - TABLE_LOCK Z 0

 26 record(s) selected.

In this example, a lock object of type TABLE_LOCK and a DATA_PARTITION_ID

of -1 are used to control access to, and concurrency on, the partitioned table TP1.

The lock objects of type TABLE_PART_LOCK are used to control most access and

concurrency to each data partition.

There are additional lock objects of type TABLE_LOCK captured in this output

(TAB_FILE_ID 4 through 16) which do not have a value for

DATA_PARTITION_ID. A lock of this type, where an object with a TAB_FILE_ID

and a TBSP_NAME correspond to a data partition or index on the partitioned

table, might be used to control concurrency with the online backup utility.

Factors that affect locking

The following factors affect the mode and granularity of database manager locks:

v The type of processing that the application performs

v The data access method

v Whether indexes are type-2 or type-1

v Various configuration parameters

Locks and types of application processing

For the purpose of determining lock attributes, application processing can be

classified as one of the following types:

v Read-only

This type includes all select statements that are intrinsically read-only, have an

explicit FOR READ ONLY clause, or are ambiguous but which the query

compiler assumes to be read-only because of the value of the BLOCKING option

that the PREP or BIND command specifies. This processing type requires only

Share locks (S, NS, or IS).

v Intent to change

This type includes all select statements with the FOR UPDATE clause, with the

USE AND KEEP UPDATE LOCKS clause, with the USE AND KEEP EXCLUSIVE

LOCKS clause, or for which the query compiler interprets an ambiguous

statement to imply that change is intended. This type uses Share and Update

locks (S, U, and X for rows; IX, U, X, and S for blocks; IX, U, and X for tables).

v Change

This type includes UPDATE, INSERT, and DELETE, but not UPDATE WHERE

CURRENT OF or DELETE WHERE CURRENT OF. This type requires Exclusive

locks (X or IX).

v Cursor controlled

This type includes UPDATE WHERE CURRENT OF and DELETE WHERE

CURRENT OF. It also requires Exclusive locks (X or IX).

A statement that inserts, updates or deletes data in a target table, based on the

result from a sub-select statement, does two types of processing. The rules for

read-only processing determine the locks for the tables returned in the sub-select

statement. The rules for change processing determine the locks for the target table.

Chapter 18. Application considerations 193

Locks and data-access methods

An access plan is the method that the optimizer selects to retrieve data from a

specific table. The access plan can have a significant effect on lock modes. For

example, when an index scan is used to locate a specific row, the optimizer will

probably choose row-level locking (IS) for the table. For example, if the

EMPLOYEE table that has an index on employee number (EMPNO), access

through an index might be used to select information for a single employee with a

statement that contains the following SELECT clause:

 SELECT *

 FROM EMPLOYEE

 WHERE EMPNO = ’000310’;

If an index is not used, the entire table must be scanned in sequence to find the

selected rows, and may thus acquire a single table level lock (S). For example, if

there is no index on the column SEX, a table scan might be used to select all male

employees with a a statement that contains the following SELECT clause:

 SELECT *

 FROM EMPLOYEE

 WHERE SEX = ’M’;

Note: Cursor controlled processing uses the lock mode of the underlying cursor

until the application finds a row to update or delete. For this type of processing,

no matter what the lock mode of a cursor, an exclusive lock is always obtained to

perform the update or delete.

Locking in range-clustered tables works slightly differently from standard key or

next-key locking. In accessing a range of rows in a range-clustered table, all rows

in the range are locked, even when some of those rows are empty. In standard key

or next key locking, only rows with existing records are locked.

Reference tables provide detailed information about which locks are obtained for

what kind of access plan.

Deferred access of the data pages implies that access to the row occurs in two

steps, which results in more complex locking scenarios. The timing of lock

acquisition and the persistence of the locks depend on the isolation level. Because

the Repeatable Read isolation level retains all locks until the end of the transaction,

the locks acquired in the first step are held and there is no need to acquire further

locks in the second step. For the Read Stability and Cursor Stability isolation

levels, locks must be acquired during the second step. To maximize concurrency,

locks are not acquired during the first step and rely on the reapplication of all

predicates to ensure that only qualifying rows are returned.

Index types and next-key locking

As transactions cause changes to type-1 indexes, some next-key locking occurs. For

type-2 indexes, minimal next-key locking occurs.

v Next-key locking for type 2 indexes

Next-key locking occurs when a key is inserted into an index.

During insertion of a key into an index, the row that corresponds to the key that

will follow the new key in the index is locked only if that row is currently

locked by an RR index scan. The lock mode used for the next-key lock is NW.

This next-key lock is released before the key insertion is actually performed. Key

insertion occurs when a row is inserted into a table.

194 Tuning Database Performance

When updates to a row result in a change to the value of the index key for that

row, key insertion also occurs because the original key value is marked deleted

and the new key value is inserted into the index. For updates that affect only the

include columns of an index, the key can be updated in place and no next-key

locking occurs.

During RR scans, the row that corresponds to the key that follows the end of the

scan range is locked in S mode. If no keys follow the end of the scan range, an

end-of-table lock is acquired to lock the end of the index. If the key that follows

the end of the scan range is marked deleted, the scan continues to lock the

corresponding rows until it finds a key that is not marked deleted, when it locks

the corresponding row for that key, or until the end of the index is locked.

v Next-key locking for type-1 indexes:

Next-key locks occur during deletes and inserts to indexes and during index

scans. When a row is updated in, deleted from, or inserted into a table, an X

lock is obtained on that row. For insertions this might be downgraded to a W

lock.

When the key is deleted from the table index or inserted into it, the table row

that corresponds to the key that follows the deleted or inserted key in the index

is locked. For updates that affect the value of the key, the original key value is

first deleted and the new value is inserted, so two next-key locks are acquired.

The duration of these locks is determined as follows:

– During index key deletion, the lock mode on the next key is X and the lock is

held until commit time.

– During index key insertion, the lock mode on the next key is NW. This lock is

acquired only if there is contention for the lock, in which case the lock is

released before the key is actually inserted into the index.

– During RR scans, the table row that corresponds to the key just beyond the

end of the index scan range is locked in S mode and is held until commit

time.

– During CS/RS scans, the row corresponding to the key just beyond the end of

the index scan range is locked in NS mode if there is contention for the lock.

This lock is released once the end of the scan range is verified.
The next-key locking for type-1 indexes during key insertions and key deletion

might result in deadlocks. The following example shows how two transactions

could deadlock. With type 2 indexes, such deadlocks do not occur.

Consider the following example of an index that contains 6 rows with the

following values: 1 5 6 7 8 12.

1. Transaction 1 deletes the row with key value 8. The row with value 8 is

locked in X mode. When the corresponding key from the index is deleted,

the row with value 12 is locked in X mode.

2. Transaction 2 deletes the row with key value 5. The row with value 5 is

locked in X mode. When the corresponding key from the index is deleted,

the row with value 6 is locked in X mode.

3. Transaction 1 inserts a row with key value 4. This row is locked in W mode.

When inserting the new key into the index is attempted, the row with value

6 is locked in NW mode. This lock attempt will wait on the X lock that

transaction 2 has on this row.

4. Transaction 2 inserts a row with key value 9. This row is locked in W mode.

When inserting the new key into the index is attempted, the row with key

value 12 is locked in NW mode. This lock attempt will wait on the X lock

that transaction 1 has on this row.

Chapter 18. Application considerations 195

When type-1 indexes are used, this scenario will result in a deadlock and one of

these transactions will be rolled back.

Specifying a lock wait mode strategy

An individual session can now specify a lock wait mode strategy, which is used

when the session requires a lock that it cannot obtain immediately. The strategy

indicates whether the session will:

v Return an SQLCODE and SQLSTATE when it cannot obtain a lock

v Wait indefinitely for a lock

v Wait a specified amount of time for a lock

v Use the value of the locktimeout database configuration parameter when waiting

for a lock

The lock wait mode strategy is specified through the new SET CURRENT LOCK

TIMEOUT statement, which changes the value of the CURRENT LOCK TIMEOUT

special register. The CURRENT LOCK TIMEOUT special register specifies the

number of seconds to wait for a lock before returning an error indicating that a

lock cannot be obtained.

Traditional locking approaches can result in applications blocking each other. This

happens when one application must wait for another application to release its lock.

Strategies to deal with the impact of such blocking usually provide a mechanism to

specify the maximum acceptable duration of the block. That is the amount of time

that an application will wait prior to returning without a lock. Previously, this was

only possible at the database level by changing the value of the locktimeout

database configuration parameter.

Whereas the value of the locktimeout parameter applies to all locks, the lock types

that are impacted by this new function include row, table, index key, and

multidimensional clustering (MDC) block locks.

Tuning applications

Guidelines for restricting select statements

The optimizer assumes that an application must retrieve all of the rows specified

by SELECT statement. This assumption is most appropriate in OLTP and batch

environments. However, in “browse” applications, queries often define a large

potential answer set but they retrieve only first few rows, usually only as many

rows as are required to fill the screen.

To improve performance for such applications, you can modify the SELECT

statement in the following ways:

v Use the FOR UPDATE clause to specify the columns that could be updated by a

subsequent positioned UPDATE statement.

v Use the FOR READ/FETCH ONLY clause to make the returned columns read

only.

v Use the OPTIMIZE FOR n ROWS clause to give priority to retrieving the first n

rows in the full result set.

v Use the FETCH FIRST n ROWS ONLY clause to retrieve only a specified number

of rows.

v Use the DECLARE CURSOR WITH HOLD statement to retrieve rows one at a

time.

196 Tuning Database Performance

Note: Row blocking is affected if you use the FOR UPDATE, FETCH FIRST n

ROWS ONLY, or the OPTIMIZE FOR n ROWS clause or if you declare your cursor

as SCROLLing.

The following sections describe the performance advantages of each method.

FOR UPDATE Clause

The FOR UPDATE clause limits the result set by including only the columns that

can be updated by a subsequent positioned UPDATE statement. If you specify the

FOR UPDATE clause without column names, all columns that can be updated in

the table or view are included. If you specify column names, each name must be

unqualified and must identify a column of the table or view.

You cannot use FOR UPDATE clause in the following circumstances:

v If the cursor associated with the SELECT statement cannot be deleted.

v If at least one of the selected columns is a column that cannot be updated in a

catalog table and has not been excluded in the FOR UPDATE clause.

Use the DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE in CLI

applications for the same purposes.

FOR READ or FETCH ONLY Clause

The FOR READ ONLY clause or FOR FETCH ONLY clause ensures that read-only

results are returned. Because the result table from a SELECT on a view defined as

read-only is also read only, this clause is permitted but has no effect.

For result tables where updates and deletes are allowed, specifying FOR READ

ONLY may improve the performance of FETCH operations if the database

manager can retrieve blocks of data instead of exclusive locks. Do not use the FOR

READ ONLY clause for queries that are used in positioned UPDATE or DELETE

statements.

The DB2 CLI connection attribute SQL_ATTR_ACCESS_MODE can be used in CLI

applications for the same purposes.

OPTIMIZE FOR n ROWS Clause

The OPTIMIZE FOR clause declares the intent to retrieve only a subset of the

result or to give priority to retrieving only the first few rows. The optimizer can

then prefer access plans that minimize the response time for retrieving the first few

rows. In addition, the number of rows that are sent to the client as a single block

are bounded by the value of “n” in the OPTIMIZE FOR clause. Thus the

OPTIMIZE FOR clause affects both how the server retrieves the qualifying rows

from the database by the server, and how it returns the qualifying rows to the

client.

For example, suppose you are querying the employee table for the employees with

the highest salary on a regular basis.

 SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

 FROM EMPLOYEE

 ORDER BY SALARY DESC

You have defined a descending index on the SALARY column. However, since

employees are ordered by employee number, the salary index is likely to be very

Chapter 18. Application considerations 197

poorly clustered. To avoid many random synchronous I/Os, the optimizer would

probably choose to use the list prefetch access method, which requires sorting the

row identifiers of all rows that qualify. This sort causes a delay before the first

qualifying rows can be returned to the application. To prevent this delay, add the

OPTIMIZE FOR clause to the statement as follows:

 SELECT LASTNAME,FIRSTNAME,EMPNO,SALARY

 FROM EMPLOYEE

 ORDER BY SALARY DESC

 OPTIMIZE FOR 20 ROWS

In this case, the optimizer probably chooses to use the SALARY index directly

because only the twenty employees with the highest salaries are retrieved.

Regardless of how many rows might be blocked, a block of rows is returned to the

client every twenty rows.

With the OPTIMIZE FOR clause the optimizer favors access plans that avoid bulk

operations or interrupt the flow of rows, such as sorts. You are most likely to

influence an access path by using OPTIMIZE FOR 1 ROW. Using this clause might

have the following effects:

v Join sequences with composite inner tables are less likely because they require a

temporary table.

v The join method might change. A nested loop join is the most likely choice,

because it has low overhead cost and is usually more efficient to retrieve a few

rows.

v An index that matches the ORDER BY clause is more likely because no sort is

required for the ORDER BY.

v List prefetch is less likely because this access method requires a sort.

v Sequential prefetch is less likely because of the understanding that only a small

number of rows is required.

v In a join query, the table with the columns in the ORDER BY clause is likely to

be picked as the outer table if an index on the outer table provides the ordering

needed for the ORDER BY clause.

Although the OPTIMIZE FOR clause applies to all optimization levels, it works

best for optimization class 3 and higher because classes below 3 use Greedy join

enumeration method. This method sometimes results in access plans for multi-table

joins that do not lend themselves to quick retrieval of the first few rows.

The OPTIMIZE FOR clause does not prevent you from retrieving all the qualifying

rows. If you do retrieve all qualifying rows, the total elapsed time might be

significantly greater than if the optimizer had optimized for the entire answer set.

If a packaged application uses the call level interface (DB2 CLI or ODBC), you can

use the OPTIMIZEFORNROWS keyword in the db2cli.ini configuration file to

have DB2 CLI automatically append an OPTIMIZE FOR clause to the end of each

query statement.

When data is selected from nicknames, results may vary depending on data source

support. If the data source referenced by the nickname supports the OPTIMIZE

FOR clause and the DB2 optimizer pushes down the entire query to the data

source, then the clause is generated in the remote SQL sent to the data source. If

the data source does not support this clause or if the optimizer decides that the

least-cost plan is local execution, the OPTIMIZE FOR clause is applied locally. In

this case, the DB2 optimizer prefers access plans that minimize the response time

for retrieving the first few rows of a query, but the options available to the

198 Tuning Database Performance

optimizer for generating plans are slightly limited and performance gains from the

OPTIMIZE FOR clause may be negligible.

If both the FETCH FIRST clause and the OPTIMIZE FOR clause are specified, the

lower of the two values affects the communications buffer size. The two values are

considered independent of each other for optimization purposes.

FETCH FIRST n ROWS ONLY Clause

The FETCH FIRST n ROWS ONLY clause sets the maximum number of rows that

can be retrieved. Limiting the result table to the first several rows can improve

performance. Only n rows are retrieved regardless of the number of rows that the

result set might otherwise contain.

If you specify both the FETCH FIRST clause and the OPTIMIZE FOR clause, the

lower of the two values affects the communications buffer size. For optimization

purposes the two values are independent of each other.

DECLARE CURSOR WITH HOLD Statement

When you declare a cursor with the DECLARE CURSOR statement that includes

the WITH HOLD clause, open cursors remain open when the transaction is

committed and all locks are released, except locks that protect the current cursor

position of open WITH HOLD cursors.

If the transaction is rolled back, all open cursors are closed and all locks are

released and LOB locators are freed.

The DB2 CLI connection attribute SQL_ATTR_CURSOR_HOLD can be used in CLI

applications to achieve the same results. If a packaged application that uses the call

level interface (DB2 CLI or ODBC), use the CURSORHOLD keyword in the

db2cli.ini configuration file to have DB2 CLI automatically assume the WITH

HOLD clause for every declared cursor.

Specifying row blocking to reduce overhead

Row blocking is supported for all statements and data types, including LOB data

types. Row blocking reduces database manager overhead for cursors by retrieving

a block of rows in a single operation.

Note: The block of rows that you specify is a number of pages in memory. It is not

a multi-dimensional (MDC) table block, which is physically mapped to an extent

on disk.

Row blocking is specified by the following arguments to the BIND or PREP

commands:

UNAMBIG

For cursors that are specified with the FOR READ ONLY clause, blocking

occurs.

 Cursors that are not declared with the FOR READ ONLY or FOR UPDATE

clause which are not ambiguous and are read-only will be blocked.

Ambiguous cursors will not be blocked

ALL For cursors that are specified with the FOR READ ONLY clause or are not

specified as FOR UPDATE, blocking occurs.

Chapter 18. Application considerations 199

NO Blocking does not occur for any cursors.

 For the definition of a read-only cursor and an ambiguous cursor, refer to

DECLARE CURSOR statement.

Note: If you use the FETCH FIRST n ROWS ONLY clause or the OPTIMIZE FOR n

ROWS clause in a SELECT statement, the number of rows per block will be the

minimum of the following:

v The value calculated in the above formula

v The value of n in the FETCH FIRST clause

v The value of n in the OPTIMIZE FOR clause

Two database manager configuration parameters must be set appropriately. Both

values are set as a number of pages of memory. Note the values of these

parameters for use in block-size calculations.

v The database manager configuration parameter aslheapsz specifies application

support layer heap size for local applications.

v The database manager configuration parameter rqrioblk specifies the size of the

communication buffer between remote applications and their database agents on

the database server.

Before enabling the blocking of row data for LOB data types, it is important to

understand the impact on system resources. More shared memory will be

consumed on the server to store the references to the LOB values in each block of

data when LOB columns are returned. The number of such references will vary

according to the value of the database configuration parameter rqrioblk.

To increase the amount of memory allocated to the heap, modify the

database_memory database configuration parameter by:

v Setting the parameter to AUTOMATIC will tell the database manager to manage

database memory automatically.

v Increasing the value by 256 pages if the parameter is currently set to a

user-defined numeric value.

To increase the performance of existing embedded SQL applications that reference

LOB values, the application can be rebound using the BIND command and

specifying either the BLOCKING ALL clause or the BLOCKING UNAMBIGUOUS

clause to request blocking. Embedded applications will retrieve the LOB values

from the server a row at a time once a block of rows have been retrieved from the

server. UDFs returning large LOB results may cause DB2 to revert to single-row

retrieval of LOB data where large amounts of memory are consumed on the server.

To specify row blocking:

1. Use the values of the aslheapsz and rqrioblk configuration parameters to estimate

how many rows are returned for each block. In both formulas orl is the output

row length in bytes.

v Use the following formula for local applications:

Rows per block = aslheapsz * 4096 / orl

The number of bytes per page is 4 096.

v Use the following formula for remote applications:

Rows per block = rqrioblk / orl

200 Tuning Database Performance

2. To enable row blocking, specify an appropriate argument to the BLOCKING

option in the PREP or BIND commands.

If you do not specify a BLOCKING option, the default row blocking type is

UNAMBIG. For the command line processor and call level interface, the default

row blocking type is ALL.

Query tuning guidelines

Follow the query-tuning guidelines to fine-tune the SQL and XQuery statements in

an application program. The guidelines are intended to help you minimize the use

of system resources and the time required to return results from large tables and

complex queries.

Note: The optimization class that the optimizer uses might eliminate the need for

some fine tuning because the query compiler can rewrite the SQL and XQuery

code into more efficient forms.

Note that the optimizer choice of an access plan is also affected by other factors,

including environmental considerations and system catalog statistics. If you

conduct benchmark testing of the performance of your applications, you can find

out what adjustments might improve the access plan.

Query optimization using the REOPT bind option

To enable query optimization (or reoptimization) of static and dynamic SQL and

XQuery statements that have host variables, special registers, global variables or

parameter markers, bind the package with the REOPT bind option. When this

option is used, the access path for an SQL or XQuery statement that both belongs

to the package and contains host variables, parameter markers, global variables or

special registers, will be optimized using the values of these variables rather than

the default estimates that are chosen by the compiler. The optimization takes place

at query execution time when the values are available.

Improving performance by binding with REOPT

SQL or XQuery queries may perform poorly during execution if the values used

for the input variables such as parameter markers, host variables, global variables

and special registers, are outside the predictive range of default filter factor

estimates. Default filter factors, used for scenarios where the actual data value is

not known, are estimates of how many rows will actually be returned at runtime

when the actual data value is used.

The REOPT bind option specifies whether or not to have DB2 optimize an access

path using values for host variables, parameter markers, global variables and

special registers. REOPT values are specified by the following arguments to the

BIND, PREP and REBIND commands:

REOPT NONE

The access path for a given SQL or XQuery statement containing host

variables, parameter markers, global variables or special registers will not

be optimized using real values for these variables; The default estimates

for the these variables are used instead. This plan is cached and will be

used subsequently. This is the default behavior.

REOPT ONCE

The access path for a given SQL or XQuery statement will be optimized

Chapter 18. Application considerations 201

using the real values of the host variables, parameter markers, global

variables or special registers when the query is first executed. This plan is

cached and used subsequently.

REOPT ALWAYS

The access path for a given SQL or XQuery statement will always be

compiled and reoptimized using the values of the host variables,

parameter markers, global variables or special registers known at each

execution time.

Data sampling in SQL and XQuery queries

Databases are growing so large and queries on those databases so complex that it

is often impractical and sometimes unnecessary to access all of the data relevant to

a query. In some cases, a user is interested in finding overall trends or patterns, in

which case approximate answers within some margin of error will suffice. One

way to speed up such queries is to perform the query on a random sample of the

database. DB2 allows you to do efficient sampling of data in SQL and XQuery

queries, potentially improving performance of large queries by orders of

magnitude while maintaining a high degree of accuracy.

The most common application of sampling is for aggregate queries such as AVG,

SUM, and COUNT, where reasonably accurate answers of the aggregates can be

obtained from a sample of the data. Sampling can also be used to obtain a random

subset of the actual rows in a table for auditing purposes or to speed up data

mining and analysis tasks.

DB2 provides two methods of sampling: row-level sampling and block-level

sampling.

Row-level Bernoulli sampling

Row-level Bernoulli sampling gets a sample of P percent of the table rows by

means of a SARGable predicate that includes each row in the sample with a

probability of P/100 and excludes it with a probability of 1-P/100.

Row-level Bernoulli sampling always gets a valid, random sample regardless of

data clustering. However, the performance of this type of sampling is very poor if

no index is available because every row must be retrieved and the sampling

predicate applied to it. If there is no index then there are no I/O savings over

executing a query without sampling. If an index is available, then performance

using this type of sampling is improved because the sampling predicate is applied

on the RIDS inside the index leaf pages. In the usual case, this requires one I/O

per selected RID, and one I/O per index leaf page.

System page-level sampling

System page-level sampling is similar to row-level sampling, except that pages are

sampled and not rows. A page is included in the sample with a probability of

P/100. If a page is included, all of the rows in that page are included.

Performance of system page-level sampling is excellent because only one I/O is

required for each page that is included in the sample. Compared with no

sampling, page-level sampling improves performance by orders of magnitude.

However, the accuracy of aggregate estimates tends to be worse under page-level

sampling than row-level sampling. This disparity in accuracy is most pronounced

202 Tuning Database Performance

when there are many rows per block or when the columns referenced in the query

exhibit a high degree of clustering within the pages.

The best sampling method for a particular task will be determined by a user’s time

constraints and the desired degree of accuracy.

Specifying the sampling method

To execute a query on a random sample of data from a table, you can use the

TABLESAMPLE clause of the table-reference clause in a SQL statement. To specify

the method of sampling, use the keywords BERNOULLI or SYSTEM.

The BERNOULLI keyword specifies that row-level Bernoulli sampling is

performed.

The SYSTEM keyword specifies that system page-level sampling is performed

unless the optimizer determines that it is more efficient to perform row-level

Bernoulli sampling instead.

Parallel processing for applications

DB2 supports parallel environments primarily on symmetric multi-processor (SMP)

machines, but also to a limited extent on uniprocessor machines. In SMP machines,

more than one processor can access the database, allowing parallel execution of

complex SQL requests to be divided among the processors.

To specify the degree of parallelism to implement when you compile an

application, use the CURRENT DEGREE special register, or the DEGREE bind

option. Degree refers to the number of parts of a query that execute concurrently.

There is no strict relation between the number of processors and the value that you

select for the degree of parallelism. You can specify more or less than the number

of processors on the machine. Even for uniprocessor machines you can set a degree

higher than one to improve performance in some ways. Note, however, that each

degree of parallelism adds to the system memory and CPU overhead.

Some configuration parameters must be modified to optimize performance when

you use parallel execution of queries. In particular, for an environment with a high

degree of parallelism, you should review and modify configuration parameters that

control the amount of shared memory and prefetching.

The following three configuration parameters control and manage intra-partition

parallelism.

v The intra_parallel database manager configuration parameter enables or disables

parallelism support.

v The max_querydegree database configuration parameter sets an upper limit for the

degree of parallelism for any query in the database. This value overrides the

CURRENT DEGREE special register and the DEGREE bind option.

v The dft_degree database configuration parameter sets the default value for the

CURRENT DEGREE special register and the DEGREE bind option.

If a query is compiled with DEGREE = ANY, the database manager chooses the

degree of intra-partition parallelism based on a number of factors including the

number of processors and the characteristics of the query. The actual degree used

at runtime may be lower than the number of processors depending on these

factors and the amount of activity on the system. Parallelism may be lowered

before query execution if the system is heavily utilized. This occurs because

Chapter 18. Application considerations 203

intra-partition parallelism aggressively uses system resources to reduce the elapsed

time of the query, which may adversely affect the performance of other database

users.

To display information about the degree of parallelism chosen by the optimizer,

use the SQL Explain Facility to display the access plan. Use the database system

monitor to display information about the degree of parallelism actually used at

runtime.

Parallelism in non-SMP environments

You can specify a degree of parallelism without having an SMP machine. For

example, I/O-bound queries on a uniprocessor machine may benefit from

declaring a degree of 2 or more. In this case, the processor might not have to wait

for input or output tasks to complete before starting to process a new query.

Declaring a degree of 2 or more does not directly control I/O parallelism on a

uniprocessor machine, however. Utilities such as Load can control I/O parallelism

independently of such a declaration. The keyword ANY can also be used to set the

dft_degree database manager configuration parameter. The ANY keyword allows the

optimizer to determine the degree of intra-partition parallelism.

204 Tuning Database Performance

Chapter 19. Environmental considerations

Table space impact on query optimization

Certain characteristics of your table spaces can affect the access plan chosen by the

query compiler:

v Container characteristics

Container characteristics can have a significant impact on the I/O cost associated

during query execution. When it selects an access plan, the query optimizer

considers these I/O costs, including any cost differences for accessing data from

different table spaces. Two columns in the SYSCAT.TABLESPACES system

catalog are used by the optimizer to help estimate the I/O costs of accessing

data from a table space:

– OVERHEAD, which provides an estimate in milliseconds of the time required

by the container before any data is read into memory. This overhead activity

includes the container’s I/O controller overhead as well as the disk latency

time, which includes the disk seek time.

You may use the following formula to help you estimate the overhead cost:

 OVERHEAD = average seek time in milliseconds

 + (0.5 * rotational latency)

where:

- 0.5 represents an average overhead of one half rotation

- Rotational latency is calculated in milliseconds for each full rotation, as

follows:

 (1 / RPM) * 60 * 1000

where you:

v Divide by rotations per minute to get minutes per rotation

v Multiply by 60 seconds per minute

v Multiply by 1000 milliseconds per second.
As an example, let the rotations per minute for the disk be 7 200. Using the

rotational-latency formula, this would produce:

 (1 / 7200) * 60 * 1000 = 8.328 milliseconds

which can then be used in the calculation of the OVERHEAD estimate with

an assumed average seek time of 11 milliseconds:

 OVERHEAD = 11 + (0.5 * 8.328)

 = 15.164

giving an estimated OVERHEAD value of about 15 milliseconds.

– TRANSFERRATE, which provides an estimate in milliseconds of the time

required to read one page of data into memory.

If each table-space container is a single physical disk then you may use the

following formula to help you estimate the transfer cost in milliseconds per

page:

 TRANSFERRATE = (1 / spec_rate) * 1000 / 1024000 * page_size

where:

© Copyright IBM Corp. 1993, 2007 205

- spec_rate represents the disk specification for the transfer rate, in MB per

second

- Divide by spec_rate to get seconds per MB

- Multiply by 1000 milliseconds per second

- Divide by 1 024 000 bytes per MB

- Multiply by the page size in bytes (for example, 4 096 bytes for a 4 KB

page)
As an example, suppose the specification rate for the disk is 3 MB per second.

This would produce the following calculation

 TRANSFERRATE = (1 / 3) * 1000 / 1024000 * 4096

 = 1.333248

giving an estimated TRANSFERRATE value of about 1.3 milliseconds per

page.

If the table space containers are not single physical disks but are arrays of

disks (such as RAID), then you must take additional considerations into

account when you attempt to determine the TRANSFERRATE to use. If the

array is relatively small then you can multiply the spec_rate by the number

of disks, assuming that the bottleneck is at the disk level.

However, if the number of disks in the array making up the container is

large, then the bottleneck may not be at the disk level, but at one of the other

I/O subsystem components such as disk controllers, I/O busses, or the

system bus. In this case, you cannot assume that the I/O throughput

capability is the product of the spec_rate and the number of disks. Instead,

you must measure the actual I/O rate in MBs during a sequential scan. For

example, a sequential scan could be select count(*) from big_table and

will be MBs in size. Divide the result by the number of containers that make

up the table space in which big_table resides. Use the result as a substitute

for spec_rate in the formula given above. For example, a measured

sequential I/O rate of 100 MBs while scanning a table in a four container

table space would imply 25 MBs per container, or a TRANSFERRATE of

(1/25) * 1000 / 1024000 * 4096 = 0.16 milliseconds per page.
Each of the containers assigned to a table space may reside on different physical

disks. For best results, all physical disks used for a given table space should

have the same OVERHEAD and TRANSFERRATE characteristics. If these

characteristics are not the same, you should use the average when setting the

values for OVERHEAD and TRANSFERRATE.

You can obtain media-specific values for these columns from the hardware

specifications or through experimentation. These values may be specified on the

CREATE TABLESPACE and ALTER TABLESPACE statements.

Experimentation becomes especially important in the environment mentioned

above where you have a disk array as a container. You should create a simple

query that moves data and use it in conjunction with a platform-specific

measuring utility. You can then re-run the query with different container

configurations within your table space. You can use the CREATE and ALTER

TABLESPACE statements to change how data is transferred in your

environment.

The I/O cost information provided through these two values could influence the

optimizer in a number of ways, including whether or not to use an index to

access the data, and which table to select for the inner and outer tables in a join.

v Prefetching

When considering the I/O cost of accessing data from a table space, the

optimizer also considers the potential impact that prefetching data and index

206 Tuning Database Performance

pages from disk can have on the query performance. Prefetching data and index

pages can reduce the overhead and wait time associated with reading the data

into the buffer pool.

The optimizer uses the information from the PREFETCHSIZE and EXTENTSIZE

columns in SYSCAT.TABLESPACES to estimate the amount of prefetching that

will occur for a table space.

– EXTENTSIZE can only be set when creating a table space (for example using

the CREATE TABLESPACE statement). The default extent size is 32 pages (of

4 KB each) and is usually sufficient.

– PREFETCHSIZE can be set when you create a table space and or use the

ALTER TABLESPACE statement. The default prefetch size is determined by

the value of the DFT_PREFETCH_SZ database configuration parameter. Review

the recommendations for sizing this parameter and make changes as needed

to improve the data movement.

The following shows an example of the syntax to change the characteristics of the

RESOURCE table space:

 ALTER TABLESPACE RESOURCE

 PREFETCHSIZE 64

 OVERHEAD 19.3

 TRANSFERRATE 0.9

After making any changes to your table spaces, consider rebinding your

applications and executing the RUNSTATS utility to collect the latest statistics

about the indexes to ensure that the best access plans are used.

Server options affecting federated databases

A federated system is composed of a DB2 DBMS (the federated database) and one

or more data sources. You identify the data sources to the federated database when

you issue CREATE SERVER statements. When you issue these statements, you can

include server options that refine and control aspects of federated system

operations involving DB2 and the specified data source. To change server options

later, use ALTER SERVER statements.

Note: You must install the distributed join installation option and set the database

manager parameter federated to YES before you can create servers and specify

server options.

The server option values that you specify affect query pushdown analysis, global

optimization and other aspects of federated database operations. For example, in

the CREATE SERVER statement, you can specify performance statistics as server

option values, such as the cpu_ratio option, which specifies the relative speeds of

the CPUs at the data source and the federated server. You might also set the

io_ratio option to a value that indicates the relative rates of the data I/O divides at

the source and the federated server. When you execute the CREATE SERVER

statement, this data is added to the catalog view SYSCAT.SERVEROPTIONS, and

the optimizer uses it in developing its access plan for the data source. If a statistic

changes (as might happen, for instance, if the data source CPU is upgraded), use

the ALTER SERVER statement to update SYSCAT.SERVEROPTIONS with this

change. The optimizer then uses the new information the next time it chooses an

access plan for the data source.

Chapter 19. Environmental considerations 207

208 Tuning Database Performance

Chapter 20. Catalog statistics

When the query compiler optimizes the query plans, its decisions are heavily

influenced by statistical information about the size of the database tables, indexes

and statistical views. The optimizer also uses information about the distribution of

data in specific columns of tables, indexes and statistical views if these columns are

used to select rows or join tables. The optimizer uses this information to estimate

the costs of alternative access plans for each query.

In addition to table size and data distribution information, you can also collect

statistical information about the cluster ratio of indexes, the number of leaf pages

in indexes, the number of table rows that overflow their original pages, and the

number of filled and empty pages in a table. You use this information to decide

when to reorganize tables and indexes.

When you collect statistics for a table in a partitioned database environment,

statistics are only collected for that portion of the table that resides on the database

partition where the utility is executed, or for the first database partition in the

database partition group that contains the table. When you collect statistics for a

statistical view, statistics are collected for all database partitions.

When you execute the RUNSTATS utility for a table, statistical view, or for a table

and its associated indexes, the following kinds of statistical information are stored

in the system catalog tables:

For a table and index:

v The number of pages in use

v The number of pages that contain rows

v The number of rows that overflow

v The number of rows in the table (cardinality)

v For MDC tables, the number of blocks that contain data

v For partitioned tables, the degree of data clustering within a single data partition

For each column in the table or statistical view and the first column in the index

key:

v The cardinality of the column

v The average length of the column

v The second highest value in the columns

v The second lowest value in the column

v The number of NULLs in the column

For each XML column, the following statistical information are collected. Each row

in an XML column stores an XML document. The node count of a given path or

path-value pair refers to the number of nodes reachable by the path or path-value

pair. The document count of a given path or path-value pair refers to the number

of documents that contains the given path or path-value pair.

v The number of NULL XML documents

v The number of non-NULL XML documents

v The number of distinct paths

© IBM Corporation 1993, 2007 209

v The sum of the node count of each distinct path

v The sum of the document count of each distinct path

v The k pairs of (path, node count) with the largest node count

v The k pairs of (path, document count) with the largest document count

v The k triples of (path, value, node count) with the largest node count

v The k triples of (path, value, document count) with the largest document count

v For each distinct path that leads to a text or attribute value:

– The number of distinct values this path can take

– The highest value

– The lowest value

– The number of text or attribute nodes

– The number of documents that contain the text or attribute nodes

For groups of columns that you specify:

v A timestamp based name for the column group

v The cardinality of the column group

For indexes only:

v The number of index entries (index cardinality)

v The number of leaf pages

v The number of index levels

v The degree of clustering of the table data to this index

v The degree of clustering of the index keys with regard to data partitions

v The ratio of leaf pages on disk in index key order to the number of pages in the

range of pages occupied by the index

v The number of distinct values in the first column of the index

v The number of distinct values in the first two, three, and four columns of the

index

v The number of distinct values in all columns of the index

v The number of leaf pages located on disk in index key order, with few or no

large gaps between them

v The number of pages on which all RIDs are marked deleted

v The number of RIDs marked deleted on pages on which not all RIDs are marked

deleted

If you request detailed statistics for an index, you also store finer information

about the degree of clustering of the table to the index and the page fetch

estimates for different buffer sizes.

You can also collect the following kinds statistics about tables and indexes:

v Data distribution statistics

The optimizer uses data distribution statistics to estimate efficient access plans

for tables and statistical views in which data is not evenly distributed and

columns have a significant number of duplicate values.

v Detailed index statistics

The optimizer uses detailed index statistics to determine how efficient it is to

access a table through an index.

v Sub-element statistics

210 Tuning Database Performance

The optimizer uses sub-element statistics for LIKE predicates, especially those

that search for a pattern embedded within a string, such as LIKE %disk%.

Distribution statistics are not collected:

v When the num_freqvalues and num_quantiles configuration parameters are set to

zero (0)

v When the distribution of data is known, such as when each data value is

unique.

v When the column is a data type for which statistics are never collected. These

data type are LONG, large object (LOB), or structured columns.

v For row types in sub-tables, the table level statistics NPAGES, FPAGES, and

OVERFLOW are not collected.

v If quantile distributions are requested, but there is only one non-NULL value in

the column

v For extended indexes or declared temporary tables

Note: You can perform a RUNSTATS on a declared temporary table, but the

resulting statistics are not stored in the system catalogs because declared

temporary tables do not have catalog entries. However, the statistics are stored in

memory structures that represent the catalog information for declared temporary

tables. In some cases, therefore, it might be useful to perform a RUNSTATS on

these tables.

Automatic statistics collection

The DB2 optimizer uses catalog statistics to determine the most efficient access

plan for any given query. Having out-of-date or incomplete statistics for a table or

an index might lead the optimizer to select a plan that is not optimal, slowing

down query execution. However, deciding which statistics to collect for a given

workload is complex, and keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance

feature, you can let the DB2 database manager determine whether database

statistics need to be updated. Automatic statistics collection can occur at statement

compilation time using the real-time statistics feature or can be collected by

running the RUNSTATS utility in the background. Background statistics collection

can be enabled while real-time statistics collection is disabled. Background statistics

collection must be enabled in order for real-time statistics collection to be enabled.

Starting in DB2 Version 9, background automatic statistics collection is enabled by

default when you create a new database. Starting in DB2 Version 9.5, both

background automatic statistics collection and real-time statistics are enabled by

default when you create a new database.

Understanding background and real-time statistics collection

Automatic statistics can be collected synchronously or asynchronously, by running

the RUNSTATS utility. Asynchronous collection occurs in the background. When the

real-time statistics feature is enabled, statistics can also be collected synchronously,

at statement compilation time. When real-time statistics is enabled, statistics may

also be fabricated using metadata maintained by the data and index manager. The

query optimizer determines how the statistics should be collected, based on the

needs of the query and the amount of table update activity. Table update activity is

measured through the number of updates, deletes, and inserts.

Chapter 20. System catalog statistics 211

Real-time statistics is determined by the needs of the SQL statement before it is

optimized. This provides more timely statistics collection and more accurate

statistics. Accurate statistics can result in better query execution plans and

improved performance. When real-time statistics are not enabled, asynchronous

statistics collection occurs at 2 hour intervals. This may not be frequent enough to

provide accurate statistics for some applications.

When real-time statistics are enabled, asynchronous statistics collection checking

will still occur at 2 hour intervals. Real-time statistics also initiates asynchronous

collection requests when:

v The table activity isn’t high enough to require synchronous collection, but is

high enough to require asynchronous collection.

v The synchronous statistics collection used sampling because the table was large.

v The synchronous statistics were fabricated.

v The synchronous statistics collection failed because the collection time was

exceeded.

At most, two asynchronous requests can be processed at the same time, but only

for different tables. One request will have been initiated by real-time statistics,

while the other will have been initiated by asynchronous statistics collection

checking.

The performance impact of automatic statistics collection is minimized in several

ways:

v Asynchronous statistics collection is performed using a throttled RUNSTATS

utility. Throttling controls the amount of resources consumed by the RUNSTATS

utility based on current database activity: as database activity increases, the

RUNSTATS utility runs more slowly, reducing its resource demands.

v Synchronous statistics collection is limited to 5 seconds per query. This value can

be controlled by the RTS optimization guideline. If synchronous collection

exceeds the time limit, an asynchronous collection request is submitted.

v Synchronous statistics collection does not store the statistics in the system

catalog. Instead, the statistics are stored in a statistics cache and later stored in

the system catalogs by an asynchronous operation. This avoids the overhead and

possible lock contention involved with updating the system catalogs. The

statistics in the statistics cache are available to subsequent SQL compilation

requests.

v Only one synchronous statistics collection will occur per table. Other agents

requiring synchronous statistics collection will fabricate statistics, if possible, and

continue with statement compilation. This behavior is also enforced in a DPF

environment, where agents on different database partitions may require

synchronous statistics.

v By default, statistics collected for synchronous and asynchronous operations are

basic table statistics with distribution information and detailed index statistics

using sampling. (The RUNSTATS command is issued with WITH

DISTRIBUTION and SAMPLED DETAILED INDEXES ALL options.) You can

customize the type of statistics collected by enabling statistics profiling, which

uses information about previous database activity to determine which statistics

are required by the database workload. You can also customize the type of

statistics collected for a particular table, by creating your own statistics profile

for that table.

v Only tables with missing statistics or high levels of activity (as measured

through the number of updates, deletes, and inserts) are considered for statistics

212 Tuning Database Performance

collection. But even if the table meets the statistics collection criteria,

synchronous statistics are not collected unless query optimization requires it. In

some cases, the query optimizer can choose the access plan without statistics.

v For asynchronous statistics collection checking, large tables (consisting of more

than 4000 pages) are sampled to determine whether the high table activity has

indeed changed the statistics. Statistics for these large tables are collected only if

warranted.

v For asynchronous statistics collection, the RUNSTATS utility is automatically

scheduled to run during the optimal maintenance window specified in your

maintenance policy definition. This policy also specifies the set of tables that are

within the scope of the automatic statistics collection, further minimizing

unnecessary resource consumption.

v Synchronous statistics collection and fabrication does not follow the maintenance

window specified in your maintenance policy definition. This is because

synchronous requests must occur immediately and have limited collection time.

Synchronous statistics collection and fabrication follows the policy specifying the

set of tables that are within the scope of the automatic statistics collection.

v While automated statistic collection is being performed, the affected tables are

still available for regular database activity (updates, inserts, deletes) as if

RUNSTATS command were not running on the table.

v For asynchronous statistics collection, the SYSPROC.NNSTAT stored procedure

is run using the catalog-based collection method to refresh nicknames statistics

automatically. Real-time statistics (synchronous or fabricated) are not collected

for nicknames.

Real-time synchronous statistics collection is performed for regular tables,

materialized query tables (MQTs), and Declared Global Temporary Tables (DGTTs).

Asynchronous statistics are not collected for DGTTs. This means that real-time

statistics processing will not initiate asynchronous requests for DGTTs.

Automatic statistics collection (synchronous or asynchronous) does not occur for:

v statistical views

v tables that are marked VOLATILE (tables with VOLATILE field set in

SYSCAT.TABLES)

v tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views

If statistics have been modified manually, DB2 assumes that the user is

maintaining statistics for a table. Therefore, DB2 will not maintain statistics for

the table. In order to allow DB2 to maintain statistics for a table that has had its

statistics manually updated, issue a manual RUNSTATS for the table. Migrated

tables that have had statistics updated manually will have their statistics

automatically maintained by DB2.

In a database partitioning feature (DPF) environment, statistics are collected on a

single database partition and extrapolated. If a table exists on multiple database

partitions and the table has no statistics, the DB2 database manager always collects

statistics (both synchronous and asynchronous) on the first database partition of

the database partition group. If the table has existing statistics, then statistics are

collected on the database partition where statistics were last collected. This ensures

consistent statistics, since they are always collected on the same database partition.

No real-time statistics collection activity will occur until at least 5 minutes after

database activation.

Chapter 20. System catalog statistics 213

When real-time statistics are enabled, you should schedule a defined maintenance

window. By default, the maintenance window is undefined and includes all the

time. If there is no defined time maintenance window, only synchronous statistics

collection will occur. In this case, the collected statistics are only in-memory and

typically collected using sampling, except for small tables.

Real-time statistics processing occurs for both static and dynamic SQL.

A table that has been truncated using the IMPORT command is automatically

recognized as having stale statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates

cached dynamic statements that reference tables for which statistics have been

collected. This is done so that cached dynamic statements can be re-optimized with

the latest statistics.

Real time statistics and explain processing

There is no real-time processing for a query which is just explained (not executed)

using the explain facility. The following table summarizes the behavior for the

different values of the CURRENT EXPLAIN MODE register.

 Table 51. Real-time statistics gathering behavior for CURRENT EXPLAIN MODE register

CURRENT EXPLAIN MODE Real-time statistics gathering considered

YES YES

EXPLAIN NO

NO YES

REOPT YES

RECOMMEND INDEXES NO

EVALUATE INDEXES NO

Automatic statistics collection and statistics cache

To make the synchronous collected statistics available to all queries, a statistics

cache was introduced in DB2 Version 9.5. This cache is part of the catalog cache. In

a database partitioning feature (DPF) environment, this cache resides only on the

catalog database partition. The catalog cache can store multiple entries for the

same SYSTABLES object, which will increase the size of the catalog cache size on

all database partitions. Consider increasing the CATALOGCACHE_SZ database

configuration parameter when real-time statistics is enabled.

Starting with DB2 Version 9, the Configuration Advisor is used to determine the

initial database configuration for new databases. The Configuration Advisor will

always recommend that the AUTO_STMT_STATS configuration parameter is set

to ON.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical

profile that is in effect for a table, with the following exceptions:

214 Tuning Database Performance

v To minimize the overhead of synchronous statistics collection, the DB2 database

management system may collect statistics using sampling. In this case, the

sampling rate and method may be different from those specified in the statistical

profile.

v Synchronous statistics collection may choose to fabricate statistics. It may not be

possible to fabricate all statistics specified in the statistical profile. For example,

column statistics such as COLCARD, HIGH2KEY and LOW2KEY cannot be

fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics specified in the

statistical profile, an asynchronous collection request will be submitted.

Although real-time statistics collection is designed to minimize statistics collection

overhead, try it in a test environment first, to ensure there is no negative

performance impact, which might be possible for some OLTP scenarios especially if

there is an upper bound of how long a query should run.

Enabling automatic statistics collection

Having accurate and complete database statistics is critical to efficient data access

and optimal workload performance. Use the automatic statistics collection feature

of the automated table maintenance functionality to update and maintain relevant

database statistics. You can optionally enhance this functionality in environments

where a single database partition operates on a single processor (serial

environment) by collecting query data and generating statistics profiles that help

DB2 automatically collect the exact set of statistics that is required by your

workload. This option is not available in MPP environments, certain federated

environments, or environments in which intra-partition parallelism is enabled.

To enable automatic statistics collection:

1. Configure your database instance by using the Configure Automatic

Maintenance wizard or the command line:

v To use the Configure Automatic Maintenance wizard:

a. Open the wizard either from the Control Center by right-clicking a

database object or from the Health Center by right-clicking a database

instance.

b. Select Configure Automatic Maintenance from the pop-up window.

Within this wizard, you can enable automatic statistics collection, specify

the tables from which you want to automatically collect statistics, and

specify a maintenance window for the execution of the RUNSTATS utility.
v To use the command line, set each of the following configuration parameters

to ON:

– AUTO_MAINT

– AUTO_TBL_MAINT

– AUTO_RUNSTATS

2. Optional: To enable the automatic statistics profile generation, set the following

two configuration parameters to ON:

v AUTO_STATS_PROF

v AUTO_PROF_UPD

3. Optional: To enable real-time statistics gathering, set the AUTO_STMT_STATS

configuration parameter to ON. If this configuration parameter is set to ON,

table statistics are automatically compiled at statement compilation time,

whenever they are needed to optimize a query.

Chapter 20. System catalog statistics 215

Storage used by automatic statistics collection and profiling

The automatic statistics collection and reorganization features store working data

in tables in your database. These tables are created in the SYSTOOLSPACE table

space. The SYSTOOLSPACE table space is created automatically with default

options when the database is activated. Storage requirements for these tables are

proportional to the number of tables in the database and should be calculated as

approximately 1 KB per table. If this is a significant size for your database, you

may want to drop and re-create the table space yourself and allocate storage

appropriately. The automatic maintenance and health monitor tables in the table

space are automatically re-created. Any history captured in those tables is lost

when the table space is dropped.

Automatic statistics collection activity logging

In order to understand what statistics collection activities have occurred for a

database, a statistics log has been introduced in DB2 Version 9.5. The statistics log

records all statistics activities for a database, including automatic and manual

statistics collection.

The default name of the statistics log is db2optstats.number.log. It resides in the

$DIAGPATH/events directory. The statistics log is a rotating log. Statistics log

behavior is controlled by the DB2_OPTSTATS_LOG registry variable.

The contents of the statistics log can be viewed directly or they can be queried

using the SYSPROC.PD_GET_DIAG_HIST table function.

The SYSPROC.PD_GET_DIAG_HIST table function returns a number of columns

containing standard information about any logged event, such as the timestamp,

DB2 instance name, database name, process ID, process name, and thread ID. The

log also contains generic columns for use by different logging facilities. The

following table describes how these generic columns are used by the statistics log.

216 Tuning Database Performance

Table 52. Generic columns in the statistics log file

Column name Data type Description

OBJTYPE VARCHAR(64) The type of object the event applies to. For statistics

logging, this is the type of statistics to be collected. It

can also refer to a statistics collection background

process when it is started or stopped. It can also refer to

activities performed by automatics statistics collections

such as a sampling test, initial sampling and table

evaluation activity.

Possible values for statistics collection actions are:

TABLE STATS

Table statistics will be collected.

INDEX STATS

Index statistics are to be collected.

TABLE AND INDEX STATS

Both table and index statistics will be collected.

Possible values for automatic statistics operations are:

EVALUATION

The automatic statistics background collection

process has begun an evaluation phase. During

the evaluation phase, tables will be checked to

determine if they need statistics and then

statistics will be collected, if necessary.

INITIAL SAMPLING

Statistics are being collected for a table using

sampling. The sampled statistics are stored in

the system catalogs. This allows automatic

statistics collection to quickly collect statistics

for a table with no statistics. Subsequent

statistics collections will collect unsampled

statistics. Initial sampling is performed during

the evaluation phase of automatic statistics

collection.

SAMPLING TEST

Statistics are being collected for a table using

sampling. The sampled statistics are not stored

in the system catalogs. The sampled statistics

will be compared to the current catalog

statistics to determine if full statistics should be

gathered for this table and when they should

be gathered. The sampling test is performed

during the evaluation phase of automatic

statistics collection.

STATS DAEMON

The statistics daemon is a background process

used to process requests submitted by real-time

statistics processing. This object type is logged

when the background process is started and

stopped.

OBJNAME VARCHAR(255) The name of the object the event applies to, if available.

For the statistics log, this contains the table or index

name. If the OBJTYPE is STATS DAEMON or

EVALUATION, the OBJNAME is the database name and

the OBJNAME_QUALIFIER is NULL.

Chapter 20. System catalog statistics 217

Table 52. Generic columns in the statistics log file (continued)

Column name Data type Description

OBJNAME_QUALIFIER VARCHAR(255) For the statistics log, this contains the table or index

schema.

EVENTTYPE VARCHAR(24) The event type is the action or verb associated with this

event. Possible values for statistics logging are:

COLLECT

This action is logged for a statistics collection

operation.

START This action is logged when the real-time

statistics background process (OBJTYPE =

STATS DAEMON) or an automatic statistics

collection evaluation phase (OBJTYPE =

EVALUATION) starts.

STOP This action is logged when the real-time

statistics background process (OBJTYPE =

STATS DAEMON) or an automatic statistics

collection evaluation phase (OBJTYPE =

EVALUATION stops.

ACCESS

An attempt has been made to access a table for

statistics collection purposes. This event type is

used to log an unsuccessful access when the

object is unavailable.

FIRST_EVENTQUALIFIERTYPE VARCHAR(64) The type of the first event qualifier. Event qualifiers are

used to describe what was affected by the event. For the

statistics log, the first event qualifier is the timestamp

when the event occurred.

For the first event qualifier type, the value is AT.

FIRST_EVENTQUALIFIER CLOB(16k) The first qualifier for the event. For statistics logging,

the first event qualifier is the timestamp when the

statistics event occurred. The timestamp of the statistics

event may be different than the timestamp of the log

record as represented by the TIMESTAMP column.

SECOND_EVENTQUALIFIERTYPE VARCHAR(64) The type of the second event qualifier. For statistics

logging, the value can be BY or NULL. This field is not

used for other event types.

218 Tuning Database Performance

Table 52. Generic columns in the statistics log file (continued)

Column name Data type Description

SECOND_EVENTQUALIFIER CLOB(16k) The second qualifier for the event.

For statistics logging, this represents how statistics were

collected for COLLECT event types. Possible values are:

User Statistics collection was performed by a DB2

user using the RUNSTATS, LOAD, CREATE

INDEX or REDISTRIBUTE commands.

Synchronous

Statistics collection was performed at SQL

statement compilation time by DB2. The

statistics are stored in the statistics cache but

not the system catalogs.

Synchronous sampled

Statistics collection was performed using

sampling at SQL statement compilation time by

DB2. The statistics are stored in the statistics

cache but not the system catalogs.

Fabricate

Statistics were fabricated at SQL statement

compilation time using information maintained

by the data and index manager. The statistics

are stored in the statistics cache but not the

system catalogs.

Fabricate partial

Only some statistics were fabricated at SQL

statement compilation time using information

maintained by the data and index manager. In

particular, only the HIGH2KEY and LOW2KEY

for certain columns were fabricated. The

statistics are stored in the statistics cache but

not the system catalogs.

Asynchronous

Statistics were collected by a background

process by DB2 and have been stored in the

system catalogs.
This field is not used for other event types.

THIRD_EVENTQUALIFIERTYPE VARCHAR(64) The type of the third event qualifier. For statistics

logging, the value can be DUE TO or NULL.

Chapter 20. System catalog statistics 219

Table 52. Generic columns in the statistics log file (continued)

Column name Data type Description

THIRD_EVENTQUALIFIER CLOB(16k) The third qualifier for the event.

For statistics logging, this represents the reason why a

statistics activity could not be completed.

Possible values are:

Timeout

Synchronous statistics collection exceeded the

time budget.

Error The statistics activity failed due to an error.

RUNSTATS error

Synchronous statistics collection failed due to a

RUNSTATS error.

 For some errors, SQL statement compilation

may have completed successfully even though

statistics could not be collected. For example, if

there was insufficient memory to collect

statistics, SQL statement compilation will

continue.

Object unavailable

Statistics could not be collected for the database

object because it could not be accessed. Some

possible reasons include:

v the object is locked in super exclusive (Z)

mode

v the table space in which the object resides is

unavailable

v the table indexes need to be recreated

Conflict

Synchronous statistics collection was not

performed because another application was

already collecting synchronous statistics.

Check the FULLREC column or the db2diag.log for the

error details.

EVENTSTATE VARCHAR(255) State of the object or action as a result of the event.

For statistics logging, this indicates the state of the

statistics operation.

Possible values are:

v start

v success

v failure

Example

In this example, the query returns statistics log records for events up to one year

prior to the current timestamp, by invoking PD_GET_DIAG_HIST.

SELECT

pid,

tid,

220 Tuning Database Performance

substr(eventtype, 1,10),

substr(objtype,1,30) as objtype,

substr(objname_qualifier,1,20) as objschema,

substr(objname,1,10) as objname,

substr(first_eventqualifier,1,26) as event1,

substr(second_eventqualifiertype,1,2) as event2_type,

substr(second_eventqualifier,1,20) event2,

substr(third_eventqualifiertype,1,6) event3_type,

substr(third_eventqualifier,1,15) event3,

substr(eventstate,1,20) as eventstate

FROM

TABLE(SYSPROC.PD_GET_DIAG_HIST

 (’optstats’, ’EX’, ’NONE’,

 CURRENT_TIMESTAMP - 1 year, CAST(NULL AS TIMESTAMP))) as sl

order by timestamp(varchar(substr(first_eventqualifier,1,26),26))

;

The results are ordered by the timestamp stored in the FIRST_EVENTQUALIFIER

column, which represents the time of the statistics event.

PID TID EVENTTYPE OBJTYPE OBJSCHEMA OBJNAME EVENT1 EVENT2_TYPE EVENT2 EVENT3_TYPE EVENT3 EVENTSTATE

----- -------------------- ---------- ------------------------------ -------------------- ---------- -------------------------- ----------- -------------------- ----------- --------------- --------------------

28399 1082145120 START STATS DAEMON - PROD_DB 2007-07-09-18.37.40.398905 - - - - success

28389 183182027104 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-09-18.37.43.261222 BY Synchronous - - start

28389 183182027104 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-09-18.37.43.407447 BY Synchronous - - success

28399 1082145120 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-09-18.37.43.471614 BY Asynchronous - - start

28399 1082145120 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-09-18.37.43.524496 BY Asynchronous - - success

28399 1082145120 STOP STATS DAEMON - PROD_DB 2007-07-09-18.37.43.526212 - - - - success

28389 183278496096 COLLECT TABLE STATS DB2USER ORDER_LINE 2007-07-09-18.37.48.676524 BY Synchronous sampled - - start

28389 183278496096 COLLECT TABLE STATS DB2USER ORDER_LINE 2007-07-09-18.37.53.677546 BY Synchronous sampled DUE TO Timeout failure

28389 1772561034 START EVALUATION - PROD_DB 2007-07-10-12.36.11.092739 - - - - success

28389 8231991291 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-10-12.36.30.737603 BY Asynchronous - - start

28389 8231991291 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-10-12.36.34.029756 BY Asynchronous - - success

28389 1772561034 STOP EVALUATION - PROD_DB 2007-07-10-12.36.39.685188 - - - - success

Improving query performance for large statistics logs

If the statistics log files are large, you can improve query performance by copying

the log records into a table, creating indexes, and then gathering statistics.

Procedure

1. Create a table to hold the log records and desired columns.

create table db2user.stats_log

(pid bigint,

 tid bigint,

 timestamp timestamp,

 dbname varchar(128),

 retcode integer,

 eventtype varchar(24),

 objtype varchar(30),

 objschema varchar(20),

 objname varchar(30),

 event1_type varchar(20),

 event1 timestamp,

 event2_type varchar(20),

 event2 varchar(40),

 event3_type varchar(20),

 event3 varchar(40),

 eventstate varchar(20)

);

2. Declare a cursor for a query over SYSPROC.PD_GET_DIAG_HIST.

declare c1 cursor for

SELECT

pid,

tid,

timestamp,

dbname,

retcode,

eventtype,

substr(objtype,1,30) as objtype,

substr(objname_qualifier,1,20) as objschema,

substr(objname,1,30) as objname,

Chapter 20. System catalog statistics 221

substr(first_eventqualifiertype,1,20),

substr(first_eventqualifier,1,26),

substr(second_eventqualifiertype,1,20),

substr(second_eventqualifier,1,40),

substr(third_eventqualifiertype,1,20),

substr(third_eventqualifier,1,40),

substr(eventstate,1,20)

FROM

TABLE(SYSPROC.PD_GET_DIAG_HIST

 (’optstats’, ’EX’, ’NONE’,

 CURRENT_TIMESTAMP - 1 year, CAST(NULL AS TIMESTAMP))) as sl

;

3. Load the statistics log records into the table using the LOAD command and the

load from cursor capability.

load from c1 of cursor replace into db2user.stats_log;

4. Create indexes and gather statistics on the table.

 create index sl_ix1 on db2user.stats_log(eventtype, event1);

 create index sl_ix2 on db2user.stats_log(objtype, event1);

 create index sl_ix3 on db2user.stats_log(objname);

 runstats on table db2user.stats_log with distribution and sampled detailed indexes all;

Guidelines for collecting and updating statistics

The RUNSTATS command collects statistics on tables, indexes and statistical views

to provide the optimizer with accurate information for access plan selection.

Use the RUNSTATS utility to collect statistics in the following situations:

v When data has been loaded into a table and the appropriate indexes have been

created.

v When you create a new index on a table. You need execute RUNSTATS for only

the new index if the table has not been modified since you last ran RUNSTATS

on it.

v When a table has been reorganized with the REORG utility.

v When the table and its indexes have been extensively updated, by data

modifications, deletions, and insertions. (“Extensive” in this case might mean

that 10 to 20 percent of the table and index data has been affected.)

v Before binding application programs whose performance is critical

v When you want to compare current and previous statistics. If you update

statistics at regular intervals you can discover performance problems early.

v When the prefetch quantity is changed.

v When you have used the REDISTRIBUTE DATABASE PARTITION GROUP

utility.

Note: In previous versions of DB2, this command used the NODEGROUP

keyword instead of the DATABASE PARTITION GROUP keywords.

v Use the RUNSTATS utility to collect statistics on XML columns. When

RUNSTATS is used to collect statistics for XML columns only, existing statistics

for non-XML columns that have been collected by LOAD or a previous

execution of the RUNSTATS utility are retained. In the case where statistics on

some XML columns have been collected previously, the previously collected

statistics for an XML column will either be dropped if no statistics on that XML

column are collected by the current command, or be replaced if statistics on that

XML column are collected by the current command.

222 Tuning Database Performance

To improve RUNSTATS performance and save disk space used to store statistics,

consider specifying only the columns for which data distribution statistics should

be collected.

Ideally, you should rebind application programs after running statistics. The query

optimizer might choose a different access plan if it has new statistics.

If you do not have enough time to collect all of the statistics at one time, you

might run RUNSTATS to update statistics on only a few tables, indexes, or

statistical views at a time, rotating through the set of objects. If inconsistencies

occur as a result of activity on the table between the periods where you run

RUNSTATS with a selective partial update, then a warning message (SQL0437W,

reason code 6) is issued during query optimization. For example, this might occur

if you execute RUNSTATS to gather table distribution statistics and, after some

table activity, execute RUNSTATS again to gather index statistics on that table. If

inconsistencies occur as a result of the activity on the table and these

inconsistencies are detected during query optimization, the warning message is

issued. When this happens, you should run RUNSTATS again to update the

distribution statistics.

To ensure that the index statistics are synchronized with the table, execute

RUNSTATS to collect both table and index statistics at the same time. Index

statistics retain most of the table and column statistics collected from the last run

of RUNSTATS. If the table has been modified extensively since the last time its

table statistics were gathered, gathering only the index statistics for that table will

leave the two sets of statistics out of synchronization on all nodes.

Invoking RUNSTATS on a production system might negatively impact the

performance of the production workload. The RUNSTATS utility now supports a

throttling option which can be used to limit the performance impact of RUNSTATS

execution during high levels of database activity.

When you collect statistics for a table in a partitioned database environment,

RUNSTATS only collects statistics for tables on the database partition from which

you execute it. The RUNSTATS results from this database partition are extrapolated

to the other database partitions. If the database partition from which you execute

RUNSTATS does not contain a portion of a particular table, the request is sent to

the first database partition in the database partition group that contains a portion

of the table.

When you collect statistics for a statistical view, statistics are collected for all

database partitions containing base tables referenced by the view.

Consider these tips to improve the efficiency of RUNSTATS and the usefulness of

the collected statistics:

v Collect statistics only for the columns used to join tables or in the WHERE,

GROUP BY, and similar clauses of queries. If these columns are indexed, you

can specify the columns with the ONLY ON KEY COLUMNS clause for the

RUNSTATS command.

v Customize the values for num_freqvalues and num_quantiles for specific tables and

specific columns in tables.

v Collect DETAILED index statistics with the SAMPLE DETAILED clause to

reduce the amount of background calculation performed for detailed index

statistics. The SAMPLE DETAILED clause reduces the time required to collect

statistics, and produces adequate precision in most cases.

Chapter 20. System catalog statistics 223

v When you create an index for a populated table, add the COLLECT STATISTICS

clause to create statistics as the index is created.

v When significant numbers of table rows are added or removed, or if data in

columns for which you collect statistics is updated, execute RUNSTATS again to

update the statistics.

v Since RUNSTATS only collects statistics on a single database partition, the

statistics will be less accurate if the data is not distributed consistently across all

database partitions. If you suspect that there is skewed data distribution, you

might want to redistribute the data across database partitions using the

REDISTRIBUTE DATABASE PARTITION GROUP command before executing

RUNSTATS.

Collecting catalog statistics

You collect catalog statistics on tables, indexes and statistical views to provide

information that the optimizer uses to choose the best access plans for queries.

For tables and indexes, you must have one of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table

v LOAD authority

For statistical views, you must have one of the following:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table

In addition, you must have privileges to access rows from the statistical view.

Specifically, for each table, view or nickname referenced in the statistical view

definition, you must have one of the following privileges:

v SYSADM or DBADM

v CONTROL

v SELECT

To collect catalog statistics:

1. Connect to the database that contains the tables, indexes or statistical views for

which you want to collect statistical information.

2. From the DB2 command line, execute the RUNSTATS command with

appropriate options. These options allow you to tailor the statistics that are

collected for the queries that run against the tables, indexes or statistical views.

3. When RUNSTATS is complete, issue a COMMIT statement to release locks.

4. Rebind packages that access tables, indexes or statistical views for which you

have regenerated statistical information.

To use a graphical user interface to specify options and collect statistics, use the

Control Center.

224 Tuning Database Performance

Note:

1. Because the RUNSTATS utility does not support use of nicknames, you update

statistics differently for federated database queries. If queries access a federated

database, execute RUNSTATS for the tables in all databases, then drop and

recreate the nicknames that access remote tables to make the new statistics

available to the optimizer.

2.

When you collect statistics for a table in a partitioned database environment,

RUNSTATS only collects statistics for tables on the database partition from

which you execute it. The RUNSTATS results from this database partition are

extrapolated to the other database partitions. If the database partition from

which you execute RUNSTATS does not contain a portion of a particular table,

the request is sent to the first database partition in the database partition group

that contains a portion of the table.

When you collect statistics for a statistical view, statistics are collected for all

database partitions containing base tables referenced by the view.

Collecting distribution statistics for specific columns

For efficiency both of RUNSTATS and subsequent query-plan analysis, you might

collect distribution statistics on only the columns that queries use in WHERE,

GROUP BY, and similar clauses. You might also collect cardinality statistics on

combined groups of columns. The optimizer uses such information to detect

column correlation when it estimates selectivity for queries that reference the

columns in the group.

In the following steps, the database is assumed to be sales and to contain the table

customers, with indexes custidx1 and custidx2.

You must connect to the database that contains the tables and indexes and have

one of the following authorization levels:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table

Note: RUNSTATS only collects statistics for tables on the database partition from

which you execute it. The RUNSTATS results from this database partition are

extrapolated to the other database partitions. If the database partition from which

you execute RUNSTATS does not contain a portion of a table, the request is sent to

the first database partition in the database partition group that holds that portion

of the table.

To collect statistics on specific columns:

1. Connect to the sales database.

2. Execute one of the following commands at the DB2 command line, depending

on your requirements:

v To collect distribution statistics on columns zip and ytdtotal:

RUNSTATS ON TABLE sales.customers

 WITH DISTRIBUTION ON COLUMNS (zip, ytdtotal)

Chapter 20. System catalog statistics 225

v To collect distribution statistics on the same columns, but adjust the

distribution defaults:

RUNSTATS ON TABLE sales.customers

 WITH DISTRIBUTION ON

 COLUMNS (zip, ytdtotal NUM_FREQVALUES 50 NUM_QUANTILES 75)

v To collect distribution statistics on the columns indexed in custidx1 and

custidx2:

RUNSTATS ON TABLE sales.customer

 ON KEY COLUMNS

v To collect column statistics on the table only for specific columns zip and

ytdtotal and a column group that includes region and territory:

RUNSTATS ON TABLE sales.customers

 ON COLUMNS (zip, (region, territory), ytdtotal)

v Suppose statistics for non-XML columns have been collected using the LOAD

command with the STATISTICS option. To complement the non-XML

statistics with the statistics for the XML column miscinfo:

RUNSTATS ON TABLE sales.customers

 ON COLUMNS (miscinfo)

v To collect column statistics on the table for non-XML columns only (the

EXCLUDING XML COLUMNS option takes precedence over all other

clauses that may specify XML columns):

RUNSTATS ON TABLE sales.customers

 EXCLUDING XML COLUMNS

You can also use the Control Center to collect distribution statistics.

Collecting index statistics

Collect index statistics to allow the optimizer to evaluate whether an index should

be used to resolve a query.

In the following steps, the database is assumed be sales and to contain the table

customers, with indexes custidx1 and custidx2.

You must connect to the database that contains the tables and indexes and have

one of the following authorization levels:

v sysadm

v sysctrl

v sysmaint

v dbadm

v CONTROL privilege on the table

Executing RUNSTATS with the SAMPLED DETAILED option requires 2MB of the

statistics heap. Allocate an additional 488 4K pages to the stat_heap_sz database

configuration parameter setting for this additional memory requirement. If the

heap appears to be too small, RUNSTATS returns an error before it attempts to

collect statistics.

To collect detailed statistics for an index:

1. Connect to the sales database.

2. Execute one of the following commands at the DB2 command line, depending

on your requirements:

v To create detailed statistics on both custidx1 and custidx2:

226 Tuning Database Performance

RUNSTATS ON TABLE sales.customers AND DETAILED INDEXES ALL

v To create detailed statistics on both indexes, but use sampling instead of

performing detailed calculations for each index entry:

RUNSTATS ON TABLE sales.customers AND SAMPLED DETAILED INDEXES ALL

v To create detailed sampled statistics on indexes as well as distribution

statistics for the table so that index and table statistics are consistent:

RUNSTATS ON TABLE sales.customers

 WITH DISTRIBUTION ON KEY COLUMNS

 AND SAMPLED DETAILED INDEXES ALL

You can also use the Control Center to collect index and table statistics.

Collecting statistics on a sample of the table data

Table statistics are used by the query optimizer in selecting the best access plan for

any given query, so it is important that statistics remain current to accurately

reflect the state of a table at any given time. As the activity against a table

increases, so should the frequency of statistics collection. With the increasing size

of databases, it is becoming more important to find efficient ways to collect

statistics. Random sampling of table data on which to collect statistics can improve

RUNSTATS performance. For I/O bound or CPU bound systems, the performance

benefits can be enormous. The smaller the sample, the faster RUNSTATS

completes.

Starting in Version 8.2, the RUNSTATS command provides the option to collect

statistics on a sample of the data in the table by using the TABLESAMPLE option.

This feature can increase the efficiency of statistics collection since sampling uses

only a subset of the data. At the same time, the sampling methods ensure a high

level of accuracy.

There are two ways to specify how the sample is to be collected. The BERNOULLI

method samples the data at the level of the row. During a full table scan of the

data pages each row is considered in turn and is selected based on probability P as

specified by the numeric parameter. It is only on these selected rows that statistics

will be collected. In a similar manner, the SYSTEM method samples the data at the

page-level. Thus, each page is selected on probability P and rejected with

probability 1-P/100.

Performance of page-level sampling is excellent because only one I/O is required

for each selected page. With row-level sampling, I/O costs are not reduced since

every table page is retrieved in a full table scan. However, row-level sampling

provides significant improvements, even if the amount of I/O is not reduced,

because gathering statistics is CPU intensive.

Row-level sampling will provide a better sample than page-level sampling in

situations where the data values are highly clustered. Compared to page sampling,

the row-level sample set will likely be a better reflection of the data since it will

include P percent rows from each data page. In page-level sampling all the rows of

P percent pages will be in the sample set. If the rows are distributed randomly

over the table, then the accuracy of row sampled statistics will be similar to the

accuracy of page sampled statistics.

Each sample is randomly generated across RUNSTATS commands unless the

REPEATABLE option is used. With the REPEATABLE clause, the same sample will

be generated as in the last execution of the RUNSTATS command with the

Chapter 20. System catalog statistics 227

TABLESAMPLE option. Users may find this beneficial in cases where the

generation of consistent statistics is desired for tables of constant data.

Collecting statistics using a statistics profile

The RUNSTATS utility provides an option to register and use a statistics profile,

which is a set of options that specify which statistics are to be collected on a

particular table, for example, table statistics, index statistics, or distribution

statistics.

This feature simplifies statistics collection by allowing you to store the options that

you specify when you issue the RUNSTATS command so that you can collect the

same statistics repeatedly on a table without having to re-type the command

options.

You can register or update a statistics profile with or without actually collecting

statistics. For example, to register a profile and collect statistics at the same time,

issue the RUNSTATS command with the SET PROFILE option. To register a profile

only, without actually collecting statistics, issue the RUNSTATS command with the

SET PROFILE ONLY option.

To collect statistics using a statistics profile that you have already registered, issue

the RUNSTATS command, specifying only the name of the table and the USE

PROFILE option.

To see what options are currently specified in the statistics profile for a particular

table, you can query the catalog tables with the following select statement, where

tablename is the name of the table that you want the profile for:

SELECT STATISTICS_PROFILE FROM SYSIBM.SYSTABLES WHERE NAME = tablename

Automatic statistics profiling

Statistics profiles can also be generated automatically by the DB2 automatic

statistics profiling feature. When this feature is enabled, information about

database activity is collected and stored it in a query feedback warehouse. Based

on this data, a statistics profile is generated. Enabling this feature can alleviate the

problem of uncertainty about which statistics are relevant to a particular workload

and permits the collection of the minimal set of statistics to provide optimal

database workload performance.

This feature can be used with the automatic statistics collection feature, which

automatically schedules statistics maintenance based on the information contained

within the automatically generated statistics profile.

To enable this feature, you need to have already enabled automatic table

maintenance by setting the appropriate configuration parameters . The

AUTO_STATS_PROF configuration parameter activates the collection of query

feedback data, and the AUTO_PROF_UPD configuration parameter activates the

generation of a statistics profile for use by automatic statistics collection.

Note: Automatic statistics profile generation can only be activated in DB2 serial

mode, and is blocked for queries in certain federated environments, multi-partition

MPP environments, and where intra-partition parallelism is enabled.

Statistics profile generation is best suited to environments running large complex

queries that apply many predicates, often having correlations in the data of the

228 Tuning Database Performance

predicate columns, and joining and grouping over several tables. It is less suitable

to environments with a primarily transactional workload.

There are a few different ways to use this feature:

v In a test environment. Set AUTO_STATS_PROF and AUTO_PROF_UPD to ON in

test systems, where the performance overhead of runtime monitoring can be

easily tolerated. When the test system uses realistic data and queries, this will

allow for learning the proper correlations and settings of statistics parameters for

RUNSTATS, which then will be stored in the statistics profiles. These profiles can

then be transferred to the production system, where queries can benefit without

incurring any monitoring overhead.

v To address performance issues for specific queries in a production environment.

If performance problems for a particular set of queries is detected and can be

attributed to faulty statistics or correlations, you can turn AUTO_STATS_PROF

on and execute the target workload for a period of time. Automatic statistics

profiling will analyze the query feedback and create recommendations in the

SYSTOOLS.OPT_FEEDBACK_RANKING* tables. You can inspect these

recommendations and refine the statistics profiles manually based on the

recommendations. To have DB2 automatically update the statistics profiles based

on these recommendations, turn AUTO_PROF_UPD on when you turn

AUTO_STATS_PROF on.

Note: There is some performance overhead associated with monitoring the queries

and storing the query feedback data in the feedback warehouse.

Creating the query feedback warehouse

The feedback warehouse consists of five tables in the SYSTOOLS schema that store

information about the predicates encountered during query execution and

recommendations for statistics collection. The five tables are

OPT_FEEDBACK_QUERY, OPT_FEEDBACK_PREDICATE,

OPT_FEEDBACK_PREDICATE_COLUMN, OPT_FEEDBACK_RANKING, and

OPT_FEEDBACK_RANKING_COLUMN.

To use automatic statistics profiling, you need to first create the query feedback

warehouse using the SYSINSTALLOBJECTS stored procedure. This stored

procedure is the common stored procedure for creating and dropping objects in the

SYSTOOLS schema.

Invoke the SYSINSTALLOBJECTS stored procedure as follows:

call SYSINSTALLOBJECTS (toolname, action, tablespacename, schemaname)

where:

toolname

Specifies the name of the tool whose objects are to be created or dropped.

In this case ’ASP’ or ’AUTO STATS PROFILING’.

action Specifies the action to be taken: ’C’ for create, ’D’ for drop.

tablespacename

The name of the table space in which the the feedback warehouse tables

will be created. This input parameter is optional. If it is not specified, the

default user space will be used.

Chapter 20. System catalog statistics 229

schemaname

The name of the schema with which the objects will be created or dropped.

This parameter is currently not used.

For example, to create the feedback warehouse in table space ″A″ enter: call

SYSINSTALLOBJECTS (’ASP’, ’C’, ’A’, ’’)

Catalog statistics tables

The following tables provide information about the system catalog tables that

contain catalog statistics and the RUNSTATS options that collect specific statistics.

 Table 53. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

Statistic Description RUNSTATS Option

Table Indexes

FPAGES number of pages being

used by a table.

Yes Yes

NPAGES number of pages containing

rows

Yes Yes

OVERFLOW number of rows that

overflow

Yes No

CARD number of rows in table

(cardinality)

Yes Yes (Note 1)

ACTIVE_BLOCKS for MDC tables, the total

number of occupied blocks

Yes No

Note:

1. If the table has no indexes defined and you request statistics for indexes, no new CARD statistics are updated.

The previous CARD statistics are retained.

 Table 54. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

Statistic Description RUNSTATS Option

Table Indexes

COLCARD column cardinality Yes Yes (Note 1)

AVGCOLLEN average length of column Yes Yes (Note 1)

HIGH2KEY second highest value in

column

Yes Yes (Note 1)

LOW2KEY second lowest value in

column

Yes Yes (Note 1)

NUMNULLS the number of NULLs in a

column

Yes Yes (Note 1)

SUB_COUNT the average number of

subelements

Yes No (Note 2)

SUB_DELIM_LENGTH average length of each

delimiter separating each

subelement

Yes No (Note 2)

Note:

1. Column statistics are gathered for the first column in the index key.

2. These statistics provide information about data in columns that contain a series of subfields or subelements that

are delimited by blanks. The SUB_COUNT and SUB_DELIM_LENGTH statistics are collected only for

single-byte character set string columns of type CHAR, VARCHAR, GRAPHIC, and VARGRAPHIC.

230 Tuning Database Performance

Table 55. Multicolumn Statistics (SYSCAT.COLGROUPS and SYSSTAT.COLGROUPS)

Statistic Description RUNSTATS Option

Table Indexes

COLGROUPCARD cardinality of the column

group

Yes No

Note: The multicolumn distribution statistics listed in the following two tables are

not collected by RUNSTATS. You cannot update them manually.

 Table 56. Multicolumn Distribution Statistics (SYSCAT.COLGROUPDIST and SYSSTAT.COLGROUPDIST)

Statistic Description RUNSTATS Option

Table Indexes

TYPE F = frequency value

Q = quantile value

Yes No

ORDINAL Ordinal number of the

column in the group

Yes No

SEQNO Sequence number n that

represents the nth TYPE

value

Yes No

COLVALUE the data value as a

character literal or a null

value

Yes No

 Table 57. Multicolumn Distribution Statistics 2 (SYSCAT.COLGROUPDISTCOUNTS and

SYSSTAT.COLGROUPDISTCOUNTS)

Statistic Description RUNSTATS Option

Table Indexes

TYPE F = frequency value

Q = quantile value

Yes No

SEQNO Sequence number n that

represents the nth TYPE

value

Yes No

VALCOUNT If TYPE = F, VALCOUNT is

the number of occurrences

of COLVALUEs for the

column group identified by

this SEQNO.

If TYPE = Q, VALCOUNT

is the number of rows

whose value is less than or

equal to COLVALUEs for

the column group with this

SEQNO.

Yes No

Chapter 20. System catalog statistics 231

Table 57. Multicolumn Distribution Statistics 2 (SYSCAT.COLGROUPDISTCOUNTS and

SYSSTAT.COLGROUPDISTCOUNTS) (continued)

Statistic Description RUNSTATS Option

Table Indexes

DISTCOUNT If TYPE = Q, this column

contains the number of

distinct values that are less

than or equal to

COLVALUEs for the

column group with this

SEQNO. Null if

unavailable.

Yes No

 Table 58. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option

Table Indexes

NLEAF number of index leaf pages No Yes

NLEVELS number of index levels No Yes

CLUSTERRATIO degree of clustering of table data No Yes (Note 2)

CLUSTERFACTOR finer degree of clustering No Detailed (Notes

1,2)

DENSITY Ratio (percentage) of

SEQUENTIAL_PAGES to number

of pages in the range of pages

occupied by the index (Note 3)

No Yes

FIRSTKEYCARD number of distinct values in first

column of the index

No Yes

FIRST2KEYCARD number of distinct values in first

two columns of the index

No Yes

FIRST3KEYCARD number of distinct values in first

three columns of the index

No Yes

FIRST4KEYCARD number of distinct values in first

four columns of the index

No Yes

FULLKEYCARD number of distinct values in all

columns of the index, excluding

any key value in a type-2 index

for which all RIDs are marked

deleted

No Yes

PAGE_FETCH_PAIRS page fetch estimates for different

buffer sizes

No Detailed (Notes

1,2)

AVGPARTITION_CLUSTERRATIO Degree of data clustering within a

single data partition

No Yes (Note 2)

AVGPARTITION_CLUSTERFACTOR Finer measurement of degree of

clustering, within a single data

partition.

No Detailed (Notes

1,2)

AVGPARTITION_PAGE_FETCH_PAIRS page fetch estimates for different

buffer sizes generated based on a

single data partition

No Detailed (Notes

1,2)

DATAPARTITION_CLUSTERFACTOR Number of data partition

references during an index scan

No (Note 6) Yes (Note 6)

232 Tuning Database Performance

Table 58. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

SEQUENTIAL_PAGES number of leaf pages located on

disk in index key order, with few

or no large gaps between them

No Yes

AVERAGE_SEQUENCE_PAGES average number of index pages

accessible in sequence. This is the

number of index pages that the

prefetchers can detect as being in

sequence.

No Yes

AVERAGE_RANDOM_PAGES average number of random index

pages between sequential page

accesses

No Yes

AVERAGE_SEQUENCE_GAP gap between sequences No Yes

AVERAGE_SEQUENCE_FETCH_PAGES average number of table pages

accessible in sequence. This is the

number of table pages that the

prefetchers can detect as being in

sequence when they fetch table

rows using the index.

No Yes (Note 4)

AVERAGE_RANDOM_FETCH_PAGES average number of random table

pages between sequential page

accesses when fetching table rows

using the index.

No Yes (Note 4)

AVERAGE_SEQUENCE_FETCH_GAP gap between sequences when

fetching table rows using the

index.

No Yes (Note 4)

NUMRIDS the number of record identifiers

(RIDs) in the index, including

deleted RIDs in type-2 indexes.

No Yes

NUMRIDS_DELETED the total number of RIDs marked

deleted in the index, except RIDs

on leaf pages on which all record

identifiers are marked deleted

No Yes

NUM_EMPTY_LEAFS the total number of leaf pages on

which all record identifiers are

marked deleted

No Yes

INDCARD Number of index entries (index

cardinality)

No Yes

Chapter 20. System catalog statistics 233

Table 58. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:

1. Detailed index statistics are gathered by specifying the DETAILED clause on the RUNSTATS command.

2. CLUSTERFACTOR and PAGE_FETCH_PAIRS are not collected with the DETAILED clause unless the table is of

a respectable size. If the table is greater than about 25 pages, then CLUSTERFACTOR and PAGE_FETCH_PAIRS

statistics are collected. In this case, CLUSTERRATIO is -1 (not collected). If the table is a relatively small table,

only CLUSTERRATIO is filled in by RUNSTATS while CLUSTERFACTOR and PAGE_FETCH_PAIRS are not. If

the DETAILED clause is not specified, only the CLUSTERRATIO statistic is collected.

3. This statistic measures the percentage of pages in the file containing the index that belongs to that table. For a

table having only one index defined on it, DENSITY should normally be 100. DENSITY is used by the optimizer

to estimate how many irrelevant pages from other indexes might be read, on average, if the index pages were

prefetched.

4. These statistics cannot be computed when this table is in a DMS table space.

5. Prefetch statistics will not be collected during a LOAD or CREATE INDEX even if statistics collection is specified

when the command is invoked. Prefetch statistics are also not collected if the Sequential Detection Flag

configuration parameter (seqdetect) is turned off.

6. When RUNSTATS options for Table is ″No″ it means statistics are not collected when table statistics are

collected, and ″Yes″ for Indexes means statistics are collected when the RUNSTATS command is used with the

INDEXES options.

 Table 59. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option

Table Indexes

DISTCOUNT If TYPE is Q, the number of

distinct values that are less

than or equal to

COLVALUE statistics

Distribution (Note 2) No

TYPE Indicator of whether row

provides frequent-value or

quantile statistics

Distribution No

SEQNO Frequency ranking of a

sequence number to help

uniquely identify the row

in the table

Distribution No

COLVALUE Data value for which

frequency or quantile

statistic is collected

Distribution No

VALCOUNT Frequency with which the

data value occurs in

column, or for quantiles,

the number of values less

than or equal to the data

value (COLVALUE)

Distribution No

Note:

1. Column distribution statistics are gathered by specifying the WITH DISTRIBUTION clause on the RUNSTATS

command. Note that distribution statistics may not be gathered unless there is a sufficient lack of uniformity in

the column values.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

234 Tuning Database Performance

Distribution statistics

You can collect two kinds of data distribution statistics:

v Frequency statistics

These statistics provide information about the column and the data value with

the highest number of duplicates, the next highest number of duplicate values,

and so on to the level specified by the value of the num_freqvalues database

configuration parameter. To disable collection of frequent-value statistics, set

num_freqvalues to 0.

You can also set num_freqvalues as RUNSTATS options for each table or statistical

view and for specific columns.

v Quantile statistics

These statistics provide information about how data values are distributed in

relation to other values. Called K-quantiles, these statistics represent the value V

at or below which at least K values lie. You can compute a K-quantile by sorting

the values in ascending order. The K-quantile value is the value in the Kth

position from the low end of the range.

To specify the number of sections into which the column data values should be

grouped, set the num_quantiles database configuration parameter to a value

between 2 and 32,767. The default value is 20, which ensures an optimizer

estimation error of a maximum of plus or minus 2.5% for any equality or

less-than or greater-than predicate and a maximum error of plus or minus 5%

for any BETWEEN predicate. To disable collection of quantile statistics, set

num_quantiles to 0 or 1.

You can set num_quantiles for each table or statistical view, and for specific

columns.

Note: If you specify larger num_freqvalues and num_quantiles values, more CPU

resources and memory, as specified by the stat_heap_sz database configuration

parameter, are required when you execute RUNSTATS.

When to collect distribution statisticsTo decide whether distribution statistics

should be created and updated for a given table or statistical view, consider the

following two factors:

v Whether applications use static or dynamic SQL and XQuery statements.

Distribution statistics are most useful for dynamic queries and static queries that

do not use host variables. When using queries with host variables, the optimizer

makes limited use of distribution statistics.

v Whether data in columns is distributed uniformly.

Create distribution statistics if at least one column in the table has a highly

“non-uniform” distribution of data and the column appears frequently in

equality or range predicates; that is, in clauses such as the following:

 WHERE C1 = KEY;

 WHERE C1 IN (KEY1, KEY2, KEY3);

 WHERE (C1 = KEY1) OR (C1 = KEY2) OR (C1 = KEY3);

 WHERE C1 <= KEY;

 WHERE C1 BETWEEN KEY1 AND KEY2;

Two types of non-uniform data distributions might occur, possibly together:

v Data might be clustered in one or more sub-intervals instead of being evenly

spread out between the highest and lowest data value. Consider the following

column, in which the data is clustered in the range (5,10):

 C1

Chapter 20. System catalog statistics 235

0.0

5.1

6.3

7.1

8.2

8.4

8.5

9.1

93.6

100.0

Quantile statistics help the optimizer deal with this kind of data distribution.

To help determine whether column data is not uniformly distributed, execute a

query such as the following example:

 SELECT C1, COUNT(*) AS OCCURRENCES

 FROM T1

 GROUP BY C1

 ORDER BY OCCURRENCES DESC;

v Duplicate data values might occur often. Consider a column in which data is

distributed with the following frequencies:

 Data Value Frequency

20 5

30 10

40 10

50 25

60 25

70 20

80 5

To help the optimizer deal with duplicate values, create both quantile and

frequent-value statistics.

When to collect index statistics only

You might collect statistics based only on index data in the following situations:

v A new index has been created since the RUNSTATS utility was run and you do

not want to collect statistics again on the table data.

v There have been many changes to the data that affect the first column of an

index.

What level of statistical precision to specify

To determine the precision with which distribution statistics are stored, you specify

the database configuration parameters, num_quantiles and num_freqvalues. You can

also specify these parameters as RUNSTATS options when you collect statistics for

a table or for columns. The higher you set these values, the greater precision

RUNSTATS uses when it create and updates distribution statistics. However,

greater precision requires greater use of resources, both during RUNSTATS

execution and in the storage required in the catalog tables.

For most databases, specify between 10 and 100 for the num_freqvalues database

configuration parameter. Ideally, frequent-value statistics should be created such

that the frequencies of the remaining values are either approximately equal to each

other or negligible compared to the frequencies of the most frequent values. The

236 Tuning Database Performance

database manager might collect less than this number, because these statistics will

only be collected for data values that occur more than once. If you need to collect

only quantile statistics, set num_freqvalues to zero.

To set the number of quantiles, specify between 20 and 50 as the setting of the

num_quantiles database configuration parameter. A rough rule of thumb for

determining the number of quantiles is:

v Determine the maximum error that is tolerable in estimating the number of rows

of any range query, as a percentage, P

v The number of quantiles should be approximately 100/P if the predicate is a

BETWEEN predicate, and 50/P if the predicate is any other type of range

predicate (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for

BETWEEN predicates and of 2% for ″>″ predicates. In general, specify at least 10

quantiles. More than 50 quantiles should be necessary only for extremely

non-uniform data. If you need only frequent value statistics, set num_quantiles to

zero. If you set this parameter to “1”, because the entire range of values fits in one

quantile, no quantile statistics are collected.

Optimizer use of distribution statistics

The optimizer uses distribution statistics for better estimates of the cost of various

possible access plans to satisfy queries.

If you do not execute RUNSTATS with the WITH DISTRIBUTION clause, the

catalog statistics tables contain information only about the size of the table or

statistical view and the highest and lowest values in the table or statistical view,

the degree of clustering of the table to any of its indexes, and the number of

distinct values in indexed columns.

Unless it has additional information about the distribution of values between the

low and high values, the optimizer assumes that data values are evenly

distributed. If data values differ widely from each other, are clustered in some

parts of the range, or contain many duplicate values, the optimizer will choose a

less than optimal access plan.

Consider the following example:

The optimizer needs to estimate the number of rows containing a column value

that satisfies an equality or range predicate in order to select the least expensive

access plan. The more accurate the estimate, the greater the likelihood that the

optimizer will choose the optimal access plan. For example, consider the query

 SELECT C1, C2

 FROM TABLE1

 WHERE C1 = ’NEW YORK’

 AND C2 <= 10

Assume that there is an index on both C1 and C2. One possible access plan is to

use the index on C1 to retrieve all rows with C1 = ’NEW YORK’ and then check each

retrieved row to see if C2 <= 10. An alternate plan is to use the index on C2 to

retrieve all rows with C2 <= 10 and then check each retrieved row to see if C1 =

’NEW YORK’. Because the primary cost in executing the query is usually the cost of

retrieving the rows, the best plan is the plan that requires the fewest retrievals.

Choosing this plan requires estimating the number of rows that satisfy each

predicate.

Chapter 20. System catalog statistics 237

When distribution statistics are not available but RUNSTATS has been executed

against a table or a statistical view, the only information available to the optimizer

is the second-highest data value (HIGH2KEY), second-lowest data value

(LOW2KEY), number of distinct values (COLCARD), and number of rows (CARD)

for a column. The number of rows that satisfy an equality or range predicate is

then estimated under the assumption that the frequencies of the data values in a

column are all equal and the data values are evenly spread out over the interval

(LOW2KEY, HIGH2KEY). Specifically, the number of rows satisfying an equality

predicate C1 = KEY is estimated as CARD/COLCARD, and the number of rows

satisfying a range predicate C1 BETWEEN KEY1 AND KEY2 is estimated as:

 KEY2 - KEY1

 ------------------- x CARD (1)

 HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values in a

column is reasonably uniform. When distribution statistics are unavailable and

either the frequencies of the data values differ widely from each other or the data

values are clustered in a few sub-intervals of the interval (LOW_KEY,HIGH_KEY),

the estimates can be off by orders of magnitude and the optimizer may choose a

less than optimal access plan.

When distribution statistics are available, the errors described above can be greatly

reduced by using frequent-value statistics to compute the number of rows that

satisfy an equality predicate and using frequent-value statistics and quantiles to

compute the number of rows that satisfy a range predicate.

Extended examples of distribution-statistics use

To understand how the optimizer might use distribution statistics, consider first a

query that contains an equality predicate of the form C1 = KEY.

Example for Frequent-Value Statistics

If frequent-value statistics are available, the optimizer can use these statistics to

choose an appropriate access plan, as follows:

v If KEY is one of the N most frequent values, then the optimizer uses the

frequency of KEY that is stored in the catalog.

v If KEY is not one of the N most frequent values, the optimizer estimates the

number of rows that satisfy the predicate under the assumption that the

(COLCARD - N) non-frequent values have a uniform distribution. That is, the

number of rows is estimated as:

 CARD - NUM_FREQ_ROWS

 -------------------- (2)

 COLCARD - N

where CARD is the number of rows in the table, COLCARD is the cardinality of

the column and NUM_FREQ_ROWS is the total number of rows with a value

equal to one of the N most frequent values.

For example, consider a column (C1) for which the frequency of the data values is

as follows:

 Data Value Frequency

1 2

2 3

238 Tuning Database Performance

Data Value Frequency

3 40

4 4

5 1

If frequent-value statistics based on only the most frequent value (that is, N = 1)

are available, for this column, the number of rows in the table is 50 and the

column cardinality is 5. For the predicate C1 = 3, exactly 40 rows satisfy it. If the

optimizer assumes that data is evenly distributed, it estimates the number of rows

that satisfy the predicate as 50/5 = 10, with an error of -75%. If the optimizer can

use frequent-value statistics, the number of rows is estimated as 40, with no error.

Consider another example in which 2 rows satisfy the predicate C1 = 1. Without

frequent-value statistics, the number of rows that satisfy the predicate is estimated

as 10, an error of 400%. You may use the following formula to calculate the

estimation error (as a percentage):

 estimated rows - actual rows

 ----------------------------- X 100

 actual rows

Using the frequent value statistics (N = 1), the optimizer will estimate the number

of rows containing this value using the formula (2) given above, for example:

 (50 - 40)

 --------- = 3

 (5 - 1)

and the error is reduced by an order of magnitude as shown below:

 3 - 2

 ------- = 50%

 2

Example for Quantile Statistics

The following explanations of quantile statistics use the term “K-quantile”. The

K-quantile for a column is the smallest data value, V, such that at least “K” rows

have data values less than or equal to V. To computer a K-quantile, sort the rows in

the column according to increasing data values; the K-quantile is the data value in

the Kth row of the sorted column.

If quantile statistics are available, the optimizer can better estimate the number of

rows that satisfy a range predicate, as illustrated by the following examples.

Consider a column (C) that contains the following values:

 C

0.0

5.1

6.3

7.1

8.2

8.4

8.5

9.1

Chapter 20. System catalog statistics 239

93.6

100.0

and suppose that K-quantiles are available for K = 1, 4, 7, and 10, as follows:

 K K-quantile

1 0.0

4 7.1

7 8.5

10 100.0

First consider the predicate C <= 8.5. For the data given above, exactly 7 rows

satisfy this predicate. Assuming a uniform data distribution and using formula (1)

from above, with KEY1 replaced by LOW2KEY, the number of rows that satisfy the

predicate is estimated as:

 8.5 - 5.1

 ---------- x 10 *= 0

 93.6 - 5.1

where *= means “approximately equal to”. The error in this estimation is

approximately -100%.

If quantile statistics are available, the optimizer estimates the number of rows that

satisfy this same predicate (C <= 8.5) by locating 8.5 as the highest value in one of

the quantiles and estimating the number of rows by using the corresponding value

of K, which is 7. In this case, the error is reduced to 0.

Now consider the predicate C <= 10. Exactly 8 rows satisfy this predicate. If the

optimizer must assume a uniform data distribution and use formula (1), the

number of rows that satisfy the predicate is estimated as 1, an error of -87.5%.

Unlike the previous example, the value 10 is not one of the stored K-quantiles.

However, the optimizer can use quantiles to estimate the number of rows that

satisfy the predicate as r_1 + r_2, where r_1 is the number of rows satisfying the

predicate C <= 8.5 and r_2 is the number of rows satisfying the predicate C > 8.5

AND C <= 10. As in the above example, r_1 = 7. To estimate r_2 the optimizer uses

linear interpolation:

 10 - 8.5

 r_2 *= ---------- x (number of rows with value > 8.5 and <= 100.0)

 100 - 8.5

 10 - 8.5

 r_2 *= ---------- x (10 - 7)

 100 - 8.5

 1.5

 r_2 *= ---- x (3)

 91.5

 r_2 *= 0

The final estimate is r_1 + r_2 *= 7, and the error is only -12.5%.

Quantiles improves the accuracy of the estimates in the above examples because

the real data values are ″clustered″ in the range 5 - 10, but the standard estimation

formulas assume that the data values are spread out evenly between 0 and 100.

240 Tuning Database Performance

The use of quantiles also improves accuracy when there are significant differences

in the frequencies of different data values. Consider a column having data values

with the following frequencies:

 Data Value Frequency

20 5

30 5

40 15

50 50

60 15

70 5

80 5

Suppose that K-quantiles are available for K = 5, 25, 75, 95, and 100:

 K K-quantile

5 20

25 40

75 50

95 70

100 80

Also suppose that frequent value statistics are available based on the 3 most

frequent values.

Consider the predicate C BETWEEN 20 AND 30. From the distribution of the data

values, you can see that exactly 10 rows satisfy this predicate. Assuming a uniform

data distribution and using formula (1), the number of rows that satisfy the

predicate is estimated as:

 30 - 20

 ------- x 100 = 25

 70 - 30

which has an error of 150%.

Using frequent-value statistics and quantiles, the number of rows that satisfy the

predicate is estimated as r_1 + r_2, where r_1 is the number of rows that satisfy

the predicate (C = 20) and r_2 is the number of rows that satisfy the predicate C >

20 AND C <= 30. Using formula (2), r_1 is estimated as:

 100 - 80

 -------- = 5

 7 - 3

Using linear interpolation, r_2 is estimated as:

 30 - 20

 ------- x (# rows with value > 20 and <= 40)

 40 - 20

 30 - 20

 = ------- x (25 - 5)

 40 - 20

 = 10,

Chapter 20. System catalog statistics 241

yielding a final estimate of 15 and reducing the error by a factor of 3.

Detailed index statistics

If you execute RUNSTATS for indexes with the DETAILED clause, you collect

statistical information about indexes that allows the optimizer to estimate how

many data page fetches will be required, based on various buffer-pool sizes. This

additional information helps the optimizer make better estimates of the cost of

accessing a table through an index.

Note: When you collect detailed index statistics, RUNSTATS takes longer and

requires more memory and CPU processing. The SAMPLED DETAILED option, for

which information calculated only for a statistically significant number of entries,

requires 2MB of the statistics heap. Allocate an additional 488 4K pages to the

stat_heap_sz database configuration parameter setting for this additional memory

requirement. If the heap appears to be too small, RUNSTATS returns an error

before attempting to collect statistics.

The DETAILED statistics PAGE_FETCH_PAIRS and CLUSTERFACTOR will be

collected only if the table is of a sufficient size: around 25 pages. In this case,

CLUSTERFACTOR will be a value between 0 and 1; and CLUSTERRATIO will be

-1 (not collected). For tables smaller than 25 pages, CLUSTERFACTOR will be -1

(not collected), and CLUSTERRATIO will be a value between 0 and 100; even if the

DETAILED clause is specified for an index on that table.

The DETAILED statistics provide concise information about the number of physical

I/Os required to access the data pages of a table if a complete index scan is

performed under different buffer sizes. As RUNSTATS scans the pages of the

index, it models the different buffer sizes, and gathers estimates of how often a

page fault occurs. For example, if only one buffer page is available, each new page

referenced by the index results in a page fault. In a worse case, each row might

reference a different page, resulting in at most the same number of I/Os as rows in

the indexed table. At the other extreme, when the buffer is big enough to hold the

entire table (subject to the maximum buffer size), then all table pages are read

once. As a result, the number of physical I/Os is a monotone, non-increasing

function of the buffer size.

The statistical information also provides finer estimates of the degree of clustering

of the table rows to the index order. The less the table rows are clustered in

relation to the index, the more I/Os are required to access table rows through the

index. The optimizer considers both the buffer size and the degree of clustering

when it estimates the cost of accessing a table through an index.

You should collect DETAILED index statistics when queries reference columns that

are not included in the index. In addition, DETAILED index statistics should be

used in the following circumstances:

v The table has multiple unclustered indexes with varying degrees of clustering

v The degree of clustering is non-uniform among the key values

v The values in the index are updated non-uniformly

It is difficult to evaluate these conditions without previous knowledge or without

forcing an index scan under varying buffer sizes and then monitoring the physical

I/Os that result. Probably the cheapest way to determine whether any of these

situations occur is to collect the DETAILED statistics for an index, examine them,

and retain them if the PAGE_FETCH_PAIRS that result are non-linear.

242 Tuning Database Performance

Sub-element statistics

If tables contain columns that contain sub-fields or sub-elements separated by

blanks, and queries reference these columns in WHERE clauses, you should collect

sub-element statistics to ensure the best access plans.

For example, suppose a database contains a table, DOCUMENTS, in which each

row describes a document, and suppose that in DOCUMENTS there is a column

called KEYWORDS that contains a list of relevant keywords relating to this

document for text retrieval purposes. The values in KEYWORDS might be as

follows:

 ’database simulation analytical business intelligence’

 ’simulation model fruit fly reproduction temperature’

 ’forestry spruce soil erosion rainfall’

 ’forest temperature soil precipitation fire’

In this example, each column value consists of 5 sub-elements, each of which is a

word (the keyword), separated from the others by one blank.

For queries that specify LIKE predicates on such columns using the % match_all

character:

 SELECT FROM DOCUMENTS WHERE KEYWORDS LIKE ’%simulation%’

it is often beneficial for the optimizer to know some basic statistics about the

sub-element structure of the column.

The following statistics are collected when you execute RUNSTATS with the LIKE

STATISTICS clause:

SUB_COUNT

The average number of sub-elements.

SUB_DELIM_LENGTH

The average length of each delimiter separating each sub-element, where a

delimiter, in this context, is one or more consecutive blank characters.

 In the KEYWORDS column example, SUB_COUNT is 5, and

SUB_DELIM_LENGTH is 1, because each delimiter is a single blank character.

The DB2_LIKE_VARCHAR registry variable affects the way in which the optimizer

deals with a predicate of the form:

 COLUMN LIKE ’%xxxxxx’

where xxxxxx is any string of characters; that is, any LIKE predicate whose search

value starts with a % character. (It might or might not end with a % character).

These are referred to as ″wildcard LIKE predicates″. For all predicates, the

optimizer has to estimate how many rows match the predicate. For wildcard LIKE

predicates, the optimizer assumes that the COLUMN being matched contains a

series of elements concatenated together, and it estimates the length of each

element based on the length of the string, excluding leading and trailing %

characters.

To examine the values of the sub-element statistics, query SYSIBM.SYSCOLUMNS.

For example:

 select substr(NAME,1,16), SUB_COUNT, SUB_DELIM_LENGTH

 from sysibm.syscolumns where tbname = ’DOCUMENTS’

Chapter 20. System catalog statistics 243

Note: RUNSTATS might take longer if you use the LIKE STATISTICS clause. For

example, RUNSTATS might take between 15% and 40%, and longer on a table with

five character columns, if the DETAILED and DISTRIBUTION options are not

used. If either the DETAILED or the DISTRIBUTION option is specified, the

overhead percentage is less, even though the absolute amount of overhead is the

same. If you are considering using this option, you should assess this overhead

against improvements in query performance.

Catalog statistics that users can update

Statistics for user-defined functions

To create statistical information for user-defined functions (UDFs), you edit the

SYSSTAT.FUNCTIONS catalog view. If UDF statistics are available, the optimizer

can use them when it estimates costs for various access plans. The RUNSTATS

utility does not collect statistics for UDFs. If statistics are not available the statistic

column values are -1 and the optimizer uses default values that assume a simple

UDF.

The following table provides information about the statistic columns for which you

can provide estimates to improve performance:

 Table 60. Function Statistics (SYSCAT.ROUTINES and SYSSTAT.FUNCTIONS)

Statistic Description

IOS_PER_INVOC Estimated number of read/write requests

executed each time a function is executed.

INSTS_PER_INVOC Estimated number of machine instructions

executed each time a function is executed.

IOS_PER_ARGBYTE Estimated number of read/write requests

executed per input argument byte.

INSTS_PER_ARGBYTES Estimated number of machine instructions

executed per input argument byte.

PERCENT_ARGBYTES Estimated average percent of input

argument bytes that the function will

actually process.

INITIAL_IOS Estimated number of read/write requests

executed only the first/last time the function

is invoked.

INITIAL_INSTS Estimated number of machine instructions

executed only the first/last time the function

is invoked.

CARDINALITY Estimated number of rows generated by a

table function.

For example, consider a UDF (EU_SHOE) that converts an American shoe size to

the equivalent European shoe size. (These two shoe sizes could be UDTs.) For this

UDF, you might set the statistic columns as follows:

v INSTS_PER_INVOC: set to the estimated number of machine instructions

required to:

– Invoke EU_SHOE

– Initialize the output string

– Return the result.

244 Tuning Database Performance

v INSTS_PER_ARGBYTE: set to the estimated number of machine instructions

required to convert the input string into a European shoe size.

v PERCENT_ARGBYTES: set to 100 indicating that the entire input string is to be

converted

v INITIAL_INSTS, IOS_PER_INVOC, IOS_PER_ARGBYTE, and INITIAL_IOS: set

each to 0, since this UDF only performs computations.

PERCENT_ARGBYTES would be used by a function that does not always process

the entire input string. For example, consider a UDF (LOCATE) that accepts two

arguments as input and returns the starting position of the first occurrence of the

first argument within the second argument. Assume that the length of the first

argument is small enough to be insignificant relative to the second argument and,

on average, 75 percent of the second argument is searched. Based on this

information, PERCENT_ARGBYTES should be set to 75. The above estimate of the

average of 75 percent is based on the following additional assumptions:

v Half the time the first argument is not found, which results in searching the

entire second argument.

v The first argument is equally likely to appear anywhere within the second

argument, which results in searching half of the second argument (on average)

when the first argument is found.

You can use INITIAL_INSTS or INITIAL_IOS to record the estimated number of

machine instructions or read/write requests that are performed only the first or

last time the function is invoked, such as to record the cost of setting up a

scratchpad area.

To obtain information about I/Os and instructions used by a user-defined function,

you can use output provided by your programming language compiler or by

monitoring tools available for your operating system.

Catalog statistics for modeling and what-if planning

You can change the statistical information in the system catalogs so that it does not

reflect the actual state of tables and indexes but allows you to examine various

possible changes to the database for planning purposes. The ability to update

selected system catalog statistics allows you to:

v Model query performance on a development system using production system

statistics

v Perform “what-if” query performance analysis.

Do not manually update statistics on a production system. If you do, the optimizer

might not choose the best access plan for production queries that contain dynamic

SQL or XQuery statements.

Requirements

You must have explicit DBADM authority for the database to modify statistics for

tables and indexes and their components. That is, your user ID is recorded as

having DBADM authority in the SYSCAT.DBAUTH table. Belonging to a DBADM

group does not explicitly provide this authority. A DBADM can see statistics rows

for all users, and can execute SQL UPDATE statements against the views defined

in the SYSSTAT schema to update the values of these statistical columns.

Chapter 20. System catalog statistics 245

A user without DBADM authority can see only those rows which contain statistics

for objects over which they have CONTROL privilege. If you do not have DBADM

authority, you can change statistics for individual database objects if you have the

following privileges for each object:

v Explicit CONTROL privilege on tables. You can also update statistics for

columns and indexes for these tables.

v Explicit CONTROL privilege on nicknames in a federated database system. You

can also update statistics for columns and indexes for these nicknames. Note

that the update only affects local metadata (data-source table statistics are not

changed). These updates affect only the global access strategy generated by the

DB2 optimizer.

v Ownership of user-defined functions (UDFs)

The following shows an example of updating the table statistics for the

EMPLOYEE table:

 UPDATE SYSSTAT.TABLES

 SET CARD = 10000,

 NPAGES = 1000,

 FPAGES = 1000,

 OVERFLOW = 2

 WHERE TABSCHEMA = ’userid’

 AND TABNAME = ’EMPLOYEE’

You must be careful when manually updating catalog statistics. Arbitrary changes

can seriously alter the performance of subsequent queries. Even in a

non-production database that you are using for testing or modeling, you can use

any of the following methods to refresh updates you applied to these tables and

bring the statistics to a consistent state:

v ROLLBACK the unit of work in which the changes have been made (assuming

the unit of work has not been committed).

v Use the RUNSTATS utility to recalculate and refresh the catalog statistics.

v Update the catalog statistics to indicate that statistics have not been gathered.

(For example, setting column NPAGES to -1 indicates that the number-of-pages

statistic has not been collected.)

v Replace the catalog statistics with the data they contained before you made any

changes. This method is possible only if you used the db2look tool to capture the

statistics before you made any changes.

In some cases, the optimizer may determine that some particular statistical value

or combination of values is not valid. It will use default values and issue a

warning. Such circumstances are rare, however, since most of the validation is

done when updating the statistics.

Statistics for modeling production databases

Sometimes you may want your test system to contain a subset of your production

system’s data. However, access plans selected for such a test system are not

necessarily the same as those that would be selected on the production system,

unless the catalog statistics and the configuration parameters for the test system

are updated to match those of the production system.

A productivity tool, db2look, can be run against the production database to generate

the update statements required to make the catalog statistics of the test database

match those in production. These update statements can be generated by using

db2look in mimic mode (-m option). In this case, db2look will generate a command

processor script containing all the statements required to mimic the catalog

246 Tuning Database Performance

statistics of the production database. This can be useful when analyzing SQL or

XQuery statements through Visual Explain in a test environment.

You can recreate database data objects, including tables, views, indexes, and other

objects in a database, by extracting DDL statements with db2look -e. You can run

the command processor script created from this command against another database

to recreate the database. You can use -e option and the -m option together in a

script that re-creates the database and sets the statistics.

After running the update statements produced by db2look against the test system,

the test system can be used to validate the access plans to be generated in

production. Since the optimizer uses the type and configuration of the table spaces

to estimate I/O costs, the test system must have the same table space geometry or

layout. That is, the same number of containers of the same type, either SMS or

DMS.

The db2look tool is found under the bin subdirectory.

For more information on how to use this productivity tool, type the following on a

command line:

 db2look -h

The Control Center also provides an interface to the db2look utility called “Generate

DDL”. Using the Control Center allows the results file from the utility to be

integrated into the Script Center. You can also schedule the db2look command from

the Control Center. One difference when using the Control Center is that only

single table analysis can be done as opposed to a maximum of thirty tables in a

single call using the db2look command. You should also be aware that LaTex and

Graphical outputs are not supported from the Control Center.

You can also run the db2look utility against an OS/390 or z/OS database. The

db2look utility extracts the DDL and UPDATE statistics statements for OS/390

objects. This is very useful if you would like to extract OS/390 or z/OS objects and

re-create them in DB2 Database for Linux, UNIX, and Windows.

There are some differences between statistics for DB2 Database for Linux, UNIX,

and Windows, and the OS/390 statistics. The db2look utility performs the

appropriate conversions from DB2 for OS/390 or z/OS to DB2 Database for Linux,

UNIX and Windows when this is applicable and sets to a default value (-1) the

DB2 Database for Linux, UNIX and Windows statistics for which a DB2 for OS/390

counterpart does not exist. Here is how the db2look utility maps the DB2 for

OS/390 or z/OS statistics to those of DB2 Database for Linux, UNIX and

Windows. In the discussion below, “UDB_x” stands for a DB2 Database for Linux,

UNIX and Windows statistics column; and, “S390_x” stands for a DB2 for OS/390

or z/OS statistics column.

1. Table Level Statistics.

UDB_CARD = S390_CARDF

UDB_NPAGES = S390_NPAGES

There is no S390_FPAGES. However, DB2 for OS/390 or z/OS has another

statistics called PCTPAGES which represents the percentage of active table

space pages that contain rows of the table. So it is possible to calculate

UDB_FPAGES based on S390_NPAGES and S390_PCTPAGES as follows:

 UDB_FPAGES=(S390_NPAGES * 100)/S390_PCTPAGES

Chapter 20. System catalog statistics 247

There is no S390_OVERFLOW to map to UDB_OVERFLOW. Therefore, the

db2look utility just sets this to the default value:

 UDB_OVERFLOW=-1

2. Column Level Statistics.

UDB_COLCARD = S390_COLCARDF

UDB_HIGH2KEY = S390_HIGH2KEY

UDB_LOW2KEY = S390_LOW2KEY

There is no S390_AVGCOLLEN to map to UDB_AVGCOLLEN so the db2look

utility just sets this to the default value:

 UDB_AVGCOLLEN=-1

3. Index Level Statistics.

UDB_NLEAF = S390_NLEAF

UDB_NLEVELS = S390_NLEVELS

UDB_FIRSTKEYCARD= S390_FIRSTKEYCARD

UDB_FULLKEYCARD = S390_FULLKEYCARD

UDB_CLUSTERRATIO= S390_CLUSTERRATIO

The other statistics for which there are no OS/390 or z/OS counterparts are just

set to the default. That is:

 UDB_FIRST2KEYCARD = -1

 UDB_FIRST3KEYCARD = -1

 UDB_FIRST4KEYCARD = -1

 UDB_CLUSTERFACTOR = -1

 UDB_SEQUENTIAL_PAGES = -1

 UDB_DENSITY = -1

4. Column Distribution Statistics.

There are two types of statistics in DB2 for OS/390 or z/OS

SYSIBM.SYSCOLUMNS. Type “F” for frequent values and type “C” for

cardinality. Only entries of type “F” are applicable to DB2 Database for Linux,

UNIX, and Windows and these are the ones that will be considered.

 UDB_COLVALUE = S390_COLVALUE

 UDB_VALCOUNT = S390_FrequencyF * S390_CARD

In addition, there is no column SEQNO in DB2 for OS/390

SYSIBM.SYSCOLUMNS. Because this required for DB2, db2look generates one

automatically.

General rules for updating catalog statistics manually

When you update catalog statistics, the most important general rule is to ensure

that valid values, ranges, and formats of the various statistics are stored in the

views for the statistics. It is also important to preserve the consistency of

relationships between various statistics.

For example, COLCARD in SYSSTAT.COLUMNS must be less than CARD in

SYSSTAT.TABLES (the number of distinct values in a column cannot be greater

than the number of rows). Assume that you want to reduce COLCARD from 100

to 25, and CARD from 200 to 50. If you update SYSSTAT.TABLES first, you should

get an error (since CARD would be less than COLCARD). The correct order is to

update COLCARD in SYSSTAT.COLUMNS first, then update CARD in

SYSSTAT.TABLES. The situation occurs in reverse if you want to increase

COLCARD to 250 from 100, and CARD to 300 from 200. In this case, you must

update CARD first, then COLCARD.

248 Tuning Database Performance

When a conflict is detected between an updated statistic and another statistic, an

error is issued. However, errors may not always be issued when conflicts arise. In

some situations, the conflict is difficult to detect and report in an error, especially if

the two related statistics are in different catalogs. For this reason, you should be

careful to avoid causing such conflicts.

The most common checks you should make, before updating a catalog statistic, are:

1. Numeric statistics must be -1 or greater than or equal to zero.

2. Numeric statistics representing percentages (for example, CLUSTERRATIO in

SYSSTAT.INDEXES) must be between 0 and 100.

Note: For row types, the table level statistics NPAGES, FPAGES, and OVERFLOW

are not updateable for a sub-table.

When a table is first created, system catalog statistics are set to -1 to indicate the

table has no statistics. Until statistics are gathered, DB2 uses default values for SQL

or XQuery statement compilation and optimization. Updating the table or index

statistics may fail if the new values are inconsistent with the default values.

Therefore it is recommended that you perform RUNSTATS after creating a table,

before attempting to update the table or index statistics.

Rules for updating column statistics manually

When you are updating statistics in SYSSTAT.COLUMNS, follow the guidelines

below.

v When manually updating HIGH2KEY and LOW2KEY in SYSSTAT.COLUMNS,

follow the behavior of the generated values:

– The values for HIGH2KEY, LOW2KEY must be valid values for the data type

of the corresponding user column.

– The length of HIGH2KEY, LOW2KEY values must be the smaller of 33 or the

maximum length of the target column data type, not including additional

quotes which can bring the length of the string up to 68. This means that only

the first 33 characters of the value in the corresponding user column will be

considered in determining the HIGH2KEY, LOW2KEY values.

– The HIGH2KEY/LOW2KEY values are stored in such a way that they can be

used on the SET clause of an UPDATE statement and without manipulation

on cost calculations. For character strings, this means single quotes are added

to the beginning and end of the string and an extra quote is added for every

quote already in the string. Examples of user column values and their

corresponding values in the HIGH2KEY,LOW2KEY are given in the table

below.

 Table 61. HIGH2KEY and LOW2KEY values for datatypes

Datatype in user column User data

Corresponding HIGH2KEY,

LOW2KEY value

INTEGER -12 -12

CHAR abc ’abc’

CHAR ab’c ’ab’’c’

– HIGH2KEY should be greater than LOW2KEY whenever there are more than

three distinct values in the corresponding column.
v The cardinality of a column (COLCARD statistic in SYSSTAT.COLUMNS) cannot

be greater than the cardinality of its corresponding table or statistical view

(CARD statistic in SYSSTAT.TABLES).

Chapter 20. System catalog statistics 249

v The number of nulls in a column (NUMNULLS statistic in SYSSTAT.COLUMNS)

cannot be greater than the cardinality of its corresponding table or statistical

view (CARD statistic in SYSSTAT.TABLES).

v No statistics are supported for columns with data types: LONG VARCHAR,

LONG VARGRAPHIC, BLOB, CLOB, DBCLOB.

Rules for updating distribution statistics manually

You update distribution statistics manually only to model a production database or

perform what-if tests on an artificially constructed database. Do not update

distribution statistics on a production database.

Make sure that all the statistics in the catalog are consistent. Specifically, for each

column, the catalog entries for the frequent data statistics and quantiles must

satisfy the following constraints:

v Frequent value statistics (in the SYSSTAT.COLDIST catalog). These constraints

include:

– The values in column VALCOUNT must be unchanging or decreasing for

increasing values of SEQNO.

– The number of values in column COLVALUE must be less than or equal to

the number of distinct values in the column, which is stored in column

COLCARD in catalog view SYSSTAT.COLUMNS.

– The sum of the values in column VALCOUNT must be less than or equal to

the number of rows in the column, which is stored in column CARD in

catalog view SYSSTAT.TABLES.

– In most cases, the values in the column COLVALUE should lie between the

second-highest and second-lowest data values for the column, which are

stored in columns HIGH2KEY and LOW2KEY, respectively, in catalog view

SYSSTAT.COLUMNS. There may be one frequent value greater than

HIGH2KEY and one frequent value less than LOW2KEY.
v Quantiles (in the SYSSTAT.COLDIST catalog). These constraints include:

– The values in column COLVALUE must be unchanging or decreasing for

increasing values of SEQNO

– The values in column VALCOUNT must be increasing for increasing values of

SEQNO

– The largest value in column COLVALUE must have a corresponding entry in

column VALCOUNT equal to the number of rows in the column

– In most cases, the values in the column COLVALUE should lie between the

second-highest and second-lowest data values for the column, which are

stored in columns HIGH2KEY and LOW2KEY, respectively, in catalog view

SYSSTAT.COLUMNS.

Suppose that distribution statistics are available for a column C1 with “R” rows

and you wish to modify the statistics to correspond to a column with the same

relative proportions of data values, but with “(F x R)” rows. To scale up the

frequent-value statistics by a factor of F, each entry in column VALCOUNT must

be multiplied by F. Similarly, to scale up the quantiles by a factor of F, each entry

in column VALCOUNT must be multiplied by F. If you do not follow these rules,

the optimizer might use the wrong filter factor and cause unpredictable

performance when you run the query.

250 Tuning Database Performance

Rules for updating table and nickname statistics manually

The only statistical values that you can update in SYSSTAT.TABLES are CARD,

FPAGES, NPAGES, and OVERFLOW, and for MDC tables, ACTIVE_BLOCKS.

Keep in mind that:

1. CARD must be greater than or equal to all COLCARD values in

SYSSTAT.COLUMNS that correspond to that table.

2. CARD must be greater than NPAGES.

3. FPAGES must be greater than NPAGES.

4. NPAGES must be less than or equal to any ″Fetch″ value in the

PAGE_FETCH_PAIRS column of any index (assuming this statistic is relevant

for the index).

5. CARD must not be less than or equal to any ″Fetch″ value in the

PAGE_FETCH_PAIRS column of any index (assuming this statistic is relevant

for the index).

When working within a federated database system, use caution when manually

providing or updating statistics on a nickname over a remote view. The statistical

information, such as the number of rows this nickname will return, might not

reflect the real cost to evaluate this remote view and thus might mislead the DB2

optimizer. Situations that can benefit from statistics updates include remote views

defined on a single base table with no column functions applied on the SELECT

list. Complex views may require a complex tuning process which might require

that each query be tuned. Consider creating local views over nicknames instead so

the DB2 optimizer knows how to derive the cost of the view more accurately.

Rules for updating index statistics manually

When you update the statistics in SYSSTAT.INDEXES, follow the rules described

below:

1. PAGE_FETCH_PAIRS (in SYSSTAT. INDEXES) must adhere to the following

rules:

v Individual values in the PAGE_FETCH_PAIRS statistic must be separated by

a series of blank delimiters.

v Individual values in the PAGE_FETCH_PAIRS statistic must not be longer

than 10 digits and must be less than the maximum integer value (MAXINT =

2147483647).

v There must always be a valid PAGE_FETCH_PAIRS value if the

CLUSTERFACTOR is greater than zero.

v There must be exactly 11 pairs in a single PAGE_FETCH_PAIR statistic.

v Buffer size entries of PAGE_FETCH_PAIRS must be ascending in value.

v Any buffer size value in a PAGE_FETCH_PAIRS entry cannot be greater than

MIN(NPAGES, 524287) for 32-bit operating system or MIN(NPAGES,

2147483647) for 64-bit operating system where NPAGES is the number of

pages in the corresponding table (in SYSSTAT.TABLES).

v “Fetches” entries of PAGE_FETCH_PAIRS must be descending in value, with

no individual “Fetches” entry being less than NPAGES. “Fetch” size values

in a PAGE_FETCH_PAIRS entry cannot be greater than the CARD

(cardinality) statistic of the corresponding table.

v If buffer size value is the same in two consecutive pairs, then page fetch

value must also be the same in both the pairs (in SYSSTAT.TABLES).
A valid PAGE_FETCH_UPDATE is:

Chapter 20. System catalog statistics 251

PAGE_FETCH_PAIRS =

 ’100 380 120 360 140 340 160 330 180 320 200 310 220 305 240 300

 260 300 280 300 300 300’

where

 NPAGES = 300

 CARD = 10000

 CLUSTERRATIO = -1

 CLUSTERFACTOR = 0.9

2. CLUSTERRATIO and CLUSTERFACTOR (in SYSSTAT.INDEXES) must adhere

to the following rules:

v Valid values for CLUSTERRATIO are -1 or between 0 and 100.

v Valid values for CLUSTERFACTOR are -1 or between 0 and 1.

v At least one of the CLUSTERRATIO and CLUSTERFACTOR values must be

-1 at all times.

v If CLUSTERFACTOR is a positive value, it must be accompanied by a valid

PAGE_FETCH_PAIR statistic.
3. For relational indexes the following rules apply to FIRSTKEYCARD,

FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD, FULLKEYCARD, and

INDCARD:

v FIRSTKEYCARD must be equal to FULLKEYCARD for a single-column

index.

v FIRSTKEYCARD must be equal to COLCARD (in SYSSTAT.COLUMNS) for

the corresponding column.

v If any of these index statistics are not relevant, you should set them to -1. For

example, if you have an index with only 3 columns, set FIRST4KEYCARD to

-1.

v For multiple column indexes, if all the statistics are relevant, the relationship

between them must be:

FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

 <= FULLKEYCARD <= INDCARD == CARD

4. For indexes over XML data the following rules apply to FIRSTKEYCARD,

FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD, FULLKEYCARD, and

INDCARD:

v The relationship between them must be:

FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

 <= FULLKEYCARD <= INDCARD

5. The following rules apply to SEQUENTIAL_PAGES and DENSITY:

v Valid values for SEQUENTIAL_PAGES are -1 or between 0 and NLEAF.

v Valid values for DENSITY are -1 or between 0 and 100.

252 Tuning Database Performance

Chapter 21. Routines

Guidelines for stored procedures

Stored procedures permit one call to a remote database to execute a

preprogrammed procedure in a database application environment in which many

situations are repetitive. For example, for receiving a fixed set of data, performing

the same set of multiple requests against a database, or returning a fixed set of

data might represent several accesses to the database.

Processing a single SQL statement for a remote database requires sending two

transmissions: one request and one receive. Because an application contains many

SQL statements it requires many transmissions to complete its work.

However, when a IBM data server client uses a stored procedure that encapsulates

many SQL statements, it requires only two transmissions for the entire process.

Stored procedures usually run in processes separate from the database agents. This

separation requires the stored procedure and agent processes to communicate

through a router. However, a special kind of stored procedure that runs in the

agent process might improve performance, although it carries significant risks of

corrupting data and databases.

These risky stored procedures are those created as not fenced. For a not-fenced

stored procedure, nothing separates the stored procedure from the database control

structures that the database agent uses. If a DBA wants to ensure that the stored

procedure operations will not accidentally or maliciously damage the database

control structures, the not fenced option is omitted.

Because of the risk of damaging your database, use not fenced stored procedures

only when you need the maximum possible performance benefits. In addition,

make absolutely sure that the procedure is well coded and has been thoroughly

tested before allowing it to run as a not-fenced stored procedure. If a fatal error

occurs while running a not-fenced stored procedure, the database manager

determines whether the error occurred in the application or database manager

code and performs the appropriate recovery.

A not-fenced stored procedure can corrupt the database manager beyond recovery,

possibly resulting in lost data and the possibility of a corrupt database. Exercise

extreme caution when you run not-fenced trusted stored procedures. In almost all

cases, the proper performance analysis of an application results in the good

performance without using not-fenced stored procedures. For example, triggers

might improve performance.

Improving the performance of SQL procedures

Overview of how DB2 compiles SQL PL and inline SQL PL

Before discussing how to improve the performance of SQL procedures we should

discuss how DB2 compiles them upon the execution of the CREATE PROCEDURE

statement.

© Copyright IBM Corp. 1993, 2007 253

When an SQL procedure is created, DB2 separates the SQL queries in the

procedure body from the procedural logic. To maximize performance, the SQL

queries are statically compiled into sections in a package. For a statically compiled

query, a section consists mainly of the access plan selected by the DB2 optimizer

for that query. A package is a collection of sections. For more information on

packages and sections, please refer to the DB2 SQL Reference. The procedural logic

is compiled into a dynamically linked library.

During the execution of a procedure, every time control flows from the procedural

logic to an SQL statement, there is a ″context switch″ between the DLL and the

DB2 engine. As of DB2 Version 8.1, SQL procedures run in ″unfenced mode″. That

is they run in the same addressing space as the DB2 engine. Therefore the context

switch we refer to here is not a full context switch at the operating system level,

but rather a change of layer within DB2. Reducing the number of context switches

in procedures that are invoked very often, such as procedures in an OLTP

application, or that process large numbers of rows, such as procedures that

perform data cleansing, can have a noticeable impact on their performance.

Whereas an SQL procedure containing SQL PL is implemented by statically

compiling its individual SQL queries into sections in a package, an inline SQL PL

function is implemented, as the name suggests, by inlining the body of the

function into the query that uses it. Queries in SQL functions are compiled

together, as if the function body were a single query. The compilation occurs every

time a statement that uses the function is compiled. Unlike what happens in SQL

procedures, procedural statements in SQL functions are not executed in a different

layer than dataflow statements. Therefore, there is no context switch every time

control flows from a procedural to a dataflow statement or vice versa.

If there are no side-effects in your logic use an SQL function

instead

Because of the difference in compilation between SQL PL in procedures and inline

SQL PL in functions, it is reasonable to presume that a piece of procedural code

will execute faster in a function than in a procedure if it only queries SQL data and

does no data modifications - that is it has no side-effects on the data in the

database or external to the database.

That is only good news if all the statements that you need to execute are

supported in SQL functions. SQL functions can not contain SQL statements that

modify the database. As well, only a subset of SQL PL is available in the inline

SQL PL of functions. For example, you cannot execute CALL statements, declare

cursors, or return result sets in SQL functions.

Here is an example of an SQL procedure containing SQL PL that was a good

candidate for conversion to an SQL function to maximize performance:

 CREATE PROCEDURE GetPrice (IN Vendor CHAR&(20&),

 IN Pid INT, OUT price DECIMAL(10,3))

 LANGUAGE SQL

 BEGIN

 IF Vendor eq; ssq;Vendor 1ssq;

 THEN SET price eq; (SELECT ProdPrice

 FROM V1Table

 WHERE Id = Pid);

 ELSE IF Vendor eq; ssq;Vendor 2ssq;

 THEN SET price eq; (SELECT Price FROM V2Table

 WHERE Pid eq; GetPrice.Pid);

 END IF;

 END

254 Tuning Database Performance

Here is the rewritten SQL function:

 CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)

 RETURNS DECIMAL(10,3)

 LANGUAGE SQL

 BEGIN

 DECLARE price DECIMAL(10,3);

 IF Vendor = ’Vendor 1’

 THEN SET price = (SELECT ProdPrice

 FROM V1Table

 WHERE Id = Pid);

 ELSE IF Vendor = ’Vendor 2’

 THEN SET price = (SELECT Price FROM V2Table

 WHERE Pid = GetPrice.Pid);

 END IF;

 RETURN price;

 END

Remember that the invocation of a function is different than a procedure. To

invoke the function, use the VALUES statement or invoke the function where an

expression is valid, such as in a SELECT or SET statement. Any of the following

are valid ways of invoking the new function:

 VALUES (GetPrice(’IBM’, 324))

 SELECT VName FROM Vendors WHERE GetPrice(Vname, Pid) < 10

 SET price = GetPrice(Vname, Pid)

Avoid multiple statements in an SQL PL procedure when just

one is sufficient

Although it is generally a good idea to write concise SQL, it is very ease to forget

to do this in practice. For example the following SQL statements:

 INSERT INTO tab_comp VALUES (item1, price1, qty1);

 INSERT INTO tab_comp VALUES (item2, price2, qty2);

 INSERT INTO tab_comp VALUES (item3, price3, qty3);

can be rewritten as a single statement:

 INSERT INTO tab_comp VALUES (item1, price1, qty1),

 (item2, price2, qty2),

 (item3, price3, qty3);

The multi-row insert will require roughly one third of the time required to execute

the three original statements. Isolated, this improvement might seem negligible,

but if the code fragment is executed repeatedly, for example in a loop or in a

trigger body, the improvement can be significant.

Similarly, a sequence of SET statements like:

 SET A = expr1;

 SET B = expr2;

 SET C = expr3;

can be written as a single VALUES statement:

 VALUES expr1, expr2, expr3 INTO A, B, C;

This transformation preserves the semantics of the original sequence if there are no

dependencies between any two statements. To illustrate this, consider:

 SET A = monthly_avg * 12;

 SET B = (A / 2) * correction_factor;

Chapter 21. Routines 255

Converting the previous two statements to:

 VALUES (monthly_avg * 12, (A / 2) * correction_factor) INTO A, B;

does not preserve the original semantics because the expressions before the INTO

keyword are evaluated ’in parallel’. This means that the value assigned to B is not

based on the value assigned to A, which was the intended semantics of the original

statements.

Reduce multiple SQL statements to a single SQL expression

Like other programming languages, the SQL language provides two types of

conditional constructs: procedural (IF and CASE statements) and functional (CASE

expressions). In most circumstances where either type can be used to express a

computation, using one or the other is a matter of taste. However, logic written

using CASE expressions is not only more compact, but also more efficient than

logic written using CASE or IF statements.

Consider the following fragment of SQL PL code:

 IF (Price <= MaxPrice) THEN

 INSERT INTO tab_comp(Id, Val) VALUES(Oid, Price);

 ELSE

 INSERT INTO tab_comp(Id, Val) VALUES(Oid, MaxPrice);

 END IF;

The condition in the IF clause is only being used to decide what value is inserted

in the tab_comp.Val column. To avoid the context switch between the procedural

and the dataflow layers, the same logic can be expressed as a single INSERT with a

CASE expression:

 INSERT INTO tab_comp(Id, Val)

 VALUES(Oid,

 CASE

 WHEN (Price <= MaxPrice) THEN Price

 ELSE MaxPrice

 END);

It’s worth noting that CASE expressions can be used in any context where a scalar

value is expected. In particular, they can be used on the right-hand side of

assignments. For example:

 IF (Name IS NOT NULL) THEN

 SET ProdName = Name;

 ELSEIF (NameStr IS NOT NULL) THEN

 SET ProdName = NameStr;

 ELSE

 SET ProdName = DefaultName;

 END IF;

can be rewritten as:

 SET ProdName = (CASE

 WHEN (Name IS NOT NULL) THEN Name

 WHEN (NameStr IS NOT NULL) THEN NameStr

 ELSE DefaultName

 END);

In fact, this particular example admits an even better solution:

 SET ProdName = COALESCE(Name, NameStr, DefaultName);

Don’t underestimate the benefit of taking the time to analyze and consider

rewriting your SQL. The performance benefits will pay you back many times over

256 Tuning Database Performance

for the time invested in analyzing and rewriting your procedure.

Exploit the set-at-a-time semantics of SQL

Procedural constructs such as loops, assignment and cursors allow us to express

computations that would not be possible to express using just SQL DML

statements. But when we have procedural statements at our disposal, there is a

risk that we could turn to them even when the computation at hand can, in fact,

be expressed using just SQL DML statements. As we’ve mentioned earlier, the

performance of a procedural computation can be orders of magnitude slower than

the performance of an equivalent computation expressed using DML statements.

Consider the following fragment of code:

 DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;

 OPEN cur1;

 FETCH cur1 INTO v1, v2;

 WHILE SQLCODE <> 100 DO

 IF (v1 > 20) THEN

 INSERT INTO tab_sel VALUES (20, v2);

 ELSE

 INSERT INTO tab_sel VALUES (v1, v2);

 END IF;

 FETCH cur1 INTO v1, v2;

 END WHILE;

To begin with, the loop body can be improved by applying the transformation

discussed in the last section - ″Reduce multiple SQL statements to a single SQL

expression″:

 DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;

 OPEN cur1;

 FETCH cur1 INTO v1, v2;

 WHILE SQLCODE <> 100 DO

 INSERT INTO tab_sel VALUES (CASE

 WHEN v1 > 20 THEN 20

 ELSE v1

 END, v2);

 FETCH cur1 INTO v1, v2;

 END WHILE;

But upon closer inspection, the whole block of code can be written as an INSERT

with a sub-SELECT:

 INSERT INTO tab_sel (SELECT (CASE

 WHEN col1 > 20 THEN 20

 ELSE col1

 END),

 col2

 FROM tab_comp);

In the original formulation, there was a context switch between the procedural and

the dataflow layers for each row in the SELECT statements. In the last formulation,

there is no context switch at all, and the optimizer has a chance to globally

optimize the full computation.

On the other hand, this dramatic simplification would not have been possible if

each of the INSERT statements targeted a different table, as shown below:

 DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;

 OPEN cur1;

 FETCH cur1 INTO v1, v2;

 WHILE SQLCODE <> 100 DO

 IF (v1 > 20) THEN

 INSERT INTO tab_default VALUES (20, v2);

Chapter 21. Routines 257

ELSE

 INSERT INTO tab_sel VALUES (v1, v2);

 END IF;

 FETCH cur1 INTO v1, v2;

 END WHILE;

However, the set-at-a-time nature of SQL can also be exploited here:

 INSERT INTO tab_sel (SELECT col1, col2

 FROM tab_comp

 WHERE col1 <= 20);

 INSERT INTO tab_default (SELECT col1, col2

 FROM tab_comp

 WHERE col1 > 20);

When looking at improving the performance of existing procedural logic, any time

spent in eliminating cursor loops will likely pay off.

Keep the DB2 optimizer informed

When a procedure is created, its individual SQL queries are compiled into sections

in a package. The DB2 optimizer chooses an execution plan for a query based,

among other things, on table statistics (for example, table sizes or the relative

frequency of data values in a column) and indexes available at the time the query

is compiled. When tables suffer significant changes, it may be a good idea to let

DB2 collect statistics on these tables again. And when statistics are updated or new

indexes are created, it may also be a good idea to rebind the packages associated

with SQL procedures that use the tables, to let DB2 create plans that exploit the

latest statistics and indexes.

Table statistics can be updated using the RUNSTATS command. To rebind the

package associated with an SQL procedure, you can use the

REBIND_ROUTINE_PACKAGE built-in procedure that is available in DB2 Version

8.1. For example, the following command can be used to rebind the package for

procedure MYSCHEMA.MYPROC:

 CALL SYSPROC.REBIND_ROUTINE_PACKAGE(’P’, ’MYSCHEMA.MYPROC’, ’ANY’)

where ’P’ indicates that the package corresponds to a procedure and ’ANY’

indicates that any of the functions and types in the SQL path are considered for

function and type resolution. See the Command Reference entry for the REBIND

command for more details.

Use arrays

You can use arrays to efficiently pass collections of data between applications and

stored procedures and to store and manipulate transient collections of data within

SQL procedures without having to use relational tables. Operators on arrays

available within SQL procedures allow for the efficient storage and retrieval of

data. Applications that create arrays of moderate size will experience significantly

better performance than applications that create very large arrays (on the scale of

multiple megabytes), as the entire array is stored in main memory. See Related links

section for additional information.

258 Tuning Database Performance

Chapter 22. Query access plans

The SQL and XQuery compiler process

The SQL and XQuery compiler performs several steps to produce an access plan

that can be executed. These steps are shown in the following figure and described

in the sections below the figure. Note that some steps occur only for queries in a

federated database.

Figure 22. Steps performed by SQL and XQuery compiler

© Copyright IBM Corp. 1993, 2007 259

Query Graph Model

The query graph model is an internal, in-memory database that represents the query

as it is processed in the steps described below:

1. Parse Query

The SQL and XQuery compiler analyzes the query to validate the syntax. If any

syntax errors are detected, the query compiler stops processing and returns the

appropriate error to the application that submitted the query. When parsing is

complete, an internal representation of the query is created and stored in the

query graph model.

2. Check Semantics

The compiler ensures that there are no inconsistencies among parts of the

statement. As a simple example of semantic checking, the compiler verifies that

the data type of the column specified for the YEAR scalar function is a

datetime data type.

The compiler also adds the behavioral semantics to the query graph model,

including the effects of referential constraints, table check constraints, triggers,

and views. The query graph model contains all of the semantics of the query,

including query blocks, subqueries, correlations, derived tables, expressions,

data types, data type conversions, code page conversions, and distribution

keys.

3. Rewrite Query

The compiler uses the global semantics stored in the query graph model to

transform the query into a form that can be optimized more easily and stores

the result in the query graph model.

For example, the compiler might move a predicate, altering the level at which it

is applied and potentially improving query performance. This type of operation

movement is called general predicate pushdown. In a partitioned database

environment, the following query operations are more computationally

intensive:

v Aggregation

v Redistribution of rows

v Correlated subqueries, which are subqueries that contain a reference to a

column of a table that is outside of the subquery.
For some queries in a partitioned database environment, decorrelation might

occur as part of rewriting the query.

4. Pushdown Analysis (Federated Databases)

The major task in this step is to recommend to the optimizer whether an

operation can be remotely evaluated or pushed-down at a data source. This type

of pushdown activity is specific to data source queries and represents an

extension to general predicate pushdown operations.

This step is bypassed unless you are executing federated database queries.

5. Optimize Access Plan

Using the query graph model as input, the optimizer portion of the compiler

generates many alternative execution plans for satisfying the query. To estimate

the execution cost of each alternative plan, the optimizer uses the statistics for

tables, indexes, columns and functions. Then it chooses the plan with the

smallest estimated execution cost. The optimizer uses the query graph model to

analyze the query semantics and to obtain information about a wide variety of

factors, including indexes, base tables, derived tables, subqueries, correlations

and recursion.

260 Tuning Database Performance

The optimizer can also consider another type of pushdown operation,

aggregation and sort, which can improve performance by pushing the evaluation

of these operations to the Data Management Services component.

The optimizer also considers whether there are different sized buffer pools

when determining page size selection. That the environment includes a

partitioned database is also considered as well as the ability to enhance the

chosen plan for the possibility of intra-query parallelism in a symmetric

multi-processor (SMP) environment. This information is used by the optimizer

to help select the best access plan for the query.

The output of this step of the compiler is an access plan. This access plan

provides the information captured in the Explain tables. The information used

to generate the access plan can be captured with an explain snapshot.

6. Remote SQL Generation (Federated Databases)

The final plan selected by the optimizer might consist of a set of steps that

operate on a remote data source. For operations that are performed by each

data source, the remote SQL generation step creates an efficient SQL statement

based on the data-source SQL dialect.

7. Generate “Executable” Code

In the final step, the compiler uses the access plan and the query graph model

to create an executable access plan, or section, for the query. This code

generation step uses information from the query graph model to avoid

repetitive execution of expressions that need to be computed only once for a

query. Examples for which this optimization is possible include code page

conversions and the use of host variables.

To enable query (re)optimization of static and dynamic SQL and XQuery

statements that have host variables, special registers, or parameter markers,

bind the package with the REOPT bind option. If used, the access path for an

SQL or XQuery statement, belonging to that package and containing host

variables, parameter markers or special registers, will be optimized using the

values of these variables rather than default estimates chosen by the compiler.

This optimization takes place at query execution time when the values are

available.

Information about access plans for static SQL and XQuery statements is stored

in the system catalog tables. When the package is executed, the database

manager will use the information stored in the system catalog tables to

determine how to access the data and provide results for the query. This

information is used by the db2expln tool.

Note: Execute RUNSTATS at appropriate intervals on tables that change often. The

optimizer needs up-to-date statistical information about the tables and their data to

create the most efficient access plans. Rebind your application to take advantage of

updated statistics. If RUNSTATS is not executed or the optimizer suspects that

RUNSTATS was executed on empty or nearly empty tables, it may either use

defaults or attempt to derive certain statistics based on the number of file pages

used to store the table on disk (FPAGES). The total number of occupied blocks is

stored in the ACTIVE_BLOCKS column.

Query rewriting methods and examples

During the rewrite query stage, the query compiler transforms SQL and XQuery

statements into forms that can be optimized more easily, and as a result, can

improve the possible access paths. Rewriting queries is particularly important for

very complex queries, including those queries with many subqueries or many

joins. Query generator tools often create these types of very complex queries.

Chapter 22. Query access plans 261

To influence the number of query rewrite rules that are applied to an SQL or

XQuery statement, change the optimization class. To see some of the results of the

query rewrite, use the Explain facility or Visual Explain.

Queries might be rewritten in any of the following three primary ways:

v Operation merging

To construct the query so that it has the fewest number of operations, especially

SELECT operations, the SQL and XQuery compiler rewrites queries to merge

query operations. The following examples illustrate some of the operations that

can be merged:

– Example - View Merges

A SELECT statement that uses views can restrict the join order of the table

and can also introduce redundant joining of tables. If the views are merged

during query rewrite, these restrictions can be lifted.

– Example - Subquery to Join Transforms

If a SELECT statement contains a subquery, selection of order processing of

the tables might be restricted.

– Example - Redundant Join Elimination

During query rewrite, redundant joins can be removed to simplify the

SELECT statement.

– Example - Shared Aggregation

When the query uses different functions, rewriting can reduce the number of

calculations that need to be done.
v Operation movement

To construct the query with the minimum number of operations and predicates,

the compiler rewrites queries to move query operations. The following examples

illustrate some of the operations that can be moved:

– Example - DISTINCT Elimination

During query rewrite, the optimizer can move the point at which the

DISTINCT operation is performed, to reduce the cost of this operation. In the

extended example provided, the DISTINCT operation is removed completely.

– Example - General Predicate Pushdown

During query rewrite, the optimizer can change the order of applying

predicates so that more selective predicates are applied to the query as early

as possible.

– Example - Decorrelation

In a partitioned database environment, the movement of results sets between

database partitions is costly. Reducing the size of what must be broadcast to

other database partitions, or reducing the number of broadcasts, or both, is an

objective of query rewriting.
v Predicate Translation

The SQL and XQuery compiler rewrites queries to translate existing predicates

to more optimal predicates for the specific query. The following examples

illustrate some of the predicates that might be translated:

– Example - Addition of Implied Predicates

During query rewrite, predicates can be added to the query to allow the

optimizer to consider additional table joins when selecting the best access

plan for the query.

– Example - OR to IN Transformations

262 Tuning Database Performance

During query rewriting, an OR predicate can be translated into an IN

predicate for a more efficient access plan. The SQL and XQuery compiler can

also translate an IN predicate into an OR predicate if this transformation

would create a more efficient access plan.

Compiler rewrite example: view merges

Suppose you have access to the following two views of the EMPLOYEE table, one

showing employees with a high level of education and the other view showing

employees earning more than $35,000:

 CREATE VIEW EMP_EDUCATION (EMPNO, FIRSTNME, LASTNAME, EDLEVEL) AS

 SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL

 FROM EMPLOYEE

 WHERE EDLEVEL > 17

 CREATE VIEW EMP_SALARIES (EMPNO, FIRSTNAME, LASTNAME, SALARY) AS

 SELECT EMPNO, FIRSTNME, LASTNAME, SALARY

 FROM EMPLOYEE

 WHERE SALARY > 35000

Now suppose you perform the following query to list the employees who have a

high education level and who are earning more than $35,000:

 SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY

 FROM EMP_EDUCATION E1,

 EMP_SALARIES E2

 WHERE E1.EMPNO = E2.EMPNO

During query rewrite, these two views could be merged to create the following

query:

 SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY

 FROM EMPLOYEE E1,

 EMPLOYEE E2

 WHERE E1.EMPNO = E2.EMPNO

 AND E1.EDLEVEL > 17

 AND E2.SALARY > 35000

By merging the SELECT statements from the two views with the user-written

SELECT statement, the optimizer can consider more choices when selecting an

access plan. In addition, if the two views that have been merged use the same base

table, additional rewriting may be performed.

Example - Subquery to Join Transformations

The SQL and XQuery compiler will take a query containing a subquery, such as:

 SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO

 FROM EMPLOYEE

 WHERE WORKDEPT IN

 (SELECT DEPTNO

 FROM DEPARTMENT

 WHERE DEPTNAME = ’OPERATIONS’)

and convert it to a join query of the form:

 SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME, PHONENO

 FROM EMPLOYEE EMP,

 DEPARTMENT DEPT

 WHERE EMP.WORKDEPT = DEPT.DEPTNO

 AND DEPT.DEPTNAME = ’OPERATIONS’

A join is generally much more efficient to execute than a subquery.

Example - Redundant Join Elimination

Chapter 22. Query access plans 263

Queries can sometimes be written or generated which have unnecessary joins.

Queries such as the following could also be produced during the query rewrite

stage.

 SELECT E1.EMPNO, E1.FIRSTNME, E1.LASTNAME, E1.EDLEVEL, E2.SALARY

 FROM EMPLOYEE E1,

 EMPLOYEE E2

 WHERE E1.EMPNO = E2.EMPNO

 AND E1.EDLEVEL > 17

 AND E2.SALARY > 35000

In this query, the SQL and XQuery compiler can eliminate the join and simplify the

query to:

 SELECT EMPNO, FIRSTNME, LASTNAME, EDLEVEL, SALARY

 FROM EMPLOYEE

 WHERE EDLEVEL > 17

 AND SALARY > 35000

Another example assumes that a referential constraint exists between the

EMPLOYEE and DEPARTMENT sample tables on the department number. First, a

view is created.

 CREATE VIEW PEPLVIEW

 AS SELECT FIRSTNME, LASTNAME, SALARY, DEPTNO, DEPTNAME, MGRNO

 FROM EMPLOYEE E DEPARTMENT D

 WHERE E.WORKDEPT = D.DEPTNO

Then a query such as the following:

 SELECT LASTNAME, SALARY

 FROM PEPLVIEW

becomes

 SELECT LASTNAME, SALARY

 FROM EMPLOYEE

 WHERE WORKDEPT NOT NULL

Note that in this situation, even if users know that the query can be re-written,

they may not be able to do so because they do not have access to the underlying

tables. They may only have access to the view shown above. Therefore, this type of

optimization has to be performed within the database manager.

Redundancy in referential integrity joins is likely where:

v Views are defined with joins

v Queries are automatically generated.

For example, there are automated tools in query managers which prevent users

from writing optimized queries.

Example - Shared Aggregation

Using multiple functions within a query can generate several calculations which

take time. Reducing the number of calculations to be done within the query results

in an improved plan. The SQL and XQuery compiler takes a query using multiple

functions such as:

 SELECT SUM(SALARY+BONUS+COMM) AS OSUM,

 AVG(SALARY+BONUS+COMM) AS OAVG,

 COUNT(*) AS OCOUNT

 FROM EMPLOYEE;

and transforms the query in the following way:

264 Tuning Database Performance

SELECT OSUM,

 OSUM/OCOUNT

 OCOUNT

 FROM (SELECT SUM(SALARY+BONUS+COMM) AS OSUM,

 COUNT(*) AS OCOUNT

 FROM EMPLOYEE) AS SHARED_AGG;

This rewrite reduces the query from 2 sums and 2 counts to 1 sum and 1 count.

Compiler rewrite example: DISTINCT elimination

If the EMPNO column was defined as the primary key of the EMPLOYEE table,

the following query:

 SELECT DISTINCT EMPNO, FIRSTNME, LASTNAME

 FROM EMPLOYEE

would be rewritten by removing the DISTINCT clause:

 SELECT EMPNO, FIRSTNME, LASTNAME

 FROM EMPLOYEE

In the above example, since the primary key is being selected, the SQL and

XQuery compiler knows that each row returned will already be unique. In this

case, the DISTINCT key word is redundant. If the query is not rewritten, the

optimizer would need to build a plan with the necessary processing, such as a sort,

to ensure that the columns are distinct.

Example - General Predicate Pushdown

Altering the level at which a predicate is normally applied can result in improved

performance. For example, given the following view which provides a list of all

employees in department “D11”:

 CREATE VIEW D11_EMPLOYEE

 (EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM)

 AS SELECT EMPNO, FIRSTNME, LASTNAME, PHONENO, SALARY, BONUS, COMM

 FROM EMPLOYEE

 WHERE WORKDEPT = ’D11’

And given the following query:

 SELECT FIRSTNME, PHONENO

 FROM D11_EMPLOYEE

 WHERE LASTNAME = ’BROWN’

The query rewrite stage of the compiler will push the predicate LASTNAME =

’BROWN’ down into the view D11_EMPLOYEE. This allows the predicate to be

applied sooner and potentially more efficiently. The actual query that could be

executed in this example is:

 SELECT FIRSTNME, PHONENO

 FROM EMPLOYEE

 WHERE LASTNAME = ’BROWN’

 AND WORKDEPT = ’D11’

Pushdown of predicates is not limited to views. Other situations in which

predicates may be pushed down include UNIONs, GROUP BYs, and derived

tables (nested table expressions or common table expressions).

Example - Decorrelation

In a partitioned database environment, the SQL and XQuery compiler can rewrite

the following query:

Chapter 22. Query access plans 265

Find all the employees who are working on programming projects and are

underpaid.

 SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,

 E.SALARY+E.BONUS+E.COMM AS COMPENSATION

 FROM EMPLOYEE E, PROJECT P

 WHERE P.EMPNO = E.EMPNO

 AND P.PROJNAME LIKE ’%PROGRAMMING%’

 AND E.SALARY+E.BONUS+E.COMM <

 (SELECT AVG(E1.SALARY+E1.BONUS+E1.COMM)

 FROM EMPLOYEE E1, PROJECT P1

 WHERE P1.PROJNAME LIKE ’%PROGRAMMING%’

 AND P1.PROJNO = A.PROJNO

 AND E1.EMPNO = P1.EMPNO)

Since this query is correlated, and since both PROJECT and EMPLOYEE are

unlikely to be partitioned on PROJNO, the broadcast of each project to each

database partition is possible. In addition, the subquery would have to be

evaluated many times.

The SQL and XQuery compiler can rewrite the query as follows:

v Determine the distinct list of employees working on programming projects and

call it DIST_PROJS. It must be distinct to ensure that aggregation is done once

only for each project:

 WITH DIST_PROJS(PROJNO, EMPNO) AS

 (SELECT DISTINCT PROJNO, EMPNO

 FROM PROJECT P1

 WHERE P1.PROJNAME LIKE ’%PROGRAMMING%’)

v Using the distinct list of employees working on the programming projects, join

this to the employee table, to get the average compensation per project,

AVG_PER_PROJ:

 AVG_PER_PROJ(PROJNO, AVG_COMP) AS

 (SELECT P2.PROJNO, AVG(E1.SALARY+E1.BONUS+E1.COMM)

 FROM EMPLOYEE E1, DIST_PROJS P2

 WHERE E1.EMPNO = P2.EMPNO

 GROUP BY P2.PROJNO)

v Then the new query would be:

 SELECT P.PROJNO, E.EMPNO, E.LASTNAME, E.FIRSTNAME,

 E.SALARY+E.BONUS+E.COMM AS COMPENSATION

 FROM PROJECT P, EMPLOYEE E, AVG_PER_PROG A

 WHERE P.EMPNO = E.EMPNO

 AND P.PROJNAME LIKE ’%PROGRAMMING%’

 AND P.PROJNO = A.PROJNO

 AND E.SALARY+E.BONUS+E.COMM < A.AVG_COMP

The rewritten query computes the AVG_COMP per project (AVG_PRE_PROJ) and can

then broadcast the result to all database partitions containing the EMPLOYEE table.

Compiler rewrite example: implied predicates

The following query produces a list of the managers whose departments report to

“E01” and the projects for which those managers are responsible:

 SELECT DEPT.DEPTNAME DEPT.MGRNO, EMP.LASTNAME, PROJ.PROJNAME

 FROM DEPARTMENT DEPT,

 EMPLOYEE EMP,

 PROJECT PROJ

 WHERE DEPT.ADMRDEPT = ’E01’

 AND DEPT.MGRNO = EMP.EMPNO

 AND EMP.EMPNO = PROJ.RESPEMP

The query rewrite adds the following implied predicate:

266 Tuning Database Performance

DEPT.MGRNO = PROJ.RESPEMP

As a result of this rewrite, the optimizer can consider additional joins when it is

trying to select the best access plan for the query.

In addition to the above predicate transitive closure, query rewrite also derives

additional local predicates based on the transitivity implied by equality predicates.

For example, the following query lists the names of the departments whose

department number is greater than “E00” and the employees who work in those

departments.

 SELECT EMPNO, LASTNAME, FIRSTNAME, DEPTNO, DEPTNAME

 FROM EMPLOYEE EMP,

 DEPARTMENT DEPT

 WHERE EMP.WORKDEPT = DEPT.DEPTNO

 AND DEPT.DEPTNO > ’E00’

For this query, the rewrite stage adds the following implied predicate:

 EMP.WORKDEPT > ’E00’

As a result of this rewrite, the optimizer reduces the number of rows to be joined.

Example - OR to IN Transformations

Suppose an OR clause connects two or more simple equality predicates on the

same column, as in the following example:

 SELECT *

 FROM EMPLOYEE

 WHERE DEPTNO = ’D11’

 OR DEPTNO = ’D21’

 OR DEPTNO = ’E21’

If there is no index on the DEPTNO column, converting the OR clause to the

following IN predicate allows the query to be processed more efficiently:

 SELECT *

 FROM EMPLOYEE

 WHERE DEPTNO IN (’D11’, ’D21’, ’E21’)

Note: In some cases, the database manager might convert an IN predicate to a set

of OR clauses so that index ORing might be performed.

Predicate typology and access plans

A user application requests a set of rows from the database with a query statement

that specifies qualifiers for the specific rows to be returned as the result set. These

qualifiers usually appear in the WHERE clause of the query. Such qualifiers are

called predicates. Predicates can be grouped into four categories that are determined

by how and when the predicate is used in the evaluation process. The categories

are listed below, ordered in terms of performance from best to worst:

1. Range delimiting predicates

2. Index SARGable predicates

3. Data SARGable predicates

4. Residual predicates.

Note: SARGable refers to a term that can be used as a search argument.

The following table summarizes the predicate categories. Subsequent sections

describe each category in more detail.

Chapter 22. Query access plans 267

Table 62. Summary of Predicate Type Characteristics

Characteristic Predicate Type

Range

Delimiting

Index

SARGable

Data SARGable Residual

Reduce index

I/O

Yes No No No

Reduce data

page I/O

Yes Yes No No

Reduce number

of rows passed

internally

Yes Yes Yes No

Reduce number

of qualifying

rows

Yes Yes Yes Yes

Range-Delimiting and Index-SARGable Predicates

Range delimiting predicates limit the scope of an index scan. They provide start

and stop key values for the index search. Index SARGable predicates cannot limit

the scope of a search, but can be evaluated from the index because the columns

involved in the predicate are part of the index key. For example, consider the

following index:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

Consider also a query that contains the following WHERE clause:

 WHERE NAME = :hv1

 AND DEPT = :hv2

 AND YEARS > :hv5

The first two predicates (NAME = :hv1, DEPT = :hv2) are range-delimiting

predicates, while YEARS > :hv5 is an index SARGable predicate.

The optimizer uses the index data when it evaluates these predicates instead of

reading the base table. These index SARGable predicates reduce the set of rows that

need to be read from the table, but they do not affect the number of index pages

that are accessed.

Predicates on XML data occurring in XMLEXISTS and XMLTABLE expressions are

also supported by XSCAN data operator scans. Some of these predicates are also

supported by index range scans.

Data SARGable Predicates

Predicates that cannot be evaluated by the index manager, but can be evaluated by

data management services are called data SARGable predicates. These predicates

usually require accessing individual rows from a table. If required, Data

Management Services retrieve the columns needed to evaluate the predicate, as

well as any others to satisfy the columns in the SELECT list that could not be

obtained from the index.

268 Tuning Database Performance

For example, consider a single index defined on the PROJECT table:

 INDEX IX0: PROJNO ASC

For the following query, then, the DEPTNO = ’D11’ predicate is considered to be

data SARGable.

 SELECT PROJNO, PROJNAME, RESPEMP

 FROM PROJECT

 WHERE DEPTNO = ’D11’

 ORDER BY PROJNO

Residual Predicates

Residual predicates require more I/O costs than accessing a table. They might have

the following characteristics:

v Use correlated subqueries

v Use quantified subqueries, which contain ANY, ALL, SOME, or IN clauses

v Read LONG VARCHAR or LOB data, which is stored in a file that is separate

from the table

Such predicates are evaluated by Relational Data Services.

Sometimes predicates that are applied only to the index must be reapplied when

the data page is accessed. For example, access plans that use index ORing or index

ANDing always reapply the predicates as residual predicates when the data page

is accessed.

Federated database query-compiler phases

Federated database pushdown analysis

For queries in federated databases, the optimizer performs pushdown analysis to

find out whether an operation can be performed at a remote data source. An

operation might be a function, such as relational operator, system or user function,

or an SQL operator, such as GROUP BY, ORDER BY, and so on.

Note: Although the DB2 SQL compiler has much information about data source

SQL support, this data may need adjustment over time because data sources can

be upgraded and/or customized. In such cases, make enhancements known to DB2

by changing local catalog information. Use DB2 DDL statements (such as CREATE

FUNCTION MAPPING and ALTER SERVER) to update the catalog.

If functions cannot be pushed down to the remote data source, they can

significantly impact query performance. Consider the effect of forcing a selective

predicate to be evaluated locally instead of at the data source. Such evaluation

could require DB2 to retrieve the entire table from the remote data source and then

filter it locally against the predicate. Network constraints and large table size could

cause performance to suffer.

Operators that are not pushed down can also significantly affect query

performance. For example, having a GROUP BY operator aggregate remote data

locally could also require DB2 to retrieve the entire table from the remote data

source.

For example, assume that a nickname N1 references the data source table

EMPLOYEE in a DB2 for OS/390® or z/OS data source. Also assume that the table

has 10,000 rows, that one of the columns contains the last names of employees, and

that one of the columns contains salaries. Consider the following statement:

Chapter 22. Query access plans 269

SELECT LASTNAME, COUNT(*) FROM N1

 WHERE LASTNAME > ’B’ AND SALARY > 50000

 GROUP BY LASTNAME;

Several possibilities are considered, depending on whether the collating sequences

at DB2 and DB2 for OS/390 or z/OS are the same:

v If the collating sequences are the same, the query predicate can probably be

pushed down to DB2 for OS/390 or z/OS. Filtering and grouping results at the

data source is usually more efficient than copying the entire table to DB2 and

performing the operations locally. For the query above, the predicate and the

GROUP BY operation can take place at the data source.

v If the collating sequence is not the same, the entire predicate cannot be

evaluated at the data source. However, the optimizer might decide to pushdown

the SALARY > 50000 portion of the predicate. The range comparison must still be

done at DB2.

v If the collating sequence is the same, and the optimizer knows that the local

DB2 server is very fast, the optimizer might decide that performing the GROUP BY

operation locally at DB2 is the best (least cost) approach. The predicate is

evaluated at the data source. This is an example of pushdown analysis combined

with global optimization.

In general, the goal is to ensure that the optimizer evaluates functions and

operators on data sources. Many factors affect whether a function or an SQL

operator is evaluated at a remote data source. Factors to be evaluated are classified

in the following three groups:

v Server characteristics

v Nickname characteristics

v Query characteristics

Server characteristics that affect pushdown opportunities

Certain data source-specific factors can affect pushdown opportunities. In general,

these factors exist because of the rich SQL dialect supported by DB2. This dialect

might offer more functionality than the SQL dialect supported by a server accessed

by a query. DB2 can compensate for the lack of function at a data server, but doing

so may require that the operation take place at DB2.

SQL Capabilities: Each data source supports a variation of the SQL dialect and

different levels of functionality. For example, consider the GROUP BY list. Most

data sources support the GROUP BY operator, but some limit the number of items

on the GROUP BY list or have restrictions on whether an expression is allowed on

the GROUP BY list. If there is a restriction at the remote data source, DB2 might

have to perform the GROUP BY operation locally.

SQL Restrictions: Each data source might have different SQL restrictions. For

example, some data sources require parameter markers to bind values to remote

SQL statements. Therefore, parameter marker restrictions must be checked to

ensure that each data source can support such a bind mechanism. If DB2 cannot

determine a good method to bind a value for a function, this function must be

evaluated locally.

SQL Limits: Although DB2 might allow the use of larger integers than its remote

data sources, values that exceed remote limits cannot be embedded in statements

sent to data sources. Therefore, the function or operator that operates on this

constant must be evaluated locally.

270 Tuning Database Performance

Server Specifics: Several factors fall into this category. One example is whether

NULL values are sorted as the highest or lowest value, or depend on the ordering.

If NULL values are sorted at a data source differently from DB2, ORDER BY

operations on a nullable expression cannot be remotely evaluated.

Collating Sequence: Retrieving data for local sorts and comparisons usually

decreases performance. Therefore, consider configuring the federated database to

use the same collating sequences that your data sources use. If you configure a

federated database to use the same collating sequence that a data source uses and

then set the collating_sequence server option to ’Y’, the optimizer can consider

pushing down many query operations if improved performance results.

The following operations might be pushed down if collating sequences are the

same:

v Comparisons of character or numeric data

v Character range comparison predicates

v Sorts

You might get unusual results, however, if the weighting of null characters is

different between the federated database and the data source. Comparison

statements might return unexpected results if you submit statements to a

case-insensitive data source. The weights assigned to the characters ″I″ and ″i″ in a

case-insensitive data source are the same. DB2, by default, is case sensitive and

assigns different weights to the characters.

To improve performance, the federated server allows sorts and comparisons to take

place at data sources. For example, in DB2 for OS/390 or z/OS, sorts defined by

ORDER BY clauses are implemented by a collating sequence based on an EBCDIC

code page. To use the federated server to retrieve DB2 for OS/390 or z/OS data

sorted in accordance with ORDER BY clauses, configure the federated database so

that it uses a predefined collating sequence based on the EBCDIC code page.

If the collating sequences of the federated database and the data source differ, DB2

retrieves the data to the federated database. Because users expect to see the query

results ordered by the collating sequence defined for the federated server, by

ordering the data locally the federated server ensures that this expectation is

fulfilled. Submit your query in pass-through mode, or define the query in a data

source view if you need to see the data ordered in the collating sequence of the

data source.

Server Options: Several server options can affect pushdown opportunities. In

particular, review your settings for collating_sequence, varchar_no_trailing_blanks, and

pushdown.

DB2 Type Mapping and Function Mapping Factors: The default local data type

mappings provided by DB2 are designed to provide sufficient buffer space for each

data source data type, which avoids loss of data. Users can customize the type

mapping for a specific data source to suit specific applications. For example, if you

are accessing an Oracle data source column with a DATE data type, which by

default is mapped to the DB2 TIMESTAMP data type, you might change the local

data type to the DB2 DATE data type.

In the following three cases, DB2 can compensate for functions that a data source

does not support:

v The function does not exist at the remote data source.

Chapter 22. Query access plans 271

v The function exists, but the characteristics of the operand violate function

restrictions. An example of this situation is the IS NULL relational operator.

Most data sources support it, but some may have restrictions, such as only

allowing a column name on the left hand side of the IS NULL operator.

v The function might return a different result if it is evaluated remotely. An

example of this situation is the ’>’ (greater than) operator. For data sources with

different collating sequences, the greater than operator might return different

results than if it is evaluated locally by DB2.

Nickname characteristics that affect pushdown opportunities

The following nickname-specific factors can affect pushdown opportunities.

Local data type of a nickname column: Ensure that the local data type of a

column does not prevent a predicate from being evaluated at the data source. Use

the default data type mappings to avoid possible overflow. However, a joining

predicate between two columns of different lengths might not be considered at the

data source whose joining column is shorter, depending on how DB2 binds the

longer column. This situation can affect the number of possibilities that the DB2

optimizer can evaluate in a joining sequence. For example, Oracle data source

columns created using the INTEGER or INT data type are given the type

NUMBER(38). A nickname column for this Oracle data type is given the local data

type FLOAT because the range of a DB2 integer is from 2**31 to (-2**31)-1, which is

roughly equal to NUMBER(9). In this case, joins between a DB2 integer column

and an Oracle integer column cannot take place at the DB2 data source (shorter

joining column); however, if the domain of this Oracle integer column can be

accommodated by the DB2 INTEGER data type, change its local data type with the

ALTER NICKNAME statement so that the join can take place at the DB2 data

source.

Column Options: Use the SQL statement ALTER NICKNAME to add or change

column options for nicknames.

Use the varchar_no_trailing_blanks option to identify a column that contains no

trailing blanks. The compiler pushdown analysis step will then take this

information into account when checking all operations performed on columns so

indicated. Based on this indication, DB2 may generate a different but equivalent

form of a predicate to be used in the remote SQL statement sent to a data source.

A user might see a different predicate being evaluated against the data source, but

the net result should be equivalent.

Use the numeric_string option to indicate whether the values in that column are

always numbers without trailing blanks.

The table below describes these options.

272 Tuning Database Performance

Table 63. Column Options and Their Settings

Option Valid Settings Default

Setting

numeric_string

‘Y’ Yes, this column contains only strings of numeric data.

IMPORTANT: If the column contains only numeric strings

followed by trailing blanks, do not specify ‘Y’.

‘N’ No, this column is not limited to strings of numeric data.

If you set numeric_string to ‘Y’ for a column, you are informing the

optimizer that this column contains no blanks that could interfere with

sorting of the column data. This option is useful when the collating

sequence of a data source is different from DB2. Columns marked with

this option are not excluded from local (data source) evaluation because

of a different collating sequence.

‘N’

varchar_no_trailing_blanks Specifies whether this data source uses non-blank padded VARCHAR

comparison semantics. For variable-length character strings that contain

no trailing blanks, non-blank-padded comparison semantics of some

DBMSs return the same results as DB2 comparison semantics. If you are

certain that all VARCHAR table/view columns at a data source contain

no trailing blanks, consider setting this server option to ’Y’ for a data

source. This option is often used with Oracle data sources. Ensure that

you consider all objects that might have nicknames, including views.

’Y’ This data source has non-blank-padded comparison semantics

similar to DB2.

’N’ This data source does not have the same non-blank-padded

comparison semantics as DB2.

‘N‘

Query characteristics that affect pushdown opportunities

A query can reference an SQL operator that might involve nicknames from

multiple data sources. The operation must take place at DB2 to combine the results

from two referenced data sources that use one operator, such as a set operator (e.g.

UNION). The operator cannot be evaluated at a remote data source directly.

Guidelines for analyzing where a federated query is evaluated

DB2 provides two utilities to show where queries are evaluated:

v Visual explain. Start it with the db2cc command. Use it to view the query access

plan graph. The execution location for each operator is included in the detailed

display of an operator.

If a query is pushed down, you should see a RETURN operator. The RETURN

operator is a standard DB2 operator. For a SELECT statement that selects data

from a nickname, you also see a SHIP operator. The SHIP operator is unique to

federated database operations. It changes the server property of the data flow

and separates local operators from remote operators. The SELECT statement is

generated using the SQL dialect supported by the data source. It can contain any

valid query for that data source.

If an INSERT, DELETE, or UPDATE query can be entirely pushed down to the

remote database, you might not see a SHIP statement in the access plan. All

remotely executed INSERT, UPDATE, and DELETE statements are shown for the

RETURN operator. However, if a query cannot be entirely pushed down, the

SHIP operator shows which operations were performed remotely.

v SQL explain. Start it with the db2expln or the dynexpln command. Use it to

view the access plan strategy as text.

Chapter 22. Query access plans 273

Understanding why a query is evaluated at a data source or at DB2

Consider the following key questions when you investigate ways to increase

pushdown opportunities:

v Why isn’t this predicate being evaluated remotely?

This question arises when a predicate is very selective and thus could be used to

filter rows and reduce network traffic. Remote predicate evaluation also affects

whether a join between two tables of the same data source can be evaluated

remotely.

Areas to examine include:

– Subquery predicates. Does this predicate contain a subquery that pertains to

another data source? Does this predicate contain a subquery involving an

SQL operator that is not supported by this data source? Not all data sources

support set operators in a subquery predicate.

– Predicate functions. Does this predicate contain a function that cannot be

evaluated by this remote data source? Relational operators are classified as

functions.

– Predicate bind requirements. Does this predicate, if remotely evaluated,

require bind-in of some value? If so, would it violate SQL restrictions at this

data source?

– Global optimization. The optimizer may have decided that local processing is

more cost effective.
v Why isn’t the GROUP BY operator evaluated remotely?

There are several areas you can check:

– Is the input to the GROUP BY operator evaluated remotely? If the answer is

no, examine the input.

– Does the data source have any restrictions on this operator? Examples

include:

- Limited number of GROUP BY items

- Limited byte counts of combined GROUP BY items

- Column specification only on the GROUP BY list
– Does the data source support this SQL operator?

– Global optimization. The optimizer may have decided that local processing is

more cost effective.

– Does the GROUP BY operator clause contain a character expression? If it

does, verify that the remote data source has the same case sensitivity as DB2.
v Why isn’t the set operator evaluated remotely?

There are several areas you can check:

– Are both of its operands completely evaluated at the same remote data

source? If the answer is no and it should be yes, examine each operand.

– Does the data source have any restrictions on this set operator? For example,

are large objects or long fields valid input for this specific set operator?
v Why isn’t the ORDER BY operation evaluated remotely?

Consider:

– Is the input to the ORDER BY operation evaluated remotely? If the answer is

no, examine the input.

– Does the ORDER BY clause contain a character expression? If yes, does the

remote data source not have the same collating sequence or case sensitivity as

DB2?

274 Tuning Database Performance

– Does the data source have any restrictions on this operator? For example, is

there a limited number of ORDER BY items? Does the data source restrict

column specification to the ORDER BY list?

Remote SQL generation and global optimization in federated

databases

For a federated database query that uses relational nicknames, the access strategy

might involve breaking down the original query into a set of remote query units

and then combining the results. This generation of remote SQL helps produce a

globally optimal access strategy for a query.

The optimizer uses the output of pushdown analysis to decide whether each

operation is evaluated locally at DB2 or remotely at a data source. It bases its

decision on the output of its cost model, which includes not only the cost of

evaluating the operation but also the cost of transmitting the data or messages

between DB2 and data sources.

Although the goal is to produce an optimized query, the following major factors

affect the output from global optimization and thus affect query performance.

v Server characteristics

v Nickname characteristics

Server characteristics and options that affect global optimization

The following data source server factors can affect global optimization:

v Relative ratio of CPU speed

Use the cpu_ratio server option to specify how fast or slow the data-source CPU

speed is compared with the DB2 CPU. A low ratio indicates that the data-source

computer CPU is faster than the DB2 computer CPU. If the ratio is low, the DB2

optimizer is more likely to consider pushing down CPU-intensive operations to

the data source.

v Relative ratio of I/O speed

Use the io_ratio server option to indicate how much faster or slower the data

source system I/O speed is compared with the DB2 system. A low ratio

indicates that the data source workstation I/O speed is faster than the DB2

workstation I/O speed. If the ratio is low, the DB2 optimizer considers pushing

down I/O-intensive operations to the data source.

v Communication rate between DB2 and the data source

Use the comm_rate server option to indicate network capacity. Low rates, which

indicate a slow network communication between DB2 and the data source,

encourage the DB2 optimizer to reduce the number of messages sent to or from

this data source. If the rate is set to 0, the optimizer creates an access plan that

requires minimal network traffic.

v Data source collating sequence

Use the collating_sequence server option to specify whether a data source

collating sequence matches the local DB2 database collating sequence. If this

option is not set to ’Y’, the optimizer considers the data retrieved from this data

source as unordered.

v Remote plan hints

Use the plan_hints server option to specify that plan hints should be generated or

used at a data source. By default, DB2 does not send any plan hints to the data

source.

Chapter 22. Query access plans 275

Plan hints are statement fragments that provide extra information for

data-source optimizers. For some queries this information can improve

performance. The plan hints can help the data source optimizer decide whether

to use an index, which index to use, or which table join sequence to use.

If plan hints are enabled, the query sent to the data source contains additional

information. For example, a statement sent to an Oracle optimizer with plan

hints might look like this:

 SELECT /*+ INDEX (table1, t1index)*/

 col1

 FROM table1

The plan hint is the string /*+ INDEX (table1, t1index)*/.

v Information in the DB2 optimizer knowledge base

DB2 has an optimizer knowledge base that contains data about native data

sources. The DB2 optimizer does not generate remote access plans that cannot be

generated by specific DBMSs. In other words, DB2 avoids generating plans that

optimizers at remote data sources cannot understand or accept.

Nickname characteristics that affect global optimization

The following nickname-specific factors can affect global optimization.

Index considerations: To optimize queries, DB2 can use information about indexes

at data sources. For this reason, it is important that the index information available

to DB2 is current. The index information for nicknames is initially acquired when

the nickname is created. Index information is not gathered for view nicknames.

Creating index specifications on nicknames: You can create an index specification

for a nickname. Index specifications build an index definition (not an actual index)

in the catalog for the DB2 optimizer to use. Use the CREATE INDEX

SPECIFICATION ONLY statement to create index specifications. The syntax for

creating an index specification on a nickname is similar to the syntax for creating

an index on a local table.

Consider creating index specifications in the following circumstances:

v DB2 cannot retrieve any index information from a data source during nickname

creation.

v You want an index for a view nickname.

v You want to encourage the DB2 optimizer to use a specific nickname as the

inner table of a nested loop join. The user can create an index on the joining

column if none exists.

Before you issue CREATE INDEX statements against a nickname for a view,

consider whether you need one. If the view is a simple SELECT on a table with an

index, creating local indexes on the nickname to match the indexes on the table at

the data source can significantly improve query performance. However, if indexes

are created locally over views that are not simple select statements, such as a view

created by joining two tables, query performance might suffer. For example, you

create an index over a view that is a join of two tables, the optimizer might choose

that view as the inner element in a nested-loop join. The query will have poor

performance because the join is evaluated several times. An alternative is to create

nicknames for each of the tables referenced in the data source view and create a

local view at DB2 that references both nicknames.

276 Tuning Database Performance

Catalog statistics considerations: System catalog statistics describe the overall size

of nicknames and the range of values in associated columns. The optimizer uses

these statistics when it calculates the least-cost path for processing queries that

contain nicknames. Nickname statistics are stored in the same catalog views as

table statistics.

Although DB2 can retrieve the statistical data stored at a data source, it cannot

automatically detect updates to existing statistical data at data sources.

Furthermore, DB2 cannot handle changes in object definition or structural changes,

such as adding a column, to objects at data sources. If the statistical data or

structural data for an object has changed, you have two choices:

v Run the equivalent of RUNSTATS at the data source. Then drop the current

nickname and re-create it. Use this approach if structural information has

changed.

v Manually update the statistics in the SYSSTAT.TABLES view. This approach

requires fewer steps but it does not work if structural information has changed.

Global analysis of federated database queries

The following two utilities provided show global access plans:

v Visual Explain. Start it from the Control Center, or execute the db2cc command,

which starts the Control Center. Use Visual Explain to view the query access

plan graph. The execution location for each operator is included in the detailed

display of an operator. You can also find the remote SQL statement generated for

each data source in the SHIP or RETURN operator, depending on the type of the

query. By examining the details of each operator, you can see the number of

rows estimated by the DB2 optimizer as input to and output from each operator.

You can also see the estimated cost to execute each operator including the

communications cost.

v SQL explain. Start it with the db2expln or dynexpln command. Use SQL explain to

view the access plan strategy as text. Although SQL explain does not provide

cost information, you can get the access plan generated by the remote optimizer

for those data sources supported by the remote explain function.

Understanding DB2 optimization decisions

Consider the following optimization questions and key areas to investigate for

performance improvements:

v Why isn’t a join between two nicknames of the same data source being

evaluated remotely?

Areas to examine include:

– Join operations. Can the data source support them?

– Join predicates. Can the join predicate be evaluated at the remote data source?

If the answer is no, examine the join predicate.

– Number of rows in the join result (with Visual Explain). Does the join

produce a much larger set of rows than the two nicknames combined? Do the

numbers make sense? If the answer is no, consider updating the nickname

statistics manually (SYSSTAT.TABLES).
v Why isn’t the GROUP BY operator being evaluated remotely?

Areas to examine include:

– Operator syntax. Verify that the operator can be evaluated at the remote data

source.

– Number of rows. Check the estimated number of rows in the GROUP BY

operator input and output using visual explain. Are these two numbers very

Chapter 22. Query access plans 277

close? If the answer is yes, the DB2 optimizer considers it more efficient to

evaluate this GROUP BY locally. Also, do these two numbers make sense? If

the answer is no, consider updating the nickname statistics manually

(SYSSTAT.TABLES).
v Why is the statement not being completely evaluated by the remote data source?

The DB2 optimizer performs cost-based optimization. Even if pushdown analysis

indicates that every operator can be evaluated at the remote data source, the

optimizer still relies on its cost estimate to generate a globally optimal plan.

There are a great many factors that can contribute to that plan. For example,

even though the remote data source can process every operation in the original

query, its CPU speed is much slower than the CPU speed for DB2 and thus it

may turn out to be more beneficial to perform the operations at DB2 instead. If

results are not satisfactory, verify your server statistics in

SYSCAT.SERVEROPTIONS.

v Why does a plan generated by the optimizer, and completely evaluated at a

remote data source, have much worse performance than the original query

executed directly at the remote data source?

Areas to examine include:

– The remote SQL statement generated by the DB2 optimizer. Ensure that it is

identical to the original query. Check for predicate ordering changes. A good

query optimizer should not be sensitive to the predicate ordering of a query;

unfortunately, not all DBMS optimizers are identical, and thus it is likely that

the optimizer of the remote data source may generate a different plan based

on the input predicate ordering. If this is true, this is a problem inherent in

the remote optimizer. Consider either modifying the predicate ordering on the

input to DB2 or contacting the service organization of the remote data source

for assistance.

Also, check for predicate replacements. A good query optimizer should not be

sensitive to equivalent predicate replacements; unfortunately, not all DBMS

optimizers are identical, and thus it is possible that the optimizer of the

remote data source may generate a different plan based on the input

predicate. For example, some optimizers cannot generate transitive closure

statements for predicates.

– The number of returned rows. You can get this number from Visual Explain.

If the query returns a large number of rows, network traffic is a potential

bottleneck.

– Additional functions. Does the remote SQL statement contain additional

functions compared with the original query? Some of the extra functions may

be generated to convert data types. Ensure that they are necessary.

Data-access methods

When it compiles an SQL or XQuery statement, the query optimizer estimates the

execution cost of different ways of satisfying the query. Based on its estimates, the

optimizer selects an optimal access plan. An access plan specifies the order of

operations required to resolve an SQL or XQuery statement. When an application

program is bound, a package is created. This package contains access plans for all of

the static SQL and XQuery statements in that application program. Access plans

for dynamic SQL and XQuery statements are created at the time that the

application is executed.

There are two ways to access data in a table:

v Scanning the entire table sequentially

278 Tuning Database Performance

v Locating specific table rows by first accessing an index on the table

To produce the results that the query requests, rows are selected depending on the

terms of the predicate, which are usually stated in a WHERE clause. The selected

rows in accessed tables are joined to produce the result set, and the result set

might be further processed by grouping or sorting the output.

Data access through index scans

An index scan occurs when the database manager accesses an index for any of the

following reasons:

v To narrow the set of qualifying rows (by scanning the rows in a certain range of

the index) before accessing the base table. The index scan range (the start and

stop points of the scan) is determined by the values in the query against which

index columns are being compared.

v To order the output.

v To retrieve the requested column data directly. If all of the requested data is in

the index, the indexed table does not need to be accessed. This is known as an

index-only access.

If indexes are created with the ALLOW REVERSE SCANS option, scans may also

be performed in the direction opposite to that with which they were defined.

Note: The optimizer chooses a table scan if no appropriate index has been created

or if an index scan would be more costly. An index scan might be more costly

when the table is small the index-clustering ratio is low, or the query requires most

of the table rows. To find out whether the access plan uses a table scan or an index

scan, use the Explain facility.

Index Scans to Delimit a Range

To determine whether an index can be used for a particular query, the optimizer

evaluates each column of the index starting with the first column to see if it can be

used to satisfy equality and other predicates in the WHERE clause. A predicate is an

element of a search condition in a WHERE clause that expresses or implies a

comparison operation. Predicates that can be used to delimit the range of an index

scan in the following cases:

v Tests for equality against a constant, a host variable, an expression that evaluates

to a constant, or a keyword

v Tests for “IS NULL” or “IS NOT NULL”

v Tests for equality against a basic subquery, which is a subquery that does not

contain ANY, ALL, or SOME, and the subquery does not have a correlated

column reference to its immediate parent query block (that is, the SELECT for

which this subquery is a subselect).

v Tests for strict and inclusive inequality.

The following examples illustrate when an index might be used to limit a range:

v Consider an index with the following definition:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

In this case, the following predicates might be used to limit the range of the scan

of index IX1:

Chapter 22. Query access plans 279

WHERE NAME = :hv1

 AND DEPT = :hv2

or

 WHERE MGR = :hv1

 AND NAME = :hv2

 AND DEPT = :hv3

Note that in the second WHERE clause, the predicates do not have to be

specified in the same order as the key columns appear in the index. Although

the examples use host variables, other variables such as parameter markers,

expressions, or constants would have the same effect.

v Consider a single index created using the ALLOW REVERSE SCANS parameter.

Such indexes support scans in the direction defined when the index was created

as well as in the opposite or reverse direction. The statement might look

something like this:

 CREATE INDEX iname ON tname (cname DESC) ALLOW REVERSE SCANS

In this case, the index (iname) is formed based on DESCending values in cname.

By allowing reverse scans, although the index on the column is defined for scans

in descending order, a scan can be done in ascending order. The actual use of

the index in both directions is not controlled by you but by the optimizer when

creating and considering access plans.

In the following WHERE clause, only the predicates for NAME and DEPT would

be used in delimiting the range of the index scan, but not the predicates for

SALARY or YEARS:

 WHERE NAME = :hv1

 AND DEPT = :hv2

 AND SALARY = :hv4

 AND YEARS = :hv5

This is because there is a key column (MGR) separating these columns from the

first two index key columns, so the ordering would be off. However, once the

range is determined by the NAME = :hv1 and DEPT = :hv2 predicates, the

remaining predicates can be evaluated against the remaining index key columns.

Index Scans to Test Inequality

Certain inequality predicates can delimit the range of an index scan. There are two

types of inequality predicates:

v Strict inequality predicates

The strict inequality operators used for range delimiting predicates are greater

than (>) and less than (<).

Only one column with strict inequality predicates is considered for delimiting a

range for an index scan. In the following example, the predicates on the NAME

and DEPT columns can be used to delimit the range, but the predicate on the

MGR column cannot be used.

 WHERE NAME = :hv1

 AND DEPT > :hv2

 AND DEPT < :hv3

 AND MGR < :hv4

v Inclusive inequality predicates

The following are inclusive inequality operators that can be used for range

delimiting predicates:

– >= and <=

280 Tuning Database Performance

– BETWEEN

– LIKE
For delimiting a range for an index scan, multiple columns with inclusive

inequality predicates will be considered. In the following example, all of the

predicates can be used to delimit the range of the index scan:

 WHERE NAME = :hv1

 AND DEPT >= :hv2

 AND DEPT <= :hv3

 AND MGR <= :hv4

To further illustrate this example, suppose that :hv2 = 404, :hv3 = 406, and :hv4

= 12345. The database manager will scan the index for all of departments 404

and 405, but it will stop scanning department 406 when it reaches the first

manager that has an employee number (MGR column) greater than 12345.

Index Scans to Order Data

If the query requires output in sorted order, an index might be used to order the

data if the ordering columns appear consecutively in the index, starting from the

first index key column. Ordering or sorting can result from operations such as

ORDER BY, DISTINCT, GROUP BY, “= ANY” subquery, “> ALL” subquery, “<

ALL” subquery, INTERSECT or EXCEPT, UNION. An exception to this is when the

index key columns are compared for equality against “constant values”, which is

any expression that evaluates to a constant. In this case the ordering column can be

other than the first index key columns.

Consider the following query:

 WHERE NAME = ’JONES’

 AND DEPT = ’D93’

 ORDER BY MGR

For this query, the index might be used to order the rows because NAME and

DEPT will always be the same values and will thus be ordered. That is, the

preceding WHERE and ORDER BY clauses are equivalent to:

 WHERE NAME = ’JONES’

 AND DEPT = ’D93’

 ORDER BY NAME, DEPT, MGR

A unique index can also be used to truncate a sort-order requirement. Consider the

following index definition and ORDER BY clause:

 UNIQUE INDEX IX0: PROJNO ASC

 SELECT PROJNO, PROJNAME, DEPTNO

 FROM PROJECT

 ORDER BY PROJNO, PROJNAME

Additional ordering on the PROJNAME column is not required because the IX0

index ensures that PROJNO is unique. This uniqueness ensures that there is only

one PROJNAME value for each PROJNO value.

Types of index access

In some cases, the optimizer might find that all data that a query requires from a

table can be retrieved from an index on the table. In other cases, the optimizer

might use more than one index to access tables. In the case of range-clustered

tables, data can be accessed via a ″virtual″ index, which computes the location of

data records.

Index-Only Access

Chapter 22. Query access plans 281

In some cases, all of the required data can be retrieved from the index without

accessing the table. This is known as an index-only access.

To illustrate an index-only access, consider the following index definition:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

The following query can be satisfied by accessing only the index, and without

reading the base table:

 SELECT NAME, DEPT, MGR, SALARY

 FROM EMPLOYEE

 WHERE NAME = ’SMITH’

Often, however, required columns that do not appear in the index. To obtain the

data for these columns, the table rows must be read. To allow the optimizer to

choose an index-only access, create a unique index with include columns. For

example, consider the following index definition:

 CREATE UNIQUE INDEX IX1 ON EMPLOYEE

 (NAME ASC)

 INCLUDE (DEPT, MGR, SALARY, YEARS)

This index enforces uniqueness of the NAME column and also stores and

maintains data for DEPT, MGR, SALARY, and YEARS columns, which allows the

following query to be satisfied by accessing only the index:

 SELECT NAME, DEPT, MGR, SALARY

 FROM EMPLOYEE

 WHERE NAME=’SMITH’

When you consider adding INCLUDE columns to an index, however, consider

whether the additional storage space and maintenance costs are justified. If queries

that can be satisfied by reading only such an index are rarely executed, the costs

might not be justified.

Multiple Index Access

The optimizer can choose to scan multiple indexes on the same table to satisfy the

predicates of a WHERE clause. For example, consider the following two index

definitions:

 INDEX IX2: DEPT ASC

 INDEX IX3: JOB ASC,

 YEARS ASC

The following predicates can be satisfied by using the two indexes:

 WHERE DEPT = :hv1

 OR (JOB = :hv2

 AND YEARS >= :hv3)

Scanning index IX2 produces a list of row IDs (RIDs) that satisfy the DEPT = :hv1

predicate. Scanning index IX3 produces a list of RIDs satisfying the JOB = :hv2 AND

YEARS >= :hv3 predicate. These two lists of RIDs are combined and duplicates

removed before the table is accessed. This is known as index ORing.

Index ORing may also be used for predicates specified in the IN clause, as in the

following example:

282 Tuning Database Performance

WHERE DEPT IN (:hv1, :hv2, :hv3)

Although the purpose of index ORing is to eliminate duplicate RIDs, the objective

of index ANDing is to find common RIDs. Index ANDing might occur with

applications that create multiple indexes on corresponding columns in the same

table and a query using multiple AND predicates is run against that table. Multiple

index scans against each indexed column in such a query produce values which

are hashed to create bitmaps. The second bitmap is used to probe the first bitmap

to generate the qualifying rows that are fetched to create the final returned data

set.

For example, given the following two index definitions:

 INDEX IX4: SALARY ASC

 INDEX IX5: COMM ASC

the following predicates could be resolved using these two indexes:

 WHERE SALARY BETWEEN 20000 AND 30000

 AND COMM BETWEEN 1000 AND 3000

In this example, scanning index IX4 produces a bitmap satisfying the SALARY

BETWEEN 20000 AND 30000 predicate. Scanning IX5 and probing the bitmap for IX4

results in the list of qualifying RIDs that satisfy both predicates. This is known as

“dynamic bitmap ANDing”. It occurs only if the table has sufficient cardinality and

the columns have sufficient values in the qualifying range, or sufficient duplication

if equality predicates are used.

To realize the performance benefits of dynamic bitmaps when scanning multiple

indexes, it may be necessary to change the value of the sort heap size (sortheap)

database configuration parameter, and the sort heap threshold (sheapthres) database

manager configuration parameter.

Additional sort heap space is required when dynamic bitmaps are used in access

plans. When sheapthres is set to be relatively close to sortheap (that is, less than a

factor of two or three times per concurrent query), dynamic bitmaps with multiple

index access must work with much less memory than the optimizer anticipated.

The solution is to increase the value of sheapthres relative to sortheap.

Note: The optimizer does not combine index ANDing and index ORing in

accessing a single table.

Index Access in Range clustered tables

Unlike standard tables, a range clustered table does not require a physical index

that maps a key value to a row like a traditional B-tree index. Instead, it leverages

the sequential nature of the column domain and uses a functional mapping to

generate the location of a given row in a table. In the simplest example of this

mapping, the first key value in the range is the first row in the table, and the

second value in the range is the second row in the table, and so on.

The optimizer uses the range-clustered property of the table to generate access

plans based on a perfectly clustered index whose only cost is computing the range

clustering function. The clustering of rows within the table is guaranteed because

range clustered tables retain their original key value ordering.

Chapter 22. Query access plans 283

Index access and cluster ratios

When it chooses an access plan, the optimizer estimates the number of I/Os

required to fetch required pages from disk to the buffer pool. This estimate

includes a prediction of buffer-pool usage, since additional I/Os are not required

to read rows in a page that is already in the buffer pool.

For index scans, information from the system catalog tables (SYSCAT.INDEXES)

helps the optimizer estimate I/O cost of reading data pages into the buffer pool. It

uses information from the following columns in the SYSCAT.INDEXES table:

v CLUSTERRATIO information indicates the degree to which the table data is

clustered in relation to this index. The higher the number, the better rows are

ordered in index key sequence. If table rows are in close to index-key sequence,

rows can be read from a data page while the page is in the buffer. If the value of

this column is -1, the optimizer uses PAGE_FETCH_PAIRS and

CLUSTERFACTOR information if it is available.

v PAGE_FETCH_PAIRS contains pairs of numbers that model the number of I/Os

required to read the data pages into buffer pools of various sizes together with

CLUSTERFACTOR information. Data is collected for these columns only if you

execute RUNSTATS on the index with the DETAILED clause.

If index clustering statistics are not available, the optimizer uses default values,

which assume poor clustering of the data to the index.

The degree to which the data is clustered with respect to the index can have a

significant impact on performance and you should try to keep one of the indexes

on the table close to 100 percent clustered.

In general, only one index can be one hundred percent clustered, except in those

cases where the keys are a superset of the keys of the clustering index or where

there is de facto correlation between the key columns of the two indexes.

When you reorganize an table, you can specify an index that will be used to

cluster the rows and attempt to preserve this characteristic during insert

processing. Because updates and inserts may make the table less well clustered in

relation to the index, you might need to periodically reorganize the table. To

reduce the frequency of reorganization on a table that has frequent changes due to

INSERTs, UPDATEs, and DELETES, use the PCTFREE parameter when you alter a

table. This allows for additional inserts to be clustered with the existing data.

Joins

A join is the process of combining information from two or more tables based on

some common domain of information. Rows from one table are paired with rows

from another table when information in the corresponding rows match on the

joining criterion.

For example, consider the following two tables:

 Table1 Table2

PROJ PROJ_ID PROJ_ID NAME

A 1 1 Sam

B 2 3 Joe

C 3 4 Mary

D 4 1 Sue

2 Mike

284 Tuning Database Performance

To join Table1 and Table2 where the ID columns have the same values, use the

following SQL statement:

 SELECT PROJ, x.PROJ_ID, NAME

 FROM TABLE1 x, TABLE2 y

 WHERE x.PROJ_ID = y.PROJ_ID

This query yields the following set of result rows:

 PROJ PROJ_ID NAME

A 1 Sam

A 1 Sue

B 2 Mike

C 3 Joe

D 4 Mary

Depending on the existence of a join predicate, as well as various costs involved as

determined by table and index statistics, the optimizer chooses one of the

following join methods:

v Nested-loop join

v Merge join

v Hash join

When two tables are joined, one table is selected as the outer table and the other as

the inner. The outer table is accessed first and is scanned only once. Whether the

inner table is scanned multiple times depends on the type of join and the indexes

that are present. Even if a query joins more than two tables, the optimizer joins

only two tables at a time. If necessary, temporary tables are created to hold

intermediate results.

You can provide explicit join operators, such as INNER or LEFT OUTER JOIN to

determine how tables are used in the join. Before you alter a query in this way,

however, you should allow the optimizer to determine how to join the tables. Then

analyze query performance to decide whether to add join operators.

Join methods

The optimizer can choose one of three basic join strategies when queries require

tables to be joined.

v Nested-loop join

v Merge join

v Hash join

These methods are described in the following sections.

Nested-Loop Join

A nested-loop join is performed in one of the following two ways:

v Scanning the inner table for each accessed row of the outer table

For example, consider that column A in tables T1 and T2 have the following

values:

Chapter 22. Query access plans 285

Outer table T1: column A Inner table T2: column A

2 3

3 2

3 2

3

1

To perform a nested-loop join, the database manager performs the following

steps:

 1. Read the first row from T1. The value for A is “2”

 2. Scan T2 until a match (“2”) is found, and then join the two rows

 3. Scan T2 until the next match (“2”) is found, and then join the two rows

 4. Scan T2 to the end of the table

 5. Go back to T1 and read the next row (“3”)

 6. Scan T2, starting at the first row, until a match (“3”) is found, and then join

the two rows

 7. Scan T2 until the next match (“3”) is found, and then join the two rows

 8. Scan T2 to the end of the table

 9. Go back to T1 and read the next row (“3”)

10. Scan T2 as before, joining all rows which match (“3”).
v Performing an index lookup on the inner table for each accessed row of the

outer table

This method can be used for the specified predicates if there is a predicate of the

following form:

 expr(outer_table.column) relop inner_table.column

where relop is a relative operator (for example =, >, >=, <, or <=) and expr is a

valid expression on the outer table. Consider the following examples:

 OUTER.C1 + OUTER.C2 <= INNER.C1

 OUTER.C4 < INNER.C3

This method might significantly reduce the number of rows accessed in the

inner table for each access of the outer table, although it depends on a number

of factors, including the selectivity of the join predicate.

When it evaluates a nested loop join, the optimizer also decides whether to sort the

outer table before performing the join. If it orders the outer table, based on the join

columns, the number of read operations to access pages from disk for the inner

table might be reduced, because they are more likely to be be in the buffer pool

already. If the join uses a highly clustered index to access the inner table and if the

outer table has been sorted, the number of index pages accessed might be

minimized.

In addition, if the optimizer expects that the join will make a later sort more

expensive, it might also choose to perform the sort before the join. A later sort

might be required to support a GROUP BY, DISTINCT, ORDER BY or merge join.

Merge Join

Merge join, sometimes known as merge scan join or sort merge join, requires a

predicate of the form table1.column = table2.column. This is called an equality join

predicate. Merge join requires ordered input on the joining columns, either through

index access or by sorting. A merge join cannot be used if the join column is a

LONG field column or a large object (LOB) column.

286 Tuning Database Performance

In a merge join, the joined tables are scanned at the same time. The outer table of

the merge join is scanned only once. The inner table is also scanned once unless

repeated values occur in the outer table. If there are repeated values occur, a group

of rows in the inner table might be scanned again. For example, if column A in

tables T1 and T2 has the following values:

 Outer table T1: column A Inner table T2: column A

2 1

3 2

3 2

3

3

To perform a merge join, the database manager performs the following steps:

1. Read the first row from T1. The value for A is “2”.

2. Scan T2 until a match is found, and then join the two rows.

3. Keep scanning T2 while the columns match, joining rows.

4. When the “3” in T2 is read, go back to T1 and read the next row.

5. The next value in T1 is “3”, which matches T2, so join the rows.

6. Keep scanning T2 while the columns match, joining rows.

7. The end of T2 is reached.

8. Go back to T1 to get the next row — note that the next value in T1 is the same

as the previous value from T1, so T2 is scanned again starting at the first “3” in

T2. The database manager remembers this position.

Hash Join

A hash join requires one or more predicates of the form table1.columnX =

table2.columnY, for which the column types are the same. For columns of type

CHAR, the length must be the same. For columns of type DECIMAL, the precision

and scale must be the same. For columns of type DECFLOAT, the precision must

be the same. The column type cannot be a LONG field column, or a large object

(LOB) column.

First, the designated INNER table is scanned and the rows copied into memory

buffers drawn from the sort heap specified by the sortheap database configuration

parameter. The memory buffers are divided into sections based on a hash value

that is computed on the columns of the join predicates. If the size of the INNER

table exceeds the available sort heap space, buffers from selected sections are

written to temporary tables.

When the inner table has been processed, the second, or OUTER, table is scanned

and its rows are matched to rows from the INNER table by first comparing the

hash value computed for the columns of the join predicates. If the hash value for

the OUTER row column matches the hash value of the INNER row column, the

actual join predicate column values are compared.

OUTER table rows that correspond to portions of the table not written to a

temporary table are matched immediately with INNER table rows in memory. If

the corresponding portion of the INNER table was written to a temporary table,

the OUTER row is also written to a temporary table. Finally, matching pairs of

table portions from temporary tables are read, and the hash values of their rows

are matched, and the join predicates are checked.

Chapter 22. Query access plans 287

For the full performance benefits of hash join, you might need to change the value

of the sortheap database configuration parameter and the sheapthres database

manager configuration parameter.

For the full performance benefits of hash joins, you might need to change the value

of the sortheap database configuration parameter and the sheapthres database

manager configuration parameter.

Hash-join performance is best if you can avoid hash loops and overflow to disk. To

tune hash-join performance, estimate the maximum amount of memory available

for sheapthres, then tune the sortheap parameter. Increase its setting until you avoid

as many hash loops and disk overflows as possible, but do not reach the limit

specified by the sheapthres parameter.

Increasing the sortheap value should also improve performance of queries that have

multiple sorts.

Strategies for selecting optimal joins

The optimizer uses various methods to select an optimal join strategy for a query.

Among these methods are the following search strategies, which are determined by

the optimization class of the query:

v Greedy join enumeration

– Efficient with respect to space and time

– Single direction enumeration; that is, once a join method is selected for two

tables, it is not changed during further optimization

– Might miss the best access plan when joining many tables. If your query joins

only two or three tables, the access plan chosen by the greedy join

enumeration is the same as the access plan chosen by dynamic programming

join enumeration. This is particularly true if the query has many join

predicates on the same column, either explicitly specified, or implicitly

generated through predicate transitive closure.
v Dynamic programming join enumeration

– Space and time requirements increase exponentially as the number of joined

tables increases

– Efficient and exhaustive search for best access plan

– Similar to the strategy used by DB2 for OS/390 or z/OS.

The join-enumeration algorithm is an important determinant of the number of plan

combinations that the optimizer explores.

Star-Schema Joins

The tables referenced in a query are almost always related by join predicates. If

two tables are joined without a join predicate, the Cartesian product of the two

tables is formed. In a Cartesian product, every qualifying row of the first table is

joined with every qualifying row of the second, creating a result table consisting of

the cross product of the size of the two tables that is usually very large. Since such

a plan is unlikely to perform well, the optimizer avoids even determining the cost

of such an access plan.

The only exceptions occur when the optimization class is set to 9 or in the special

case of star schemas. A star schema contains a central table called the fact table and

the other tables are called dimension tables. The dimension tables all have only a

288 Tuning Database Performance

single join that attaches them to the fact table, regardless of the query. Each

dimension table contains additional values that expand information about a

particular column in the fact table. A typical query consists of multiple local

predicates that reference values in the dimension tables and contains join

predicates connecting the dimension tables to the fact table. For these queries it

might be beneficial to compute the Cartesian product of multiple small dimension

tables before accessing the large fact table. This technique is beneficial when

multiple join predicates match a multi-column index.

DB2 can recognize queries against databases designed with star schemas that have

at least two dimension tables and can increase the search space to include possible

plans that compute the Cartesian product of dimension tables. If the plan that

computes the Cartesian products has the lowest estimated cost, it is selected by the

optimizer.

The star schema join strategy discussed above assumes that primary key indexes

are used in the join. Another scenario involves foreign key indexes. If the foreign

key columns in the fact table are single-column indexes and there is a relatively

high selectivity across all dimension tables, the following star join technique can be

used:

1. Process each dimension table by:

v Performing a semi-join between the dimension table and the foreign key

index on the fact table

v Hashing the row ID (RID) values to dynamically create a bitmap.
2. Use AND predicates against the previous bitmap for each bitmap.

3. Determine the surviving RIDs after processing the last bitmap.

4. Optionally sort these RIDs.

5. Fetch a base table row.

6. Rejoin the fact table with each of its dimension tables, accessing the columns in

dimension tables that are needed for the SELECT clause.

7. Reapply the residual predicates.

This technique does not require multi-column indexes. Explicit referential-integrity

constraints between the fact table and the dimension tables are not required,

although the relationship between the fact table and the dimension tables should

actually be related in this way.

The dynamic bitmaps created and used by star join techniques require sort heap

memory, the size of which is specified by the Sort Heap Size (sortheap) database

configuration parameter.

Early Out Joins

The optimizer may select an early out join when it detects that each row from one

of the table only needs to be joined with at most one row from the other table.

An early out join is possible when we have a join predicate on the key column(s)

of one of the tables. For example, consider the following query that returns the

names of employees and their direct managers.

SELECT EMPLOYEE.NAME AS EMPLOYEE_NAME, MANAGER.NAME AS MANAGER_NAME

FROM EMPLOYEE AS EMPLOYEE, EMPLOYEE AS MANAGER

WHERE EMPLOYEE.MANAGER_ID=MANAGER.ID

Chapter 22. Query access plans 289

Assuming the ID column is a key in the EMPLOYEE table and that every

employee has at most one manager, then the above join can avoid searching for a

subsequent matching row in the MANAGER table.

An early out join is also possible when there is a DISTINCT in the query. For

example, consider the following query that returns the names of car makes having

a model that sells for more than $30000.

SELECT DISTINCT MAKE.NAME

FROM MAKE, MODEL

WHERE MAKE.MAKE_ID=MODEL.MAKE_ID AND MODEL.PRICE>30000

For each car make, we only need to determine whether any one of its

manufactured models sell for more than $30000. Joining a car make with all of its

manufactured models selling for more than $30000 is unnecessary towards the

correctness of the query result.

An early out join is also possible when the join feeds a GROUP BY with a MIN or

a MAX aggregate function. For example, consider the following query that returns

stock symbols with the most recent date before the year 2000 for which a particular

stock’s closing price is at least 10% higher than its opening price:

SELECT DAILYSTOCKDATA.SYMBOL, MAX(DAILYSTOCKDATA.DATE) AS DATE

FROM SP500, DAILYSTOCKDATA

WHERE SP500.SYMBOL=DAILYSTOCKDATA.SYMBOL AND DAILYSTOCKDATA.DATE<’01/01/2000’ AND

 DAILYSTOCKDATA.CLOSE / DAILYSTOCKDATA.OPEN >= 1.1

GROUP BY DAILYSTOCKDATA.SYMBOL

Let us define the ’qualifying set’ as the set of rows from the DAILYSTOCKDATA

table that satisfies the date and price requirements and joins with a particular stock

symbol from the SP500 table. If the qualifying set from the DAILYSTOCKDATA

table, for each stock symbol row from the SP500 table, is ordered descending on

DATE, then we only need to return the 1st row from the qualifying set for each

symbol as that 1st row is the most recent date for that particular symbol. The other

rows in the qualifying set are not required for the correctness of the query.

Composite Tables

When the result of joining a pair of tables is a new table known as a composite

table, this table usually becomes the outer table of another join with another inner

table. This is known as a “composite outer” join. In some cases, particularly when

using the greedy-join enumeration technique, it is useful to make the result of

joining two tables the inner table of a later join. When the inner table of a join

consists of the result of joining two or more tables, this plan is a “composite inner”

join. For example, consider the following query:

SELECT COUNT(*)

FROM T1, T2, T3, T4

WHERE T1.A = T2.A AND

 T3.A = T4.A AND

 T2.Z = T3.Z

It might be beneficial to join table T1 and T2 (T1xT2), then join T3 to T4 (T3xT4)

and finally select the first join result as the outer table and the second join result as

the inner table. In the final plan ((T1xT2) x (T3xT4)), the join result (T3xT4) is

known as a composite inner. Depending on the query optimization class, the

optimizer places different constraints on the maximum number of tables that may

be the inner table of a join. Composite inner joins are allowed with optimization

classes 5, 7, and 9.

290 Tuning Database Performance

Replicated materialized query tables in partitioned database

environments

Replicated materialized query tables improve performance of frequently executed

joins in a partitioned database environment by allowing the database to manage

precomputed values of the table data.

Consider an example of a query and a replicated materialized table. The following

assumptions are made:

v The SALES table is in the multipartition table space REGIONTABLESPACE, and

is split on the REGION column.

v The EMPLOYEE and DEPARTMENT tables are in a single-partition database

partition group.

Create a replicated materialized query table based on the information in the

EMPLOYEE table.

 CREATE TABLE R_EMPLOYEE

 AS (

 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, WORKDEPT

 FROM EMPLOYEE

)

 DATA INITIALLY DEFERRED REFRESH IMMEDIATE

 IN REGIONTABLESPACE

 REPLICATED;

To update the content of the replicated materialized query table, run the following

statement:

 REFRESH TABLE R_EMPLOYEE;

Note: After using the REFRESH statement, you should run RUNSTATS on the

replicated table as you would any other table.

The following example calculates sales by employee, the total for the department,

and the grand total:

 SELECT d.mgrno, e.empno, SUM(s.sales)

 FROM department AS d, employee AS e, sales AS s

 WHERE s.sales_person = e.lastname

 AND e.workdept = d.deptno

 GROUP BY ROLLUP(d.mgrno, e.empno)

 ORDER BY d.mgrno, e.empno;

Instead of using the EMPLOYEE table, which is on only one database partition, the

database manager uses the R_EMPLOYEE table, which is replicated on each of the

database partitions where the SALES tables is stored. The performance

enhancement occurs because the employee information does not have to be moved

across the network to each database partition to calculate the join.

Replicated materialized query tables in collocated joins

Replicated materialized query tables can also assist in the collocation of joins. For

example, if a star schema contains a large fact table spread across twenty nodes,

the joins between the fact table and the dimension tables are most efficient if these

tables are collocated. If all of the tables are in the same database partition group, at

most one dimension table is partitioned correctly for a collocated join. The other

dimension tables cannot be used in a collocated join because the join columns on

the fact table do not correspond to the distribution key of the fact table.

Chapter 22. Query access plans 291

Consider a table called FACT (C1, C2, C3, ...) split on C1; and a table called DIM1

(C1, dim1a, dim1b, ...) split on C1; and a table called DIM2 (C2, dim2a, dim2b, ...)

split on C2; and so on.

In this case, you see that the join between FACT and DIM1 is perfect because the

predicate DIM1.C1 = FACT.C1 is collocated. Both of these tables are split on

column C1.

However, the join between DIM2 with the predicate WHERE DIM2.C2 = FACT.C2

cannot be collocated because FACT is split on column C1 and not on column C2.

In this case, you might replicate DIM2 in the database partition group of the fact

table so that the join occurs locally on each database partition.

Note: The replicated materialized query tables discussion here is related to

intra-database replication. Inter-database replication is concerned with

subscriptions, control tables, and data located in different databases and on

different operating systems.

When you create a replicated materialized query table, the source table can be a

single-node table or a multi-node table in a database partition group. In most

cases, the replicated table is small and can be placed in a single-node database

partition group. You can limit the data to be replicated by specifying only a subset

of the columns from the table or by specifying the number of rows through the

predicates used, or by using both methods. The data capture option is not required

for replicated materialized query tables to function.

A replicated materialized query table can also be created in a multi-node database

partition group so that copies of the source table are created on all of the database

partitions. Joins between a large fact table and the dimension tables are more likely

to occur locally in this environment that if you broadcast the source table to all

database partitions.

Indexes on replicated tables are not created automatically. You can create indexes

that are different from those on the source table. However, to prevent constraint

violations that are not present on the source tables, you cannot create unique

indexes or put constraints on the replicated tables. Constraints are disallowed even

if the same constraint occurs on the source table.

Replicated tables can be referenced directly in a query, but you cannot use the

NODENUMBER() predicate with a replicated table to see the table data on a

particular partition.

Use the EXPLAIN facility to see if a replicated materialized query table was used

by the access plan for a query. Whether the access plan chosen by the optimizer

uses the replicated materialized query table depends on the information that needs

to be joined. The optimizer might not use the replicated materialized query table if

the optimizer determines that it would be cheaper to broadcast the original source

table to the other database partitions in the database partition group.

Join strategies in partitioned databases

In some ways, join strategies are different in a partitioned database environment

than in a non-partitioned database environment. Additional techniques can be

applied to standard join methods to improve performance.

292 Tuning Database Performance

One consideration for those tables involved in frequent joins in a partitioned

database environment is that of table collocation. Table collocation provides the

means in a partitioned database environment to locate data from one table with

the data from another table at the same database partition based on the same

distribution key. Once collocated, data to be joined can participate in a query

without having to be moved to another database partition as part of the query

activity. Only the answer set for the join is moved to the coordinator node.

Table Queues

The descriptions of join techniques in a partitioned database environment use the

following terminology:

v table queue

A mechanism for transferring rows between database partitions, or between

processors in a single partition database.

v directed table queue

A table queue in which rows are hashed to one of the receiving database

partitions.

v broadcast table queue

A table queue in which rows are sent to all of the receiving database partitions,

but are not hashed.

A table queue is used in the following circumstances:

v To pass table data from one database partition to another when using

inter-partition parallelism

v To pass table data within a database partition when using intra-partition

parallelism

v To pass table data within a database partition when using a single partition

database.

Each table queue is passes the data in a single direction. The compiler decides

where table queues are required, and includes them in the plan. When the plan is

executed, the connections between the database partitions initiate the table queues.

The table queues close as processes end.

There are several types of table queues:

v Asynchronous table queues. These table queues are known as asynchronous

because they read rows in advance of any FETCH being issued by the

application. When the FETCH is issued, the row is retrieved from the table

queue.

Asynchronous table queues are used when you specify the FOR FETCH ONLY

clause on the SELECT statement. If you are only fetching rows, the

asynchronous table queue is faster.

v Synchronous table queues. These table queues are known as synchronous because

they read one row for each FETCH that is issued by the application. At each

database partition, the cursor is positioned on the next row to be read from that

database partition.

Synchronous table queues are used when you do not specify the FOR FETCH

ONLY clause on the SELECT statement. In a partitioned database environment,

if you are updating rows, the database manager will use the synchronous table

queues.

v Merging table queues.

These table queues preserve order.

Chapter 22. Query access plans 293

v Non-merging table queues.

These table queues are also known as “regular” table queues. They do not

preserve order.

v Listener table queues.

These table queues are use with correlated subqueries. Correlation values are

passed down to the subquery and the results are passed back up to the parent

query block using this type of table queue.

Join methods in partitioned database environments

The following figures illustrate join methods in a partitioned database

environment.

Note: In the diagrams q1, q2, and q3 refer to table queues in the examples. The

tables that are referenced are divided across two database partitions for the

purpose of these scenarios. The arrows indicate the direction in which the table

queues are sent. The coordinator node is database partition 0.

Collocated Joins

A collocated join occurs locally on the database partition where the data resides.

The database partition sends the data to the other database partitions after the join

is complete. For the optimizer to consider a collocated join, the joined tables must

be collocated, and all pairs of the corresponding distribution key must participate

in the equality join predicates.

The following figure provides an example.

Note: Replicated materialized query tables enhance the likelihood of collocated

joins.

Broadcast Outer-Table Joins

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

RESULTS

Both the LINEITEM and ORDERS tables are partitioned on the

ORDERKEY column. The join is done locally at each database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

• Scan
ORDERS

• Apply
predicates

• Scan
LINEITEM

• Apply
predicates

• Join
• Insert into q1

q1

q1

Figure 23. Collocated Join Example

294 Tuning Database Performance

Broadcast outer-table joins are a parallel join strategy that can be used if there are

no equality join predicates between the joined tables. It can also be used in other

situations in which it is the most cost-effective join method. For example, a

broadcast outer-table join might occur when there is one very large table and one

very small table, neither of which is split on the join predicate columns. Instead of

splitting both tables, it might be cheaper to broadcast the smaller table to the larger

table. The following figures provide an example.

Directed Outer-Table Joins

In the directed outer-table join strategy, each row of the outer table is sent to one

portion of the inner table, based on the splitting attributes of the inner table. The

join occurs on this database partition. The following figure provides an example.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is sent to all database partitions that have the LINEITEM table.
Table queue q2 is broadcast to all database partitions of the inner table.

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Read q2
• Join
• Insert q1

q2 q2

q1

q1

q2q2

Figure 24. Broadcast Outer-Table Join Example

Chapter 22. Query access plans 295

Directed Inner-Table and Outer-Table Joins

In the directed inner-table and outer-table join strategy, rows of both the outer and

inner tables are directed to a set of database partitions, based on the values of the

joining columns. The join occurs on these database partitions. The following figure

provides an example. An example is shown in the following figure.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

Read q1
Process
Return
COUNT

Scan
ORDERS

Apply
predicates

Hash
ORDERKEY

Write q2

Scan
ORDERS

Apply
predicates

Hash
ORDERKEY

Write q2

The LINEITEM table is partitioned on the ORDERKEY column.
The ORDERS table is partitioned on a different column.
The ORDERS table is hashed and sent to the correct LINEITEM
table database partition.
In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

Scan
LINEITEM

Apply
predicates

Read q2
Join
Insert into q1

Scan
LINEITEM

Apply
predicates

Read q2
Join
Insert into q1

q2 q2

q1

q1

q2q2

Figure 25. Directed Outer-Table Join Example

296 Tuning Database Performance

Broadcast Inner-Table Joins

In the broadcast inner-table join strategy, the inner table is broadcast to all the

database partitions of the outer join table. The following figure provides an

example.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

• Scan
ORDERS

• Apply
predicates

• Hash
ORDERKEY

• Write q2

Neither table is partitioned on the ORDERKEY column.

Both tables are hashed and are sent to new database

partitions where they are joined.

Both table queue q2 and q3 are directed.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q2q2

q3 q3

q2

q3

q1

q1

q2

q3

Figure 26. Directed Inner-Table and Outer-Table Join Example

Chapter 22. Query access plans 297

Directed Inner-Table Joins

With the directed inner-table join strategy, each row of the inner table is sent to one

database partition of the outer join table, based on the splitting attributes of the

outer table. The join occurs on this database partition. The following figure

provides an example.

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table.
Table queue q3 is broadcast to all database partitions of the outer table.

Figure 27. Broadcast Inner-Table Join Example

298 Tuning Database Performance

Effects of sorting and grouping

When the optimizer chooses an access plan, it considers the performance impact of

sorting data. Sorting occurs when no index satisfies the requested ordering of

fetched rows. Sorting might also occur when the optimizer determines that a sort

is less expensive than an index scan. The optimizer sort data in one of the

following ways:

v Piping the results of the sort when the query is executed.

v Internal handling of the sort within the database manager.

Piped versus non-piped sorts

If the final sorted list of data can be read in a single sequential pass, the results can

be piped. Piping is quicker than non-piped ways of communicating the results of

the sort. The optimizer chooses to pipe the results of a sort whenever possible.

Whether or not a sort is piped, the sort time depends on a number of factors,

including the number of rows to be sorted, the key size and the row width. If the

rows to be sorted occupy more than the space available in the sort heap, several

sort passes are performed, in which each pass sorts a subset of the entire set of

rows. Each sort pass is stored in a temporary table in the buffer pool. If there is not

End Users

Select...

Coordinator Node

Partition 0 Partition 1

• Read q1
• Process
• Return

COUNT

• Scan
ORDERS

• Apply
predicates

• Write q2

• Scan
ORDERS

• Apply
predicates

• Write q2

The ORDERS table is partitioned on the ORDERKEY column.

The LINEITEM table is partitioned on a different column.

The LINEITEM table is hashed and sent to the correct ORDERS table database partition.

In this example, the join predicate is assumed to be:

ORDERS.ORDERKEY = LINEITEM.ORDERKEY.

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

• Scan
LINEITEM

• Apply
predicates

• Hash
ORDERKEY

• Write q3

• Read q2
• Read q3
• Join
• Insert q1

q3 q3

q2

q1

q1

q2

q3

Figure 28. Directed Inner-Table Join Example

Chapter 22. Query access plans 299

enough space in the buffer pool, pages from this temporary table might be written

to disk. When all the sort passes are complete, these sorted subsets must be

merged into a single sorted set of rows. If the sort is piped, the rows are handed

directly to Relational Data Services as they are merged.

Group and sort pushdown operators

In some cases, the optimizer can choose to push down a sort or aggregation

operation to Data Management Services from the Relational Data Services

component. Pushing down these operations improves performance by allowing the

Data Management Services component to pass data directly to a sort or

aggregation routine. Without this pushdown, Data Management Services first

passes this data to Relational Data Services, which then interfaces with the sort or

aggregation routines. For example, the following query benefits from this

optimization:

 SELECT WORKDEPT, AVG(SALARY) AS AVG_DEPT_SALARY

 FROM EMPLOYEE

 GROUP BY WORKDEPT

Group operations in sorts

When sorting produces the order required for a GROUP BY operation, the

optimizer can perform some or all of the GROUP BY aggregations while doing the

sort. This is advantageous if the number of rows in each group is large. It is even

more advantageous if doing some of the grouping during the sort reduces or

eliminates the need for the sort to spill to disk.

An aggregation in sort requires as many as the following three stages of

aggregation to ensure that proper results are returned.

1. The first stage of aggregation, partial aggregation, calculates the aggregate

values until the sort heap is filled. In partial aggregation unaggregated data is

taken in and partial aggregates are produced. If the sort heap is filled, the rest

of the data spills to disk, including all of the partial aggregations that have

been calculated in the current sort heap. After the sort heap is reset, new

aggregations are started.

2. The second stage of aggregation, intermediate aggregation, takes all of the

spilled sort runs, and aggregates further on the grouping keys. The aggregation

cannot be completed because the grouping key columns are a subset of the

distribution key columns. Intermediate aggregation uses existing partial

aggregates to produce new partial aggregates. This stage does not always occur.

It is used for both intra-partition and inter-partition parallelism. In

intra-partition parallelism, the grouping is finished when a global grouping key

is available. In inter-partition parallelism, this occurs when the grouping key is

a subset of the distribution key dividing groups across database partitions, and

thus requires redistribution to complete the aggregation. A similar case exists in

intra-partition parallelism when each agent finishes merging its spilled sort

runs before reducing to a single agent to complete the aggregation.

3. The last stage of aggregation, final aggregation, uses all of the partial

aggregates and produces final aggregates. This step always takes place in a

GROUP BY operator. Sort cannot perform complete aggregation because they

cannot guarantee that the sort will not split. Complete aggregation takes in

unaggregated data and produces final aggregates. If the distribution does not

prohibit its use, this method of aggregation is usually used to group data that

is already in the correct order.

300 Tuning Database Performance

Optimization strategies

Optimization strategies for intra-partition parallelism

The optimizer can choose an access plan to execute a query in parallel within a

single database partition if a degree of parallelism is specified when the SQL

statement is compiled.

At execution time, multiple database agents called subagents are created to execute

the query. The number of subagents is less than or equal to the degree of

parallelism specified when the SQL statement was compiled.

To parallelize an access plan, the optimizer divides it into a portion that is run by

each subagent and a portion that is run by the coordinating agent. The subagents

pass data through table queues to the coordinating agent or to other subagents. In

a partitioned database environment, subagents can send or receive data through

table queues from subagents in other database partitions.

Intra-partition parallel scan strategies

Relational scans and index scans can be performed in parallel on the same table or

index. For parallel relational scans, the table is divided into ranges of pages or

rows. A range of pages or rows is assigned to a subagent. A subagent scans its

assigned range and is assigned another range when it has completed its work on

the current range.

For parallel index scans, the index is divided into ranges of records based on index

key values and the number of index entries for a key value. The parallel index

scan proceeds like the parallel table scan with subagents being assigned a range of

records. A subagent is assigned a new range when it has complete its work on the

current range.

The optimizer determines the scan unit (either a page or a row) and the scan

granularity.

Parallel scans provide an even distribution of work among the subagents. The goal

of a parallel scan is to balance the load among the subagents and keep them

equally busy. If the number of busy subagents equals the number of available

processors and the disks are not overworked with I/O requests, then the machine

resources are being used effectively.

Other access plan strategies might cause data imbalance as the query executes. The

optimizer chooses parallel strategies that maintain data balance among subagents.

Intra-partition parallel sort strategies

The optimizer can choose one of the following parallel sort strategies:

v Round-robin sort

This is also known as a redistribution sort. This method uses shared memory

efficiently redistribute the data as evenly as possible to all subagents. It uses a

round-robin algorithm to provide the even distribution. It first creates an

individual sort for each subagent. During the insert phase, subagents insert into

each of the individual sorts in a round-robin fashion to achieve a more even

distribution of data.

v Partitioned sort

Chapter 22. Query access plans 301

This is similar to the round-robin sort in that a sort is created for each subagent.

The subagents apply a hash function to the sort columns to determine into

which sort a row should be inserted. For example, if the inner and outer tables

of a merge join are a partitioned sort, a subagent can use merge join to join the

corresponding table portions and execute in parallel.

v Replicated sort

This sort is used if each subagent requires all of the sort output. One sort is

created and subagents are synchronized as rows are inserted into the sort. When

the sort is completed, each subagent reads the entire sort. If the number of rows

is small, this sort may be used to rebalance the data stream.

v Shared sort

This sort is the same as a replicated sort, except the subagents open a parallel

scan on the sorted result to distribute the data among the subagents in a way

similar to the round-robin sort.

Intra-partition parallel temporary tables

Subagents can cooperate to produce a temporary table by inserting rows into the

same table. This is called a shared temporary table. The subagents can open

private scans or parallel scans on the shared temporary table depending on

whether the data stream is to be replicated or split.

Intra-partition parallel aggregation strategies

Aggregation operations can be performed in parallel by subagents. An aggregation

operation requires the data to be ordered on the grouping columns. If a subagent

can be guaranteed to receive all the rows for a set of grouping column values, it

can perform a complete aggregation. This can happen if the stream is already split

on the grouping columns because of a previous partitioned sort.

Otherwise, the subagent can perform a partial aggregation and use another

strategy to complete the aggregation. Some of these strategies are:

v Send the partially aggregated data to the coordinator agent through a merging

table queue. The coordinator completes the aggregation.

v Insert the partially aggregated data into a partitioned sort. The sort is split on

the grouping columns and guarantees that all rows for a set of grouping

columns are contained in one sort partition.

v If the stream needs to be replicated to balance processing, the partially

aggregated data can be inserted into a replicated sort. Each subagent completes

the aggregation using the replicated sort, and receives an identical copy of the

aggregation result.

Intra-partition parallel join strategies

Join operations can be performed in parallel by subagents. Parallel join strategies

are determined by the characteristics of the data stream.

A join can be parallelized by partitioning or by replicating the data stream on the

inner and outer tables of the join, or both. For example, a nested loop join can be

parallelized if its outer stream is partitioned for a parallel scan and the inner

stream is re-evaluated independently by each subagent. A merged join can be

parallelized if its inner and outer streams are value-partitioned for partitioned

sorts.

302 Tuning Database Performance

Optimization strategies for MDC tables

If you create multidimensional clustering (MDC) tables, the performance of many

queries might improve because the optimizer can apply additional optimization

strategies. These strategies are primarily based on the improved efficiency of block

indexes, but the advantage of clustering on more than one dimension also permits

faster data retrieval.

Note: MDC table optimization strategies can also implement the performance

advantages of intra-partition parallelism and inter-partition parallelism.

Consider the following specific advantages of MDC tables:

v Dimension block index lookups can identify the required portions of the table

and quickly scan only the required blocks.

v Because block indexes are smaller than RID indexes, lookups are faster.

v Index ANDing and ORing can be performed at the block level and combined

with RIDs.

v Data is guaranteed to be clustered on extents, which makes retrieval faster.

v Rows can be deleted faster when rollout can be used.

Consider the following simple example for an MDC table named SALES with

dimensions defined on the region and month columns:

SELECT * FROM SALES

 WHERE MONTH=’March’ AND REGION=’SE’

For this query, the optimizer can perform a dimension block index lookup to find

blocks in which the month of March and the SE region occur. Then it can quickly

scan only the resulting blocks of the table to fetch the result set.

Rollout deletion

When conditions are met to allow delete using rollout, a more efficient way to

delete rows from MDC tables is used. The conditions are:

v The DELETE statement is searched, not positioned (that is, does not use the

“WHERE CURRENT OF” clause).

v No WHERE clause (all rows are to be deleted) or the only conditions in the

WHERE clause are on dimensions.

v The table is not defined with the DATA CAPTURE CHANGES clause.

v The table is not the parent in a referential integrity relationship.

v The table does not have on delete triggers defined.

v The table is not used in any MQTs that are refreshed immediately.

v A cascaded delete operation may qualify for rollout, if its foreign key is a subset

of its table’s dimension columns.

v The DELETE statement cannot appear in a SELECT statement executing against

the temporary table that identifies the set of affected rows prior to a triggering

SQL operation (specified by the OLD TABLE AS clause on the CREATE

TRIGGER statement).

For a rollout deletion, the deleted records are not logged. Instead, the pages that

contain the records are made to look empty by reformatting parts of the pages. The

changes to the reformatted parts are logged, but the records themselves are not

logged.

Chapter 22. Query access plans 303

The default behavior, immediate cleanup rollout, is to clean up RID indexes at delete

time. This mode can also be specified by setting the DB2_MDC_ROLLOUT

registry variable to IMMEDIATE or by specifying IMMEDIATE with the SET

CURRENT MDC ROLLOUT MODE statement. There is no change in the logging

of index updates, as compared to a standard delete, so the performance

improvement depends on how many RID indexes there are. The fewer RID

indexes, the better the improvement is, as a percentage of the total time and log

space.

An estimate of the amount of space saved in the log can be made with this

formula, where N is the number of records deleted, S is total size of the records

deleted, including overhead such as null indicators and varchar lengths, and P is

the number of pages in the blocks containing the records deleted:

 S + 38*N - 50*P

This figure is the reduction in actual log data. The saving on active log space

requirement is double due to saving for space reserved for rollback.

Alternatively, you can have the RID indexes updated after the transaction commits,

using deferred cleanup rollout. This mode can also be specified by setting the

DB2_MDC_ROLL_OUT registry variable to DEFER or by specifying DEFERRED

with the SET CURRENT MDC ROLLOUT MODE statement. In a deferred rollout,

RID indexes are cleaned up asynchronously in the background after the commit of

the delete. This method of rollout can result in significantly faster deletion times

for very large deletes or when a number of RID indexes exist on a table. The speed

of the overall cleanup operation is increased because during a deferred index

cleanup, the indexes are cleaned up in parallel, whereas in an immediate index

cleanup, each row in the index is cleaned up one by one. As well, the transactional

log space requirement for the DELETE statement is significantly reduced because

the asynchronous index cleanup logs the index updates by index page instead of

by index key.

Note: Deferred cleanup rollout requires additional memory resources, which are

taken from the database heap. If DB2 is unable to allocate the memory structures it

requires, the deferred cleanup rollout fails and a message is written to the

administrator log.

When to use deferred cleanup rollout

If delete performance is the most important factor to you, and there are RID

indexes defined on the table, use deferred cleanup rollout. Note that prior to index

cleanup, index-based scans of the rolled out blocks suffer a small performance

penalty, depending on the amount of rolled out data. Here are other issues to

consider when deciding between immediate index cleanup and deferred index

cleanup:

v Size of delete: Choose deferred cleanup rollout for very large deletes. In cases

where dimensional delete statements are frequently issued on many small MDC

tables, the overhead to asynchronously clean index objects might outweigh the

benefit of the time saved during the delete.

v Number and type of indexes: If the table contains a number of RID indexes,

which require row-level processing, use deferred cleanup rollout.

v Block availability: If you want the block space freed by the delete statement to

be available immediately after the delete statement commits, use immediate

cleanup rollout.

304 Tuning Database Performance

v Log space: If log space is limited, use deferred cleanup rollout for large

deletions.

v Memory constraints: Deferred cleanup rollout consumes additional database

heap on all tables which have deferred cleanup pending.

To disable rollout behavior in deletions, you can set the DB2_MDC_ROLLOUT

registry variable to OFFor specify NONE with the SET CURRENT MDC ROLLOUT

MODE statement.

Optimization strategies for partitioned tables

Data partition elimination refers to the database servers ability to determine, based

on the query predicates, that only a subset of the data partitions of a table need to

be accessed to answer a query. Data partition elimination offers particular benefit

when running decision support queries against a partitioned table.

A partitioned table uses a data organization scheme in which table data is divided

across multiple storage objects, called data partitions or ranges, according to values

in one or more table partitioning key columns of the table. Data from a given table

is partitioned into multiple storage objects based on the specifications provided in

the PARTITION BY clause of the CREATE TABLE statement. These storage objects

can be in different table spaces, in the same table space, or a combination of both.

The following example demonstrates the performance benefits of data partition

elimination. If you issue the following statement:

CREATE TABLE custlist(subsdate DATE, Province CHAR(2), AccountID INT)

PARTITION BY RANGE(subsdate)

(STARTING FROM ’1/1/1990’ IN ts1,

STARTING FROM ’1/1/1991’ IN ts1,

STARTING FROM ’1/1/1992’ IN ts1,

STARTING FROM ’1/1/1993’ IN ts2,

STARTING FROM ’1/1/1994’ IN ts2,

STARTING FROM ’1/1/1995’ IN ts2,

STARTING FROM ’1/1/1996’ IN ts3,

STARTING FROM ’1/1/1997’ IN ts3,

STARTING FROM ’1/1/1998’ IN ts3,

STARTING FROM ’1/1/1999’ IN ts4,

STARTING FROM ’1/1/2000’ IN ts4,

STARTING FROM ’1/1/2001’ ENDING ’12/31/2001’ IN ts4);

Assume you are interested in customer information for the year 2000. If you issue

the following query:

SELECT * FROM custlist WHERE subsdate BETWEEN ’1/1/2000’ AND ’12/31/2000’;

As Figure 29 on page 306 shows, the database server determines that only one data

partition in table space 4 (ts4) must be accessed to resolve this query.

Chapter 22. Query access plans 305

Another example of data partition elimination shown in figure Figure 30, is an

index scan involving two indexes and based on the following scheme:

CREATE TABLE multi (sale_date date, region char(2))

PARTITION BY (sale_date)

(STARTING ’01/01/2005’ ENDING ’12/31/2005’ EVERY 1 MONTH);

CREATE INDEX sx ON multi(sale_date);

CREATE INDEX rx ON multi(region);

If you issue the following query:

SELECT * FROM multi WHERE

sale_date BETWEEN ’6/1/2005’ AND ’7/31/2005’ AND REGION = ’NW’;

Figure 29. The performance benefits of data partition elimination on a partitioned table

Figure 30. Optimizer decision path for both table partitioning and index ANDing

306 Tuning Database Performance

Without table partitioning, one likely plan is index ANDing. Index ANDing

performs the following tasks:

v Reads all relevant index entries from each index

v Saves both sets of row identifiers (RIDs)

v Matches RIDs to determine which occur in both indexes

v Uses the RIDs to fetch the rows

As Figure 30 on page 306 demonstrates, with table partitioning, the index is read to

find matches for both region and sale_date, allowing for fast retrieval of matching

rows.

DB2 Explain

You can also use DB2 Explain to determine the partition elimination chosen by the

DB2 optimizer. The DP Elim Predicates information shows which data partitions

are scanned to resolve the following query:

SELECT * FROM custlist WHERE subsdate

BETWEEN ’12/31/1999’ AND ’1/1/2001’

Arguments:

DPESTFLG: (Number of data partitions accessed are Estimated)

 FALSE

DPLSTPRT: (List of data partitions accessed)

 9-11

DPNUMPRT: (Number of data partitions accessed)

 3

DP Elim Predicates:

Range 1)

 Stop Predicate: (Q1.A <= ’01/01/2001’)

 Start Predicate: (’12/31/1999’ <= Q1.A)

Objects Used in Access Plan:

 Schema: MRSRINI

 Name: CUSTLIST

 Type: Data Partitioned Table

 Time of creation: 2005-11-30-14.21.33.857039

 Last statistics update: 2005-11-30-14.21.34.339392

 Number of columns: 3

 Number of rows: 100000

 Width of rows: 19

 Number of buffer pool pages: 1200

 Number of data partitions: 12

 Distinct row values: No

 Tablespace name: <VARIOUS>

Multi-column support

Data partition elimination works for cases where multiple columns are used as the

table partitioning key.

For example, if you issue the following statement:

CREATE TABLE sales(year INT, month INT)

 PARTITION BY RANGE(year, month)

 (STARTING FROM (2001, 1) ENDING AT(2001,3) IN ts1,

Chapter 22. Query access plans 307

ENDING AT(2001,6) IN ts2,

 ENDING AT(2001,9) IN ts3,

 ENDING AT(2001,12) IN ts4,

 ENDING AT(2002,3) IN ts5,

 ENDING AT(2002,6) IN ts6,

 ENDING AT(2002,9) IN ts7,

 ENDING AT(2002,12) IN ts8)

Next, issue the following query:

 SELECT * FROM sales WHERE year = 2001 AND month < 8

The query optimizer deduces that only data partitions in ts1, ts2 and ts3 must be

accessed to resolve this query.

Note: In the case where multiple columns make up the table partitioning key, data

partition elimination is only possible when you have predicates on the leading

columns of the composite key, since the non-leading columns used for the table

partitioning key are not independent.

Multi-range support

It is possible to achieve data partition elimination on data partitions with multiple

ranges (that is, OR’ed together). Using the table created in the previous example,

execute the following query:

 SELECT * FROM sales

 WHERE (year = 2001 AND month <= 3) OR (year = 2002 and month >= 10)

The database server only accesses data for the first quarter of 2001 and the last

quarter of 2002.

Generated columns

You can use generated columns as table partitioning keys.

For example, you can issue the following statement:

CREATE TABLE sales(a INT, b INT GENERATED ALWAYS AS (a / 5))

 IN ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8,ts9,ts10

 PARTITION BY RANGE(b)

 (STARTING FROM (0) ENDING AT(1000) EVERY (50))

In this case, predicates on the generated column are used for data partition

elimination. In addition, when the expression used to generate the columns is

monotonic, the database server translates predicates on the source columns into

predicates on the generated columns, which enables data partition elimination on

the generated columns.

For example, if you have the following query:

 SELECT * FROM sales WHERE a > 35

The database server generates an extra predicate on b (b > 7) from a (a > 35), thus

allowing data partition elimination.

Join predicates

Join predicates can also be used in data partition elimination, if the join predicate

is pushed down to the table access level. The join predicate is only pushed down

to the table access level on the inner of a nested loop join (NLJN).″

308 Tuning Database Performance

Consider the following tables:

CREATE TABLE T1(A INT, B INT)

 PARTITION BY RANGE(A, B)

 (STARTING FROM (1, 1)

 ENDING (1,10) IN ts1, ENDING (1,20) IN ts2,

 ENDING (2,10) IN ts3, ENDING (2,20) IN ts4,

 ENDING (3,10) IN ts5, ENDING (3,20) IN ts6,

 ENDING (4,10) IN ts7, ENDING (4,20) IN ts8)

CREATE TABLE T2 (A INT, B INT)

Predicates used:

P1: T1.A = T2.A

P2: T1.B > 15

In this example, the exact data partitions that will be accessed at compile time

cannot be determined, due to unknown outer values of the join. In this case, as

well as cases where host variables or parameter markers are used, data partition

elimination occurs at runtime when the necessary values are bound.

During runtime when T1 is the inner of a NLJN, data partition elimination occurs

dynamically, based on the predicates, for every outer value of T2.A. During

runtime the predicates T1.A = 3 and T1.B > 15 are applied for the outer value T2.A

= 3, which qualifies the data partitions in table spaces ts6 and ts7 to be accessed.

Consider that column A in tables T1 and T2 have the following values:

 Outer table T2:

column A

Inner table T1:

column A

Inner table T1:

column B

Inner table T1: data

partition location

2 3 20 ts6

3 2 10 ts3

3 2 18 ts4

3 15 ts6

1 40 ts3

To perform a nested-loop join (assuming a table scan for the inner table), the

database manager performs the following steps:

1. Reads the first row from T2. The value for A is 2.

2. Binds T2.A value (which is 2) to the column T2.A in the join predicate T1.A =

T2.A. The predicate becomes T1.A = 2.

3. Applies data partition elimination using the predicates T1.A = 2 and T1.B > 15.

This qualifies data partitions in table spaces ts4 and ts5.

4. Scans the data partitions in table spaces ts4 and ts5 of table T1 until a row is

found after applying T1.A = 2 and T1.B > 15. The first row found that qualifies

is row 3 of T1.

5. Joins the matching row.

6. Scans the data partitions in table spaces ts4 and ts5 of table T1 until the next

match (T1.A = 2 and T1.B > 15) is found. No more rows are found.

7. Repeats steps 1 through 6 for next row (replacing the value of A with 3) of T2

until all the rows from T2 are exhausted.

Chapter 22. Query access plans 309

Materialized query tables

Materialized query tables (MQTs) are a powerful way to improve response time for

complex queries, especially queries that might require some of the following

operations:

v Aggregate data over one or more dimensions

v Joins and aggregate data over a group of tables

v Data from a commonly accessed subset of data, that is, from a “hot” horizontal

or vertical database partition

v Repartitioned data from a table, or part of a table, in a partitioned database

environment

Knowledge of MQTs is integrated into the SQL and XQuery compiler. In the

compiler, the query rewrite phase and the optimizer match queries with MQTs and

determine whether to substitute an MQT for a query that accesses the base tables.

If an MQT is used, the EXPLAIN facility can provide information about which

MQT was selected.

Because MQTs behave like regular tables in many ways, the same guidelines for

optimizing data access using table space definitions, creating indexes, and issuing

RUNSTATS apply to MQTs.

To help you understand the power of MQTs, the following example shows a

multidimensional analysis query and how it takes advantage of MQTs.

In this example, assume a database warehouse that contains a set of customers and

a set of credit card accounts. The warehouse records the set of transactions that are

made with the credit cards. Each transaction contains a set of items that are

purchased together. This schema is classified as a multi-star because has two large

tables, one containing transaction items and the other identifying the purchase

transactions.

Three hierarchical dimensions describe a transaction: product, location, and time.

The product hierarchy is stored in two normalized tables representing the product

group and the product line. The location hierarchy contains city, state, and country

or region information and is represented in a single de-normalized table. The time

hierarchy contains day, month, and year information and is encoded in a single

date field. The date dimensions are extracted from the date field of the transaction

using built-in functions. Other tables in this schema represent account information

for customers and customer information.

An MQT is created with the sum and count of sales for each level of the following

hierarchies:

v Product

v Location

v Time, composed of year, month, day.

Many queries can be satisfied from this stored aggregate data. The following

example shows how to create an MQT that computes sum and count of sales along

the product group and line dimensions; along the city, state, and country

dimension; and along the time dimension. It also includes several other columns in

its GROUP BY clause.

310 Tuning Database Performance

CREATE TABLE dba.PG_SALESSUM

 AS (

 SELECT l.id AS prodline, pg.id AS pgroup,

 loc.country, loc.state, loc.city,

 l.name AS linename, pg.name AS pgname,

 YEAR(pdate) AS year, MONTH(pdate) AS month,

 t.status,

 SUM(ti.amount) AS amount,

 COUNT(*) AS count

 FROM cube.transitem AS ti, cube.trans AS t,

 cube.loc AS loc, cube.pgroup AS pg,

 cube.prodline AS l

 WHERE ti.transid = t.id

 AND ti.pgid = pg.id

 AND pg.lineid = l.id

 AND t.locid = loc.id

 AND YEAR(pdate) > 1990

 GROUP BY l.id, pg.id, loc.country, loc.state, loc.city,

 year(pdate), month(pdate), t.status, l.name, pg.name

)

 DATA INITIALLY DEFERRED REFRESH DEFERRED;

 REFRESH TABLE dba.SALESCUBE;

Queries that can take advantage of such pre-computed sums would include the

following:

v Sales by month and product group

v Total sales for years after 1990

v Sales for 1995 or 1996

v Sum of sales for a product group or product line

v Sum of sales for a specific product group or product line AND for 1995, 1996

v Sum of sales for a specific country.

While the precise answer is not included in the MQT for any of these queries, the

cost of computing the answer using the MQT could be significantly less than using

a large base table, because a portion of the answer is already computed. MQTs can

reduce expensive joins, sorts, and aggregation of base data.

The following sample queries would obtain significant performance improvements

because they can use the already computed results in the example MQT.

The first example returns the total sales for 1995 and 1996:

 SET CURRENT REFRESH AGE=ANY

 SELECT YEAR(pdate) AS year, SUM(ti.amount) AS amount

 FROM cube.transitem AS ti, cube.trans AS t,

 cube.loc AS loc, cube.pgroup AS pg,

 cube.prodline AS l

 WHERE ti.transid = t.id

 AND ti.pgid = pg.id

 AND pg.lineid = l.id

 AND t.locid = loc.id

 AND YEAR(pdate) IN (1995, 1996)

 GROUP BY year(pdate);

The second example returns the total sales by product group for 1995 and 1996:

 SET CURRENT REFRESH AGE=ANY

 SELECT pg.id AS "PRODUCT GROUP",

 SUM(ti.amount) AS amount

Chapter 22. Query access plans 311

FROM cube.transitem AS ti, cube.trans AS t,

 cube.loc AS loc, cube.pgroup AS pg,

 cube.prodline AS l

 WHERE ti.transid = t.id

 AND ti.pgid = pg.id

 AND pg.lineid = l.id

 AND t.locid = loc.id

 AND YEAR(pdate) IN (1995, 1996)

 GROUP BY pg.id;

The larger the base tables are, the larger the improvements in response time can be

because the MQT grows more slowly than the base table. MQTs can effectively

eliminate overlapping work among queries by doing the computation once when

the MQTs are built and refreshed and reusing their content for many queries.

Explain facility

The SQL or XQuery compiler can capture information about the access plan and

environment of static or dynamic SQL and XQuery statements. The captured

information helps you understand how individual SQL or XQuery statements are

executed so that you can tune the statements and your database manager

configuration to improve performance.

You collect and use explain data for the following reasons:

v To understand how the database manager accesses tables and indexes to satisfy

your query

v To evaluate your performance-tuning actions

When you change some aspect of the database manager, the SQL or XQuery

statements, or the database, you should examine the explain data to find out

how your action has changed performance.

The captured information includes:

v Sequence of operations to process the query

v Cost information

v Predicates and selectivity estimates for each predicate

v Statistics for all objects referenced in the SQL or XQuery statement at the time

that the explain information is captured

v Values for the host variables, parameter markers, or special registers used to

reoptimize the SQL or XQuery statement.

Before you can capture explain information, you create the relational tables in

which the optimizer stores the explain information and you set the special registers

that determine what kind of explain information is captured.

To display explain information, you can use either a command-line tool or Visual

Explain. The tool that you use determines how you set the special registers that

determine what explain data is collected. For example, if you expect to use Visual

Explain only, you need only capture snapshot information. If you expect to

perform detailed analysis with one of the command-line utilities or with custom

SQL or XQuery statements against the explain tables, you should capture all

explain information.

Guidelines for using explain information

You use explain information for the following two major purposes:

v To understand why application performance has changed

312 Tuning Database Performance

v To evaluate performance tuning efforts

Analysis of performance changes

To help you understand the reasons for changes in query performance, you need

the before and after explain information which you can obtain by performing the

following steps:

v Capture explain information for the query before you make any changes and

save the resulting explain tables, or you might save the output from the

db2exfmt explain tool.

v Save or print the current catalog statistics if you do not want to, or cannot,

access Visual Explain to view this information. You might also use the db2look

productivity tool to help perform this task.

v Save or print the data definition language (DDL) statements, including those for

CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE TABLESPACE.

The information that you collect in this way provides a reference point for future

analysis. For dynamic SQL or XQuery statements, you can collect this information

when you run your application for the first time. For static SQL and XQuery

statements, you can also collect this information at bind time. To analyze a

performance change, you compare the information that you collected with

information that you collect about the query and environment when you start your

analysis.

As a simple example, your analysis might show that an index is no longer being

used as part of the access path. Using the catalog statistics information in Visual

Explain, you might notice that the number of index levels (NLEVELS column) is

now substantially higher than when the query was first bound to the database.

You might then choose to perform one of these actions:

v Reorganize the index

v Collect new statistics for your table and indexes

v Gather explain information when rebinding your query.

After you perform one of the actions, examine the access plan again. If the index is

used again, performance of the query might no longer be a problem. If the index is

still not used or if performance is still a problem, perform a second action and

examine the results. Repeat these steps until the problem is resolved.

Evaluation of performance tuning efforts

You can take a number of actions to help improve query performance, such as

adjusting configuration parameters, adding containers, collecting fresh catalog

statistics, and so on.

After you make a change in any of these areas, you can use the explain facility to

determine the impact, if any, that the change has on the access plan chosen. For

example, if you add an index or materialized query table (MQT) based on the

index guidelines, the explain data can help you determine whether the index or

materialized query table is actually used as you expected.

Although the explain output provides information that allows you to determine

the access plan that was chosen and its relative cost, the only way to accurately

measure the performance improvement for a query is to use benchmark testing

techniques.

Chapter 22. Query access plans 313

Guidelines for capturing explain information

Explain data is captured if you request it when an SQL or XQuery statement is

compiled. Consider how you expect to use the captured information when you

request explain data.

Note:

1. If incremental bind SQL or XQuery statements are compiled at run time, data is

placed in the explain tables at run time and not bind time. For these

statements, the explain table qualifier and authorization ID inserted is that of

the package owner and not that of the user running the package.

2. Explain information is captured only when the SQL or XQuery statement is

compiled. After the initial compilation, dynamic query statements are

recompiled when a change to the environment requires it, or when the Explain

facility is active. If you issue the same PREPARE statement for the same query

statement, the statement is compiled and explain data is captured every time

this statement is prepared or executed.

3. If a package is bound using the bind option REOPT ONCE/ALWAYS, SQL or

XQuery statements containing host variables, parameter markers, global

variables or special registers will be compiled and the access path will be

created using real values of these variables if they are known, and using

default estimates if the values are not known at compilation time.

4. If the FOR REOPT ONCE clause is used, then an attempt is made to match the

specified SQL or XQuery statement against the same statement in the package

cache. The values of this already reoptimized cached query statement will be

used to reoptimize the specified query statement. The Explain tables will

contain the newly generated reoptimized access plan and the values used for

this reoptimization, if the user has the required access privileges.

5. In a multi-partition system, the statement should be explained on the same

database partition on which it was originally compiled and reoptimized using

REOPT ONCE, otherwise an error will be returned.

Capturing information in the explain tables

v Static or incremental bind SQL and XQuery statements:

Specify either EXPLAIN ALL or EXPLAIN YES options on the BIND or the

PREP commands or include a static EXPLAIN statement in the source program.

v Dynamic SQL and XQuery statements:

Explain table information is captured in any of the following cases:

– The CURRENT EXPLAIN MODE special register is set to:

- YES: The SQL and XQuery compiler captures explain data and executes the

query statement.

- EXPLAIN: The SQL and XQuery compiler captures explain data, but does

not execute the query statement.

- RECOMMEND INDEXES: The SQL and XQuery compiler captures explain

data and the recommended indexes are placed in the ADVISE_INDEX

table, but the query statement is not executed.

- EVALUATE INDEXES: The SQL and XQuery compiler uses indexes placed

by the user in the ADVISE_INDEX table for evaluation. In EVALUATE

INDEXES mode, all dynamic statements are explained as if these virtual

indexes were available. The query compiler then chooses to use the virtual

indexes if the improve the performance of the statements. Otherwise, the

indexes are ignored. To find out if proposed indexes are useful, review the

EXPLAIN results.

314 Tuning Database Performance

- REOPT: The query compiler captures explain data for static or dynamic

SQL or XQuery statements during statement reoptimization at execution

time, when actual values for the host variables, special registers, global

variables or parameter markers are available.
v The EXPLAIN ALL option has been specified on the BIND or PREP command.

The query compiler captures explain data for dynamic SQL and XQuery at

run-time, even if the CURRENT EXPLAIN MODE special register is set to NO.

The SQL or XQuery statement also executes and returns the results of the query.

Capturing explain snapshot information

When an explain snapshot is requested, explain information is stored in the

SNAPSHOT column of the EXPLAIN_STATEMENT table in the format required by

Visual Explain. This format is not usable by other applications. Additional

information on the contents of the explain snapshot information is available from

Visual Explain itself. This information includes information about data objects and

data operators.

Explain snapshot data is captured when an SQL or XQuery statement is compiled

and explain data has been requested, as follows:

v Static or incremental bind SQL and XQuery statements:

An explain snapshot is captured when either EXPLSNAP ALL or EXPLSNAP

YES clauses are specified on the BIND or the PREP commands or when the

source program includes a static EXPLAIN statement that uses a FOR

SNAPSHOT or a WITH SNAPSHOT clause.

v Dynamic SQL and XQuery statements:

An explain snapshot is captured in any of the following cases:

– You issue an EXPLAIN statement with a FOR SNAPSHOT or a WITH

SNAPSHOT clause. With the FOR SNAPSHOT clause, only explain snapshot

information is captured. With the WITH SNAPSHOT clause, all explain

information is captured in addition snapshot information.

– The CURRENT EXPLAIN SNAPSHOT special register is set to:

- YES: The query compiler captures snapshot explain data and executes the

SQL or XQuery statement.

- EXPLAIN: The query compiler captures snapshot explain data, but does

not execute the SQL or XQuery statement.
– You specify the EXPLSNAP ALL option on the BIND or PREP command. The

query compiler captures snapshot explain data at run-time, even if the setting

of the CURRENT EXPLAIN SNAPSHOT special register is NO. It also

executes the SQL or XQuery statement.

Guidelines for analyzing explain information

The primary use of explain information is analysis of the access paths for query

statements. There are a number of ways in which analyzing the explain data can

help you to tune your queries and environment. Consider the following kind of

analysis:

v Index use

The proper indexes can significantly benefit performance. Using the explain

output, you can determine if the indexes you have created to help a specific set

of queries are being used. In the explain output, you should look for index

usage in the following areas:

– Join predicates

Chapter 22. Query access plans 315

– Local predicates

– GROUP BY clause

– ORDER BY clause

– WHERE XMLEXISTS clause

– The select list.
You can also use the explain facility to evaluate whether a different index might

be used instead of an existing index or no index at all. After you create a new

index, use the RUNSTATS command to collect statistics for that index and

recompile the query. Over time you may notice through the explain data that

instead of an index scan, a table scan is now being used. This can result from a

change in the clustering of the table data. If the index that was previously being

used now has a low cluster ratio, you may want to reorganize the table to

cluster its data according to that index, use the RUNSTATS command to collect

statistics for both index and table, and then recompile the query. To determine

whether reorganizing table has improved the access plan, re-examine the explain

output for the recompiled query.

v Access type

Analyze the explain output and look for types of access to the data that are not

usually optimal for the type of application you are running. For example:

– Online transaction processing (OLTP) queries

OLTP applications are prime candidates to use index scans with range

delimiting predicates, because they tend to return only a few rows that are

qualified using an equality predicate against a key column. If your OLTP

queries are using a table scan, you may want to analyze the explain data to

determine the reasons why an index scan was not used.

– Browse-only queries

The search criteria for a “browse” type query may be very vague, causing a

large number of rows to qualify. If users usually look at only a few screens of

the output data, you might specify that the entire answer set need not be

computed before some results are returned. In this case, the goals of the user

are different from the basic operating principle of the optimizer, which

attempts to minimize resource consumption for the entire query, not just the

first few screens of data.

For example, if the explain output shows that both merge scan join and sort

operators were used in the access plan, then the entire answer set will be

materialized in a temporary table before any rows are returned to the

application. In this case, you can attempt to change the access plan by using

the OPTIMIZE FOR clause on the SELECT statement. If you specify this

option, the optimizer can attempt to choose an access plan that does not

produce the entire answer set in a temporary table before returning the first

rows to the application.
v Join methods

If a query joins two tables, check the type of join being used. Joins that involve

more rows, such as those in decision-support queries, usually run faster with a

hash join or a merge join. Joins that involve only a few rows, such as OLTP

queries, typically run faster with nested-loop joins. However, there may be

extenuating circumstances in either case, such as the use of local predicates or

indexes, that might change how these typical joins work.

316 Tuning Database Performance

Using access plans to self-diagnose performance problems

from REFRESH TABLE and SET INTEGRITY statements

EXPLAIN for REFRESH TABLE and SET INTEGRITY statements allow you to

generate access plans that can be used to self-diagnose performance problems with

these statements. This helps you to better maintain your materialized query tables

(MQTs).

To get the access plan for a REFRESH TABLE or a SET INTEGRITY statement, use

either of the following methods:

v Use the EXPLAIN PLAN FOR REFRESH TABLE or EXPLAIN PLAN FOR SET

INTEGRITY option on the EXPLAIN statement

v Set the CURRENT EXPLAIN MODE special register to EXPLAIN before issuing

the REFRESH TABLE or SET INTEGRITY statement and set the CURRENT

EXPLAIN MODE special register to NO after.

Restrictions:

v The REFRESH TABLE and SET INTEGRITY statements do not qualify

for reoptimization, therefore the REOPT explain mode (or explain

snapshot) is not applicable to these two statements.

v The WITH REOPT ONCE clause of the EXPLAIN statement, which also

indicates that the specified explainable statement is to be reoptimized, is

not applicable to the REFRESH TABLE and SET INTEGRITY statements.

Scenario

This scenario shows how you can generate and use access plan from EXPLAIN

and REFRESH TABLE statements to self-diagnose the cause of your performance

problems.

Step 1 Create and populate your tables. For example,

CREATE TABLE T

 (i1 INT NOT NULL,

 i2 INT NOT NULL,

 PRIMARY KEY (i1));

INSERT INTO T VALUES (1,1), (2,1), (3,2), (4,2);

CREATE TABLE MQT AS (SELECT i2, COUNT(*) AS CNT FROM T GROUP BY i2)

DATA INITIALLY DEFERRED

REFRESH DEFERRED;

Step 2 Issue the EXPLAIN and REFRESH TABLE statements, as follows:

EXPLAIN PLAN FOR REFRESH TABLE MQT;

Note: This step can be replaced by setting the EXPLAIN mode on the SET

CURRENT EXPLAIN MODE special register, as follows:

SET CURRENT EXPLAIN MODE EXPLAIN;

REFRESH TABLE MQT;

SET CURRENT EXPLAIN MODE NO;

Step 3 Use the db2exfmt command to format the contents of the explain tables

and obtain the access plan. This tool is located in the misc subdirectory of

the instance sqllib directory.

db2exfmt –d <dbname> -o refresh.exp -1

Step 4 Analyze the access plan to determine the cause of the performance

problems. For example, by analyzing the plan from the above statements, if

T is a large table, a TABLE SCAN would be very expensive, if it is used.

Creating an index might improve the performance of the query.

Chapter 22. Query access plans 317

Explain tools

DB2 provides a comprehensive explain facility that provides detailed information

about the access plan that the optimizer chooses for an SQL or XQuery statement.

The tables that store explain data are accessible on all supported platforms and

contain information for both static and dynamic SQL and XQuery statements.

Several tools or methods give you the flexibility you need to capture, display, and

analyze explain information.

Detailed optimizer information that allows for in-depth analysis of an access plan

is stored in explain tables separate from the actual access plan itself. Use one or

more of the following methods of getting information from the explain tables:

v Use Visual Explain to view explain snapshot information.

Invoke Visual Explain from the Control Center to see a graphical display of a

query access plan. You can analyze both static and dynamic SQL and XQuery

statements.

Visual Explain allows you to view snapshots captured or taken on another

platform. For example, a Windows client can graph snapshots generated on a

DB2 for HP-UX server.

v Use the db2exfmt tool to display explain information in preformatted output.

v Use the db2expln and dynexpln tools.

To see the access plan information available for one or more packages of static

SQL or XQuery statements, use the db2expln tool from the command line.

db2expln shows the actual implementation of the chosen access plan. It does not

show optimizer information.

The dynexpln tool, which uses db2expln within it, provides a quick way to

explain dynamic SQL or XQuery statements that contain no parameter markers.

This use of db2expln from within dynexpln is done by transforming the input

SQL or XQuery statement into a static statement within a pseudo-package. When

this occurs, the information may not always be completely accurate. If complete

accuracy is desired, use the explain facility.

The db2expln tool does provide a relatively compact and English-like overview

of what operations will occur at runtime by examining the actual access plan

generated.

v Write your own queries against the explain tables.

Writing your own queries allows for easy manipulation of the output and for

comparison among different queries or for comparisons of the same query over

time.

Note: The location of the command-line explain tools and others, such as

db2batch, dynexpln, and db2_all, is in the misc subdirectory of the sqllib directory.

If the tools are moved from this path, the command-line methods might not work.

The following table summarizes the different tools available with the DB2 explain

facility and their individual characteristics. Use this table to select the tool most

suitable for your environment and needs.

 Table 64. Explain Facility Tools

Desired Characteristics

Visual

Explain

Explain

tables db2exfmt db2expln dynexpln

GUI-interface Yes

Text output Yes Yes Yes

318 Tuning Database Performance

Table 64. Explain Facility Tools (continued)

Desired Characteristics

Visual

Explain

Explain

tables db2exfmt db2expln dynexpln

“Quick and dirty” static SQL and

XQuery analysis

 Yes

Static SQL and XQuery supported Yes Yes Yes Yes

Dynamic SQL and XQuery supported Yes Yes Yes Yes Yes*

CLI applications supported Yes Yes Yes

Available to DRDA® Application

Requesters

 Yes

Detailed optimizer information Yes Yes Yes

Suited for analysis of multiple

statements

 Yes Yes Yes Yes

Information accessible from within an

application

 Yes

Note:

* Indirectly using db2expln; there are some limitations.

Displaying catalog statistics in effect at explain time

The explain facility captures the statistics in effect at the time a statement is

explained. These statistics may be different than those stored in the system

catalogs, especially if real-time statistics gathering is enabled. If the explain tables

are populated but an explain snapshot was not created, than only some statistics

are recorded in the EXPLAIN_OBJECT table.

In order to capture all catalog statistics relevant to the statement being explained,

create an explain snapshot at the same time the explain tables are populated. Then

use the SYSPROC.EXPLAIN_FORMAT_STATS function to format the catalog

statistics in the snapshot.

If the db2exfmt tool is used to format the explain information, it automatically uses

the SYSPROC.EXPLAIN_FORMAT_STATS function to display the catalog statistics,

if a snapshot was collected. Visual Explain automatically displays all statistics

contained in the snapshot.

SQL and XQuery Explain tools

The db2expln tool describes the access plan selected for SQL and XQuery

statements. It can be used to obtain a quick explanation of the chosen access plan

when explain data was not captured. For static SQL and XQuery statements,

db2expln examines the packages stored in the system catalog tables. For dynamic

SQL and XQuery statements, db2expln examines the sections in the query cache.

The dynexpln tool can also be used to describe the access plan selected for dynamic

statements. It creates a static package for the statements and then uses the

db2expln tool to describe them. However, because the dynamic SQL and XQuery

statements can be examined by db2expln, this utility is retained only for backward

compatibility.

Chapter 22. Query access plans 319

The explain tools (db2expln and dynexpln) are located in the bin subdirectory of

your instance sqllib directory. If db2expln and dynexpln are not in your current

directory, they must be in a directory that appears in your PATH environment

variable.

The db2expln program connects and uses the db2expln.bnd, db2exsrv.bnd, and

db2exdyn.bnd files to bind itself to a database the first time the database is

accessed.

To run db2expln, you must have the SELECT privilege on the system catalog views

as well as the EXECUTE privilege for the db2expln, db2exsrv, and db2exdyn

packages. To run dynexpln, you must have BINDADD authority for the database,

and the SQL schema you are using to connect to the database must exist or you

must have the IMPLICIT_SCHEMA authority for the database. To explain dynamic

SQL and XQuery statements using either db2expln or dynexpln, you must also

have any privileges needed for the query statements being explained. (Note that if

you have SYSADM or DBADM authority, you will automatically have all these

authorization levels.)

dynexpln

The dynexpln tool is still available for backward compatibility. However, you can

use the dynamic-options of db2expln to perform all of the functions of dynexpln.

When you use the dynamic-options of db2expln, the statement is prepared as true

dynamic SQL or XQuery statement and the generated plan is explained from the

query cache. This explain-output method provides more accurate access plans than

dynexpln, which prepares the statement as a static SQL or XQuery statement. It

also allows the use of features available only in dynamic SQL and XQuery

statements, such as parameter markers.

Usage notes for dynexpln: To explain dynamic statements, dynexpln creates a

static application for the statements and then invokes db2expln. To create the static

statements, dynexpln generates a trivial C program with the statements and then

calls the DB2 precompiler to create the package. (The generated C program is not

complete and cannot be compiled; it only contains enough information for the

precompiler to build the package.)

The following are common messages displayed by dynexpln:

v All error messages from db2expln.

Since dynexpln invokes db2expln, it is possible to see most of db2expln’s error

messages.

v Error connecting to the database.

This message will appear in the output if an error occurred connecting to the

database. A CLI error message will also be displayed indicating why the

connection could not be completed. Correct the cause of the error and run

dynexpln again.

v The file ″<filename>″ must be removed before dynexpln will run.

This message will appear if the given file exists at the time dynexpln is run.

Remove the file or change the value of the DYNEXPLN_PACKAGE environment

variable to change the name of the file which will be created and run dynexpln

again.

v The package ″<creator>.<package>″ must be dropped before dynexpln will

run.

320 Tuning Database Performance

This message will appear if the given package exists at the time dynexpln is run.

Drop the package and run or change the value of the DYNEXPLN_PACKAGE

environment variable to change the name of the package which will be created

and run dynexpln again.

v Error writing file ″<filename>″.

This message will appear if the given file cannot be written to. Ensure that

dynexpln can write files in the current directory and run it again.

v Error reading input file ″<filename>″.

This message will appear if the file given with the -f option cannot be read from.

Ensure that the file exists and that dynexpln can read it. Then run dynexpln

again.

Environment Variables: There are two different environment variables that can be

used in conjunction with dynexpln:

v DYNEXPLN_OPTIONS are the SQL and XQuery precompiler options you use

when building the package for your statements. Use the same syntax variable as

you would when issuing a PREP command through CLP.

For example: DYNEXPLN_OPTIONS="OPTLEVEL 5 BLOCKING ALL"

v DYNEXPLN_PACKAGE is the name of the package which is created in the

database. The statements to be described are placed in this package. If this

variable is not defined, the package is given a default value of DYNEXPLN.

(Only the first eight characters of the name in this environment variable are

used.)

The name is also used to create the names for the intermediate files that

dynexpln uses.

Description of db2expln and dynexpln output

In the output, the explain information for each package appears in the following

two parts:

v Package information such as date of bind and relevant bind options

v Section information such as the section number, followed by the SQL or XQuery

statement being explained. Below the section information, the explain output of

the access plan chosen for the SQL or XQuery statement appears.

The steps of an access plan, or section, are presented in the order that the database

manager executes them. Each major step is shown as a left-justified heading with

information about that step indented below it. Indentation bars appear in the left

margin of the explain output for the access plan. These bars also mark the scope of

the operation. Operations at a lower level of indentation, farther to the right, in the

same operation are processed before returning to the previous level of indentation.

Remember that the access plan chosen was based on an augmented version of the

original SQL or XQuery statement that is shown in the output. For example, the

original statement may cause triggers and constraints to be activated. In addition,

the query rewrite component of the query compiler might rewrite the SQL or

XQuery statement to an equivalent but more efficient format. All of these factors

are included in the information that the optimizer uses when it determines the

most efficient plan to satisfy the statement. Thus, the access plan shown in the

explain output may differ substantially from the access plan that you might expect

for the original SQL or XQuery statement. The explain facility, which includes the

explain tables, SET CURRENT EXPLAIN mode, and Visual Explain, shows the

actual SQL or XQuery statement used for optimization in the form of an SQL- or

XQuery-like statement which is created by reverse-translating the internal

representation of the query.

Chapter 22. Query access plans 321

When you compare output from db2expln or dynexpln to the output of the Explain

facility, the operator ID option (-opids) can be very useful. Each time db2expln or

dynexpln starts processing a new operator from the Explain facility, the operator

ID number is printed to the left of the explained plan. The operator IDs can be

used to match up the steps in the different representations of the access plan. Note

that there is not always a one-to-one correspondence between the operators in the

Explain facility output and the operations shown by db2expln and dynexpln.

Table access information: This statement tells the name and type of table being

accessed. It has two formats that are used:

1. Regular tables of three types:

v Access Table Name:

 Access Table Name = schema.name ID = ts,n

where:

– schema.name is the fully-qualified name of the table being accessed

– ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog for the table
v Access Hierarchy Table Name:

 Access Hierarchy Table Name = schema.name ID = ts,n

where:

– schema.name is the fully-qualified name of the table being accessed

– ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog for the table
v Access Materialized Query Table Name:

 Access Materialized Query Table Name = schema.name ID = ts,n

where:

– schema.name is the fully-qualified name of the table being accessed

– ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog for the table
2. Temporary tables of two types:

v Access Temporary Table ID:

 Access Temp Table ID = tn

where:

– ID is the corresponding identifier assigned by db2expln

v Access Declared Global Temporary Table ID:

 Access Global Temp Table ID = ts,tn

where:

– ID is the corresponding TABLESPACEID from the SYSCAT.TABLES

catalog for the table (ts); and the corresponding identifier assigned by

 db2expln (tn)

Following the table access statement, additional statements will be provided to

further describe the access. These statements will be indented under the table

access statement. The possible statements are:

v Number of columns

v Block access

322 Tuning Database Performance

v Parallel scan

v Scan directive

v Row access method

v Lock intents

v Predicates

v Miscellaneous statements

Number of Columns

The following statement indicates the number of columns being used from each

row of the table:

 #Columns = n

Block Access

The following statement indicates that the table has one or more dimension block

indexes defined on it:

 Clustered by Dimension for Block Index Access

If this text is not shown, the table was created without the DIMENSION clause.

Parallel Scan

The following statement indicates that the database manager will use several

subagents to read from the table in parallel:

 Parallel Scan

If this text is not shown, the table will only be read from by one agent (or

subagent).

Scan Direction

The following statement indicates that the database manager will read rows in a

reverse order:

 Scan Direction = Reverse

If this text is not shown, the scan direction is forward, which is the default.

Row Access Method

One of the following statements will be displayed, indicating how the qualifying

rows in the table are being accessed:

v The Relation Scan statement indicates that the table is being sequentially

scanned to find the qualifying rows.

– The following statement indicates that no prefetching of data will be done:

 Relation Scan

 | Prefetch: None

– The following statement indicates that the optimizer has predetermined the

number of pages that will be prefetched:

 Relation Scan

 | Prefetch: n Pages

– The following statement indicates that data should be prefetched:

Chapter 22. Query access plans 323

Relation Scan

 | Prefetch: Eligible

– The following statement indicates that the qualifying rows are being

identified and accessed through an index:

 Index Scan: Name = schema.name ID = xx

 | Index type

 | Index Columns:

where:

- schema.name is the fully-qualified name of the index being scanned

- ID is the corresponding IID column in the SYSCAT.INDEXES catalog view.

- Index type is one of:

 Regular Index (Not Clustered)

 Regular Index (Clustered)

 Dimension Block Index

 Composite Dimension Block Index

 index over XML data

This will be followed by one row for each column in the index. Each

column in the index will be listed in one of the following forms:

 n: column_name (Ascending)

 n: column_name (Descending)

 n: column_name (Include Column)

The following statements are provided to clarify the type of index scan:

- The range delimiting predicates for the index are shown by:

 #Key Columns = n

 | Start Key: xxxxx

 | Stop Key: xxxxx

Where xxxxx is one of:

v Start of Index

v End of Index

v Inclusive Value: or Exclusive Value:

An inclusive key value will be included in the index scan. An exclusive

key value will not be included in the scan. The value for the key will be

given by one of the following rows for each part of the key:

 n: ’string’

 n: nnn

 n: yyyy-mm-dd

 n: hh:mm:ss

 n: yyyy-mm-dd hh:mm:ss.uuuuuu

 n: NULL

 n: ?

If a literal string is shown, only the first 20 characters are displayed. If

the string is longer than 20 characters, this will be shown by ... at the

end of the string. Some keys cannot be determined until the section is

executed. This is shown by a ? as the value.
- Index-Only Access

If all the needed columns can be obtained from the index key, this

statement will appear and no table data will be accessed.

- The following statement indicates that no prefetching of index pages will

be done:

 Index Prefetch: None

- The following statement indicates that index pages should be prefetched:

 Index Prefetch: Eligible

324 Tuning Database Performance

- The following statement indicates that no prefetching of data pages will be

done:

 Data Prefetch: None

- The following statement indicates that data pages should be prefetched:

 Data Prefetch: Eligible

- If there are predicates that can be passed to the Index Manager to help

qualify index entries, the following statement is used to show the number

of predicates:

 Sargable Index Predicate(s)

 | #Predicates = n

– If the qualifying rows are being accessed by using row IDs (RIDs) that were

prepared earlier in the access plan, it will be indicated with the statement:

 Fetch Direct Using Row IDs

If the table has one or more block indexes defined for it, then rows may be

accessed by either block or row IDs. This is indicated by:

 Fetch Direct Using Block or Row IOs

Lock Intents

For each table access, the type of lock that will be acquired at the table and row

levels is shown with the following statement:

 Lock Intents

 | Table: xxxx

 | Row : xxxx

Possible values for a table lock are:

v Exclusive

v Intent Exclusive

v Intent None

v Intent Share

v Share

v Share Intent Exclusive

v Super Exclusive

v Update

Possible values for a row lock are:

v Exclusive

v Next Key Exclusive (does not appear in db2expln output)

v None

v Share

v Next Key Share

v Update

v Next Key Weak Exclusive

v Weak Exclusive

Predicates

There are two statements that provide information about the predicates used in an

access plan:

Chapter 22. Query access plans 325

1. The following statement indicates the number of predicates that will be

evaluated for each block of data retrieved from a blocked index.

 Block Predicates(s)

 | #Predicates = n

2. The following statement indicates the number of predicates that will be

evaluated while the data is being accessed. The count of predicates does not

include push-down operations such as aggregation or sort.

 Sargable Predicate(s)

 | #Predicates = n

3. The following statement indicates the number of predicates that will be

evaluated once the data has been returned:

 Residual Predicate(s)

 | #Predicates = n

The number of predicates shown in the above statements may not reflect the

number of predicates provided in the query statement because predicates can be:

v Applied more than once within the same query

v Transformed and extended with the addition of implicit predicates during the

query optimization process

v Transformed and condensed into fewer predicates during the query optimization

process.

Miscellaneous Table Statements

v The following statement indicates that only one row will be accessed:

 Single Record

v The following statement appears when the isolation level used for this table

access uses a different isolation level than the statement:

 Isolation Level: xxxx

A different isolation level may be used for a number of reasons, including:

– A package was bound with Repeatable Read and affects referential integrity

constraints; the access of the parent table to check referential integrity

constraints is downgraded to an isolation level of Cursor Stability to avoid

holding unnecessary locks on this table.

– A package bound with Uncommitted Read issues a DELETE or UPDATE

statement; the table access for the actual delete is upgraded to Cursor

Stability.
v The following statement indicates that some or all of the rows read from the

temporary table will be cached outside the buffer pool if sufficient sortheap

memory is available:

 Keep Rows In Private Memory

v If the table has the volatile cardinality attribute set, it will be indicated by:

 Volatile Cardinality

Temporary table information: A temporary table is used by an access plan to

store data during its execution in a transient or temporary work table. This table

only exists while the access plan is being executed. Generally, temporary tables are

used when subqueries need to be evaluated early in the access plan, or when

intermediate results will not fit in the available memory.

If a temporary table needs to be created, then one of two possible statements may

appear. These statements indicate that a temporary table is to be created and rows

326 Tuning Database Performance

inserted into it. The ID is an identifier assigned by db2expln for convenience when

referring to the temporary table. This ID is prefixed with the letter ’t’ to indicate

that the table is a temporary table.

v The following statement indicates an ordinary temporary table will be created:

 Insert Into Temp Table ID = tn

v The following statement indicates an ordinary temporary table will be created by

multiple subagents in parallel:

 Insert Into Shared Temp Table ID = tn

v The following statement indicates a sorted temporary table will be created:

 Insert Into Sorted Temp Table ID = tn

v The following statement indicates a sorted temporary table will be created by

multiple subagents in parallel:

 Insert Into Sorted Shared Temp Table ID = tn

v The following statement indicates a declared global temporary table will be

created:

 Insert Into Global Temp Table ID = ts,tn

v The following statement indicates a declared global temporary table will be

created by multiple subagents in parallel:

 Insert Into Shared Global Temp Table ID = ts,tn

v The following statement indicates a sorted declared global temporary table will

be created:

 Insert Into Sorted Global Temp Table ID = ts,tn

v The following statement indicates a sorted declared global temporary table will

be created by multiple subagents in parallel:

 Insert Into Sorted Shared Global Temp Table ID = ts,tn

Each of the above statements will be followed by:

 #Columns = n

which indicates how many columns are in each row being inserted into the

temporary table.

Sorted Temporary Tables

Sorted temporary tables can result from such operations as:

v ORDER BY

v DISTINCT

v GROUP BY

v Merge Join

v ’= ANY’ subquery

v ’<> ALL’ subquery

v INTERSECT or EXCEPT

v UNION (without the ALL keyword)

A number of additional statements may follow the original creation statement for a

sorted temporary table:

v The following statement indicates the number of key columns used in the sort:

 #Sort Key Columns = n

For each column in the sort key, one of the following lines will be displayed:

Chapter 22. Query access plans 327

Key n: column_name (Ascending)

 Key n: column_name (Descending)

 Key n: (Ascending)

 Key n: (Descending)

v The following statements provide estimates of the number of rows and the row

size so that the optimal sort heap can be allocated at run time.

 Sortheap Allocation Parameters:

 | #Rows = n

 | Row Width = n

v If only the first rows of the sorted result are needed, the following is displayed:

 Sort Limited To Estimated Row Count

v For sorts in a symmetric multiprocessor (SMP) environment, the type of sort to

be performed is indicated by one of the following statements:

 Use Partitioned Sort

 Use Shared Sort

 Use Replicated Sort

 Use Round-Robin Sort

v The following statements indicate whether or not the result from the sort will be

left in the sort heap:

 Piped

and

 Not Piped

If a piped sort is indicated, the database manager will keep the sorted output in

memory, rather than placing the sorted result in another temporary table.

v The following statement indicates that duplicate values will be removed during

the sort:

 Duplicate Elimination

v If aggregation is being performed in the sort, it will be indicated by one of the

following statements:

 Partial Aggregation

 Intermediate Aggregation

 Buffered Partial Aggregation

 Buffered Intermediate Aggregation

Temporary Table Completion

After a table access that contains a push-down operation to create a temporary

table (that is, a create temporary table that occurs within the scope of a table

access), there will be a ″completion″ statement, which handles end-of-file by

getting the temporary table ready to provide rows to subsequent temporary table

access. One of the following lines will be displayed:

 Temp Table Completion ID = tn

 Shared Temp Table Completion ID = tn

 Sorted Temp Table Completion ID = tn

 Sorted Shared Temp Table Completion ID = tn

Table Functions

Table functions are user-defined functions (UDFs) that return data to the statement

in the form of a table. Table functions are indicated by:

 Access User Defined Table Function

 | Name = schema.funcname

 | Specific Name = specificname

 | SQL Access Level = accesslevel

 | Language = lang

328 Tuning Database Performance

| Parameter Style = parmstyle

 | Fenced Not Deterministic

 | Called on NULL Input Disallow Parallel

 | Not Federated Not Threadsafe

The specific name uniquely identifies the table function invoked. The remaining

rows detail the attributes of the function.

Join information: There are three types of joins:

v Hash join

v Merge join

v Nested loop join.

When the time comes in the execution of a section for a join to be performed, one

of the following statements is displayed:

 Hash Join

 Merge Join

 Nested Loop Join

It is possible for a left outer join to be performed. A left outer join is indicated by

one of the following statements:

 Left Outer Hash Join

 Left Outer Merge Join

 Left Outer Nested Loop Join

For merge and nested loop joins, the outer table of the join will be the table

referenced in the previous access statement shown in the output. The inner table of

the join will be the table referenced in the access statement that is contained within

the scope of the join statement. For hash joins, the access statements are reversed

with the outer table contained within the scope of the join and the inner table

appearing before the join.

For a hash or merge join, the following additional statements may appear:

v In some circumstances, a join simply needs to determine if any row in the inner

table matches the current row in the outer. This is indicated with the statement:

 Early Out: Single Match Per Outer Row

v It is possible to apply predicates after the join has completed. The number of

predicates being applied will be indicated as follows:

 Residual Predicate(s)

 | #Predicates = n

For a hash join, the following additional statements may appear:

v The hash table is built from the inner table. If the hash table build was pushed

down into a predicate on the inner table access, it is indicated by the following

statement in the access of the inner table:

 Process Hash Table For Join

v While accessing the outer table, a probe table can be built to improve the

performance of the join. The probe table build is indicated by the following

statement in the access of the outer table:

 Process Probe Table For Hash Join

v The estimated number of bytes needed to build the hash table is represented by:

 Estimated Build Size: n

v The estimated number of bytes needed for the probe table is represented by:

 Estimated Probe Size: n

Chapter 22. Query access plans 329

For a nested loop join, the following additional statement may appear immediately

after the join statement:

 Piped Inner

This statement indicates that the inner table of the join is the result of another

series of operations. This is also referred to as a composite inner.

If a join involves more than two tables, the explain steps should be read from top

to bottom. For example, suppose the explain output has the following flow:

 Access W

 Join

 | Access X

 Join

 | Access Y

 Join

 | Access Z

The steps of execution would be:

1. Take a row that qualifies from W.

2. Join row from W with (next) row from X and call the result P1 (for partial join

result number 1).

3. Join P1 with (next) row from Y to create P2 .

4. Join P2 with (next) row from Z to obtain one complete result row.

5. If there are more rows in Z, go to step 4.

6. If there are more rows in Y, go to step 3.

7. If there are more rows in X, go to step 2.

8. If there are more rows in W, go to step 1.

Data stream information: Within an access plan, there is often a need to control

the creation and flow of data from one series of operations to another. The data

stream concept allows a group of operations within an access plan to be controlled

as a unit. The start of a data stream is indicated by the following statement:

 Data Stream n

where n is a unique identifier assigned by db2expln for ease of reference. The end

of a data stream is indicated by:

 End of Data Stream n

All operations between these statements are considered part of the same data

stream.

A data stream has a number of characteristics and one or more statements can

follow the initial data stream statement to describe these characteristics:

v If the operation of the data stream depends on a value generated earlier in the

access plan, the data stream is marked with:

 Correlated

v Similar to a sorted temporary table, the following statements indicate whether or

not the results of the data stream will be kept in memory:

 Piped

and

 Not Piped

330 Tuning Database Performance

As was the case with temporary tables, a piped data stream may be written to

disk, if insufficient memory exists at execution time. The access plan will

provide for both possibilities.

v The following statement indicates that only a single record is required from this

data stream:

 Single Record

When a data stream is accessed, the following statement will appear in the output:

 Access Data Stream n

Insert, update, and delete information: The explain text for these SQL statements

is self-explanatory. Possible statement text for these SQL operations can be:

 Insert: Table Name = schema.name ID = ts,n

 Update: Table Name = schema.name ID = ts,n

 Delete: Table Name = schema.name ID = ts,n

 Insert: Hierarchy Table Name = schema.name ID = ts,n

 Update: Hierarchy Table Name = schema.name ID = ts,n

 Delete: Hierarchy Table Name = schema.name ID = ts,n

 Insert: Materialized Query Table = schema.name ID = ts,n

 Update: Materialized Query Table = schema.name ID = ts,n

 Delete: Materialized Query Table = schema.name ID = ts,n

 Insert: Global Temporary Table ID = ts, tn

 Update: Global Temporary Table ID = ts, tn

 Delete: Global Temporary Table ID = ts, tn

Block and row identifier preparation information: For some access plans, it is

more efficient if the qualifying row and block identifiers (IDs) are sorted and

duplicates removed (in the case of index ORing) or that a technique is used to

identify IDs appearing in all indexes being accessed (in the case of index ANDing)

before the actual table access is performed. There are three main uses of ID

preparation as indicated by the explain statements:

v Either of the following statements indicates that Index ORing is used to prepare

the list of qualifying IDs:

 Index ORing Preparation

 Block Index ORing Preparation

Index ORing refers to the technique of making more than one index access and

combining the results to include the distinct IDs that appear in any of the

indexes accessed. The optimizer will consider index ORing when predicates are

connected by OR keywords or there is an IN predicate. The index accesses can

be on the same index or different indexes.

v Another use of ID preparation is to prepare the input data to be used during list

prefetch, as indicated by either of the following:

 List Prefetch Preparation

 Block List Prefetch RID Preparation

v Index ANDing refers to the technique of making more than one index access and

combining the results to include IDs that appear in all of the indexes accessed.

Index ANDing processing is started with either of these statements:

 Index ANDing

 Block Index ANDing

If the optimizer has estimated the size of the result set, the estimate is shown

with the following statement:

 Optimizer Estimate of Set Size: n

Chapter 22. Query access plans 331

Index ANDing filter operations process IDs and use bit filter techniques to

determine the IDs which appear in every index accessed. The following

statements indicate that IDs are being processed for index ANDing:

 Index ANDing Bitmap Build Using Row IDs

 Index ANDing Bitmap Probe Using Row IDs

 Index ANDing Bitmap Build and Probe Using Row IDs

 Block Index ANDing Bitmap Build Using Block IDs

 Block Index ANDing Bitmap Build and Probe Using Block IDs

 Block Index ANDing Bitmap Build and Probe Using Row IDs

 Block Index ANDing Bitmap Probe Using Block IDs and Build Using Row IDs

 Block Index ANDing Bitmap Probe Using Block IDs

 Block Index ANDing Bitmap Probe Using Row IDs

If the optimizer has estimated the size of the result set for a bitmap, the estimate

is shown with the following statement:

 Optimizer Estimate of Set Size: n

For any type of ID preparation, if list prefetch can be performed it will be

indicated with the statement:

 Prefetch: Enabled

Aggregation information: Aggregation is performed on those rows meeting the

specified criteria, if any, provided by the SQL statement predicates. If some sort of

aggregate function is to be done, one of the following statements appears:

 Aggregation

 Predicate Aggregation

 Partial Aggregation

 Partial Predicate Aggregation

 Intermediate Aggregation

 Intermediate Predicate Aggregation

 Final Aggregation

 Final Predicate Aggregation

Predicate aggregation states that the aggregation operation has been pushed-down

to be processed as a predicate when the data is actually accessed.

Beneath either of the above aggregation statements will be a indication of the type

of aggregate function being performed:

 Group By

 Column Function(s)

 Single Record

The specific column function can be derived from the original SQL statement. A

single record is fetched from an index to satisfy a MIN or MAX operation.

If predicate aggregation is used, then subsequent to the table access statement in

which the aggregation appeared, there will be an aggregation ″completion″, which

carries out any needed processing on completion of each group or on end-of-file.

One of the following lines is displayed:

 Aggregation Completion

 Partial Aggregation Completion

 Intermediate Aggregation Completion

 Final Aggregation Completion

Parallel processing information: Executing an SQL statement in parallel (using

either intra-partition or inter-partition parallelism) requires some special

operations. The operations for parallel plans are described below.

332 Tuning Database Performance

v When running an intra-partition parallel plan, portions of the plan will be

executed simultaneously using several subagents. The creation of the subagents

is indicated by the statement:

 Process Using n Subagents

v When running an inter-partition parallel plan, the section is broken into several

subsections. Each subsection is sent to one or more nodes to be run. An

important subsection is the coordinator subsection. The coordinator subsection is

the first subsection in every plan. It gets control first and is responsible for

distributing the other subsections and returning results to the calling application.

The distribution of subsections is indicated by the statement:

 Distribute Subsection #n

The nodes that receive a subsection can be determined in one of eight ways:

– The following indicates that the subsection will be sent to a node within the

database partition group based on the value of the columns.

 Directed by Hash

 | #Columns = n

 | Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following indicates that the subsection will be sent to a predetermined

node. (This is frequently seen when the statement uses the NODENUMBER()

function.)

 Directed by Node Number

– The following indicates that the subsection will be sent to the node

corresponding to a predetermined database partition number in the given

database partition group. (This is frequently seen when the statement uses the

PARTITION() function.)

 Directed by Partition Number

 | Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following indicates that the subsection will be sent to the node that

provided the current row for the application’s cursor.

 Directed by Position

– The following indicates that only one node, determined when the statement

was compiled, will receive the subsection.

 Directed to Single Node

 | Node Number = n

– Either of the following indicates that the subsection will be executed on the

coordinator node.

 Directed to Application Coordinator Node

 Directed to Local Coordinator Node

– The following indicates that the subsection will be sent to all the nodes listed.

 Broadcast to Node List

 | Nodes = n1, n2, n3, ...

– The following indicates that only one node, determined as the statement is

executing, will receive the subsection.

 Directed to Any Node

v Table queues are used to move data between subsections in a partitioned

database environment or between subagents in a symmetric multiprocessor

(SMP) environment. Table queues are described as follows:

– The following statements indicate that data is being inserted into a table

queue:

Chapter 22. Query access plans 333

Insert Into Synchronous Table Queue ID = qn

 Insert Into Asynchronous Table Queue ID = qn

 Insert Into Synchronous Local Table Queue ID = qn

 Insert Into Asynchronous Local Table Queue ID = qn

– For database partition table queues, the destination for rows inserted into the

table queue is described by one of the following:

All rows are sent to the coordinator node:

 Broadcast to Coordinator Node

All rows are sent to every database partition where the given subsection is

running:

 Broadcast to All Nodes of Subsection n

Each row is sent to a database partition based on the values in the row:

 Hash to Specific Node

Each row is sent to a database partition that is determined while the

statement is executing:

 Send to Specific Node

Each row is sent to a randomly determined node:

 Send to Random Node

– In some situations, a database partition table queue will have to temporarily

overflow some rows to a temporary table. This possibility is identified by the

statement:

 Rows Can Overflow to Temporary Table

– After a table access that contains a push-down operation to insert rows into a

table queue, there will be a ″completion″ statement which handles rows that

could not be immediately sent. One of the following lines is displayed:

 Insert Into Synchronous Table Queue Completion ID = qn

 Insert Into Asynchronous Table Queue Completion ID = qn

 Insert Into Synchronous Local Table Queue Completion ID = qn

 Insert Into Asynchronous Local Table Queue Completion ID = qn

– The following statements indicate that data is being retrieved from a table

queue:

 Access Table Queue ID = qn

 Access Local Table Queue ID = qn

These messages are always followed by an indication of the number of

columns being retrieved.

 #Columns = n

– If the table queue sorts the rows at the receiving end, the table queue access

will also have one of the following messages:

 Output Sorted

 Output Sorted and Unique

These messages are followed by an indication of the number of keys used for

the sort operation.

 #Key Columns = n

For each column in the sort key, one of the following is displayed:

 Key n: (Ascending)

 Key n: (Descending)

334 Tuning Database Performance

– If predicates will be applied to rows by the receiving end of the table queue,

the following message is shown:

 Residual Predicate(s)

 | #Predicates = n

v Some subsections in a partitioned database environment explicitly loop back to

the start of the subsection with the statement:

 Jump Back to Start of Subsection

Federated query information: Executing an SQL statement in a federated

database requires the ability to perform portions of the statement on other data

sources.

The following indicates that a data source will be read:

 Ship Distributed Subquery #n

 | #Columns = n

It is possible to apply predicates to the data returned from the distributed

subquery. The number of predicates being applied will be indicated as follows:

 Residual Predicate(s)

 | #Predicates = n

An insert, update, or delete operation that occurs at a data source will be indicated

by the appropriate message:

 Ship Distributed Insert #n

 Ship Distributed Update #n

 Ship Distributed Delete #n

If a table is being explicitly locked at a data source, this will be indicated with the

statement:

 Ship Distributed Lock Table #n

DDL statements against a data source are split into two parts. The part invoked at

the data source is indicated by:

 Ship Distributed DDL Statement #n

If the federated server is a partitioned database, then part of the DDL statement

must be run at he catalog node. This is indicated by:

 Distributed DDL Statement #n Completion

The detail for each distributed substatement is provided separately. The options for

distributed statements are described below:

v The data source for the subquery is shown by one of the following:

 Server: server_name (type, version)

 Server: server_name (type)

 Server: server_name

v If the data source is relational, the SQL for the substatement is displayed as:

 SQL Statement:

 statement

Non-relational data sources are indicated with:

 Non-Relational Data Source

v The nicknames referenced in the substatement are listed as follows:

 Nicknames Referenced:

 schema.nickname ID = n

If the data source is relational, the base table for the nickname is shows as:

Chapter 22. Query access plans 335

Base = baseschema.basetable

If the data source is non-relational, the source file for the nickname is shown as:

 Source File = filename

v If values are passed from the federated server to the data source before

executing the substatement, the number of values will be shown by:

 #Input Columns: n

v If values are passed from the data source to the federated server after executing

the substatement, the number of values will be shown by:

 #Output Columns: n

Miscellaneous explain information:

v Sections for data definition language statements will be indicated in the output

with the following:

 DDL Statement

No additional explain output is provided for DDL statements.

v Sections for SET statements for the updatable special registers such as

CURRENT EXPLAIN SNAPSHOT will be indicated in the output with the

following:

 SET Statement

No additional explain output is provided for SET statements.

v If the SQL statement contains the DISTINCT clause, the following text may

appear in the output:

 Distinct Filter #Columns = n

where n is the number of columns involved in obtaining distinct rows. To

retrieve distinct row values, the rows must be ordered so that duplicates can be

skipped. This statement will not appear if the database manager does not have

to explicitly eliminate duplicates, as in the following cases:

– A unique index exists and all the columns in the index key are part of the

DISTINCT operation

– Duplicates that can be eliminated during sorting.
v The following statement will appear if the next operation is dependent on a

specific record identifier:

 Positioned Operation

If the position operation is against a federated data source, then the statement is:

 Distributed Positioned Operation

This statement would appear for any SQL statement that uses the WHERE

CURRENT OF syntax.

v The following statement will appear if there are predicates that must be applied

to the result but that could not be applied as part of another operation:

 Residual Predicate Application

 | #Predicates = n

v The following statement will appear if there is a UNION operator in the SQL

statement:

 UNION

v The following statement will appear if there is an operation in the access plan,

whose sole purpose is to produce row values for use by subsequent operations:

336 Tuning Database Performance

Table Constructor

 | n-Row(s)

Table constructors can be used for transforming values in a set into a series of

rows that are then passed to subsequent operations. When a table constructor is

prompted for the next row, the following statement will appear:

 Access Table Constructor

v The following statement will appear if there is an operation which is only

processed under certain conditions:

 Conditional Evaluation

 | Condition #n:

 | #Predicates = n

 | Action #n:

Conditional evaluation is used to implement such activities as the SQL CASE

statement or internal mechanisms such as referential integrity constraints or

triggers. If no action is shown, then only data manipulation operations are

processed when the condition is true.

v One of the following statements will appear if an ALL, ANY, or EXISTS

subquery is being processed in the access plan:

– ANY/ALL Subquery

– EXISTS Subquery

– EXISTS SINGLE Subquery

v Prior to certain UPDATE and DELETE operations, it is necessary to establish the

position of a specific row within the table. This is indicated by the following

statement:

 Establish Row Position

v The following information will appear for deletes on multidimensional

clustering tables that qualify for roll out optimization:

CELL DELETE with deferred cleanup

or

CELL DELETE with immediate cleanup

v The following statement will appear if there are rows being returned to the

application:

 Return Data to Application

 | #Columns = n

If the operation was pushed-down into a table access, it will require a

completion phase. This phase appears as:

 Return Data Completion

v The following information will appear if a stored procedure is being invoked:

 Call Stored Procedure

 | Name = schema.funcname

 | Specific Name = specificname

 | SQL Access Level = accesslevel

 | Language = lang

 | Parameter Style = parmstyle

 | Expected Result Sets = n

 | Fenced Not Deterministic

 | Called on NULL Input Disallow Parallel

 | Not Federated Not Threadsafe

v The following information will appear if one or more LOB locators are being

freed:

Chapter 22. Query access plans 337

Free LOB Locators

Examples of db2expln and dynexpln output

The examples shown here can help you understand the layout and format of the

output from db2expln and dynexpln. These examples were run against the

SAMPLE database that is provided with DB2, unless shown otherwise. A brief

discussion is included with each example. Significant differences from one example

to the next have been shown in bold.

Example one: no parallelism: This example is simply requesting a list of all

employee names, their jobs, department name and location, and the project names

on which they are working. The essence of this access plan is that hash joins are

used to join the relevant data from each of the specified tables. Since no indexes

are available, the access plan does a relation scan of each table as it is joined.

******************** PACKAGE ***************************************

Package Name = "DOOLE"."EXAMPLE" Version = ""

 Prep Date = 2002/01/04

 Prep Time = 14:05:00

 Bind Timestamp = 2002-01-04-14.05.00.415403

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = No

 Intra-Partition Parallel = No

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "DOOLE"

-------------------- SECTION ---------------------------------------

Section = 1

SQL Statement:

 DECLARE EMPCUR CURSOR

 FOR

 SELECT e.lastname, e.job, d.deptname, d.location, p.projname

 FROM employee AS e, department AS d, project AS p

 WHERE e.workdept = d.deptno AND e.workdept = p.deptno

Estimated Cost = 120.518692

Estimated Cardinality = 221.535980

(6) Access Table Name = DOOLE.EMPLOYEE ID = 2,5

 | #Columns = 3

 | Relation Scan

 | | Prefetch: Eligible

 | Lock Intents

 | | Table: Intent Share

 | | Row : Next Key Share

(6) | Process Build Table for Hash Join

(2) Hash Join

 | Estimated Build Size: 7111

 | Estimated Probe Size: 9457

(5) | Access Table Name = DOOLE.PROJECT ID = 2,7

 | | #Columns = 2

 | | Relation Scan

 | | | Prefetch: Eligible

 | | Lock Intents

 | | | Table: Intent Share

338 Tuning Database Performance

| | | Row : Next Key Share

(5) | | Process Build Table for Hash Join

(3) | Hash Join

 | | Estimated Build Size: 5737

 | | Estimated Probe Size: 6421

(4) | | Access Table Name = DOOLE.DEPARTMENT ID = 2,4

 | | | #Columns = 3

 | | | Relation Scan

 | | | | Prefetch: Eligible

 | | | Lock Intents

 | | | | Table: Intent Share

 | | | | Row : Next Key Share

(4) | | | Process Probe Table for Hash Join

(1) Return Data to Application

 | #Columns = 5

End of section

Optimizer Plan:

 RETURN

 (1)

 |

 HSJOIN

 (2)

 / \

 HSJOIN TBSCAN

 (3) (6)

 / \ |

 TBSCAN TBSCAN Table:

 (4) (5) DOOLE

 | | EMPLOYEE

 Table: Table:

 DOOLE DOOLE

 DEPARTMENT PROJECT

The first part of the plan accesses the DEPARTMENT and PROJECT tables and

uses a hash join to join them. The result of this join is joined to the EMPLOYEE

table. The resulting rows are returned to the application.

Example two: single-partition plan with intra-partition parallelism: This

example shows the same SQL statement as the first example, but this query has

been compiled for a four-way SMP machine.

******************** PACKAGE ***************************************

Package Name = "DOOLE"."EXAMPLE" Version = ""

 Prep Date = 2002/01/04

 Prep Time = 14:12:38

 Bind Timestamp = 2002-01-04-14.12.38.732627

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = No

 Intra-Partition Parallel = Yes (Bind Degree = 4)

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "DOOLE"

-------------------- SECTION ---------------------------------------

Section = 1

Chapter 22. Query access plans 339

SQL Statement:

 DECLARE EMPCUR CURSOR

 FOR

 SELECT e.lastname, e.job, d.deptname, d.location, p.projname

 FROM employee AS e, department AS d, project AS p

 WHERE e.workdept = d.deptno AND e.workdept = p.deptno

Intra-Partition Parallelism Degree = 4

Estimated Cost = 133.934692

Estimated Cardinality = 221.535980

(2) Process Using 4 Subagents

(7) | Access Table Name = DOOLE.EMPLOYEE ID = 2,5

 | | #Columns = 3

 | | Parallel Scan

 | | Relation Scan

 | | | Prefetch: Eligible

 | | Lock Intents

 | | | Table: Intent Share

 | | | Row : Next Key Share

(7) | | Process Build Table for Hash Join

(3) | Hash Join

 | | Estimated Build Size: 7111

 | | Estimated Probe Size: 9457

(6) | | Access Table Name = DOOLE.PROJECT ID = 2,7

 | | | #Columns = 2

 | | | Parallel Scan

 | | | Relation Scan

 | | | | Prefetch: Eligible

 | | | Lock Intents

 | | | | Table: Intent Share

 | | | | Row : Next Key Share

(6) | | | Process Build Table for Hash Join

(4) | | Hash Join

 | | | Estimated Build Size: 5737

 | | | Estimated Probe Size: 6421

(5) | | | Access Table Name = DOOLE.DEPARTMENT ID = 2,4

 | | | | #Columns = 3

 | | | | Parallel Scan

 | | | | Relation Scan

 | | | | | Prefetch: Eligible

 | | | | Lock Intents

 | | | | | Table: Intent Share

 | | | | | Row : Next Key Share

(5) | | | | Process Probe Table for Hash Join

(2) | Insert Into Asynchronous Local Table Queue ID = q1

(2) Access Local Table Queue ID = q1 #Columns = 5

(1) Return Data to Application

 | #Columns = 5

End of section

Optimizer Plan:

 RETURN

 (1)

 |

 LTQ

 (2)

 |

 HSJOIN

 (3)

 / \

 HSJOIN TBSCAN

340 Tuning Database Performance

(4) (7)

 / \ |

 TBSCAN TBSCAN Table:

 (5) (6) DOOLE

 | | EMPLOYEE

 Table: Table:

 DOOLE DOOLE

 DEPARTMENT PROJECT

This plan is almost identical to the plan in the first example. The main differences

are the creation of four subagents when the plan first starts and the table queue at

the end of the plan to gather the results of each of subagent’s work before

returning them to the application.

Example three: multipartition plan with inter-partition parallelism: This

example shows the same SQL statement as the first example, but this query has

been compiled on a partitioned database made up of three database partitions.

******************** PACKAGE ***************************************

Package Name = "DOOLE"."EXAMPLE" Version = ""

 Prep Date = 2002/01/04

 Prep Time = 14:54:57

 Bind Timestamp = 2002-01-04-14.54.57.033666

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = Yes

 Intra-Partition Parallel = No

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "DOOLE"

-------------------- SECTION ---------------------------------------

Section = 1

SQL Statement:

 DECLARE EMPCUR CURSOR

 FOR

 SELECT e.lastname, e.job, d.deptname, d.location, p.projname

 FROM employee AS e, department AS d, project AS p

 WHERE e.workdept = d.deptno AND e.workdept = p.deptno

Estimated Cost = 118.483406

Estimated Cardinality = 474.720032

 Coordinator Subsection:

(-----) Distribute Subsection #2

 | Broadcast to Node List

 | | Nodes = 10, 33, 55

(-----) Distribute Subsection #3

 | Broadcast to Node List

 | | Nodes = 10, 33, 55

(-----) Distribute Subsection #1

 | Broadcast to Node List

 | | Nodes = 10, 33, 55

(2) Access Table Queue ID = q1 #Columns = 5

(1) Return Data to Application

 | #Columns = 5

 Subsection #1:

Chapter 22. Query access plans 341

(8) Access Table Queue ID = q2 #Columns = 2

(3) Hash Join

 | Estimated Build Size: 5737

 | Estimated Probe Size: 8015

(6) | Access Table Queue ID = q3 #Columns = 3

(4) | Hash Join

 | | Estimated Build Size: 5333

 | | Estimated Probe Size: 6421

(5) | | Access Table Name = DOOLE.DEPARTMENT ID = 2,4

 | | | #Columns = 3

 | | | Relation Scan

 | | | | Prefetch: Eligible

 | | | Lock Intents

 | | | | Table: Intent Share

 | | | | Row : Next Key Share

(5) | | | Process Probe Table for Hash Join

(2) Insert Into Asynchronous Table Queue ID = q1

 | Broadcast to Coordinator Node

 | Rows Can Overflow to Temporary Table

 Subsection #2:

(9) Access Table Name = DOOLE.PROJECT ID = 2,7

 | #Columns = 2

 | Relation Scan

 | | Prefetch: Eligible

 | Lock Intents

 | | Table: Intent Share

 | | Row : Next Key Share

(9) | Insert Into Asynchronous Table Queue ID = q2

 | | Hash to Specific Node

 | | Rows Can Overflow to Temporary Tables

(8) Insert Into Asynchronous Table Queue Completion ID = q2

 Subsection #3:

(7) Access Table Name = DOOLE.EMPLOYEE ID = 2,5

 | #Columns = 3

 | Relation Scan

 | | Prefetch: Eligible

 | Lock Intents

 | | Table: Intent Share

 | | Row : Next Key Share

(7) | Insert Into Asynchronous Table Queue ID = q3

 | | Hash to Specific Node

 | | Rows Can Overflow to Temporary Tables

(6) Insert Into Asynchronous Table Queue Completion ID = q3

End of section

Optimizer Plan:

 RETURN

 (1)

 |

 BTQ

 (2)

 |

 HSJOIN

 (3)

 / \

 HSJOIN DTQ

 (4) (8)

 / \ |

 TBSCAN DTQ TBSCAN

 (5) (6) (9)

 | | |

 Table: TBSCAN Table:

342 Tuning Database Performance

DOOLE (7) DOOLE

 DEPARTMENT | PROJECT

 Table:

 DOOLE

 EMPLOYEE

This plan has all the same pieces as the plan in the first example, but the section

has been broken into four subsections. The subsections have the following tasks:

v Coordinator Subsection. This subsection coordinates the other subsections. In

this plan, it causes the other subsections to be distributed and then uses a table

queue to gather the results to be returned to the application.

v Subsection #1. This subsection scans table queue q2 and uses a hash join to join

it with the data from table queue q3. A second hash join then adds in the data

from the DEPARTMENT table. The joined rows are then sent to the coordinator

subsection using table queue q1.

v Subsection #2. This subsection scans the PROJECT table and hashes to a specific

node with the results. These results are read by Subsection #1.

v Subsection #3. This subsection scans the EMPLOYEE table and hashes to a

specific node with the results. These results are read by Subsection #1.

Example four: multipartition plan with inter-partition and intra-partition

parallelism: This example shows the same SQL statement as the first example,

but this query has been compiled on a partitioned database made up of three

database partitions, each of which is on a four-way SMP machine.

******************** PACKAGE ***************************************

Package Name = "DOOLE"."EXAMPLE" Version = ""

 Prep Date = 2002/01/04

 Prep Time = 14:58:35

 Bind Timestamp = 2002-01-04-14.58.35.169555

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = Yes

 Intra-Partition Parallel = Yes (Bind Degree = 4)

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "DOOLE"

-------------------- SECTION ---------------------------------------

Section = 1

SQL Statement:

 DECLARE EMPCUR CURSOR

 FOR

 SELECT e.lastname, e.job, d.deptname, d.location, p.projname

 FROM employee AS e, department AS d, project AS p

 WHERE e.workdept = d.deptno AND e.workdept = p.deptno

Intra-Partition Parallelism Degree = 4

Estimated Cost = 145.198898

Estimated Cardinality = 474.720032

 Coordinator Subsection:

(-----) Distribute Subsection #2

 | Broadcast to Node List

 | | Nodes = 10, 33, 55

Chapter 22. Query access plans 343

(-----) Distribute Subsection #3

 | Broadcast to Node List

 | | Nodes = 10, 33, 55

(-----) Distribute Subsection #1

 | Broadcast to Node List

 | | Nodes = 10, 33, 55

(2) Access Table Queue ID = q1 #Columns = 5

(1) Return Data to Application

 | #Columns = 5

 Subsection #1:

(3) Process Using 4 Subagents

(10) | Access Table Queue ID = q3 #Columns = 2

(4) | Hash Join

 | | Estimated Build Size: 5737

 | | Estimated Probe Size: 8015

(7) | | Access Table Queue ID = q5 #Columns = 3

(5) | | Hash Join

 | | | Estimated Build Size: 5333

 | | | Estimated Probe Size: 6421

(6) | | | Access Table Name = DOOLE.DEPARTMENT ID = 2,4

 | | | | #Columns = 3

 | | | | Parallel Scan

 | | | | Relation Scan

 | | | | | Prefetch: Eligible

 | | | | Lock Intents

 | | | | | Table: Intent Share

 | | | | | Row : Next Key Share

(6) | | | | Process Probe Table for Hash Join

(3) | Insert Into Asynchronous Local Table Queue ID = q2

(3) Access Local Table Queue ID = q2 #Columns = 5

(2) Insert Into Asynchronous Table Queue ID = q1

 | Broadcast to Coordinator Node

 | Rows Can Overflow to Temporary Table

 Subsection #2:

(11) Process Using 4 Subagents

(12) | Access Table Name = DOOLE.PROJECT ID = 2,7

 | | #Columns = 2

 | | Parallel Scan

 | | Relation Scan

 | | | Prefetch: Eligible

 | | Lock Intents

 | | | Table: Intent Share

 | | | Row : Next Key Share

(11) | Insert Into Asynchronous Local Table Queue ID = q4

(11) Access Local Table Queue ID = q4 #Columns = 2

(10) Insert Into Asynchronous Table Queue ID = q3

 | Hash to Specific Node

 | Rows Can Overflow to Temporary Tables

 Subsection #3:

(8) Process Using 4 Subagents

(9) | Access Table Name = DOOLE.EMPLOYEE ID = 2,5

 | | #Columns = 3

 | | Parallel Scan

 | | Relation Scan

 | | | Prefetch: Eligible

 | | Lock Intents

 | | | Table: Intent Share

 | | | Row : Next Key Share

(8) | Insert Into Asynchronous Local Table Queue ID = q6

(8) Access Local Table Queue ID = q6 #Columns = 3

(7) Insert Into Asynchronous Table Queue ID = q5

 | Hash to Specific Node

 | Rows Can Overflow to Temporary Tables

344 Tuning Database Performance

End of section

Optimizer Plan:

 RETURN

 (1)

 |

 BTQ

 (2)

 |

 LTQ

 (3)

 |

 HSJOIN

 (4)

 / \

 HSJOIN DTQ

 (5) (10)

 / \ |

 TBSCAN DTQ LTQ

 (6) (7) (11)

 | | |

 Table: LTQ TBSCAN

 DOOLE (8) (12)

 DEPARTMENT | |

 TBSCAN Table:

 (9) DOOLE

 | PROJECT

 Table:

 DOOLE

 EMPLOYEE

This plan is similar to that in the third example, except that multiple subagents

execute each subsection. Also, at the end of each subsection, a local table queue

gathers the results from all of the subagents before the qualifying rows are inserted

into the second table queue to be hashed to a specific node.

Example five: federated database plan: This example shows the same SQL

statement as the first example, but this query has been compiled on a federated

database where the tables DEPARTMENT and PROJECT are on a data source and

the table EMPLOYEE is on the federated server.

******************** PACKAGE ***************************************

Package Name = "DOOLE"."EXAMPLE" Version = ""

 Prep Date = 2002/01/11

 Prep Time = 13:52:48

 Bind Timestamp = 2002-01-11-13.52.48.325413

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = No

 Intra-Partition Parallel = No

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "DOOLE"

-------------------- SECTION ---------------------------------------

Section = 1

SQL Statement:

Chapter 22. Query access plans 345

DECLARE EMPCUR CURSOR

 FOR

 SELECT e.lastname, e.job, d.deptname, d.location, p.projname

 FROM employee AS e, department AS d, project AS p

 WHERE e.workdept = d.deptno AND e.workdept = p.deptno

Estimated Cost = 1804.625000

Estimated Cardinality = 112000.000000

(7) Ship Distributed Subquery #2

 | #Columns = 2

(2) Hash Join

 | Estimated Build Size: 48444

 | Estimated Probe Size: 232571

(6) | Access Table Name = DOOLE.EMPLOYEE ID = 2,5

 | | #Columns = 3

 | | Relation Scan

 | | | Prefetch: Eligible

 | | Lock Intents

 | | | Table: Intent Share

 | | | Row : Next Key Share

(6) | | Process Build Table for Hash Join

(3) | Hash Join

 | | Estimated Build Size: 7111

 | | Estimated Probe Size: 64606

(4) | | Ship Distributed Subquery #1

 | | | #Columns = 3

(1) Return Data to Application

 | #Columns = 5

Distributed Substatement #1:

(4) Server: REMOTE (DB2/UDB 8.1)

 SQL Statement:

 SELECT A0."DEPTNO", A0."DEPTNAME", A0."LOCATION"

 FROM "DOOLE"."DEPARTMENT" A0

 Nicknames Referenced:

 DOOLE.DEPARTMENT ID = 32768

 Base = DOOLE.DEPARTMENT

 #Output Columns = 3

Distributed Substatement #2:

(7) Server: REMOTE (DB2/UDB 8.1)

 SQL Statement:

 SELECT A0."DEPTNO", A0."PROJNAME"

 FROM "DOOLE"."PROJECT" A0

 Nicknames Referenced:

 DOOLE.PROJECT ID = 32769

 Base = DOOLE.PROJECT

 #Output Columns = 2

End of section

Optimizer Plan:

 RETURN

 (1)

 |

 HSJOIN

 (2)

 / \

 HSJOIN SHIP

 (3) (7)

346 Tuning Database Performance

/ \ |

 SHIP TBSCAN Nickname:

 (4) (6) DOOLE

 | | PROJECT

 Nickname: Table:

 DOOLE DOOLE

 DEPARTMENT EMPLOYEE

This plan has all the same pieces as the plan in the first example, except that the

data for two of the tables are coming from data sources. The two tables are

accessed through distributed subqueries which, in this case, simply select all the

rows from those tables. Once the data is returned to the federated server, it is

joined to the data from the local table.

Example six: XANDOR and XISCAN operators: This example shows how the

XANDOR operator combines XISCAN scans of two individual indexes over XML

data (IDX1 and IDX2) that have been defined on the same table XISCANTABLE.

IBM DB2 Database SQL Explain Tool

******************** DYNAMIC ***************************************

==================== STATEMENT ==

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = No

 Intra-Partition Parallel = No

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "ATTALURI"

Query Statement:

 xquery

 for $c in db2-fn:xmlcolumn("XISCANTABLE.XMLCOL ")/a[@x="1"]/b[@y=

 "2"] return $c

Section Code Page = 819

Estimated Cost = 192.266113

Estimated Cardinality = 1.800000

(6) Index ANDing and ORing over XML

 | Xpath is

 | | /child::element(a)[./child::element(b)

 | | /attribute::attribute(y)(:Index Search over XML 1:)

 | | and ./attribute::attribute(x)(:Index Search over XML 2:)

 | |]

 | Index Search over XML 1

 | | Access Table Name = ATTALURI.XISCANTABLE

 | | | Index Scan over XML: Name = ATTALURI.IDX1 ID = 6

 | | | | Physical Index over XML

 | | | | Index Columns:

 | | | | | 1: XMLCOL (Ascending)

 | | | #Key Columns = 4

 | | | | Start Key: Inclusive Value

 | | | | | | 1: ?

 | | | | | | 2: ?

 | | | | | | 3: ?

 | | | | | | 4: ?

 | | | | Stop Key: Inclusive Value

 | | | | | | 1: ?

 | | | | | | 2: ?

 | | | Index-Only Access

 | | | Index Prefetch: None

 | | | Isolation Level: Uncommitted Read

Chapter 22. Query access plans 347

| | | Lock Intents

 | | | | Table: Intent None

 | | | | Row : None

 | | | StopKey = StartKey

 | | | Value Start Key = ?

 | Index Search over XML 2

 | | Access Table Name = ATTALURI.XISCANTABLE

 | | | Index Scan over XML: Name = ATTALURI.IDX2 ID = 4

 | | | | Physical Index over XML

 | | | | Index Columns:

 | | | | | 1: XMLCOL (Ascending)

 | | | #Key Columns = 4

 | | | | Start Key: Inclusive Value

 | | | | | | 1: ?

 | | | | | | 2: ?

 | | | | | | 3: ?

 | | | | | | 4: ?

 | | | | Stop Key: Inclusive Value

 | | | | | | 1: ?

 | | | | | | 2: ?

 | | | Index-Only Access

 | | | Index Prefetch: None

 | | | Isolation Level: Uncommitted Read

 | | | Lock Intents

 | | | | Table: Intent None

 | | | | Row : None

 | | | StopKey = StartKey

 | | | Value Start Key = ?

(5) Insert Into Sorted Temp Table ID = t1

 | #Columns = 1

 | #Sort Key Columns = 1

 | | Key 1: (Ascending)

 | Sortheap Allocation Parameters:

 | | #Rows = 2

 | | Row Width = 16

 | Piped

 | Duplicate Elimination

(4) List Prefetch Preparation

(4) | Access Table Name = ATTALURI.XISCANTABLE ID = 2,16

 | | #Columns = 1

 | | Fetch Using Prefetched List

 | | | Prefetch: Eligible

 | | Lock Intents

 | | | Table: Intent Share

 | | | Row : Next Key Share

(2) Nested Loop Join

 | Piped Inner

(9) | XML Doc Navigation

 | | Navigator is

 | | | /fn:root($CONTEXT_NODE$())/child::element(a)(:#Xpath Predicates = 1:)

 | | | [./child::element(b)(:Output nodeSeqRef :)

 | | | (:#Xpath Predicates = 1:)

 | | | /attribute::attribute(y) and

 | | | ./attribute::attribute(x)]

(1) Iterate over XML sequence for Xquery bindout

(1) Return Data to Application

 | #Columns = 1

End of section

Optimizer Plan:

 RETURN

 (1)

 |

 NLJOIN

 (2)

 / \

 FETCH XSCAN

348 Tuning Database Performance

(----) (9)

 / \

 RIDSCN Table:

 (4) ATTALURI

 | XISCANTABLE

 SORT

 (5)

 |

 XANDOR

 (6)

 /---------/ \--------\

 XISCAN XISCAN

 (6) (6)

 / \ / \

 Index: Table: Index: Table:

 ATTALURI ATTALURI ATTALURI ATTALURI

 IDX1 XISCANTABLE IDX2 XISCANTABLE

Example seven: XSCAN operator: This example shows how the XSCAN operator

may appear in an access plan. This operator processes node references passed by a

nested-loop join operator (NLJOIN). It is not represented with a direct input in the

access plan.

IBM DB2 Database SQL Explain Tool

******************** DYNAMIC ***************************************

==================== STATEMENT ==

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = No

 Intra-Partition Parallel = No

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "ATTALURI"

Query Statement:

 xquery

 for $b in db2-fn:xmlcolumn("XISCANTABLE.XMLCOL")//book[position()<=

 2] return $b

Section Code Page = 819

Estimated Cost = 779592.625000

Estimated Cardinality = 540000000.000000

(4) Access Table Name = ATTALURI.XISCANTABLE ID = 2,16

 | #Columns = 1

 | Relation Scan

 | | Prefetch: Eligible

 | Lock Intents

 | | Table: Intent Share

 | | Row : Next Key Share

(3) Nested Loop Join

 | Piped Inner

(6) | XML Doc Navigation

 | | Navigator is

 | | | /fn:root($CONTEXT_NODE$())/descendant-or-self::node()(:Output nodeSeqRef :)

 | | |

(5) | Nested Loop Join

 | | Piped Inner

(11) | | XML Doc Navigation

 | | | Navigator is

 | | | | /fn:root($CONTEXT_NODE$())/child::element(book)(:Output nodeSeqRef :)

Chapter 22. Query access plans 349

| | | |

(10) | | Aggregation

 | | | Column Function(s)

(9) | | Nested Loop Join

 | | | Piped Inner

(12) | | | Unnest input XML sequence into stream of items with item number

(8) | | Nested Loop Join

 | | | Piped Inner

(14) | | | Table Constructor

 | | | | 1-Row(s)

(2) Nested Loop Join

 | Piped Inner

(16) | Unnest input XML sequence into stream of items

(1) Iterate over XML sequence for Xquery bindout

(1) Return Data to Application

 | #Columns = 1

End of section

Optimizer Plan:

 RETURN

 (1)

 |

 NLJOIN

 (2)

 /-/ \-----\

 NLJOIN *

 (3) *

 / \ |

 TBSCAN NLJOIN TBSCAN

 (4) (5) (16)

 | / \ |

 Table: XSCAN * TFunc:

 ATTALURI (6) * SYSIBM

 XISCANTABLE | GENROW

 NLJOIN

 (8)

 / \

 NLJOIN FILTER

 (9) (13)

 / \ |

 GRPBY TBSCAN TBSCAN

 (10) (12) (14)

 | | |

 XSCAN TFunc: TFunc:

 (11) SYSIBM SYSIBM

 GENROW GENROW

Example eight: XISCAN operator: This example shows how the XISCAN

operator scans the index over XML data IDX1 defined on the table XISCANTABLE.

IBM DB2 Database SQL Explain Tool

******************** DYNAMIC ***************************************

==================== STATEMENT ==

 Isolation Level = Cursor Stability

 Blocking = Block Unambiguous Cursors

 Query Optimization Class = 5

 Partition Parallel = No

 Intra-Partition Parallel = No

 SQL Path = "SYSIBM", "SYSFUN", "SYSPROC", "ATTALURI"

350 Tuning Database Performance

Query Statement:

 xquery

 for $c in db2-fn:xmlcolumn("XISCANTABLE.XMLCOL ")/a[@x="1"] return

 $c

Section Code Page = 819

Estimated Cost = 1666.833862

Estimated Cardinality = 18.000000

(6) Access Table Name = ATTALURI.XISCANTABLE

 | Index Scan over XML: Name = ATTALURI.IDX1 ID = 4

 | | Physical Index over XML

 | | Index Columns:

 | | | 1: XMLCOL (Ascending)

 | #Key Columns = 2

 | | Start Key: Inclusive Value

 | | | | 1: ?

 | | | | 2: ?

 | | Stop Key: Inclusive Value

 | | | | 1: ?

 | | | | 2: ?

 | Index-Only Access

 | Index Prefetch: None

 | Isolation Level: Uncommitted Read

 | Lock Intents

 | | Table: Intent None

 | | Row : None

 | StopKey = StartKey

 | Value Start Key = ?

 | Xpath is

 | | /child::element(a)/attribute::attribute(x)

(5) Insert Into Sorted Temp Table ID = t1

 | #Columns = 1

 | #Sort Key Columns = 1

 | | Key 1: (Ascending)

 | Sortheap Allocation Parameters:

 | | #Rows = 18

 | | Row Width = 16

 | Piped

 | Duplicate Elimination

(4) List Prefetch Preparation

(4) | Access Table Name = ATTALURI.XISCANTABLE ID = 2,16

 | | #Columns = 1

 | | Fetch Using Prefetched List

 | | | Prefetch: Eligible

 | | Lock Intents

 | | | Table: Intent Share

 | | | Row : Next Key Share

(2) Nested Loop Join

 | Piped Inner

(7) | XML Doc Navigation

 | | Navigator is

 | | | /fn:root($CONTEXT_NODE$())/child::element(a)(:Output nodeSeqRef :)

 | | | (:#Xpath Predicates = 1:)

 | | | /attribute::attribute(x)

(1) Iterate over XML sequence for Xquery bindout

(1) Return Data to Application

 | #Columns = 1

End of section

Optimizer Plan:

Chapter 22. Query access plans 351

RETURN

 (1)

 |

 NLJOIN

 (2)

 / \

 FETCH XSCAN

 (----) (7)

 / \

 RIDSCN Table:

 (4) ATTALURI

 | XISCANTABLE

 SORT

 (5)

 |

 XISCAN

 (6)

 / \

 Index: Table:

 ATTALURI ATTALURI

 IDX1 XISCANTABLE

The explain tables and organization of explain information

All explain information is organized around the concept of an explain instance. An

explain instance represents one invocation of the explain facility for one or more

SQL or XQuery statements. The explain information captured in one explain

instance includes the compilation environment as well as the access plan chosen to

satisfy the SQL or XQuery statement being compiled. For example, an explain

instance might consist of any one of the following:

v All eligible SQL or XQuery statements in one package for static query

statements. For SQL statements (including those that query XML data), you can

capture explain information for CALL, Compound SQL (Dynamic), DELETE,

INSERT, MERGE, REFRESH, SELECT, SET INTEGRITY, SELECT INTO,

UPDATE, VALUES, and VALUES INTO statements. For XQuery statements, you

can obtain explain information for XQUERY db2-fn:xmlcolumn and XQUERY

db2-fn:sqlquery statements.

Note: REFRESH TABLE and SET INTEGRITY statements are not compiled

statically, but only dynamically.

v One particular SQL statement for incremental bind SQL statements

v One particular SQL statement for dynamic SQL statements

v Each EXPLAIN SQL statement (whether dynamic or static)

Explain table information reflects the relationships between operators and data

objects in the access plan. The following diagram shows the relationships between

these tables.

Explain information is stored in the following tables:

 Table 65. Relational tables that store explain data

Table Name Description

EXPLAIN_ARGUMENT Contains information about the unique characteristics for each individual

operator, if any.

EXPLAIN_INSTANCE The main control table for all Explain information. Each row of data in the

Explain tables is explicitly linked to one unique row in this table. Basic

information about the source of the SQL or XQuery statements being

explained and environment information is kept in this table.

352 Tuning Database Performance

Table 65. Relational tables that store explain data (continued)

Table Name Description

EXPLAIN_OBJECT Identifies those data objects required by the access plan generated to satisfy

the SQL or XQuery statement.

EXPLAIN_OPERATOR Contains all the operators needed to satisfy the SQL or XQuery statement

by the query compiler.

EXPLAIN_PREDICATE Identifies the predicates that are applied by a specific operator.

EXPLAIN_STATEMENT Contains the text of the SQL or XQuery statement as it exists for the

different levels of explain information. The original SQL or XQuery

statement as entered by the user is stored in this table with the version

used by the optimizer to choose an access plan.

When an explain snapshot is requested, additional explain information is

recorded to describe the access plan selected by the query optimizer. This

information is stored in the SNAPSHOT column of the

EXPLAIN_STATEMENT table in the format required by Visual Explain.

This format is not usable by other applications.

EXPLAIN_STREAM Represents the input and output data streams between individual operators

and data objects. The data objects themselves are represented in the

EXPLAIN_OBJECT table. The operators involved in a data stream are

represented in the EXPLAIN_OPERATOR table.

EXPLAIN_DIAGNOSTIC Contains an entry for each diagnostic message produced for a particular

instance of an explained statement in the EXPLAIN_STATEMENT table.

EXPLAIN_DIAGNOSTIC_DATA Contains message tokens for specific diagnostic messages that are recorded

in the EXPLAIN_DIAGNOSTIC table. The message tokens provide

additional information that is specific to the execution of the SQL statement

that generated the message.

ADVISE_WORKLOAD Allows users to describe a workload to the database. Each row in the table

represents an SQL or XQuery statement in the workload and is described

by an associated frequency. The db2advis tool uses this table to collect and

store workload information.

ADVISE_INSTANCE Contains information about db2advis execution, including start time.

Contains one row for each execution of db2advis.

ADVISE_INDEX Stores information about recommended indexes. The table can be

populated by the query compiler, the db2advis utility or a user. This table

is used in two ways:

v To get recommended indexes.

v To evaluate indexes based on input about proposed indexes.

ADVISE_MQT Contains the CREATE DDL, the query defining each recommended MQT,

the statistics for each MQT such as COLSTATS (per column) in XML form,

NUMROWS, and so on,, as well as the sampling query to obtain sampled

statistics for each MQT.

ADVISE_TABLE Stores the DDL for table creation using the final Design Advisor

recommendations for recommended MQTs, MDCs and database partitions,

depending on the options specified and the recommendations generated.

ADVISE_PARTITION Stores virtual database partitions generated and evaluated by db2advis.

Note: Not all of the tables above are created by default. To create them, run the

EXPLAIN.DDL script found in the misc subdirectory of the sqllib subdirectory.

In DB2 Version 9.5, you now have the ability to create, drop and validate explain

tables using the SYSPROC.SYSINSTALLOBJECTS procedure. This procedure allows

Chapter 22. Query access plans 353

the explain tables to be created under a specific schema and tablespace. An

example can be found in the EXPLAIN.DLL file.

Explain tables might be common to more than one user. However, the explain

tables can be defined for one user, and then aliases can be defined for each

additional user using the same name to point to the defined tables. Alternatively,

the explain tables can be defined under the SYSTOOLS schema. The Explain

facility will default to the SYSTOOLS schema if no other explain tables or aliases

are found under the user’s session ID for dynamic SQL or XQuery statements, or

the statement authorization ID for static SQL or XQuery statements. Each user

sharing the common explain tables must have insert permission on those tables.

Read permission for the common explain tables should also be limited, typically to

users who analyze the explain information.

Explain information for data objects

A single access plan may use one or more data objects to satisfy the SQL or

XQuery statement.

Object Statistics: The explain facility records information about the object, such as

the following:

v The creation time

v The last time that statistics were collected for the object

v An indication of whether or not the data in the object is ordered (only table or

index objects)

v The number of columns in the object (only table or index objects)

v The estimated number of rows in the object (only table or index objects)

v The number of pages that the object occupies in the buffer pool

v The total estimated overhead, in milliseconds, for a single random I/O to the

specified table space where this object is stored

v The estimated transfer rate, in milliseconds, to read a 4K page from the specified

table space

v Prefetch and extent sizes, in 4K pages

v The degree of data clustering with the index

v The number of leaf pages used by the index for this object and the number of

levels in the tree

v The number of distinct full key values in the index for this object

v The total number of overflow records in the table

Explain information for data operators

A single access plan can perform several operations on the data to satisfy the SQL

or XQuery statement and provide results back to you. The query compiler

determines the operations required, such as a table scan, an index scan, a nested

loop join, or a group-by operator.

In addition to showing the operators used in an access plan and information about

each operator, explain information also shows the cumulative effects of the access

plan.

Estimated Cost Information: The following estimated cumulative costs can be

displayed for the operators. These costs are for the chosen access plan, up to and

including the operator for which the information is captured.

354 Tuning Database Performance

v The total cost (in timerons)

v The number of page I/Os

v The number of CPU instructions

v The cost (in timerons) of fetching the first row, including any initial overhead

required

v The communication cost (in frames).

Timerons are an invented relative unit of measure. Timerons are determined by the

optimizer based on internal values such as statistics that change as the database is

used. As a result, the timerons measure for a SQL or XQuery statement are not

guaranteed to be the same every time the estimated cost in timerons is determined.

Operator Properties: The following information is recorded by the explain facility

to describe the properties of each operator:

v The set of tables that have been accessed

v The set of columns that have been accessed

v The columns on which the data is ordered, if the optimizer determined that this

ordering can be used by subsequent operators

v The set of predicates that have been applied

v The estimated number of rows that will be returned (cardinality)

Explain information for instances

Explain instance information is stored in the EXPLAIN_INSTANCE table.

Additional specific information about each query statement in an instance is stored

in the EXPLAIN_STATEMENT table.

Explain Instance Identification: The information provided by the following items

helps you to uniquely identify each explain instance and to correlate the

information for the query statements with a given invocation of the facility:

v The user who requested the explain information

v When the explain request began

v The name of the package that contains the explained query statement

v The SQL schema of the package that contains the explained query statement

v The version of the package that contains the statement

v Whether snapshot information was collected

Environmental Settings: Information about the database manager environment in

which the query compiler optimized your queries is captured. The environmental

information includes the following:

v The version and release number for the level of DB2

v The degree of parallelism for which the query was compiled

The CURRENT DEGREE special register, the DEGREE bind option, the SET

RUNTIME DEGREE API, and the dft_degree configuration parameter determine

the degree of parallelism for which a particular query is compiled.

v Whether the query statement is dynamic or static

v The query optimization class used to compile the query

v The type of row blocking for cursors specified when compiling the query

v The isolation level in which the query runs

v The values of various configuration parameters when the query was compiled.

The following parameters are recorded when an explain snapshot is taken:

Chapter 22. Query access plans 355

– Sort Heap Size (sortheap)

– Average Number of Active Applications (avg_appls)

– Database Heap (dbheap)

– Maximum Storage for Lock List (locklist)

– Maximum Percent of Lock List Before Escalation (maxlocks)

– CPU Speed (cpuspeed)

– Communications Bandwidth (comm_bandwidth)

Statement Identification: More than one query statement might have been

explained for each explain instance. In addition to information that uniquely

identifies the explain instance, the following information helps identify individual

query statements:

v The type of statement: SELECT, DELETE, INSERT, UPDATE, positioned

DELETE, positioned UPDATE, SET INTEGRITY

v The statement and section number of the package issuing the query statement,

as recorded in SYSCAT.STATEMENTS catalog view

The QUERYTAG and QUERYNO fields in the EXPLAIN_STATEMENT table

contain identifiers that are set as part of the explain process. For dynamic explain

query statements submitted during a CLP or CLI session, when EXPLAIN MODE

or EXPLAIN SNAPSHOT is active, the QUERYTAG is set to “CLP” or “CLI”. In

this case, the QUERYNO value defaults to a number that is incremented by one or

more for each statement. For all other dynamic explain query statements, which

are not from CLP, CLI, or do not use the EXPLAIN query statement, QUERYTAG

is set to blanks and QUERYNO is always “1”.

Cost Estimation: For each explained statement, the optimizer records an estimate

of the relative cost of executing the chosen access plan. This cost is stated in an

invented relative unit of measure called a timeron. No estimate of elapsed times is

provided, for the following reasons:

v The query optimizer does not estimate elapsed time but only resource

consumption.

v The optimizer does not model all factors that can affect elapsed time. It ignores

factors that do not affect the efficiency of the access plan. A number of runtime

factors affect the elapsed time, including the system workload, the amount of

resource contention, the amount of parallel processing and I/O, the cost of

returning rows to the user, and the communication time between the client and

server.

Statement Text: Two versions of the text of the query statement are recorded for

each statement explained. One version is the code that the query compiler receives

from the application. The other version is reverse-translated from the internal

compiler representation of the query. Although this translation looks similar to

other query statements, it does not necessarily follow correct query language

syntax nor does it necessarily reflect the actual content of the internal

representation as a whole. This translation is provided only to allow you to

understand the context in which the SQL and XQuery optimizer chose the access

plan. To understand how the SQL and XQuery compiler has rewritten your query

for better optimization, compare the user-written statement text to the internal

representation of the query statement. The rewritten statement also shows you

other elements in the environment affecting your statement, such as triggers and

constraints. Some keywords used by this “optimized” text are:

$Cn The name of a derived column, where n represents an integer value.

356 Tuning Database Performance

$CONSTRAINT$

The tag used to indicate the name of a constraint added to the original

query statement during compilation. Seen in conjunction with the

$WITH_CONTEXT$ prefix.

$DERIVED.Tn

The name of a derived table, where n represents an integer value.

$INTERNAL_FUNC$

The tag indicates the presence of a function used by the SQL and XQuery

compiler for the explained query but not available for general use.

$INTERNAL_PRED$

The tag indicates the presence of a predicate added by the SQL and

XQuery compiler during compilation of the explained query but not

available for general use. An internal predicate is used by the compiler to

satisfy additional context added to the original query statement because of

triggers and constraints.

$INTERNAL_XPATH$

Shows an internal table function which takes a single input annotated

XPath pattern as a parameter and returns a table with one or more

columns that match the pattern.

RID The tag used to identify the row identifier (RID) column for a particular

row.

$TRIGGER$

The tag used to indicate the name of a trigger added to the original query

statement during compilation. Seen in conjunction with the

$WITH_CONTEXT$ prefix.

$WITH_CONTEXT$(...)

This prefix appears at the start of the text when additional triggers or

constraints have been added into the original query statement. A list of the

names of any triggers or constraints affecting the compilation and

resolution of the query statement appears after this prefix.

db2exfmt - Explain table format

You use the db2exfmt tool to format the contents of the EXPLAIN tables. This tool

is located in the misc subdirectory of the instance sqllib directory. This tool uses

the statistics from the EXPLAIN snapshot, if the snapshot is available.

Authorization

To use the tool, you require read access to the explain tables being formatted.

Command syntax

�� db2exfmt

-1

-d

dbname

-e

schema

-f

O
 �

Chapter 22. Query access plans 357

�

�

-g

x

O

I

C

T

F

-l

-n

name

-o

outfile
 �

�

-s

schema

 -t

-u

userID

password

-w

timestamp

�

�
-#

sectnbr

-v

srcvers

-h
 ��

Command parameters

db2exfmt

If no options are specified, then the command enters interactive mode and

you will be prompted to make entries.

-1 Use defaults -e % -n % -s % -v % -w -1 -# 0

 If Explain schema is not supplied, the contents of the environment variable

$USER, or $USERNAME will be used as a default. If this variable is not

found, the user will be prompted for an Explain schema.

-d dbname

Name of the database containing packages.

-e schema

Explain table SQL schema.

-f Formatting flags. In this release, the only supported value is O (operator

summary).

-g Graph plan.

x Turn OFF options (default is to turn them ON).

If only -g is specified, a graph, followed by formatted information for all of

the tables, is generated. Otherwise, any combination of the following valid

values can be specified:

O Generate a graph only. Do not format the table contents.

T Include total cost under each operator in the graph.

F Include first tuple cost in graph.

I Include I/O cost under each operator in the graph.

C Include the expected output cardinality (number of tuples) of each

operator in the graph.

Any combination of these options is allowed, except F and T, which are

mutually exclusive.

-l Respect case when processing package names.

358 Tuning Database Performance

-n name

Name of the source of the explain request (SOURCE_NAME).

-s schema

SQL schema or qualifier of the source of the explain request

(SOURCE_SCHEMA).

-o outfile

Output file name.

-t Direct the output to the terminal.

-u userID password

When connecting to a database, use the provided user ID and password.

 Both the user ID and password must be valid according to naming

conventions and be recognized by the database.

-w timestamp

Explain time stamp. Specify -1 to obtain the latest explain request.

-# sectnbr

Section number in the source. To request all sections, specify zero.

-v srcvers

Source version of source of Explain request (default %)

-h Display help information. When this option is specified, all other options

are ignored, and only the help information is displayed.

Usage notes

You will be prompted for any parameter values that are not supplied, or that are

incompletely specified, except in the case of the -h and the -l options.

If an explain table SQL schema is not provided, the value of the environment

variable USER is used as the default. If this variable is not found, the user is

prompted for an explain table SQL schema.

Source name, source SQL schema, and explain time stamp can be supplied in LIKE

predicate form, which allows the percent sign (%) and the underscore (_) to be

used as pattern matching characters to select multiple sources with one invocation.

For the latest explained statement, the explain time can be specified as -1.

If -o is specified without a file name, and -t is not specified, the user is prompted

for a file name (the default name is db2exfmt.out). If neither -o nor -t is specified,

the user is prompted for a file name (the default option is terminal output). If -o

and -t are both specified, the output is directed to the terminal.

The db2exfmt command displays the statistics from the EXPLAIN snapshot, if the

snapshot is available. Otherwise, db2exfmt displays statistics stored in the

EXPLAIN_OBJECT table and also displays some statistics retrieved directly from

the system catalog.

The following are EXPLAIN snapshot examples.

db2 explain plan with snapshot for query

db2exfmt

or,

Chapter 22. Query access plans 359

db2 set current explain mode yes

db2 set current explain snapshot yes

run the query

db2exfmt

Optimizing query access plans

Optimization classes

When you compile an SQL or XQuery query, you can specify an optimization class

that determines how the optimizer chooses the most efficient access plan for that

query. The optimization classes are differentiated by the number and type of

optimization strategies considered in the compilation of the query. Although you

can specify optimization techniques individually to improve runtime performance

for the query, the more optimization techniques you specify, the more time and

system resources query compilation will require.

You can specify one of the following optimizer classes when you compile an SQL

or XQuery query:

0 - This class directs the optimizer to use minimal optimization to generate an

access plan. This optimization class has the following characteristics:

v Non-uniform distribution statistics are not considered by the optimizer.

v Only basic query rewrite rules are applied.

v Greedy join enumeration occurs.

v Only nested loop join and index scan access methods are enabled.

v List prefetch is not used in generated access methods.

v The star-join strategy is not considered.

This class should only be used in circumstances that require the the lowest

possible query compilation overhead. Query optimization class 0 is

appropriate for an application that consists entirely of very simple dynamic

SQL or XQuery statements that access well-indexed tables.

1 - This optimization class has the following characteristics:

v Non-uniform distribution statistics are not considered by the optimizer.

v Only a subset of the query rewrite rules are applied.

v Greedy join enumeration occurs.

v List prefetch is not used in generated access methods.

Optimization class 1 is similar to class 0 except that Merge Scan joins and

table scans are also available.

2 - This class directs the optimizer to use a degree of optimization significantly

higher than class 1, while keeping the compilation cost significantly lower

than classes 3 and above for complex queries. This optimization class has

the following characteristics:

v All available statistics, including both frequency and quantile

non-uniform distribution statistics, are used.

v All query rewrite rules are applied, including routing queries to

materialized query tables, except computationally intensive rules that are

applicable only in very rare cases.

v Greedy join enumeration is used.

v A wide range of access methods are considered, including list prefetch

and materialized query table routing.

360 Tuning Database Performance

v The star-join strategy is considered, if applicable.

Optimization class 2 is similar to class 5 except that it uses Greedy join

enumeration instead of Dynamic Programming. This class has the most

optimization of all classes that use the Greedy join enumeration algorithm,

which considers fewer alternatives for complex queries, and therefore

consumes less compilation time than classes 3 and above. Class 2 is

recommended for very complex queries in a decision support or online

analytic processing (OLAP) environment. In such environments, specific

queries are rarely repeated exactly, so that a query access plan is unlikely

to remain in the cache until the next occurrence of the query.

3 - This class requests a moderate amount of optimization. This class comes

closest to matching the query optimization characteristics of DB2 for

MVS/ESA™, OS/390, or z/OS. This optimization class has the following

characteristics:

v Non-uniform distribution statistics, which track frequently occurring

values, are used if available.

v Most query rewrite rules are applied, including subquery-to-join

transformations.

v Dynamic programming join enumeration, as follows:

– Limited use of composite inner tables

– Limited use of Cartesian products for star schemas involving look-up

tables
v A wide range of access methods are considered, including list prefetch,

index ANDing, and star joins.

This class is suitable for a broad range of applications. This class improves

access plans for queries with four or more joins. However, the optimizer

might fail to consider a better plan that might be chosen with the default

optimization class.

5 - This class directs the optimizer to use a significant amount of optimization

to generate an access plan. This optimization class has the following

characteristics:

v All available statistics are used, including both frequency and quantile

distribution statistics.

v All of the query rewrite rules are applied, including the routing of

queries to materialized query tables, except for those computationally

intensive rules which are applicable only in very rare cases.

v Dynamic programming join enumeration, as follows:

– Limited use of composite inner tables

– Limited use of Cartesian products for star schemas involving look-up

tables
v A wide range of access methods are considered, including list prefetch,

index ANDing, and materialized query table routing.

When the optimizer detects that the additional resources and processing

time are not warranted for complex dynamic SQL or XQuery queries,

optimization is reduced. The extent or size of the reduction depends on the

machine size and the number of predicates.

 When the query optimizer reduces the amount of query optimization, it

continues to apply all the query rewrite rules that would normally be

applied. However, it does use the Greedy join enumeration method and

reduces the number of access plan combinations that are considered.

Chapter 22. Query access plans 361

Query optimization class 5 is an excellent choice for a mixed environment

consisting of both transactions and complex queries. This optimization

class is designed to apply the most valuable query transformations and

other query optimization techniques in an efficient manner.

7 - This class directs the optimizer to use a significant amount of optimization

to generate an access plan. It is the same as query optimization class 5

except that it does not reduce the amount of query optimization for

complex dynamic SQL or XQuery queries.

9 - This class directs the optimizer to use all available optimization techniques.

These include:

v All available statistics

v All query rewrite rules

v All possibilities for join enumerations, including Cartesian products and

unlimited composite inners

v All access methods

This class can greatly expand the number of possible access plans that are

considered by the optimizer. You might use this class to find out whether

more comprehensive optimization would generate a better access plan for

very complex and very long-running queries that use large tables. Use

Explain and performance measurements to verify that a better plan has

actually been found.

Choosing an optimization class

Setting the optimization class can provide some of the advantages of explicitly

specifying optimization techniques, particularly for the following reasons:

v To manage very small databases or very simple dynamic queries

v To accommodate memory limitations at compile time on your database server

v To reduce the query compilation time, such as PREPARE.

Most statements can be adequately optimized with a reasonable amount of

resources by using optimization class 5, which is the default query optimization

class. At a given optimization class, the query compilation time and resource

consumption is primarily influenced by the complexity of the query, particularly

the number of joins and subqueries. However, compilation time and resource

usage are also affected by the amount of optimization performed.

Query optimization classes 1, 2, 3, 5, and 7 are all suitable for general-purpose use.

Consider class 0 only if you require further reductions in query compilation time

and you know that the SQL and XQuery statements are extremely simple.

Tip: To analyze queries that run a long time, run the query with db2batch to find

out how much time is spent in compilation and how much is spent in execution.If

compilation requires more time, reduce the optimization class. If execution requires

more time, consider a higher optimization class.

When you select an optimization class, consider the following general guidelines:

v Start by using the default query optimization class, class 5.

v To use a class other than the default, try class 1, 2 or 3 first. Classes 0, 1, and 2

use the Greedy join enumeration algorithm.

v Use optimization class 1 or 2 if you have many tables with many of the join

predicates that are on the same column, and if compilation time is a concern.

362 Tuning Database Performance

v Use a low optimization class (0 or 1) for queries having very short run-times of

less than one second. Such queries tend to have the following characteristics:

– Access to a single or only a few tables

– Fetch a single or only a few rows

– Use fully qualified, unique indexes.

Online transaction processing (OLTP) transactions are good examples of this kind

of query.

v Use a higher optimization class (3, 5, or 7) for longer running queries that take

more than 30 seconds.

v Classes 3 and above use the Dynamic Programming join enumeration

algorithm. This algorithm considers many more alternative plans, and might

incur significantly more compilation time than classes 0, 1, and 2, especially as

the number of tables increases.

v Use optimization class 9 only if you have specific extraordinary optimization

requirements for a query.

Complex queries might require different amounts of optimization to select the best

access plan. Consider using higher optimization classes for queries that have the

following characteristics:

v Access to large tables

v A large number of predicates

v Many subqueries

v Many joins

v Many set operators, such as UNION and INTERSECT

v Many qualifying rows

v GROUP BY and HAVING operations

v Nested table expressions

v A large number of views.

Decision support queries or month-end reporting queries against fully normalized

databases are good examples of complex queries for which at least the default

query optimization class should be used.

Use higher query optimization classes for SQL and XQuery statements that were

produced by a query generator. Many query generators create inefficient queries.

Poorly written queries, including those produced by a query generator, require

additional optimization to select a good access plan. Using query optimization

class 2 and higher can improve such SQL and XQuery queries.

Note: In a federated database query, the optimization class does not apply to the

remote optimizer.

Setting the optimization class

When you specify an optimization level, consider whether a query uses static or

dynamic SQL and XQuery statements, and whether the same dynamic query is

repeatedly executed. For static SQL and XQuery statements, the query compilation

time and resources are expended just once and the resulting plan can be used

many times. In general, static SQL and XQuery statements should always use the

default query optimization class. Because dynamic statements are bound and

executed at run time, consider whether the overhead of additional optimization for

Chapter 22. Query access plans 363

dynamic statements improves overall performance. However, if the same dynamic

SQL or XQuery statement is executed repeatedly, the selected access plan is cached.

Such statements can use the same optimization levels as static SQL and XQuery

statements.

If you think that a query that might benefit from additional optimization, but you

are not sure, or you are concerned about compilation time and resource usage, you

might perform some benchmark testing.

To specify a query optimization class, follow these steps:

1. Analyze the performance factors either informally or with formal tests as

follows:

v For dynamic query statements, tests should compare the average run time

for the statement. Use the following formula to estimate an average run time:

 compile time + sum of execution times for all iterations

 --

 number of iterations

In this formula, the number of iterations represents the number of times

that you expect that the query statement might be executed each time it is

compiled.

Note: After the initial compilation, dynamic SQL and XQuery statements are

recompiled when a change to the environment requires it. If the environment

does not change after a query statement is cached, it does not need to be

compiled again because subsequent PREPARE statements re-use the cached

statement.

v For static SQL and XQuery statements, compare the statement run times.

Although you might also be interested in the compile time of static SQL and

XQuery statements, the total compile and run time for the statement is

difficult to assess in any meaningful context. Comparing the total time does

not recognize the fact that a static query statement can be run many times

for each time it is bound and that it is generally not bound during run time.
2. Specify the optimization class as follows:

v Dynamic SQL and XQuery statements use the optimization class specified by

the CURRENT QUERY OPTIMIZATION special register that you set with the

SQL statement SET. For example, the following statement sets the

optimization class to 1:

 SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL or XQuery statement always uses the same

optimization class, you might include a SET statement in the application

program.

If the CURRENT QUERY OPTIMIZATION register has not been set, dynamic

statements are bound using the default query optimization class. The default

value for both dynamic and static queries is determined by value of the

database configuration parameter dft_queryopt. Class 5 is the default value of

this parameter. The default values for the bind option and the special register

are also read from the dft_queryopt database configuration parameter.

v Static SQL and XQuery statements use the optimization class specified on

the PREP and BIND commands. The QUERYOPT column in the

SYSCAT.PACKAGES catalog table records the optimization class used to bind

the package. If the package is rebound either implicitly or using the REBIND

PACKAGE command, this same optimization class is used for the static

query statements. To change the optimization class for such static SQL and

364 Tuning Database Performance

XQuery statements, use the BIND command. If you do not specify the

optimization class, DB2 uses the default optimization as specified by

dft_queryopt database configuration parameter.

Optimizer profiles and guidelines overview

The DB2 optimizer is one of the most sophisticated cost-based optimizers in the

industry. However, in rare cases the optimizer might select a less than optimal

execution plan. As a DBA familiar with the database, you can use facilities such as

db2advis, RUNSTATS, db2expln and the optimization class setting to help you

tune the optimizer for better database performance. If you do not receive the

desired results after all tuning options have been exhausted, you can provide

explicit optimization guidelines to the DB2 optimizer.

An optimization profile is an XML document that can contain optimization

guidelines for one or more SQL statements. The correspondence between each SQL

statement and its associated optimization guidelines is established using the SQL

text and other relevant information needed to unambiguously identify an SQL

statement. Figure 31 illustrates how an optimization guideline can be passed to the

DB2 optimizer using an optimization profile.

 Each STMTPROFILE element provides a set of optimization guidelines for one

application statement. The targeted statement is identified by the STMTKEY

sub-element. The optimization profile is then given a schema qualified name and

inserted into the database. The optimization profile is put into effect for the

optimization of the statement by specifying this name on the BIND or PREPARE

command.

Optimization profiles allow optimization guidelines to be provided to the

optimizer without application or database configuration changes. You simply

compose the simple XML document, insert it in the database, and provide the

name of the optimization profile on the BIND or PREPARE command. The

optimizer automatically matches optimization guidelines to the appropriate

statement.

Optimization guidelines do not need to be comprehensive, but should be targeted

to a desired execution plan. The DB2 optimizer still works with the selection of

other possible access plans using the existing cost-based methods. Optimization

guidelines targeting specific table references cannot override general optimization

parameter settings. Thus, the optimization guideline specifying the merge join

between tables A and B is not valid at optimization class 0.

<?xml version="1.0" encoding="UTF-8">

<OPTPROFILE VERSION="9.1.0.0">

<STMTPROFILE ID="Guidelines for TPCD Q9">

 <STMTKEY SCHEMA="TPCD">

 SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

 FROM PARTS P, SUPPLIERS S, PARTSUPP PS

 WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY AND P.P_SIZE = 39 AND P.P_TYPE = ’BRASS’ AND

 S.S_NATION = ’MOROCCO’ AND S.S_NATION IN (’MOROCCO’, ’SPAIN’) AND

 PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM PARTSUPP PS1, SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY AND

 S1.S_NATION = S.S_NATION))

 </STMTKEY>

 <OPTGUIDELINES> <IXSCAN TABLE="S" INDEX="I_SUPPKEY"/> </OPTGUIDELINES>

</STMTPROFILE>

</OPTPROFILE>

Figure 31. Passing guidelines using an optimization profile

Chapter 22. Query access plans 365

The optimizer ignores invalid or inapplicable optimization guidelines. If any

optimization guidelines are ignored, an execution plan is produced and a

SQL0437W warning with reason code 13 is returned. You can then use the

EXPLAIN statement to get detailed diagnostic information regarding optimization

guidelines processing.

Optimization guidelines

Types of optimization guidelines and processing overview: The DB2 optimizer

optimizes a statement in two phases. The optimized statement is determined by

the query rewrite optimization phase, which transforms the original statement into a

semantically equivalent statement that can be more easily optimized in the plan

optimization phase. The plan optimization phase determines the optimal access

methods, join methods, and join orders for the optimized statement by enumerating

a number of alternatives and choosing the alternative that minimizes an execution

cost estimate.

The query transformations, access methods, join methods, join orders, and other

optimization alternatives considered during the two optimization phases are

governed by various DB2 parameters, such as CURRENT QUERY OPTIMIZATION

(a special register), REOPT (a bind option), and DB2_REDUCED_OPTIMIZATION

(a registry variable). The set of optimization alternatives considered during the

optimization of a statement is called the search space.

The following types of statement optimization guidelines are supported:

v General optimization guidelines

v Query rewrite guidelines

v Plan optimization guidelines

Optimization guidelines are applied in a specific order. General optimization

guidelines are applied first, since they can affect the search space. Query rewrite

guidelines are applied next, since they can affect the statement optimized during

the plan optimization phase. Plan optimization guidelines are applied last.

General optimization guidelines can be used to affect the setting of general

optimization parameters. Query rewrite guidelines can be used to affect the

transformations considered during the query rewrite optimization phase. Plan

optimization guidelines can be used to affect the access methods, join methods, and

join orders considered during the plan optimization phase.

General optimization guidelines: General optimization guidelines can be used to set

general optimization parameters. Each of these guidelines have statement level

scope.

Query rewrite optimization guidelines: Query rewrite guidelines can be used to affect

the transformations considered during the query rewrite optimization phase. The

query rewrite optimization phase transforms the original statement into a

semantically equivalent optimized statement. The optimal execution plan for the

optimized statement is then determined during the plan optimization phase.

Consequently, query rewrite optimization guidelines can affect the applicability of

plan optimization guidelines.

Each query rewrite optimization guideline corresponds to one of the optimizer’s

query transformation rules. The following query transformation rules can be

affected with query rewrite optimization guidelines:

366 Tuning Database Performance

v IN-LIST-to-join

v Subquery-to-join

v NOT-EXISTS-subquery-to-antijoin

v NOT-IN-subquery-to-antijoin

Query rewrite optimization guidelines are not always applicable. Query rewrite

rules are enforced one at a time. Consequently, some query rewrite rules enforced

before a subsequent rule can affect the query rewrite optimization guideline

associated with that rule. Sometimes the environment configuration can affect the

behavior of some rewrite rules, which will affect the applicability of the query

rewrite optimization guideline for a specific rule. In order to get the same result

each time, query rewrite rules have some conditions before being enforced. If the

conditions associated with the rule are not satisfied when the query rewrite

component attempts to apply the rule to the query, the query rewrite optimization

guideline for the rule will be ignored. If the query rewrite optimization guideline is

not applicable and the guideline is an enabling guideline, an SQL0437W error

message with reason code 13 is returned. If the query rewrite optimization

guideline is not applicable and the guideline is a disabling guideline, no error

message is returned. The query rewrite rule is not applied in this case because the

rule is treated as if it was disabled.

The query rewrite optimization guidelines can be divided into two categories:

statement level and predicate level. All of the query rewrite optimization

guidelines support the statement level category. Only INLIST2JOIN supports the

predicate level category. The statement level query rewrite optimization guideline

applies to the entire query. The predicate level query rewrite optimization

guideline applies to the specific predicate only. If both statement level and

predicate level query rewrite optimization guidelines are specified, the predicate

level guideline will override the statement level guideline for the specific predicate.

Each query rewrite optimization guideline is represented by a corresponding

rewrite request element in the optimization guideline schema.

Plan optimization guidelines: Plan optimization guidelines are applied during the

cost-based phase of optimization, where access methods, join methods, join order,

and other details of the execution plan for the statement are determined. Plan

optimization guidelines need not specify all aspects of an execution plan.

Unspecified aspects of the execution plan are determined by the optimizer in a

cost-based fashion.

There are two categories of plan optimization guidelines:

v accessRequest – An access request specifies a desired access method for satisfying

a table reference in a statement.

v joinRequest – A join request specifies a desired method and sequence for

performing a join operation. Join requests are composed of other access or join

requests.

Access request optimization guidelines correspond to the optimizer’s data access

methods, such as table scan, index scan, and list prefetch. Join request guidelines

correspond to the optimizer’s join methods, such as nested-loop join, hash join,

and merge join. These methods are described in the Performance Guide.

Forming table references in optimization guidelines: The term table reference is

used in this document to mean any table, view, table expression, or alias in an SQL

statement or view definition. An optimization guideline can identify a table

Chapter 22. Query access plans 367

reference either using its exposed name in the original statement or using the

unique correlation name associated with the table reference in the optimized

statement. Extended names, which are sequences of exposed names, can be used to

help uniquely identify table references embedded in views. Optimization

guidelines that identify exposed or extended names which are not unique within

the context of the entire statement, are considered ambiguous and are not applied.

Moreover, if more than one optimization guideline identifies the same table

reference, all optimization guidelines identifying that table reference are considered

conflicting and are not applied. This following sections describe these particular

aspects of the optimization guidelines technology in greater detail. Due to possible

query transformations, there is no guarantee that an exposed or extended name

will still exist during optimization, in such a case, any guideline targeting the table

reference will be ignored.

Using exposed names of the original statement to identify table references

A table reference is identified using its exposed name. The exposed name is

specified in the same way that a table would be qualified in an SQL statement. The

rules for specifying SQL identifiers apply to the TABLE attribute value.

The TABLE attribute value of an optimization guideline is compared to each

exposed name of the statement. Only a single match is permitted in this release of

DB2. If the TABLE attribute value is schema qualified, it matches any equivalent

exposed qualified table name. If the TABLE attribute value is unqualified, it

matches any equivalent correlation name or exposed table name (thus the TABLE

attribute value is considered implicitly qualified by the default schema in effect for

the statement). These concepts are illustrated by the example statement in

Figure 32. Assume the statement is optimized using the default schema “Tpcd”.

TABLE attribute values that would properly identify table references in the

statement include ’″Tpcd″.PARTS’, ’PARTS’, ’Parts’ (since the identifier is

not-delimited, it will be converted to upper case). TABLE attribute values that fail

to identify a table reference in the statement include ’″Tpcd2″.SUPPLIERS’,

’PARTSUPP’ (not an exposed name), and ’Tpcd.PARTS’ (the identifier Tpcd must

be delimited or it will be converted to upper case).

The exposed name can be used to target any table reference in the original

statement, view, SQL function, or trigger.

Using exposed names of the original statement to identify table references in

views

Optimization guidelines can use extended syntax to identify table references

embedded in views.

Extended syntax can be used to target any table reference in the original statement,

SQL function, or trigger.

 SELECT S_NAME, S_ADDRESS, S_PHONE, S_COMMENT

 FROM PARTS, SUPPLIERS, PARTSUPP PS

 WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY AND

 P_SIZE = 39 AND P_TYPE = ’BRASS’;

Figure 32. Using TABLE attribute value of an optimization guideline to compare to each exposed name of a statement

368 Tuning Database Performance

Identifying table references using correlation names in the optimized statement

An optimization guideline can also identify a table reference using the unique

correlation names associated with the table reference in the optimized statement. The

optimized statement is a semantically equivalent version of the original statement,

as determined during the query rewrite phase of optimization. The optimized

statement can be retrieved from the EXPLAIN tables. The TABID attribute of an

optimization guideline is used to identify table references in the optimized

statement.

If a single optimization guideline specifies both the TABLE and TABID attributes,

they must identify the same table reference or the optimization guideline is

ignored.

Note: There is currently no guarantee that correlation names in the optimized

statement will be stable when upgrading to a new release of DB2.

Ambiguous table references

An optimization guideline is considered invalid and is not applied if it matches

multiple exposed or extended names.

To disambiguate, the view can be rewritten to use unique correlation names or the

TABID attribute can be used.

Note: Table references identified by the TABID field are never ambiguous since all

correlation names in the optimized statement are unique.

Conflicting optimization guidelines

Multiple optimization guidelines cannot identify the same table reference.

When two or more guidelines refer to the same table, only the first is applied; all

other guidelines are ignored and an error message is issued.

There is a restriction with multiple query rewrite INLIST2JOIN rewrite request

elements specifying the enable OPTION at a predicate level. Only one such

INLIST2JOIN rewrite request element can be specified at a predicate level in one

query.

Verifying that optimization guidelines have been used:

The optimizer makes every attempt to adhere to the optimization guidelines

specified in an optimization profile or through SQL embedded optimization

guidelines, also known as a statement profile; however, the optimizer can reject

invalid or inapplicable guidelines.

 To use the EXPLAIN facility, the EXPLAIN tables must exist. The DDL to create

the EXPLAIN tables is EXPLAIN.DDL and can be found in the misc subdirectory

of the sqllib directory.

To verify that a valid optimization guideline has been used:

1. Run the EXPLAIN command on the statement. If an optimization guideline

was in effect for the statement using either an optimization profile or SQL

comment, the optimization profile name will appear as a RETURN operator

argument in the EXPLAIN_ARGUMENTS table. And, if the optimization

Chapter 22. Query access plans 369

guideline contained an SQL embedded optimization guideline or statement

profile that matched the current statement, the name of the statement profile

will appear as a RETURN operator argument. The types of the two new

argument values are OPT_PROF and STMTPROF.

2. Examine the results of the explained statement. The following query against the

explain tables can be modified to return the optimization profile name and

statement profile name for your particular combination of

EXPLAIN_REQUESTER, EXPLAIN_TIME, SOURCE_NAME,

SOURCE_VERSION, and QUERYNO:

If the optimization guideline is active and the explained statement matches the

statement contained in the STMTKEY element of the optimization guideline,

then a query similar to that in Figure 33 produces the output in Figure 34. The

value for the STMTPROF argument is the same as the ID attribute in the

STMTPROFILE element.

Optimization profiles

Anatomy of an optimization profile: This section introduces you to the contents

of an optimization profile. The valid optimization profile contents for a given DB2

release is described by an XML schema called the current optimization profile

schema (COPS).

The COPS for the current release of DB2 is listed in “Current optimization profile

schema” on page 377.

 SELECT VARCHAR(B.ARGUMENT_TYPE, 9) as TYPE,

 VARCHAR(B.ARGUMENT_VALUE, 24) as VALUE

 FROM EXPLAIN_STATEMENT A, EXPLAIN_ARGUMENT B

 WHERE A.EXPLAIN_REQUESTER = ’SIMMEN’

 AND A.EXPLAIN_TIME = ’2003-09-08-16.01.04.108161’

 AND A.SOURCE_NAME = ’SQLC2E03’

 AND A.SOURCE_VERSION = ’’

 AND A.QUERYNO = 1

 AND A.EXPLAIN_REQUESTER = B.EXPLAIN_REQUESTER

 AND A.EXPLAIN_TIME = B.EXPLAIN_TIME

 AND A.SOURCE_NAME = B.SOURCE_NAME

 AND A.SOURCE_SCHEMA = B.SOURCE_SCHEMA

 AND A.SOURCE_VERSION = B.SOURCE_VERSION

 AND A.EXPLAIN_LEVEL = B.EXPLAIN_LEVEL

 AND A.STMTNO = B.STMTNO

 AND A.SECTNO = B.SECTNO

 AND A.EXPLAIN_LEVEL = ’P’

 AND (B.ARGUMENT_TYPE = ’OPT_PROF’ OR ARGUMENT_TYPE = ’STMTPROF’)

 AND B.OPERATOR_ID = 1

Figure 33. Using a query to return results from an explained statement

 TYPE VALUE

 --------- --------------------------

 OPT_PROF NEWTON.PROFILE1

 STMTPROF Guidelines for TPCD Q9

Figure 34. Output from a query to return results from an explained statement

370 Tuning Database Performance

An optimization profile can contain global guidelines, which apply to all DML

statements while the profile is in effect, and it can contain specific guidelines that

each apply to a single DML statement in a package. For example:

v You could write a global optimization guideline that requests that the optimizer

refer to the materialized query tables Test.SumSales and Test.AvgSales for every

statement encountered while the current optimization profile is active.

v You could write a statement optimization guideline that requests that the

I_SUPPKEY index be used to access the SUPPLIERS table whenever the

optimizer encounters the target statement.

An optimization profile, therefore, contains two elements that define the major

sections where you can specify the two types of guidelines: a global

OPTGUIDELINES element and any number of STMTPROFILE elements. An

optimization profile must also contain a OPTPROFILE element, which defines the

section that contains metadata and processing directives.

Figure 35 shows an example of a valid optimization profile for DB2 Version 9.1.

This optimization profile has a global optimization guidelines section, and one

statement profile section.

 The OPTPROFILE element

The optimization profile begins with the OPTPROFILE element. In the example,

Figure 35, this element consists of a version attribute indicating that the

optimization profile version is 9.1.

<?xml version="1.0" encoding="UTF-8"?>

<OPTPROFILE VERSION="9.1.0.0">

 <!--

 Global optimization guidelines section.

 Optional but at most one.

 -->

 <OPTGUIDELINES>

 <MQT NAME="Test.AvgSales"/>

 <MQT NAME="Test.SumSales"/>

 </OPTGUIDELINES>

 <!--

 Statement profile section.

 Zero or more.

 -->

 <STMTPROFILE ID="Guidelines for TPCD Q9">

 <STMTKEY SCHEMA="TPCD">

 <![CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE,

S.S_COMMENT FROM PARTS P, SUPPLIERS S, PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY AND P.P_SIZE = 39

AND P.P_TYPE = ’BRASS’ AND S.S_NATION = ’MOROCCO’ AND S.S_NATION IN (’MOROCCO’, ’SPAIN’)

AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST) FROM PARTSUPP PS1, SUPPLIERS S1

WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY AND

S1.S_NATION = S.S_NATION)]]>

 </STMTKEY>

 <OPTGUIDELINES>

 <IXSCAN TABID="Q1" INDEX="I_SUPPKEY"/>

 </OPTGUIDELINES>

 </STMTPROFILE>

</OPTPROFILE>

Figure 35. A valid optimization profile

Chapter 22. Query access plans 371

The global optimization guidelines section

Global optimization guidelines specify optimization guidelines that apply to all

statements for which the optimization profile is in effect.The global optimization

guidelines section is represented by the global OPTGUIDELINES element. In the

example, shown in Figure 35 on page 371, this section contains a single global

optimization guideline specifying that the materialized query tables (MQTs)

Test.AvgSales and Test.SumSales should be considered for answering any

statements for which the optimization profile is in effect.

The statement profile section

A statement profile defines optimization guidelines that apply to a specific

statement. There can be zero or more statement profiles in an optimization profile.

Statement profile sections are represented by the STMTPROFILE element. In the

example, shown in Figure 35 on page 371, this section contains guidelines for a

specific statement for which the optimization profile is in effect.

Each statement profile contains a statement key and statement-level optimization

guidelines, represented by the STMTKEY and OPTGUIDELINES elements.

The statement key identifies the statement to which the statement level

optimization guidelines apply. In the example, shown again in Figure 35 on page

371, the STMTKEY element contains the original statement text and other

information needed to unambiguously identify the targeted statement.

The optimizer automatically matches a statement profile with the appropriate

statement using the statement key. This relationship allows you to provide

optimization guidelines for a statement in an application without having to modify

the application.

The statement level optimization guidelines section of the statement profile is

represented by the OPTGUIDELINES element. Upon a successful match of the

statement key in a statement profile, the optimizer refers to the associated

statement optimization guidelines when optimizing the statement.

The statement optimization guidelines section

In the example in Figure 35 on page 371, the statement profile section includes a

statement optimization guidelines section, represented by the OPTGUIDELINES

element

This section specifies aspects of the desired query execution plan for the referenced

statement. It is made up of one or more access and join requests, which specify the

desired methods for accessing and joining tables in the statement. The guidelines

in Figure 35 on page 371 contain one access request, which specifies that the

SUPPLIERS table referenced in the nested subselect use an index named

I_SUPPKEY.

In Figure 35 on page 371, the indexScan element indicates an index access request.

The tableReference element of the indexScan element specifies that the SUPPLIERS

table be targeted for the access request. The index element specifies that the

I_SUPPKEY index be used.

Guidelines need only specify parts of the desired query execution plan. The

optimizer is able to apply its cost-based model to choose the remainder of the plan.

372 Tuning Database Performance

Creating an optimization profile:

 An optimization profile must be valid according to the current optimization profile

schema.

Since an optimization profile can contain many combinations of guidelines, this

task specifies only those steps common in creating any optimization profile.

To create an optimization profile:

1. Launch an XML editor. If possible, use one that has schema validation

capability. The optimizer does not perform XML validation.

2. Create a new XML document using a name that makes sense to you. You might

want to give it a name that describes the scope of statements to which it will

apply, for example, inventory_db.xml.

3. Add the XML declaration to the document. If you do not specify an encoding

format, then UTF-8 is assumed. Save the document with UTF-16 encoding, if

possible. DB2 is more efficient when processing this encoding.

 <?xml version="1.0" encoding="UTF-16"?>

4. Add the optimization profile section to the document.

 <OPTPROFILE VERSION="9.1.0.0">

 </OPTPROFILE>

5. Within the optimization profile element, create global or statement level

guidelines according to your needs and save the file.

Creating statement optimization guidelines:

These steps describe how to create statement optimization guidelines.

 “Creating an optimization profile” in which you want to insert the statement

guidelines.

To create a statement optimization guideline:

1. Exhaust all other tuning options. Refer to the Performance Guide. For example:

a. Ensure that the data distribution statistics have been recently updated by

the RUNSTATS utility.

b. Ensure that DB2 is running with the proper optimization class setting for

the workload.

c. Ensure the optimizer has the appropriate indexes to access the tables

referenced in the query.
2. Run the EXPLAIN facility on the problem statement and analyze the output to

determine if any guidelines would be appropriate. If you determine that a

statement optimization guideline would help, proceed.

3. Obtain the original statement by running a query similar to the following:

 SELECT STATEMENT TEXT

 FROM EXPLAIN_STATEMENT

 WHERE EXPLAIN_LEVEL = ’0’ AND

 EXPLAIN_REQUESTER = ’SIMMEN’ AND

 EXPLAIN_TIME = ’2003-09-08-16.01.04.108161’ AND

 SOURCE_NAME = ’SQLC2E03’ AND

 SOURCE_VERSION = ’’ AND

 QUERYNO = 1

4. Edit the optimization profile and create a statement profile, inserting the

statement text in the statement key. For example:

Chapter 22. Query access plans 373

<STMTPROFILE ID="Guidelines for TPCD Q9">

 <STMTKEY SCHEMA="TPCD"><![CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE,

 S.S_COMMENT

 FROM PARTS P, SUPPLIERS S, PARTSUPP PS

 WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P.P_SIZE = 39 AND P.P_TYPE = ’BRASS’ AND S.S_NATION

 = ’MOROCCO’ AND

 PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM PARTSUPP PS1, SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

 AND S1.S_NATION = S.S_NATION)]]>

 </STMTKEY>

 </STMTPROFILE>

5. Below the statement key, compose the statement optimization guidelines. Use

the exposed names to identify the objects used in the access and join requests.

The following is an example of a join request:

<OPTGUIDELINES>

 <HSJOIN>

 <TBSCAN TABLE=’PS1’/>

 <IXSCAN TABLE=’S1’

 INDEX=’I1’/>

 </HSJOIN>

</OPTGUIDELINES>

6. Validate the file and save it.

To test the results, follow the procedures in “Configuring DB2 to use an

optimization profile,” “Specifying which optimization profile the optimizer is to

use,” and “Verifying that optimization guidelines have been used” on page 369. If

you do not achieve the desired results, make changes to the guidelines (or specify

more aspects of the execution plan) and update the optimization profile as

described in “Modifying an optimization profile” on page 376. Repeat as necessary.

Configuring DB2 to use an optimization profile:

After an optimization profile file has been composed and its contents validated

against the current optimization profile schema (COPS), the contents must be

associated with a unique schema-qualified name and stored in the

SYSTOOLS.OPT_PROFILE table.

 To configure DB2 to use an optimization profile:

1. Create the optimization profile table as shown in “SYSTOOLS.OPT_PROFILE

table” on page 400. Each row of the table can contain one optimization profile:

the SCHEMA and NAME column identify the optimization profile and the

PROFILE column contains the text of the optimization profile.

2. Optional: You can grant any authority that satisfies your database security

requirements. The optimizer will be able to read the table regardless of the

authority set.

3. Insert into the table the optimization profiles that you want to use.

Specifying which optimization profile the optimizer is to use: To specify that an

optimization profile be used at the package level, you can use the OPTPROFILE

bind option. To specify that an optimization profile be used at the statement level,

you can use the CURRENT OPTIMIZATION PROFILE special register. This special

register contains the qualified name of the optimization profile used by statements

that are dynamically prepared for optimization. For CLI applications, you can use

the CURRENTOPTIMIZATIONPROFILE configuration option to set this special

register for each connection.

374 Tuning Database Performance

The OPTPROFILE bind option setting also specifies the default optimization profile

for the CURRENT OPTIMIZATION PROFILE special register. The order of

precedence for defaults is as follows:

v The OPTPROFILE bind option applies to all static statements, regardless of any

other settings.

v For dynamic statements, the value of the CURRENT OPTIMIZATION PROFILE

special register is determined by the following, in order of lowest to highest

precedence:

– The OPTPROFILE bind option

– The CURRENTOPTIMIZATIONPROFILE client configuration option

– The most recent SET CURRENT OPTIMIZATION PROFILE statement in the

application

Binding an optimization profile to a package:

When you prepare a package by using a BIND or PRECOMPILE command, you

can use the OPTPROFILE option to specify the optimization profile to use for the

package.

 This method is the only way to apply an optimization profile to static statements,

and the profile specified applies to all static statements in the package. An

optimization profile that is specified in this manner is also the default optimization

profile that is used for dynamic statements within the package.

You can bind an optimization profile in SQLJ and in embedded SQL using the

APIs (for example, sqlaprep) or from the CLP.

For example, to bind the inventory database optimization profile to the inventory

application from the CLP:

 db2 prep inventapp.sqc bindfile optprofile NEWTON.INVENTDB

 db2 bind inventapp.bnd

 db2 connect reset

 db2 terminate

 xlc -I$HOME/sqllib/include -c inventapp.c -o inventapp.o

 xlc -o inventapp inventapp.o -ldb2 -L$HOME/sqllib/lib

If you do not specify a schema name for the optimization profile, the QUALIFIER

option is used as the implicit qualifier.

Setting an optimization profile within an application:

 In an application, you can control the setting of the current optimization profile for

dynamic statements by using the SET CURRENT OPTIMIZATION PROFILE

statement. The optimization profile name that you provide in the statement must

be a schema qualified name. If you do not provide a schema name, then the value

of the CURRENT SCHEMA special register is used as the implicit schema qualifier.

The optimization profile that you specify applies to all subsequent dynamic

statements, until another SET CURRENT OPTIMIZATION PROFILE statement is

encountered. Static statements are not affected because they are preprocessed and

packaged before this setting is evaluated.

To set an optimization profile within an application:

v You can use the SET CURRENT OPTIMIZATION PROFILE statement

throughout your application. For example, the final statement in the following

Chapter 22. Query access plans 375

sequence is optimized according to the JON.SALES optimization profile.

v If you want the optimizer to use the default optimization profile that was in

effect when the application started, specify the value null. For example:

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = NULL;

v If you want the optimizer to not use optimization profiles, specify the empty

string (’’). For example:

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = ’’;

v If it is a CLI application, you can add the CURRENTOPTIMIZATIONPROFILE

parameter to the db2cli.ini file. To add the entry to the file, use the configuration

assistant or the UPDATE CLI CONFIGURATION command. For example:

 DB2 UPDATE CLI CFG FOR SECTION SANFRAN USING CURRENTOPTIMIZATIONPROFILE JON.SALES

This would result in the following entry in the db2cli.ini file:

 [SANFRAN]

 CURRENTOPTIMIZATIONPROFILE=JON.SALES

Note: Any SET CURRENT OPTIMIZATION PROFILE statements in the

application override this setting.

Modifying an optimization profile:

You can modify an optimization profile by editing the document, validating it

against the current optimization profile schema (COPS), and replacing the original

document in the SYSTOOLS.OPT_PROFILE table with the new version. However,

when an optimization profile is referenced, it is compiled and cached in memory;

these references must also be removed. Use the FLUSH OPTIMIZATION PROFILE

CACHE statement to both remove the old optimization profile from the

optimization profile cache and to invalidate from the dynamic plan cache any

statement prepared using the old profile.

 To modify an optimization profile:

1. Edit the optimization profile file with the necessary changes and validate the

XML.

2. Update the row in the SYSTOOLS.OPT_PROFILE table with the new profile.

3. If you did not create “Triggers to flush the optimization profile cache” on page

400, issue the statement FLUSH OPTIMIZATION PROFILE CACHE.

Note: When you flush the optimization profile cache, any dynamic statements

prepared with the old optimization profile are also invalidated in the dynamic

plan cache.

 EXEC SQL SET CURRENT OPTIMIZATION PROFILE = ’NEWTON.INVENTDB’;

 /* The following statements are both optimized with ’NEWTON.INVENTDB’ */

 EXEC SQL PREPARE stmt FROM SELECT ... ;

 EXEC SQL EXECUTE stmt;

 EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

 EXEC SQL SET CURRENT OPTIMIZATION PROFILE = ’JON.SALES’;

 /* This statement is optimized with ’JON.SALES’ */

 EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

Figure 36. Using the SET CURRENT OPTIMIZATION PROFILE statement to change a profile

376 Tuning Database Performance

Any subsequent reference to the optimization profile will cause the optimizer to

read the new profile and reload it into the optimization profile cache. Also, because

of the soft invalidation of statements prepared under the old optimization profile,

any calls made to those statements will be prepared under the new optimization

profile and re-cached in the dynamic plan cache.

Deleting an optimization profile:

You can remove an optimization profile that is no longer needed by deleting it

from the SYSTOOLS.OPT_PROFILE table. When an optimization profile is

referenced, it is compiled and cached in memory; therefore, if the original profile

has already been used, then you must also flush the deleted optimization profile

from the optimization profile cache.

 To delete an optimization profile:

1. Delete the optimization profile from the SYSTOOLS.OPT_PROFILE table. For

example:

 DELETE FROM SYSTOOLS.OPT_PROFILE

 WHERE SCHEMA = ’NEWTON’ AND NAME = ’INVENTDB’;

2. If you did not create “Triggers to flush the optimization profile cache” on page

400, flush any versions of the optimization profile that might be contained in

the optimization profile cache by running the FLUSH OPTIMIZATION

PROFILE CACHE command from the CLP.

Note: This action also causes any statements prepared using the old

optimization profile to be invalidated in the dynamic plan cache.

Any subsequent reference to the optimization profile will cause the optimizer to

issue a warning SQL0437W with reason code 13.

XML schema for optimization profiles and guidelines

Current optimization profile schema:

This is the schema for optimization profiles.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" version="1.0">

<!--***-->

<!-- Licensed Materials - Property of IBM -->

<!-- (C) Copyright International Business Machines Corporation 2007. All rights reserved. -->

<!-- U.S. Government Users Restricted Rights; Use, duplication or disclosure restricted by -->

<!-- GSA ADP Schedule Contract with IBM Corp. -->

<!--***-->

<!--***-->

<!-- Definition of the current optimization profile schema for V9.5.0.0 -->

<!-- -->

<!-- An optimization profile is composed of the following sections: -->

<!-- -->

<!-- + A global optimization guidelines section (at most one) which defines optimization -->

<!-- guidelines affecting any statement for which the optimization profile is in effect. -->

<!-- -->

<!-- + Zero or more statement profile sections, each of which defines optimization -->

<!-- guidelines for a particular statement for which the optimization profile -->

<!-- is in effect. -->

<!-- -->

<!-- The VERSION attribute indicates the version of this optimization profile -->

<!-- schema. -->

<!--***-->

<xs:element name="OPTPROFILE">

 <xs:complexType>

 <xs:sequence>

 <!-- Global optimization guidelines section. At most one can be specified. -->

 <xs:element name="OPTGUIDELINES" type="globalOptimizationGuidelinesType" minOccurs="0"/>

 <!-- Statement profile section. Zero or more can be specified -->

Chapter 22. Query access plans 377

<xs:element name="STMTPROFILE" type="statementProfileType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <!-- Version attribute is currently optional -->

 <xs:attribute name="VERSION" use="optional">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="9.5.0.0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

</xs:element>

<!--***-->

<!-- Global optimization guidelines supported in this version: -->

<!-- + MQTOptimizationChoices elements influence the MQTs considered by the optimizer. -->

<!-- + computationalPartitionGroupOptimizationsChoices elements can affect repartitioning -->

<!-- optimizations involving nicknames. -->

<!-- + The REOPT element can affect how statements involving variables are optimized. -->

<!-- *** -->

<xs:complexType name="globalOptimizationGuidelinesType">

 <xs:sequence>

 <xs:group ref="MQTOptimizationChoices" />

 <xs:group ref="computationalPartitionGroupOptimizationChoices" />

 <xs:group ref="generalRequest"/>

 </xs:sequence>

</xs:complexType>

<!-- **-->

<!-- Elements for affecting materialized query table (MQT) optimization. -->

<!-- -->

<!-- + MQTOPT - can be used to disable materialized query table (MQT) optimization. -->

<!-- If disabled, the optimizer will not consider MQTs to optimize the statement. -->

<!-- -->

<!-- + MQT - multiple of these can be specified. Each specifies an MQT that should be -->

<!-- considered for optimizing the statement. Only specified MQTs will be considered. -->

<!-- -->

<!--***-->

<xs:group name="MQTOptimizationChoices">

 <xs:choice>

 <xs:element name="MQTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="MQT" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

</xs:group>

<!-- ***-->

<!-- Elements for affecting computational partition group (CPG) optimization. -->

<!-- -->

<!-- + PARTOPT - can be used disable the computational partition group (CPG) optimization -->

<!-- which is used to dynamically redistributes inputs to join, aggregation, -->

<!-- and union operations when those inputs are results of remote queries. -->

<!-- -->

<!-- + PART - Define the partition groups to be used in CPG optimizations. -->

<!-- -->

<!-- ***-->

<xs:group name="computationalPartitionGroupOptimizationChoices">

 <xs:choice>

 <xs:element name="PARTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="PART" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

</xs:group>

<!-- **-->

<!-- Definition of a statement profile. -->

<!-- Comprised of a statement key and optimization guidelines. -->

<!-- The statement key specifies semantic information used to identify the statement to -->

<!-- which optimization guidelines apply. The optional ID attribute provides the statement -->

378 Tuning Database Performance

<!-- profile with a name for use in EXPLAIN output. -->

<!-- **-->

<xs:complexType name="statementProfileType">

 <xs:sequence>

 <!-- Statement key element -->

 <xs:element name="STMTKEY" type="statementKeyType"/>

 <xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

 </xs:sequence>

 <!-- ID attribute.Used in explain output to indicate the statement profile was used. -->

 <xs:attribute name="ID" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of the statement key. The statement key provides semantic information used -->

<!-- to identify the statement to which the optimization guidelines apply. -->

<!-- The statement key is comprised of: -->

<!-- + statement text (as written in the application) -->

<!-- + default schema (for resolving unqualified table names in the statement) -->

<!-- + function path (for resolving unqualified types and functions in the statement) -->

<!-- The statement text is provided as element data whereas the default schema and function -->

<!-- path are provided via the SCHEMA and FUNCPATH elements, respectively. -->

<!--**-->

<xs:complexType name="statementKeyType" mixed="true">

 <xs:attribute name="SCHEMA" type="xs:string" use="optional"/>

 <xs:attribute name="FUNCPATH" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->

<!-- -->

<!-- Optimization guideline elements can be chosen from general requests, rewrite -->

<!-- requests access requests, or join requests. -->

<!-- -->

<!-- General requests affect the search space which defines the alternative query -->

<!-- transformations, access methods, join methods, join orders, and other optimizations, -->

<!-- considered by the optimizer. -->

<!-- -->

<!-- Rewrite requests affect the query transformations used in determining the optimized -->

<!-- statement. -->

<!-- -->

<!-- Access requests affect the access methods considered by the cost-based optimizer, -->

<!-- and join requests affect the join methods and join order used in the execution plan. -->

<!-- -->

<!--**-->

<xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

<xs:complexType name="optGuidelinesType">

 <xs:sequence>

 <xs:group ref="generalRequest" minOccurs="0" maxOccurs="1"/>

 <xs:choice maxOccurs="unbounded">

 <xs:group ref="rewriteRequest" />

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 </xs:choice>

 </xs:sequence>

</xs:complexType>

<!--*** -->

<!-- Choices of general request elements. -->

<!-- REOPT can be used to override the setting of the REOPT bind option. -->

<!--*** -->

<xs:group name="generalRequest">

 <xs:sequence>

 <xs:element name="REOPT" type="reoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="DEGREE" type="degreeType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="QRYOPT" type="qryoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="RTS" type="rtsType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

</xs:group>

<!--***-->

<!-- Choices of rewrite request elements. -->

<!--***-->

<xs:group name="rewriteRequest">

 <xs:sequence>

 <xs:element name="INLIST2JOIN" type="inListToJoinType" minOccurs="0"/>

 <xs:element name="SUBQ2JOIN" type="subqueryToJoinType" minOccurs="0"/>

 <xs:element name="NOTEX2AJ" type="notExistsToAntiJoinType" minOccurs="0"/>

 <xs:element name="NOTIN2AJ" type="notInToAntiJoinType" minOccurs="0"/>

 </xs:sequence>

</xs:group>

<!--*** -->

<!-- Choices for access request elements. -->

<!-- TBSCAN - table scan access request element -->

<!-- IXSCAN - index scan access request element -->

Chapter 22. Query access plans 379

<!-- LPREFETCH - list prefetch access request element -->

<!-- IXAND - index ANDing access request element -->

<!-- IXOR - index ORing access request element -->

<!-- ACCESS - indicates the optimizer should choose the access method for the table -->

<!--*** -->

<xs:group name="accessRequest">

 <xs:choice>

 <xs:element name="TBSCAN" type="tableScanType"/>

 <xs:element name="IXSCAN" type="indexScanType"/>

 <xs:element name="LPREFETCH" type="listPrefetchType"/>

 <xs:element name="IXAND" type="indexAndingType"/>

 <xs:element name="IXOR" type="indexOringType"/>

 <xs:element name="ACCESS" type="anyAccessType"/>

 </xs:choice>

</xs:group>

<!--*** -->

<!-- Choices for join request elements. -->

<!-- NLJOIN - nested-loops join request element -->

<!-- MSJOIN - sort-merge join request element -->

<!-- HSJOIN - hash join request element -->

<!-- JOIN - indicates that the optimizer is to choose the join method. -->

<!--*** -->

<xs:group name="joinRequest">

 <xs:choice>

 <xs:element name="NLJOIN" type="nestedLoopJoinType"/>

 <xs:element name="HSJOIN" type="hashJoinType"/>

 <xs:element name="MSJOIN" type="mergeJoinType"/>

 <xs:element name="JOIN" type="anyJoinType"/>

 </xs:choice>

</xs:group>

<!--*** -->

<!-- REOPT general request element. Can override REOPT setting at the package, db, -->

<!-- dbm level. -->

<!--*** -->

<xs:complexType name="reoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ONCE"/>

 <xs:enumeration value="ALWAYS"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

<!--**-->

<!-- RTS general request element to enable, disable or provide a time budget for -->

<!-- real-time statistics collection. -->

<!-- OPTION attribute allows enabling or disabling real-time statistics. -->

<!-- TIME attribute provides a time budget in milliseconds for real-time statistics collection.-->

<!--*** -->

<xs:complexType name="rtsType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TIME" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of an "IN list to join" rewrite request -->

<!-- OPTION attribute allows enabling or disabling the alternative. -->

<!-- TABLE attribute allows request to target IN list predicates applied to a -->

<!-- specific table reference. COLUMN attribute allows request to target a specific IN list -->

<!-- predicate. -->

<!--*** -->

<xs:complexType name="inListToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="COLUMN" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of a "subquery to join" rewrite request -->

<!-- The OPTION attribute allows enabling or disabling the alternative. -->

<!--*** -->

<xs:complexType name="subqueryToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

<!--**-->

<!-- Definition of a "not exists to anti-join" rewrite request -->

<!-- The OPTION attribute allows enabling or disabling the alternative. -->

<!--*** -->

<xs:complexType name="notExistsToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

380 Tuning Database Performance

</xs:complexType>

<!--**-->

<!-- Definition of a "not IN to anti-join" rewrite request -->

<!-- The OPTION attribute allows enabling or disabling the alternative. -->

<!--**-->

<xs:complexType name="notInToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

<!--**-->

<!-- Effectively the superclass from which all access request elements inherit. -->

<!-- This type currently defines TABLE and TABID attributes, which can be used to tie an -->

<!-- access request to a table reference in the query. -->

<!-- The TABLE attribute value is used to identify a table reference using identifiers -->

<!-- in the original SQL statement. The TABID attribute value is used to identify a table -->

<!-- referece using the unique correlation name provided via the -->

<!-- optimized statement. If both the TABLE and TABID attributes are specified, the TABID -->

<!-- field is ignored. The FIRST attribute indicates that the access should be the first -->

<!-- access in the join sequence for the FROM clause. -->

<!--*** -->

<xs:complexType name="accessType" abstract="true">

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="TABID" type="xs:string" use="optional"/>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

</xs:complexType>

<!--**-->

<!-- Definition of an table scan access request method. -->

<!--**-->

<xs:complexType name="tableScanType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

</xs:complexType>

<!-- ***-->

<!-- Definition of an index scan access request element. The index name is optional. -->

<!--*** -->

<xs:complexType name="indexScanType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of a list prefetch access request element. The index name is optional. -->

<!--*** -->

<xs:complexType name="listPrefetchType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of an index ANDing access request element. -->

<!-- A single index scan be specified via the INDEX attribute. Multiple indexes -->

<!-- can be specified via INDEX elements. The index element specification supersedes the -->

<!-- attribute specification. If a single index is specified, the optimizer will use the -->

<!-- index as the first index of the index ANDing access method and will choose addi- -->

<!-- tional indexes using cost. If multiple indexes are specified the optimizer will -->

<!-- use exactly those indexes in the specified order. If no indexes are specified -->

<!-- via either the INDEX attribute or INDEX elements, then the optimizer will choose -->

<!-- all indexes based upon cost. -->

<!--*** -->

<xs:complexType name="indexAndingType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:sequence minOccurs="0">

 <xs:element name="INDEX" type="indexType" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of an INDEX element method. Index set is optional. If specified, -->

<!-- at least 2 are required. -->

<!--*** -->

<xs:complexType name="indexType">

 <xs:attribute name="IXNAME" type="xs:string" use="optional"/>

Chapter 22. Query access plans 381

</xs:complexType>

<!--**-->

<!-- Use for derived table access or other cases where the access method is not of -->

<!-- consequence. -->

<!--**-->

<xs:complexType name="anyAccessType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of an index ORing access -->

<!-- Cannot specify more details (e.g indexes). Optimizer will choose the details based -->

<!-- upon cost. -->

<!--*** -->

<xs:complexType name="indexOringType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Effectively the super class from which join request elements inherit. -->

<!-- This type currently defines join element inputs and also the FIRST attribute. -->

<!-- A join request must have exactly two nested sub-elements. The sub-elements can be -->

<!-- either an access request or another join request. The first sub-element represents -->

<!-- outer table of the join operation while the second element represents the inner -->

<!-- table. The FIRST attribute indicates that the join result should be the first join -->

<!-- relative to other tables in the same FROM clause. -->

<!--*** -->

<xs:complexType name="joinType" abstract="true">

 <xs:choice minOccurs="2" maxOccurs="2">

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 </xs:choice>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

</xs:complexType>

<!--*** -->

<!-- Definition of nested loop join access request. Subclass of joinType. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="nestedLoopJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of merge join access request. Subclass of joinType. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="mergeJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--*** -->

<!-- Definition of hash join access request. Subclass of joinType. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="hashJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--*** -->

<!-- Any join is a subclass of binary join. Does not extend it in any way. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="anyJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Allowable values for an OPTION attribute. -->

<!--*** -->

<xs:simpleType name="optionType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ENABLE"/>

 <xs:enumeration value="DISABLE"/>

382 Tuning Database Performance

</xs:restriction>

</xs:simpleType>

<!--***-->

<!-- Definition of the qryopt type: the only values allowed are 0, 1, 2, 3, 5, 7 and 9 -->

<!--***-->

<xs:complexType name="qryoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="0"/>

 <xs:enumeration value="1"/>

 <xs:enumeration value="2"/>

 <xs:enumeration value="3"/>

 <xs:enumeration value="5"/>

 <xs:enumeration value="7"/>

 <xs:enumeration value="9"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

<!--***-->

<!-- Definition of the degree type: any number between 1 and 32767 or the strings ANY or -1 -->

<!--** -->

<xs:simpleType name="intStringType">

 <xs:union>

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"></xs:minInclusive>

 <xs:maxInclusive value="32767"></xs:maxInclusive>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ANY"/>

 <xs:enumeration value="-1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

</xs:simpleType>

<xs:complexType name="degreeType">

 <xs:attribute name="VALUE" type="intStringType"></xs:attribute>

</xs:complexType>

</xs:schema>

XML schema for the OPTPROFILE element: The OPTPROFILE element is the

root of an optimization profile. The OPTPROFILE element is defined as follows:

XML Schema

 <xs:element name="OPTPROFILE">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="OPTGUIDELINES" type="globalOptimizationGuidelinesType"

 minOccurs="0"/>

 <xs:element name="STMTPROFILE" type="statementProfileType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="VERSION" use="optional">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="9.1.0.0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

Description

The optional OPTGUIDELINES sub-element defines the global optimization

guidelines section of the optimization profile. Each STMTPROFILE sub-element

defines a statement profile section. The VERSION attribute identifies the current

Chapter 22. Query access plans 383

optimization profile schema that a given optimization profile was created and

validated against.

XML schema for the global OPTGUIDELINES element: The type

globalOptimizationGuidelinesType defines the format of a global OPTGUIDELINES

element.

XML Schema

 <xs:complexType name="globalOptimizationGuidelinesType">

 <xs:sequence>

 <xs:group ref="MQTOptimizationChoices"/>

 <xs:group ref="computationalPartitionGroupOptimizationChoices"/>

 <xs:group ref="generalRequest"/>

 </xs:sequence>

 </xs:complexType>

Description

Global optimization guidelines can be defined with elements from the group

MQTOptimizationChoices, with elements from the group

computationalPartitionGroupChoices, or with the REOPT element.

The MQTOptimizationChoices group elements, defined in “MQT optimization

choices,” can be used to influence MQT substitution. The

computationalPartitionGroupOptimizationChoices group elements, defined in

“Computational partition group optimization choices” on page 385, can be used to

influence computational partition group optimization.

Computational partition group optimization involves the dynamic redistribution of

data read from remote data sources. It applies only in partitioned federated

database configurations.

The REOPT element, defined in “REOPT global optimization guidelines” on page

386, can be used to influence when optimization occurs for statements referencing

variables.

MQT optimization choices: The group MQTOptimizationChoices defines a set of

elements that can be used to influence materialized query table (MQT)

optimization. In particular, the elements can be used to either enable or disable

consideration of MQT substitution, or to specify the complete set of MQTs

considered by the optimizer.

XML Schema

 <xs:group name="MQTOptimizationChoices">

 <xs:choice>

 <xs:element name="MQTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="MQT" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:group>

384 Tuning Database Performance

Description

The MQTOPT element is used to enable or disable consideration of MQT

optimization. The OPTION attribute can specify the values ENABLE or DISABLE.

The default value of the OPTION attribute is ENABLE.

Alternately, zero or more MQT elements can be provided. The NAME attribute of

an MQT element identifies an MQT to be considered by the optimizer. The rules

for forming a reference to an MQT in the NAME attribute are the same as those

for forming references to exposed table names. If one or more MQT elements are

specified, only these MQTs are considered by the optimizer. The decision to

perform MQT substitution using one or more of the specified MQTs is still a

cost-based decision.

Examples

The following example illustrates how to disable MQT optimization.

 <OPTGUIDELINES>

 <MQTOPT OPTION=’DISABLE’/>

 </OPTGUIDELINES>

This following example illustrates how to limit MQT optimization to the MQTs

″Tpcd.PARTSMQT″ and ″COLLEGE.STUDENTS″.

 <OPTGUIDELINES>

 <MQT NAME=’Tpcd.PARTSMQT’/>

 <MQT NAME=’COLLEGE.STUDENTS’/>

 <OPTGUIDELINES>

Computational partition group optimization choices: The group

computationalPartitionGroupOptimizationChoices defines a set of elements that can be

used to influence computational partition group optimization. In particular, the

elements can be used to either enable or disable computational group optimization,

or to specify the particular partition group to be used for computational partition

group optimization.

XML Schema

 <xs:group name="computationalPartitionGroupOptimizationChoices">

 <xs:choice>

 <xs:element name="PARTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="PART" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:group>

Description

The PARTOPT element is used to enable or disable consideration of computational

partition group optimization. The OPTION attribute can specify the values

ENABLE or DISABLE. The default value of the OPTION attribute is ENABLE.

Alternately, a PART element can be used to specify the partition group to be used

for computational partition group optimization. The NAME attribute of the PART

Chapter 22. Query access plans 385

element identifies the partition group and must identify an existing partition

group. The decision to perform dynamic redistribution using the specified partition

group is a cost-based decision.

Examples

The following example illustrates how to disable computational partition group

optimization.

 <OPTGUIDELINES>

 <PARTOPT OPTION=’DISABLE’/>

 </OPTGUIDELINES>

This next example shows how to indicate that the partition group WORKPART be

used for computational partition group optimization:

 <OPTGUIDELINES>

 <MQT NAME=’Tpcd.PARTSMQT’/>

 <PART NAME=’WORKPART’/>

 <OPTGUIDELINES>

REOPT global optimization guidelines: The REOPT global optimization guideline

controls when optimization occurs for DML statements that contain variables (host

variables, parameter markers, global variables or special registers). The description

and syntax of the REOPT element is the same for both global optimization

guidelines and statement optimization guidelines. Refer to “REOPT requests” on

page 390.

XML schema for the STMTPROFILE element: The type statementProfileType

defines the format of a STMTPROFILE element.

XML Schema

 <xs:complexType name="statementProfileType">

 <xs:sequence>

 <xs:element name="STMTKEY" type="statementKeyType"/>

 <xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:string" use="optional"/>

 </xs:complexType>

Description

A statement profile specifies optimization guidelines for a particular statement for

which the optimization profile is in effect. A statement profile has the following

parts:

v Statement Key - An optimization profile can be in effect for more than one

statement in an application. The optimizer automatically matches each statement

profile to the proper statement of the application using the statement key. This

technique allows the user to provide optimization guidelines for a statement

without editing the application.

The statement key is comprised of the text of the statement as written in the

application, as well as other pieces of information needed to unambiguously

identify the proper application statement. The STMTKEY sub-element, described

in “XML schema for the STMTKEY element” on page 387, represents the

statement key.

v Statement Level Optimization Guidelines - This section of the statement profile

specifies the optimization guidelines in effect for the statement identified by the

statement key. Refer to “XML schema for the statement-level OPTGUIDELINES

element” on page 388.

386 Tuning Database Performance

v Statement Profile Name - A user supplied name used in diagnostic output to

indicate the particular statement profile used to optimize a statement.

XML schema for the STMTKEY element: The type statementKeyType defines the

format of a STMTKEY element.

XML Schema

 <xs:complexType name="statementKeyType" mixed="true">

 <xs:attribute name="SCHEMA" type="xs:string" use="optional"/>

 <xs:attribute name="FUNCPATH" type="xs:string" use="optional"/>

 </xs:complexType>

 </xs:schema>

Description

The statement text part of the statement key is included as data between the start

and end STMTKEY element tags.

This optional SCHEMA attribute can be used to specify the default schema part of

the statement key.

The optional FUNCPATH attribute can be used to specify the function path part of

the statement key. Multiple function paths can be included in the function path by

separating each path with a comma. The specified function paths must match

exactly the function paths specified in the compilation key.

Examples

The following example statement key will match the statement ″select * from

orders where foo(orderkey) > 20″ provided the compilation key has a default

schema of ″COLLEGE″ and a function path of ″SYSIBM,SYSFUN,SYSPROC,DAVE″.

 <STMTKEY SCHEMA=’COLLEGE’ FUNCPATH=’SYSIBM,SYSFUN,SYSPROC,DAVE’>

 <![CDATA[select * from orders" where foo(orderkey) > 20]]>

 </STMTKEY>

Note: A CDATA section (starting with <![CDATA[and ending with]]>) is used

around the statement text because the statement text contains the special XML

character ’>’.

Statement key and compilation key matching: The statement key is used to identify

the particular application statement to which the statement level optimization

guidelines apply. When DB2 compiles any static or dynamic SQL statement, the

setting of certain parameters (set by special registers, and either the bind or

precompile options) influence how the statement is interpreted semantically by the

compiler. The SQL statement and the settings of these particular SQL compiler

parameters together form what is called the compilation key. Each part of the

statement key corresponds to a part of the compilation key.

A statement key is comprised of the following parts:

v Statement Text - The text of the statement as written in the application.

v Default Schema - The schema name used as the implicit quantifier for

unqualified table names. This part is optional but should be provided if there

are unqualified table names in the statement text.

v Function Path - The function path used when resolving unqualified function and

data type references. This part is optional but should be provided if there are

unqualified user-defined functions or user-defined types in the statement.

Chapter 22. Query access plans 387

When DB2 compiles an SQL statement and finds an active optimization profile, it

attempts to match each statement key in the optimization profile with the current

compilation key. A statement key and compilation key are said to match if each

specified part of the statement key matches the corresponding part of the

compilation key. If a part of the statement key is not specified, the omitted part is

considered matched by default. In effect, each unspecified part of the statement

key is treated as a wild card, and matches the corresponding part of any

compilation key.

Once DB2 finds a statement key that matches the current compilation key it stops

looking; therefore, if there were multiple statement profiles in an optimization

profile whose statement key matches the current compilation key, only the first

such statement profile is used (based on document order). Moreover, no error or

warning is issued in this case.

XML schema for the statement-level OPTGUIDELINES element: The

OPTGUIDELINES element of a statement profile defines the optimization

guidelines in effect for the statement identified by the associated statement key.

The OPTGUIDELINES element is defined of type optGuidelinesType as follows:

XML Schema

 <xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

 <xs:complexType name="optGuidelinesType">

 <xs:sequence>

 <xs:group ref="general request" minOccurs="0" maxOccurs="1"/>

 <xs:choice maxOccurs="unbounded">

 <xs:group ref="rewriteRequest"/>

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

Description

The optGuidelinesType group defines the set of valid sub-elements of the

OPTGUIDELINES element. Each sub-element is understood as an optimization

guideline by the DB2 optimizer. Sub-elements can be categorized as either a

general request element, a rewrite request element, an access request element, or a

join request element.

v General request elements are used to specify general optimization guidelines.

General optimization guidelines can be used to change the optimizer’s search

space.

v Rewrite request elements are used to specify query rewrite optimization

guidelines. Query rewrite guidelines can be used to affect the query

transformations applied in determining the optimized statement.

v Access and join request elements are plan optimization guidelines. Plan

optimization guidelines can be used to affect the access methods, join methods,

and join orders used in the execution plan for the optimized statement.

Note: Optimization guidelines specified in a statement profile take precedence

over those specified in the global section of an optimization profile.

XML schema for general optimization guidelines: General optimization guidelines are

used to specify guidelines that are not specific to a particular phase of the

optimization process. General optimization guidelines can be used to change the

optimizer’s search space. They consist of the generalRequest group.

388 Tuning Database Performance

<!--*** --> \

<!-- Choices of general request elements. --> \

<!-- REOPT can be used to override the setting of the REOPT bind option. --> \

<!--*** --> \

<xs:group name="generalRequest">

 <xs:sequence>

 <xs:element name="REOPT" type="reoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="DEGREE" type="degreeType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="QRYOPT" type="qryoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="RTS" type="rtsType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

</xs:group>

Description

General request elements can be used to define general optimization guidelines.

General optimization guidelines affect the optimization search space and hence,

can affect the applicability of rewrite and cost-based optimization guidelines.

DEGREE requests: The DEGREE general request element can be used to override

the setting of the bind option, the dft_degree database configuration parameter or

a previous SET CURRENT DEGREE statement. The DEGREE general request will

only be considered if the database manager is configured for intra-partition

parallelism and a warning will be returned when the database manager is not

configured for intra-partition parallelism. The DEGREE general request element is

defined by degreeType as follows:

XML Schema

 <xs:simpleType name="intStringType">

 <xs:union>

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"></xs:minInclusive>

 <xs:maxInclusive value="32767"></xs:maxInclusive>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ANY"/>

 <xs:enumeration value="-1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

 <xs:complexType name="degreeType">

 <xs:attribute name="VALUE"

 type="intStringType"></xs:attribute>

 </xs:complexType>

Description

The DEGREE general request element has a required VALUE attribute which

specifies the setting of the DEGREE option. The attribute can take an integer value

from 1 to 32767 or the string values ″-1″ or ″ANY″. The value -1 (or equivalently

″ANY″) indicates that the degree of parallelism used is determined by DB2. The

value 1 indicates that the query should not use intra-partition parallelism.

QRYOPT requests: The QRYOPT general request element can be used to override

the setting of the bind option, the dft_qryopt database configuration parameter or

a previous SET CURRENT QUERY OPTIMIZATION statement. The QRYOPT

general request element is defined by qryoptType as follows:

Chapter 22. Query access plans 389

XML Schema

 <xs:complexType name="qryoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="0"/>

 <xs:enumeration value="1"/>

 <xs:enumeration value="2"/>

 <xs:enumeration value="3"/>

 <xs:enumeration value="5"/>

 <xs:enumeration value="7"/>

 <xs:enumeration value="9"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

Description

The QRYOPT general request element has a required VALUE attribute which

specifies the setting of the DEGREE option. The attribute can take any value from

the list: 0, 1, 2, 3, 5, 7 and 9. The Performance Guide has detailed information on the

behavior of the each of the possible settings.

REOPT requests: The REOPT general request element can be used to override the

setting of the REOPT bind option. The REOPT bind option affects the optimization

of statements with parameter markers or host variables. The REOPT general

request element is defined by reoptType as follows:

XML Schema

 <xs:complexType name="reoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ONCE"/>

 <xs:enumeration value="ALWAYS"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

Description

The REOPT general request element has a required VALUE attribute which

specifies the setting of the REOPT option. The attribute can take either the value

ONCE or to the value ALWAYS. The value ONCE indicates that the statement

should be optimized for the first set of host variable or parameter marker values.

The value ALWAYS indicates that the statement should be optimized for each set

of host variable or parameter marker values. The Performance Guide has detailed

information on the behavior of the each of the possible REOPT bind option

settings.

RTS requests:

The RTS general request element can be used to enable or disable real-time

statistics collection. It can also be used to limit the amount of time taken by

real-time statistics collection. For certain queries or workloads, it may be desirable

to disable or limit the time spent on real-time statistics collection to avoid extra

overhead at statement compilation time.

390 Tuning Database Performance

<!--**--> \

<!-- RTS general request element to enable, disable or provide a time budget for --> \

<!-- real-time statistics collection. --> \

<!-- OPTION attribute allows enabling or disabling real-time statistics. --> \

<!-- TIME attribute provides a time budget in milliseconds for real-time statistics collection.--> \

<!--*** --> \

<xs:complexType name="rtsType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TIME" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>

Description

The RTS general request element has two optional attributes.

v The OPTION attribute is used to enable or disable real-time statistics collection.

It can take the values ENABLE or DISABLE. ENABLE is the default if no option

is specified.

v The TIME attribute specifies the maximum amount of time in milliseconds to be

spent on real-time statistics collection at statement compilation time, for a single

statement.

If ENABLE is specified for the OPTION attribute, automatic statistics collection

and real-time statistics must be enabled by their corresponding configuration

parameters. Otherwise, the optimization guideline will not be applied, and you

will get warning message SQL0437W (reason code 13).

For example, the following RTS request enables real-time statistics collection and

limits real-time statistics collection time to 3.5 seconds.

<RTS OPTION="ENABLE" TIME="350" />

XML schema for query rewrite guidelines: Query rewrite optimization guidelines

impact the query rewrite optimization phase. It consists of the rewriteRequest group.

The rewriteRequest group defines the set of valid rewrite request element choices.

The rewrite requests are INLIST2JOIN, SUBQ2JOIN, NOTEX2AJ and NOTIN2AJ:

XML Schema

 <xs:group name="rewriteRequest">

 <xs:sequence>

 <xs:element name="INLIST2JOIN" type="inListToJoinType" minOccurs="0"/>

 <xs:element name="SUBQ2JOIN" type="subqueryToJoinType" minOccurs="0"/>

 <xs:element name="NOTEX2AJ" type="notExistsToAntiJoinType" minOccurs="0"/>

 <xs:element name="NOTIN2AJ" type="notInToAntiJoinType" minOccurs="0"/>

 </xs:sequence>

 </xs:group>

Description

v INLIST2JOIN: Enables or disables IN-LIST to join rewrite transformation. It can

be used as a statement level guideline to enable or disable all IN-LIST predicates

in a query to be considered for IN-LIST to join transformation. It can also be

used as a predicate level guideline to enable or disable a specified IN-LIST

predicate to be considered for IN-LIST to join transformation. If both statement

level and predicate level guidelines are specified, the predicate guideline will

override the statement level guideline.

v SUBQ2JOIN: Enables or disables subquery to join rewrite transformation. It can

only be used as a statement level guideline to enable or disable all subqueries in

a query to be considered for subquery to join rewrite transformation.

v NOTEX2AJ: Enables or disables NOT-EXISTS to anti-join rewrite transformation.

It can only be used as a statement level guideline to enable or disable all

NOT-EXISTS subqueries in a query to be considered for NOT-EXISTS to anti-join

rewrite transformation.

Chapter 22. Query access plans 391

v NOTIN2AJ: Enables or disables NOT-IN to anti-join rewrite transformation. It

can only be used as statement level guideline to enable or disable all NOT-IN

subqueries in a query to be considered for NOT-IN to anti-join rewrite

transformation.

IN-LIST-to-join rewrite request: A INLIST2JOIN request element can be used to

enable or disable IN-LIST predicate to join rewrite transformation. It can be

specified as statement level guideline or predicate level guideline. For predicate

level guideline, only one optimization guideline with option ENABLE is permitted

in a query.

It is defined by the complex type inListToJoinType as follows:

XML Schema

 <xs:complexType name="inListToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="COLUMN" type="xs:string" use="optional"/>

 </xs:complexType>

Description

A INLIST2JOIN element has three optional attributes and no sub-element. The

OPTION attribute has type optionType, which has the value “ENABLE” or

“DISABLE”. If no OPTION attribute is specified, the default value is “ENABLE”.

The table name attribute and column name attribute are used to specify the

IN-LIST predicate which involves the specified table and column. If table name

attribute and column name attribute are not specified or both table name and

column name attributes are specified as empty string “”, it will be handled as a

statement level guideline. If table name is specified or both table name and column

name are specified, it will be handled as predicate level guideline. If table name is

not specified or specified as empty string “” but column name is specified,

SQLO437W with reason code 13 will be issued and the optimization guideline will

be ignored.

NOT-EXISTS-anti-join rewrite requests: A NOTEX2AJ request element can be used

to enable or disable NOT-EXISTS to anti-join rewrite transformation. It can be

specified as a statement level guideline only.

It is defined by the complex type notExisitsToAntiJoinType as follows:

XML Schema

 <xs:complexType name="notExistsToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 </xs:complexType>

Description

A NOTEX2AJ element has one optional attribute and no sub-element. The option

attribute has type optionType, which has the value “ENABLE” or “DISABLE”. If no

option attribute is specified, the default value is “ENABLE”.

NOT-IN-to-anti-join rewrite requests: A NOTIN2AJ request element can be used to

enable or disable NOT-IN to anti-join rewrite transformation. It can be specified as

a statement level guideline only.

It is defined by the complex type notInToAntiJoinType as follows:

392 Tuning Database Performance

XML Schema

 <xs:complexType name="notInToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 </xs:complexType>

Description

A NOTIN2AJ element has one optional attribute and no sub-element. The option

attribute has type optionType, which has the value “ENABLE” or “DISABLE”. If no

option attribute is specified, the default value is “ENABLE”.

Subquery-to-join rewrite requests: A SUBQ2JOIN request element can be used to

enable or disable subquery to join rewrite transformation. It can be specified as a

statement level guideline only.

It is defined by the complex type subqueryToJoinType as follows:

XML Schema

 <xs:complexType name="subqueryToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 </xs:complexType>

Description

A SUBQ2JOIN element has one optional attribute and no sub-element. The option

attribute has type optionType, which has the value “ENABLE” or “DISABLE”. If no

option attribute is specified, the default value is “ENABLE”.

XML schema for plan optimization guidelines: Plan optimization guidelines can be

broken down into access requests and join requests:

v Access request - An access request specifies a desired access method for a table

reference.

v Join request - A join request specifies a desired method and sequence for

performing a join operation. Join requests are composed of other access or join

requests.

Most of the access request choices correspond to the optimizer’s data access

methods, such as table scan, index scan, and list prefetch, for example. Most of the

available join requests correspond to the optimizer’s join methods such as

nested-loop join, hash join, and merge join. These methods are described in the

Performance Guide. This section details each of the access request elements and join

request elements that can be used to influence plan optimization.

Access requests: The accessRequest group defines the set of valid access request

element choices. An access request specifies a desired method for satisfying a table

reference in a statement.

XML Schema

 <xs:group name="accessRequest">

 <xs:choice>

 <xs:element name="TBSCAN" type="tableScanType"/>

 <xs:element name="IXSCAN" type="indexScanType"/>

 <xs:element name="LPREFETCH" type="listPrefetchType"/>

 <xs:element name="IXAND" type="indexAndingType"/>

 <xs:element name="IXOR" type="indexOringType"/>

 <xs:element name="ACCESS" type="anyAccessType"/>

 </xs:choice>

 </xs:group>

Chapter 22. Query access plans 393

Description

v TBSCAN, IXSCAN, LPREFETCH, IXAND, and IXOR

These elements correspond to DB2 data access methods, and can only be applied

to local tables referenced in the statement. They cannot refer to nicknames

(remote tables) or derived tables (the result of a subselect).

v ACCESS

This element is used in cases where the join order, as opposed to the access

method, is the primary concern. This element must be used when the target

table reference is a derived table. The optimizer will choose the access method

for the target table reference using cost.

Access types: Common aspects of the TBSCAN, IXSCAN, LPREFETCH, IXAND,

IXOR, and ACCESS elements are defined by the abstract type accessType shown

below.

XML Schema

 <xs:complexType name="accessType" abstract="true">

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="TABID" type="xs:string" use="optional"/>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

 </xs:complexType>

Description

All access request elements extend the complex type accessType. Each such element

must specify the target table reference using either the TABLE or TABID attribute.

“Forming table references in optimization guidelines” on page 367 describes how

to form proper table references from an access request element. They can also

specify an optional FIRST attribute. If the FIRST attribute is specified, it must have

the value TRUE. Adding the FIRST attribute to an access request element indicates

that you want an execution plan that specifies that the table targeted by the access

request appears as the first table in the join sequence for the corresponding FROM

clause. Only one access or join request per FROM clause can specify the FIRST

attribute. If multiple access or join requests targeting tables of the same FROM

clause specify the FIRST attribute, all but the first such request is ignored and a

warning SQL0437W with reason code 13 is issued.

Any access requests: The ACCESS access request element can be used to request

that the optimizer choose the appropriate method for accessing a table in a

cost-based fashion. This choice is typically used to specify an access request that

only indicates how the local table is joined with other tables in the statement. This

access request element must be used when making reference to a derived table. A

derived table is the result of another subselect. An ACCESS access request element

is defined by the complex type anyAccessType as follows:

XML Schema

 <xs:complexType name="anyAccessType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type anyAccessType is a simple extension of the abstract type

accessType. No new elements or attributes are added.

394 Tuning Database Performance

Index ANDing access requests: An indexAnding access request element can be used

to request that the optimizer use the index ANDing data access method to access a

local table. It is defined by the complex type indexAndingType as follows:

XML Schema

 <xs:complexType name="indexAndingType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:sequence minOccurs="0">

 <xs:element name="INDEX" type="indexType" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:complexType name="indexType">

 <xs:attribute name="IXNAME" type="xs:string" use="optional"/>

 </xs:complexType>

Description

The complex type indexAndingType extends the abstract type localAccessType by

adding an optional INDEX attribute and optional INDEX sub-elements. The

INDEX attribute can be used to specify the first index used in the index ANDing

operation. If the INDEX attribute is used, the optimizer will choose the additional

indexes and access sequence in a cost-based fashion. The INDEX elements can be

used to specify the exact set of indexes and access sequence. The order in which

the INDEX sub-elements appear indicates the order in which the individual index

scans should be performed. The specification of INDEX sub-elements supersedes

the specification of the INDEX attribute.

v If no indexes are specified, the optimizer will choose both the indexes and the

access sequence in a cost-based fashion.

v If indexes are specified either using the attribute or sub-elements, they must

identify indexes defined on the table identified by the TABLE or TABID

attribute.

v If there are no indexes defined on the table, the access request is ignored and a

warning SQL0437W with reason code 13 is issued.

Block indexes must appear before record indexes in an index ANDing access

request. A SQL0437W warning with reason code 13 is issued if this requirement is

not satisfied. The index ANDing access method requires at least one predicate able

to be indexed for each index. If index ANDing is not eligible because the required

predicate does not exist, the access request is ignored and a warning SQL0437W

with reason code 13 is issued. If the index ANDing data access method is not in

the search space in effect for the statement, then the access request is ignored and a

warning SQL0437W with reason code 13 is issued.

Index ORing access requests: An IXOR access request element can be used to

request that the optimizer use the index ORing data access method to access a

local table. It is defined by the complex type indexOringType as follows:

XML Schema

 <xs:complexType name="indexOringType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

 </xs:complexType>

Chapter 22. Query access plans 395

Description

The complex type indexOringType is a simple extension of the abstract type

accessType. No new elements or attributes are added. If the index ORing access

method is not in the search space in effect for the statement, the access request is

ignored and a warning SQL0437W with reason code 13 is issued. The optimizer

will choose the predicates and indexes used in the index ORing operation in a

cost-based fashion. The index ORing access method requires at least one IN

predicate able to be indexed or a predicate with terms able to be indexed and

connected by a logical OR operation. If index ORing is not eligible because the

required predicate or indexes does not exist, the request is ignored and a warning

SQL0437W with reason code 13 is issued.

Index scan access requests: A IXSCAN access request element can be used to request

that the optimizer use an index scan to access a local table. It is defined by the

complex type indexScanType as follows:

XML Schema

 <xs:complexType name="indexScanType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type indexScanType extends the abstract accessType by adding an

optional INDEX attribute. The INDEX attribute specifies the name of the index that

is to be used to access the table.

v If the index scan access method is not in the search space in effect for the

statement, the access request is ignored and a warning SQL0437W with reason

code 13 is issued.

v If the INDEX attribute is specified, it must identify an index defined on the table

identified by the TABLE or TABID attribute.

v If the index does not exist, the access request is ignored and a warning

SQL0437W with reason code 13 is issued.

v If the INDEX attribute is not specified, the optimizer will choose an index in a

cost-based fashion.

v If no indexes are defined on the target table, the access request is ignored and a

warning SQL0437W with reason code 13 is issued.

List prefetch access requests: The listPrefetch element can be used to request that the

optimizer use a list prefetch index scan to access a local table. It is defined by the

complex type listPrefetchType as follows:

XML Schema

 <xs:complexType name="listPrefetchType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

396 Tuning Database Performance

Description

The complex type listPrefetchType extends the abstract type accessType by adding an

optional INDEX attribute. The INDEX attribute specifies the name of the index that

is to be used to access the table.

v If the list prefetch access method is not in the search space in effect for the

statement, the access request is ignored and a warning SQL0437W with reason

code 13 is issued.

v The list prefetch access method requires at least one predicate able to be

indexed.

v If the list prefetch is not eligible because the required predicate does not exist,

the access request is ignored and a warning SQL0437W with reason code 13 is

issued.

v If the INDEX attribute is specified, it must identify an index defined on the table

specified by the TABLE or TABID attribute.

v If the index does not exist, the access request is ignored and a warning

SQL0437W with reason code 13 is issued.

v If the INDEX attribute is not specified, the optimizer will choose an index in a

cost-based fashion.

v If there are no appropriate indexes defined on the targeted table, the access

request is ignored and a warning SQL0437W with reason code 13 is issued.

Table scan access requests: A TBSCAN access request element can be used to request

that the optimizer use a sequential table scan to access a local table. It is defined

by the complex type tableScanType as follows:

XML Schema

 <xs:complexType name="tableScanType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type tableScanType is a simple extension of the abstract type accessType

shown above. No new elements or attributes are added. If the table scan access

method is not in the search space in effect for the statement, the access request is

ignored and a warning SQL0437W with reason code 13 is issued.

Join requests: The joinRequest group defines the set of valid join request element

choices. A join request specifies a desired method for joining two tables.

XML Schema

 <xs:group name="joinRequest">

 <xs:choice>

 <xs:element name="NLJOIN" type="nestedLoopJoinType"/>

 <xs:element name="HSJOIN" type="hashJoinType"/>

 <xs:element name="MSJOIN" type="mergeJoinType"/>

 <xs:element name="JOIN" type="anyJoinType"/>

 </xs:choice>

 </xs:group>

Description

The NLJOIN, MSJOIN, and HSJOIN join request elements correspond to the

nested-loop, merge, and hash join methods respectively. The Performance Guide

Chapter 22. Query access plans 397

describes the eligibility requirements and execution characteristics of these join

methods in more detail. The JOIN join request element indicates that the optimizer

is free to choose the join method. This choice is used in cases where specifying a

particular join order is the primary concern.

All join request elements contain two sub-elements that represent the input tables

of the join operation. Join requests can also specify an optional FIRST attribute.

Any join requests: A JOIN join request element can be used to request that the

optimizer join two tables in a particular order but with any join method of the

optimizer’s choosing. Either of the input tables can be a local or derived table, as

specified by an access request sub-element, or they can be the result of a join

operation, as specified by a join request sub-element. A JOIN join request element

is defined by the complex type anyJoinType as follows:

XML Schema

 <xs:complexType name="anyJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type anyJoinType is a simple extension of the abstract type joinType.

No new elements or attributes are added.

Hash join requests: A HSJOIN join request element can be used to request that the

optimizer join two tables using a hash join method. Either of the input tables can

be a local or derived table, as specified by an access request sub-element, or they

can be the result of a join operation, as specified by a join request sub-element. A

HSJOIN join request element is defined by the complex type hashJoinType as

follows:

XML Schema

 <xs:complexType name="hashJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type hashJoinType is a simple extension of the abstract type joinType.

No new elements or attributes are added. If the hash join method is not in the

search space in effect for the statement, the join request is ignored and a warning

SQL0437W with reason code 13 is issued.

Merge join requests: A MSJOIN join request element can be used to request that the

optimizer join two tables using a merge join method. Either of the input tables can

be a local or derived table, as specified by an access request sub-element, or they

can be the result of a join operation, as specified by a join request sub-element. A

MSJOIN join request element is defined by the complex type mergeJoinType as

follows:

XML Schema

 <xs:complexType name="mergeJoinType">

398 Tuning Database Performance

<xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type mergeJoinType is a simple extension of the abstract type joinType.

No new elements or attributes are added. If the merge join method is not in the

search space in effect for the statement, the join request is ignored and a warning

SQL0437W with reason code 13 is issued.

Nested-loop join requests: A NLJOIN join request element can be used to request

that the optimizer join two tables using a nested-loop join method. Either of the

input tables can be a local or derived table, as specified by an access request

sub-element, or they can be the result of a join operation, as specified by a join

request sub-element. A NLJOIN join request element is defined by the complex

type nestedLoopJoinType as follows:

XML Schema

 <xs:complexType name="nestedLoopJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type nestedLoopJoinType is a simple extension of the abstract type

joinType. No new elements or attributes are added. If the nested-loop join method

is not in the search space in effect for the statement, the join request is ignored and

a warning SQL0437W with reason code 13 is issued.

Types of join requests: Common aspects of all join request elements are defined by

the abstract type joinType as follows:

XML Schema

 <xs:complexType name="joinType" abstract="true">

 <xs:choice minOccurs="2" maxOccurs="2">

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 </xs:choice>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

 </xs:complexType>

Description

Join request elements that extend joinType must have exactly two sub-elements.

Either of the sub-elements can be an access request element chosen from the group

accessRequest or another join request element chosen from the group joinRequest.

The first sub-element appearing in the join request specifies the outer table of the

join operation, and the second element specifies the inner table. If the FIRST

attribute is specified, it must have the value TRUE. Adding the FIRST attribute to a

join request element indicates that you want an execution plan where the tables

targeted by the join request are the outermost tables in the join sequence for the

corresponding FROM clause. Only one access or join request per FROM clause can

specify the FIRST attribute. If multiple access or join requests that target tables of

the same FROM clause specify the FIRST attribute, then all but the initial such

request is ignored and a warning SQL0437W with reason code 13 is issued.

Chapter 22. Query access plans 399

SYSTOOLS.OPT_PROFILE table

The SYSTOOLS.OPT_PROFILE table contains all of the optimization profile files.

There are two methods to create the table:

v Call the SYSINSTALLOBJECTS procedure:

db2 "call sysinstallobjects(’opt_profiles’, ’c’, ’’, ’’)"

v Issue the CREATE TABLE command:

 CREATE TABLE SYSTOOLS.OPT_PROFILE (

 SCHEMA VARCHAR(128) NOT NULL,

 NAME VARCHAR(128) NOT NULL,

 PROFILE BLOB (2M) NOT NULL,

 PRIMARY KEY (SCHEMA, NAME)

);

The columns in the SYSTOOLS.OPT_PROFILE table are defined as follows:

SCHEMA

v Specifies the schema qualifier of the optimization profile. The schema

name can include up to 30 alphanumeric or underscore characters, but

define it as VARCHAR(128) as shown.

NAME

v Specifies the base-name of the optimization profile. The name can

include up to 128 alphanumeric or underscore characters.

PROFILE

v The XML document defining the optimization profile.

Note:

1. An optimization profile can be referenced in several different contexts. The

NAME and SCHEMA columns of the SYSTOOLS.OPT_PROFILE table together

designate the two part optimization profile name. The PROFILE column

contains the XML document which defines the optimization profile.

2. No table space or partition group restrictions exist.

Triggers to flush the optimization profile cache: The following SQL procedure

and triggers should be created to ensure that the profile cache is automatically

flushed when an entry in the SYSTOOLS.OPT_PROFILE table is updated or

deleted:

 CREATE PROCEDURE SYSTOOLS.OPT_FLUSH_CACHE(IN SCHEMA VARCHAR(128),

 IN NAME VARCHAR(128))

 LANGUAGE SQL

 MODIFIES SQL DATA

 BEGIN ATOMIC

 -- FLUSH stmt (33) + quoted schema (130) + dot (1) + quoted name (130) = 294

 DECLARE FSTMT VARCHAR(294) DEFAULT ’FLUSH OPTIMIZATION PROFILE CACHE ’; --

 IF NAME IS NOT NULL THEN

 IF SCHEMA IS NOT NULL THEN

 SET FSTMT = FSTMT || ’"’ || SCHEMA || ’".’; --

 END IF; --

 SET FSTMT = FSTMT || ’"’ || NAME || ’"’; --

 EXECUTE IMMEDIATE FSTMT; --

 END IF; --

 END;

 CREATE TRIGGER SYSTOOLS.OPT_PROFILE_UTRIG AFTER UPDATE ON SYSTOOLS.OPT_PROFILE

400 Tuning Database Performance

REFERENCING OLD AS O

 FOR EACH ROW

 CALL SYSTOOLS.OPT_FLUSH_CACHE(O.SCHEMA, O.NAME);

 CREATE TRIGGER SYSTOOLS.OPT_PROFILE_DTRIG AFTER DELETE ON SYSTOOLS.OPT_PROFILE

 REFERENCING OLD AS O

 FOR EACH ROW

 CALL SYSTOOLS.OPT_FLUSH_CACHE(O.SCHEMA, O.NAME);

Managing the SYSTOOLS.OPT_PROFILE table: Optimization profile files must

be associated with a unique schema-qualified name and stored in the

SYSTOOLS.OPT_PROFILE table. You can use LOAD, IMPORT and EXPORT

commands to manage the files in that table. For example, the IMPORT command

can be used from any DB2 client to insert or update data from the files into the

SYSTOOLS.OPT_PROFILE table. The EXPORT command can be used to retrieve a

profile from the OPT_PROFILE table into a file.

Here is an example of inserting three new rows from separate input files into the

SYSTOOLS.OPT_PROFILE table. This assumes the files are in the current directory.

1. Create an input file (for example, profiledata) with the schema, name and file

name for each row on a separate line:

 "ROBERT","PROF1","ROBERT.PROF1.xml"

 "ROBERT","PROF2","ROBERT.PROF2.xml"

 "DAVID", "PROF1","DAVID.PROF1.xml"

2. Execute the IMPORT command:

 IMPORT FROM profiledata OF DEL MODIFIED BY LOBSINFILE INSERT INTO SYSTOOLS.OPT_PROFILE

To update existing rows, you can either delete them first and insert them again as

above or you use the INSERT_UPDATE option with IMPORT:

 IMPORT FROM profiledata OF DEL MODIFIED BY LOBSINFILE

 INSERT_UPDATE INTO SYSTOOLS.OPT_PROFILE

To retrieve the profile for ROBERT.PROF1 into ROBERT.PROF1.xml, assuming the

profile is less than 32,700 bytes:

 EXPORT TO ROBERT.PROF1.xml OF DEL SELECT PROFILE FROM SYSTOOLS.OPT_PROFILE

 WHERE SCHEMA=’ROBERT’ AND NAME=’PROF1’

To export data greater than 32,700 bytes, or for further information, refer the

documentation for the EXPORT command in the Command Reference.

Configuration parameters that affect query optimization

Several configuration parameters affect the access plan chosen by the SQL or

XQuery compiler. Many of these are appropriate to a single-partition database

environment and some are only appropriate to a partitioned database environment.

Assuming a homogeneous partitioned database environment, where the hardware

is the same, the values used for each parameter should be the same on all database

partitions.

Note: When you change a configuration parameter dynamically, the optimizer

might not read the changed parameter values immediately because of older access

plans in the package cache. To reset the package cache, execute the FLUSH

PACKAGE CACHE command.

In a federated system, if the majority of your queries access nicknames, evaluate

the types of queries that you send before you change your environment. For

example, in a federated database the buffer pool does not cache pages from data

Chapter 22. Query access plans 401

sources, which are the DBMSs and data within the federated system. For this

reason, increasing the size of the buffer does not guarantee that the optimizer will

consider additional access-plan alternatives when it chooses an access plan for

queries that contain nicknames. However, the optimizer might decide that local

materialization of data source tables is the least-cost route or a necessary step for a

sort operation. In that case, increasing the resources available might improve

performance.

The following configuration parameters or factors affect the access plan chosen by

the SQL or XQuery compiler:

v The size of the buffer pools that you specified when you created or altered them.

When the optimizer chooses the access plan, it considers the I/O cost of fetching

pages from disk to the buffer pool and estimates the number of I/Os required to

satisfy a query. The estimate includes a prediction of buffer-pool usage, because

additional physical I/Os are not required to read rows in a page that is already

in the buffer pool.

The optimizer considers the value of the npages column in the

SYSCAT.BUFFERPOOLS system catalog tables and, in partitioned database

environments, the SYSCAT.BUFFERPOOLDBPARTITIONS system catalog tables.

The I/O costs of reading the tables can have an impact on:

– How two tables are joined

– Whether an unclustered index will be used to read the data
v Default Degree (dft_degree)

The dft_degree configuration parameter specifies parallelism by providing a

default value for the CURRENT DEGREE special register and the DEGREE bind

option. A value of one (1) means no intra-partition parallelism. A value of minus

one (-1) means the optimizer determines the degree of intra-partition parallelism

based on the number of processors and the type of query.

Note: Intra-parallel processing does not occur unless you enable it by setting the

intra_parallel database manager configuration parameter.

v Default Query Optimization Class (dft_queryopt)

Although you can specify a query optimization class when you compile SQL or

XQuery queries, you can also set a default query optimization class.

v Average Number of Active Applications (avg_appls)

The optimizer uses the avg_appls parameter to help estimate how much of the

buffer pool might be available at run-time for the access plan chosen. Higher

values for this parameter can influence the optimizer to choose access plans that

are more conservative in buffer pool usage. If you specify a value of 1, the

optimizer considers that the entire buffer pool will be available to the

application.

v Sort Heap Size (sortheap)

If the rows to be sorted occupy more than the space available in the sort heap,

several sort passes are performed, where each pass sorts a subset of the entire

set of rows. Each sort pass is stored in a system temporary table in the buffer

pool, which might be written to disk. When all the sort passes are complete,

these sorted subsets are merged into a single sorted set of rows. A sort is

considered to be “piped” if it does not require a system temporary table to store

the final, sorted list of data. That is, the results of the sort can be read in a

single, sequential access. Piped sorts result in better performance than non-piped

sorts and will be used if possible.

402 Tuning Database Performance

When choosing an access plan, the optimizer estimates the cost of the sort

operations, including evaluating whether a sort can be piped, by:

– Estimating the amount of data to be sorted

– Looking at the sortheap parameter to determine if there is enough space for

the sort to be piped.
v Maximum Storage for Lock List (locklist) and Maximum Percent of Lock List

Before Escalation (maxlocks)

When the isolation level is repeatable read (RR), the optimizer considers the

values of the locklist and maxlocks parameters to determine whether row level

locks might be escalated to a table level lock. If the optimizer estimates that lock

escalation will occur for a table access, then it chooses a table level lock for the

access plan, instead of incurring the overhead of lock escalation during the

query execution.

v CPU Speed (cpuspeed)

The optimizer uses the CPU speed to estimate the cost of performing certain

operations. CPU cost estimates and various I/O cost estimates help select the

best access plan for a query.

The CPU speed of a machine can have a significant influence on the access plan

chosen. This configuration parameter is automatically set to an appropriate value

when the database is installed or migrated. Do not adjust this parameter unless

you are modelling a production environment on a test system or assessing the

impact of a hardware change. Using this parameter to model a different

hardware environment allows you to find out the access plans that might be

chosen for that environment. To have the database manager recompute the value

of this automatic configuration parameter, set it to -1.

v Statement Heap Size (stmtheap)

Although the size of the statement heap does not influence the optimizer in

choosing different access paths, it can affect the amount of optimization

performed for complex SQL or XQuery statements.

If the stmtheap parameter is not set large enough, you might receive a warning

indicating that there is not enough memory available to process the statement.

For example, SQLCODE +437 (SQLSTATE 01602) might indicate that the amount

of optimization that has been used to compile a statement is less than the

amount that you requested.

v Communications Bandwidth (comm_bandwidth)

Communications bandwidth is used by the optimizer to determine access paths.

The optimizer uses the value in this parameter to estimate the cost of

performing certain operations between the database partition servers in a

partitioned database environment.

v Application Heap Size (applheapsz)

Large schemas require sufficient space in the application heap.

Database database partition group impact on query

optimization

In partitioned database environments, the optimizer recognizes collocation of tables

and uses this collocation when it determines the best access plan for a query. If

tables are frequently involved in join queries, they should be divided among

database partitions in a partitioned database environment so that the rows from

each table being joined are located on the same database partition. During the join

operation, the collocation of the data from both joined tables prevents moving data

from one database partition to another. Place both tables in the same database

partition group to ensure that the data from the tables is collocated.

Chapter 22. Query access plans 403

In a partitioned database environment, depending on the size of the table,

spreading data over more database partitions reduces the estimated time (or cost)

to execute a query. The number of tables, the size of the tables, the location of the

data in those tables, and the type of query, such as whether a join is required, all

affect the cost of the query.

Column correlation for multiple predicates

Your applications might contain queries that are constructed with joins such that

more than one join predicate joins two tables. This is not unusual when queries

need to determine relationships between similar, related columns in different

tables.

For example, consider a manufacturer who makes products from raw material of

various colors, elasticities and qualities. The finished product has the same color

and elasticity as the raw material from which it is made. The manufacturer issues

the query:

 SELECT PRODUCT.NAME, RAWMATERIAL.QUALITY

FROM PRODUCT, RAWMATERIAL

 WHERE PRODUCT.COLOR = RAWMATERIAL.COLOR

 AND PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

This query returns the names and raw material quality of all products. There are

two join predicates:

 PRODUCT.COLOR = RAWMATERIAL.COLOR

 PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

When the optimizer chooses a plan for executing this query, it calculates how

selective each of the two predicates is. It assumes that they are independent, which

means that all variations of elasticity occur for each color, and, conversely, that for

each level of elasticity there is raw material of every color. It then estimates the

overall selectivity of the pair of predicates by using catalog statistic information for

each table based on the number of levels of elasticity and the number of different

colors. Based on this estimate, it may choose, for example, a nested loop join in

preference to a merge join, or vice versa.

However, it may be that these two predicates are not independent. For example, it

may be that the highly elastic materials are available in only a few colors, and the

very inelastic materials are only available in a few other colors that are different

from the elastic ones. Then the combined selectivity of the predicates eliminates

fewer rows so the query will return more rows. Consider the extreme case, in

which there is just one level of elasticity for each color and vice versa. Now either

one of the predicates logically could be omitted entirely since it is implied by the

other. The optimizer might no longer choose the best plan. For example, it might

choose a nested loop join plan when the merge join would be faster.

The DB2 optimizer attempts to detect and compensate for correlation of join

predicates if you define an index on those columns or if you collect and maintain

group column statistics on the appropriate columns.

For example, in elasticity example above, you might define one or both of the

following indexes:

 IX1 PRODUCT.COLOR, PRODUCT.ELASTICITY

or

 IX2 RAWMATERIAL.COLOR, RAWMATERIAL.ELASTICITY

404 Tuning Database Performance

or both.

For the optimizer to detect correlation, the non-include columns of this index must

be only the correlated columns. The index may also contain include columns to

allow index-only scans. If there are more than two correlated columns in join

predicates, make sure that you define the index to cover all of them.

One condition that must be met for the optimizer to consider an index key

cardinality to detect correlation is that the number of distinct values in each

column must be higher for each column from the same table. For example, imagine

you have defined IX1 and IX2 as above. If the number of distinct values in

PRODUCT.COLOR is less than the number of distinct values in

RAWMATERIAL.COLOR and the number of distinct values in

PRODUCT.ELASTICITY is less than that of RAWMATERIAL.ELASTICITY, then the

optimizer will use IX2 to detect the correlation. Comparing column cardinalities

makes it likely, but not certain, that the distinct values in the PRODUCT columns

are included in the distinct values of the RAWMATERIAL columns. To make it

even more likely that one domain assumes another, the optimizer might also

compare the HIGH2KEY AND LOW2KEY statistics for these index columns.

After creating appropriate indexes, ensure that statistics on tables are accurate and

up to date.

The optimizer uses the information in the FIRSTnKEYCARD and FULLKEYCARD

columns of the unique index statistics table to detect cases of correlation, and

dynamically adjust combined selectivities of the correlated predicates, thus

obtaining a more accurate estimate of the join size and cost.

As an alternative, column group statistics can be collected on a set of columns. In

the elasticity example above, you might gather statistics on the columns

PRODUCT.COLOR, PRODUCT.ELASTICITY and/or RAWMATERIAL.COLOR,

RAWMATERIAL.ELASTCITY.

Column group statistics are collected using the ″ON COLUMNS″ option of

RUNSTATS. For example, to collect the column group statistics on

PRODUCT.COLOR and PRODUCT.ELASTICITY, issue the following RUNSTATS

command:

RUNSTATS ON TABLE product ON COLUMNS ((color, elasticity))

Correlation of simple equal predicates

In addition to JOIN predicate correlation, the optimizer also manages correlation

with simple equal predicates of the type COL =. For example, consider a table of

different types of cars, each having a MAKE (that is, a manufacturer), MODEL,

YEAR, COLOR, and STYLE, such as sedan, station wagon, sports-utility vehicle.

Because almost every manufacturer makes the same standard colors available on

each of their models and styles, year after year, predicates on COLOR are likely to

be independent of those on MAKE, MODEL, STYLE, or YEAR. However, the

predicates MAKE and MODEL certainly are not independent since only a single

car maker would make a model with a particular name. Identical model names

used by two or more car makers is very unlikely and certainly not wanted by the

car makers.

If an index exists on the two columns MAKE and MODEL or column group

statistics are gathered, the optimizer uses the statistical information about the index

or columns to determine the combined number of distinct values and adjust the

Chapter 22. Query access plans 405

selectivity or cardinality estimation for correlation between the two columns. If the

predicates are local equality predicates, the optimizer does not need a unique index

to make the adjustment.

Using index and column group statistics to compute grouping

keycard

When a query requires data to be grouped in a certain way, the optimizer needs to

compute the number of distinct groupings, or grouping keycard. A grouping

requirement can result from operations such as GROUP BY or DISTINCT.

Consider the following query:

SELECT DEPTNO, YEARS, AVG(SALARY)

 FROM EMPLOYEE

 GROUP BY DEPTNO, MGR, YEAR_HIRED

Without any index or column group statistics, the number of groupings (also in

this case the number of rows returned) estimated by the optimizer will be the

product of the number of distinct values of DEPTNO, MGR, and YEAR_HIRED.

This estimate assumes that the grouping key columns are independent. However,

this assumption could be erroneous if each manager manages exactly one

department. Also, it is unlikely that each department has employees hired every

year. Thus, the product of distinct values of DEPTNO, MGR, and YEAR_HIRED

could be an overestimate of the actual number of distinct groups.

Now, consider an index with the following definition:

INDEX IX1: DEPTNO, MGR, YEAR_HIRED

In this case, the FULLKEYCARD of IX1 provides the optimizer with the exact

number of distinct groupings for the query above.

Consider another index definition:

INDEX IX2: DEPTNO, MGR, YEAR_HIRED, COMM

IX2 could also help to compute the grouping keycard, since its FIRST3KEYCARD

indicates how many distinct groups of (DEPTNO,MGR,YEAR_HIRED).

Besides index statistics (FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD,

and FULLKEYCARD), column group statistics could also be exploited by the

optimizer to compute grouping keycard in a similar fashion. Column group

statistics collected on DEPTNO, MGR, and YEAR_HIRED will provide the same

benefit as IX1 and IX2 above:

RUNSTATS ON TABLE EMPLOYEE ON COLUMNS ((DEPTNO, MGR, YEAR_HIRED))

Note that if the grouping keys consist of five or more columns, then collecting

column group statistics might be preferable. This is because RUNSTATS only

collects statistics on the first four columns and the full index key columns of any

given index.

Statistical views

Statistical views allow the optimizer to compute more accurate cardinality

estimates. Cardinality estimation is the process whereby the optimizer uses

statistics to determine the size of partial query results after predicates are applied

or aggregation is performed. The accuracy of cardinality estimates depends on the

predicates and the available statistics. Statistics are available to represent the

406 Tuning Database Performance

distribution of data values within a column, which can improve cardinality

estimates when the data values are unevenly distributed. Statistics are also

available to represent the number of distinct values in a set of columns, which can

improve cardinality estimates when columns are statistically correlated. However,

quite often, these statistics may not be able to represent more complex

relationships such as the filtering effect of predicates or aggregation involving

correlated and skewed attributes (for example, make = ’Honda’ AND model =

’Accord’), comparisons with expression results (for example, price > MSRP +

Dealer_markup), relationships spanning multiple tables (for example product.name

= ’Alloy wheels’ and product.key = sales.product_key), or anything other than

predicates or aggregation involving independent attributes and simple comparison

operations.

Statistical views are views with associated statistics that can be used to improve

cardinality estimates for queries in which the view definition overlaps with the

query definition. This is a powerful feature in that it provides the optimizer with

accurate statistics for determining cardinality estimates for queries with complex

sets of (possibly correlated) predicates involving one or more tables.

A statistical view need not be directly referenced in a query it optimizes; in most

cases, a view’s statistics can be exploited if its definition overlaps with the query

definition. To exploit this new feature, a view must be enabled for optimization

using the ALTER VIEW statement and system catalog tables must be populated for

statistics on the view.

Using statistical views

A view must be enabled for optimization before its statistics can be used to

optimize a query. A view that is enabled for optimization is a statistical view. A

view that is not a statistical view is said to be disabled for optimization. The term

regular view is used to refer to a view that is disabled for optimization. A view is

disabled for optimization when it is first created.

v To enable a view for optimization you must have ALTER privilege on both the

view and the table on which the view is defined.

v To invoke RUNSTATS for a view you must have one of the following:

– SYSADM

– SYSCTRL

– SYSMAINT

– DBADM

– CONTROL privilege on the view

In addition, you need to have appropriate privileges to access rows from the

view. Specifically, for each table, view or nickname referenced in the view

definition, you must have one of the following privileges:

– SYSADM

– DBADM

– CONTROL

– SELECT

A view cannot be enabled for optimization if any of the following are true:

v The view directly or indirectly references an MQT. (An MQT or statistical view

can reference a statistical view.)

v It is an inoperative view.

Chapter 22. Query access plans 407

v It is a typed view.

v There is another view alteration in the same ALTER VIEW statement.

If the definition of a view that is altered to enable optimization meets any of the

conditions below, the ALTER VIEW ENABLE OPTIMIZATION will succeed with a

warning, but the optimizer will not exploit its statistics:

v It contains aggregation or distinct operations.

v It contains union, except, or intersect operations.

v It contains scalar aggregate (OLAP) functions.
1. Enable the view for optimization.

A view can be enabled for optimization using the new ENABLE

OPTIMIZATION clause on the ALTER VIEW statement. A view that has been

enabled for optimization can subsequently be disabled for optimization using

the DISABLE OPTIMIZATION clause on the ALTER VIEW statement. For

example, to enable the view myview for optimization, enter the following:

ALTER VIEW myview ENABLE QUERY OPTIMIZATION

A view that is enabled for optimization has a ’Y’ in character position 13 of the

PROPERTY column of its corresponding SYSTABLES entry. A view that is

disabled for optimization has a blank in character position 13 of the PROPERTY

column of its corresponding SYSTABLES entry.

2. Execute RUNSTATS. For example, to collect statistics on the view myview, enter

the following:

RUNSTATS ON TABLE db2dba.myview

To use statistics sampling to collect view statistics, including distribution

statistics, on 10 percent of the rows using row-level sampling, enter:

RUNSTATS ON TABLE db2dba.myview WITH DISTRIBUTION TABLESAMPLE BERNOULLI (10)

Note: Prior to DB2 Version 9.1, executing RUNSTATS on a statistical view only

primed the catalog statistics tables for manual updates and did not collect any

statistics. In DB2 Version 9.1, executing RUNSTATS on a statistical view will

collect statistics. This means that RUNSTATS may take much longer to execute

than previously, depending on how much data is returned by the view.

3. Updating view statistics can result in changes to the plans for queries that

overlap the view definition. If these queries are part of static SQL packages,

these packages must be rebound to take advantages of the plans resulting from

the new statistics.

View statistics relevant to optimization

Only statistics that characterize the data distribution of the query defining a

statistical view, such as CARD and COLCARD, are considered for optimization by

the optimizer. The following statistics associated with view records can be collected

and can be exploited by the optimizer.

Table statistics (SYSCAT.TABLES, SYSSTAT.TABLES)

v CARD - The number of rows in the view result.

Column statistics (SYSCAT.COLUMNS, SYSSTAT.COLUMNS)

v COLCARD - The number of distinct values of a column in the view result

v AVGCOLLEN - Average length of column in the view result

v HIGH2KEY - Second highest value of a column in the view result

408 Tuning Database Performance

v LOW2KEY - Second lowest value of a column in the view result

v NUMNULLS - Number of NULLs in a view result column

v SUB_COUNT - Average number of sub-elements in a view result column

v SUB_DELIM_LENGTH - Average length of each delimiter separating each

sub-element

Column Distribution Statistics (SYSCAT.COLDIST, SYSSTAT.COLDIST)

v DISTCOUNT - If TYPE is Q, the number of distinct values that are less than or

equal to COLVALUE statistics

v SEQNO - Frequency ranking of a sequence number to help uniquely identify the

row in the table

v COLVALUE - Data value for which frequency or quantile statistic is collected

v VALCOUNT - Frequency with which the data value occurs in view column, or

for quantiles, the number of values less than or equal to the data value

(COLVALUE)

Statistics that do not describe data distribution, such as NPAGES, and FPAGES, can

be collected, but will be ignored by the optimizer.

Scenario: Improving cardinality estimates using statistical

views

In a data warehouse, fact table information often changes quite dynamically, while

dimension table data is static. This means that dimension attribute data might be

positively or negatively correlated with fact table attribute data. Traditional base

table statistics currently available to the optimizer do not allow it to discern

relationships across tables. Column and table distribution statistics on statistical

views (and MQTs) can be used to give the optimizer the necessary information to

correct these types of cardinality estimation errors.

Consider the following query which computes annual sales revenue for golf clubs

sold during July of each year:

SELECT sum(f.sales_price), d2.year

FROM product d1, period d2, daily_sales f

WHERE d1.prodkey = f.prodkey

 AND d2.perkey = f.perkey

 AND d1.item_desc = ’golf club’

 AND d2.month = ’JUL’

GROUP BY d2.year

A star join query execution plan can be an excellent choice for this query provided

the optimizer can determine whether the semi-join involving PRODUCT and

DAILY_SALES, or the semi-join involving PERIOD and DAILY_SALES, is the most

selective. In order to generate an efficient star join plan, the optimizer must be able

to choose the most selective semi-join for the outer leg of the index anding

operation.

Data warehouses often contain records for products that are no longer on store

shelves. This can cause the distribution of PRODUCT columns after the join to

appear dramatically different than their distribution before the join. Since the

optimizer, for lack of better information, will determine the selectivity of local

predicates based solely on base table statistics, the optimizer might become overly

optimistic regarding the selectivity of the predicate item_desc = ’golf club’

Chapter 22. Query access plans 409

For example, if golf clubs represent 1% of the products manufactured historically,

but accounts now for 20% of recent sales, the optimizer would likely overestimate

the selectivity of item_desc = ’golf club’, as there are no statistics describing the

distribution of item_desc after the join. And if sales in all twelve months are equally

likely, the selectivity of the predicate month = ’JUL’ would be around 8%, and thus

the error in estimating the selectivity of the predicate item_desc = ’golf club’ would

mistakenly cause the optimizer to perform the seemingly more selective semi-join

between PRODUCT and DAILY_SALES as the outer leg of the star join plan’s

index anding operation.

The following example provides a step-by-step illustration of how to set up

statistical views to solve this type of problem.

The following is a database from a typical data warehouse, where STORE,

CUSTOMER, PRODUCT, PROMOTION, and PERIOD are the dimension tables,

and DAILY_SALES the fact table.

 Table 66. STORE (63 rows)

Column storekey store_number city state district ...

Attribute integer

not null

primary key

char(2) char(20) char(5) char(14) ...

 Table 67. CUSTOMER (1,000,000 rows)

Column custkey name address age gender ...

Attribute integer

not null

primary key

char(30) char(40) smallint char(1) ...

 Table 68. PRODUCT (19,450 rows)

Column prodkey category item_desc price cost ...

Attribute integer

not null

primary key

integer char(30) decimal(11) decimal(11) ...

 Table 69. PROMOTION (35 rows)

Column promokey promotype promodesc promovalue ...

Attribute integer

not null

primary key

integer char(30) decimal(5) ...

 Table 70. PERIOD (2922 rows)

Column perkey calendar_date month period year ...

Attribute integer

not null

primary key

date char(3) smallint smallint ...

410 Tuning Database Performance

Table 71. DAILY_SALES (754 069 426 rows)

Column storekey custkey prodkey promokey perkey sales_price ...

Attribute integer integer integer integer integer decimal(11) ...

Suppose the company managers wish to find out whether or not consumers will

buy a product again if they are offered a discount on the same product on a return

visit. In addition, suppose the study is only done for store ’01’, which has 18

locations nationwide. Table 72 shows the different categories of promotion

available, annotated by the percentage of promotions.

 Table 72. PROMOTION (35 rows)

promotype promodesc COUNT(promotype)

percentage of

promotions

1 Return customers 1 2.86%

2 Coupon 15 42.86%

3 Advertisement 5 14.29%

4 Manager’s special 3 8.57%

5 Overstocked items 4 11.43%

6 End aisle display 7 20.00%

The table indicates that only 2.86% of all 35 kinds of promotions offered comes

from discounts for return customers (1÷35 ≈ 0.0286) .

The following query is then executed and a count of 12,889,514 is returned:

SELECT count(*)

FROM store d1, promotion d2, daily_sales f

WHERE d1.storekey = f.storekey

 AND d2.promokey = f.promokey

 AND d1.store_number = ’01’

 AND d2.promotype = 1

This query is executed according to the following plan generated by the optimizer.

In each node of this diagram, the top number represents the cardinality estimate,

the second row is the operator type, and the number in parentheses is the operator

id.

 6.15567e+06

 IXAND

 (8)

 /------------------+------------------\

 2.15448e+07 2.15448e+08

 NLJOIN NLJOIN

 (9) (13)

 /---------+--------\ /---------+--------\

 1 2.15448e+07 18 1.19694e+07

 FETCH IXSCAN FETCH IXSCAN

 (10) (12) (14) (16)

 /---+---\ | /---+---\ |

 35 35 7.54069e+08 18 63 7.54069e+08

 IXSCAN TABLE: DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA

 (11) PROMOTION PROMO_FK_IDX (15) STORE STORE_FK_IDX

 | |

 35 63

 INDEX: DB2DBA INDEX: DB2DBA

 PROMOTION_PK_IDX STOREX1

At the nested loop join number 9, the optimizer estimates that around 2.86% of the

product sold resulted from customers coming back to buy the same products at a

discounted price (2.15448e+07 ÷7.54069e+08 ≈ 0.0286). Note that this is same

percentage before and after joining the PROMOTION table with the DAILY_SALES

Chapter 22. Query access plans 411

table. Table 73 summarizes the cardinality estimates and their percentage (the

filtering effect) before and after the join.

 Table 73. Cardinality estimates before and after joining with DAILY_SALES.

Before Join After Join

Predicates count

percentage of rows

qualified count

percentage of rows

qualified

store_number = ’01’ 18 28.57% 2.15448e+08 28.57%

promotype=1 1 2.86% 2.15448e+07 2.86%

Because the probability of promotype = 1 is less than that of store_number = ’01’, the

optimizer chooses the semi-join between PROMOTION and DAILY_SALES as the

outer leg of the star join plan’s index anding operation. This leads to an estimated

count of approximately 6,155,670 products sold using promotion type 1 — an

incorrect cardinality estimate off by a factor of 2.09 (12,889,514 ÷ 6,155,670 ≈ 2.09).

What causes the optimizer to only be able to estimate half of the actual number of

records qualifying the two predicates? Store ’01’ represents about 28.57% of all the

stores. What if other stores had more sales than store ’01’ (less than 28.57%)? Or

what if store ’01’ actually sold most of the product (more than 28.57%)? Likewise,

the 2.86% of products sold using promotion type 1 shown in Table 73 can be

misleading. The actual percentage in DAILY_SALES could very well be a different

figure than the projected one.

We can use statistical views to help the optimizer correct its estimates and reduce

overestimation or underestimation. First, we need to create two statistical views

representing each semi-join in the query above. The first statistical view provides

the distribution of promotion types for all daily sales. The second statistical view

represents the distribution of promotion types for all daily sales. Note that each

statistical view can provide the distribution information for any particular store

number or promotion type. In this example, we use a 10% sample rate to retrieve

the records in DAILY_SALES for the respective views and save them in global

temporary tables. We then query those tables to collect the necessary statistics to

update the two statistical views.

1. Create a view representing the join of STORE with DAILY_SALES.

CREATE view sv_store_dailysales as

 (SELECT s.*

 FROM store s, daily_sales ds

 WHERE s.storekey = ds.storekey)

2. Create a view representing the join of PROMOTION with DAILY_SALES.

CREATE view sv_promotion_dailysales as

 (SELECT p.*

 FROM promotion.p, daily_sales ds

 WHERE p.promokey = ds.promokey)

3. Make the views statistical views by enabling them for query optimization:

v

ALTER VIEW sv_store_dailysales ENABLE QUERY OPTIMIZATION

v

ALTER VIEW sv_promotion_dailysales ENABLE QUERY OPTIMIZATION

4. Execute RUNSTATS to collect statistics on the views:

v

RUNSTATS on table db2dba.sv_store_dailysales WITH DISTRIBUTION

v

412 Tuning Database Performance

RUNSTATS on table db2dba.sv_promotion_dailysales WITH DISTRIBUTION

5. Run the query again so that it can be re-optimized. Upon reoptimization, the

optimizer will match SV_STORE_DAILYSALES and

SV_PROMOTION_DAILYSALES with the query and will use the view statistics

to adjust the cardinality estimate of the semi-joins between the fact and

dimension tables, causing it to reverse the original order of the semi-joins

chosen without these statistics. The new plan is as follows:

 1.04627e+07

 IXAND

 (8)

 /------------------+------------------\

 6.99152e+07 1.12845e+08

 NLJOIN NLJOIN

 (9) (13)

 /---------+--------\ /---------+--------\

 18 3.88418e+06 1 1.12845e+08

 FETCH IXSCAN FETCH IXSCAN

 (10) (12) (14) (16)

 /---+---\ | /---+---\ |

 18 63 7.54069e+08 35 35 7.54069e+08

 IXSCAN TABLE:DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA DB2DBA

 (11) STORE STORE_FK_IDX (15) PROMOTION PROMO_FK_IDX

 | |

 63 35

 INDEX: DB2DBA INDEX: DB2DBA

 STOREX1 PROMOTION_PK_IDX

Note that this time, the semi-join between STORE and DAILY_SALES is performed

on the outer leg of the index anding plan. This is because the two statistical views

essentially tell the optimizer that the predicate store_number = ’01’ will filter more

rows than promotype = 1. Table 74 summarizes the cardinality estimates and their

percentage (filtering effect) before and after the join for each semi-join.

Note that this time, the semi-join between STORE and DAILY_SALES is performed

on the outer leg of the index anding plan. This is because the two statistical views

essentially tell the optimizer that the predicate store_number = ’01’ will filter more

rows than promotype = 1. Here, the optimizer estimates that there are

approximately 10,462,700 products sold. This estimate is off by a factor of 1.23

(12,889,514 ÷ 10,462,700 ≈ 1.23), which is a significant improvement over the

estimate in Table 73 on page 412. Table 74 summarizes the cardinality estimates

and the filtering effect for each predicate before and after the join.

 Table 74. Cardinality estimates before and after joining with DAILY_SALES.

Before Join

After Join

no statistical views

After Join

with statistical views

Predicates count

percentage of

rows

qualified count

percentage of rows

qualified count

percentage of rows

qualified

store_number =

’01’

18 28.57% 2.15448e+08 28.57% 6.99152e+07 9.27%

promotype=1 1 2.86% 2.15448e+07 2.86% 1.12845e+08 14.96%

This time, the optimizer estimates that there are approximately 10,462,700 products

sold. This estimate is off by a factor of 1.23, which is a significant improvement

over the estimate without statistical views.

Chapter 22. Query access plans 413

414 Tuning Database Performance

Part 6. Appendixes

© Copyright IBM Corp. 1993, 2007 415

416 Tuning Database Performance

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2007 417

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 75. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-00 Yes

Administrative Routines and

Views

SC23-5843-00 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-00 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-00 Yes

Command Reference SC23-5846-00 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-00 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-00 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-00 Yes

Database Security Guide SC23-5850-00 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-00 Yes

Developing Embedded SQL

Applications

SC23-5852-00 Yes

Developing Java Applications SC23-5853-00 Yes

Developing Perl and PHP

Applications

SC23-5854-00 No

Developing User-defined Routines

(SQL and External)

SC23-5855-00 Yes

Getting Started with Database

Application Development

GC23-5856-00 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-00 Yes

Internationalization Guide SC23-5858-00 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-00 Yes

Net Search Extender

Administration and User’s Guide

Note: The content of this

document is not included in

the DB2 Information Center

SC23-8509-00 Yes

Partitioning and Clustering Guide SC23-5860-00 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-00 No

Quick Beginnings for DB2

Servers

GC23-5864-00 Yes

418 Tuning Database Performance

Table 75. DB2 technical information (continued)

Name Form Number Available in print

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-00 Yes

SQL Reference, Volume 1 SC23-5861-00 Yes

SQL Reference, Volume 2 SC23-5862-00 Yes

System Monitor Guide and

Reference

SC23-5865-00 Yes

Text Search Guide SC23-5866-00 Yes

Troubleshooting Guide GI11-7857-00 No

Tuning Database Performance SC23-5867-00 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-00 Yes

Workload Manager Guide and

Reference

SC23-5870-00 Yes

pureXML Guide SC23-5871-00 Yes

XQuery Reference SC23-5872-00 No

 Table 76. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-00 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-00 Yes

DB2 Connect User’s Guide SC23-5841-00 Yes

 Table 77. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix A. Overview of the DB2 technical information 419

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 417.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

420 Tuning Database Performance

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix A. Overview of the DB2 technical information 421

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can download and

install updates that IBM might make available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to download and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to download the

packages. However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

422 Tuning Database Performance

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix A. Overview of the DB2 technical information 423

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

424 Tuning Database Performance

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 425

426 Tuning Database Performance

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2007 427

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

428 Tuning Database Performance

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9.5 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon®, Intel SpeedStep®, Itanium® and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 429

http://www.ibm.com/legal/copytrade.shtml

430 Tuning Database Performance

Index

A
access

explain information to analyze type 315

access path
standard tables

lock modes 180

access plan
grouping 299

access plans
capturing information

Explain facility 312

column correlation with multiple predicates 404

creating using REFRESH TABLE statement 317

data
description 278

effect on lock granularity 165

effect on locks 194

for REFRESH TABLE statements 317

for SET INTEGRITY statements 317

output example
no parallelism 338

standard tables
lock modes 180

using indexes 33, 279

access request elements
ACCESS 394

indexANDing 395

IXOR 395

IXSCAN 396

LPREFETCH 396

TBSCAN 397

advisors
Design Advisor 149

agents
client connections 118

described 115

in a partitioned database 119

managing 116

worker agent types 115

aggregate functions
db2expln tool output 332

ALTER TABLE statement
preventing lock-related performance issues 173

ALTER TABLESPACE statement
example 205

APPEND mode
insert process for 39

application process
effect on locks 193

architecture
overview 11

AUTO_PROF_UPD
using 228

AUTO_STATS_PROF
using 228

automatic features
automatic reorganization 99

automatic memory tuning 60

automatic reorganization
description 99

enabling 99

automatic statistics collection 215

storage for 216

automatic statistics profiling
storage for 216

automatic summary tables
description 310

B
benchmarking

db2batch tool 143

overview 141

preparation for 142

sample report 146

SQL statements for 142

steps summarized 144

testing methods 141

testing process 144

bind options
REOPT

overriding 390

binding
specifying isolation level 163

block identifiers (BID)
preparing before table access 331

block-based buffer pools 74

BLOCKINSERT
LOCKSIZE clause value

benefits 168

buffer pools
block-based

prefetching performance 74

effect on query optimization 401

large, advantage of 69

memory allocation at startup 69

multiple
advantages of 69

managing 69

pages sizes for 69

overview 65

page cleaners, tuning 66

page cleaning methods 71

C
cardinality estimates

using statistical views 409

catalog statistics
catalog table descriptions 230

collecting
distribution statistics on specific columns 225

index statistics 226

requirements and method described 224

collecting guidelines 222

detailed index data collected 242

distribution statistics
extended example of use 238

frequency 235

quantile 235

when to collect 235

© Copyright IBM Corp. 1993, 2007 431

catalog statistics (continued)
for sub-elements in columns 243

for user-defined functions 244

how used 209

index cluster ratio 284

manual adjustments for modeling 245

manual update guidelines 248

manual update rules
column statistics 249

distribution 250

index statistics 251

nicknames 251

tables 251

modeling production databases with 246

updating guidelines 222

when to collect 209

catalog tables
description 230

classic table reorganization 85

CLI (call level interface)
specifying isolation level 163

clustering indexes 23

benefits with partitioned tables 113

with partitioned tables 113

column group statistics 406

columns
collecting distribution statistics on specific 225

subelements, collecting statistics for 243

updating statistics manually, rules 249

comm_bandwidth configuration parameter
effect on query optimization 401

commands
db2gov

using 125

COMMIT statement
preventing lock-related performance issues 173

compilation key
definition 387

compilers
capturing information

Explain facility 312

rewrites
adding implied predicates 266

correlated subqueries 265

merge view 263

concurrency control
federated databases 159

issues 159

using locks 165

configuration files
governor tool 127

example 134

rule descriptions 128

rule elements 130

configuration parameters
affecting query optimization 401

keepfenced 43

connection concentrators
client-connection improvements 118

usage examples 118

use of agents in partitioned database 119

Control Center
Event Analyzer 120

Snapshot Monitor 120

using Design Advisor 152

coordinator agent
connection-concentrator use 118

coordinator agent (continued)
description 12, 43

cpuspeed configuration parameter
effect on query optimization 401

CREATE SERVER statement
federated database options 207

CURRENT EXPLAIN MODE special register
capturing explain data 314

CURRENT EXPLAIN SNAPSHOT special register
capturing explain information 314

CURRENT LOCK TIMEOUT special register
lock wait mode strategy 196

cursors
closing

preventing lock-related performance issues 173

D
daemons

governor tool 126

data
compacting 81

sampling
statistics collection 227

using TABLESAMPLE 202

data page in standard tables 23

data partitions
elimination 305

data sources
I/O speed and performance 275

data-stream information
displayed by db2expln 330

database manager
shared memory use 53

database monitor
using 120

database objects
explain information 354

database partition groups
effect on query optimization 403

database partition servers
in multiple-partition processing 43

database_memory configuration parameter
self-tuning 58

databases
processes 12

DB2 Information Center
updating 422

versions 421

viewing in different languages 421

DB2_EVALUNCOMMITTED
deferral of row locks 176

DB2_USE_ALTERNATE_PAGE_CLEANING
usage 71

db2advis command 49, 101

using 152

db2batch benchmarking tool
creating tests 143

db2exfmt tool 357

output samples
description 338

db2expln tool
block identifier preparation 331

information displayed
aggregation 332

data stream 330

join 329

432 Tuning Database Performance

db2expln tool (continued)
information displayed (continued)

miscellaneous 336

parallel processing 332

table access 322

temporary table 326

output description 321

federated databases 335

output samples
delete 331

description 338

for federated database plan 345

insert 331

multipartition plan with full parallelism 343

multipartition plan with inter-partition parallelism 341

no parallelism 338

single-partition plan with intra-partition

parallelism 339

update 331

XANDOR operator 347

XISCAN operator 350

XSCAN operator 347, 349

row identifier preparation 331

db2gov command
using 125

db2mtrk command
sample output 65

deadlocks
described 17

detector 17

decorrelation of a query
compiler rewrites for 265

deferred index cleanup
monitoring 31

defragmentation
index 112

Design Advisor 49, 101

defining a workload 153

limitations 154

migrating to partitioned databases 154

overview 149

restrictions 154

using 152

designing
Design Advisor 149

dft_degree configuration parameter
effect on query optimization 401

overriding 389

disabling
self tuning memory 59

disks
storage performance factors 20

distribution statistics
described 235

extended example of use 238

manual update rules 250

optimization 237

documentation
PDF or printed 417

terms and conditions of use 424

documentation overview 417

dynamic queries
setting optimization class 363

dynamic SQL
specifying isolation level 163

dynexpln tool
error messages 320

dynexpln tool (continued)
output description 321

parameters 320

syntax 320

usage notes 320

DYNEXPLN_OPTIONS environment variable
description 320

DYNEXPLN_PACKAGE environment variable
description 320

E
elements

DEGREE request 389

HSJOIN join request 398

MQT 384

MQTOPT 384

engine dispatchable unit (EDU)
agents 115

event snapshots 120

explain facility
analyzing information from 315

capturing information with 314

db2exfmt 318

db2expln 318

description 312

dynexpln 318

evaluating federated queries 273

federated databases 277

information displayed
data objects 354

data operators 354

instances 355

miscellaneous 336

overview 318

snapshots, creating 314

using 319

using collected information 312

Visual Explain 318

explain instances
description 352

explain tables
formatting tool for data in 357

organization 352

F
FCM (Fast Communications Manager)

buffer pool 56

buffer pool memory requirements 56

federated databases
analyzing where queries evaluated 273

concurrency control 159

db2expln output for query in 345

global analysis of queries on 277

global optimization in 275

pushdown analysis 269

query information 335

server options 207

FOR FETCH ONLY clause
in query tuning 196

FOR READ ONLY clause
in query tuning 196

fragment elimination
see data partition elimination 305

Index 433

free space control record (FSCR)
in MDC tables 27

in standard tables 23

G
global optimization guidelines

REOPT 386

governor tool
configuration file

rule descriptions 128

configuration file example 134

configuring 127

daemons
description 126

description 125

log files created by 135

queries against log files 138

rule elements 130

starting 125

stopping 125

granularity
lock

overview 168

H
hash joins

description 285

performance tuning 285

help
displaying 421

for SQL statements 420

I
I/O

parallelism
managing 78

prefetching 76

IN (Intent None) mode
lock mode description 167

INCLUDE clause
effect on space required for indexes 23

indexes
advantages 100

asynchronous cleanup 31, 110

behavior on partitioned tables 107

block
scan lock mode 188

catalog statistics
collecting 226

cleaning up 31, 110

cluster ratio 284

clustering 23, 113

data-access methods 281

deferred cleanup 31

defragmentation
online 112

disadvantages 100

effect of type on next-key locking 194

explain information to analyze use 315

maintenance 106

managing
for MDC tables 27

for standard tables 23

indexes (continued)
performance tips for 104

planning 101

reorganization 81

automatic 99

description 92

methods 82

reducing the need for 98

scans 33

accessing data through 279

previous leaf pointers 33

search processes 33

standard tables, lock modes 180

usage 33

statistics
detailed data collected 242

rules for updating manually 251

structure 33

type-2 described 106

with partitioned tables 107

wizards to help design 149

indexess
Design Adviser 149

Information Center
updating 422

versions 421

viewing in different languages 421

inplace table reorganization 88

inserting data
disregard uncommitted 179

process for 39

when table clustered on index 39

instances
explain information 355

inter-partition parallelism
db2expln tool

output sample 341

output samples 343

intra-partition parallelism
db2expln tool

output sample 339

output samples 343

optimization strategies 301

IS (Intent Share) mode
lock mode description 167

isolation levels
effect on lock granularity 165

effect on performance 160

preventing lock-related performance issues 173

specifying 163

IX (Intent Exclusive) mode
lock mode description 167

J
JDBC (Java database connectivity)

specifying isolation level 163

joins
broadcast inner-table 294

broadcast outer-table 294

collocated 294

db2expln information 329

definition 284

eliminating redundancy 263

explain information to analyze methods 315

hash 285

in partitioned databases 294

434 Tuning Database Performance

joins (continued)
merge 285

methods 285

nested-loop 285

optimizer strategies for optimal 288

request elements
HSJOIN 398

INLIST2JOIN 392

JOIN 398

joinRequest group 397

MSJOIN 398

NLJOIN 399

NOTEX2AJ 392

NOTIN2AJ 392

SUBQ2JOIN 393

types 399

shared aggregation 263

subquery transformation by optimizer 263

table-queue strategy in partitioned databases 292

types
directed inner-table 294

directed outer-table 294

K
key card

grouping 406

L
list prefetching 75

lock modes
compatibility 179

conversion 173

description 167

factors affecting 193

IN (Intent None) mode 167

IS (Intent Share) mode 167

IX (Intent Exclusive) mode 167

MDC (multidimensional clustering) tables
table and RID index scans 184

NS (Next Key Share) mode 167

NW (Next Key Weak Exclusive) mode 167

S (Share) mode 167

SIX (Share with Intent Exclusive) mode 167

standard tables 180

U (Update) mode 167

W (Weak Exclusive) mode 167

X (Exclusive) mode 167

Z (Super Exclusive) mode 167

lock objects
description 167

LOCK TABLE statement
minimizing lock escalations 175

preventing lock-related performance issues 173

lock timeout
reporting 170

files 172

lock waits
strategies for resolving 196

timeout 169

locklist configuration parameter
effect on lock granularity 165

effect on query optimization 401

locks
behavior on partitioned tables 191

locks (continued)
block index-scan modes 188

compatibility 179

concurrency control 165

conversion 173

deadlocks 17

deferral 176

duration 167

effect of application type 193

effect of data-access plan 194

escalation
troubleshooting 175

factors affecting 193

granting simultaneously 179

granularity
factors affecting 193

overview 168

lock escalation
troubleshooting 175

next-key locking 194

standard tables
modes and access paths 180

tuning 173

waiting 179

LOCKSIZE clause
effect on lock granularity 165

specifying lock granularity 168

log buffer 37

log files
governor tool 138

logging
statistics 221

statistics activities 216

logical nodes
database partition servers 43

logical partitions
multiple 43

logs
circular

definition 37

created by governor tool 135

retain log records
definition 37

M
materialized query tables (MQTs)

automatic summary tables 310

replicated, in partitioned databases 291

max_connections configuration parameter
used to manage agents 116

max_coordagents configuration parameter
used to manage agents 116

maxappls configuration parameter
effect on memory use 51

maxcoordagents configuration parameter 51

maximum query degree of parallelism configuration parameter
effect on query optimization 401

maxlocks configuration parameter
specifying when lock escalation is triggered 175

MDC (multidimensional clustering) tables
block-level locking 165

lock modes
table and RID index scans 184

management of tables and indexes 27

optimization strategies 303

rollout deletes 303

Index 435

memory
allocating

tuning parameters 56

buffer-pool allocation at startup 69

configuration
self-tuning memory 58

organization of use 51

when allocated 51

memory model
database-manager shared memory 53

memory requirements
FCM buffer pool 56

Memory Tracker command
sample output 65

memory tuner
partitioned database environments 64

merge joins
description 285

MINPCTUSED clause
for online index defragmentation 23

modeling application performance
using catalog statistics 246

using manually adjusted catalog statistics 245

monitor switches
updating 120

monitoring
application behavior

governor tool 125

overview 120

MQTs (materialized query tables)
automatic summary tables 310

replicated, in partitioned databases 291

multi-partition databases
migrating from single-partition databases

Design Advisor 154

multidimensional clustering (MDC) tables
deferred index cleanup 31

N
nested-loop joins

description 285

next-key locks
converting index to minimize 92

index type, effects 194

type-2 indexes 106

nicknames
updating statistics manually 251

nonrepeatable reads
concurrency control 159

notices 427

notify level configuration parameter
specifying for lock escalation troubleshooting 175

NS (Next Key Share) mode
lock mode description 167

NUMDB
configuration parameter

effect on memory use 51

NW (Next Key Weak Exclusive) mode
lock mode description 167

O
ODBC (open database connectivity)

specifying isolation level 163

offline reorganization
advantages and disadvantages 82

comparison to online reorganization 82

description 85

failure and recovery 87

how to perform 86

improving the performance of 87

locking conditions 85

phases 85

space requirements 97

temporary files created during 85

online reorganization
advantages and disadvantages 82

comparison with offline reorganization 82

description 88

failure and recovery 90

files created during 88

how to perform 89

locking and concurrency considerations 91

log space requirements 97

pausing and restarting 90

phases 88

operations
merged or moved by optimizer 261

operators
explain information 354

XANDOR
sample output 347

XISCAN
sample output 347, 350

XSCAN
sample output 349

OPTGUIDELINES element
global

XML schema 384

statement-level
XML schema 388

optimization
access plans 278

column correlation 404

effect of sorting and grouping 299

index access methods 281

using index 279

choices
MQT 384

classes
choosing 362

description 360

setting 363

distribution statistics 237

guidelines 365

cost-based 367

creating 373

general 366

processing overview 366

query rewrite 366

table references 367

types 366

verifying 369

intra-partition parallelism 301

joins
definition 284

partitioned database 294

strategies 288

partitioned tables 305

query rewriting methods 261

reorganizing tables and indexes 81

436 Tuning Database Performance

optimization (continued)
strategies for MDC tables 303

viewing relevant statistics 408

optimization guidelines
general

XML schema 388

plan
XML schema 393

optimization profiles 365, 370, 374

creating 373, 374

deleting 377

managing 401

modifying 376, 400

specifying 375, 400

XML schema 377

OPTIMIZE FOR clause
in query tuning 196

optimizer
statistical views

creating 407

overview 406

tuning 365

OPTPROFILE element
XML schema 383

ordering DB2 books 420

overflow records
in standard tables 23

performance effect 94

overhead
row blocking to reduce 199

P
page cleaners

tuning number of 66

pages
data 23

parallel processing
db2expln tool

information displayed 332

parallelism
effect of

dft_degree configuration parameter 203

intra_parallel configuration parameter 203

max_querydegree configuration parameter 203

I/O
managing 78

server configuration for 75

intra-partition
optimization strategies 301

non-SMP environments 203

setting degree of 203

partitioned database environments
self tuning memory 62

self-tuning memory 64

partitioned databases
decorrelation of a query 265

join methods in 294

join strategies in 292

replicated materialized query tables in 291

partitioned tables
index behavior 107

locking 191

optimizing 305

PCTFREE clause
to retain space for clustering 23

performance
adjusting optimization class 363

db2batch benchmarking tool 143

developing improvement process 5

disk-storage factors 20

elements 1

isolation levels 160

limits to tuning 9

query optimization using the REOPT bind option 201

routines
SQL procedures 253

tuning
quick-start tips 49

user input for 7

performance improvement
relational indexes 104

REOPT bind option 201

performance tuning
guidelines 3

locks 173

overview 1

sorts 79

troubleshooting 7

using explain information 312

phantom read
concurrency control 159

point-in-time
monitoring 120

precompiling
specifying isolation level 163

predicates
applying 265

characteristics 267

implied
added by optimizer 266

translated by optimizer 261

prefetching
block-based buffer pools 74

description 72

I/O server configuration for 75

intra-parallel performance 72

list sequential 75

parallel I/O 76

sequential 72

printed books
ordering 420

problem determination
online information 424

tutorials 424

process model
for DB2 12

for SQL and XQuery compiler 259

overview 43

updates 41

processes
overview 11

pushdown analysis
federated database queries 269

Q
QRYOPT general request element

XML schema 389

quantile distribution statistics 235

queries
optimization with REOPT bind option 201

rewrite guidelines 391

Index 437

queries (continued)
tuning

restricting select statements 196

SELECT statements 123

query optimization
configuration parameters 401

effect of database partition groups 403

query optimization classes
choosing 362

description 360

query rewrite
optimization guidelines 366

Query tuning
guidelines 201

R
real-time statistics

enabling 390

record identifiers (RIDs)
in standard tables 23

registry variables
DB2_SKIPINSERTED 179

REOPT bind option
description 201

REOPT global optimization guidelines 386

REOPT requests 390

REORG INDEXES command 92

REORG TABLE
performing offline 86

performing online 89

reorganization
choosing a method 82

costs 97

error handling 91

indexes 81

automatically 99

monitoring 91

offline 85

failure and recovery 87

improving the performance of 87

space requirements 97

offline versus online 82

online 88

failure and recovery 90

locking and concurrency considerations 91

log space requirements 97

reducing the need for 98

tables 81, 94

automatically 99

REORGANIZE TABLE command
indexes and tables 92

REXX language
specifying isolation level 163

roll-forward recovery
definition 37

rollout
deferred cleanup 31

routines
SQL

performance 253

row blocking
specifying 199

row identifiers
preparing before table access 331

RTS requests 390

RUNSTATS command
automatic statistics collection 211, 215

sampling statistics 227

statistics collected 209

using 224

S
S (Share) mode

lock mode description 167

sample output
benchmark test analysis 146

SARGable
defined 267

scenarios
creating an access plan

using REFRESH TABLE statement 317

improving cardinality estimates
using statistical views 409

scope
lock granularity 168

SELECT statement
eliminating DISTINCT clauses 265

prioritizing output for 196

self tuning memory
disabling 59

enabling 59

limitations 61

monitoring 60

partitioned database environments 62

self-tuning memory
enabling

non-uniform environments 64

overview 57, 58

partitioned database environments 64

sequences
sequential prefetching 72

SET CURRENT DEGREE statement
overriding 389

SET CURRENT QUERY OPTIMIZATION statement 363

shadow paging
long objects 37

SIX (Share with Intent Exclusive) mode
lock mode description 167

snapshots
point-in-time monitoring 120

sortheap configuration parameter
effect on query optimization 401

sorting
effect on access plan 299

managing 79

SQL and XQuery compiler
process description 259

SQL procedural language
performance 253

SQL procedures
performance 253

SQL statements
benchmarking 142

displaying help 420

explain tools for 319

optimization
configuration parameters 401

optimization with REOPT bind option 201

rewriting 261

tuning
restricting select statements 196

438 Tuning Database Performance

SQL statements (continued)
tuning (continued)

SELECT statements 123

SQLJ (embedded SQL for Java)
specifying isolation level 163

statement key
definition 387

statements
specifying isolation level 163

states
lock modes 167

static queries
setting optimization class 363

static SQL
specifying isolation level 163

statistical views
creating 407

improving cardinality estimates 409

overview 406

relevant statistics 408

statistics
automatic collection 211, 215

collecting guidelines 222

column group 406

sampling
collection 227

updating guidelines 222

updating manually 248

statistics profile
generating 228

STMM (Self Tuning Memory Manager)
enabling 59

limitations 61

monitoring 60

STMM (Self-tuning Memory Manager)
overview 57

stmtheap configuration parameter
effect on query optimization 401

STMTKEY element 387

STMTPROFILE element 386

stored procedures
fenced 253

how used 253

subqueries
correlated

how rewritten 265

summary tables
See materialized query tables. 310

system processes 12

T
table reorganization

error handling 91

monitoring 91

table spaces
effect on query optimization 205

overhead 205

TRANSFERRATE, setting 205

table statistics
updating manually 251

tables
access

information displayed by db2expln 322

access paths
lock modes 180

lock modes 180

tables (continued)
multidimensional clustering 27

offline reorganization 85

improving the performance of 87

online reorganization 88, 89

pausing and restarting 90

queues, for join strategies in partitioned databases 292

reorganization 81

automatic 99

classic, in off-line mode 81

costs 97

determining need for 94

in-place, in on-line mode 81

methods 82

offline 86

reducing need for 81, 98

standard
managing 23

TABLESAMPLE
uses for 202

temporary tables
use information, db2expln 326

terms and conditions
use of publications 424

threads
description 43

in DB2 12

timeout
lock 169

troubleshooting
online information 424

tutorials 424

tuning
guidelines 3

limitations 9

memory-allocation parameters 56

performance
overview 1

sorts 79

performance improvement process
overview 5

troubleshooting 7

tuning partition
determining 64

tutorials
troubleshooting and problem determination 424

Visual Explain 423

type 2 indexes
advantages of 106

described 33

next-key locking in 194

U
U (Update) mode

lock mode description 167

uncommitted data
concurrency control 159

updates
DB2 Information Center 422

Information Center 422

lost
concurrency control 159

process model 41

user-defined functions (UDFs)
entering statistics for 244

Index 439

V
views

merging by optimizer 263

predicate pushdown by optimizer 265

Visual Explain
evaluating federated queries 273

federated databases 277

tutorial 423

W
W (Weak Exclusive) mode

lock mode description 167

WHERE clause
predicate terminology definitions 267

wizards
Design Advisor 149

workloads
Design Adviser

tuning 149

Design Advisor
defining 153

X
X (Exclusive) mode

lock mode description 167

XML schemas
ACCESS access request element 394

access request elements 394

accessRequest group 393

computationalPartitionGroupOptimizationChoices

group 385

DEGREE general request element 389

general optimization guidelines 388

HSJOIN join request element 398

indexAnding access request element 395

INLIST2JOIN request element 392

IXOR access request element 395

IXSCAN access request element 396

JOIN join request element 398

join requests 397

types 399

LPREFETCH access request element 396

MQTOptimizationChoices group 384

MSJOIN join request element 398

NLJOIN join request element 399

NOTEX2AJ request element 392

NOTIN2AJ request element 392

OPTGUIDELINES element
global 384

statement-level 388

optimization profile 377

OPTPROFILE element 383

plan optimization guidelines 393

QRYOPT general request element 389

query rewrite guidelines 391

REOPT general request element 390

RTS general request element 390

STMTKEY element 387

STMTPROFILE element 386

SUBQ2JOIN request element 393

TBSCAN access request element 397

XQuery statements
explain tools for 319

XQuery statements (continued)
optimization

configuration parameters 401

optimization with REOPT bind option 201

rewriting 261

specifying isolation level 163

Z
Z (Super Exclusive) mode

lock mode description 167

440 Tuning Database Performance

����

Printed in USA

SC23-5867-00

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

Tu
ni

ng

Da

ta
ba

se

Pe

rfo
rm

an
ce

�
�

�

	Contents
	Part 1. Elements of performance
	Chapter 1. Performance tuning guidelines
	Chapter 2. Developing a performance improvement process
	Chapter 3. Performance information that users can provide
	Chapter 4. Performance tuning limits
	Chapter 5. DB2 architecture and process overview
	The DB2 Process Model
	Deadlocks
	Disk storage overview
	Disk-storage performance factors

	Part 2. Tables and indexes
	Chapter 6. Table and index management for standard tables
	Chapter 7. Table and index management for MDC tables
	Chapter 8. Asynchronous index cleanup for MDC tables
	Chapter 9. Index structure
	Part 3. Processes
	Chapter 10. Reducing logging overhead to improve query performance
	Chapter 11. Improving insert performance
	Chapter 12. Update processing
	Chapter 13. Client-server processing model
	Part 4. Quick-start tips for performance tuning
	Chapter 14. Operational performance
	Memory allocation in DB2
	Database manager shared memory
	The FCM buffer pool and memory requirements
	Tuning memory allocation parameters

	Self-tuning memory overview
	Self-tuning memory
	Enabling self tuning memory
	Disabling self tuning memory
	Determining which memory consumers are enabled for self tuning
	Self tuning memory operational details and limitations
	Self tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Buffer pool management
	Buffer pool management of data pages
	Management of multiple database buffer pools
	Proactive page cleaning
	Prefetching data into the buffer pool
	Sequential prefetching
	Block-based buffer pools for improved sequential prefetching
	List prefetching
	I/O server configuration for prefetching and parallelism

	Maintaining the organization of your tables and indexes
	Table reorganization
	Choosing a table reorganization method
	Offline table reorganization
	Online table reorganization
	Monitoring a table reorganization

	Index reorganization
	Determining when to reorganize tables and indexes
	Costs of table and index reorganization
	Reducing the need to reorganize tables and indexes
	Automatic reorganization
	Enabling automatic table and index reorganization

	Using relational indexes to improve performance
	Relational index planning tips
	Relational index performance tips
	Index cleanup and maintenance
	Understanding index behavior on partitioned tables
	Asynchronous index cleanup
	Online index defragmentation
	Understanding clustering index behavior on partitioned tables

	Database agents
	Database agent management
	Connection-concentrator improvements for client connections
	Agents in a partitioned database

	The database system monitor information
	Efficient SELECT statements

	Chapter 15. The Governor utility
	Starting and stopping the governor
	The Governor daemon
	Configuring the Governor
	The governor configuration file
	Governor rule elements
	Example of a Governor configuration file
	Governor log files
	Governor log file queries

	Chapter 16. Benchmark testing
	Benchmark preparation
	Benchmark test creation
	Benchmark test execution
	Benchmark test analysis example

	Chapter 17. The Design Advisor
	Using the Design Advisor
	Defining a workload for the Design Advisor
	Using the Design Advisor to migrate from a single-partition to a multiple-partition database
	Design Advisor limitations and restrictions

	Part 5. Tuning database application performance
	Chapter 18. Application considerations
	Concurrency issues
	Isolation levels and performance
	Specifying the isolation level

	Locks and concurrency control
	Lock attributes
	Lock granularity
	Lock waits and timeouts
	Lock timeout reporting
	Lock timeout report files

	Lock conversion
	Preventing lock-related performance issues
	Correcting lock escalation problems
	Evaluate uncommitted data via lock deferral
	Option to disregard uncommitted insertions
	Lock type compatibility
	Lock modes and access paths for standard tables
	Lock modes for table and RID index scans of MDC tables
	Locking for block index scans for MDC tables
	Locking behavior on partitioned tables

	Factors that affect locking
	Locks and types of application processing
	Locks and data-access methods
	Index types and next-key locking
	Specifying a lock wait mode strategy

	Tuning applications
	Guidelines for restricting select statements
	Specifying row blocking to reduce overhead
	Query tuning guidelines
	Query optimization using the REOPT bind option
	Improving performance by binding with REOPT
	Data sampling in SQL and XQuery queries
	Parallel processing for applications

	Chapter 19. Environmental considerations
	Table space impact on query optimization
	Server options affecting federated databases

	Chapter 20. Catalog statistics
	Automatic statistics collection
	Enabling automatic statistics collection
	Storage used by automatic statistics collection and profiling
	Automatic statistics collection activity logging
	Improving query performance for large statistics logs

	Guidelines for collecting and updating statistics
	Collecting catalog statistics
	Collecting distribution statistics for specific columns
	Collecting index statistics
	Collecting statistics on a sample of the table data
	Collecting statistics using a statistics profile

	Catalog statistics tables
	Distribution statistics
	Optimizer use of distribution statistics
	Extended examples of distribution-statistics use
	Detailed index statistics
	Sub-element statistics

	Catalog statistics that users can update
	Statistics for user-defined functions
	Catalog statistics for modeling and what-if planning
	Statistics for modeling production databases
	General rules for updating catalog statistics manually
	Rules for updating column statistics manually
	Rules for updating distribution statistics manually
	Rules for updating table and nickname statistics manually
	Rules for updating index statistics manually

	Chapter 21. Routines
	Guidelines for stored procedures
	Improving the performance of SQL procedures

	Chapter 22. Query access plans
	The SQL and XQuery compiler process
	Query rewriting methods and examples
	Compiler rewrite example: view merges
	Compiler rewrite example: DISTINCT elimination
	Compiler rewrite example: implied predicates

	Predicate typology and access plans
	Federated database query-compiler phases
	Federated database pushdown analysis
	Guidelines for analyzing where a federated query is evaluated
	Remote SQL generation and global optimization in federated databases
	Global analysis of federated database queries

	Data-access methods
	Data access through index scans
	Types of index access
	Index access and cluster ratios

	Joins
	Join methods
	Strategies for selecting optimal joins
	Replicated materialized query tables in partitioned database environments
	Join strategies in partitioned databases
	Join methods in partitioned database environments

	Effects of sorting and grouping
	Optimization strategies
	Optimization strategies for intra-partition parallelism
	Optimization strategies for MDC tables
	Optimization strategies for partitioned tables

	Materialized query tables
	Explain facility
	Guidelines for using explain information
	Guidelines for capturing explain information
	Guidelines for analyzing explain information
	Using access plans to self-diagnose performance problems from REFRESH TABLE and SET INTEGRITY statements
	Explain tools
	SQL and XQuery Explain tools
	dynexpln
	Description of db2expln and dynexpln output
	Examples of db2expln and dynexpln output

	The explain tables and organization of explain information
	Explain information for data objects
	Explain information for data operators
	Explain information for instances
	db2exfmt - Explain table format

	Optimizing query access plans
	Optimization classes
	Choosing an optimization class
	Setting the optimization class

	Optimizer profiles and guidelines overview
	Optimization guidelines
	Optimization profiles
	XML schema for optimization profiles and guidelines
	SYSTOOLS.OPT_PROFILE table

	Configuration parameters that affect query optimization
	Database database partition group impact on query optimization
	Column correlation for multiple predicates
	Using index and column group statistics to compute grouping keycard

	Statistical views
	Using statistical views
	View statistics relevant to optimization
	Scenario: Improving cardinality estimates using statistical views

	Part 6. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

