
DB2 Version 9.5

for Linux, UNIX, and Windows

Developing Perl and PHP Applications

SC23-5854-00

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Developing Perl and PHP Applications

SC23-5854-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 49.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Part 1. Developing PHP applications 1

Chapter 1. Introduction to PHP

application development for DB2 3

Chapter 2. Setting up the PHP

environment 5

Setting up the PHP environment on Windows . . . 5

Setting up the PHP environment on Linux or UNIX . 5

Chapter 3. Developing with ibm_db2 . . 9

Connecting to a DB2 database with PHP (ibm_db2) . 9

Retrieving database metadata (ibm_db2) 9

Executing XQuery expressions in PHP (ibm_db2) . . 11

Executing SQL statements 12

Executing a single SQL statement in PHP

(ibm_db2) 12

Preparing and executing SQL statements in PHP

(ibm_db2) 13

Inserting large objects in PHP (ibm_db2) . . . 14

Reading query result sets 15

Fetching columns from result sets in PHP

(ibm_db2) 15

Fetching rows from result sets in PHP (ibm_db2) 15

Fetching large objects in PHP (ibm_db2) 16

Managing transactions in PHP (ibm_db2) 17

Handling errors and warning messages (ibm_db2) 18

Calling stored procedures 19

Calling stored procedures with OUT or INOUT

parameters in PHP (ibm_db2) 19

Calling stored procedures that return multiple

result sets in PHP (ibm_db2) 20

Chapter 4. Developing with PDO 21

Connecting to a DB2 database with PHP (PDO) . . 21

Executing SQL statements 22

Executing a single SQL statement in PHP that

returns no result sets (PDO) 22

Executing a single SQL statement in PHP that

returns a result set (PDO) 22

Preparing and executing SQL statements (PDO) 23

Inserting large objects in PHP (PDO) 24

Reading query result sets 25

Fetching columns from result sets in PHP (PDO) 25

Fetching rows from result sets in PHP (PDO) . . 25

Fetching large objects in PHP (PDO) 27

Managing transactions in PHP (PDO) 28

Handling errors and warnings in PHP (PDO) . . . 28

Calling stored procedures 29

Calling stored procedures with OUT or INOUT

parameters in PHP (PDO) 29

Calling stored procedures that return multiple

result sets in PHP (PDO) 30

Part 2. Developing Perl Applications 31

Chapter 5. Programming

Considerations for Perl 33

Database Connections in Perl 33

Fetching Results in Perl 33

Parameter Markers in Perl 34

SQLSTATE and SQLCODE Variables in Perl . . . 34

Perl Restrictions 35

Example of a Perl Program 35

Building Perl applications 35

Part 3. Appendixes 37

Appendix A. Overview of the DB2

technical information 39

DB2 technical library in hardcopy or PDF format . . 39

Ordering printed DB2 books 42

Displaying SQL state help from the command line

processor 42

Accessing different versions of the DB2 Information

Center 43

Displaying topics in your preferred language in the

DB2 Information Center 43

Updating the DB2 Information Center installed on

your computer or intranet server 44

DB2 tutorials 45

DB2 troubleshooting information 46

Terms and Conditions 46

Appendix B. Notices 49

Index 53

© Copyright IBM Corp. 2006, 2007 iii

iv Developing Perl and PHP Applications

Part 1. Developing PHP applications

© Copyright IBM Corp. 2006, 2007 1

2 Developing Perl and PHP Applications

Chapter 1. Introduction to PHP application development for

DB2

PHP: Hypertext Preprocessor (PHP) is an interpreted programming language

primarily intended for the development of Web applications. The first version of

PHP was created by Rasmus Lerdorf and contributed under an open source license

in 1995. PHP was initially a very simple HTML templating engine, but over time

the developers of PHP added database access functionality, rewrote the interpreter,

introduced object-oriented support, and improved performance. Today, PHP has

become a popular language for Web application development because of its focus

on practical solutions and support for the most commonly required functionality in

Web applications.

For the easiest install and configuration experience on Linux®, UNIX®, or

Windows® operating systems, you can download and install Zend Core for IBM for

use in production systems. Paid support for Zend Core for IBM is available from

Zend. On Windows, precompiled binary versions of PHP are available for

download from http://php.net/. Most Linux distributions include a precompiled

version of PHP. On UNIX operating systems that do not include a precompiled

version of PHP, you can compile your own version of PHP.

PHP is a modular language that enables you to customize the available

functionality through the use of extensions. These extensions can simplify tasks

such as reading, writing, and manipulating XML, creating SOAP clients and

servers, and encrypting communications between server and browser. The most

popular extensions for PHP, however, provide read and write access to databases

so that you can easily create a dynamic database-driven Web site.

We have built on our existing PHP support by developing a new extension called

pdo_ibm for anyone who wishes to use the PHP Application Objects (PDO)

interface. This new extension along with the existing ibm_db2 extension will now

be conveniently included as part of the IBM Data Server Client. The most up to

date versions of ibm_db2 and pdo_ibm are available from the PHP Extension

Community Library (PECL) http://pecl.php.net/. You can use either extension to

access data stored in a DB2® database through your PHP application. The

differences between the extensions are detailed as follows:

v ibm_db2 is an extension written, maintained, and supported by IBM® for access

to DB2 databases. The ibm_db2 extension offers a procedural application

programming interface (API) that, in addition to the normal create, read, update,

and write database operations, also offers extensive access to the database

metadata. You can compile the ibm_db2 extension with either PHP 4 or PHP 5.

v pdo_ibm is a driver for the PHP Data Objects (PDO) extension that offers access

to DB2 databases through the standard object-oriented database interface

introduced in PHP 5.1.

A third extension, Unified ODBC, has historically offered access to DB2 database

systems. It is not recommended that you write new applications with this

extension because ibm_db2 and pdo_ibm both offer significant performance and

stability benefits over Unified ODBC. The ibm_db2 extension API makes porting

an application that was previously written for Unified ODBC almost as easy as

globally changing the odbc_ function name to db2_ throughout the source code of

your application.

© IBM Corporation 2006, 2007 3

http://www.zend.com/core/ibm/
http://www.zend.com/
http://www.php.net/
http://pecl.php.net/

4 Developing Perl and PHP Applications

Chapter 2. Setting up the PHP environment

Setting up the PHP environment on Windows

DB2 supports database access for client applications written in the PHP

programming language using either or both of the ibm_db2 extension and the

pdo_ibm driver for the PHP Data Objects (PDO) extension. To install a binary

version of PHP with support for DB2 on Windows, you can download and install

the freely available Zend Core for IBM from http://zend.com/core/ibm/.

However, you can also manually install the precompiled binary version of PHP on

Windows.

The Apache HTTP Server must be installed on your system.

To install a precompiled version of PHP from http://www.php.net and enable

support for on Windows:

1. Download the latest version of the PHP zip package and the collection of PECL

modules zip package from http://www.php.net. The latest version of PHP at

the time of writing is PHP 5.2.3.

2. Extract the PHP zip package into an install directory.

3. Extract the collection of PECL modules zip package into the \ext\ subdirectory

of your PHP installation directory.

4. Create a new file named php.ini in your installation directory by making a

copy of the php.ini-recommended file.

5. Open the php.ini file in a text editor and add the following lines.

v To enable the PDO extension and pdo_ibm driver:

extension=php_pdo.dll

extension=php_pdo_ibm.dll

v To enable the ibm_db2 extension:

extension=php_ibm_db2.dll

6. Enable PHP support in Apache HTTP Server 2.x by adding the following lines

to your httpd.conf file, in which phpdir refers to the PHP install directory:

LoadModule php5_module ’phpdir/php5apache2.dll’

AddType application/x-httpd-php .php

PHPIniDir ’phpdir’

7. Restart the Apache HTTP Server to enable the changed configuration.

Setting up the PHP environment on Linux or UNIX

DB2 supports database access for client applications written in the PHP

programming language using either or both of the ibm_db2 extension and the

pdo_ibm driver for the PHP Data Objects (PDO) extension. To install a binary

version of PHP with support for DB2 on Linux or AIX, you can download and

install the freely available Zend Core for IBM from http://zend.com/core/ibm/.

However, you can also manually compile and install PHP from source.

v The Apache HTTP Server must be installed on your system.

v The DB2 development header files and libraries must be installed on your

system.

© Copyright IBM Corp. 2006, 2007 5

http://www.zend.com/core/ibm/
http://www.php.net/
http://www.php.net/
http://www.zend.com/core/ibm/

v The gcc compiler and other development packages including apache-devel,

autoconf, automake, bison, flex, gcc, and libxml2-devel package must be

installed on your system.

To compile PHP from source with support for on Linux or UNIX:

 1. Download the latest version of the PHP tarball from http://www.php.net. The

latest version of PHP at the time of writing is PHP 5.2.3.

 2. Untar the file by issuing the following command:

tar -xjf php-5.x.x.tar.bz2

 3. Change directories into the newly created php-5.x.x directory.

 4. Configure the makefile by issuing the configure command. Specify the

features and extensions you want to include in your custom version of PHP. A

typical configure command includes the following options:

./configure --enable-cli --disable-cgi --with-apxs2=/usr/sbin/apxs2

--with-zlib --with-pdo-ibm=<sqllib>

The configure options have the following effects:

--enable-cli

Enables the command line mode of PHP access.

--disable-cgi

Disables the Common Gateway Interface (CGI) mode of PHP access.

--with-apxs2=/usr/sbin/apxs2

Enables the Apache 2 dynamic server object (DSO) mode of PHP

access.

--with-zlib

Enables zlib compression support.

--with-pdo-ibm=<sqllib>

Enables the pdo_ibm driver using the DB2 CLI library to access

database systems. The <sqllib> setting refers to the directory in which

DB2 is installed.
 5. Compile the files by issuing the make command.

 6. Install the files by issuing the make install command. Depending on how

you configured the PHP install directory using the configure command, you

might need root authority to successfully issue this command. This should

install the executable files and update the Apache HTTP Server configuration

to support PHP.

 7. Install the ibm_db2 extension by issuing the following command as a user

with root authority:

pecl install ibm_db2

This command downloads, configure, compiles, and installs the ibm_db2

extension for PHP.

 8. Copy the php.ini-recommended file to the configuration file path for your new

PHP installation. To determine the configuration file path, issue the php -i

command and look for the php.ini keyword. Rename the file to php.ini.

 9. Open the new php.ini file in a text editor and add the following lines, where

instance refers to the name of the DB2 instance on Linux or UNIX..

v To set the DB2 environment for pdo_ibm:

PDO_IBM.db2_instance_name=instance

v (Linux or UNIX) To enable the ibm_db2 extension and set the DB2

environment:

6 Developing Perl and PHP Applications

http://www.php.net/

extension=ibm_db2.so

ibm_db2.instance_name=instance

10. Restart the Apache HTTP Server to enable the changed configuration.

Chapter 2. Setting up the PHP environment 7

8 Developing Perl and PHP Applications

Chapter 3. Developing with ibm_db2

Connecting to a DB2 database with PHP (ibm_db2)

You must connect to a DB2 database before you can create, update, delete, or

retrieve data from that data source. The ibm_db2 extension for PHP enables you to

connect to a DB2 database using either a cataloged connection or a direct TCP/IP

connection to the DB2 database management system. You can also create persistent

connections to a database. Persistent connections improve performance by keeping

the connection open between PHP requests and by reusing the connection when a

subsequent PHP script requests a connection with an identical set of credentials.

Before connecting to a DB2 database through the ibm_db2 extension, you must set

up the PHP environment on your system and enable the ibm_db2 extension.

1. Create a connection to a DB2 database:

v To create a non-persistent connection to a DB2 database, call db2_connect()

with a database value that specifies either a cataloged database name or a

complete database connection string for a direct TCP/IP connection.

v To create a persistent connection to a DB2 database, call db2_pconnect() with

a database value that specifies either a cataloged database name or a complete

database connection string for a direct TCP/IP connection.
2. Check the value returned by db2_connect() or db2_pconnect.

v If the value returned by db2_connect() or db2_pconnect is FALSE, the

connection attempt failed. You can retrieve diagnostic information through

db2_conn_error() and db2_conn_errormsg().

v If the value returned by db2_connect() or db2_pconnect is not FALSE, the

connection attempt succeeded. You can use the connection resource to create,

update, delete, or retrieve data with other ibm_db2 functions.

When you create a connection by calling db2_connect(), PHP closes the connection

to the database:

v When you call db2_close() for the connection,

v When you set the connection resource to NULL,

v Or when the PHP script finishes.

When you create a connection by calling db2_pconnect(), PHP ignores any calls to

db2_close() for the specified connection resource and keeps the connection to the

database open for subsequent PHP scripts.

Retrieving database metadata (ibm_db2)

Some classes of applications, such as administration interfaces, need to

dynamically reflect the structure and SQL objects contained in arbitrary databases.

One approach to retrieving metadata about a database is to issue SELECT

statements directly against the system catalog tables; however, the schema of the

system catalog tables may change between versions of DB2, or the schema of the

system catalog tables on DB2 Database for Linux, UNIX, and Windows may differ

from the schema of the system catalog tables on DB2 for z/OS®. Rather than

laboriously maintaining these differences in your application code, the ibm_db2

extension for PHP offers a standard set of functions that return metadata for

© Copyright IBM Corp. 2006, 2007 9

databases served by DB2 Database for Linux, UNIX, and Windows, Cloudscape™,

and, through DB2 Connect™, DB2 for z/OS and DB2 for i5/OS®.

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a connection resource returned from db2_connect() or

db2_pconnect().
1. Call the function that returns the metadata which you require:

db2_client_info()

Returns metadata about the DB2 client software and configuration.

db2_column_privileges()

Lists the columns and associated privileges for a table.

db2_columns()

Lists the columns and associated metadata for a table.

db2_foreign_keys()

Lists the foreign keys for a table.

db2_primary_keys()

Lists the primary keys for a table.

db2_procedure_columns()

Lists the parameters for one or more stored procedures.

db2_procedures()

Lists the stored procedures registered in the database.

db2_server_info()

Returns metadata about the database management system software and

configuration.

db2_special_columns()

Lists the unique row identifiers for a table.

db2_statistics()

Lists the indexes and statistics for a table.

db2_table_privileges()

Lists tables and their associated privileges in the database.
Note that while most of the ibm_db2 metadata functions accept a qualifier or

catalog parameter, this parameter should only be set to a non-NULL value

when you are connected to .

2. Depending on which metadata function you called,

v The db2_client_info() and db2_server_info() functions directly return a

single object with read-only properties. You can use the properties of these

objects to create an application that behaves differently depending on the

database management system to which it connects. For example, rather than

encoding a limit of the lowest common denominator for all possible database

management systems, a Web-based database administration application built

on the ibm_db2 extension could use the db2_server_info()-
>MAX_COL_NAME_LEN property to dynamically display text fields for naming

columns with maximum lengths that correspond to the maximum length of

column names on the database management system to which it is connected.

v The other metadata functions return result sets with columns defined for

each function. Retrieve rows from the result set using the normal ibm_db2

functions for this purpose.

10 Developing Perl and PHP Applications

Note that calling metadata functions consumes a significant amount of database

management system resources. If possible, consider caching the results of your

calls for subsequent usage.

Executing XQuery expressions in PHP (ibm_db2)

After connecting to a DB2 database, your PHP script is ready to issue XQuery

expressions. The db2_exec() and db2_execute() functions execute SQL statements,

through which you can pass your XQuery expressions. A typical use of db2_exec()

is to set the default schema for your application in a common include file or base

class.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

To avoid the security threat of injection attacks, db2_exec() should only be used to

execute SQL statements composed of static strings. Interpolation of PHP variables

representing user input into the XQuery expression can expose your application to

injection attacks.

1. Call db2_exec() with the following arguments:

a. The connection resource;

b. A string containing the SQL statement, including the XQuery expression.

The XQuery expression needs to be wrapped in a XMLQUERY clause in the

SQL statement.

c. (Optional): an array containing statement options

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by DB2. You can set this parameter to DB2_CASE_LOWER

to force column names to lower case, or to DB2_CASE_UPPER to

force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result

sets. By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set

for every call to db2_fetch_array(), db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_object(), or db2_fetch_row(). You can

set this parameter to DB2_SCROLLABLE to request a scrollable

cursor so that the ibm_db2 fetch functions accept a second

argument specifying the absolute position of the row that you want

to access within the result set .
2. Check the value returned by db2_exec():

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the db2_stmt_error() and db2_stmt_errormsg()

functions.

v If the value is not FALSE, the SQL statement succeeded and returned a

statement resource that can be used in subsequent function calls related to

this query.

Chapter 3. Developing with ibm_db2 11

<?php

$xquery = ’$doc/customerinfo/phone’;

$stmt = db2_exec($conn, "select xmlquery(’$xquery’

PASSING INFO AS \"doc\") from customer");?>

Executing SQL statements

Executing a single SQL statement in PHP (ibm_db2)

After connecting to a DB2 database, most PHP scripts will execute one or more

SQL statements. The db2_exec() function executes a single SQL statement that

accepts no input parameters. A typical use of db2_exec() is to set the default

schema for your application in a common include file or base class.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

To avoid the security threat of SQL injection attacks, db2_exec() should only be

used to execute SQL statements composed of static strings. Interpolation of PHP

variables representing user input into the SQL statement can expose your

application to SQL injection attacks.

1. Call db2_exec() with the following arguments:

a. The connection resource;

b. A string containing the SQL statement;

c. (Optional): an array containing statement options

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by DB2. You can set this parameter to DB2_CASE_LOWER

to force column names to lower case, or to DB2_CASE_UPPER to

force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result

sets. By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set

for every call to db2_fetch_array(), db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_object(), or db2_fetch_row(). You can

set this parameter to DB2_SCROLLABLE to request a scrollable

cursor so that the ibm_db2 fetch functions accept a second

argument specifying the absolute position of the row that you want

to access within the result set .
2. Check the value returned by db2_exec():

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the db2_stmt_error() and db2_stmt_errormsg()

functions.

v If the value is not FALSE, the SQL statement succeeded and returned a

statement resource that can be used in subsequent function calls related to

this query.

12 Developing Perl and PHP Applications

If the SQL statement selected rows using a scrollable cursor, or inserted, updated,

or deleted rows, you can call db2_num_rows() to return the number of rows that the

statement returned or affected. If the SQL statement returned a result set, you can

begin fetching rows.

Preparing and executing SQL statements in PHP (ibm_db2)

Most SQL statements in PHP applications use variable input to determine the

results of the SQL statement. To pass user-supplied input to an SQL statement

safely, prepare a statement using parameter markers (?) representing the variable

input. When you execute the prepared statement, you bind input values to the

parameter markers. The database engine ensures that each input value is treated as

a single parameter, preventing SQL injection attacks against your application.

Compared to statements issued through db2_exec(), prepared statements offer a

performance advantage because the database management system creates an access

plan for each prepared statement that it can reuse if the statement is reissued

subsequently.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

You can only use parameter markers as a place holder for column or predicate

values. The SQL compiler would be unable to create an access plan for a statement

that used parameter markers in place of column names, table names, or other SQL

identifiers.

To prepare and execute an SQL statement:

1. Call db2_prepare() with the following arguments:

a. The connection resource

b. A string containing the SQL statement, including parameter markers (?) for

any column or predicate values that require variable input

c. (Optional): An array containing statement options

DB2_ATTR_CASE

For compatibility with database systems that do not follow the SQL

standard, this option sets the case in which column names will be

returned to the application. By default, the case is set to

DB2_CASE_NATURAL, which returns column names as they are

returned by DB2. You can set this parameter to DB2_CASE_LOWER

to force column names to lower case, or to DB2_CASE_UPPER to

force column names to upper case.

DB2_ATTR_CURSOR

This option sets the type of cursor that ibm_db2 returns for result

sets. By default, ibm_db2 returns a forward-only cursor

(DB2_FORWARD_ONLY) which returns the next row in a result set

for every call to db2_fetch_array(), db2_fetch_assoc(),

db2_fetch_both(), db2_fetch_object(), or db2_fetch_row(). You can

set this parameter to DB2_SCROLLABLE to request a scrollable

cursor so that the ibm_db2 fetch functions accept a second

argument specifying the absolute position of the row that you want

to access within the result set.
2. Check the value returned by db2_prepare().

Chapter 3. Developing with ibm_db2 13

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the db2_stmt_error() and db2_stmt_errormsg()

functions.

v If the value is not FALSE, the SQL statement succeeded and returned a

statement resource that can be used in subsequent function calls related to

this query.
3. (Optional): Call db2_bind_param() for each parameter marker in the SQL

statement with the following arguments:

a. The statement resource

b. An integer representing the position of the parameter marker in the SQL

statement

c. The value to use in place of the parameter marker
4. Call db2_execute with the following arguments:

a. The statement resource

b. (Optional): An array containing the values to use in place of the parameter

markers, in order

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";

$stmt = db2_prepare($conn, $sql);

if (!$stmt) {

 // Handle errors

}

// Explicitly bind parameters

db2_bind_param($stmt, 1, $_POST[’lower’]);

db2_bind_param($stmt, 2, $_POST[’upper’]);

db2_execute($stmt);

// Process results

// Invoke prepared statement again using dynamically bound parameters

db2_execute($stmt, array($_POST[’lower’], $_POST[’upper’]);

If you execute a prepared statement that returns one or more result sets, you can

begin retrieving rows from the statement resource by calling the

db2_fetch_array() , db2_fetch_assoc(), db2_fetch_both(), db2_fetch_object(), or

db2_fetch_row() functions.

Inserting large objects in PHP (ibm_db2)

The ibm_db2 extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

insert a large object into a database, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. Rather than loading

all of the data for a large object into a PHP string, and then passing that to DB2

through an INSERT statement, you can insert large objects directly from a file on

your PHP server.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

To insert a large object into the database directly from a file:

1. Call db2_prepare() to prepare an INSERT statement with a parameter marker

representing the large object column.

14 Developing Perl and PHP Applications

2. Set the value of a PHP variable to the path and name of the file that contains

the data for the large object. The path can be relative or absolute, and is subject

to the access permissions of the PHP executable.

3. Call db2_bind_param() to bind the parameter marker to the file that contains

the data for the large object. The third parameter is a string representing the

name of the PHP variable that holds the name of the file containing the data

for the large object. The fourth parameter is DB2_PARAM_FILE, which tells the

ibm_db2 extension to retrieve the data from a file.

4. Call db2_execute() to issue the INSERT statement and bind the data from the

file into the database.

$stmt = db2_prepare($conn, "INSERT INTO animal_pictures(picture) VALUES (?)");

$picture = "/opt/albums/spook/grooming.jpg";

$rc = db2_bind_param($stmt, 1, "picture", DB2_PARAM_FILE);

$rc = db2_execute($stmt);

Reading query result sets

Fetching columns from result sets in PHP (ibm_db2)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows of each result set. If your result set

includes columns with extremely large data (such as a column defined with a

BLOB or CLOB data type), you might prefer to retrieve the data on a

column-by-column basis to avoid using too much memory in your PHP process.

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a statement resource returned from db2_exec() or db2_execute()

with one or more associated result sets.
1. Call the db2_fetch_row() function to advance the cursor to the next row in the

result set. The first time you call a fetch function for a given result set advances

the cursor to the first row of the result set. If you requested a scrollable cursor,

you can also specify the number of the row in the result set that you want to

retrieve.

2. Check the result returned by db2_fetch_row(). If the result is FALSE, there are

no more rows in the result set.

3. Call the db2_result() function to retrieve the value from the requested column

by passing either an integer representing the position of the column in the row

(starting with 0 for the first column), or a string representing the name of the

column.

<?php

$sql = ’SELECT name, breed FROM animals WHERE weight < ?’;

$stmt = db2_prepare($conn, $sql);

db2_execute($stmt, array(10));

while (db2_fetch_row($stmt)) {

 $name = db2_result($stmt, 0);

 $breed = db2_result($stmt, ’BREED’);

 print "$name $breed";

}

?>

Fetching rows from result sets in PHP (ibm_db2)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows.

Chapter 3. Developing with ibm_db2 15

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a statement resource returned from db2_exec() or db2_execute()

with one or more associated result sets.

Call the ibm_db2 fetch function that returns the data from the row in the format

you prefer:

db2_fetch_array()

Returns an array containing the data corresponding to the columns of the

row indexed by column position starting at 0

db2_fetch_assoc()

Returns an array containing the data corresponding to the columns of the

row indexed by column name.

db2_fetch_both()

Returns an array containing the data corresponding to the columns of the

row indexed by both column name and by column position starting at 0.

db2_fetch_object()

Returns an object containing the data from the row. The object holds

properties matching the column names of the row which, when accessed,

return the corresponding values of the columns.

You must pass the statement resource as the first argument. If you requested a

scrollable cursor when you executed db2_exec() or db2_prepare(), you can pass an

absolute row number as the second argument. With the default forward-only

cursor, each call to a fetch method returns the next row in the result set. You can

continue fetching rows until the fetch method returns FALSE, which signifies that

you have reached the end of the result set.

$stmt = db2_exec($conn, "SELECT firstnme, lastname FROM employee");

while ($row = db2_fetch_object($stmt)) {

 print "Name: <p>{$row->FIRSTNME} {$row->LASTNAME}</p>";

}

Fetching large objects in PHP (ibm_db2)

The ibm_db2 extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

fetch a large object from a result set, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. If your ultimate goal

is to create a file that contains the data for a large object, you can save system

resources by fetching large objects directly into a file on your PHP server.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream. For example, the return value

from a call to fopen().

2. Call db2_prepare() to create a SELECT statement.

3. Call db2_bind_param() to bind the output column for the large object to the

PHP variable representing the stream. The third parameter is a string

representing the name of the PHP variable that holds the name of the file that

16 Developing Perl and PHP Applications

is to contain the data from the large object. The fourth parameter is

DB2_PARAM_FILE, which tells the ibm_db2 extension to write the data into a file.

4. Call db2_execute() to issue the SQL statement.

5. Call an ibm_db2 fetch function of your choice (for example,

db2_fetch_object()), to retrieve the next row in the result set.

$stmt = db2_prepare($conn, "SELECT name, picture FROM animal_pictures");

$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");

$rc = db2_bind_param($stmt, 1, "nickname", DB2_CHAR, 32);

$rc = db2_bind_param($stmt, 2, "picture", DB2_PARAM_FILE);

$rc = db2_execute($stmt);

$rc = db2_fetch_object($stmt);

Managing transactions in PHP (ibm_db2)

By default, the ibm_db2 extension opens every connection in autocommit mode.

Autocommit mode helps prevent locking escalation issues that can impede the

performance of highly scalable Web applications. In some scripts, however, you

might need to roll back a transaction containing one or more SQL statements. The

ibm_db2 extension enables you to exert fine-grained control over your transactions.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

You must use a regular connection created with db2_connect() to control database

transactions in PHP. Persistent connections always use autocommit mode.

To begin a transaction:

1. Create a database connection using the "AUTOCOMMIT" => DB2_AUTOCOMMIT_OFF

setting in the db2_connect() options array. You can also turn autocommit off

for an existing connection resource by calling db2_autocommit($conn,

DB2_AUTOCOMMIT_OFF). Calling db2_autocommit() requires additional

communication from PHP to the database management system and may affect

the performance of your PHP scripts.

2. Issue one or more SQL statements within the scope of the database transaction

using the connection resource for which transactions have been enabled.

3. Commit or rollback the transaction:

v To commit the transaction, call db2_commit().

v To rollback the transaction, call db2_rollback().
4. (Optional): Return the database connection to autocommit mode by calling

db2_autocommit($conn, DB2_AUTOCOMMIT_ON). If you issue another SQL

statement without returning the database connection to autocommit mode, you

begin a new transaction that will require a commit or rollback.

If you issue SQL statements in a transaction and the script ends without explicitly

committing or rolling back the transaction, the ibm_db2 extension automatically

rolls back any work performed in the transaction.

$conn = db2_connect(’SAMPLE’, ’db2inst1’, ’ibmdb2’, array(

 ’AUTOCOMMIT’ => DB2_AUTOCOMMIT_ON));

// Issue one or more SQL statements within the transaction

$result = db2_exec($conn, ’DELETE FROM TABLE employee’);

if ($result === FALSE) {

 print ’<p>Unable to complete transaction!</p>’;

 db2_rollback($conn);

}

Chapter 3. Developing with ibm_db2 17

else {

 print ’<p>Successfully completed transaction!</p>’;

 db2_commit($conn);

}

Handling errors and warning messages (ibm_db2)

Problems occasionally happen when you attempt to connect to a database or issue

an SQL statement. The password for your connection might be incorrect, the table

you referred to in a SELECT statement might not exist, or the syntax for an SQL

statement might be invalid. You need to code defensively and use the

error-handling functions offered by the ibm_db2 extension to enable your

application to recover gracefully from a problem.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

1. Check the value returned from the ibm_db2 function to ensure the function

returned successfully. If the function can return the value 0, such as

db2_num_rows(), you must explicitly test whether the value was FALSE using

PHP’s === operator.

2. If the function returned FALSE instead of the connection resource, statement

resource, or numeric value you expected, call the ibm_db2 error handling

function appropriate to the application context and the needs of your

application:

Connection errors

To retrieve the SQLSTATE returned by the last connection attempt, call

db2_conn_error(). To retrieve a descriptive error message appropriate

for an application error log, call db2_conn_errormsg().

$connection = db2_connect($database, $user, $password);

if (!$connection) {

 $this->state = db2_conn_error();

 return false;

}

SQL errors (executing SQL statements directly and fetching results)

To retrieve the SQLSTATE returned by the last attempt to prepare or

execute an SQL statement, or to fetch a result from a result set, call

db2_stmt_error(). To retrieve a descriptive error message appropriate

for an application error log, call db2_stmt_errormsg().

$stmt = db2_prepare($connection, "DELETE FROM employee

WHERE firstnme = ?");

if (!$stmt) {

 $this->state = db2_stmt_error();

 return false;

}

SQL errors (executing prepared statements)

If db2_prepare() returned successfully, but a subsequent call to

db2_execute() fails, call db2_stmt_error() or db2_stmt_errormsg() and

pass the resource returned from the call to db2_prepare() as the

argument.

$success = db2_execute($stmt, array(’Dan’);

if (!$success) {

 $this->state = db2_stmt_error($stmt);

 return $false;

}

18 Developing Perl and PHP Applications

3. To avoid the possibility of security vulnerabilities resulting from directly

displaying the raw SQLSTATE returned from the database, and to offer a better

overall user experience in your Web application, use a switch structure to

recover from known error states or return custom error messages.

switch($this->state):

 case ’22001’:

 // More data than allowed for the defined column

 $message = "You entered too many characters for this value.";

 break;

Calling stored procedures

Calling stored procedures with OUT or INOUT parameters in

PHP (ibm_db2)

DB2 supports stored procedures with parameters that only accept an input value

(IN parameters), that only return an output value (OUT parameters), or that accept

an input value and return an output value (INOUT). With the ibm_db2 extension

for PHP you can handle IN parameters like any other parameter marker in an SQL

statement. However, the ibm_db2 extension also enables you to CALL stored

procedures with OUT and INOUT parameters and retrieve the output values from

those parameters.

You must set up the PHP environment on your system and enable the ibm_db2

extension.

To call a stored procedure with OUT or INOUT parameters:

1. Call db2_prepare() to prepare a CALL statement with parameter markers

representing the OUT and INOUT parameters.

2. Call db2_bind_param() to bind each parameter marker to the name of the PHP

variable that will hold the output value of the parameter after the CALL

statement has been issued. For INOUT parameters, the value of the PHP

variable is passed as the input value of the parameter when the CALL

statement is issued. Set the fourth parameter for db2_bind_param() to either

DB2_PARAM_OUT, representing an OUT parameter, or DB2_PARAM_INOUT,

representing an INOUT parameter.

3. Call db2_execute() to issue the CALL statement and bind the data from the

stored procedure into the PHP variables.

$sql = ’CALL match_animal(?, ?)’;

$stmt = db2_prepare($conn, $sql);

$second_name = "Rickety Ride";

$weight = 0;

db2_bind_param($stmt, 1, "second_name", DB2_PARAM_INOUT);

db2_bind_param($stmt, 2, "weight", DB2_PARAM_OUT);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

db2_execute($stmt);

print "Values of bound parameters _after_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

Chapter 3. Developing with ibm_db2 19

Calling stored procedures that return multiple result sets in

PHP (ibm_db2)

DB2 enables you to create and call stored procedures that return more than one

result set. The ibm_db2 extension for PHP fully supports this capability through

the db2_next_result() function. You can use this function to fetch rows from

different result sets returned by a single call to the same stored procedure in any

order you prefer.

v You must set up the PHP environment on your system and enable the ibm_db2

extension.

v You must have a statement resource returned from calling a stored procedure

with db2_exec() or db2_execute().

To return multiple result sets from a stored procedure:

1. The first result set is associated with the statement resource returned by the

CALL statement.

2. Pass the original statement resource as the first argument to db2_next_result()

to retrieve the second and subsequent result sets. This function returns FALSE

when no more result sets are available.

$stmt = db2_exec($conn, ’CALL multiResults()’);

print "Fetching first result set\n";

while ($row = db2_fetch_array($stmt)) {

 // work with row

}

print "\nFetching second result set\n";

$result_2 = db2_next_result($stmt);

if ($result_2) {

 while ($row = db2_fetch_array($result_2)) {

 // work with row

 }

}

print "\nFetching third result set\n";

$result_3 = db2_next_result($stmt);

if ($result_3) {

 while ($row = db2_fetch_array($result_3)) {

 // work with row

 }

}

20 Developing Perl and PHP Applications

Chapter 4. Developing with PDO

Connecting to a DB2 database with PHP (PDO)

You must connect to a DB2 database before you can create, update, delete, or

retrieve data from that data source. The PHP Data Objects (PDO) interface for PHP

enables you to connect to a DB2 database using either a cataloged connection or a

direct TCP/IP connection to the DB2 database management system through the

PDO_IBM extension. You can also create persistent connections to a data source

that improve performance by keeping the connection open between PHP requests

and reusing the connection when a subsequent PHP script requests a connection

with an identical set of credentials.

You must set up the PHP 5.1 or higher environment on your system and enable

the PDO and PDO_IBM extensions.

1. Create a connection to the DB2 database by calling the PDO constructor within

a try{} block. Pass a DSN value that specifies ibm: for the PDO_IBM extension,

followed by either a cataloged database name or a complete database

connection string for a direct TCP/IP connection.

v (Windows): By default, PDO_IBM uses connection pooling to minimize

connection resources and improve connection performance.

v (Linux and UNIX): PDO_IBM offers persistent connections if you pass

array(PDO::ATTR_PERSISTENT => TRUE) as the fourth argument to the PDO

constructor.
2. (Optional): Set error handling options for the PDO connection in the fourth

argument to the PDO constructor:

v by default, PDO sets an error message that can be retrieved through

PDO::errorInfo() and an SQLCODE that can be retrieved through

PDO::errorCode() when any error occurs; to request this mode explicitly, set

PDO::ATTR_ERRMODE => PDO::ERRMODE_SILENT

v to issue a PHP E_WARNING when any error occurs, in addition to setting the

error message and SQLCODE, set PDO::ATTR_ERRMODE =>

PDO::ERRMODE_WARNING

v to throw a PHP exception when any error occurs, set PDO::ATTR_ERRMODE =>

PDO::ERRMODE_EXCEPTION

3. Catch any exception thrown by the try{} block in a corresponding catch {}

block.

try {

 $connection = new PDO("ibm:SAMPLE", "db2inst1", "ibmdb2", array(

 PDO::ATTR_PERSISTENT => TRUE,

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION)

);

}

catch (Exception $e) {

 echo($e->getMessage());

}

When you create a connection through PDO, PHP closes the connection to the

database:

v when you set the PDO object to NULL,

v or when the PHP script finishes.

© Copyright IBM Corp. 2006, 2007 21

Executing SQL statements

Executing a single SQL statement in PHP that returns no

result sets (PDO)

After connecting to a DB2 database, most PHP scripts will execute one or more

SQL statements. The PDO::exec() method executes a single SQL statement that

accepts no input parameters and returns no result set. A typical use of PDO::exec()

is to set the default schema for your application in a common include file or base

class.

You must set up the PHP environment on your system and enable the PDO_IBM

extension.

To avoid the security threat of SQL injection attacks, PDO::exec() should only be

used to execute SQL statements composed of static strings. Interpolation of PHP

variables representing user input into the SQL statement can expose your

application to SQL injection attacks.

To execute a single SQL statement in PHP:

1. Call the PDO::exec() method on the PDO connection object with a string

containing the SQL statement.

2. If the SQL statement inserted, modified, or deleted rows, PDO::exec() returns

an integer value representing the number of rows that were inserted, modified,

or deleted. To determine if PDO::exec() returned FALSE indicating an error

condition or 0 indicating that no rows were inserted, modified, or deleted, you

must use the === operator to strictly test the returned value against FALSE.

$conn = new PDO(’ibm:SAMPLE’, ’db2inst1’, ’ibmdb2’);

$result = $conn->exec(’SET SCHEMA myapp’);

if ($result === FALSE) {

 print "Failed to set schema: " . $conn->errorMsg();

}

Executing a single SQL statement in PHP that returns a result

set (PDO)

After connecting to a DB2 database, most PHP scripts will execute one or more

SQL statements. The PDO::query() method executes a single SQL statement that

accepts no input parameters and returns one or more result sets. A typical use of

PDO::query() is to execute a static SELECT statement.

You must set up the PHP environment on your system and enable the PDO_IBM

extension.

To avoid the security threat of SQL injection attacks, PDO::query() should only be

used to execute SQL statements composed of static strings. Interpolation of PHP

variables representing user input into the SQL statement can expose your

application to SQL injection attacks.

To execute a single SQL statement in PHP that returns a result set:

1. Call the PDO::query() method on the PDO connection object with a string

containing the SQL statement.

2. Check the value returned by PDO::query().

22 Developing Perl and PHP Applications

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the PDO::errorCode() and PDO::errorInfo() methods.

v If the value is not FALSE, the SQL statement succeeded and returned a

PDOStatement resource that can be used in subsequent method calls.

$conn = new PDO(’ibm:SAMPLE’, ’db2inst1’, ’ibmdb2’);

$result = $conn->query(’SELECT firstnme, lastname FROM employee’);

if (!$result) {

 print "<p>Could not retrieve employee list: " . $conn->errorMsg(). "</p>";

}

while ($row = $conn->fetch()) {

 print "<p>Name: {$row[0] $row[1]}</p>";

}

After creating a PDOStatement object with PDO::query(), you can immediately

begin retrieving rows from the object with the PDOStatement::fetch() or

PDOStatement::fetchAll() methods.

Preparing and executing SQL statements (PDO)

Most SQL statements in PHP applications use variable input to determine the

results of the SQL statement. To pass user-supplied input to an SQL statement

safely, prepare a statement using parameter markers (?) or named variables

representing the variable input. When you execute the prepared statement, you

bind input values to the parameter markers. The database engine ensures that each

input value is treated as a single parameter, preventing SQL injection attacks

against your application. Compared to statements issued through PDO::exec(),

prepared statements offer a performance advantage because the database

management system creates an access plan for each prepared statement that it can

reuse if the statement is reissued subsequently.

You must set up the PHP environment on your system and enable the PDO_IBM

extension.

v You can only use parameter markers as a place holder for column or predicate

values. The SQL compiler would be unable to create an access plan for a

statement that used parameter markers in place of column names, table names,

or other SQL identifiers.

v You cannot use both question mark parameter markers (?) and named parameter

markers (:name) in the same SQL statement.

To prepare and execute an SQL statement:

1. Call PDO::prepare() with the following arguments:

a. A string containing the SQL statement including either parameter markers

(?) or named variables (:name) for any column or predicate values that

require variable input

b. (Optional): An array containing statement options

PDO::ATTR_CURSOR

This option sets the type of cursor that PDO returns for result sets.

By default, PDO returns a forward-only cursor

(PDO::CURSOR_FWDONLY) which returns the next row in a result

set for every call to PDOStatement::fetch(). You can set this

parameter to PDO::CURSOR_SCROLL to request a scrollable cursor.
2. Check the value returned by PDO::prepare().

v If the value is FALSE, the SQL statement failed. You can retrieve diagnostic

information through the PDO::errorCode() and PDO::errorInfo() methods.

Chapter 4. Developing with PDO 23

v If the value is not FALSE, the SQL statement succeeded and returned a

PDOStatement object that can be used in subsequent method calls.
3. (Optional): Call PDOStatement::bindParam() for each parameter marker in the

SQL statement with the following arguments:

a. The parameter identifier. For question mark parameter markers (?), this is

an integer representing the 1-indexed position of the parameter in the SQL

statement. For named parameter markers (:name), this is a string

representing the parameter name.

b. The value to use in place of the parameter marker
4. Call PDOStatement::execute(), optionally passing an array containing the

values to use in place of the parameter markers, either in order for question

mark parameter markers, or as a :name => value associative array for named

parameter markers.

$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";

$stmt = $conn->prepare($sql);

if (!$stmt) {

 // Handle errors

}

// Explicitly bind parameters

$stmt->bindParam(1, $_POST[’lower’]);

$stmt->bindParam(2, $_POST[’upper’]);

$stmt->execute($stmt);

// Invoke statement again using dynamically bound parameters

$stmt->execute($stmt, array($_POST[’lower’], $_POST[’upper’]);

If you successfully execute a prepared statement that returns one or more result

sets, you can begin retrieving rows from the statement resource by calling the

PDOStatement::fetch() or PDOStatement::fetchAll() methods.

Inserting large objects in PHP (PDO)

The PDO extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

insert a large object into a database, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. Rather than loading

all of the data for a large object into a PHP string, and then passing that to DB2

through an INSERT statement, you can insert large objects directly from a file on

your PHP server.

You must set up the PHP 5.1 or higher environment on your system and enable

the PDO and PDO_IBM extensions.

To insert a large object into the database directly from a file:

1. Call PDO::prepare() to create a PDOStatement object from an INSERT

statement with a parameter marker representing the large object column.

2. Create a PHP variable representing a stream–for example, the return value from

a call to fopen().

3. Call PDOStatement::bindParam() to bind the parameter marker to the PHP

variable representing the stream of data for the large object. The third

parameter is a string representing the name of the PHP variable that holds the

24 Developing Perl and PHP Applications

name of the file containing the data for the large object. The fourth parameter is

a PHP constant, PDO::PARAM_LOB, which tells the PDO extension to retrieve the

data from a file.

4. Call PDOStatement::execute() to issue the INSERT statement and bind the data

from the file into the database.

$stmt = $conn->prepare("INSERT INTO animal_pictures(picture) VALUES (?)");

$picture = fopen("/opt/albums/spook/grooming.jpg", "rb");

$stmt->bindParam($stmt, 1, $picture, PDO::PARAM_LOB);

$stmt->execute();

Reading query result sets

Fetching columns from result sets in PHP (PDO)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows of each result set. In some cases, you

only need to return a single column from each row in the result set. While you

could rewrite a SELECT statement for that purpose, you might not have the

privileges required to rewrite a stored procedure that returns more columns than

you require.

v You must set up the PHP environment on your system and enable the PDO and

PDO_IBM extensions.

v You must have a statement resource returned from PDO::query() or

PDOStatement::execute() with one or more associated result sets.

If you decide to fetch a column from a row, instead of retrieving all of the columns

in the entire row simultaneously, you can only return a single column from each

row.

v To return a single column from a single row in the result set:

Call the PDOStatement::fetchColumn() method, specifying the column you want

to retrieve as the first argument of the method. Column numbers start at 0. If

you do not specify a column, PDOStatement::fetchColumn() returns the first

column in the row.

v To return an array containing a single column from all of the remaining rows in

the result set:

Call the PDOStatement::fetchAll() method, passing PDO::FETCH_COLUMN as the

first argument, and the column you want to retrieve as the second argument, to

return an array of the values for the selected column from the result set. Column

numbers start at 0. If you do not specify a column,

PDOStatement::fetchAll(PDO::FETCH_COLUMN) returns the first column in the row.

Fetching rows from result sets in PHP (PDO)

When you execute a statement that returns one or more result sets, you usually

need to iterate through the returned rows.

v You must set up the PHP environment on your system and enable the PDO

extension.

v You must have a PDOStatement object returned from PDO::query() or

PDOStatement::execute() with one or more associated result sets.

To return a single row from a result set as an array or object, call the

PDOStatement::fetch() method.

Chapter 4. Developing with PDO 25

To return all of the rows from the result set as an array of arrays or objects, call the

PDOStatement::fetchAll() method.

By default, PDO returns each row as an array indexed by column name and

0-indexed column position in the row. You can request a different return style by

passing one of the following constants as the first parameter of

PDOStatement::fetch():

PDO::FETCH_ASSOC

Returns an array indexed by column name as returned in your result set.

PDO::FETCH_BOTH (default)

Returns an array indexed by both column name and 0-indexed column

number as returned in your result set

PDO::FETCH_BOUND

Returns TRUE and assigns the values of the columns in your result set to

the PHP variables to which they were bound with the

PDOStatement::bindParam() method.

PDO::FETCH_CLASS

Returns a new instance of the requested class, mapping the columns of the

result set to named properties in the class.

PDO::FETCH_INTO

Updates an existing instance of the requested class, mapping the columns

of the result set to named properties in the class.

PDO::FETCH_LAZY

Combines PDO::FETCH_BOTH and PDO::FETCH_OBJ, creating the object

variable names as they are accessed.

PDO::FETCH_NUM

Returns an array indexed by column number as returned in your result set,

starting at column 0.

PDO::FETCH_OBJ

Returns an anonymous object with property names that correspond to the

column names returned in your result set.

(Optional): If you requested a scrollable cursor when you called PDO::query() or

PDOStatement::execute(), you can pass two more arguments to

PDOStatement::fetch():

1. The fetch orientation for this fetch request:

PDO::FETCH_ORI_NEXT (default)

Fetches the next row in the result set.

PDO::FETCH_ORI_PRIOR

Fetches the previous row in the result set.

PDO::FETCH_ORI_FIRST

Fetches the first row in the result set.

PDO::FETCH_ORI_LAST

Fetches the last row in the result set.

PDO::FETCH_ORI_ABS

Fetches the absolute row in the result set. Requires a positive integer as

the third argument to PDOStatement::fetch().

26 Developing Perl and PHP Applications

PDO::FETCH_ORI_REL

Fetches the relative row in the result set. Requires a positive or negative

integer as the third argument to PDOStatement::fetch().
2. An integer requesting the absolute or relative row in the result set,

corresponding to the fetch orientation requested in the second argument to

PDOStatement::fetch().

PDOStatement::fetch() returns FALSE when the last row in the result set has been

retrieved for a forward-only result set.

$stmt = $conn->query("SELECT firstnme, lastname FROM employee");

while ($row = $stmt->fetch(PDO::FETCH_NUM)) {

 print "Name: <p>{$row[0] $row[1]}</p>";

}

Fetching large objects in PHP (PDO)

The PDO extension supports the entire range of DB2 data types, including

character large object (CLOB) and binary large object (BLOB) data types. When you

fetch a large object from a result set, you can treat the large object simply as a PHP

string. However, treating a large object as a PHP string is an approach that

consumes more resources on your PHP server than necessary. If your ultimate goal

is to create a file that contains the data for a large object, you can save system

resources by fetching large objects directly into a file on your PHP server.

You must set up the PHP 5.1 or higher environment on your system and enable

the PDO and PDO_IBM extensions.

To fetch a large object from the database directly into a file:

1. Create a PHP variable representing a stream–for example, the return value from

a call to fopen().

2. Call PDO::prepare() to create a PDOStatement object from an SQL statement.

3. Call PDOStatement::bindColumn() to bind the output column for the large object

to the PHP variable representing the stream. The third parameter is a string

representing the name of the PHP variable that holds the name of the file that

is to contain the data from the large object. The fourth parameter is a PHP

constant, PDO::PARAM_LOB, which tells the PDO extension to write the data into

a file. Note that you must call PDOStatement::bindColumn() to assign a different

PHP variable for every column in the result set.

4. Call PDOStatement::execute() to issue the SQL statement.

5. Call PDOStatement::fetch(PDO::FETCH_BOUND) to retrieve the next row in the

result set, binding the column output into the PHP variables you associated

with the PDOStatement::bindColumn() method.

$stmt = $conn->prepare("SELECT name, picture FROM animal_pictures");

$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");

$stmt->bindColumn($stmt, 1, $nickname, PDO::PARAM_STR, 32);

$stmt->bindColumn($stmt, 2, $picture, PDO::PARAM_LOB);

$stmt->execute();

$stmt->fetch(PDO::FETCH_BOUND);

Chapter 4. Developing with PDO 27

Managing transactions in PHP (PDO)

By default, PDO opens every connection in autocommit mode. Autocommit mode

helps prevent locking escalation issues that can impede the performance of highly

scalable Web applications. In some scripts, however, you might need to roll back a

transaction containing one or more SQL statements. PDO enables you to exert

fine-grained control over your transactions.

You must set up the PHP environment on your system and enable the PDO

extension.

To begin a transaction:

1. Call PDO::beginTransaction() to begin a new transaction.

2. Issue one or more SQL statements within the scope of the database transaction

using the connection resource for which transactions have been enabled.

3. Commit or rollback the transaction:

v To commit the transaction, call PDO::commit().

v To rollback the transaction, call PDO::rollBack().

After you commit or rollback the transaction, PDO automatically resets the

database connection to autocommit mode. If you issue SQL statements in a

transaction and the script ends without explicitly committing or rolling back the

transaction, PDO automatically rolls back any work performed in the transaction.

$conn = new PDO(’ibm:SAMPLE’, ’db2inst1’, ’ibmdb2’, array(

 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION));

 // PDO::ERRMODE_EXCEPTION means an SQL error throws an exception

try {

 // Issue these SQL statements in a transaction within a try{} block

 $conn->beginTransaction();

 // One or more SQL statements

 $conn->commit();

}

catch (Exception $e) {

 // If something raised an exception in our transaction block of statements,

 // roll back any work performed in the transaction

 print ’<p>Unable to complete transaction!</p>’;

 $conn->rollBack();

}

Handling errors and warnings in PHP (PDO)

Problems occasionally happen when you attempt to connect to a database or issue

an SQL statement. The password for your connection might be incorrect, the table

you referred to in a SELECT statement might not exist, or the syntax for an SQL

statement might be invalid. You need to code defensively and use the

error-handling functions offered by PDO to enable your application to recover

gracefully from a problem.

You must set up the PHP environment on your system and enable the PDO and

PDO_IBM extensions.

PDO gives you the option of handling errors as warnings, errors, or exceptions.

However, when you create a new PDO connection object, PDO always throws a

PDOException object if an error occurs. If you do not catch the exception, PHP

28 Developing Perl and PHP Applications

prints a backtrace of the error information which might expose your database

connection credentials, including your user name and password.

v To catch a PDOException object and handle the associated error:

1. Wrap the call to the PDO constructor in a try block.

2. Following the try block, include a catch block that catches the PDOException

object.

3. Retrieve the error message associated with the error by invoking the

Exception::getMessage() method on the PDOException object.
v To retrieve the SQLSTATE associated with a PDO or PDOStatement object, invoke

the errorCode() method on the object.

v To retrieve an array of error information associated with a PDO or PDOStatement

object, invoke the errorInfo() method on the object. The array contains a string

representing the SQLSTATE as the first element, an integer representing the SQL

or CLI error code as the second element, and a string containing the full text

error message as the third element.

Calling stored procedures

Calling stored procedures with OUT or INOUT parameters in

PHP (PDO)

DB2 supports stored procedures with parameters that only accept an input value

(IN parameters), that only return an output value (OUT parameters), or that accept

an input value and return an output value (INOUT). With the PDO_IBM extension

for PHP you can handle IN parameters like any other parameter marker in an SQL

statement. However, the PDO_IBM extension also enables you to CALL stored

procedures with OUT and INOUT parameters and retrieve the output values from

those parameters.

You must set up the PHP environment on your system and enable the PDO and

PDO_IBM extensions.

To call a stored procedure with OUT or INOUT parameters:

1. Call PDO::prepare() to prepare a CALL statement with parameter markers

representing the OUT and INOUT parameters.

2. Call PDOStatement::bindParam() to bind each parameter marker to the name of

the PHP variable that will hold the output value of the parameter after the

CALL statement has been issued. For INOUT parameters, the value of the PHP

variable is passed as the input value of the parameter when the CALL

statement is issued. Set the third parameter for PDOStatement::bindParam() to

the type of data being bound:

PDO::PARAM_NULL

Represents the SQL NULL data type.

PDO::PARAM_INT

Represents SQL integer types.

PDO::PARAM_LOB

Represents SQL large object types.

PDO::PARAM_STR

Represents SQL character data types.

Chapter 4. Developing with PDO 29

3. For an INOUT parameter, use the bitwise OR operator to append

PDO::PARAM_INPUT_OUTPUT to the type of data being bound.

4. Set the fourth parameter of PDOStatement::bindParam() to the maximum

expected length of the output value.

$sql = ’CALL match_animal(?, ?)’;

$stmt = $conn->prepare($sql);

$second_name = "Rickety Ride";

$weight = 0;

$stmt->bindParam(1, $second_name, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 32);

$stmt->bindParam(2, $weight, PDO::PARAM_INT, 10);

print "Values of bound parameters _before_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

$stmt->execute();

print "Values of bound parameters _after_ CALL:\n";

print " 1: {$second_name} 2: {$weight}\n";

Calling stored procedures that return multiple result sets in

PHP (PDO)

DB2 enables you to create and call stored procedures that return more than one

result set. The PDO_IBM extension for PHP supports this capability through the

nextRowset() method. You can use this method to fetch rows from different result

sets returned by a single call to the same stored procedure.

v You must set up the PHP 5.1 or higher environment on your system and enable

the PDO_IBM extension.

v You must have a PDOStatement object returned from calling a stored procedure

with PDO::query() or PDOStatement::execute().

To return multiple result sets from a stored procedure:

1. The first result set is associated with the PDOStatement object returned by the

CALL statement. You can fetch rows from the PDOStatement object until no

more rows are available in the first result set.

2. Call the nextRowset() method of the PDOStatement object to return the next

result set. You can fetch rows from the PDOStatement object until no more

rows are available in the next result set.

$sql = ’CALL multiple_results()’;

$stmt = $conn->query($sql);

do {

 $rows = $stmt->fetchAll(PDO::FETCH_NUM);

 if ($rows) {

 print_r($rows);

 }

} while ($stmt->nextRowset());

30 Developing Perl and PHP Applications

Part 2. Developing Perl Applications

© Copyright IBM Corp. 2006, 2007 31

32 Developing Perl and PHP Applications

Chapter 5. Programming Considerations for Perl

Perl is a popular programming language that is freely available for many operating

systems. Using the DBD::DB2 driver available from http://www.ibm.com/
software/data/db2/perl with the Perl Database Interface DBI) Module available

from http://www.perl.com, you can create DB2 applications using Perl.

Because Perl is an interpreted language and the Perl DBI Module uses dynamic

SQL, Perl is an ideal language for quickly creating and revising prototypes of DB2

applications. The Perl DBI Module uses an interface that is quite similar to the CLI

and JDBC interfaces, which makes it easy for you to port your Perl prototypes to

CLI and JDBC.

Most database vendors provide a database driver for the Perl DBI Module, which

means that you can also use Perl to create applications that access data from many

different database servers. For example, you can write a Perl DB2 application that

connects to an Oracle database using the DBD::Oracle database driver, fetch data

from the Oracle database, and insert the data into a DB2 database using the

DBD::DB2 database driver.

Database Connections in Perl

To enable Perl to load the DBI module, you must include the following line in

your DB2 application:

 use DBI;

The DBI module automatically loads the DBD::DB2 driver when you create a

database handle using the DBI->connect statement with the following syntax:

 my $dbhandle = DBI->connect‘dbi:DB2:dbalias’, $userID, $password);

where:

$dbhandle

represents the database handle returned by the connect statement

dbalias

represents a DB2 alias cataloged in your DB2 database directory

$userID

represents the user ID used to connect to the database

$password

represents the password for the user ID used to connect to the database

Fetching Results in Perl

Because the Perl DBI Module only supports dynamic SQL, you cannot use host

variables in your Perl DB2 applications.

To return results from an SQL query, perform the following steps:

1. Create a database handle by connecting to the database with the DBI->connect

statement.

© IBM Corporation 2006, 2007 33

http://www.ibm.com/software/data/db2/perl/
http://www.ibm.com/software/data/db2/perl/
http://www.perl.com/

2. Create a statement handle from the database handle. For example, you can call

prepare with an SQL statement as a string argument to return statement handle

$sth from the database handle, as demonstrated in the following Perl statement:

 my $sth = $dbhandle->prepare

 ’SELECT firstnme, lastname

 FROM employee ’

);

3. Execute the SQL statement by calling execute on the statement handle. A

successful call to execute associates a result set with the statement handle. For

example, you can execute the statement prepared in the previous example

using the following Perl statement:

 #Note: $rc represents the return code for the execute call

 my $rc = $sth->execute);

4. Fetch a row from the result set associated with the statement handle with a call

to fetchrow). The Perl DBI returns a row as an array with one value per

column. For example, you can return all of the rows from the statement handle

in the previous example using the following Perl statement:

 while $firstnme, $lastname) = $sth->fetchrow))

 print "$firstnme $lastname\n";

 }

Parameter Markers in Perl

To enable you to execute a prepared statement using different input values for

specified fields, the Perl DBI module enables you to prepare and execute a

statement using parameter markers. To include a parameter marker in an SQL

statement, use the question mark ?) character.

The following Perl code creates a statement handle that accepts a parameter

marker for the WHERE clause of a SELECT statement. The code then executes the

statement twice using the input values 25000 and 35000 to replace the parameter

marker.

 my $sth = $dbhandle->prepare

 ’SELECT firstnme, lastname

 FROM employee

 WHERE salary > ?’

);

 my $rc = $sth->execute25000);

 ...
 my $rc = $sth->execute35000);

SQLSTATE and SQLCODE Variables in Perl

To return the SQLSTATE associated with a Perl DBI database handle or statement

handle, call the state method. For example, to return the SQLSTATE associated

with the database handle $dbhandle, include the following Perl statement in your

application:

 my $sqlstate = $dbhandle->state;

To return the SQLCODE associated with a Perl DBI database handle or statement

handle, call the err method. To return the message for an SQLCODE associated

with a Perl DBI database handle or statement handle, call the errstr method. For

example, to return the SQLCODE associated with the database handle $dbhandle,

include the following Perl statement in your application:

 my $sqlcode = $dbhandle->err;

34 Developing Perl and PHP Applications

Perl Restrictions

The Perl DBI module supports only dynamic SQL. When you need to execute a

statement multiple times, you can improve the performance of your Perl DB2

applications by issuing a prepare call to prepare the statement.

Perl does not support multiple-thread database access.

For current information on the restrictions of the version of the DBD::DB2 driver

that you install on your workstation, refer to the CAVEATS file in the DBD::DB2

driver package.

Example of a Perl Program

Following is an example of an application written in Perl:

 #!/usr/bin/perl

 use DBI;

 my $database=’dbi:DB2:sample’;

 my $user=’’;

 my $password=’’;

 my $dbh = DBI->connect$database, $user, $password)

 or die "Can’t connect to $database: $DBI::errstr";

 my $sth = $dbh->prepare

 q SELECT firstnme, lastname

 FROM employee }

)

 or die "Can’t prepare statement: $DBI::errstr";

 my $rc = $sth->execute

 or die "Can’t execute statement: $DBI::errstr";

 print "Query will return $sth->NUM_OF_FIELDS} fields.\n\n";

 print "$sth->NAME}->0]: $sth->NAME}->1]\n";

 while $firstnme, $lastname) = $sth->fetchrow))

 print "$firstnme: $lastname\n";

 }

 # check for problems which may have terminated the fetch early

 warn $DBI::errstr if $DBI::err;

 $sth->finish;

 $dbh->disconnect;

Building Perl applications

DB2 supports database access for client applications written in Perl 5.8 or later. At

the time of printing, release 1.0 of the DB2 driver (DBD::DB2) for the Perl Database

Interface (Perl DBI) Version 1.41 or later is supported and available for AIX,

HP-UX, Linux, Solaris and Windows. For information on how to obtain the latest

driver, visit http://www.ibm.com/db2/perl.

DB2 provides Perl sample programs located on UNIX in the sqllib/samples/perl

directory, and on Windows in the sqllib\samples\perl directory.

To run the perl interpreter on a Perl program on the command line, enter the

interpreter name and the program name (including extension):

Chapter 5. Perl 35

http://www.ibm.com/software/data/db2/perl/

1. If connecting locally on the server:

 perl dbauth.pl

2. If connecting from a remote client:

 perl dbauth.pl sample <userid> <password>

Some programs require support files to be run. The tbsel sample program requires

several tables created by the tbselcreate.db2 CLP script. The tbselinit script

(UNIX), or the tbselinit.bat batch file (Windows), first calls tbseldrop.db2 to

drop the tables if they exist, and then calls tbselcreate.db2 to create them. So to

run the program, you would enter the following commands:

1. If connecting locally on the server:

 tbselinit

 perl tbsel.pl

2. If connecting from a remote client:

 tbselinit

 perl tbsel.pl sample <userid> <password>

Note: For a remote client, you need to modify the connect statement in the

tbselinit or tbselinit.bat file to hardcode your user ID and password: db2

connect to sample user <userid> using <password>

36 Developing Perl and PHP Applications

Part 3. Appendixes

© Copyright IBM Corp. 2006, 2007 37

38 Developing Perl and PHP Applications

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2007 39

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 1. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-00 Yes

Administrative Routines and

Views

SC23-5843-00 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-00 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-00 Yes

Command Reference SC23-5846-00 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-00 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-00 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-00 Yes

Database Security Guide SC23-5850-00 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-00 Yes

Developing Embedded SQL

Applications

SC23-5852-00 Yes

Developing Java Applications SC23-5853-00 Yes

Developing Perl and PHP

Applications

SC23-5854-00 No

Developing User-defined Routines

(SQL and External)

SC23-5855-00 Yes

Getting Started with Database

Application Development

GC23-5856-00 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-00 Yes

Internationalization Guide SC23-5858-00 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-00 Yes

Net Search Extender

Administration and User’s Guide

Note: The content of this

document is not included in

the DB2 Information Center

SC23-8509-00 Yes

Partitioning and Clustering Guide SC23-5860-00 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-00 No

Quick Beginnings for DB2

Servers

GC23-5864-00 Yes

40 Developing Perl and PHP Applications

Table 1. DB2 technical information (continued)

Name Form Number Available in print

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-00 Yes

SQL Reference, Volume 1 SC23-5861-00 Yes

SQL Reference, Volume 2 SC23-5862-00 Yes

System Monitor Guide and

Reference

SC23-5865-00 Yes

Text Search Guide SC23-5866-00 Yes

Troubleshooting Guide GI11-7857-00 No

Tuning Database Performance SC23-5867-00 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-00 Yes

Workload Manager Guide and

Reference

SC23-5870-00 Yes

pureXML Guide SC23-5871-00 Yes

XQuery Reference SC23-5872-00 No

 Table 2. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-00 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-00 Yes

DB2 Connect User’s Guide SC23-5841-00 Yes

 Table 3. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix A. Overview of the DB2 technical information 41

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 39.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

42 Developing Perl and PHP Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix A. Overview of the DB2 technical information 43

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can download and

install updates that IBM might make available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to download and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to download the

packages. However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

44 Developing Perl and PHP Applications

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix A. Overview of the DB2 technical information 45

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

46 Developing Perl and PHP Applications

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 47

48 Developing Perl and PHP Applications

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2007 49

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

50 Developing Perl and PHP Applications

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9.5 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel®, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon®, Intel SpeedStep®, Itanium® and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Java™ and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 51

http://www.ibm.com/legal/copytrade.shtml

52 Developing Perl and PHP Applications

Index

A
application design

Perl example 35

prototyping in Perl 33

application development
Perl

building applications 35

D
databases

connecting with Perl 33

DB2 Information Center
updating 44

versions 43

viewing in different languages 43

documentation
PDF or printed 39

terms and conditions of use 46

documentation overview 39

dynamic SQL
Perl support 33

E
error handling

Perl 34

examples
Perl program 35

H
help

displaying 43

for SQL statements 42

host variables
unsupported in Perl 33

I
Information Center

updating 44

versions 43

viewing in different languages 43

N
notices 49

O
ordering DB2 books 42

P
parameter markers

Perl 34

Perl
application example 35

building applications 35

connecting to database 33

drivers 33

parameter markers 34

programming considerations 33

restrictions 35

returning data 33

SQLCODEs 34

SQLSTATEs 34

PHP 3

ibm_db2
Connecting to database 9

Errors and warnings 18

Executing SQL statements 12

Fetching large objects 16

Fetching result columns 15

Fetching result rows 16

Inserting large objects 14

Preparing SQL statements 13

Retrieving database metadata 9

Stored procedure parameters 19

Stored procedure results 20

Transactions 17

XQuery expressions 11

Introduction 3

pdo_ibm
Connecting to database 21

Errors and warnings 28

Executing SQL with no result 22

Executing SQL with result 22

Fetching large objects 27

Fetching result columns 25

Fetching result rows 25

Inserting large objects 24

Preparing SQL statements 23

Stored procedure parameters 29

Stored procedure results 30

Transactions 28

Setup
Linux 5

Windows 5

printed books
ordering 42

problem determination
online information 46

tutorials 46

R
retrieving data

Perl 33

S
SQL statements

displaying help 42

static SQL
Perl, unsupported 35

© Copyright IBM Corp. 2006, 2007 53

T
terms and conditions

use of publications 46

troubleshooting
online information 46

tutorials 46

tutorials
troubleshooting and problem determination 46

Visual Explain 45

U
updates

DB2 Information Center 44

Information Center 44

V
Visual Explain

tutorial 45

54 Developing Perl and PHP Applications

����

Printed in USA

SC23-5854-00

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

De
ve

lo
pi

ng

Pe

rl
an

d
PH

P
Ap

pl
ic

at
io

ns

�
�

�

	Contents
	Part 1. Developing PHP applications
	Chapter 1. Introduction to PHP application development for DB2
	Chapter 2. Setting up the PHP environment
	Setting up the PHP environment on Windows
	Setting up the PHP environment on Linux or UNIX

	Chapter 3. Developing with ibm_db2
	Connecting to a DB2 database with PHP (ibm_db2)
	Retrieving database metadata (ibm_db2)
	Executing XQuery expressions in PHP (ibm_db2)
	Executing SQL statements
	Executing a single SQL statement in PHP (ibm_db2)
	Preparing and executing SQL statements in PHP (ibm_db2)
	Inserting large objects in PHP (ibm_db2)

	Reading query result sets
	Fetching columns from result sets in PHP (ibm_db2)
	Fetching rows from result sets in PHP (ibm_db2)
	Fetching large objects in PHP (ibm_db2)

	Managing transactions in PHP (ibm_db2)
	Handling errors and warning messages (ibm_db2)
	Calling stored procedures
	Calling stored procedures with OUT or INOUT parameters in PHP (ibm_db2)
	Calling stored procedures that return multiple result sets in PHP (ibm_db2)

	Chapter 4. Developing with PDO
	Connecting to a DB2 database with PHP (PDO)
	Executing SQL statements
	Executing a single SQL statement in PHP that returns no result sets (PDO)
	Executing a single SQL statement in PHP that returns a result set (PDO)
	Preparing and executing SQL statements (PDO)
	Inserting large objects in PHP (PDO)

	Reading query result sets
	Fetching columns from result sets in PHP (PDO)
	Fetching rows from result sets in PHP (PDO)
	Fetching large objects in PHP (PDO)

	Managing transactions in PHP (PDO)
	Handling errors and warnings in PHP (PDO)
	Calling stored procedures
	Calling stored procedures with OUT or INOUT parameters in PHP (PDO)
	Calling stored procedures that return multiple result sets in PHP (PDO)

	Part 2. Developing Perl Applications
	Chapter 5. Programming Considerations for Perl
	Database Connections in Perl
	Fetching Results in Perl
	Parameter Markers in Perl
	SQLSTATE and SQLCODE Variables in Perl
	Perl Restrictions
	Example of a Perl Program
	Building Perl applications

	Part 3. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

