
DB2 Version 9.5

for Linux, UNIX, and Windows

Developing ADO.NET and OLE DB Applications
Updated March, 2008

SC23-5851-01

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Developing ADO.NET and OLE DB Applications
Updated March, 2008

SC23-5851-01

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 165.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2008. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. ADO.NET application

development 1

Deploying .NET applications (Windows) 2

Supported .NET development software 2

DB2 integration in Visual Studio 3

Chapter 2. External routines 5

Overview of external routines 5

Benefits of using routines 5

External routine features 7

External function and method features 7

Supported APIs and programming languages for

external routine development 17

External routine creation 23

External routine parameter styles 24

External routine library and class management 27

32-bit and 64-bit support for external routines . . 30

Performance of routines with 32-bit libraries on

64-bit database servers 31

XML data type support in external routines . . 31

Restrictions on external routines 32

Writing routines 34

Creating external routines 35

Chapter 3. .NET common language

runtime (CLR) routines 39

Support for external routine development in .NET

CLR languages 39

Tools for developing .NET CLR routines 40

Designing .NET CLR routines 40

SQL data type representation in .NET CLR

routines 41

Parameters in .NET CLR routines 43

Returning result sets from .NET CLR procedures 45

Security and execution modes for CLR routines 46

Restrictions on .NET CLR routines 47

Creating .NET CLR routines 49

Creating .NET CLR routines from DB2 Command

Window 49

Building .NET CLR routine code 51

Building .NET common language runtime (CLR)

routine code using sample build scripts 52

Building .NET common language runtime (CLR)

routine code from DB2 Command Window . . . 53

CLR .NET routine compile and link options . . 55

Debugging .NET CLR routines 56

Errors related to .NET CLR routines 57

Examples of .NET CLR routines 59

Examples of C# .NET CLR procedures 60

Examples of Visual Basic .NET CLR functions . . 71

Examples of Visual Basic .NET CLR procedures 76

Example: XML and XQuery support in C# .NET

CLR procedure 86

Example: XML and XQuery support in C

procedure 90

Examples of C# .NET CLR functions 94

Chapter 4. IBM Data Server Provider

for .NET 101

IBM Data Server Provider for .NET database

system requirements 101

32-bit and 64-bit support for ADO.NET

applications 102

Programming applications to use the IBM Data

Server Provider for .NET 103

Generic coding with the ADO.NET common

base classes 103

Connecting to a database from an application

using the IBM Data Server Provider for .NET . 103

Connection pooling with the IBM Data Server

Provider for .NET 104

Creating a trusted connection through IBM Data

Server Provider for .NET 104

SQL data type representation in ADO.NET

database applications 106

Executing SQL statements from an application

using the IBM Data Server Provider for .NET . 107

Reading result sets from an application using

the IBM Data Server Provider for .NET 109

Calling stored procedures from an application

using the IBM Data Server Provider for .NET . 109

Building .NET applications 111

Building Visual Basic .NET applications . . . 111

Building C# .NET applications 111

Visual Basic .NET application compile and link

options 112

C# .NET application compile and link options 113

Chapter 5. IBM OLE DB Provider for

DB2 115

Application Types Supported by the IBM OLE DB

Provider for DB2 115

OLE DB services 116

Thread model supported by the IBM OLE DB

Provider 116

Large object manipulation with the IBM OLE

DB Provider 116

Schema rowsets supported by the IBM OLE DB

Provider 116

OLE DB services automatically enabled by the

IBM OLE DB Provider 118

Data services 119

Supported cursor modes for the IBM OLE DB

Provider 119

Data type mappings between DB2 and OLE DB 119

Data conversion for setting data from OLE DB

Types to DB2 Types 120

Data conversion for setting data from DB2 types

to OLE DB types 123

IBM OLE DB Provider restrictions 126

© Copyright IBM Corp. 2006, 2008 iii

IBM OLE DB Provider support for OLE DB

components and interfaces 127

IBM OLE DB Provider support for OLE DB

properties 129

Connections to data sources using the IBM OLE

DB Provider 134

ADO applications 134

ADO connection string keywords 134

Connections to data sources with Visual Basic

ADO applications 135

Updatable scrollable cursors in ADO

applications 135

Limitations for ADO applications 135

IBM OLE DB Provider support for ADO

methods and properties 135

Compilation and linking of C/C++ applications

and the IBM OLE DB Provider 141

Connections to data sources in C/C++

applications using the IBM OLE DB Provider . . 141

COM+ distributed transaction support and the IBM

OLE DB Provider 141

Enablement of COM+ support in C/C++

database applications 142

Chapter 6. OLE DB .NET Data

Provider 143

OLE DB .NET Data Provider restrictions 143

Hints and tips 146

Connection pooling in OLE DB .NET Data

Provider applications 146

Time columns in OLE DB .NET Data Provider

applications 147

ADORecordset objects in OLE DB .NET Data

Provider applications 148

Chapter 7. ODBC .NET Data Provider 149

ODBC .NET Data Provider restrictions 149

Appendix A. Overview of the DB2

technical information 155

DB2 technical library in hardcopy or PDF format 155

Ordering printed DB2 books 158

Displaying SQL state help from the command line

processor 158

Accessing different versions of the DB2

Information Center 159

Displaying topics in your preferred language in the

DB2 Information Center 159

Updating the DB2 Information Center installed on

your computer or intranet server 160

DB2 tutorials 161

DB2 troubleshooting information 162

Terms and Conditions 162

Appendix B. Notices 165

Index 169

iv Developing ADO.NET and OLE DB Applications

Chapter 1. ADO.NET application development

In recent years, Microsoft® has been promoting a new software development

platform for Windows®, known as the .NET Framework. The .NET Framework is

Microsoft’s replacement for Component Object Model (COM) technology. The

following points highlight the key .NET Framework features:

v You can code .NET applications in over forty different programming languages.

The most popular languages for .NET development are C# and Visual Basic

.NET.

v The .NET Framework class library provides the building blocks with which you

build .NET applications. This class library is language agnostic and provides

interfaces to operating system and application services.

v Your .NET application (regardless of language) compiles into Intermediate

Language (IL), a type of bytecode.

v The Common Language Runtime (CLR) is the heart of the .NET Framework,

compiling the IL code on the fly, and then running it. In running the compiled

IL code, the CLR activates objects, verifies their security clearance, allocates their

memory, executes them, and cleans up their memory once execution is finished.

Through these features, the .NET Framework facilitates a wide variety of

application implementations (for instance, Windows forms, web forms, and web

services), rapid application development, and secure application deployment. COM

and COM+ proved to be inadequate or cumbersome for all the aforementioned

features.

The .NET Framework provides extensive data access support through ADO.NET.

ADO.NET supports both connected and disconnected access. The key component

of disconnected data access in ADO.NET is the DataSet class, instances of which

act as a database cache that resides in your application’s memory.

For both connected and disconnected access, your applications use databases

through what’s known as a data provider. Various database products include their

own .NET data providers for, including DB2® for Windows.

A .NET data provider features implementations of the following basic classes:

v Connection: Establishes and manages a database connection.

v Command: Executes an SQL statement against a database.

v DataReader: Reads and returns result set data from a database.

v DataAdapter: Links a DataSet instance to a database. Through a DataAdapter

instance, the DataSet can read and write database table data.

Microsoft provides two data providers, the OLE DB .NET Data Provider and

ODBC .NET Data Provider. The OLE DB .NET Data Provider is a bridge provider

that feeds ADO.NET requests to the IBM OLE DB Provider (by way of the COM

interop module). ODBC .NET Data Provider is a bridge provider that feeds

ADO.NET requests to the IBM ODBC Driver. These .NET data provider are not

recommended for access to DB2 family databases. The IBM Data Server Provider

for .NET is a high performance, managed ADO.NET data provider. This is the

recommended .NET data provider for use with DB2 family databases. ADO.NET

© Copyright IBM Corp. 2006, 2008 1

database access using the IBM Data Server Provider for .NET has fewer

restrictions, and provides significantly better performance than the OLE DB and

ODBC .NET bridge providers.

Deploying .NET applications (Windows)

To simplify .NET application deployment, IBM® provides the IBM Data Server

Driver for ODBC, CLI, and .NET, a small-footprint client that is ideal for use in

mass deployment scenarios. You can use the IBM Data Server Runtime Client

instead, if the additional features of that client are desired over the IBM Data

Server Driver for ODBC, CLI and .NET.

Prerequisites

v Before deployment, you must build your .NET application, which you

can do with either Visual Studio or the command line. For more

information about building .NET applications, see the related tasks.

v Computers that you use to build .NET applications and computers

where you will deploy .NET applications must have a supported version

of the Windows operating system, in addition to other software, as

described in “Supported .NET development software”:

– Build systems

- Windows operating system

- Visual Studio

- .NET Framework Redistributable Package

- .NET Framework Software Development Kit
– Deployment systems

- Windows operating system

- .NET Framework Redistributable Package

To deploy a .NET application:

1. Install the IBM Data Server Driver for ODBC, CLI, and .NET onto the

computers where you will deploy your application. During the installation, set

the IBM Data Server Driver for ODBC, CLI, and .NET installation to be the

default database client interface copy.

Note: Any existing database applications that run against an IBM data server

will use this new installation of the IBM Data Server Driver for ODBC, CLI,

and .NET. Test those applications against the new driver before rolling out your

deployed .NET application.

2. Install your built application onto the computers where your application will

run.

Supported .NET development software

To develop and deploy .NET applications that run against IBM data servers, you

will need to use supported development software and operating systems.

Supported operating systems for developing and deploying .NET

Framework 1.1 applications

v Windows 2000

v Windows XP (32-bit edition)

v Windows Server 2003 (32-bit edition)

2 Developing ADO.NET and OLE DB Applications

v Windows Vista (32-bit editions)

Supported operating systems for developing and deploying .NET

Framework 2.0 and 3.0 applications

v Windows 2000, Service Pack 3

v Windows XP, Service Pack 2 (32-bit and 64-bit editions)

v Windows Server 2003 (32-bit and 64-bit editions)

v Windows Vista (32-bit and 64-bit editions)

Supported development software for .NET Framework

applications

In addition to a DB2 client, you will need one of the following options to develop

.NET Framework applications.

v Visual Studio 2003 (for .NET Framework 1.1 applications)

v Visual Studio 2005 (for .NET Framework 2.0 and 3.0 applications)

Supported deployment software for .NET Framework applications

In addition to a DB2 runtime client , you will need one of the following three

options to deploy .NET Framework applications. In most cases one of these are

included with a Windows installation.

v .NET Framework Version 1.1 Redistributable Package (for .NET Framework 1.1

applications)

v .NET Framework Version 2.0 Redistributable Package (for .NET Framework 2.0

applications)

v .NET Framework Version 3.0 Redistributable Package (for .NET Framework 3.0

applications)

DB2 integration in Visual Studio

The IBM Database Add-Ins for Visual Studio 2003 and 2005 are a collection of

features that integrate seamlessly into your Visual Studio development

environment so that you can work with DB2 servers and develop DB2 procedures,

functions, and objects.

IBM Database Add-Ins for Visual Studio 2003 and 2005 are designed to present a

simple interface to DB2 databases. For example, instead of using SQL, the creation

of database objects can be done using wizards. And for situations where you do

need to write SQL code, the integrated DB2 SQL editor has the following features:

v Colored SQL text for increased readability

v Integration with the Microsoft Visual Studio IntelliSense feature, which provides

for intelligent auto-completion while you are typing DB2 scripts

With IBM Database Add-Ins for Visual Studio, you can:

v Open various DB2 development and administration tools

v Create and manage DB2 projects in the Solution Explorer

v Access and manage DB2 data connections (in Visual Studio 2005 you can do this

from the Server Explorer; in Visual Studio 2003, you can do this from the IBM

Explorer)

v Create and modify DB2 scripts, including scripts to create stored procedures,

functions, tables, views, indexes, and triggers

Chapter 1. ADO.NET 3

Following are the means by which IBM Database Add-Ins for Visual Studio can be

installed on your computer.

Visual Studio 2003

The IBM Database Add-Ins for Visual Studio 2003 are included with the

DB2 Client and the DB2 servers. The DB2 installation detects the presence

of Visual Studio 2003, and if it is installed, the add-ins are registered. If

you install Visual Studio 2003 after you install a DB2 product, run the

″Register Visual Studio Add-Ins″ utility from the DB2 instance’s start

menu.

Visual Studio 2005

The IBM Database Add-Ins for Visual Studio 2005 are included as a

separately installable component with the DB2 Client and the DB2 servers.

Once you are finished installing your DB2 product, you will be presented

with an option to install the IBM Database Add-Ins for Visual Studio 2005.

If you do not have Visual Studio 2005 installed on your computer, the

add-ins will not install. Once you install Visual Studio 2005, you can then

install the add-ins at any time from the DB2 product’s setup menu.

4 Developing ADO.NET and OLE DB Applications

Chapter 2. External routines

External routines are routines that have their logic implemented in a programming

language application that resides outside of the database, in the file system of the

database server. The association of the routine with the external code application is

asserted by the specification of the EXTERNAL clause in the CREATE statement of

the routine.

You can create external procedures, external functions, and external methods.

Although they are all implemented in external programming languages, each

routine functional type has different features. Before deciding to implement an

external routine, it is important that you first understand what external routines

are, and how they are implemented and used, by reading the topic, ″Overview of

external routines″. With that knowledge you can then learn more about external

routines from the topics targeted by the related links so that you can make

informed decisions about when and how to use them in your database

environment.

Overview of external routines

External routines are characterized primarily by the fact that their routine logic is

implemented in programming language code and not in SQL.

Before deciding to implement an external routine, it is important that you

understand what external routines are, how they are implemented, and how they

can be used. The following concept topics will help you get an understanding of

external routines so that you can make informed decisions about when and how to

use them in your database environment:

v “External routine features” on page 7

v “External routine creation” on page 23

v “External routine library and class management” on page 27

v “Supported APIs and programming languages for external routine development”

on page 17

v “32-bit and 64-bit support for external routines” on page 30

v “External routine parameter styles” on page 24

v “Restrictions on external routines” on page 32

Once you have an understanding of external routine concepts you might want to

refer to:

v “Creating external routines” on page 35

Benefits of using routines

The following benefits can be gained by using routines:

Encapsulate application logic that can be invoked from an SQL interface

In an environment containing many different client applications that have

common requirements, the effective use of routines can simplify code

reuse, code standardization, and code maintenance. If a particular aspect of

common application behavior needs to be changed in an environment

© Copyright IBM Corp. 2006, 2008 5

where routines are used, only the affected routine that encapsulates the

behavior requires modification. Without routines, application logic changes

are required in each application.

Enable controlled access to other database objects

Routines can be used to control access to database objects. A user might

not have permission to generally issue a particular SQL statement, such as

CREATE TABLE; however the user can be given permission to invoke

routines that contain one or more specific implementations of the

statement, thus simplifying privilege management through encapsulation

of privileges.

Improve application performance by reducing network traffic

When applications run on a client computer, each SQL statement is sent

separately from the client computer to the database server computer to be

executed and each result set is returned separately. This can result in high

levels of network traffic. If a piece of work can be identified that requires

extensive database interaction and little user interaction, it makes sense to

install this piece of work on the server to minimize the quantity of

network traffic and to allow the work to be done on the more powerful

database servers.

Allow for faster, more efficient SQL execution

Because routines are database objects, they are more efficient at

transmitting SQL requests and data than client applications. Therefore, SQL

statements executed within routines can perform better than if executed in

client applications. Routines that are created with the NOT FENCED clause

run in the same process as the database manager, and can therefore use

shared memory for communication, which can result in improved

application performance.

Allow the interoperability of logic implemented in different programming

languages

Because code modules might be implemented by different programmers in

different programming languages, and because it is generally desirable to

reuse code when possible, DB2 routines support a high degree of

interoperability.

v Client applications in one programming language can invoke routines

that are implemented in a different programming language. For example

C client applications can invoke .NET common language runtime

routines.

v Routines can invoke other routines regardless of the routine type or

routine implementation. For example a Java™ procedure can invoke an

embedded SQL scalar function.

v Routines created in a database server on one operating system can be

invoked from a DB2 client running on a different operating system.

The benefits described above are just some of the many benefits of using routines.

Using routines can be beneficial to a variety of users including database

administrators, database architects, and database application developers. For this

reason there are many useful applications of routines that you might want to

explore.

There are various kinds of routines that address particular functional needs and

various routine implementations. The choice of routine type and implementation

can impact the degree to which the above benefits are exhibited. In general,

6 Developing ADO.NET and OLE DB Applications

routines are a powerful way of encapsulating logic so that you can extend your

SQL, and improve the structure, maintenance, and potentially the performance of

your applications.

External routine features

External routines provide support for most of the common routine features as well

as support for additional features not supported by SQL routines. The following

features are unique to external routines:

Access to files, data, and applications residing outside of the database

External routines can access and manipulate data or files that reside

outside of the database itself. They can also invoke applications that reside

outside of the database. The data, files, or applications might, for example,

reside in the database server file system or within the available network.

Variety of external routine parameter style options

The implementation of external routines in a programming language can

be done using a choice of parameter styles. Although there might be a

preferred parameter style for a chosen programming language, there is

sometimes choice. Some parameter styles provide support for the passing

of additional database and routine property information to and from the

routine in a structure named dbinfo structure that might be useful within

the routine logic.

Preservation of state between external function invocations with a scratchpad

External user-defined functions provide support for state preservation

between function invocations for a set of values. This is done with a

structure called a scratchpad. This can be useful both for functions that

return aggregated values and for functions that require initial setup logic

such as initialization of buffers.

Call-types identify individual external function invocations

External user-defined functions are invoked multiple times for a set of

values. Each invocation is identified with a call-type value that can be

referenced within the function logic. For example there are special

call-types for the first invocation of a function, for data fetching calls, and

for the final invocation. Call-types are useful, because specific logic can be

associated with a particular call-type.

External function and method features

External functions and external methods provide support for functions that, for a

given set of input data, might be invoked multiple times and produce a set of

output values.

To learn more about the features of external functions and methods, see the

following topics:

v “External scalar functions” on page 8

v “External scalar function and method processing model” on page 9

v “External table functions” on page 10

v “External table function processing model” on page 10

v “Table function execution model for Java” on page 12

v “Scratchpads for external functions and methods” on page 13

v “Scratchpads on 32-bit and 64-bit operating systems” on page 16

Chapter 2. Developing external routines 7

These features are unique to external functions and methods and do not apply to

SQL functions and SQL methods.

External scalar functions

External scalar functions are scalar functions that have their logic implemented in

an external programming language.

These functions can be developed and used to extend the set of existing SQL

functions and can be invoked in the same manner as DB2 built-in functions such

as LENGTH and COUNT. That is, they can be referenced in SQL statements

wherever an expression is valid.

The execution of external scalar function logic takes place on the DB2 database

server, however unlike built-in or user-defined SQL scalar functions, the logic of

external functions can access the database server filesystem, perform system calls

or access a network.

External scalar functions can read SQL data, but cannot modify SQL data.

External scalar functions can be repeatedly invoked for a single reference of the

function and can maintain state between these invocations by using a scratchpad,

which is a memory buffer. This can be powerful if a function requires some initial,

but expensive, setup logic. The setup logic can be done on a first invocation using

the scratchpad to store some values that can be accessed or updated in subsequent

invocations of the scalar function.

Features of external scalar functions

v Can be referenced as part of an SQL statement anywhere an expression

is supported.

v The output of a scalar function can be used directly by the invoking SQL

statement.

v For external scalar user-defined functions, state can be maintained

between the iterative invocations of the function by using a scratchpad.

v Can provide a performance advantage when used in predicates, because

they are executed at the server. If a function can be applied to a

candidate row at the server, it can often eliminate the row from

consideration before transmitting it to the client machine, reducing the

amount of data that must be passed from server to client.

Limitations

v Cannot do transaction management within a scalar function. That is, you

cannot issue a COMMIT or a ROLLBACK within a scalar function.

v Cannot return result sets.

v Scalar functions are intended to return a single scalar value per set of

inputs.

v External scalar functions are not intended to be used for a single

invocation. They are designed such that for a single reference to the

function and a given set of inputs, that the function be invoked once per

input, and return a single scalar value. On the first invocation, scalar

functions can be designed to do some setup work, or store some

information that can be accessed in subsequent invocations. SQL scalar

functions are better suited to functionality that requires a single

invocation.

v

8 Developing ADO.NET and OLE DB Applications

In a single partition database external scalar functions can contain SQL

statements. These statements can read data from tables, but cannot

modify data in tables. If the database has more than one partition then

there must be no SQL statements in an external scalar function. SQL

scalar functions can contain SQL statements that read or modify data.

Common uses

v Extend the set of DB2 built-in functions.

v Perform logic inside an SQL statement that SQL cannot natively

perform.

v Encapsulate a scalar query that is commonly reused as a subquery in

SQL statements. For example, given a postal code, search a table for the

city where the postal code is found.

Supported languages

v C

v C++

v Java

v OLE

v .NET common language runtime languages

Note:

1. There is a limited capability for creating aggregate functions. Also known as

column functions, these functions receive a set of like values (a column of data)

and return a single answer. A user-defined aggregate function can only be

created if it is sourced upon a built-in aggregate function. For example, if a

distinct type SHOESIZE exists that is defined with base type INTEGER, you

could define a function, AVG(SHOESIZE), as an aggregate function sourced on the

existing built-in aggregate function, AVG(INTEGER).

2. You can also create function that return a row. These are known as row

functions and can only be used as a transform function for structured types.

The output of a row function is a single row.

External scalar function and method processing model

The processing model for methods and scalar UDFs that are defined with the

FINAL CALL specification is as follows:

FIRST call

This is a special case of the NORMAL call, identified as FIRST to enable

the function to perform any initial processing. Arguments are evaluated

and passed to the function. Normally, the function will return a value on

this call, but it can return an error, in which case no NORMAL or FINAL

call is made. If an error is returned on a FIRST call, the method or UDF

must clean up before returning, because no FINAL call will be made.

NORMAL call

These are the second through second-last calls to the function, as dictated

by the data and the logic of the statement. The function is expected to

return a value with each NORMAL call after arguments are evaluated and

passed. If NORMAL call returns an error, no further NORMAL calls are

made, but the FINAL call is made.

FINAL call

This is a special call, made at end-of-statement processing (or CLOSE of a

cursor), provided that the FIRST call succeeded. No argument values are

Chapter 2. Developing external routines 9

passed on a FINAL call. This call is made so that the function can clean up

any resources. The function does not return a value on this call, but can

return an error.

For methods or scalar UDFs not defined with FINAL CALL, only NORMAL calls

are made to the function, which normally returns a value for each call. If a

NORMAL call returns an error, or if the statement encounters another error, no

more calls are made to the function.

Note: This model describes the ordinary error processing for methods and scalar

UDFs. In the event of a system failure or communication problem, a call indicated

by the error processing model cannot be made. For example, for a FENCED UDF,

if the db2udf fenced process is somehow prematurely terminated, DB2 cannot make

the indicated calls.

External table functions

A user-defined table function delivers a table to the SQL in which it is referenced.

A table UDF reference is only valid in a FROM clause of a SELECT statement.

When using table functions, observe the following:

v Even though a table function delivers a table, the physical interface between

DB2 and the UDF is one-row-at-a-time. There are five types of calls made to a

table function: OPEN, FETCH, CLOSE, FIRST, and FINAL. The existence of

FIRST and FINAL calls depends on how you define the UDF. The same call-type

mechanism that can be used for scalar functions is used to distinguish these

calls.

v Not every result column defined in the RETURNS clause of the CREATE

FUNCTION statement for the table function has to be returned. The DBINFO

keyword of CREATE FUNCTION, and corresponding dbinfo argument enable the

optimization that only those columns needed for a particular table function

reference need be returned.

v The individual column values returned conform in format to the values returned

by scalar functions.

v The CREATE FUNCTION statement for a table function has a CARDINALITY

specification. This specification enables the definer to inform the DB2 optimizer

of the approximate size of the result so that the optimizer can make better

decisions when the function is referenced.

Regardless of what has been specified as the CARDINALITY of a table function,

exercise caution against writing a function with infinite cardinality, that is, a

function that always returns a row on a FETCH call. There are many situations

where DB2 expects the end-of-table condition, as a catalyst within its query

processing. Using GROUP BY or ORDER BY are examples where this is the case.

DB2 cannot form the groups for aggregation until end-of-table is reached, and it

cannot sort until it has all the data. So a table function that never returns the

end-of-table condition (SQL-state value ’02000’) can cause an infinite processing

loop if you use it with a GROUP BY or ORDER BY clause.

External table function processing model

The processing model for table UDFs that are defined with the FINAL CALL

specification is as follows:

FIRST call

This call is made before the first OPEN call, and its purpose is to enable

the function to perform any initial processing. The scratchpad is cleared

10 Developing ADO.NET and OLE DB Applications

prior to this call. Arguments are evaluated and passed to the function. The

function does not return a row. If the function returns an error, no further

calls are made to the function.

OPEN call

This call is made to enable the function to perform special OPEN

processing specific to the scan. The scratchpad (if present) is not cleared

prior to the call. Arguments are evaluated and passed. The function does

not return a row on an OPEN call. If the function returns an error from the

OPEN call, no FETCH or CLOSE call is made, but the FINAL call will still

be made at end of statement.

FETCH call

FETCH calls continue to be made until the function returns the SQLSTATE

value signifying end-of-table. It is on these calls that the UDF develops and

returns a row of data. Argument values can be passed to the function, but

they are pointing to the same values that were passed on OPEN. Therefore,

the argument values might not be current and should not be relied upon.

If you do need to maintain current values between the invocations of a

table function, use a scratchpad. The function can return an error on a

FETCH call, and the CLOSE call will still be made.

CLOSE call

This call is made at the conclusion of the scan or statement, provided that

the OPEN call succeeded. Any argument values will not be current. The

function can return an error.

FINAL call

The FINAL call is made at the end of the statement, provided that the

FIRST call succeeded. This call is made so that the function can clean up

any resources. The function does not return a value on this call, but can

return an error.

For table UDFs not defined with FINAL CALL, only OPEN, FETCH, and CLOSE

calls are made to the function. Before each OPEN call, the scratchpad (if present) is

cleared.

The difference between table UDFs that are defined with FINAL CALL and those

defined with NO FINAL CALL can be seen when examining a scenario involving a

join or a subquery, where the table function access is the ″inner″ access. For

example, in a statement such as:

 SELECT x,y,z,... FROM table_1 as A,

 TABLE(table_func_1(A.col1,...)) as B

 WHERE...

In this case, the optimizer would open a scan of table_func_1 for each row of

table_1. This is because the value of table_1’s col1, which is passed to table_func_1,

is used to define the table function scan.

For NO FINAL CALL table UDFs, the OPEN, FETCH, FETCH, ..., CLOSE sequence

of calls repeats for each row of table_1. Note that each OPEN call will get a clean

scratchpad. Because the table function does not know at the end of each scan

whether there will be more scans, it must clean up completely during CLOSE

processing. This could be inefficient if there is significant one-time open processing

that must be repeated.

FINAL CALL table UDFs, provide a one-time FIRST call, and a one-time FINAL

call. These calls are used to amortize the expense of the initialization and

Chapter 2. Developing external routines 11

termination costs across all the scans of the table function. As before, the OPEN,

FETCH, FETCH, ..., CLOSE calls are made for each row of the outer table, but

because the table function knows it will get a FINAL call, it does not need to clean

everything up on its CLOSE call (and reallocate on subsequent OPEN). Also note

that the scratchpad is not cleared between scans, largely because the table function

resources will span scans.

At the expense of managing two additional call types, the table UDF can achieve

greater efficiency in these join and subquery scenarios. Deciding whether to define

the table function as FINAL CALL depends on how it is expected to be used.

Table function execution model for Java

For table functions written in Java and using PARAMETER STYLE DB2GENERAL,

it is important to understand what happens at each point in DB2’s processing of a

given statement. The following table details this information for a typical table

function. Covered are both the NO FINAL CALL and the FINAL CALL cases,

assuming SCRATCHPAD in both cases.

 Point in scan time

 NO FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

 FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

Before the first OPEN for the table

function

No calls. v Class constructor is called (means

new scratchpad). UDF method is

called with FIRST call.

v Constructor initializes class and

scratchpad variables. Method

connects to Web server.

At each OPEN of the table function v Class constructor is called (means

new scratchpad). UDF method is

called with OPEN call.

v Constructor initializes class and

scratchpad variables. Method

connect to Web server, and opens

the scan for Web data.

v UDF method is opened with

OPEN call.

v Method opens the scan for

whatever Web data it wants.

(Might be able to avoid reopen

after a CLOSE reposition,

depending on what is saved in the

scratchpad.)

At each FETCH for a new row of

table function data

v UDF method is called with FETCH

call.

v Method fetches and returns next

row of data, or EOT.

v UDF method is called with FETCH

call.

v Method fetches and returns new

row of data, or EOT.

At each CLOSE of the table function v UDF method is called with CLOSE

call. close() method if it exists for

class.

v Method closes its Web scan and

disconnects from the Web server.

close() does not need to do

anything.

v UDF method is called with CLOSE

call.

v Method might reposition to the top

of the scan, or close the scan. It can

save any state in the scratchpad,

which will persist.

After the last CLOSE of the table

function

No calls. v UDF method is called with FINAL

call. close() method is called if it

exists for class.

v Method disconnects from the Web

server. close() method does not

need to do anything.

12 Developing ADO.NET and OLE DB Applications

Note:

1. The term ″UDF method″ refers to the Java class method that implements the

UDF. This is the method identified in the EXTERNAL NAME clause of the

CREATE FUNCTION statement.

2. For table functions with NO SCRATCHPAD specified, the calls to the UDF

method are as indicated in this table, but because the user is not asking for any

continuity with a scratchpad, DB2 will cause a new object to be instantiated

before each call, by calling the class constructor. It is not clear that table

functions with NO SCRATCHPAD (and thus no continuity) can do useful

things, but they are supported.

Scratchpads for external functions and methods

A scratchpad enables a user-defined function or method to save its state from one

invocation to the next. For example, here are two situations where saving state

between invocations is beneficial:

1. Functions or methods that, to be correct, depend on saving state.

An example of such a function or method is a simple counter function that

returns a ’1’ the first time it is called, and increments the result by one each

successive call. Such a function could, in some circumstances, be used to

number the rows of a SELECT result:

 SELECT counter(), a, b+c, ...

 FROM tablex

 WHERE ...

The function needs a place to store the current value for the counter between

invocations, where the value will be guaranteed to be the same for the

following invocation. On each invocation, the value can then be incremented

and returned as the result of the function.

This type of routine is NOT DETERMINISTIC. Its output does not depend

solely on the values of its SQL arguments.

2. Functions or methods where the performance can be improved by the ability to

perform some initialization actions.

An example of such a function or method, which might be a part of a

document application, is a match function, which returns ’Y’ if a given

document contains a given string, and ’N’ otherwise:

 SELECT docid, doctitle, docauthor

 FROM docs

 WHERE match(’myocardial infarction’, docid) = ’Y’

This statement returns all the documents containing the particular text string

value represented by the first argument. What match would like to do is:

v First time only.

Retrieve a list of all the document IDs that contain the string ’myocardial

infarction’ from the document application, that is maintained outside of

DB2. This retrieval is a costly process, so the function would like to do it

only one time, and save the list somewhere handy for subsequent calls.

v On each call.

Use the list of document IDs saved during the first call to see if the

document ID that is passed as the second argument is contained in the list.
This type of routine is DETERMINISTIC. Its answer only depends on its input

argument values. What is shown here is a function whose performance, not

correctness, depends on the ability to save information from one call to the

next.

Chapter 2. Developing external routines 13

Both of these needs are met by the ability to specify a SCRATCHPAD in the

CREATE statement:

 CREATE FUNCTION counter()

 RETURNS int ... SCRATCHPAD;

 CREATE FUNCTION match(varchar(200), char(15))

 RETURNS char(1) ... SCRATCHPAD 10000;

The SCRATCHPAD keyword tells DB2 to allocate and maintain a scratchpad for a

routine. The default size for a scratchpad is 100 bytes, but you can determine the

size (in bytes) for a scratchpad. The match example is 10000 bytes long. DB2

initializes the scratchpad to binary zeros before the first invocation. If the

scratchpad is being defined for a table function, and if the table function is also

defined with NO FINAL CALL (the default), DB2 refreshes the scratchpad before

each OPEN call. If you specify the table function option FINAL CALL, DB2 does

not examine or change the content of the scratchpad after its initialization. For

scalar functions defined with scratchpads, DB2 also does not examine or change

the scratchpad’s content after its initialization. A pointer to the scratchpad is

passed to the routine on each invocation, and DB2 preserves the routine’s state

information in the scratchpad.

So for the counter example, the last value returned could be kept in the scratchpad.

And the match example could keep the list of documents in the scratchpad if the

scratchpad is big enough, otherwise it could allocate memory for the list and keep

the address of the acquired memory in the scratchpad. Scratchpads can be variable

length: the length is defined in the CREATE statement for the routine.

The scratchpad only applies to the individual reference to the routine in the

statement. If there are multiple references to a routine in a statement, each

reference has its own scratchpad, thus scratchpads cannot be used to communicate

between references. The scratchpad only applies to a single DB2 agent (an agent is

a DB2 entity that performs processing of all aspects of a statement). There is no

″global scratchpad″ to coordinate the sharing of scratchpad information between

the agents. This is especially important for situations where DB2 establishes

multiple agents to process a statement (in either a single partition or multiple

partition database). In these cases, even though there might only be a single

reference to a routine in a statement, there could be multiple agents doing the

work, and each would have its own scratchpad. In a multiple partition database,

where a statement referencing a UDF is processing data on multiple partitions, and

invoking the UDF on each partition, the scratchpad would only apply to a single

partition. As a result, there is a scratchpad on each partition where the UDF is

executed.

If the correct execution of a function depends on there being a single scratchpad

per reference to the function, then register the function as DISALLOW PARALLEL.

This will force the function to run on a single partition, thereby guaranteeing that

only a single scratchpad will exist per reference to the function.

Because it is recognized that a UDF or method might require system resources, the

UDF or method can be defined with the FINAL CALL keyword. This keyword tells

DB2 to call the UDF or method at end-of-statement processing so that the UDF or

method can release its system resources. It is vital that a routine free any resources

it acquires; even a small leak can become a big leak in an environment where the

statement is repetitively invoked, and a big leak can cause a DB2 crash.

14 Developing ADO.NET and OLE DB Applications

Since the scratchpad is of a fixed size, the UDF or method can itself include a

memory allocation and thus, can make use of the final call to free the memory. For

example, the preceding match function cannot predict how many documents will

match the given text string. So a better definition for match is:

 CREATE FUNCTION match(varchar(200), char(15))

 RETURNS char(1) ... SCRATCHPAD 10000 FINAL CALL;

For UDFs or methods that use a scratchpad and are referenced in a subquery, DB2

might make a final call, if the UDF or method is so specified, and refresh the

scratchpad between invocations of the subquery. You can protect yourself against

this possibility, if your UDFs or methods are ever used in subqueries, by defining

the UDF or method with FINAL CALL and using the call-type argument, or by

always checking for the binary zero state of the scratchpad.

If you do specify FINAL CALL, note that your UDF or method receives a call of

type FIRST. This could be used to acquire and initialize some persistent resource.

Following is a simple Java example of a UDF that uses a scratchpad to compute

the sum of squares of entries in a column. This example takes in a column and

returns a column containing the cumulative sum of squares from the top of the

column to the current row entry:

 CREATE FUNCTION SumOfSquares(INTEGER)

 RETURNS INTEGER

 EXTERNAL NAME ’UDFsrv!SumOfSquares’

 DETERMINISTIC

 NO EXTERNAL ACTION

 FENCED

 NOT NULL CALL

 LANGUAGE JAVA

 PARAMETER STYLE DB2GENERAL

 NO SQL

 SCRATCHPAD 10

 FINAL CALL

 DISALLOW PARALLEL

 NO DBINFO@

 // Sum Of Squares using Scratchpad UDF

 public void SumOfSquares(int inColumn,

 int outSum)

 throws Exception

 {

 int sum = 0;

 byte[] scratchpad = getScratchpad();

 // variables to read from SCRATCHPAD area

 ByteArrayInputStream byteArrayIn = new ByteArrayInputStream(scratchpad);

 DataInputStream dataIn = new DataInputStream(byteArrayIn);

 // variables to write into SCRATCHPAD area

 byte[] byteArrayCounter;

 int i;

 ByteArrayOutputStream byteArrayOut = new ByteArrayOutputStream(10);

 DataOutputStream dataOut = new DataOutputStream(byteArrayOut);

 switch(getCallType())

 {

 case SQLUDF_FIRST_CALL:

 // initialize data

 sum = (inColumn * inColumn);

 // save data into SCRATCHPAD area

 dataOut.writeInt(sum);

 byteArrayCounter = byteArrayOut.toByteArray();

Chapter 2. Developing external routines 15

for(i = 0; i < byteArrayCounter.length; i++)

 {

 scratchpad[i] = byteArrayCounter[i];

 }

 setScratchpad(scratchpad);

 break;

 case SQLUDF_NORMAL_CALL:

 // read data from SCRATCHPAD area

 sum = dataIn.readInt();

 // work with data

 sum = sum + (inColumn * inColumn);

 // save data into SCRATCHPAD area

 dataOut.writeInt(sum);

 byteArrayCounter = byteArrayOut.toByteArray();

 for(i = 0; i < byteArrayCounter.length; i++)

 {

 scratchpad[i] = byteArrayCounter[i];

 }

 setScratchpad(scratchpad);

 break;

 }

 //set the output value

 set(2, sum);

 } // SumOfSquares UDF

Please note that there is a built-in DB2 function that performs the same task as the

SumOfSquares UDF. This example was chosen to demonstrate the use of a

scratchpad.

Scratchpads on 32-bit and 64-bit operating systems

To make your UDF or method code portable between 32-bit and 64-bit operating

systems, you must take care in the way you create and use scratchpads that

contain 64-bit values. It is recommended that you do not declare an explicit length

variable for a scratchpad structure that contains one or more 64-bit values, such as

64-bit pointers or sqlint64 BIGINT variables.

Following is a sample structure declaration for a scratchpad:

 struct sql_scratchpad

 {

 sqlint32 length;

 char data[100];

 };

When defining its own structure for the scratchpad, a routine has two choices:

1. Redefine the entire scratchpad sql_scratchpad, in which case it needs to

include an explicit length field. For example:

 struct sql_spad

 {

 sqlint32 length;

 sqlint32 int_var;

 sqlint64 bigint_var;

 };

 void SQL_API_FN routine(..., struct sql_spad* scratchpad, ...)

 {

 /* Use scratchpad */

 }

2. Redefine just the data portion of the scratchpad sql_scratchpad, in which case

no length field is needed.

 struct spaddata

 {

 sqlint32 int_var;

 sqlint64 bigint_var;

16 Developing ADO.NET and OLE DB Applications

};

 void SQL_API_FN routine(..., struct sql_scratchpad* spad, ...)

 {

 struct spaddata* scratchpad = (struct spaddata*)spad→data;

 /* Use scratchpad */

 }

Since the application cannot change the value in the length field of the scratchpad,

there is no significant benefit to coding the routine as shown in the first example.

The second example is also portable between computers with different word sizes,

so it is the preferred way of writing the routine.

Supported APIs and programming languages for external

routine development

You can develop DB2 external routines (procedures and functions) using the

following APIs and associated programming languages:

v ADO.NET

– .NET Common Language Runtime programming languages
v CLI

v Embedded SQL

– C

– C++

– COBOL (Only supported for procedures)
v JDBC

– Java
v OLE

– Visual Basic

– Visual C++

– Any other programming language that supports this API.
v OLE DB (Only supported for table functions)

– Any programming language that supports this API.
v SQLJ

– Java

Comparison of supported APIs and programming languages for

external routine development

It is important to consider the characteristics and limitations of the various

supported external routine application programming interfaces (APIs) and

programming languages before you start implementing external routines. This will

ensure that you choose the right implementation from the start and that the

routine features that you require are available.

Chapter 2. Developing external routines 17

Table 1. Comparison of external routine APIs and programming languages

API and

programming

language Feature support Performance Security Scalability Limitations

SQL (includes

SQL PL)

v SQL is a high

level language

that is easy to

learn and use,

which makes

implementation

go quickly.

v SQL Procedural

Language (SQL

PL) elements

allow for

control-flow

logic around

SQL operations

and queries.

v Strong data

type support.

v Very good.

v SQL routines

perform better

than Java

routines.

v SQL routines

perform as well

as C and C++

external

routines

created with

the NOT

FENCED

clause.

v Very safe.

v SQL procedures

always run in

the same

memory as the

database

manager. This

corresponds to

the routine

being created

by default with

the keywords

NOT FENCED.

v Highly

scalable.

v Cannot access

the database

server file

system.

v Cannot invoke

applications

that reside

outside of the

database.

18 Developing ADO.NET and OLE DB Applications

Table 1. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

Embedded SQL

(includes C and

C++)

v Low level, but

powerful

programming

language.

v Very good.

v C and C++

routines

perform better

than Java

routines.

v C and C++

routines

created with

the NOT

FENCED

clause perform

as well as SQL

routines.

v C and C++

routines are

prone to

programming

errors.

v Programmers

must be

proficient in C

to avoid

making

common

memory and

pointer

manipulation

errors which

make routine

implementation

more tedious

and time

consuming.

v C and C++

routines should

be created with

the FENCED

clause and the

NOT

THREADSAFE

clause to avoid

the disruption

of the database

manager

should an

exception occur

in the routine

at run time.

These are

default clauses.

The use of

these clauses

can somewhat

negatively

impact

performance,

but ensure safe

execution. See:

Security of

routines .

v Scalability is

reduced when

C and C++

routines are

created with

the FENCED

and NOT

THREADSAFE

clauses. These

routines are

run in an

isolated db2fmp

process apart

from the

database

manager

process. One

db2fmp process

is required per

concurrently

executed

routine.

v There are

multiple

supported

parameter

passing styles

which can be

confusing.

Users should

use parameter

style SQL as

much as

possible.

Chapter 2. Developing external routines 19

Table 1. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

Embedded SQL

(COBOL)

v High-level

programming

language good

for developing

business,

typically file

oriented,

applications.

v Pervasively

used in the

past for

production

business

applications,

although its

popularity is

decreasing.

v COBOL does

not contain

pointer support

and is a linear

iterative

programming

language.

v COBOL

routines do not

perform as well

as routines

created with

any of the

other external

routine

implementation

options.

v No information

at this time.

v No information

at this time.

v You can create

and invoke

32-bit COBOL

procedures in

64-bit DB2

instances,

however these

routines will

not perform as

well as 64-bit

COBOL

procedures

within a 64-bit

DB2 instance.

JDBC (Java) and

SQLJ (Java)

v High-level

object-oriented

programming

language

suitable for

developing

standalone

applications,

applets, and

servlets.

v Java objects

and data types

facilitate the

establishment

of database

connections,

execution of

SQL

statements, and

manipulation

of data.

v Java routines

do not perform

as well as C

and C++

routines or SQL

routines.

v Java routines

are safer than

C and C++

routines,

because the

control of

dangerous

operations is

handled by the

Java Virtual

Machine (JVM).

This increases

reliability and

makes it very

difficult for the

code of one

Java routine to

harm another

routine running

in the same

process.

v Good

scalability

v Java routines

created with

the FENCED

THREADSAFE

clause (the

default) scale

well. All fenced

Java routines

will share a

few JVMs.

More than one

JVM might be

in use on the

system if the

Java heap of a

particular

db2fmp process

is approaching

exhaustion.

v To avoid

potentially

dangerous

operations,

Java Native

Interface (JNI)

calls from Java

routines are not

permitted.

20 Developing ADO.NET and OLE DB Applications

Table 1. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

.NET common

language runtime

supported

languages

(includes C#,

Visual Basic, and

others)

v Part of the

Microsoft .NET

model of

managed code.

v Source code is

compiled into

intermediate

language (IL)

byte code that

can be

interpreted by

the Microsoft

.NET

Framework

common

language

runtime.

v CLR assemblies

can be built up

from

sub-assemblies

that were

compiled from

different .NET

programming

language

source code,

which allows

users to re-use

and integrate

code modules

written in

various

languages.

v CLR routines

can only be

created with

the FENCED

NOT

THREADSAFE

clause so as to

minimize the

possibility of

database

manager

interruption at

runtime. This

can somewhat

negatively

impact

performance

v CLR routines

can only be

created with

the FENCED

NOT

THREADSAFE

clause. They

are therefore

safe because

they will be

run outside of

the database

manager in a

separate

db2fmp

process.

v No information

available.

v Refer to the

topic,

″Restrictions on

.NET CLR

routines″.

Chapter 2. Developing external routines 21

Table 1. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

v OLE v OLE routines

can be

implemented in

Visual C++,

Visual Basic,

and other

languages

supported by

OLE.

v The speed of

OLE automated

routines

depends on the

language used

to implement

them. In

general they

are slower than

non-OLE

C/C++

routines.

v OLE routines

can only run in

FENCED NOT

THREADSAFE

mode, and

therefore OLE

automated

routines do not

scale well.

v No information

available.

v No information

available.

v No information

available.

22 Developing ADO.NET and OLE DB Applications

Table 1. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

v OLE DB v OLE DB can be

used to create

user-defined

table functions.

v OLE DB

functions

connect to

external OLE

DB data

sources.

v Performance of

OLE DB

functions

depends on the

OLE DB

provider,

however in

general OLE

DB functions

perform better

than logically

equivalent Java

functions, but

slower than

logically

equivalent C,

C++, or SQL

functions.

However some

predicates from

the query

where the

function is

invoked might

be evaluated at

the OLE DB

provider,

therefore

reducing the

number of

rows that DB2

has to process

which can

frequently

result in

improved

performance.

v No information

available.

v No information

available.

v OLE DB can

only be used to

create

user-defined

table functions.

External routine creation

External routines are created in a similar way as routines with other

implementations. However there are a few additional steps required because the

routine implementation requires the coding, compilation, and deployment of

source code.

There are two parts to an external routine:

v The CREATE statement that defines the routine.

v The external library or class that implements the routine-body

Upon the successful execution of a CREATE statement that defines a routine, the

routine is created within the database. The statement must at a minimum define

Chapter 2. Developing external routines 23

the name of the routine, the routine parameter signature that will be used in the

routine implementation, and the location of the external library or class built from

the routine implementation source code.

External routine implementation must be coded in one of the supported

programming languages and then built into a library or class file that must be

installed in the file system of the database server.

An external routine cannot be successfully invoked until it has been created in the

database and the library or class associated with the routine has been put in the

location specified by the EXTERNAL clause.

The development of external routines generally consists of the following tasks:

v Determining what functional type of routine to implement.

v Choosing one of the supported external routine programming languages for the

routine implementation.

v Designing the routine.

v Connecting to a database and creating the routine in the database.

– This is done by executing one of the CREATE PROCEDURE, CREATE

FUNCTION, or CREATE METHOD statements or by using a graphical tool

that automates this step.

– This task, also known as defining or registering a routine, can occur at any

time before you invoke the routine, except in the following circumstances:

- For Java routines that reference an external JAR file or files, the external

code and JAR files must be coded and compiled before the routine is

created in the database using the routine type specific CREATE statement.

- Routines that execute SQL statements and refer to themselves directly must

be created in the database by issuing the CREATE statement before the

external code associated with the routine is precompiled and bound. This

also applies to situations where there is a cycle of references, for example,

Routine A references Routine B, which references Routine A.
v Coding the routine logic such that it corresponds to the routine definition.

v Building the routine and generating a library or class file.

– For embedded SQL routines this includes: precompiling , compiling, and link

the code as well as binding the routine package to the target database.

– For non-embedded SQL routines this includes: compiling and linking the

code.
v Deploying the library or class file to the database server in the location specified

in the routine definition.

v Granting the EXECUTE privilege on the routine to the routine invoker or

invokers (if they are not the routine definer).

v Invoking, testing, and debugging the routine.

The steps required to create an external routine can all be done using the DB2

Command Line Processor or a DB2 Command Window. Tools can be of assistance

in automating some or all of these steps.

External routine parameter styles

External routine implementations must conform to a particular convention for the

exchange of routine parameter values. These conventions are known as parameter

styles. An external routine parameter style is specified when the routine is created

by specifying the PARAMETER STYLE clause. Parameter styles characterize the

24 Developing ADO.NET and OLE DB Applications

specification and order in which parameter values will be passed to the external

routine implementation. They also specify what if any additional values will be

passed to the external routine implementation. For example, some parameter styles

specify that for each routine parameter value that an additional separate

null-indicator value be passed to the routine implementation to provide

information about the parameters nullability which cannot otherwise be easily

determined with a native programming language data type.

The table below provides a list of the available parameter styles, the routine

implementations that support each parameter style, the functional routine types

that support each parameter style, and a description of the parameter style:

 Table 2. Parameter styles

Parameter

style

Supported

language

Supported

routine type Description

SQL

1

v C/C++

v OLE

v .NET

common

language

runtime

languages

v COBOL

2

v UDFs

v stored

procedures

v methods

In addition to the parameters passed during invocation, the

following arguments are passed to the routine in the following

order:

v A null indicator for each parameter or result declared in the

CREATE statement.

v The SQLSTATE to be returned to DB2.

v The qualified name of the routine.

v The specific name of the routine.

v The SQL diagnostic string to be returned to DB2.

Depending on options specified in the CREATE statement and the

routine type, the following arguments can be passed to the routine

in the following order:

v A buffer for the scratchpad.

v The call type of the routine.

v The dbinfo structure (contains information about the database).

DB2SQL

1

v C/C++

v OLE

v .NET

common

language

runtime

languages

v COBOL

v stored

procedures

In addition to the parameters passed during invocation, the

following arguments are passed to the stored procedure in the

following order:

v A vector containing a null indicator for each parameter on the

CALL statement.

v The SQLSTATE to be returned to DB2.

v The qualified name of the stored procedure.

v The specific name of the stored procedure.

v The SQL diagnostic string to be returned to DB2.

If the DBINFO clause is specified in the CREATE PROCEDURE

statement, a dbinfo structure (it contains information about the

database) is passed to the stored procedure.

Chapter 2. Developing external routines 25

Table 2. Parameter styles (continued)

Parameter

style

Supported

language

Supported

routine type Description

JAVA v Java v UDFs

v stored

procedures

PARAMETER STYLE JAVA routines use a parameter passing

convention that conforms to the Java language and SQLJ Routines

specification.

For stored procedures, INOUT and OUT parameters will be passed

as single entry arrays to facilitate the returning of values. In

addition to the IN, OUT, and INOUT parameters, Java method

signatures for stored procedures include a parameter of type

ResultSet[] for each result set specified in the DYNAMIC RESULT

SETS clause of the CREATE PROCEDURE statement.

For PARAMETER STYLE JAVA UDFs and methods, no additional

arguments to those specified in the routine invocation are passed.

PARAMETER STYLE JAVA routines do not support the DBINFO or

PROGRAM TYPE clauses. For UDFs, PARAMETER STYLE JAVA

can only be specified when there are no structured data types

specified as parameters and no structured type, CLOB, DBCLOB, or

BLOB data types specified as return types (SQLSTATE 429B8). Also,

PARAMETER STYLE JAVA UDFs do not support table functions,

call types, or scratchpads.

DB2GENERAL v Java v UDFs

v stored

procedures

v methods

This type of routine will use a parameter passing convention that is

defined for use with Java methods. Unless you are developing table

UDFs, UDFs with scratchpads, or need access to the dbinfo

structure, it is recommended that you use PARAMETER STYLE

JAVA.

For PARAMETER STYLE DB2GENERAL routines, no additional

arguments to those specified in the routine invocation are passed.

GENERAL v C/C++

v .NET

common

language

runtime

languages

v COBOL

v stored

procedures

A PARAMETER STYLE GENERAL stored procedure receives

parameters from the CALL statement in the invoking application or

routine. If the DBINFO clause is specified in the CREATE

PROCEDURE statement, a dbinfo structure (it contains information

about the database) is passed to the stored procedure.

GENERAL is the equivalent of SIMPLE stored procedures for DB2

Universal Database™ for z/OS® and OS/390®.

GENERAL

WITH NULLS

v C/C++

v .NET

common

language

runtime

languages

v COBOL

v stored

procedures

A PARAMETER STYLE GENERAL WITH NULLS stored procedure

receives parameters from the CALL statement in the invoking

application or routine. Also included is a vector containing a null

indicator for each parameter on the CALL statement. If the

DBINFO clause is specified in the CREATE PROCEDURE

statement, a dbinfo structure (it contains information about the

database) is passed to the stored procedure.

GENERAL WITH NULLS is the equivalent of SIMPLE WITH

NULLS stored procedures for DB2 Universal Database for z/OS

and OS/390.

Note:

1. For UDFs and methods, PARAMETER STYLE SQL is equivalent to

PARAMETER STYLE DB2SQL.

2. COBOL can only be used to develop stored procedures.

3. .NET common language runtime methods are not supported.

26 Developing ADO.NET and OLE DB Applications

External routine library and class management

To successfully develop and invoke external routines, external routine library and

class files must be deployed and managed properly.

External routine library and class file management can be minimal if care is taken

when external routines are first created and library and class files deployed.

The main external routine management considerations are the following:

v Deployment of external routine library and class files

v Security of external routine library and class files

v Resolution of external routine libraries and classes

v Modifications to external routine library and class files

v Backup and restore of external routine library and class files

System administrators, database administrators and database application

developers should all take responsibility to ensure that external routine library and

class files are secure and correctly preserved during routine development and

database administration tasks.

Deployment of external routine libraries and classes

Deployment of external routine libraries and classes refers to the copying of

external routine libraries and classes to the database server once they have been

built from source code.

External routine library, class, or assembly files must be copied into the DB2

function directory or a sub-directory of this directory on the database server. This is

the recommended external routine deployment location. To find out more about

the function directory, see the description of the EXTERNAL clause for either of the

following SQL statements: CREATE PROCEDURE or CREATE FUNCTION.

You can copy the external routine class, library, or assembly to other directory

locations on the server, depending on the API and programming language used to

implement the routine, however this is generally discouraged. If this is done, to

successfully invoke the routine you must take particular note of the fully qualified

path name and ensure that this value is used with the EXTERNAL NAME clause.

Library and class files can be copied to the database server file system using most

generally available file transfer tools. Java routines can be copied from a computer

where a DB2 client is installed to a DB2 database server using special

system-defined procedures designed specifically for this purpose. See the topics on

Java routines for more details.

When executing the appropriate SQL language CREATE statement for the routine

type: CREATE PROCEDURE or CREATE FUNCTION, be sure to specify the

appropriate clauses, paying particular attention to the EXTERNAL NAME clause.

v Specify the LANGUAGE clause with the appropriate value for the chosen API or

programming language. Examples include: CLR, C, JAVA.

v Specify the PARAMETER STYLE clause with the name of the supported parameter

style that was implemented in the routine code.

v Specify the EXTERNAL clause with the name of the library, class, or assembly file

to be associated with the routine using one of the following values:

– the fully qualified path name of the routine library, class, or assembly file.

Chapter 2. Developing external routines 27

– the relative path name of the routine library, class, or assembly file relative to

the function directory.

By default DB2 will look for the library, class, or assembly file by name in the

function directory unless a fully qualified or relative path name for it is specified

in the EXTERNAL clause.

Security of external routine library or class files

External routine libraries are stored in the file system on the database server and

are not backed up or protected in any way by the DB2 database manager. For

routines to continue to successfully be invoked, it is imperative that the library

associated with the routine continue to exist in the location specified in the

EXTERNAL clause of the CREATE statement used to create the routine. Do not

move or delete routine libraries after creating routines; doing so will cause routine

invocations to fail.

To prevent routine libraries from being accidentally or intentionally deleted or

replaced, you must restrict access to the directories on the database server that

contain routine libraries and restrict access to the routine library files. This can be

done by using operating system commands to set directory and file permissions.

Resolution of external routine libraries and classes

DB2 external routine library resolution is performed at the DB2 instance level. This

means that in DB2 instances containing multiple DB2 databases, external routines

can be created in one database that use external routine libraries already being

used for a routine in another database.

Instance level external routine resolution supports code re-use by allowing multiple

routine definitions to be associated with a single library. When external routine

libraries are not re-used in this way, and instead copies of the external routine

library exist in the file system of the database server, library name conflicts can

happen. This can specifically happen when there are multiple databases in a single

instance and the routines in each database are associated with their own copies of

libraries and classes of routine bodies. A conflict arises when the name of a library

or class used by a routine in one database is identical to the name of a library or

class used by a routine in another database (in the same instance).

To minimize the likelihood of this happening, it is recommended that a single copy

of a routine library be stored in the instance level function directory

(sqllib/function directory) and that the EXTERNAL clause of all of the routine

definitions in each of the databases reference the unique library.

If two functionally different routine libraries must be created with the same name,

it is important to take additional steps to minimize the likelihood of library name

conflicts.

For C, C++, COBOL, and ADO.NET routines:

Library name conflicts can be minimized or resolved by:

1. Storing the libraries with routine bodies in separate directories for each

database.

2. Creating the routines with an EXTERNAL NAME clause value that

specifies the full path of the given library (instead of a relative path).

For Java routines:

Class name conflicts cannot be resolved by moving the class files in

question into different directories, because the CLASSPATH environment

variable is instance-wide. The first class encountered in the CLASSPATH is

28 Developing ADO.NET and OLE DB Applications

the one that is used. Therefore, if you have two different Java routines that

reference a class with the same name, one of the routines will use the

incorrect class. There are two possible solutions: either rename the affected

classes, or create a separate instance for each database.

Modifications to external routine library and class files

Modifications to an existing external routine’s logic might be necessary after an

external routine has been deployed and it is in use in a production database

system environment. Modifications to existing routines can be made, but it is

important that they be done carefully so as to define a clear takeover point in time

for the updates and to minimize the risk of interrupting any concurrent

invocations of the routine.

If an external routine library requires an update, do not recompile and relink the

routine to the same target file (for example, sqllib/function/foo.a) that the current

routine is using while the database manager is running. If a current routine

invocation is accessing a cached version of the routine process and the underlying

library is replaced, this can cause the routine invocation to fail. If it is necessary to

change the body of a routine without stopping and restarting DB2, complete the

following steps:

1. Create the new external routine library with a different library or class file

name.

2. If it is an embedded SQL routine, bind the routine package to the database

using the BIND command.

3. Use the ALTER ROUTINE statement to change the routine definition so that the

EXTERNAL NAME clause references the updated routine library or class. If the

routine body to be updated is used by routines cataloged in multiple databases,

the actions prescribed in this section must be completed for each affected

database.

4. For updating Java routines that are built into JAR files, you must issue a CALL

SQLJ.REFRESH_CLASSES() statement to force DB2 to load the new classes. If

you do not issue the CALL SQLJ.REFRESH_CLASSES() statement after you

update Java routine classes, DB2 continues to use the previous versions of the

classes. DB2 refreshes the classes when a COMMIT or ROLLBACK occurs.

Once the routine definition has been updated, all subsequent invocations of the

routine will load and run the new external routine library or class.

Backup and restore of external routine library and class files

External routine libraries are not backed up with other database objects when a

database backup is performed. They are similarly not restored when a database is

restored.

If the purpose of a database backup and restore is to re-deploy a database, then

external routine library files must be copied from the original database server file

system to the target database server file system in such a way as to preserve the

relative path names of the external routine libraries.

External routine library management and performance

External routine library management can impact routine performance, because the

DB2 database manager dynamically caches external routine libraries in an effort to

improve performance in accordance with routine usage. For optimal external

routine performance consider the following:

v Keep the number of routines in each library as small as possible. It is better to

have numerous small external routine libraries than a few large ones.

Chapter 2. Developing external routines 29

v

Group together within source code the routine functions of routines that are

commonly invoked together. When the code is compiled into an external routine

library the entry points of commonly invoked routines will be closer together

which allows the database manager to provide better caching support. The

improved caching support is due to the efficiency that can be gained by loading

a single external routine library once and then invoking multiple external

routine functions within that library.

For external routines implemented in the C or C++ programming language, the

cost of loading a library is paid only once for libraries that are consistently in

use by C routines. After a routine is invoked once, all subsequent invocations

from the same thread in the process, do not need to re-load the routine’s library.

32-bit and 64-bit support for external routines

Support for 32-bit and 64-bit external routines is determined by the specification of

one of the following two clauses in the CREATE statement for the routines:

FENCED clause or NOT FENCED clause.

The routine-body of an external routine is written in a programming language and

compiled into a library or class file that is loaded and run when the routine is

invoked. The specification of the FENCED or NOT FENCED clause determines

whether the external routine runs in a fenced environment distinct from the

database manager or in the same addressing space as the database manager which

can yield better performance through the use of shared memory instead of TCPIP

for communications. By default routines are always created as fenced regardless of

the other clauses selected.

The following table illustrates DB2’s support for running fenced and unfenced

32-bit and 64-bit routines on 32-bit and 64-bit database servers that are running the

same operating system.

 Table 3. Support for 32-bit and 64-bit external routines

Bit-width of routine 32-bit server 64-bit server

32-bit fenced procedure or UDF Supported Supported

64-bit fenced procedure or UDF Not supported (4) Supported

32-bit unfenced procedure or UDF Supported Supported (2)

64-bit unfenced procedure or UDF Not supported (4) Supported

The footnotes in the table above correspond to:

v (1) Running a 32-bit routine on a 64-bit server is not as fast as running a 64-bit

routine on a 64-bit server.

v (2) 32-bit routines must be created as FENCED and NOT THREADSAFE to work

on a 64-bit server.

v (3) It is not possible to invoke 32-bit routines on Linux® IA 64-bit database

servers.

v (4) 64-bit applications and routines cannot be run in 32-bit addressing spaces.

The important thing to note in the table is that 32-bit unfenced procedures cannot

run on a 64-bit DB2 server. If you must deploy 32-bit unfenced routines to 64-bit

platforms, remove the NOT FENCED clause from the CREATE statements for these

routines before you catalog them.

30 Developing ADO.NET and OLE DB Applications

Performance of routines with 32-bit libraries on 64-bit

database servers

It is possible to invoke routines with 32-bit routine libraries on 64-bit DB2 database

servers. However, this does not perform as well as invoking a 64-bit routine on a

64-bit server. The reason for the performance degradation is that before each

attempt to execute a 32-bit routine on a 64-bit server, an attempt is first made to

invoke it as a 64-bit library. If this fails, the library is then invoked as a 32-bit

library. A failed attempt to invoke a 32-bit library as a 64-bit library produces an

error message (SQLCODE -444) in the db2diag.log.

Java classes are bit-width independent. Only Java virtual machines (JVMs) are

classified as 32-bit or 64-bit. DB2 only supports the use of JVMs that are the same

bit width as the instance in which they are used. In other words, in a 32-bit DB2

instance only a 32-bit JVM can be used, and in a 64-bit DB2 instance only a 64-bit

JVM can be used. This ensures proper functioning of Java routines and the best

possible performance.

XML data type support in external routines

External procedures and functions written in the following programming

languages support parameters and variables of data type XML:

v C

v C++

v COBOL

v Java

v .NET CLR languages

External OLE and OLEDB routines do not support parameters of data type XML.

XML data type values are represented in external routine code in the same way as

CLOB data types.

When declaring external routine parameters of data type XML, the CREATE

PROCEDURE and CREATE FUNCTION statements that will be used to create the

routines in the database must specify that the XML data type is to be stored as a

CLOB data type. The size of the CLOB value should be close to the size of the

XML document represented by the XML parameter.

The CREATE PROCEDURE statement below shows a CREATE PROCEDURE

statement for an external procedure implemented in the C programming language

with an XML parameter named parm1:

 CREATE PROCEDURE myproc(IN parm1 XML AS CLOB(2M), IN parm2 VARCHAR(32000))

 LANGUAGE C

 FENCED

 PARAMETER STYLE SQL

 EXTERNAL NAME ’mylib!myproc’;

Similar considerations apply when creating external UDFs, as shown in the

example below:

 CREATE FUNCTION myfunc (IN parm1 XML AS CLOB(2M))

 RETURNS SMALLINT

 LANGUAGE C

 PARAMETER STYLE SQL

 DETERMINISTIC

 NOT FENCED

Chapter 2. Developing external routines 31

NULL CALL

 NO SQL

 NO EXTERNAL ACTION

 EXTERNAL NAME ’mylib1!myfunc’

XML data is materialized when passed to stored procedures as IN, OUT, or INOUT

parameters. If you are using Java stored procedures, the heap size

(JAVA_HEAP_SZ configuration parameter) might need to be increased based on

the quantity and size of XML arguments, and the number of external stored

procedures that are being executed concurrently.

Within external routine code, XML parameter and variable values are accessed, set,

and modified in the same way as in database applications.

Restrictions on external routines

The following restrictions apply to external routines and should be considered

when developing or debugging external routines.

Restrictions that apply to all external routines:

v New threads cannot be created in external routines.

v Connection level APIs cannot be called from within external functions or

external methods.

v Receiving inputs from the keyboard and displaying outputs to standard output

is not possible from external routines. Do not use standard input-output streams.

For example:

– In external Java routine code, do not issue the System.out.println()

methods.

– In external C or C++ routine code, do not issue printf().

– In external COBOL routine code, do not issue display

Although external routines cannot display data to standard output, they can

include code that writes data to a file on the database server file system.

For fenced routines that run in UNIX® environments, the target directory where

the file is to be created, or the file itself, must have the appropriate permissions

such that the owner of the sqllib/adm/.fenced file can create it or write to it.

For not fenced routines, the instance owner must have create, read, and write

permissions for the directory in which the file is opened.

Note: DB2 does not attempt to synchronize any external input or output

performed by a routine with DB2’s own transactions. So, for example, if a UDF

writes to a file during a transaction, and that transaction is later backed out for

some reason, no attempt is made to discover or undo the writes to the file.

v Connection-related statements or commands cannot be executed in external

routines. This restriction applies to the following statements: including:

– BACKUP

– CONNECT

– CONNECT TO

– CONNECT RESET

– CREATE DATABASE

– DROP DATABASE

– FORWARD RECOVERY

– RESTORE

32 Developing ADO.NET and OLE DB Applications

v Operating system function usage within routines is not recommended. The use

of these functions is not restricted except in the following cases:

– User-defined signal handlers must not be installed for external routines.

Failure to adhere to this restriction can result in unexpected external

routine run-time failures, database abends, or other problems. Installing

signal handlers can also interfere with operation of the JVM for Java

routines.

– System calls that terminate a process can abnormally terminate one of DB2’s

processes and result in database system or database application failure.

Other system calls can also cause problems if they interfere with the normal

operation of the DB2; database manager. For example, a function that

attempts to unload a library containing a user-defined function from memory

could cause severe problems. Be careful in coding and testing external

routines containing system calls.
v External routines must not contain commands that would terminate the current

process. An external routine must always return control to the DB2 database

manager without terminating the current process.

v External routine libraries, classes, or assemblies must not be updated while the

database is active except in special cases. If an update is required while the DB2

database manager is active, and stopping and starting the instance is not an

option, create the new library, class, or assembly for the routine with a different.

Then, use the ALTER statement to change the external routine’s EXTERNAL

NAME clause value so that it references the name of the new library, class, or

assembly file.

v Environment variable DB2CKPTR is not available in external routines. All other

environment variables with names beginning with ’DB2’ are captured at the time

the database manager is started and are available for use in external routines.

v Some environment variables with names that do not start with ’DB2’ are not

available to external routines that are fenced. For example, the LIBPATH

environment variable is not available for use. However these variables are

available to external routines that are not fenced.

v Environment variable values that were set after the DB2 database manager is

started are not available to external routines.

v Use of protected resources, resources that can only be accessed by one process at

a time, within external routines should be limited. If used, try to reduce the

likelihood of deadlocks when two external routines try to access the protected

resource. If two or more external routines deadlock while attempting to access

the protected resource, the DB2 database manager will not be able to detect or

resolve the situation. This will result in hung external routine processes.

v Memory for external routine parameters should not be explicitly allocated on the

DB2 database server. The DB2 database manager automatically allocates storage

based upon the parameter declaration in the CREATE statement for the routine.

Do not alter any storage pointers for parameters in external routines. Attempting

to change a pointer with a locally created storage pointer can result in memory

leaks, data corruption, or abends.

v Do not use static or global data in external routines. DB2 cannot guarantee that

the memory used by static or global variables will be untouched between

external routine invocations. For UDFs and methods, you can use scratchpads to

store values for use between invocations.

v All SQL parameter values are buffered. This means that a copy of the value is

made and passed to the external routine. If there are changes made to the input

parameters of an external routine, these changes will have no effect on SQL

values or processing. However, if an external routine writes more data to an

Chapter 2. Developing external routines 33

input or output parameter than is specified by the CREATE statement, memory

corruption has occurred, and the routine can abend.

Restrictions that apply to external procedures only

v When returning result sets from nested stored procedures, you can open a cursor

with the same name on multiple nesting levels. However, pre-version 8

applications will only be able to access the first result set that was opened. This

restriction does not apply to cursors that are opened with a different package

level.

Restrictions that apply to external functions only

v External functions cannot return result sets. All cursors opened within an

external function must be closed by the time the final-call invocation of the

function completes.

v Dynamic allocations of memory in an external routine should be freed before the

external routine returns. Failure to do so will result in a memory leak and the

continuous growth in memory consumption of a DB2 process that could result

in the database system running out of memory.

For external user-defined functions and external methods, scratchpads can be

used to allocate dynamic memory required for multiple function invocations.

When scratchpads are used in this way, specify the FINAL CALL attribute in the

CREATE FUNCTION or CREATE METHOD statement. This ensures that

allocated memory is freed before the routine returns.

Writing routines

The three types of routines (procedures, UDFs, and methods) have much in

common with regards to how they are written. For instance, the three routine types

employ some of the same parameter styles, support the use of SQL through

various client interfaces (embedded SQL, CLI, and JDBC), and can all invoke other

routines. To this end, the following steps represent a single approach for writing

routines.

There are some routine features that are specific to a routine type. For example,

result sets are specific to stored procedures, and scratchpads are specific to UDFs

and methods. When you come across a step not applicable to the type of routine

you are developing, go to the step that follows it.

Before writing a routine, you must decide the following:

v The type of routine you need.

v The programming language you will use to write it.

v Which interface to use if you require SQL statements in your routine.

See also the topics on Security, Library and Class Management, and Performance

considerations.

To create a routine body, you must:

1. Applicable only to external routines. Accept input parameters from the invoking

application or routine and declare output parameters. How a routine accepts

parameters is dependent on the parameter style you will create the routine

with. Each parameter style defines the set of parameters that are passed to the

routine body and the order that the parameters are passed.

34 Developing ADO.NET and OLE DB Applications

For example, the following is a signature of a UDF body written in C (using

sqludf.h) for PARAMETER STYLE SQL:

SQL_API_RC SQL_API_FN product (SQLUDF_DOUBLE *in1,

 SQLUDF_DOUBLE *in2,

 SQLUDF_DOUBLE *outProduct,

 SQLUDF_NULLIND *in1NullInd,

 SQLUDF_NULLIND *in2NullInd,

 SQLUDF_NULLIND *productNullInd,

 SQLUDF_TRAIL_ARGS)

2. Add the logic that the routine is to perform. Some features that you can

employ in the body of your routines are as follows:

v Calling other routines (nesting), or calling the current routine (recursion).

v In routines that are defined to have SQL (CONTAINS SQL, READS SQL, or

MODIFIES SQL), the routine can issue SQL statements. The types of

statements that can be invoked is controlled by how routines are registered.

v In external UDFs and methods, use scratchpads to save state from one call to

the next.

v In SQL procedures, use condition handlers to determine the SQL procedure’s

behavior when a specified condition occurs. You can define conditions based

on SQLSTATEs.
3. Applicable only to stored procedures. Return one or more result sets. In addition to

individual parameters that are exchanged with the calling application, stored

procedures have the capability to return multiple result sets. Only SQL routines

and CLI, ODBC, JDBC, and SQLJ routines and clients can accept result sets.

In addition to writing your routine, you also need to register it before you can

invoke it. This is done with the CREATE statement that matches the type of

routine you are developing. In general, the order in which you write and register

your routine does not matter. However, the registration of a routine must precede

its being built if it issues SQL that references itself. In this case, for a bind to be

successful, the routine’s registration must have already occurred.

Creating external routines

External routines including procedures and functions are created in a similar way

as routines with other implementations, however there are a few more steps

required, because the routine implementation requires the coding, compilation, and

deployment of source code.

You would choose to implement an external routine if:

v You want to encapsulate complex logic into a routine that accesses the database

or that performs an action outside of the database.

v You require the encapsulated logic to be invoked from any of: multiple

applications, the CLP, another routine (procedure, function (UDF), or method),

or a trigger.

v You are most comfortable coding this logic in a programming language rather

than using SQL and SQL PL statements.

v You require the routine logic to perform operations external to the database such

as writing or reading to a file on the database server, the running of another

application, or logic that cannot be represented with SQL and SQL PL

statements.

Prerequisites

v Knowledge of external routine implementation. To learn about external routines

in general, see the topic:

Chapter 2. Developing external routines 35

– Chapter 2, “External routines,” on page 5

– “External routine creation” on page 23
v The DB2 Client must be installed.

v The database server must be running an operating system that supports the

chosen implementation programming language compilers and development

software.

v The required compilers and runtime support for the chosen programming

language must be installed on the database server

v Authority to execute the CREATE PROCEDURE, CREATE FUNCTION, or

CREATE METHOD statement.

For a list of restrictions associated with external routines see:

v “Restrictions on external routines” on page 32

Procedure

1. Code the routine logic in the chosen programming language.

v For general information about external routines, routine features, and routine

feature implementation, see the topics referenced in the Prerequisites section.

v Use or import any required header files required to support the execution of

SQL statements.

v Declare variables and parameters correctly using programming language

data types that map to DB2 SQL data types.
2. Parameters must be declared in accordance with the format required by the

parameter style for the chosen programming language. For more on parameters

and prototype declarations see:

v “External routine parameter styles” on page 24
3. Build your code into a library or class file.

4. Copy the library or class file into the DB2 function directory on the database

server. It is recommended that you store assemblies or libraries associated with

DB2 routines in the function directory. To find out more about the function

directory, see the EXTERNAL clause of either of the following statements:

CREATE PROCEDURE or CREATE FUNCTION.

You can copy the assembly to another directory on the server if you wish, but

to successfully invoke the routine you must note the fully qualified path name

of your assembly as you will require it for the next step.

5. Execute either dynamically or statically the appropriate SQL language CREATE

statement for the routine type: CREATE PROCEDURE or CREATE FUNCTION.

v Specify the LANGUAGE clause with the appropriate value for the chosen API or

programming language. Examples include: CLR, C, JAVA.

v Specify the PARAMETER STYLE clause with the name of the supported

parameter style that was implemented in the routine code.

v Specify the EXTERNAL clause with the name of the library, class, or assembly

file to be associated with the routine using one of the following values:

– the fully qualified path name of the routine library, class, or assembly file .

– the relative path name of the routine library, class, or assembly file relative

to the function directory.
By default DB2 will look for the library, class, or assembly file by name in

the function directory unless a fully qualified or relative path name for it is

specified in the EXTERNAL clause.

36 Developing ADO.NET and OLE DB Applications

v Specify DYNAMIC RESULT SETS with a numeric value if your routine is a

procedure and it will return one or more result sets to the caller.

v Specify any other clauses required to characterize the routine.

To invoke your external routine, see Routine invocation

Chapter 2. Developing external routines 37

38 Developing ADO.NET and OLE DB Applications

Chapter 3. .NET common language runtime (CLR) routines

In DB2, a common language runtime (CLR) routine is an external routine created

by executing a CREATE PROCEDURE or CREATE FUNCTION statement that

references a .NET assembly as its external code body.

The following terms are important in the context of CLR routines:

.NET Framework

A Microsoft application development environment comprised of the CLR

and .NET Framework class library designed to provide a consistent

programming environment for developing and integrating code pieces.

Common language runtime (CLR)

The runtime interpreter for all .NET Framework applications.

intermediate language (IL)

Type of compiled byte-code interpreted by the .NET Framework CLR.

Source code from all .NET compatible languages compiles to IL byte-code.

assembly

A file that contains IL byte-code. This can either be a library or an

executable.

 You can implement CLR routines in any language that can be compiled into an IL

assembly. These languages include, but are not limited to: Managed C++, C#,

Visual Basic, and J#.

Before developing a CLR routine, it is important to both understand the basics of

routines and the unique features and characteristics specific to CLR routines. To

learn more about routines and CLR routines see:

v “Benefits of using routines” on page 5

v “SQL data type representation in .NET CLR routines” on page 41

v “Parameters in .NET CLR routines” on page 43

v “Returning result sets from .NET CLR procedures” on page 45

v “Restrictions on .NET CLR routines” on page 47

v “Errors related to .NET CLR routines” on page 57

Developing a CLR routine is easy. For step-by-step instructions on how to develop

a CLR routine and complete examples see:

v “Creating .NET CLR routines from DB2 Command Window” on page 49

v “Examples of C# .NET CLR procedures” on page 60

v “Examples of C# .NET CLR functions” on page 94

Support for external routine development in .NET CLR languages

To develop external routines in .NET CLR languages and successfully run them,

you will need to use supported operating systems, versions of DB2 database

servers and clients, and development software.

© IBM Corporation 2006, 2008 39

Supported operating systems for developing .NET CLR routines

with .NET Framework Versions 1.1, 2.0, or 3.0

v Windows 2000

v Windows XP (32-bit edition)

v Windows Server 2003 (32-bit edition)

Supported DB2 database servers and clients for .NET CLR

routine development

The following minimum DB2 database servers and clients must be installed:

v DB2 server: Minimum supported version is DB2 Version 8.2.

v DB2 client: Minimum supported version is DB2 Version 7.2.

Required development software for .NET CLR routines

One of the following two software products must be installed on the same

computer as the DB2 database server:

v Microsoft .NET Framework, Version 1.1

v Microsoft .NET Framework, Version 2.0

The Microsoft .NET Framework is independently available or as part of one of the

following development kits:

v Microsoft .NET Framework Version 1.1 Software Development Kit

v Microsoft .NET Framework Version 2.0 Software Development Kit

v Microsoft .NET Framework Version 3.0 Software Development Kit

.NET CLR external routines can be implemented in any language that can be

compiled into an IL assembly by the Microsoft .NET Framework. These languages

include, but are not limited to: Managed C++, C#, Visual Basic, and J#.

Tools for developing .NET CLR routines

Tools can make the task of developing .NET CLR routines that interact with DB2

database faster and easier.

.NET CLR routines can be developed in Microsoft Visual Studio .NET using

graphical tools available in:

v IBM DB2 Development Add-In for Microsoft Visual Studio .NET 1.2

The following command line interfaces, provided with DB2, are also available for

developing .NET CLR routines on DB2 database servers:

v DB2 Command Line Processor (DB2 CLP)

v DB2 Command Window

Designing .NET CLR routines

When designing .NET CLR routines, you should take into account both general

external routine design considerations and .NET CLR specific design

considerations.

Knowledge and experience with .NET application development and general

knowledge of external routines. The following topics can provide you with some of

the required prerequisite information.

40 Developing ADO.NET and OLE DB Applications

For more information on the features and uses of external routines see:

v External routines

For more information on the characteristics of .NET CLR routines, see:

v .NET CLR routines

With the prerequisite knowledge, designing embedded SQL routines consists

mainly of learning about the unique features and characteristics of .NET CLR

routines:

v Include assemblies that provide support for SQL statement execution in .NET

CLR routines (IBM.Data.DB2)

v Supported SQL data types in .NET CLR routines

v Parameters to .NET CLR routines

v Returning result sets from .NET CLR routines

v Security and execution control mode settings for .NET CLR routines

v Restrictions on .NET CLR routines

v Returning result sets from .NET CLR procedures

After having learned about the .NET CLR characteristics, you might want to:

″Create .NET CLR routines″.

SQL data type representation in .NET CLR routines

.NET CLR routines can reference SQL data type values as routine parameters,

parameter values to be used as part of SQL statement execution, and as variables,

however the appropriate IBM SQL data type values, IBM Data Server Provider for

.NET data type values, and .NET Framework data type values must be used to

ensure that there is no truncation or loss of data when accessing or retrieving the

values.

For routine parameter specifications within the CREATE PROCEDURE or CREATE

FUNCTION statements used to create .NET CLR routines, DB2 SQL data type

values are used. Most SQL data types can be specified for routine parameters,

however there are some exceptions.

For specifying parameter values to be used as part of an SQL statement to be

executed, IBM Data Server Provider for .NET objects must be used. The

DB2Parameter object is used to represent a parameter to be added to a DB2Command

object which represents a SQL statement. When specifying the data type value for

the parameter, the IBM Data Server Provider for .NET data type values available in

the IBM.Data.DB2Types namespace must be used. The IBM.Data.DB2Types

namespace provides classes and structures to represent each of the supported DB2

SQL data types.

For parameters and local variables that might temporarily hold SQL data type

values appropriate IBM Data Server Provider for .NET data types, as defined in

the IBM.Data.DB2Types Namespace, must be used.

Note: The dbinfo structure is passed into CLR functions and procedures as a

parameter. The scratchpad and call type for CLR UDFs are also passed into CLR

routines as parameters. For information about the appropriate CLR data types for

these parameters, see the related topic:

v Parameters in CLR routines

Chapter 3. .NET common language runtime (CLR) routines 41

The following table shows mappings between DB2Type data types, DB2 data

types, Informix data types, Microsoft .NET Framework types, and DB2Types

classes and structures.

 Category DB2Types

Classes and

Structures

DB2Type Data

Type

DB2 Data Type Informix Data

Type

.NET Data Type

Numeric DB2Int16 SmallInt SMALLINT BOOLEAN,

SMALLINT

Int16

DB2Int32 Integer INT INTEGER, INT,

SERIAL

Int32

DB2Int64 BigInt BIGINT INT8, SERIAL8 Int64

DB2Real,

DB2Real370

Real REAL REAL,

SMALLFLOAT

Single

DB2Double Double DOUBLE

PRECISION

DECIMAL (≤31),

DOUBLE

PRECISION

Double

DB2Double Float FLOAT DECIMAL (32),

FLOAT

Double

DB2Decimal Decimal DECIMAL MONEY Decimal

DB2DecimalFloat DecimalFloat DECFLOAT(16|34)14 Decimal

DB2Decimal Numeric DECIMAL DECIMAL (≤31),

NUMERIC

Decimal

Date/Time DB2Date Date DATE DATETIME (date

precision)

Datetime

DB2Time Time TIME DATETIME (time

precision)

TimeSpan

DB2TimeStamp Timestamp TIMESTAMP DATETIME (time

and date

precision)

DateTime

XML DB2Xml Xml2 XML Byte[]

Character data DB2String Char CHAR CHAR String

DB2String VarChar VARCHAR VARCHAR String

DB2String LongVarChar1 LONG

VARCHAR

LVARCHAR String

Binary data DB2Binary Binary CHAR FOR BIT

DATA

Byte[]

DB2Binary Binary3 BINARY Byte[]

DB2Binary VarBinary3 VARBINARY Byte[]

DB2Binary LongVarBinary1 LONG

VARCHAR FOR

BIT DATA

Byte[]

1. These data types are not supported as parameters in DB2 .NET common language runtime routines.

2. A DB2ParameterClass.ParameterName property of the type DB2Type.Xml can accept variables of the following types: String,

byte[], DB2Xml, and XmlReader.

3. These data types are applicable only to DB2 UDB for z/OS.

4. This data type is only supported for DB2 for z/OS Version 9 and later releases and for DB2 for Linux, UNIX, and Windows

Version 9.5 and later releases.

42 Developing ADO.NET and OLE DB Applications

Category DB2Types

Classes and

Structures

DB2Type Data

Type

DB2 Data Type Informix Data

Type

.NET Data Type

Graphic data DB2String Graphic GRAPHIC String

DB2String VarGraphic VARGRAPHIC String

DB2String LongVarGraphic1 LONG

VARGRAPHIC

String

LOB data DB2Clob Clob CLOB CLOB, TEXT String

DB2Blob Blob BLOB BLOB, BYTE Byte[]

DB2Clob DbClob DBCLOB String

Row ID DB2RowId RowId ROWID Byte[]

Parameters in .NET CLR routines

Parameter declaration in .NET CLR routines must conform to the requirements of

one of the supported parameter styles, and must respect the parameter keyword

requirements of the particular .NET language used for the routine. If the routine is

to use a scratchpad, the dbinfo structure, or to have a PROGRAM TYPE MAIN

parameter interface, there are additional details to consider. This topic addresses all

CLR parameter considerations.

Supported parameter styles for CLR routines

The parameter style of the routine must be specified at routine creation time in the

EXTERNAL clause of the CREATE statement for the routine. The parameter style

must be accurately reflected in the implementation of the external CLR routine

code. The following DB2 parameter styles are supported for CLR routines:

v SQL (Supported for procedures and functions)

v GENERAL (Supported for procedures only)

v GENERAL WITH NULLS (Supported for procedures only)

v DB2SQL (Supported for procedures and functions)

For more information about these parameter styles see the topic:

v Parameter styles for external routines

CLR routine parameter null indicators

If the parameter style chosen for a CLR routine requires that null indicators be

specified for the parameters, the null indicators are to be passed into the CLR

routine as System.Int16 type values, or in a System.Int16[] value when the

parameter style calls for a vector of null indicators.

When the parameter style dictates that the null indicators be passed into the

routine as distinct parameters, as is required for parameter style SQL, one

System.Int16 null indicator is required for each parameter.

In .NET languages distinct parameters must be prefaced with a keyword to

indicate if the parameter is passed by value or by reference. The same keyword

that is used for a routine parameter must be used for the associated null indicator

parameter. The keywords used to indicate whether an argument is passed by value

or by reference are discussed in more detail below.

Chapter 3. .NET common language runtime (CLR) routines 43

For more information about parameter style SQL and other supported parameter

styles, see the topic:

v Parameter styles for external routines

Passing CLR routine parameters by value or by reference

.NET language routines that compile into intermediate language (IL) byte-code

require that parameters be prefaced with keywords that indicate the particular

properties of the parameter such as whether the parameter is passed by value, by

reference, is an input only, or an output only parameter.

Parameter keywords are .NET language specific. For example to pass a parameter

by reference in C#, the parameter keyword is ref, whereas in Visual Basic, a by

reference parameter is indicated by the byRef keyword. The keywords must be

used to indicate the SQL parameter usage (IN, OUT, INOUT) that was specified in the

CREATE statement for the routine.

The following rules apply when applying parameter keywords to .NET language

routine parameters in DB2 routines:

v IN type parameters must be declared without a parameter keyword in C#, and

must be declared with the byVal keyword in Visual Basic.

v INOUT type parameters must be declared with the language specific keyword that

indicates that the parameter is passed by reference. In C# the appropriate

keyword is ref. In Visual Basic, the appropriate keyword is byRef.

v OUT type parameters must be declared with the language specific keyword that

indicates that the parameter is an output only parameter. In C#, use the out

keyword. In Visual Basic, the parameter must be declared with the byRef

keyword. Output only parameters must always be assigned a value before the

routine returns to the caller. If the routine does not assign a value to an output

only parameter, an error will be raised when the .NET routine is compiled.

Here is what a C#, parameter style SQL procedure prototype looks like for a

routine that returns a single output parameter language.

 public static void Counter (out String language,

 out Int16 languageNullInd,

 ref String sqlState,

 String funcName,

 String funcSpecName,

 ref String sqlMsgString,

 Byte[] scratchPad,

 Int32 callType);

It is clear that the parameter style SQL is implemented because of the extra null

indicator parameter, languageNullInd associated with the output parameter

language, the parameters for passing the SQLSTATE, the routine name, the routine

specific name, and optional user-defined SQL error message. Parameter keywords

have been specified for the parameters as follows:

v In C# no parameter keyword is required for input only parameters.

v In C# the ’out’ keyword indicates that the variable is an output parameter only,

and that its value has not been initialized by the caller.

v In C# the ’ref’ keyword indicates that the parameter was initialized by the caller,

and that the routine can optionally modify this value.

See the .NET language specific documentation regarding parameter passing to

learn about the parameter keywords in that language.

44 Developing ADO.NET and OLE DB Applications

Note: DB2 controls allocation of memory for all parameters and maintains CLR

references to all parameters passed into or out of a routine.

No parameter marker is required for procedure result sets

No parameter markers is required in the procedure declaration of a procedure for a

result set that will be returned to the caller. Any cursor statement that is not closed

from inside of a CLR stored procedure will be passed back to its caller as a result

set.

For more on result sets in CLR routines, see:

v

Dbinfo structure as CLR parameter

The dbinfo structure used for passing additional database information parameters

to and from a routine is supported for CLR routines through the use of an IL

dbinfo class. This class contains all of the elements found in the C language

sqludf_dbinfo structure except for the length fields associated with the strings. The

length of each string can be found using the .NET language Length property of the

particular string.

To access the dbinfo class, simply include the IBM.Data.DB2 assembly in the file

that contains your routine, and add a parameter of type sqludf_dbinfo to your

routine’s signature, in the position specified by the parameter style used.

UDF scratchpad as CLR parameter

If a scratchpad is requested for a user defined function, it is passed into the routine

as a System.Byte[] parameter of the specified size.

CLR UDF call type or final call parameter

For user-defined functions that have requested a final call parameter or for table

functions, the call type parameter is passed into the routine as a System.Int32 data

type.

PROGRAM TYPE MAIN supported for CLR procedures

Program type MAIN is supported for .NET CLR procedures. Procedures defined as

using Program Type MAIN must have the following signature:

 void functionname(Int32 NumParams, Object[] Params)

Returning result sets from .NET CLR procedures

You can develop CLR procedures that return result sets to a calling routine or

application. Result sets cannot be returned from CLR functions (UDFs).

The .NET representation of a result set is a DB2DataReader object which can be

returned from one of the various execute calls of a DB2Command object. Any

DB2DataReader object whose Close() method has not explicitly been called prior to

the return of the procedure, can be returned. The order in which result sets are

returned to the caller is the same as the order in which the DB2DataReader objects

were instantiated. No additional parameters are required in the function definition

in order to return a result set.

Chapter 3. .NET common language runtime (CLR) routines 45

An understanding of how to create CLR routines will help you to follow the steps

in the procedure below for returning results from a CLR procedure.

v “Creating .NET CLR routines from DB2 Command Window” on page 49

To return a result set from a CLR procedure:

1. In the CREATE PROCEDURE statement for the CLR routine you must specify

along with any other appropriate clauses, the DYNAMIC RESULT SETS clause

with a value equal to the number of result sets that are to be returned by the

procedure.

2. No parameter marker is required in the procedure declaration for a result set

that is to be returned to the caller.

3. In the .NET language implementation of your CLR routine, create a

DB2Connection object, a DB2Command object, and a DB2Transaction object. A

DB2Transaction object is responsible for rolling back and committing database

transactions.

4. Initialize the Transaction property of the DB2Command object to the

DB2Transaction object.

5. Assign a string query to the DB2Command object’s CommandText property that

defines the result set that you want to return.

6. Instantiate a DB2DataReader, and assign to it, the result of the invocation of the

DB2Command object method ExecuteReader. The result set of the query will be

contained in the DB2DataReader object.

7. Do not execute the Close() method of the DB2DataReader object at any point

prior to the procedure’s return to the caller. The still open DB2DataReader object

will be returned as a result set to the caller.

When more than one DB2DataReader is left open upon the return of a

procedure, the DB2DataReaders are returned to the caller in the order of their

creation. Only the number of result sets specified in the CREATE PROCEDURE

statement will be returned to the caller.

8. Compile your .NET CLR language procedure and install the assembly in the

location specified by the EXTERNAL clause in the CREATE PROCEDURE

statement. Execute the CREATE PROCEDURE statement for the CLR

procedure, if you have not already done so.

9. Once the CLR procedure assembly has been installed in the appropriate

location and the CREATE PROCEDURE statement has successfully been

executed, you can invoke the procedure with the CALL statement to see the

result sets return to the caller.

Security and execution modes for CLR routines

As a database administrator or application developer, you might want to protect

the assemblies associated with your DB2 external routines from unwelcome

tampering to restrict the actions of routines at run time. DB2 .NET common

language runtime (CLR) routines support the specification of an execution control

mode that identifies what types of actions a routine will be allowed to perform at

run time. At run time, DB2 can detect if the routine attempts to perform actions

beyond the scope of its specified execution control mode, which can be helpful

when determining whether an assembly has been compromised.

To set the execution control mode of a CLR routine, specify the optional

EXECUTION CONTROL clause in the CREATE statement for the routine. Valid

modes are:

v SAFE

46 Developing ADO.NET and OLE DB Applications

v FILEREAD

v FILEWRITE

v NETWORK

v UNSAFE

To modify the execution control mode in an existing CLR routine, execute the

ALTER PROCEDURE or ALTER FUNCTION statement.

If the EXECUTION CONTROL clause is not specified for a CLR routine, by default

the CLR routine is run using the most restrictive execution control mode: SAFE.

Routines that are created with this execution control mode can only access

resources that are controlled by the database manager. Less restrictive execution

control modes allow a routine to access files (FILEREAD or FILEWRITE) or

perform network operations such as accessing a web page (NETWORK). The

execution control mode UNSAFE specifies that no restrictions are to be placed on

the behavior of the routine. Routines defined with UNSAFE execution control

mode can execute binary code.

These modes represent a hierarchy of allowable actions, and a higher-level mode

includes the actions that are allowed below it in the hierarchy. For example,

execution control mode NETWORK allows a routine to access web pages on the

internet, read and write to files, and access resources that are controlled by the

database manager. It is recommended to use the most restrictive execution control

mode possible, and to avoid using the UNSAFE mode.

If DB2 detects at run time that a CLR routine is attempting an action outside of the

scope of its execution control mode, DB2 will return error (SQLSTATE 38501).

The EXECUTION CONTROL clause can only be specified for LANGUAGE CLR

routines. The scope of applicability of the EXECUTION CONTROL clause is

limited to the .NET CLR routine itself, and does not extend to any other routines

that it might call.

Refer to the syntax of the CREATE statement for the appropriate routine type for a

full description of the supported execution control modes.

Restrictions on .NET CLR routines

The general implementation restrictions that apply to all external routines or

particular routine classes (procedure or UDF) also apply to CLR routines. There are

some restrictions that are particular to CLR routines. These restrictions are listed

here.

The CREATE METHOD statement with LANGUAGE CLR clause is

not supported

You cannot create external methods for DB2 structured types that reference a CLR

assembly. The use of a CREATE METHOD statement that specifies the

LANGUAGE clause with value CLR is not supported.

Chapter 3. .NET common language runtime (CLR) routines 47

CLR procedures cannot be implemented as NOT FENCED

procedures

CLR procedures cannot be run as unfenced procedures. The CREATE

PROCEDURE statement for a CLR procedure can not specify the NOT FENCED

clause.

EXECUTION CONTROL clause restricts the logic contained in the

routine

The EXECUTION CONTROL clause and associated value determine what types of

logic and operations can be executed in a .NET CLR routine. By default the

EXECUTION CONTROL clause value is set to SAFE. For routine logic that reads

files, writes to files, or that accesses the internet, a non-default and less restrictive

value for the EXECUTION CONTROL clause must be specified.

Maximum decimal precision is 29, maximum decimal scale is 28

in a CLR routine

The DECIMAL data type in DB2 is represented with a precision of 31 digits and a

scale of 28 digits. The .NET CLR System.Decimal data type is limited to a precision

of 29 digits and a scale of 28 digits. Therefore, DB2 external CLR routines must not

assign a value to a System.Decimal data type that has a value greater than

(2^96)-1, which is the highest value that can be represented using a 29 digit

precision and 28 digit scale. DB2 will raise a runtime error (SQLSTATE 22003,

SQLCODE -413) if such an assignment occurs. At the time of execution of the

CREATE statement for the routine, if a DECIMAL data type parameter is defined

with a scale greater than 28, DB2 will raise an error (SQLSTATE 42613, SQLCODE

-628).

If you require your routine to manipulate decimal values with the maximum

precision and scale supported by DB2, you can implement your external routine in

a different programming language such as Java.

Data types not supported in CLR routines

The following DB2 SQL data types are not supported in CLR routines:

v LONG VARCHAR

v LONG VARCHAR FOR BIT DATA

v LONG GRAPHIC

v ROWID

Running a 32-bit CLR routine on a 64-bit instance

CLR routines cannot be run on 64- bit instances, because the .NET Framework

cannot be installed on 64-bit operating systems at this time.

.NET CLR not supported for implementing security plug-ins

The .NET CLR is not supported for compiling and linking source code for security

plug-in libraries.

48 Developing ADO.NET and OLE DB Applications

Creating .NET CLR routines

Creating .NET CLR routines consists of:

v Executing a CREATE statement that defines the routine in a DB2 database server

v Developing the routine implementation that corresponds to the routine

definition

The ways in which you can create .NET CLR routines follow:

v Using the graphical tools provided with the DB2 Database Development Add-In

for Visual Studio .NET 1.2

v Using the DB2 Command Window

In general it is easiest to create .NET CLR routines using the DB2 Database

Development Add-In for Visual Studio .NET 1.2. If this is not available for use, the

DB2 Command Window provides similar support through a command line

interface.

Prerequisites

v Review the Chapter 3, “.NET common language runtime (CLR) routines,” on

page 39.

v Ensure that you have access to a DB2 Version 9 server, including instances and

databases.

v Ensure that the operating system is at a version level that is supported by DB2

database products.

v Ensure that the Microsoft .NET development software is at a version level that is

supported for .NET CLR routine development.

v Authority to execute the CREATE PROCEDURE or CREATE FUNCTION

statement.

For a list of restrictions associated with CLR routines see:

v “Restrictions on .NET CLR routines” on page 47

Create .NET CLR routines from one of the following interfaces:

v Visual Studio .NET when the IBM DB2 Development Add-In for Microsoft

Visual Studio .NET 1.2 is also installed. When the Add-In is installed, graphical

tools integrated into Visual Studio .NET are available for creating .NET CLR

routines that work in DB2 database servers.

v DB2 Command Window

To create .NET CLR routines from DB2 Command Window, see:

v “Creating .NET CLR routines from DB2 Command Window”

Creating .NET CLR routines from DB2 Command Window

Procedures and functions that reference an intermediate language assembly are

created in the same way as any external routine is created. You would choose to

implement an external routine in a .NET language if:

v You want to encapsulate complex logic into a routine that accesses the database

or that performs an action outside of the database.

Chapter 3. .NET common language runtime (CLR) routines 49

http://www.ibm.com/software/data/db2/udb/sysreqs.html

v You require the encapsulated logic to be invoked from any of: multiple

applications, the CLP, another routine (procedure, function (UDF), or method),

or a trigger.

v You are most comfortable coding this logic in a .NET language.

Prerequisites

v Knowledge of CLR routine implementation. To learn about CLR routines

in general and about CLR features, see:

– Chapter 3, “.NET common language runtime (CLR) routines,” on page

39
v The database server must be running a Windows operating system that

supports the Microsoft .NET Framework.

v The .NET Framework, version 1.1 or 2.0, must be installed on the server.

The .NET Framework is independently available or as part of the

Microsoft .NET Framework 1.1 Software Development Kit or .NET

Framework 2.0 Software Development Kit.

v

The following versions of DB2 must be installed:

– Server: DB2 8.2 or a later release.

– Client: Any client that can attach to a DB2 8.2 instance will be able to

invoke a CLR routine. It is recommended that you install DB2 Version

7.2 or a later release on the client.
v Authority to execute the CREATE statement for the external routine. For

the privileges required to execute the CREATE PROCEDURE statement

or CREATE FUNCTION statement, see the details of the appropriate

statement.

For a list of restrictions associated with CLR routines see:

v “Restrictions on .NET CLR routines” on page 47

Procedure

1. Code the routine logic in any CLR supported language.

v For general information about .NET CLR routines and .NET CLR routine

features see the topics referenced in the Prerequisites section

v Use or import the IBM.Data.DB2 assembly if your routine will execute SQL.

v Declare host variables and parameters correctly using data types that map to

DB2 SQL data types. For a data type mapping between DB2 and .NET data

types:

– “SQL data type representation in .NET CLR routines” on page 41
v Parameters and parameter null indicators must be declared using one of

DB2’s supported parameter styles and according to the parameter

requirements for .NET CLR routines. As well, scratchpads for UDFs, and the

DBINFO class are passed into CLR routines as parameters. For more on

parameters and prototype declarations see:

– “Parameters in .NET CLR routines” on page 43
v If the routine is a procedure and you want to return a result set to the caller

of the routine, you do not require any parameters for the result set. For more

on returning result sets from CLR routines:

– “Returning result sets from .NET CLR procedures” on page 45
v Set a routine return value if required. CLR scalar functions require that a

return value is set before returning. CLR table functions require that a return

50 Developing ADO.NET and OLE DB Applications

code is specified as an output parameter for each invocation of the table

function. CLR procedures do not return with a return value.
2. Build your code into an intermediate language (IL) assembly to be executed by

the CLR. For information on how to build CLR .NET routines that access DB2,

see the following topic:

v “Building common language runtime (CLR) .NET routines” in Developing

ADO.NET and OLE DB Applications

3. Copy the assembly into the DB2 function directory on the database server. It is

recommended that you store assemblies or libraries associated with DB2

routines in the function directory. To find out more about the function directory,

see the EXTERNAL clause of either of the following statements: CREATE

PROCEDURE or CREATE FUNCTION.

You can copy the assembly to another directory on the server if you want, but

to successfully invoke the routine you must note the fully qualified path name

of your assembly as you will require it for the next step.

4. Execute either dynamically or statically the appropriate SQL language CREATE

statement for the routine type: CREATE PROCEDURE or CREATE FUNCTION.

v Specify the LANGUAGE clause with value: CLR.

v Specify the PARAMETER STYLE clause with the name of the supported

parameter style that was implemented in the routine code.

v Specify the EXTERNAL clause with the name of the assembly to be associated

with the routine using one of the following values:

– the fully qualified path name of the routine assembly.

– the relative path name of the routine assembly relative to the function

directory.
By default DB2 will look for the assembly by name in the function directory

unless a fully qualified or relative path name for the library is specified in

the EXTERNAL clause.

When the CREATE statement is executed, if the assembly specified in the

EXTERNAL clause is not found by DB2 you will receive an error (SQLCODE

-20282) with reason code 1.

v Specify the DYNAMIC RESULT SETS clause with an integer value equivalent

to the maximum number of result sets that might be returned by the routine.

v You can not specify the NOT FENCED clause for CLR procedures. By default

CLR procedures are executed as FENCED procedures.

Building .NET CLR routine code

Once .NET CLR routine implementation code has been written, it must be built

before the routine assembly can be deployed and the routine invoked. The steps

required to build .NET CLR routines are similar to those required to build any

external routine however there are some differences.

There are three ways to build .NET CLR routines:

v Using the graphical tools provided with the DB2 Database Development Add-In

for Visual Studio .NET 1.2

v Using DB2 sample batch files

v Entering commands from a DB2 Command Window

Chapter 3. .NET common language runtime (CLR) routines 51

The DB2 sample build scripts and batch files for routines are designed for building

DB2 sample routines (procedures and user-defined functions) as well as user

created routines for a particular operating system using the default supported

compilers.

There is a separate set of DB2 sample build scripts and batch files for C# and

Visual Basic. In general it is easiest to build .NET CLR routines using the graphical

tools or the build scripts which can easily be modified if required, however it is

often helpful to know how to build routines from DB2 Command Window as well.

Building .NET common language runtime (CLR) routine code

using sample build scripts

Building .NET common language runtime (CLR) routine source code is a sub-task

of creating .NET CLR routines. This task can be done quickly and easily using DB2

sample batch files. The sample build scripts can be used for source code with or

without SQL statements. The build scripts take care of the compilation, linking,

and deployment of the built assembly to the function directory.

As alternatives, you can simplify the task of building .NET CLR routine code by

doing so in Visual Studio .NET or you do the steps in the DB2 sample build scripts

manually. Refer to:

v Building .NET common language runtime (CLR) routines in Visual Studio .NET

v Building .NET common language runtime (CLR) routines using DB2 Command

Window

The programming language specific sample build scripts for building C# and

Visual Basic .NET CLR routines are named bldrtn. They are located in DB2

directories along with sample programs that can be built with them as follows:

v For C: sqllib/samples/cs/

v For C++: sqllib/samples/vb/

The bldrtn scripts can be used to build source code files containing both

procedures and user-defined functions. The script does the following:

v Establishes a connection with a user-specified database

v Compiles and links the source code to generate an assembly with a .DLL file

suffix

v Copies the assembly to the DB2 function directory on the database server

The bldrtn scripts accept two arguments:

v The name of a source code file without any file suffix

v The name of a database to which a connection will be established

The database parameter is optional. If no database name is supplied, the program

uses the default sample database. Since routines must be built on the same

instance where the database resides, no arguments are required for a user ID and

password.

Prerequisites

v The required .NET CLR routine operating system and development

software prerequisites must be satisfied. See: ″Support for .NET CLR

routine development″.

v Source code file containing one or more routine implementations.

52 Developing ADO.NET and OLE DB Applications

v The name of the database within the current DB2 instance in which the

routines are to be created.

Procedure

 To build a source code file that contains one or more routine code

implementations, follow the steps below.

1. Open a DB2 Command Window.

2. Copy your source code file into the same directory as thebldrtnscript

file.

3. If the routines will be created in the sample database, enter the build

script name followed by the name of the source code file without the

.cs or .vb file extension:

 bldrtn <file-name>

If the routines will be created in another database, enter the build script

name, the source code file name without any file extension, and the

database name:

 bldrtn <file-name> <database-name>

The script compiles and links the source code and produces an

assembly. The script then copies the assembly to the function directory

on the database server

4. If this is not the first time that the source code file containing the

routine implementations was built, stop and restart the database to

ensure the new version of the shared library is used by DB2. You can

do this by entering db2stop followed by db2start on the command

line.

 Once you have successfully built the routine shared library and deployed it to the

function directory on the database server, you should complete the steps associated

with the task of creating C and C++ routines.

Creating .NET CLR routines includes a step for executing the CREATE statement

for each routine that was implemented in the source code file. After routine

creation is completed you can invoke your routines.

Building .NET common language runtime (CLR) routine code

from DB2 Command Window

Building .NET CLR routine source code is a sub-task of creating .NET CLR

routines. This task can be done manually from DB2 Command Window. The same

procedure can be followed regardless of whether there are SQL statements within

the routine code or not. The task steps include compilation of source code written

in a .NET CLR supported programming language into an assembly with a .DLL

file suffix.

As alternatives, you can simplify the task of building .NET CLR routine code by

doing so in Visual Studio .NET or by using DB2 sample build scripts. Refer to:

v Building .NET common language runtime (CLR) routines in Visual Studio .NET

v Building .NET common language runtime (CLR) routines using sample build

scripts

Prerequisites

Chapter 3. .NET common language runtime (CLR) routines 53

v Required operating system and .NET CLR routine development software

prerequisites have been satisfied. See: ″Support for .NET CLR routine

development″.

v Source code written in a supported .NET CLR programming language

containing one or more .NET CLR routine implementations.

v The name of the database within the current DB2 instance in which the routines

are to be created.

v The operating specific compile and link options required for building .NET CLR

routines.

To build a source code file that contains one or more .NET CLR routine code

implementations, follow the steps below. An example follows that demonstrates

each of the steps:

1. Open a DB2 Command Window.

2. Navigate to the directory that contains your source code file.

3. Establish a connection with the database in which the routines will be created.

4. Compile the source code file.

5. Link the source code file to generate a shared library. This requires the use of

some DB2 specific compile and link options.

6. Copy the assembly file with the .DLL file suffix to the DB2 function directory

on the database server.

7. If this is not the first time that the source code file containing the routine

implementations was built, stop and restart the database to ensure the new

version of the shared library is used by DB2. You can do this by issuing the

db2stop command followed by the db2start command.

Once you have successfully built and deployed the routine library, you should

complete the steps associated with the task of creating .NET CLR routines.

Creating .NET CLR routines includes a step for executing the CREATE statement

for each routine that was implemented in the source code file. This step must also

be completed before you will be able to invoke the routines.

Example

The following example demonstrates the re-building of a .NET CLR source code

file. Steps are shown for both a Visual Basic code file named myVBfile.vb

containing routine implementations as well as for a C# code file named

myCSfile.cs. The routines are being built on a Windows 2000 operating system

using Microsoft .NET Framework 1.1 to generate a 64-bit assembly.

1. Open a DB2 Command Window.

2. Navigate to the directory that contains your source code file.

3. Establish a connection with the database in which the routines will be created.

 db2 connect to <database-name>

4. Compile the source code file using the recommended compile and link options

(where $DB2PATH is the install path of the DB2 instance. Replace this value

before running the command):

 C# example

 ===================

 csc /out:myCSfile.dll /target:library

 /reference:$DB2PATH%\bin\netf11\IBM.Data.DB2.dll myCSfile.cs

 Visual Basic example

 ====================

54 Developing ADO.NET and OLE DB Applications

vbc /target:library /libpath:$DB2PATH\bin\netf11

 /reference:$DB2PATH\bin\netf11\IBM.Data.DB2.dll

 /reference:System.dll

 /reference:System.Data.dll myVBfile.vb

The compiler will generate output if there are any errors. This step generates an

export file named myfile.exp.

5. Copy the shared library to the DB2 function directory on the database server.

 C# example

 ====================

 rm -f ~HOME/sqllib/function/myCSfile.DLL

 cp myCSfile $HOME/sqllib/function/myCSfile.DLL

 Visual Basic example

 ====================

 rm -f ~HOME/sqllib/function/myVBfile.DLL

 cp myVBfile $HOME/sqllib/function/myVBfile.DLL

This step ensures that the routine library is in the default directory where DB2

looks for routine libraries. Refer to the topic on creating .NET CLR routines for

more on deploying routine libraries.

6. Stop and restart the database as this is a re-building of a previously built

routine source code file.

 db2stop

 db2start

Building .NET CLR routines is generally most easily done using the operating

specific sample build scripts which also can be used as a reference for how to

build routines from the command line.

CLR .NET routine compile and link options

The following are the compile and link options recommended by DB2 for building

Common Language Runtime (CLR) .NET routines on Windows with either the

Microsoft Visual Basic .NET compiler or the Microsoft C# compiler, as

demonstrated in the samples\.NET\cs\bldrtn.bat and samples\.NET\vb\bldrtn.bat

batch files.

 Compile and link options for bldrtn

Compile and link options using the Microsoft C# compiler:

csc The Microsoft C# compiler.

/out:%1.dll /target:library

Output the dynamic link library as a stored procedure assembly dll.

/debug Use the debugger.

/lib: "%DB2PATH%"\bin\netf20\

Use the library path for .NET Framework Version 2.0.

 There are three supported versions of the .NET framework for applications:

version 1.1, version 2.0, and version 3.0. There is a dynamic link library for each

in separate sub-directories. For .NET Framework Version 1.1, use the

"%DB2PATH%"\bin\netf11 sub-directory. For .NET Framework Version 2.0 and 3.0,

use the "%DB2PATH%"\bin\netf20 sub-directory.

/reference:IBM.Data.DB2.dll

Use the DB2 dynamic link library for the IBM Data Server Provider for .NET

Refer to your compiler documentation for additional compiler options.

Chapter 3. .NET common language runtime (CLR) routines 55

Compile and link options using the Microsoft Visual Basic .NET compiler:

vbc The Microsoft Visual Basic .NET compiler.

/out:%1.dll /target:library

Output the dynamic link library as a stored procedure assembly dll.

/debug Use the debugger.

/libpath:"%DB2PATH%"\bin\netf20\

Use the library path for .NET Framework Version 2.0.

 There are three supported versions of the .NET framework for applications:

version 1.1, version 2.0, and version 3.0. There is a dynamic link library for each

in separate sub-directories. For .NET Framework Version 1.1, use the

"%DB2PATH%"\bin\netf11 sub-directory. For .NET Framework Version 2.0 and 3.0,

use the "%DB2PATH%"\bin\netf20 sub-directory.

/reference:IBM.Data.DB2.dll

Use the DB2 dynamic link library for the IBM Data Server Provider for .NET.

/reference:System.dll

Reference the Microsoft Windows System dynamic link library.

/reference:System.Data.dll

Reference the Microsoft Windows System Data dynamic link library.

Refer to your compiler documentation for additional compiler options.

Debugging .NET CLR routines

Debugging .NET CLR routines might be required if you fail to be able to create a

routine, invoke a routine, or if upon invocation a routine does not behave or

perform as expected.

Consider the following when debugging .NET CLR routines:

v Verify that a supported operating system for .NET CLR routine development is

being used.

v Verify that both a supported DB2 database server and DB2 client for .NET CLR

routine development are being used.

v Verify that supported Microsoft .NET Framework development software is being

used.

v If routine creation failed:

– Verify that the user has the required authority and privileges to execute the

CREATE PROCEDURE or CREATE FUNCTION statement.
v If routine invocation failed:

– Verify that the user has authority to execute the routine. If an error

(SQLCODE -551, SQLSTATE 42501), this is likely because the invoker does

not have the EXECUTE privilege on the routine. This privilege can be granted

by a user with SYSADM authorization, DBADM authorization, or by the

definer of the routine.

– Verify that the routine parameter signature used in the CREATE statement for

the routine matches the routine parameter signature in the routine

implementation.

– Verify that the data types used in the routine implementation are compatible

with the data types specified in the routine parameter signature in the

CREATE statement.

56 Developing ADO.NET and OLE DB Applications

– Verify that in the routine implementation that the .NET CLR language specific

keywords used to indicate the method by which the parameter must be

passed (by value or by reference) are valid.

– Verify that the value specified in the EXTERNAL clause in the CREATE

PROCEDURE or CREATE FUNCTION statement matches the location where

the .NET CLR assembly that contains the routine implementation is located

on the file system of the computer where the DB2 database server is installed.

– If the routine is a function, verify that all of the applicable call types have

been programmed correctly in the routine implementation. This is particularly

important if the routine was defined with the FINAL CALL clause.
v If the routine is not behaving as expected:

– Modify your routine such that it outputs diagnostic information to a file

located in a globally accessible directory. Output of diagnostic information to

the screen is not possible from .NET CLR routines. Do not direct output to

files in directories used by DB2 database managers or DB2 databases.

– Debug your routine locally by writing a simple .NET application that invokes

the routine entry point directly. For information on how to use debugging

features in Microsoft Visual Studio .NET, consult the Microsoft Visual Studio

.NET compiler documentation.

For more information on common errors related to .NET CLR routine creation and

invocation, see:

v “Errors related to .NET CLR routines”

Errors related to .NET CLR routines

Although external routines share a generally common implementation, there are

some DB2 errors that might arise that are specific to CLR routines. This reference

lists the most commonly encountered .NET CLR related errors listed by their

SQLCODE or behavior along with some debugging suggestions. DB2 errors related

to routines can be classified as follows:

Routine creation time errors

Errors that arise when the CREATE statement for the routine is executed.

Routine runtime errors

Errors that arise during the routine invocation or execution.

Regardless of when a DB2 routine related error is raised by DB2, the error message

text details the cause of the error and the action that the user should take to

resolve the problem. Additional routine error scenario information can be found in

the db2diag.log diagnostic log file.

CLR routine creation time errors

SQLCODE -451, SQLSTATE 42815

This error is raised upon an attempt to execute a CREATE TYPE statement

that includes an external method declaration specifying the LANGUAGE

clause with value CLR. You can not create DB2 external methods for

structured types that reference a CLR assembly at this time. Change the

LANGUAGE clause so that it specifies a supported language for the

method and implement the method in that alternate language.

SQLCODE -449, SQLSTATE 42878

The CREATE statement for the CLR routine contains an invalidly

formatted library or function identification in the EXTERNAL NAME

Chapter 3. .NET common language runtime (CLR) routines 57

clause. For language CLR, the EXTERNAL clause value must specifically

take the form: ’<a>:!<c>’ as follows:

v <a> is the CLR assembly file in which the class is located.

v is the class in which the method to invoke resides.

v <c> is the method to invoke.

No leading or trailing blank characters are permitted between the single

quotation marks, object identifiers, and the separating characters (for

example, ’ <a> ! ’ is invalid). Path and file names, however, can

contain blanks if the platform permits. For all file names, the file can be

specified using either the short form of the name (example: math.dll) or

the fully qualified path name (example: d:\udfs\math.dll). If the short

form of the file name is used, if the platform is UNIX or if the routine is a

LANGUAGE CLR routine, then the file must reside in the function

directory. If the platform is Windows and the routine is not a LANGUAGE

CLR routine then the file must reside in the system PATH. File extensions

(examples: .a (on UNIX), .dll (on Windows)) should always be included

in the file name.

CLR routine runtime errors

SQLCODE -20282, SQLSTATE 42724, reason code 1

The external assembly specified by the EXTERNAL clause in the CREATE

statement for the routine was not found.

v Check that the EXTERNAL clause specifies the correct routine assembly

name and that the assembly is located in the specified location. If the

EXTERNAL clause does not specify a fully qualified path name to the

desired assembly, DB2 presumes that the path name provided is a

relative path name to the assembly, relative to the DB2 function

directory.

SQLCODE -20282, SQLSTATE 42724, reason code 2

An assembly was found in the location specified by the EXTERNAL clause

in the CREATE statement for the routine, but no class was found within

the assembly to match the class specified in the EXTERNAL clause.

v Check that the assembly name specified in the EXTERNAL clause is the

correct assembly for the routine and that it exists in the specified

location.

v Check that the class name specified in the EXTERNAL clause is the

correct class name and that it exists in the specified assembly.

SQLCODE -20282, SQLSTATE 42724, reason code 3

An assembly was found in the location specified by the EXTERNAL clause

in the CREATE statement for the routine, that had a correctly matching

class definition, but the routine method signature does not match the

routine signature specified in the CREATE statement for the routine.

v Check that the assembly name specified in the EXTERNAL clause is the

correct assembly for the routine and that it exists in the specified

location.

v Check that the class name specified in the EXTERNAL clause is the

correct class name and that it exists in the specified assembly.

v Check that the parameter style implementation matches the parameter

style specified in the CREATE statement for the routine.

58 Developing ADO.NET and OLE DB Applications

v Check that the order of the parameter implementation matches the

parameter declaration order in the CREATE statement for the routine

and that it respects the extra parameter requirements for the parameter

style.

v Check that the SQL parameter data types are correctly mapped to CLR

.NET supported data types.

SQLCODE -4301, SQLSTATE 58004, reason code 5 or 6

An error occurred while attempting to start or communicate with a .NET

interpreter. DB2 was unable to load a dependent .NET library [reason code

5] or a call to the .NET interpreter failed [reason code 6].

v Ensure that the DB2 instance is configured correctly to run a .NET

procedure or function (mscoree.dll must be present in the system PATH).

Ensure that db2clr.dll is present in the sqllib/bin directory, and that

IBM.Data.DB2 is installed in the global assembly cache. If these are not

present, ensure that the .NET Framework version 1.1, or a later version, is

installed on the database server, and that the database server is running

DB2 version 8.2 or a later release.

SQLCODE -4302, SQLSTATE 38501

 An unhandled exception occurred while executing, preparing to execute, or

subsequent to executing the routine. This could be the result of a routine

logic programming error that was unhandled or could be the result of an

internal processing error. For errors of this type, the .NET stack traceback

that indicates where the unhandled exception occurred will be written to

the db2diag.log.

This error can also occur if the routine attempted an action that is beyond

the scope of allowed actions for the specified execution mode for the

routine. In this case, an entry will be made in the db2diag.log specifically

indicating that the exception occurred due to an execution control

violation. The exception stack traceback that indicates where the violation

occurred will also be included.

Determine if the assembly of the routine has been compromised or recently

modified. If the routine has been validly modified, this problem can be

occurring because the EXECUTION CONTROL mode for the routine is no

longer set to a mode that is appropriate for the changed logic. If you are

certain that the assembly has not been wrongfully tampered with, you can

modify the routine’s execution mode with the ALTER PROCEDURE or

ALTER FUNCTION statement as appropriate. Refer to the following topic

for more information:

v “Security and execution modes for CLR routines” on page 46

Examples of .NET CLR routines

When developing .NET CLR routines, it is helpful to refer to examples to get a

sense of what the CREATE statement and the .NET CLR routine code should look

like. The following topics contain examples of .NET CLR procedures and functions

(including both scalar and table functions):

.NET CLR procedures

v Examples of Visual Basic .NET CLR procedures

v Examples of C# .NET CLR procedures

.NET CLR functions

Chapter 3. .NET common language runtime (CLR) routines 59

v Examples of Visual Basic .NET CLR functions

v Examples of C# .NET CLR functions

Examples of C# .NET CLR procedures

Once the basics of procedures, also called stored procedures, and the essentials of

.NET common language runtime routines are understood, you can start using CLR

procedures in your applications.

This topic contains examples of CLR procedures implemented in C# that illustrate

the supported parameter styles, passing parameters, including the dbinfo structure,

how to return a result set and more. For examples of CLR UDFs in C#:

v “Examples of C# .NET CLR functions” on page 94

Before working with the CLR procedure examples you might want to read the

following concept topics:

v Chapter 3, “.NET common language runtime (CLR) routines,” on page 39

v “Creating .NET CLR routines from DB2 Command Window” on page 49

v “Building common language runtime (CLR) .NET routines” in Developing

ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own C# CLR

procedures:

v The C# external code file

v Example 1: C# parameter style GENERAL procedure

v Example 2: C# parameter style GENERAL WITH NULLS procedure

v Example 3: C# parameter style SQL procedure

v Example 4: C# procedure returning a result set

v Example 5: C# procedure accessing the dbinfo structure

v Example 6: C# procedure in PROGRAM TYPE MAIN style

The C# external code file

 The examples show a variety of C# procedure implementations. Each

example consists of two parts: the CREATE PROCEDURE statement and

the external C# code implementation of the procedure from which the

associated assembly can be built.

The C# source file that contains the procedure implementations of the

following examples is named gwenProc.cs and has the following format:

60 Developing ADO.NET and OLE DB Applications

Table 4. C# external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 namespace bizLogic

 {

 class empOps

 { ...

 // C# procedures

 ...

 }

 }

The file inclusions are indicated at the top of the file. The IBM.Data.DB2

inclusion is required if any of the procedures in the file contain SQL. There

is a namespace declaration in this file and a class empOps that contains the

procedures. The use of namespaces is optional. If a namespace is used, the

namespace must appear in the assembly path name provided in the

EXTERNAL clause of the CREATE PROCEDURE statement.

It is important to note the name of the file, the namespace, and the name

of the class, that contains a given procedure implementation. These names

are important, because the EXTERNAL clause of the CREATE

PROCEDURE statement for each procedure must specify this information

so that DB2 can locate the assembly and class of the CLR procedure.

Example 1: C# parameter style GENERAL procedure

This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

procedure

v C# code for a parameter style GENERAL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus is calculated, based on the employee’s salary,

and returned along with the employee’s full name. If the employee is not

found, an empty string is returned.

 Table 5. Code to create a C# parameter style GENERAL procedure

 CREATE PROCEDURE setEmpBonusGEN(IN empID CHAR(6), INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpBonusGEN

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 MODIFIES SQL DATA

 EXECUTION CONTROL SAFE

 FENCED

 THREADSAFE

 DYNAMIC RESULT SETS 0

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!SetEmpBonusGEN’ ;

Chapter 3. .NET common language runtime (CLR) routines 61

Table 5. Code to create a C# parameter style GENERAL procedure (continued)

 public static void SetEmpBonusGEN(String empID,

 ref Decimal bonus,

 out String empName)

 {

 // Declare local variables

 Decimal salary = 0;

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + ’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 empName = reader.GetString(0) + " " +

 reader.GetString(1) + ". " +

 reader.GetString(2);

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 bonus = salary * (Decimal)0.025;

 }

 else

 {

 bonus = salary * (Decimal)0.05;

 }

 }

 }

 else // Employee not found

 {

 empName = ""; // Set output parameter

 }

 reader.Close();

 }

Example 2: C# parameter style GENERAL WITH NULLS procedure

This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

WITH NULLS procedure

v C# code for a parameter style GENERAL WITH NULLS procedure

This procedure takes an employee ID and a current bonus amount as

input. If the input parameter is not null, it retrieves the employee’s name

and salary. If the current bonus amount is zero, a new bonus based on

salary is calculated and returned along with the employee’s full name. If

the employee data is not found, a NULL string and integer is returned.

62 Developing ADO.NET and OLE DB Applications

Table 6. Code to create a C# parameter style GENERAL WITH NULLS procedure

 CREATE PROCEDURE SetEmpbonusGENNULL(IN empID CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpbonusGENNULL

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 DYNAMIC RESULT SETS 0

 MODIFIES SQL DATA

 EXECUTION CONTROL SAFE

 FENCED

 THREADSAFE

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!SetEmpBonusGENNULL’

 ;

Chapter 3. .NET common language runtime (CLR) routines 63

Table 6. Code to create a C# parameter style GENERAL WITH NULLS

procedure (continued)

 public static void SetEmpBonusGENNULL(String empID,

 ref Decimal bonus,

 out String empName,

 Int16[] NullInds)

 {

 Decimal salary = 0;

 if (NullInds[0] == -1) // Check if the input is null

 {

 NullInds[1] = -1; // Return a NULL bonus value

 empName = ""; // Set output value

 NullInds[2] = -1; // Return a NULL empName value

 }

 else

 {

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + "’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 empName = reader.GetString(0) + " "

 +

 reader.GetString(1) + ". " +

 reader.GetString(2);

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 bonus = salary * (Decimal)0.025;

 NullInds[1] = 0; // Return a non-NULL value

 }

 else

 {

 bonus = salary * (Decimal)0.05;

 NullInds[1] = 0; // Return a non-NULL value

 }

 }

 }

 else // Employee not found

 {

 empName = "*sdq;; // Set output parameter

 NullInds[2] = -1; // Return a NULL value

 }

 reader.Close();

 }

 }

Example 3: C# parameter style SQL procedure

This example shows the following:

v CREATE PROCEDURE statement for a parameter style SQL procedure

v C# code for a parameter style SQL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus based on salary is calculated and returned

64 Developing ADO.NET and OLE DB Applications

along with the employee’s full name. If the employee is not found, an

empty string is returned.

 Table 7. Code to create a C# procedure in parameter style SQL with parameters

 CREATE PROCEDURE SetEmpbonusSQL(IN empID CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpbonusSQL

 LANGUAGE CLR

 PARAMETER STYLE SQL

 DYNAMIC RESULT SETS 0

 MODIFIES SQL DATA

 FENCED

 THREADSAFE

 EXECUTION CONTROL SAFE

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!SetEmpBonusSQL’ ;

Chapter 3. .NET common language runtime (CLR) routines 65

Table 7. Code to create a C# procedure in parameter style SQL with

parameters (continued)

 public static void SetEmpBonusSQL(String empID,

 ref Decimal bonus,

 out String empName,

 Int16 empIDNullInd,

 ref Int16 bonusNullInd,

 out Int16 empNameNullInd,

 ref string sqlStateate,

 string funcName,

 string specName,

 ref string sqlMessageText)

 {

 // Declare local host variables

 Decimal salary eq; 0;

 if (empIDNullInd == -1) // Check if the input is null

 {

 bonusNullInd = -1; // Return a NULL bonus value

 empName = "";

 empNameNullInd = -1; // Return a NULL empName value

 }

 else

 {

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY

 "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + "’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 empName = reader.GetString(0) + " "

 +

 reader.GetString(1) + ". " +

 reader.GetString(2);

 empNameNullInd = 0;

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 bonus = salary * (Decimal)0.025;

 bonusNullInd = 0; // Return a non-NULL value

 }

 else

 {

 bonus = salary * (Decimal)0.05;

 bonusNullInd = 0; // Return a non-NULL value

 }

 }

 }

 else // Employee not found

 {

 empName = ""; // Set output parameter

 empNameNullInd = -1; // Return a NULL value

 }

 reader.Close();

 }

 }

66 Developing ADO.NET and OLE DB Applications

Example 4: C# parameter style GENERAL procedure returning a result set

This example shows the following:

v CREATE PROCEDURE statement for an external C# procedure returning

a result set

v C# code for a parameter style GENERAL procedure that returns a result

set

This procedure accepts the name of a table as a parameter. It returns a

result set containing all the rows of the table specified by the input

parameter. This is done by leaving a DB2DataReader for a given query

result set open when the procedure returns. Specifically, if reader.Close()

is not executed, the result set will be returned.

 Table 8. Code to create a C# procedure that returns a result set

 CREATE PROCEDURE ReturnResultSet(IN tableName

 VARCHAR(20))

 SPECIFIC ReturnResultSet

 DYNAMIC RESULT SETS 1

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!ReturnResultSet’ ;

 public static void ReturnResultSet(string tableName)

 {

 DB2Command myCommand = DB2Context.GetCommand();

 // Set the SQL statement to be executed and execute it.

 myCommand.CommandText = "SELECT * FROM " + tableName;

 DB2DataReader reader = myCommand.ExecuteReader();

 // The DB2DataReader contains the result of the query.

 // This result set can be returned with the procedure,

 // by simply NOT closing the DB2DataReader.

 // Specifically, do NOT execute reader.Close();

 }

Example 5: C# parameter style SQL procedure accessing the dbinfo structure

This example shows the following:

v CREATE PROCEDURE statement for a procedure accessing the dbinfo

structure

v C# code for a parameter style SQL procedure that accesses the dbinfo

structure

To access the dbinfo structure, the DBINFO clause must be specified in the

CREATE PROCEDURE statement. No parameter is required for the dbinfo

structure in the CREATE PROCEDURE statement however a parameter

must be created for it, in the external routine code. This procedure returns

only the value of the current database name from the dbname field in the

dbinfo structure.

Chapter 3. .NET common language runtime (CLR) routines 67

Table 9. Code to create a C# procedure that accesses the dbinfo structure

 CREATE PROCEDURE ReturnDbName(OUT dbName VARCHAR(20))

 SPECIFIC ReturnDbName

 DYNAMIC RESULT SETS 0

 LANGUAGE CLR

 PARAMETER STYLE SQL

 FENCED

 THREADSAFE

 EXECUTION CONTROL SAFE

 DBINFO

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!ReturnDbName’

 ;

 public static void ReturnDbName(out string dbName,

 out Int16 dbNameNullInd,

 ref string sqlState,

 string funcName,

 string specName,

 ref string sqlMessageText,

 sqludf_dbinfo dbinfo)

 {

 // Retrieve the current database name from the

 // dbinfo structure and return it.

 // ** Note! ** dbinfo field names are case sensitive

 dbName = dbinfo.dbname;

 dbNameNullInd = 0; // Return a non-null value;

 // If you want to return a user-defined error in

 // the SQLCA you can specify a 5 digit user-defined

 // sqlStateate and an error message string text.

 // For example:

 //

 // sqlStateate = "ABCDE";

 // sqlMessageText = "A user-defined error has occurred"

 //

 // DB2 returns the above values to the client in the

 // SQLCA structure. The values are used to generate a

 // standard DB2 sqlStateate error.

 }

Example 6: C# procedure with PROGRAM TYPE MAIN style

This example shows the following:

v CREATE PROCEDURE statement for a procedure using a main program

style

v C# parameter style GENERAL WITH NULLS code in using a MAIN

program style

To implement a routine in a main program style, the PROGRAM TYPE

clause must be specified in the CREATE PROCEDURE statement with the

value MAIN. Parameters are specified in the CREATE PROCEDURE

statement however in the code implementation, parameters are passed into

the routine in an argc integer parameter and an argv array of parameters.

68 Developing ADO.NET and OLE DB Applications

Table 10. Code to create a C# procedure in program type MAIN style

 CREATE PROCEDURE MainStyle(IN empID CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC MainStyle

 DYNAMIC RESULT SETS 0

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 MODIFIES SQL DATA

 FENCED

 THREADSAFE

 EXECUTION CONTROL SAFE

 PROGRAM TYPE MAIN

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!main’ ;

Chapter 3. .NET common language runtime (CLR) routines 69

Table 10. Code to create a C# procedure in program type MAIN style (continued)

 public static void main(Int32 argc, Object[]

 argv)

 {

 String empID = (String)argv[0]; // argv[0] has nullInd:argv[3]

 Decimal bonus = (Decimal)argv[1]; // argv[1] has nullInd:argv[4]

 // argv[2] has nullInd:argv[5]

 Decimal salary = 0;

 Int16[] NullInds = (Int16[])argv[3];

 if ((NullInds[0]) == (Int16)(-1)) // Check if empID is null

 {

 NullInds[1] = (Int16)(-1); // Return a NULL bonus value

 argv[1] = (String)""; // Set output parameter empName

 NullInds[2] = (Int16)(-1); // Return a NULL empName value

 Return;

 }

 else

 {

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, salary "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + "’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 argv[2] = (String) (reader.GetString(0) + " " +

 reader.GetString(1) + ".

 " +

 reader.GetString(2));

 NullInds[2] = (Int16)0;

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 argv[1] = (Decimal)(salary * (Decimal)0.025);

 NullInds[1] = (Int16)(0); // Return a non-NULL value

 }

 else

 {

 argv[1] = (Decimal)(salary * (Decimal)0.05);

 NullInds[1] = (Int16)(0); // Return a non-NULL value

 }

 }

 }

 else // Employee not found

 {

 argv[2] = (String)(""); // Set output parameter

 NullInds[2] = (Int16)(-1); // Return a NULL value

 }

 reader.Close();

 }

 }

70 Developing ADO.NET and OLE DB Applications

Examples of Visual Basic .NET CLR functions

Once you understand the basics of user-defined functions (UDFs), and the

essentials of CLR routines, you can start exploiting CLR UDFs in your applications

and database environment. This topic contains some examples of CLR UDFs to get

you started. For examples of CLR procedures in Visual Basic:

v “Examples of Visual Basic .NET CLR procedures” on page 76

Before working with the CLR UDF examples you may want to read the following

concept topics:

v Chapter 3, “.NET common language runtime (CLR) routines,” on page 39

v “Creating .NET CLR routines from DB2 Command Window” on page 49

v “External scalar functions” on page 8

v “Building common language runtime (CLR) .NET routines” in Developing

ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own Visual Basic

CLR UDFs:

v The Visual Basic external code file

v Example 1: Visual Basic parameter style SQL table function

v Example 2: Visual Basic parameter style SQL scalar function

The Visual Basic external code file

 The following examples show a variety of Visual Basic UDF

implementations. The CREATE FUNCTION statement is provided for each

UDF with the corresponding Visual Basic source code from which the

associated assembly can be built. The Visual Basic source file that contains

the functions declarations used in the following examples is named

gwenVbUDF.cs and has the following format:

 Table 11. Visual Basic external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 Namespace bizLogic

 ...

 ’ Class definitions that contain UDF declarations

 ’ and any supporting class definitions

 ...

End Namespace

The function declarations must be contained in a class within a Visual

Basic file. The use of namespaces is optional. If a namespace is used, the

namespace must appear in the assembly path name provided in the

EXTERNAL clause of the CREATE PROCEDURE statement. The

IBM.Data.DB2. inclusion is required if the function contains SQL.

Example 1: Visual Basic parameter style SQL table function

 This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL table function

Chapter 3. .NET common language runtime (CLR) routines 71

v Visual Basic code for a parameter style SQL table function

This table function returns a table containing rows of employee data that

was created from a data array. There are two classes associated with this

example. Class person represents the employees, and the class empOps

contains the routine table UDF that uses class person. The employee salary

information is updated based on the value of an input parameter. The data

array in this example is created within the table function itself on the first

call of the table function. Such an array could have also been created by

reading in data from a text file on the filesystem. The array data values are

written to a scratchpad so that the data can be accessed in subsequent calls

of the table function.

On each call of the table function, one record is read from the array and

one row is generated in the table that is returned by the function. The row

is generated in the table, by setting the output parameters of the table

function to the desired row values. After the final call of the table function

occurs, the table of generated rows is returned.

 Table 12. Code to create a Visual Basic parameter style SQL table function

 CREATE FUNCTION TableUDF(double)

 RETURNS TABLE (name varchar(20),

 job varchar(20),

 salary double)

 EXTERNAL NAME ’gwenVbUDF.dll:bizLogic.empOps!TableUDF’

 LANGUAGE CLR

 PARAMETER STYLE SQL

 NOT DETERMINISTIC

 FENCED

 SCRATCHPAD 10

 FINAL CALL

 DISALLOW PARALLEL

 NO DBINFO

 EXECUTION CONTROL SAFE

72 Developing ADO.NET and OLE DB Applications

Table 12. Code to create a Visual Basic parameter style SQL table function (continued)

 Class Person

 ’ The class Person is a supporting class for

 ’ the table function UDF, tableUDF, below.

 Private name As String

 Private position As String

 Private salary As Int32

 Public Sub New(ByVal newName As String, _

 ByVal newPosition As String, _

 ByVal newSalary As Int32)

 name = newName

 position = newPosition

 salary = newSalary

 End Sub

 Public Property GetName() As String

 Get

 Return name

 End Get

 Set (ByVal value As String)

 name = value

 End Set

 End Property

 Public Property GetPosition() As String

 Get

 Return position

 End Get

 Set (ByVal value As String)

 position = value

 End Set

 End Property

 Public Property GetSalary() As Int32

 Get

 Return salary

 End Get

 Set (ByVal value As Int32)

 salary = value

 End Set

 End Property

 End Class

Chapter 3. .NET common language runtime (CLR) routines 73

Table 12. Code to create a Visual Basic parameter style SQL table function (continued)

 Class empOps

 Public Shared Sub TableUDF(byVal factor as Double, _

 byRef name As String, _

 byRef position As String, _

 byRef salary As Double, _

 byVal factorNullInd As Int16, _

 byRef nameNullInd As Int16, _

 byRef positionNullInd As Int16, _

 byRef salaryNullInd As Int16, _

 byRef sqlState As String, _

 byVal funcName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String, _

 byVal scratchPad As Byte(), _

 byVal callType As Int32)

 Dim intRow As Int16

 intRow = 0

 ’ Create an array of Person type information

 Dim staff(2) As Person

 staff(0) = New Person("Gwen", "Developer", 10000)

 staff(1) = New Person("Andrew", "Developer", 20000)

 staff(2) = New Person("Liu", "Team Leader", 30000)

 ’ Initialize output parameter values and NULL indicators

 salary = 0

 name = position = ""

 nameNullInd = positionNullInd = salaryNullInd = -1

 Select callType

 Case -2 ’ Case SQLUDF_TF_FIRST:

 Case -1 ’ Case SQLUDF_TF_OPEN:

 intRow = 1

 scratchPad(0) = intRow ’ Write to scratchpad

 Case 0 ’ Case SQLUDF_TF_FETCH:

 intRow = scratchPad(0)

 If intRow > staff.Length

 sqlState = "02000" ’ Return an error SQLSTATE

 Else

 ’ Generate a row in the output table

 ’ based on the staff array data.

 name = staff(intRow).GetName()

 position = staff(intRow).GetPosition()

 salary = (staff(intRow).GetSalary()) * factor

 nameNullInd = 0

 positionNullInd = 0

 salaryNullInd = 0

 End If

 intRow = intRow + 1

 scratchPad(0) = intRow ’ Write scratchpad

 Case 1 ’ Case SQLUDF_TF_CLOSE:

 Case 2 ’ Case SQLUDF_TF_FINAL:

 End Select

 End Sub

 End Class

Example 2: Visual Basic parameter style SQL scalar function

74 Developing ADO.NET and OLE DB Applications

This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL scalar

function

v Visual Basic code for a parameter style SQL scalar function

This scalar function returns a single count value for each input value that

it operates on. For an input value in the nth position of the set of input

values, the output scalar value is the value n. On each call of the scalar

function, where one call is associated with each row or value in the input

set of rows or values, the count is increased by one and the current value

of the count is returned. The count is then saved in the scratchpad memory

buffer to maintain the count value between each call of the scalar function.

This scalar function can be easily invoked if for example we have a table

defined as follows:

 CREATE TABLE T (i1 INTEGER);

 INSERT INTO T VALUES 12, 45, 16, 99;

A simple query such as the following can be used to invoke the scalar

function:

 SELECT my_count(i1) as count, i1 FROM T;

The output of such a query would be:

 COUNT I1

 ----------- ----------

 1 12

 2 45

 3 16

 4 99

This scalar UDF is quite simple. Instead of returning just the count of the

rows, you could use a scalar function to format data in an existing column.

For example you might append a string to each value in an address

column or you might build up a complex string from a series of input

strings or you might do a complex mathematical evaluation over a set of

data where you must store an intermediate result.

 Table 13. Code to create a Visual Basic parameter style SQL scalar function

 CREATE FUNCTION mycount(INTEGER)

 RETURNS INTEGER

 LANGUAGE CLR

 PARAMETER STYLE SQL

 NO SQL

 SCRATCHPAD 10

 FINAL CALL

 FENCED

 EXECUTION CONTROL SAFE

 NOT DETERMINISTIC

 EXTERNAL NAME ’gwenUDF.dll:bizLogic.empOps!CountUp’;

Chapter 3. .NET common language runtime (CLR) routines 75

Table 13. Code to create a Visual Basic parameter style SQL scalar function (continued)

 Class empOps

 Public Shared Sub CountUp(byVal input As Int32, _

 byRef outCounter As Int32, _

 byVal nullIndInput As Int16, _

 byRef nullIndOutCounter As Int16, _

 byRef sqlState As String, _

 byVal qualName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String, _

 byVal scratchPad As Byte(), _

 byVal callType As Int32)

 Dim counter As Int32

 counter = 1

 Select callType

 case -1 ’ case SQLUDF_TF_OPEN_CALL

 scratchPad(0) = counter

 outCounter = counter

 nullIndOutCounter = 0

 case 0 ’case SQLUDF_TF_FETCH_CALL:

 counter = scratchPad(0)

 counter = counter + 1

 outCounter = counter

 nullIndOutCounter = 0

 scratchPad(0) = counter

 case 1 ’case SQLUDF_CLOSE_CALL:

 counter = scratchPad(0)

 outCounter = counter

 nullIndOutCounter = 0

 case Else ’ Should never enter here

 ’ These cases won’t occur for the following reasons:

 ’ Case -2 (SQLUDF_TF_FIRST) —>No FINAL CALL in CREATE stmt

 ’ Case 2 (SQLUDF_TF_FINAL) —>No FINAL CALL in CREATE stmt

 ’ Case 255 (SQLUDF_TF_FINAL_CRA) —>No SQL used in the function

 ’

 ’ * Note!*

 ’ ---------

 ’ The Else is required so that at compile time

 ’ out parameter outCounter is always set *

 outCounter = 0

 nullIndOutCounter = -1

 End Select

 End Sub

 End Class

Examples of Visual Basic .NET CLR procedures

Once the basics of procedures, also called stored procedures, and the essentials of

.NET common language runtime routines are understood, you can start using CLR

procedures in your applications.

This topic contains examples of CLR procedures implemented in Visual Basic;

that illustrate the supported parameter styles, passing parameters, including the

dbinfo structure, how to return a result set and more. For examples of CLR UDFs

in Visual Basic:

v “Examples of Visual Basic .NET CLR functions” on page 71

76 Developing ADO.NET and OLE DB Applications

Before working with the CLR procedure examples you might want to read the

following concept topics:

v Chapter 3, “.NET common language runtime (CLR) routines,” on page 39

v “Creating .NET CLR routines from DB2 Command Window” on page 49

v “Benefits of using routines” on page 5

v “Building common language runtime (CLR) .NET routines” in Developing

ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own Visual Basic

CLR procedures:

v The Visual Basic external code file

v Example 1: Visual Basic parameter style GENERAL procedure

v Example 2: Visual Basic parameter style GENERAL WITH NULLS procedure

v Example 3: Visual Basic parameter style SQL procedure

v Example 4: Visual Basic procedure returning a result set

v Example 5: Visual Basic procedure accessing the dbinfo structure

v Example 6: Visual Basic procedure in PROGRAM TYPE MAIN style

The Visual Basic external code file

 The examples show a variety of Visual Basic procedure implementations.

Each example consists of two parts: the CREATE PROCEDURE statement

and the external Visual Basic code implementation of the procedure from

which the associated assembly can be built.

The Visual Basic source file that contains the procedure implementations of

the following examples is named gwenVbProc.vb and has the following

format:

 Table 14. Visual Basic external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 Namespace bizLogic

 Class empOps

 ...

 ’ Visual Basic procedures

 ...

 End Class

 End Namespace

The file inclusions are indicated at the top of the file. The IBM.Data.DB2

inclusion is required if any of the procedures in the file contain SQL. There

is a namespace declaration in this file and a class empOps that contains the

procedures. The use of namespaces is optional. If a namespace is used, the

namespace must appear in the assembly path name provided in the

EXTERNAL clause of the CREATE PROCEDURE statement.

It is important to note the name of the file, the namespace, and the name

of the class, that contains a given procedure implementation. These names

are important, because the EXTERNAL clause of the CREATE

Chapter 3. .NET common language runtime (CLR) routines 77

PROCEDURE statement for each procedure must specify this information

so that DB2 can locate the assembly and class of the CLR procedure.

Example 1: Visual Basic parameter style GENERAL procedure

 This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

procedure

v Visual Basic code for a parameter style GENERAL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus is calculated, based on the employee salary,

and returned along with the employee’s full name. If the employee is not

found, an empty string is returned.

 Table 15. Code to create a Visual Basic parameter style GENERAL procedure

 CREATE PROCEDURE SetEmpBonusGEN(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC setEmpBonusGEN

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 DYNAMIC RESULT SETS 0

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusGEN’

78 Developing ADO.NET and OLE DB Applications

Table 15. Code to create a Visual Basic parameter style GENERAL procedure (continued)

 Public Shared Sub SetEmpBonusGEN(ByVal empId As String, _

 ByRef bonus As Decimal, _

 ByRef empName As String)

 Dim salary As Decimal

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 salary = 0

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + "FROM EMPLOYEE " _

 + "WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 empName = myReader.GetString(0) + " " _

 + myReader.GetString(1) + ". " _

 + myReader.GetString(2)

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 bonus = salary * 0.025

 Else

 bonus = salary * 0.05

 End If

 End If

 Else ’ Employee not found

 empName = "" ’ Set output parameter

 End If

 myReader.Close()

 End Sub

Example 2: Visual Basic parameter style GENERAL WITH NULLS procedure

 This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

WITH NULLS procedure

v Visual Basic code for a parameter style GENERAL WITH NULLS

procedure

This procedure takes an employee ID and a current bonus amount as

input. If the input parameter is not null, it retrieves the employee’s name

and salary. If the current bonus amount is zero, a new bonus based on

salary is calculated and returned along with the employee’s full name. If

the employee data is not found, a NULL string and integer is returned.

Chapter 3. .NET common language runtime (CLR) routines 79

Table 16. Code to create a Visual Basic parameter style GENERAL WITH NULLS procedure

 CREATE PROCEDURE SetEmpBonusGENNULL(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpBonusGENNULL

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 DYNAMIC RESULT SETS 0

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusGENNULL’

 Public Shared Sub SetEmpBonusGENNULL(ByVal empId As String, _

 ByRef bonus As Decimal, _

 ByRef empName As String, _

 byVal nullInds As Int16())

 Dim salary As Decimal

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 salary = 0

 If nullInds(0) = -1 ’ Check if the input is null

 nullInds(1) = -1 ’ Return a NULL bonus value

 empName = "" ’ Set output parameter

 nullInds(2) = -1 ’ Return a NULL empName value

 Return

 Else

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + "FROM EMPLOYEE " _

 + "WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 empName = myReader.GetString(0) + " " _

 + myReader.GetString(1) + ". " _

 + myReader.GetString(2)

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 bonus = Salary * 0.025

 nullInds(1) = 0 ’Return a non-NULL value

 Else

 bonus = salary * 0.05

 nullInds(1) = 0 ’ Return a non-NULL value

 End If

 Else ’Employee not found

 empName = "" ’ Set output parameter

 nullInds(2) = -1 ’ Return a NULL value

 End If

 End If

 myReader.Close()

 End If

 End Sub

80 Developing ADO.NET and OLE DB Applications

Example 3: Visual Basic parameter style SQL procedure

 This example shows the following:

v CREATE PROCEDURE statement for a parameter style SQL procedure

v Visual Basic code for a parameter style SQL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus based on salary is calculated and returned

along with the employee’s full name. If the employee is not found, an

empty string is returned.

 Table 17. Code to create a Visual Basic procedure in parameter style SQL with parameters

 CREATE PROCEDURE SetEmpBonusSQL(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpBonusSQL

 LANGUAGE CLR

 PARAMETER STYLE SQL

 DYNAMIC RESULT SETS 0

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusSQL’

Chapter 3. .NET common language runtime (CLR) routines 81

Table 17. Code to create a Visual Basic procedure in parameter style SQL with

parameters (continued)

 Public Shared Sub SetEmpBonusSQL(byVal empId As String, _

 byRef bonus As Decimal, _

 byRef empName As String, _

 byVal empIdNullInd As Int16, _

 byRef bonusNullInd As Int16, _

 byRef empNameNullInd As Int16, _

 byRef sqlState As String, _

 byVal funcName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String)

 ’ Declare local host variables

 Dim salary As Decimal

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 salary = 0

 If empIdNullInd = -1 ’ Check if the input is null

 bonusNullInd = -1 ’ Return a NULL Bonus value

 empName = ""

 empNameNullInd = -1 ’ Return a NULL empName value

 Else

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + "FROM EMPLOYEE " _

 + " WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 empName = myReader.GetString(0) + " "

 + myReader.GetString(1) _

 + ". " + myReader.GetString(2)

 empNameNullInd = 0

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 bonus = salary * 0.025

 bonusNullInd = 0 ’ Return a non-NULL value

 Else

 bonus = salary * 0.05

 bonusNullInd = 0 ’ Return a non-NULL value

 End If

 End If

 Else ’ Employee not found

 empName = "" ’ Set output parameter

 empNameNullInd = -1 ’ Return a NULL value

 End If

 myReader.Close()

 End If

 End Sub

Example 4: Visual Basic parameter style GENERAL procedure returning a result

set

 This example shows the following:

82 Developing ADO.NET and OLE DB Applications

v CREATE PROCEDURE statement for an external Visual Basic procedure

returning a result set

v Visual Basic code for a parameter style GENERAL procedure that

returns a result set

This procedure accepts the name of a table as a parameter. It returns a

result set containing all the rows of the table specified by the input

parameter. This is done by leaving a DB2DataReader for a given query

result set open when the procedure returns. Specifically, if reader.Close()

is not executed, the result set will be returned.

 Table 18. Code to create a Visual Basic procedure that returns a result set

 CREATE PROCEDURE ReturnResultSet(IN tableName VARCHAR(20))

 SPECIFIC ReturnResultSet

 DYNAMIC RESULT SETS 1

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!ReturnResultSet’

Public Shared Sub ReturnResultSet(byVal tableName As String)

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 myCommand = DB2Context.GetCommand()

 ’ Set the SQL statement to be executed and execute it.

 myCommand.CommandText = "SELECT * FROM " + tableName

 myReader = myCommand.ExecuteReader()

 ’ The DB2DataReader contains the result of the query.

 ’ This result set can be returned with the procedure,

 ’ by simply NOT closing the DB2DataReader.

 ’ Specifically, do NOT execute reader.Close()

 End Sub

Example 5: Visual Basic parameter style SQL procedure accessing the dbinfo

structure

 This example shows the following:

v CREATE PROCEDURE statement for a procedure accessing the dbinfo

structure

v Visual Basic code for a parameter style SQL procedure that accesses the

dbinfo structure

To access the dbinfo structure, the DBINFO clause must be specified in the

CREATE PROCEDURE statement. No parameter is required for the dbinfo

structure in the CREATE PROCEDURE statement however a parameter

must be created for it, in the external routine code. This procedure returns

only the value of the current database name from the dbname field in the

dbinfo structure.

Chapter 3. .NET common language runtime (CLR) routines 83

Table 19. Code to create a Visual Basic procedure that accesses the dbinfo structure

 CREATE PROCEDURE ReturnDbName(OUT dbName VARCHAR(20))

 SPECIFIC ReturnDbName

 LANGUAGE CLR

 PARAMETER STYLE SQL

 DBINFO

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!ReturnDbName’

 Public Shared Sub ReturnDbName(byRef dbName As String, _

 byRef dbNameNullInd As Int16, _

 byRef sqlState As String, _

 byVal funcName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String, _

 byVal dbinfo As sqludf_dbinfo)

 ’ Retrieve the current database name from the

 ’ dbinfo structure and return it.

 dbName = dbinfo.dbname

 dbNameNullInd = 0 ’ Return a non-null value

 ’ If you want to return a user-defined error in

 ’ the SQLCA you can specify a 5 digit user-defined

 ’ SQLSTATE and an error message string text.

 ’ For example:

 ’

 ’ sqlState = "ABCDE"

 ’ msg_token = "A user-defined error has occurred"

 ’

 ’ These will be returned by DB2 in the SQLCA. It

 ’ will appear in the format of a regular DB2 sqlState

 ’ error.

 End Sub

Example 6: Visual Basic procedure with PROGRAM TYPE MAIN style

 This example shows the following:

v CREATE PROCEDURE statement for a procedure using a main program

style

v Visual Basic parameter style GENERAL WITH NULLS code in using a

MAIN program style

To implement a routine in a main program style, the PROGRAM TYPE

clause must be specified in the CREATE PROCEDURE statement with the

value MAIN. Parameters are specified in the CREATE PROCEDURE

statement however in the code implementation, parameters are passed into

the routine in an argc integer parameter and an argv array of parameters.

 Table 20. Code to create a Visual Basic procedure in program type MAIN style

 CREATE PROCEDURE MainStyle(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC mainStyle

 DYNAMIC RESULT SETS 0

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 FENCED

 PROGRAM TYPE MAIN

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!Main’

84 Developing ADO.NET and OLE DB Applications

Table 20. Code to create a Visual Basic procedure in program type MAIN style (continued)

 Public Shared Sub Main(byVal argc As Int32, _

 byVal argv As Object())

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 Dim empId As String

 Dim bonus As Decimal

 Dim salary As Decimal

 Dim nullInds As Int16()

 empId = argv(0) ’ argv[0] (IN) nullInd = argv[3]

 bonus = argv(1) ’ argv[1] (INOUT) nullInd = argv[4]

 ’ argv[2] (OUT) nullInd = argv[5]

 salary = 0

 nullInds = argv(3)

 If nullInds(0) = -1 ’ Check if the empId input is null

 nullInds(1) = -1 ’ Return a NULL Bonus value

 argv(1) = "" ’ Set output parameter empName

 nullInds(2) = -1 ’ Return a NULL empName value

 Return

 Else

 ’ If the employee exists and the current bonus is 0,

 ’ calculate a new employee bonus based on the employee’s

 ’ salary. Return the employee name and the new bonus

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + " FROM EMPLOYEE " _

 + " WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 argv(2) = myReader.GetString(0) + " " _

 + myReader.GetString(1) + ". " _

 + myReader.GetString(2)

 nullInds(2) = 0

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 argv(1) = salary * 0.025

 nullInds(1) = 0 ’ Return a non-NULL value

 Else

 argv(1) = Salary * 0.05

 nullInds(1) = 0 ’ Return a non-NULL value

 End If

 End If

 Else ’ Employee not found

 argv(2) = "" ’ Set output parameter

 nullInds(2) = -1 ’ Return a NULL value

 End If

 myReader.Close()

 End If

 End Sub

Chapter 3. .NET common language runtime (CLR) routines 85

Example: XML and XQuery support in C# .NET CLR procedure

Once the basics of procedures, the essentials of .NET common language runtime

routines, XQuery and XML are understood, you can start creating and using CLR

procedures with XML features.

The example below demonstrates a C# .NET CLR procedure with parameters of

type XML as well as how to update and query XML data.

Prerequisites

Before working with the CLR procedure example you might want to read

the following concept topics:

v .NET common language runtime (CLR) routines

v Creating .NET CLR routines from DB2 Command Window

v Benefits of using routines

v “Building common language runtime (CLR) .NET routines” in Developing

ADO.NET and OLE DB Applications

The examples below makes use of a table named xmlDataTable that is

defined as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

 (7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

86 Developing ADO.NET and OLE DB Applications

<street>Elm</street>

 </doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Bob</name>

 <town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))@

Procedure

Use the following examples as references when making your own C# CLR

procedures:

v The C# external code file

v Example 1: C# parameter style GENERAL procedure with XML features

 The C# external code file

The example consists of two parts: the CREATE PROCEDURE statement and the

external C# code implementation of the procedure from which the associated

assembly can be built.

The C# source file that contains the procedure implementations of the following

examples is named gwenProc.cs and has the following format:

 Table 21. C# external code file format

 using System;

 using System.IO;

 using System.Data;

 using IBM.Data.DB2;

 using IBM.Data.DB2Types;

 namespace bizLogic

 {

 class empOps

 { ...

 // C# procedures

 ...

 }

 }

The file inclusions are indicated at the top of the file. The IBM.Data.DB2 inclusion is

required if any of the procedures in the file contain SQL. The IBM.Data.DB2Types

inclusion is required if any of the procedures in the file contains parameters or

variables of type XML. There is a namespace declaration in this file and a class

empOps that contains the procedures. The use of namespaces is optional. If a

namespace is used, the namespace must appear in the assembly path name

provided in the EXTERNAL clause of the CREATE PROCEDURE statement.

It is important to note the name of the file, the namespace, and the name of the

class, that contains a given procedure implementation. These names are important,

because the EXTERNAL clause of the CREATE PROCEDURE statement for each

procedure must specify this information so that DB2 can locate the assembly and

class of the CLR procedure.

Chapter 3. .NET common language runtime (CLR) routines 87

Example 1: C# parameter style GENERAL procedure with XML

features

This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL procedure

v C# code for a parameter style GENERAL procedure with XML parameters

This procedure takes two parameters, an integer inNum and inXML. These values are

inserted into the table xmlDataTable. Then an XML value is retrieved using

XQuery. Another XML value is retrieved using SQL. The retrieved XML values are

assigned to two output parameters, outXML1 and outXML2. No result sets are

returned.

 Table 22. Code to create a C# parameter style GENERAL procedure

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K)

)

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 DYNAMIC RESULT SETS 0

 FENCED

 THREADSAFE

 DETERMINISTIC

 NO DBINFO

 MODIFIES SQL DATA

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!xmlProc1’ ;

 //***

 // Stored Procedure: xmlProc1

 //

 // Purpose: insert XML data into XML column

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: outXML1 -- XML data returned - value retrieved using XQuery

 // outXML2 -- XML data returned - value retrieved using SQL

 //***

88 Developing ADO.NET and OLE DB Applications

Table 22. Code to create a C# parameter style GENERAL procedure (continued)

 public static void xmlProc1 (int inNum, DB2Xml inXML,

 out DB2Xml outXML1, out DB2Xml outXML2)

 {

 // Create new command object from connection context

 DB2Parameter parm;

 DB2Command cmd;

 DB2DataReader reader = null;

 outXML1 = DB2Xml.Null;

 outXML2 = DB2Xml.Null;

 // Insert input XML parameter value into a table

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "INSERT INTO "

 + "xmlDataTable(num , xdata) "

 + "VALUES(?, ?)";

 parm = cmd.Parameters.Add("@num", DB2Type.Integer);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@num"].Value = inNum;

 parm = cmd.Parameters.Add("@data", DB2Type.Xml);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@data"].Value = inXML ;

 cmd.ExecuteNonQuery();

 cmd.Close();

 // Retrieve XML value using XQuery

 and assign value to an XML output parameter

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "XQUERY for $x " +

 "in db2-fn:xmlcolumn(\"xmlDataTable.xdata\")/doc "+

 "where $x/make = \’Mazda\’ " +

 "return <carInfo>{$x/make}{$x/model}</carInfo>";

 reader = cmd.ExecuteReader();

 reader.CacheData= true;

 if (reader.Read())

 { outXML1 = reader.GetDB2Xml(0); }

 else

 { outXML1 = DB2Xml.Null; }

 reader.Close();

 cmd.Close();

 // Retrieve XML value using SQL

 and assign value to an XML output parameter value

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "SELECT xdata "

 + "FROM xmlDataTable "

 + "WHERE num = ?";

 parm = cmd.Parameters.Add("@num", DB2Type.Integer);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@num"].Value = inNum;

 reader = cmd.ExecuteReader();

 reader.CacheData= true;

 if (reader.Read())

 { outXML2 = reader.GetDB2Xml(0); }

 else

 { outXML = DB2Xml.Null; }

 reader.Close() ;

 cmd.Close();

 return;

 }

Chapter 3. .NET common language runtime (CLR) routines 89

Example: XML and XQuery support in C procedure

Once the basics of procedures, the essentials of C routines, XQuery and XML are

understood, you can start creating and using C procedures with XML features.

The example below demonstrates a C procedure with parameters of type XML as

well as how to update and query XML data.

Prerequisites

Before working with the C procedure example you might want to read the

following concept topic:

v Benefits of using routines

The examples below makes use of a table named xmlDataTable that is

defined as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

 (7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

 <street>Elm</street>

 </doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Bob</name>

90 Developing ADO.NET and OLE DB Applications

<town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))

Procedure

Use the following examples as references when making your own C

procedures:

v The C external code file

v Example 1: C parameter style SQL procedure with XML features

 The C external code file

The example consists of two parts: the CREATE PROCEDURE statement and the

external C code implementation of the procedure from which the associated

assembly can be built.

The C source file that contains the procedure implementations of the following

examples is named gwenProc.SQC and has the following format:

 Table 23. C external code file format

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include <sqlda.h>

 #include <sqlca.h>

 #include <sqludf.h>

 #include <sql.h>

 #include <memory.h>

 // C procedures

 ...

The file inclusions are indicated at the top of the file. There are no extra include

files required for XML support in embedded SQL routines.

It is important to note the name of the file and the name of the function that

corresponds to the procedure implementation. These names are important, because

the EXTERNAL clause of the CREATE PROCEDURE statement for each procedure

must specify this information so that the DB2 database manager can locate the

library and entry point that corresponds to the C procedure.

Example 1: C parameter style SQL procedure with XML features

This example shows the following:

v CREATE PROCEDURE statement for a parameter style SQL procedure

v C code for a parameter style SQL procedure with XML parameters

This procedure receives two input parameters. The first input parameter is named

inNum and is of type INTEGER. The second input parameters is named inXML and

is of type XML. The values of the input parameters are used to insert a row into

the table xmlDataTable. Then an XML value is retrieved using an SQL statement.

Another XML value is retrieved using an XQuery expression. The retrieved XML

values are respectively assigned to two output parameters, out1XML and out2XML.

Chapter 3. .NET common language runtime (CLR) routines 91

No result sets are returned.

 Table 24. Code to create a C parameter style SQL procedure

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K)

)

 LANGUAGE C

 PARAMETER STYLE SQL

 DYNAMIC RESULT SETS 0

 FENCED

 THREADSAFE

 DETERMINISTIC

 NO DBINFO

 MODIFIES SQL DATA

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc!xmlProc1’ ;

 //***

 // Stored Procedure: xmlProc1

 //

 // Purpose: insert XML data into XML column

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: out1XML -- XML data returned - value retrieved using XQuery

 // out2XML -- XML data returned - value retrieved using SQL

 //***

92 Developing ADO.NET and OLE DB Applications

Table 24. Code to create a C parameter style SQL procedure (continued)

#ifdef __cplusplus

extern "C"

#endif

SQL_API_RC SQL_API_FN testSecA1(sqlint32* inNum,

 SQLUDF_CLOB* inXML,

 SQLUDF_CLOB* out1XML,

 SQLUDF_CLOB* out2XML,

 SQLUDF_NULLIND *inNum_ind,

 SQLUDF_NULLIND *inXML_ind,

 SQLUDF_NULLIND *out1XML_ind,

 SQLUDF_NULLIND *out2XML_ind,

 SQLUDF_TRAIL_ARGS)

{

 char *str;

 FILE *file;

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 hvNum1;

 SQL TYPE IS XML AS CLOB(200) hvXML1;

 SQL TYPE IS XML AS CLOB(200) hvXML2;

 SQL TYPE IS XML AS CLOB(200) hvXML3;

 EXEC SQL END DECLARE SECTION;

 /* Check null indicators for input parameters */

 if ((*inNum_ind < 0) || (*inXML_ind < 0)) {

 strcpy(sqludf_sqlstate, "38100");

 strcpy(sqludf_msgtext, "Received null input");

 return 0;

 }

 /* Copy input parameters to host variables */

 hvNum1 = *inNum;

 hvXML1.length = inXML->length;

 strncpy(hvXML1.data, inXML->data, inXML->length);

 /* Execute SQL statement */

 EXEC SQL

 INSERT INTO xmlDataTable (num, xdata) VALUES (:hvNum1, :hvXML1);

 /* Execute SQL statement */

 EXEC SQL

 SELECT xdata INTO :hvXML2

 FROM xmlDataTable

 WHERE num = :hvNum1;

 sprintf(stmt5, "SELECT XMLQUERY(’for $x in $xmldata/doc

 return <carInfo>{$x/model}</carInfo>’

 passing by ref xmlDataTable.xdata

 as \"xmldata\" returning sequence)

 FROM xmlDataTable WHERE num = ?");

 EXEC SQL PREPARE selstmt5 FROM :stmt5 ;

 EXEC SQL DECLARE c5 CURSOR FOR selstmt5;

 EXEC SQL OPEN c5 using :hvNum1;

 EXEC SQL FETCH c5 INTO :hvXML3;

 exit:

 /* Set output return code */

 *outReturnCode = sqlca.sqlcode;

 *outReturnCode_ind = 0;

 return 0;

}

Chapter 3. .NET common language runtime (CLR) routines 93

Examples of C# .NET CLR functions

Once you understand the basics of user-defined functions (UDFs), and the

essentials of CLR routines, you can start exploiting CLR UDFs in your applications

and database environment. This topic contains some examples of CLR UDFs to get

you started. For examples of CLR procedures in C#:

v “Examples of C# .NET CLR procedures” on page 60

Before working with the CLR UDF examples you might want to read the following

concept topics:

v Chapter 3, “.NET common language runtime (CLR) routines,” on page 39

v “Creating .NET CLR routines from DB2 Command Window” on page 49

v “External scalar functions” on page 8

v “Building common language runtime (CLR) .NET routines” in Developing

ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own C# CLR UDFs:

v The C# external code file

v Example 1: C# parameter style SQL table function

v Example 2: C# parameter style SQL scalar function

The C# external code file

The following examples show a variety of C# UDF implementations. The

CREATE FUNCTION statement is provided for each UDF with the

corresponding C# source code from which the associated assembly can be

built. The C# source file that contains the functions declarations used in the

following examples is named gwenUDF.cs and has the following format:

 Table 25. C# external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 namespace bizLogic

 {

 ...

 // Class definitions that contain UDF declarations

 // and any supporting class definitions

 ...

 }

The function declarations must be contained in a class within a C# file. The

use of namespaces is optional. If a namespace is used, the namespace must

appear in the assembly path name provided in the EXTERNAL clause of

the CREATE PROCEDURE statement. The IBM.Data.DB2. inclusion is

required if the function contains SQL.

Example 1: C# parameter style SQL table function

 This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL table function

94 Developing ADO.NET and OLE DB Applications

v C# code for a parameter style SQL table function

This table function returns a table containing rows of employee data that

was created from a data array. There are two classes associated with this

example. Class person represents the employees, and the class empOps

contains the routine table UDF that uses class person. The employee salary

information is updated based on the value of an input parameter. The data

array in this example is created within the table function itself on the first

call of the table function. Such an array could have also been created by

reading in data from a text file on the file system. The array data values

are written to a scratchpad so that the data can be accessed in subsequent

calls of the table function.

On each call of the table function, one record is read from the array and

one row is generated in the table that is returned by the function. The row

is generated in the table, by setting the output parameters of the table

function to the desired row values. After the final call of the table function

occurs, the table of generated rows is returned.

 Table 26. Code to create a C# parameter style SQL table function

 CREATE FUNCTION tableUDF(double)

 RETURNS TABLE (name varchar(20),

 job varchar(20),

 salary double)

 EXTERNAL NAME ’gwenUDF.dll:bizLogic.empOps!tableUDF’

 LANGUAGE CLR

 PARAMETER STYLE SQL

 NOT DETERMINISTIC

 FENCED

 THREADSAFE

 SCRATCHPAD 10

 FINAL CALL

 EXECUTION CONTROL SAFE

 DISALLOW PARALLEL

 NO DBINFO

Chapter 3. .NET common language runtime (CLR) routines 95

Table 26. Code to create a C# parameter style SQL table function (continued)

 // The class Person is a supporting class for

 // the table function UDF, tableUDF, below.

 class Person

 {

 private String name;

 private String position;

 private Int32 salary;

 public Person(String newName, String newPosition, Int32

 newSalary)

 {

 this.name = newName;

 this.position = newPosition;

 this.salary = newSalary;

 }

 public String getName()

 {

 return this.name;

 }

 public String getPosition()

 {

 return this.position;

 }

 public Int32 getSalary()

 {

 return this.salary;

 }

 }

96 Developing ADO.NET and OLE DB Applications

Table 26. Code to create a C# parameter style SQL table function (continued)

 class empOps

 {

 public static void TableUDF(Double factor, out String name,

 out String position, out Double salary,

 Int16 factorNullInd, out Int16 nameNullInd,

 out Int16 positionNullInd, out Int16 salaryNullInd,

 ref String sqlState, String funcName,

 String specName, ref String sqlMessageText,

 Byte[] scratchPad, Int32 callType)

 {

 Int16 intRow = 0;

 // Create an array of Person type information

 Person[] Staff = new

 Person[3];

 Staff[0] = new Person("Gwen", "Developer", 10000);

 Staff[1] = new Person("Andrew", "Developer", 20000);

 Staff[2] = new Person("Liu", "Team Leader", 30000);

 salary = 0;

 name = position = "";

 nameNullInd = positionNullInd = salaryNullInd = -1;

 switch(callType)

 {

 case (-2): // Case SQLUDF_TF_FIRST:

 break;

 case (-1): // Case SQLUDF_TF_OPEN:

 intRow = 1;

 scratchPad[0] = (Byte)intRow; // Write to scratchpad

 break;

 case (0): // Case SQLUDF_TF_FETCH:

 intRow = (Int16)scratchPad[0];

 if (intRow > Staff.Length)

 {

 sqlState = "02000"; // Return an error SQLSTATE

 }

 else

 {

 // Generate a row in the output table

 // based on the Staff array data.

 name =

 Staff[intRow-1].getName();

 position = Staff[intRow-1].getPosition();

 salary = (Staff[intRow-1].getSalary()) * factor;

 nameNullInd = 0;

 positionNullInd = 0;

 salaryNullInd = 0;

 }

 intRow++;

 scratchPad[0] = (Byte)intRow; // Write scratchpad

 break;

 case (1): // Case SQLUDF_TF_CLOSE:

 break;

 case (2): // Case SQLUDF_TF_FINAL:

 break;

 }

 }

 }

Chapter 3. .NET common language runtime (CLR) routines 97

Example 2: C# parameter style SQL scalar function

 This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL scalar

function

v C# code for a parameter style SQL scalar function

This scalar function returns a single count value for each input value that

it operates on. For an input value in the nth position of the set of input

values, the output scalar value is the value n. On each call of the scalar

function, where one call is associated with each row or value in the input

set of rows or values, the count is increased by one and the current value

of the count is returned. The count is then saved in the scratchpad memory

buffer to maintain the count value between each call of the scalar function.

This scalar function can be easily invoked if for example we have a table

defined as follows:

 CREATE TABLE T (i1 INTEGER);

 INSERT INTO T VALUES 12, 45, 16, 99;

A simple query such as the following can be used to invoke the scalar

function:

 SELECT countUp(i1) as count, i1 FROM T;

The output of such a query would be:

 COUNT I1

 ----------- ----------

 1 12

 2 45

 3 16

 4 99

This scalar UDF is quite simple. Instead of returning just the count of the

rows, you could use a scalar function to format data in an existing column.

For example you might append a string to each value in an address

column or you might build up a complex string from a series of input

strings or you might do a complex mathematical evaluation over a set of

data where you must store an intermediate result.

 Table 27. Code to create a C# parameter style SQL scalar function

 CREATE FUNCTION countUp(INTEGER)

 RETURNS INTEGER

 LANGUAGE CLR

 PARAMETER STYLE SQL

 SCRATCHPAD 10

 FINAL CALL

 NO SQL

 FENCED

 THREADSAFE

 NOT DETERMINISTIC

 EXECUTION CONTROL SAFE

 EXTERNAL NAME ’gwenUDF.dll:bizLogic.empOps!CountUp’ ;

98 Developing ADO.NET and OLE DB Applications

Table 27. Code to create a C# parameter style SQL scalar function (continued)

 class empOps

 {

 public static void CountUp(Int32 input,

 out Int32 outCounter,

 Int16 inputNullInd,

 out Int16 outCounterNullInd,

 ref String sqlState,

 String funcName,

 String specName,

 ref String sqlMessageText,

 Byte[] scratchPad,

 Int32 callType)

 {

 Int32 counter = 1;

 switch(callType)

 {

 case -1: // case SQLUDF_FIRST_CALL

 scratchPad[0] = (Byte)counter;

 outCounter = counter;

 outCounterNullInd = 0;

 break;

 case 0: // case SQLUDF_NORMAL_CALL:

 counter = (Int32)scratchPad[0];

 counter = counter + 1;

 outCounter = counter;

 outCounterNullInd = 0;

 scratchPad[0] =

 (Byte)counter;

 break;

 case 1: // case SQLUDF_FINAL_CALL:

 counter =

 (Int32)scratchPad[0];

 outCounter = counter;

 outCounterNullInd = 0;

 break;

 default: // Should never enter here

 // * Required so that at compile time

 // out parameter outCounter is always set *

 outCounter = (Int32)(0);

 outCounterNullInd = -1;

 sqlState="ABCDE";

 sqlMessageText = "Should not get here: Default

 case!";

 break;

 }

 }

 }

Chapter 3. .NET common language runtime (CLR) routines 99

100 Developing ADO.NET and OLE DB Applications

Chapter 4. IBM Data Server Provider for .NET

The IBM Data Server Provider for .NET extends DB2 data server support for the

ADO.NET interface. The IBM Data Server Provider for .NET delivers

high-performing, secure access to IBM data servers.

The IBM Data Server Provider for .NET allows your .NET applications to access

the following database management systems:

v DB2 Version 9 (or later) for Linux, UNIX, and Windows

v DB2 Universal Database Version 8 for Windows, UNIX, and Linux-based

computers

v DB2 Universal Database Version 6 (or later) for OS/390 and z/OS, through DB2

Connect™

v DB2 Universal Database Version 5, Release 1 (or later) for AS/400® and iSeries™,

through DB2 Connect

v DB2 Universal Database Version 7.3 (or later) for VSE & VM, through DB2

Connect

v IBM Informix® Dynamic Server, Version 11.10 or later

v IBM UniData®, Version 7.1.11 or later

v IBM UniVerse®, Version 10.2 or later

To develop and run applications that use Data Server Provider for .NET you need

the .NET Framework, Version 1.1, 2.0, or 3.0.

In addition to the IBM Data Server Provider for .NET, the IBM Database

Development Add-Ins enable you to quickly and easily develop .NET applications

for IBM data servers using Visual Studio 2005. You can also use the Add-Ins to

create database objects such as indexes and tables, and develop server-side objects,

such as stored procedures and user-defined functions.

IBM Data Server Provider for .NET database system requirements

The IBM Data Server Provider for .NET enables your .NET applications to access

the following database management systems:

v DB2 Version 9 (or later) for Linux, UNIX, and Windows

v DB2 Universal Database Version 8 for Linux, UNIX, and Windows

v DB2 Universal Database Version 6 (or later) for OS/390 and z/OS, through DB2

Connect

v DB2 Universal Database Version 5, Release 1 (or later) for AS/400 and iSeries,

through DB2 Connect

v DB2 Universal Database Version 7.3 (or later) for VSE & VM, through DB2

Connect

v IBM Informix Dynamic Server, Version 11.10 or later

v IBM UniData, Version 7.1.11 or later

v IBM UniVerse, Version 10.2 or later

Before using a DB2 client or server installer to install the IBM Data Provider for

.NET, you must already have the .NET Framework (Version 1.1, 2.0, or 3.0)

© Copyright IBM Corp. 2006, 2008 101

installed on the computer. If the .NET Framework is not installed, the DB2 client or

server installer will not install the IBM Data Server Provider for .NET.

For DB2 Universal Database for AS/400 and iSeries, the following fix is required

on the server: APAR ii13348.

32-bit and 64-bit support for ADO.NET applications

IBM Data Server data providers for .NET support both 32-bit and 64-bit .NET

applications.

Following are the .NET data providers that are shipped with DB2 Version 9 (or

later) clients and servers, and their 32-bit and 64-bit support levels.

 Table 28. 32-bit and 64-bit support in IBM Data Server data providers for .NET

.NET data provider 32-bit support 64-bit support

IBM Data Server Provider for .NET, Framework

Version 1.1

Yes No

IBM Data Server Provider for .NET, Framework

Version 2.0

Yes Yes

IBM Data Server Provider for .NET, Framework

Version 3.0

Yes Yes

Note: CLR stored procedures and user-defined functions are only supported in

32-bit editions of the IBM Data Server Provider for .NET.

IBM Data Server Provider for .NET, Framework Version 2.0

There are 32-bit and 64-bit editions of the IBM Data Server Provider for .NET, each

supporting the 32-bit and 64-bit editions of the .NET Framework version 2.0 CLR

respectively. During the installation of the DB2 or DB2 Connect client or server

software, one of these two IBM Data Server Provider for .NET editions will be

installed:

for Windows on 32-bit AMD and Intel® systems (x86)

The 32-bit edition of the IBM Data Server Provider for .NET, Framework

2.0, as well as 1.1 and 3.0, are installed with DB2 Version 9 (or later) or

DB2 Connect.

for Windows on AMD64 and Intel EM64T systems (x64) (Fix Pack 2 and up)

Only the 64-bit editions of the IBM Data Server Provider for .NET is

installed with DB2 Version 9 (or later) or DB2 Connect. The IBM Data

Server Provider for .NET, Framework 1.1 is not installed. The 64-bit

editions of the IBM Data Server Provider for .NET do not support the

IA-64 architecture.

 You can run 32-bit .NET applications on a 64-bit Windows instance, using

WOW64, but you will need a 32-bit edition of the IBM Data Server

Provider for .NET as well. To get a 32-bit IBM Data Server Provider for

.NET, you can install DB2 Connect or DB2 Version 9 for Windows on 32-bit

AMD and Intel systems client or server on your 64-bit computer.

102 Developing ADO.NET and OLE DB Applications

Programming applications to use the IBM Data Server Provider for

.NET

Generic coding with the ADO.NET common base classes

The .NET Framework, versions 2.0 and 3.0, features a namespace called

System.Data.Common, which features a set of base classes that can be shared by any

.NET data provider. This facilitates a generic ADO.NET database application

development approach, featuring a constant programming interface.

The main classes in the IBM Data Server Provider for .NET, Framework 2.0 and

3.0, are inherited from the System.Data.Common base classes. As a result, generic

ADO.NET applications will work with DB2 and other supported databases

through the IBM Data Server Provider for .NET.

The following C# demonstrates a generic approach to establishing a database

connection.

 DbProviderFactory factory = DbProviderFactories.GetFactory("IBM.Data.DB2");

 DbConnection conn = factory.CreateConnection();

 DbConnectionStringBuilder sb = factory.CreateConnectionStringBuilder();

 if(sb.ContainsKey("Database"))

 {

 sb.Remove("database");

 sb.Add("database", "SAMPLE");

 }

 conn.ConnectionString = sb.ConnectionString;

 conn.Open();

The DbProviderFactory object is the point where any generic ADO.NET application

begins. This object creates generic instances of .NET data provider objects, such as

connections, data adapters, commands, and data readers, which work with a

specific database product. In the case of the example above, the "IBM.Data.DB2"

string passed into the GetFactory method uniquely identifies the IBM Data Server

Provider for .NET, and results in the initialization of a DbProviderFactory instance

that creates database provider object instances specific to the IBM Data Server

Provider for .NET. The DbConnection object can connect to DB2 family databases,

just as a DB2Connection object, which is actually inherited from DbConnection.

Using the DbConnectionStringBuilder class, you can determine the connection

string keywords for a data provider, and generate a custom connection string. The

code in the above example checks if a keyword named "database" exists in the

IBM Data Server Provider for .NET, and if so, generates a connection string to

connect to the SAMPLE database.

Connecting to a database from an application using the IBM

Data Server Provider for .NET

When using the IBM Data Server Provider for .NET, a database connection is

established through the DB2Connection class. First, you must create a string that

stores the connection parameters.

Examples of possible connection strings are:

String connectString = "Database=SAMPLE";

// When used, attempts to connect to the SAMPLE database.

Chapter 4. IBM Data Server Provider for .NET 103

String cs = "Server=srv:50000;Database=SAMPLE;UID=db2adm;PWD=ab1d;Connect Timeout=30";

// When used, attempts to connect to the SAMPLE database on the server

// ’srv’ through port 50000 using ’db2adm’ and ’ab1d’ as the user id and

// password respectively. If the connection attempt takes more than thirty seconds,

// the attempt will be terminated and an error will be generated.

To create the database connection, pass the connectString to the DB2Connection

constructor. Then use the DB2Connection object’s Open method to formally connect

to the database identified in connectString.

v Connecting to a database in C#:

String connectString = "Database=SAMPLE";

DB2Connection conn = new DB2Connection(connectString);

conn.Open();

return conn;

v Connecting to a database in Visual Basic .NET:

Dim connectString As String = "Database=SAMPLE"

Dim conn As DB2Connection = new DB2Connection(connectString)

conn.Open()

Return conn

Connection pooling with the IBM Data Server Provider for

.NET

When a connection is first opened against a DB2 database, a connection pool is

created. As connections are closed, they enter the pool, ready to be used by other

applications needing connections. The IBM Data Server Provider for .NET enables

connection pooling by default. You can turn connection pooling off using the

Pooling=false connection string keyword/value pair.

You can control the behavior of the connection pool by setting connection string

keywords for the following:

v The minimum and maximum pool size (min pool size, max pool size)

v The length of time a connection can be idle before its returned to the pool

(connection lifetime)

v Whether or not the current connection will be put in the connection pool when

it is closed (connection reset)

Creating a trusted connection through IBM Data Server

Provider for .NET

Starting in Version 9.5 Fix Pack 1, .NET applications support trusted context using

connection string keywords.

The following keywords are available in the connection string:

v TrustedContextSystemUserID, or tcsuid, which specifies the trusted context

SYSTEM AUTHID to be used with the connection.

v TrustedContextSystemPassword, or tcspwd, which specifies the password

corresponding to the trusted context SYSYTEM AUTHID to be used with the

connection.

If the TrustedContextSystemPassword keyword is specified without a

TrustedContextSystemUserID keyword value, an InvalidArgument exception is

thrown. The UserID keyword is also required in a trusted context scenario.

104 Developing ADO.NET and OLE DB Applications

Example

Suppose a trusted context has been established on the server with the following

information:

CREATE TRUSTED CONTEXT ctxName1

BASED UPON CONNECTION USING SYSTEM AUTHID masteruser

ATTRIBUTES (PROTOCOL ’TCPIP’,

 ADDRESS ’9.26.146.201’,

 ENCRYPTION ’NONE’)

ENABLE

WITH USE FOR userapp1 WITH AUTHENTICATION, userapp2 WITH AUTHENTICATION;

The SYSTEM AUTHID, masteruser, has a corresponding password,

masterpassword. Each specific user/application, userapp1 and userapp2, has a

corresponding password, passapp1 and passapp2.

In order to use this trusted context, applications would issue connection strings as

follows:

v Application 1

database=db;server=foobar:446;UserID=userapp1;Password=passapp1;TrustedContextSystemUserID=masteruser;TrustedContextSystemPassword=masterpassword

v Application 2

database=db;server=foobar:446;UserID=userapp2;Password=passapp2;TrustedContextSystemUserID=masteruser;TrustedContextSystemPassword=masterpassword

Note: The UserID keyword corresponds to the end user of the connection in a

trusted context situation, just as in standard applications.

Thus, a simple .NET program could look like the following:

DB2Connection conn = new DB2Connection();

conn.ConnectionString = "database=db;server=foobar:446;UserID=userapp1;Password=passapp1;TrustedContextSystemUserID=masteruser;TrustedContextSystemPa

conn.Open();

// Do processing as userapp1, such as querying tables

conn.Close();

conn.ConnectionString = "database=db;server=foobar:446;UserID=userapp2;Password=passapp2;TrustedContextSystemUserID=masteruser;TrustedContextSystemPa

conn.Open();

// Do processing as userapp2

conn.Close();

If the trusted context processing fails because no trusted context was set up on the

server, or the server does not support trusted contexts, an error with SQLCODE

CLI0197E will be thrown. If the TrustedContextSystemUserID keyword value is

invalid (too long, for example), an error with SQLCODE CLI0124E will be thrown.

The server might report an error with SQLCODE SQL1046N, SQL30082N, or

SQL0969N with a native error code of -20361. Any of these errors will cause

Open() to fail.

Note: The trusted context processing happens on the next communication with the

server.

Chapter 4. IBM Data Server Provider for .NET 105

SQL data type representation in ADO.NET database

applications

ADO.NET database applications can reference DB2 SQL data type values as

parameter values to be used as part of SQL statement execution and as variables,

however the appropriate IBM Data Server Provider for .NET data type values and

.NET Framework data type values must be used to ensure that there is no

truncation or loss of data when accessing or retrieving the values.

For specifying parameter values to be used as part of a SQL statement to be

executed, IBM Data Server Provider for .NET objects must be used. The

DB2Parameter object is used to represent a parameter to be added to a DB2Command

object which represents a SQL statement. When specifying the data type value for

the parameter, the IBM Data Server Provider for .NET data type values available in

the IBM.Data.DB2Types namespace must be used. The IBM.Data.DB2Types

namespace provides classes and structures to represent each of the supported DB2

SQL data types.

For local variables that might temporarily hold SQL data type values, appropriate

IBM Data Server Provider for .NET data types, as defined in the

IBM.Data.DB2Types Namespace, must be used.

The following table shows mappings between DB2Type data types, DB2 data

types, Informix data types, Microsoft .NET Framework types, and DB2Types

classes and structures.

 Category DB2Types

Classes and

Structures

DB2Type Data

Type

DB2 Data Type Informix Data

Type

.NET Data Type

Numeric DB2Int16 SmallInt SMALLINT BOOLEAN,

SMALLINT

Int16

DB2Int32 Integer INT INTEGER, INT,

SERIAL

Int32

DB2Int64 BigInt BIGINT INT8, SERIAL8 Int64

DB2Real,

DB2Real370

Real REAL REAL,

SMALLFLOAT

Single

DB2Double Double DOUBLE

PRECISION

DECIMAL (≤31),

DOUBLE

PRECISION

Double

DB2Double Float FLOAT DECIMAL (32),

FLOAT

Double

DB2Decimal Decimal DECIMAL MONEY Decimal

DB2DecimalFloat DecimalFloat DECFLOAT(16|34)58 Decimal

DB2Decimal Numeric DECIMAL DECIMAL (≤31),

NUMERIC

Decimal

5. These data types are not supported as parameters in DB2 .NET common language runtime routines.

6. A DB2ParameterClass.ParameterName property of the type DB2Type.Xml can accept variables of the following types: String,

byte[], DB2Xml, and XmlReader.

7. These data types are applicable only to DB2 UDB for z/OS.

8. This data type is only supported for DB2 for z/OS Version 9 and later releases and for DB2 for Linux, UNIX, and Windows

Version 9.5 and later releases.

106 Developing ADO.NET and OLE DB Applications

Category DB2Types

Classes and

Structures

DB2Type Data

Type

DB2 Data Type Informix Data

Type

.NET Data Type

Date/Time DB2Date Date DATE DATETIME (date

precision)

Datetime

DB2Time Time TIME DATETIME (time

precision)

TimeSpan

DB2TimeStamp Timestamp TIMESTAMP DATETIME (time

and date

precision)

DateTime

XML DB2Xml Xml6 XML Byte[]

Character data DB2String Char CHAR CHAR String

DB2String VarChar VARCHAR VARCHAR String

DB2String LongVarChar5 LONG

VARCHAR

LVARCHAR String

Binary data DB2Binary Binary CHAR FOR BIT

DATA

Byte[]

DB2Binary Binary7 BINARY Byte[]

DB2Binary VarBinary7 VARBINARY Byte[]

DB2Binary LongVarBinary5 LONG

VARCHAR FOR

BIT DATA

Byte[]

Graphic data DB2String Graphic GRAPHIC String

DB2String VarGraphic VARGRAPHIC String

DB2String LongVarGraphic5 LONG

VARGRAPHIC

String

LOB data DB2Clob Clob CLOB CLOB, TEXT String

DB2Blob Blob BLOB BLOB, BYTE Byte[]

DB2Clob DbClob DBCLOB String

Row ID DB2RowId RowId ROWID Byte[]

Executing SQL statements from an application using the IBM

Data Server Provider for .NET

When using the IBM Data Server Provider for .NET, the execution of SQL

statements is done through a DB2Command class using its methods ExecuteReader()

and ExecuteNonQuery(), and its properties CommandText, CommandType and

Transaction. For SQL statements that produce output, the ExecuteReader()

method should be used and its results can be retrieved from a DB2DataReader

object. For all other SQL statements, the method ExecuteNonQuery() should be

used. The Transaction property of the DB2Command object should be initialized to a

DB2Transaction. A DB2Transaction object is responsible for rolling back and

committing database transactions.

Executing an UPDATE statement in C#:

// assume a DB2Connection conn

DB2Command cmd = conn.CreateCommand();

DB2Transaction trans = conn.BeginTransaction();

cmd.Transaction = trans;

cmd.CommandText = "UPDATE staff " +

Chapter 4. IBM Data Server Provider for .NET 107

" SET salary = (SELECT MIN(salary) " +

 " FROM staff " +

 " WHERE id >= 310) " +

 " WHERE id = 310";

cmd.ExecuteNonQuery();

Executing an UPDATE statement in Visual Basic .NET:

’ assume a DB2Connection conn

DB2Command cmd = conn.CreateCommand();

DB2Transaction trans = conn.BeginTransaction();

cmd.Transaction = trans;

cmd.CommandText = "UPDATE staff " +

 " SET salary = (SELECT MIN(salary) " +

 " FROM staff " +

 " WHERE id >= 310) " +

 " WHERE id = 310";

cmd.ExecuteNonQuery();

Executing a SELECT statement in C#:

// assume a DB2Connection conn

DB2Command cmd = conn.CreateCommand();

DB2Transaction trans = conn.BeginTransaction();

cmd.Transaction = trans;

cmd.CommandText = "SELECT deptnumb, location " +

 " FROM org " +

 " WHERE deptnumb < 25";

DB2DataReader reader = cmd.ExecuteReader();

Executing a SELECT statement in Visual Basic .NET:

’ assume a DB2Connection conn

Dim cmd As DB2Command = conn.CreateCommand()

Dim trans As DB2Transaction = conn.BeginTransaction()

cmd.Transaction = trans

cmd.CommandText = "UPDATE staff " +

 " SET salary = (SELECT MIN(salary) " +

 " FROM staff " +

 " WHERE id >= 310) " +

 " WHERE id = 310"

cmd.ExecuteNonQuery()

Once your application has performed a database transaction, you must either roll it

back or commit it. This is done through the Commit() and Rollback() methods of a

DB2Transaction object.

Rolling back or committing a transaction in C#:

// assume a DB2Transaction object conn

trans.Rollback();

...

trans.Commit();

Rolling back or committing a transaction in Visual Basic.NET:

’ assume a DB2Transaction object conn

trans.Rollback()

...

trans.Commit()

108 Developing ADO.NET and OLE DB Applications

Reading result sets from an application using the IBM Data

Server Provider for .NET

When using the IBM Data Server Provider for .NET, the reading of result sets is

done through a DB2DataReader object. The DB2DataReader method, Read() is used

to advance to the next row of result set. The methods GetString(), GetInt32(),

GetDecimal(), and other methods for all the available data types are used to

extract data from the individual columns of output. DB2DataReader’s Close()

method is used to close the DB2DataReader, which should always be done when

finished reading output.

Reading a result set in C#:

// assume a DB2DataReader reader

Int16 deptnum = 0;

String location="";

// Output the results of the query

while(reader.Read())

{

 deptnum = reader.GetInt16(0);

 location = reader.GetString(1);

 Console.WriteLine(" " + deptnum + " " + location);

}

reader.Close();

Reading a result set in Visual Basic .NET:

’ assume a DB2DataReader reader

Dim deptnum As Int16 = 0

Dim location As String ""

’ Output the results of the query

Do While (reader.Read())

 deptnum = reader.GetInt16(0)

 location = reader.GetString(1)

 Console.WriteLine(" " & deptnum & " " & location)

Loop

reader.Close();

Calling stored procedures from an application using the IBM

Data Server Provider for .NET

When using the IBM Data Server Provider for .NET, you can call stored procedures

by using a DB2Command object. The default value of the CommandType property is

CommandType.Text. This is the appropriate value for SQL statements and can also

be used to call stored procedures. However, calling stored procedures is easier

when you set CommandType to CommandType.StoredProcedure. In this case, you only

need to specify the stored procedure name and any parameters.

The following examples demonstrates how to invoke a stored procedure called

INOUT_PARAM, with the CommandType property set to either

CommandType.StoredProcedure or CommandType.Text.

Calling a stored procedure by setting the CommandType property of the DB2Command

to CommandType.StoredProcedure in C#:

// assume a DB2Connection conn

DB2Transaction trans = conn.BeginTransaction();

DB2Command cmd = conn.CreateCommand();

String procName = "INOUT_PARAM";

Chapter 4. IBM Data Server Provider for .NET 109

cmd.Transaction = trans;

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = procName;

// Register input-output and output parameters for the DB2Command

...

// Call the stored procedure

Console.WriteLine(" Call stored procedure named " + procName);

cmd.ExecuteNonQuery();

Calling a stored procedure by setting the CommandType property of the

DB2Command to CommandType.Text in C#:

// assume a DB2Connection conn

DB2Transaction trans = conn.BeginTransaction();

DB2Command cmd = conn.CreateCommand();

String procName = "INOUT_PARAM";

String procCall = "CALL INOUT_PARAM (?, ?, ?)";

cmd.Transaction = trans;

cmd.CommandType = CommandType.Text;

cmd.CommandText = procCall;

// Register input-output and output parameters for the DB2Command

...

// Call the stored procedure

Console.WriteLine(" Call stored procedure named " + procName);

cmd.ExecuteNonQuery();

Calling a stored procedure by setting the CommandType property of the

DB2Command to CommandType.StoredProcedure in Visual Basic .NET:

’ assume a DB2Connection conn

Dim trans As DB2Transaction = conn.BeginTransaction()

Dim cmd As DB2Command = conn.CreateCommand()

Dim procName As String = "INOUT_PARAM"

cmd.Transaction = trans

cmd.CommandType = CommandType.StoredProcedure

cmd.CommandText = procName

’ Register input-output and output parameters for the DB2Command

...

’ Call the stored procedure

Console.WriteLine(" Call stored procedure named " & procName)

cmd.ExecuteNonQuery()

Calling a stored procedure by setting the CommandType property of the

DB2Command to CommandType.Text in Visual Basic .NET:

’ assume a DB2Connection conn

Dim trans As DB2Transaction = conn.BeginTransaction()

Dim cmd As DB2Command = conn.CreateCommand()

Dim procName As String = "INOUT_PARAM"

Dim procCall As String = "CALL INOUT_PARAM (?, ?, ?)"

cmd.Transaction = trans

cmd.CommandType = CommandType.Text

cmd.CommandText = procCall

’ Register input-output and output parameters for the DB2Command

...

’ Call the stored procedure

Console.WriteLine(" Call stored procedure named " & procName)

cmd.ExecuteNonQuery()

110 Developing ADO.NET and OLE DB Applications

Building .NET applications

Building Visual Basic .NET applications

DB2 provides a batch file, bldapp.bat, for compiling and linking DB2 Visual Basic

.NET applications, located in the sqllib\samples\.NET\vb directory, along with

sample programs that can be built with this file. The batch file takes one

parameter, %1, for the name of the source file to be compiled (without the .vb

extension).

To build the program, DbAuth, from the source file, DbAuth.vb, enter:

bldapp DbAuth

To ensure you have the parameters you need when you run the executable, you

can specify different combinations of parameters depending on the number

entered:

1. No parameters. Enter just the program name:

 DbAuth

2. One parameter. Enter the program name plus the database alias:

 DbAuth <db_alias>

3. Two parameters. Enter the program name plus user ID and password:

 DbAuth <userid> <passwd>

4. Three parameters. Enter the program name plus the database alias, user ID,

and password:

 DbAuth <db_alias> <userid> <passwd>

5. Four parameters. Enter the program name plus server name, port number, user

ID, and password:

 DbAuth <server> <portnum> <userid> <passwd>

6. Five parameters. Enter the program name plus database alias, server name,

port number, user ID, and password:

 DbAuth <db_alias> <server> <portnum> <userid> <passwd>

To build and run the LCTrans sample program, you need to follow more detailed

instructions given in the source file, LCTrans.vb.

Building C# .NET applications

DB2 provides a batch file, bldapp.bat, for compiling and linking DB2 C# .NET

applications, located in the sqllib\samples\.NET\cs directory, along with sample

programs that can be built with this file. The batch file takes one parameter, %1,

for the name of the source file to be compiled (without the .cs extension).

To ensure you have the parameters you need when you run the executable, you

can specify different combinations of parameters depending on the number

entered:

To build the program, DbAuth, from the source file, DbAuth.cs, enter:

bldapp DbAuth

To ensure you have the parameters you need when you run the executable, you

can specify different combinations of parameters depending on the number

entered:

Chapter 4. IBM Data Server Provider for .NET 111

1. No parameters. Enter just the program name:

 DbAuth

2. One parameter. Enter the program name plus the database alias:

 DbAuth <db_alias>

3. Two parameters. Enter the program name plus user ID and password:

 DbAuth <userid> <passwd>

4. Three parameters. Enter the program name plus the database alias, user ID,

and password:

 DbAuth <db_alias> <userid> <passwd>

5. Four parameters. Enter the program name plus server name, port number, user

ID, and password:

 DbAuth <server> <portnum> <userid> <passwd>

6. Five parameters. Enter the program name plus database alias, server name,

port number, user ID, and password:

 DbAuth <db_alias> <server> <portnum> <userid> <passwd>

To build and run the LCTrans sample program, you need to follow more detailed

instructions given in the source file, LCTrans.cs.

Visual Basic .NET application compile and link options

The following are the compile and link options recommended by DB2 for building

Visual Basic .NET applications on Windows with the Microsoft Visual Basic .NET

compiler, as demonstrated in the bldapp.bat batch file.

 Compile and link options for bldapp

Compile and link options for standalone VB .NET applications:

%BLDCOMP%

Variable for the compiler. The default is vbc, the Microsoft Visual Basic .NET

compiler.

/r:"%DB2PATH%"\bin\%VERSION%IBM.Data.DB2.dll

Reference the DB2 dynamic link library for the .NET framework version you are

using.

%VERSION%

There are three supported versions of the .NET framework for

applications. DB2 has a dynamic link library for each. For .NET

Framework Version 1.1, %VERSION% points to the netf11\ sub-directory.

For .NET Framework Version 2.0 and 3.0, %VERSION% points to the netf20\

sub-directory.

112 Developing ADO.NET and OLE DB Applications

Compile and link options for the loosely-coupled sample program, LCTrans:

%BLDCOMP%

Variable for the compiler. The default is vbc, the Microsoft Visual Basic .NET

compiler.

/out:RootCOM.dll

Output the RootCOM dynamic link library, used by the LCTrans application, from

the RootCOM.vb source file,

/out:SubCOM.dll

Output the SubCOM dynamic link library, used by the LCTrans application, from the

SubCOM.vb source file,

/target:library %1.cs

Create the dynamic link library from the input source file (RootCOM.vb or

SubCOM.vb).

/r:System.EnterpriseServices.dll

Reference the Microsoft Windows System EnterpriseServices data link library.

/r:"%DB2PATH%"\bin\%VERSION%IBM.Data.DB2.dll

Reference the DB2 dynamic link library for the .NET framework version you are

using.

%VERSION%

There are three supported versions of the .NET framework for

applications. DB2 has a dynamic link library for each in separate

sub-directories. For .NET Framework Version 1.1, %VERSION% points to the

netf11\ sub-directory. For .NET Framework Version 2.0 and 3.0,

%VERSION% points to the netf20\ sub-directory.

/r:System.Data.dll

Reference the Microsoft Windows System Data dynamic link library.

/r:System.dll

Reference the Microsoft Windows System dynamic link library.

/r:System.Xml.dll

Reference the Microsoft Windows System XML dynamic link library (for

SubCOM.vb).

/r:SubCOM.dll

Reference the SubCOM dynamic link library (for RootCOM.vb and LCTrans.vb).

/r:RootCOM.dll

Reference the RootCOM dynamic link library (for LCTrans.vb).

Refer to your compiler documentation for additional compiler options.

C# .NET application compile and link options

The following are the compile and link options recommended by DB2 for building

C# applications on Windows with the Microsoft C# compiler, as demonstrated in

the bldapp.bat batch file.

 Compile and link options for bldapp

Chapter 4. IBM Data Server Provider for .NET 113

Compile and link options for standalone C# applications:

%BLDCOMP%

Variable for the compiler. The default is csc, the Microsoft C# compiler.

/r:"%DB2PATH%"\bin\%VERSION%IBM.Data.DB2.dll

Reference the DB2 dynamic link library for the .NET framework version you are

using.

%VERSION%

There are three supported versions of the .NET framework for

applications. DB2 has a dynamic link library for each in separate

sub-directories. For .NET Framework Version 1.1, %VERSION% points to the

netf11\ sub-directory. For .NET Framework Version 2.0 and 3.0,

%VERSION% points to the netf20\ sub-directory.

Compile and link options for the loosely-coupled sample program, LCTrans:

%BLDCOMP%

Variable for the compiler. The default is csc, the Microsoft C# compiler.

/out:RootCOM.dll

Output the RootCOM dynamic link library, used by the LCTrans application, from

the RootCOM.cs source file,

/out:SubCOM.dll

Output the SubCOM dynamic link library, used by the LCTrans application, from the

SubCOM.cs source file,

/target:library %1.cs

Create the dynamic link library from the input source file (RootCOM.cs or

SubCOM.cs).

/r:System.EnterpriseServices.dll

Reference the Microsoft Windows System EnterpriseServices data link library.

/r:"%DB2PATH%"\bin\%VERSION%IBM.Data.DB2.dll

Reference the DB2 dynamic link library for the .NET framework version you are

using.

%VERSION%

There are three supported versions of the .NET framework for

applications. DB2 has a dynamic link library for each in separate

sub-directories. For .NET Framework Version 1.1, %VERSION% points to the

netf11\ sub-directory. For .NET Framework Version 2.0 and 3.0,

%VERSION% points to the netf20\ sub-directory.

/r:System.Data.dll

Reference the Microsoft Windows System Data dynamic link library.

/r:System.dll

Reference the Microsoft Windows System dynamic link library.

/r:System.Xml.dll

Reference the Microsoft Windows System XML dynamic link library (for

SubCOM.cs).

/r:SubCOM.dll

Reference the SubCOM dynamic link library (for RootCOM.cs and LCTrans.cs).

/r:RootCOM.dll

Reference the RootCOM dynamic link library (for LCTrans.cs).

Refer to your compiler documentation for additional compiler options.

114 Developing ADO.NET and OLE DB Applications

Chapter 5. IBM OLE DB Provider for DB2

The IBM OLE DB Provider for DB2 allows DB2 to act as a resource manager for

the OLE DB provider. This support gives OLE DB-based applications the ability to

extract or query DB2 data using the OLE interface.

Microsoft OLE DB is a set of OLE/COM interfaces that provides applications with

uniform access to data stored in diverse information sources. The OLE DB

architecture defines OLE DB consumers and OLE DB providers. An OLE DB

consumer is any system or application that uses OLE DB interfaces; an OLE DB

provider is a component that exposes OLE DB interfaces.

The IBM OLE DB Provider for DB2, whose provider name is IBMDADB2, enables

OLE DB consumers to access data on a DB2 database server. If DB2 Connect is

installed, these OLE DB consumers can also access data on a host DBMS such as

DB2 for MVS™, DB2 for VM/VSE, or SQL/400®.

The IBM OLE DB Provider for DB2 offers the following features:

v Support level 0 of the OLE DB provider specification, including some additional

level 1 interfaces.

v A free threaded provider implementation, which enables the application to

create components in one thread and use those components in any other thread.

v An Error Lookup Service that returns DB2 error messages.

Note that the IBM OLE DB Provider resides on the client and is different from the

OLE DB table functions, which are also supported by DB2 database systems.

Subsequent sections of this document describe the specific implementation of the

IBM OLE DB Provider for DB2. For more information on the Microsoft OLE DB 2.0

specification, refer to the Microsoft OLE DB 2.0 Programmer’s Reference and Data

Access SDK, available from Microsoft Press.

Version Compliance

The IBM OLE DB Provider for DB2 complies with Version 2.7 or later of the

Microsoft OLE DB specification.

System Requirements

Refer to the announcement letter for the IBM OLE DB Provider for DB2 data

servers to see the supported Windows operating systems.

To install the IBM OLE DB Provider for DB2, you must first be running on one of

the supported operating systems listed above. You also need to install the DB2

Client. This client includes Microsoft Data Access Components (MDAC).

Application Types Supported by the IBM OLE DB Provider for DB2

With the IBM OLE DB Provider for DB2, you can create the following types of

applications:

v ADO applications, including:

– Microsoft Visual Studio C++ applications

© IBM Corporation 2006, 2008 115

– Microsoft Visual Basic applications
v ADO.NET applications using the OLE DB .NET Data Provider

v C/C++ applications which access IBMDADB2 directly using the OLE DB

interfaces, including ATL applications whose Data Access Consumer Objects

were generated by the ATL COM AppWizard.

OLE DB services

Thread model supported by the IBM OLE DB Provider

The IBM OLE DB Provider for DB2 supports the Free Threaded model. This allows

applications to create components in one thread and use these components in any

other thread.

Large object manipulation with the IBM OLE DB Provider

To get and set data as storage objects (DBTYPE_IUNKNOWN) with the IBMDADB2

provider, use the ISequentialStream interface as follows:

v To bind a storage object to a parameter, the DBOBJECT in the DBBINDING

structure can only contain the value STGM_READ for the dwFlag field. IBMDADB2

will execute the Read method of the ISequentialStream interface of the bound

object.

v To get data from a storage object, your application must run the Read method

on the ISequentialStream interface of the storage object.

v When getting data, the value of the length part is the length of the real data, not

the length of the IUnknown pointer.

Schema rowsets supported by the IBM OLE DB Provider

The following table shows the schema rowsets that are supported by

IDBSchemaRowset. Unsupported columns will be set to null in the rowsets.

 Table 29. Schema Rowsets Supported by the IBM OLE DB Provider for DB2

Supported GUIDs Supported Restrictions Supported Columns Notes

 DBSCHEMA

 _COLUMN_PRIVILEGES

 COLUMN_NAME

TABLE_NAME

TABLE_SCHEMA

 COLUMN_NAME

GRANTEE

GRANTOR

IS_GRANTABLE

PRIVILEGE_TYPE

TABLE_NAME

TABLE_SCHEMA

DBSCHEMA_COLUMNS

 COLUMN_NAME

TABLE_NAME

TABLE_SCHEMA

 CHARACTER_MAXIMUM_LENGTH

CHARACTER_OCTET_LENGTH

COLUMN_DEFAULT

COLUMN_FLAGS

COLUMN_HASDEFAULT

COLUMN_NAME

DATA_TYPE

DESCRIPTION

IS_NULLABLE

NUMERIC_PRECISION

NUMERIC_SCALE

ORDINAL_POSITION

TABLE_NAME

TABLE_SCHEMA

116 Developing ADO.NET and OLE DB Applications

Table 29. Schema Rowsets Supported by the IBM OLE DB Provider for DB2 (continued)

Supported GUIDs Supported Restrictions Supported Columns Notes

DBSCHEMA_FOREIGN_KEYS

 FK_TABLE_NAME

FK_TABLE_SCHEMA

PK_TABLE_NAME

PK_TABLE_SCHEMA

 DEFERRABILITY

DELETE_RULE

FK_COLUMN_NAME

FK_NAME

FK_TABLE_NAME

FK_TABLE_SCHEMA

ORDINAL

PK_COLUMN_NAME

PK_NAME

PK_TABLE_NAME

PK_TABLE_SCHEMA

UPDATE_RULE

Must specify at least one

of the following

restrictions:

PK_TABLE_NAME or

FK_TABLE_NAME

No “%” wildcard

allowed.

DBSCHEMA_INDEXES

 TABLE_NAME

TABLE_SCHEMA

 CARDINALITY

CLUSTERED

COLLATION

COLUMN_NAME

INDEX_NAME

INDEX_SCHEMA

ORDINAL_POSITION

PAGES

TABLE_NAME

TABLE_SCHEMA

TYPE

UNIQUE

No sort order supported.

Sort order, if specified,

will be ignored.

DBSCHEMA_PRIMARY_KEYS

 TABLE_NAME

TABLE_SCHEMA

 COLUMN_NAME

ORDINAL

PK_NAME

TABLE_NAME

TABLE_SCHEMA

Must specify at least the

following restrictions:

TABLE_NAME

No “%” wildcard

allowed.

 DBSCHEMA

 _PROCEDURE_PARAMETERS

 PARAMETER_NAME

PROCEDURE_NAME

PROCEDURE_SCHEMA

 CHARACTER_MAXIMUM_LENGTH

CHARACTER_OCTET_LENGTH

DATA_TYPE

DESCRIPTION

IS_NULLABLE

NUMERIC_PRECISION

NUMERIC_SCALE

ORDINAL_POSITION

PARAMETER_DEFAULT

PARAMETER_HASDEFAULT

PARAMETER_NAME

PARAMETER_TYPE

PROCEDURE_NAME

PROCEDURE_SCHEMA

TYPE_NAME

DBSCHEMA_PROCEDURES

 PROCEDURE_NAME

PROCEDURE_SCHEMA

 DESCRIPTION

PROCEDURE_NAME

PROCEDURE_SCHEMA

PROCEDURE_TYPE

Chapter 5. OLE DB 117

Table 29. Schema Rowsets Supported by the IBM OLE DB Provider for DB2 (continued)

Supported GUIDs Supported Restrictions Supported Columns Notes

DBSCHEMA_PROVIDER_TYPES

 DATA_TYPE

BEST_MATCH

 AUTO_UNIQUE_VALUE

BEST_MATCH

CASE_SENSITIVE

CREATE_PARAMS

COLUMN_SIZE

DATA_TYPE

FIXED_PREC_SCALE

IS_FIXEDLENGTH

IS_LONG

IS_NULLABLE

LITERAL_PREFIX

LITERAL_SUFFIX

LOCAL_TYPE_NAME

MINIMUM_SCALE

MAXIMUM_SCALE

SEARCHABLE

TYPE_NAME

UNSIGNED_ATTRIBUTE

DBSCHEMA_STATISTICS

 TABLE_NAME

TABLE_SCHEMA

 CARDINALITY

TABLE_NAME

TABLE_SCHEMA

No sort order supported.

Sort order, if specified,

will be ignored.

 DBSCHEMA

 _TABLE_PRIVILEGES

 TABLE_NAME

TABLE_SCHEMA

 GRANTEE

GRANTOR

IS_GRANTABLE

PRIVILEGE_TYPE

TABLE_NAME

TABLE_SCHEMA

DBSCHEMA_TABLES

 TABLE_NAME

TABLE_SCHEMA

TABLE_TYPE

 DESCRIPTION

TABLE_NAME

TABLE_SCHEMA

TABLE_TYPE

OLE DB services automatically enabled by the IBM OLE DB

Provider

By default, the IBM OLE DB Provider for DB2 automatically enables all the OLE

DB services by adding a registry entry OLEDB_SERVICES under the class ID (CLSID)

of the provider with the DWORD value of 0xFFFFFFFF. The meaning of this value

is as follows:

 Table 30. OLE DB Services

Enabled Services DWORD Value

All services (default) 0xFFFFFFFF

All except pooling and AutoEnlistment 0xFFFFFFFC

All except client cursor 0xFFFFFFFB

All except pooling, enlistment and cursor 0xFFFFFFF8

No services 0x000000000

118 Developing ADO.NET and OLE DB Applications

Data services

Supported cursor modes for the IBM OLE DB Provider

The IBM OLE DB Provider for DB2 natively supports read-only, forward-only,

updatable scrollable, and updatable scrollable cursors.

Data type mappings between DB2 and OLE DB

The IBM OLE DB Provider for DB2 supports data type mappings between DB2

data types and OLE DB data types.

The following table provides a complete list of supported mappings and available

names for indicating the data types of columns and parameters.

 Table 31. Data type mappings between DB2 data types and OLE DB data types

DB2 Data

Types OLE DB Data Types Indicators OLE DB Standard Type Names DB2 Specific Names

SMALLINT DBTYPE_I2 “DBTYPE_I2” “SMALLINT”

INTEGER DBTYPE_I4 “DBTYPE_I4” “INTEGER” or “INT”

BIGINT DBTYPE_I8 “DBTYPE_I8” “BIGINT”

REAL DBTYPE_R4 “DBTYPE_R4” “REAL”

FLOAT DBTYPE_R8 “DBTYPE_R8” “FLOAT”

DOUBLE DBTYPE_R8 “DBTYPE_R8″ “DOUBLE” or

“DOUBLE

PRECISION”

DECIMAL DBTYPE_NUMERIC “DBTYPE_NUMERIC” “DEC” or

“DECIMAL”

NUMERIC DBTYPE_NUMERIC “DBTYPE_NUMERIC” “NUM” or

“NUMERIC”

DATE DBTYPE_DBDATE “DBTYPE_DBDATE” “DATE”

TIME DBTYPE_DBTIME “DBTYPE_DBTIME” “TIME”

TIMESTAMP DBTYPE_DBTIMESTAMP “DBTYPE_DBTIMESTAMP” “TIMESTAMP”

CHAR DBTYPE_STR “DBTYPE_CHAR” “CHAR” or

“CHARACTER”

VARCHAR DBTYPE_STR “DBTYPE_VARCHAR” “VARCHAR”

LONG

VARCHAR

DBTYPE_STR “DBTYPE_LONGVARCHAR” “LONG VARCHAR”

CLOB

 DBTYPE_STR

and DBCOLUMNFLAGS_ISLONG

or DBPARAMFLAGS_ISLONG

 “DBTYPE_CHAR”

“DBTYPE_VARCHAR”

“DBTYPE_LONGVARCHAR”

and DBCOLUMNFLAGS_ISLONG

or DBPARAMFLAGS_ISLONG

“CLOB”

GRAPHIC DBTYPE_WSTR “DBTYPE_WCHAR” “GRAPHIC”

VARGRAPHIC DBTYPE_WSTR “DBTYPE_WVARCHAR” “VARGRAPHIC”

LONG

VARGRAPHIC

DBTYPE_WSTR “DBTYPE_WLONGVARCHAR” “LONG

VARGRAPHIC”

Chapter 5. OLE DB 119

Table 31. Data type mappings between DB2 data types and OLE DB data types (continued)

DB2 Data

Types OLE DB Data Types Indicators OLE DB Standard Type Names DB2 Specific Names

DBCLOB

 DBTYPE_WSTR

and DBCOLUMNFLAGS_ISLONG

or DBPARAMFLAGS_ISLONG

 “DBTYPE_WCHAR”

“DBTYPE_WVARCHAR”

“DBTYPE_WLONGVARCHAR”

and DBCOLUMNFLAGS_ISLONG

or DBPARAMFLAGS_ISLONG

“DBCLOB”

CHAR(n) FOR

BIT DATA

DBTYPE_BYTES “DBTYPE_BINARY”

VARCHAR(n)

FOR BIT

DATA

DBTYPE_BYTES “DBTYPE_VARBINARY”

LONG

VARCHAR

FOR BIT

DATA

DBTYPE_BYTES “DBTYPE_LONGVARBINARY”

BLOB

 DBTYPE_BYTES

and DBCOLUMNFLAGS_ISLONG

or DBPARAMFLAGS_ISLONG

 “DBTYPE_BINARY”

“DBTYPE_VARBINARY”

“DBTYPE_LONGVARBINARY”

and DBCOLUMNFLAGS_ISLONG

or DBPARAMFLAGS_ISLONG

“BLOB”

Data conversion for setting data from OLE DB Types to DB2

Types

The IBM OLE DB Provider for DB2 supports data conversions for setting data from

OLE DB types to DB2 types.

The following table shows data conversions from OLE DB types to DB2 types.

Note that truncation of the data may occur in some cases, depending on the types

and the value of the data.

 Table 32. Data conversions from OLE DB types to DB2 types

 OLE DB Type Indicator

DB2 Data Types

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 F

L

O

A

T

D

O

U

B

L

E

 D

E

C

I

M

A

L

N

U

M

E

R

I

C

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

For Bit

Data

 B

L

O

B

 D

A

T

A

L

I

N

K

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 DBTYPE_EMPTY

120 Developing ADO.NET and OLE DB Applications

Table 32. Data conversions from OLE DB types to DB2 types (continued)

 OLE DB Type Indicator

DB2 Data Types

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 F

L

O

A

T

D

O

U

B

L

E

 D

E

C

I

M

A

L

N

U

M

E

R

I

C

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

For Bit

Data

 B

L

O

B

 D

A

T

A

L

I

N

K

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 DBTYPE_NULL

 DBTYPE_RESERVED

 DBTYPE_I1 X X X X X X X X

 DBTYPE_I2 X X X X X X X X

 DBTYPE_I4 X X X X X X X X

 DBTYPE_I8 X X X X X X X X

 DBTYPE_UI1 X X X X X X X X

 DBTYPE_UI2 X X X X X X X X

 DBTYPE_UI4 X X X X X X X X

 DBTYPE_UI8 X X X X X X X X

 DBTYPE_R4 X X X X X X X X

 DBTYPE_R8 X X X X X X X X

 DBTYPE_CY

 DBTYPE_DECIMAL X X X X X X X X

 DBTYPE_NUMERIC X X X X X X X X

 DBTYPE_DATE

Chapter 5. OLE DB 121

Table 32. Data conversions from OLE DB types to DB2 types (continued)

 OLE DB Type Indicator

DB2 Data Types

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 F

L

O

A

T

D

O

U

B

L

E

 D

E

C

I

M

A

L

N

U

M

E

R

I

C

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

For Bit

Data

 B

L

O

B

 D

A

T

A

L

I

N

K

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 DBTYPE_BOOL X X X X X X X X

 DBTYPE_BYTES X X X X X X X X X

 DBTYPE_BSTR

 – to be determined

 DBTYPE_STR X X X X X X X X X X X X X X X X X X X

 DBTYPE_WSTR X X X

 DBTYPE_VARIANT

 – to be determined

 DBTYPE_IDISPATCH

 DBTYPE_IUNKNOWN X X X X X X X X X X X

 DBTYPE_GUID

 DBTYPE_ERROR

 DBTYPE_BYREF

 DBTYPE_ARRAY

 DBTYPE_VECTOR

 DBTYPE_UDT

 DBTYPE_DBDATE X X X X

122 Developing ADO.NET and OLE DB Applications

Table 32. Data conversions from OLE DB types to DB2 types (continued)

 OLE DB Type Indicator

DB2 Data Types

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 F

L

O

A

T

D

O

U

B

L

E

 D

E

C

I

M

A

L

N

U

M

E

R

I

C

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

For Bit

Data

 B

L

O

B

 D

A

T

A

L

I

N

K

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 DBTYPE_DBTIME X X X X

 DBTYPE_DBTIMESTAMP X X X X X

 DBTYPE_FILETIME

 DBTYPE_PROP_VARIANT

 DBTYPE_HCHAPTER

 DBTYPE_VARNUMERIC

Data conversion for setting data from DB2 types to OLE DB

types

For getting data, the IBM OLE DB Provider allows data conversions from DB2

types to OLE DB types.

The following table shows supported data conversions from DB2 types to OLE DB

types. Note that truncation of the data may occur in some cases, depending on the

types and the value of the data.

Chapter 5. OLE DB 123

Table 33. Data conversions from DB2 types to OLE DB types

 OLE DB Type Indicator

DB2 Data Types

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 F

L

O

A

T

D

O

U

B

L

E

 D

E

C

I

M

A

L

N

U

M

E

R

I

C

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

For Bit

Data

 B

L

O

B

 D

A

T

A

L

I

N

K

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 DBTYPE_EMPTY

 DBTYPE_NULL

 DBTYPE_RESERVED

 DBTYPE_I1 X X X X X X X X X X X X X X X

 DBTYPE_I2 X X X X X X X X X X X X X X X

 DBTYPE_I4 X X X X X X X X X X X X X X X

 DBTYPE_I8 X X X X X X X X X X X X X X X X

 DBTYPE_UI1 X X X X X X X X X X X X X X X

 DBTYPE_UI2 X X X X X X X X X X X X X X X

 DBTYPE_UI4 X X X X X X X X X X X X X X X

 DBTYPE_UI8 X X X X X X X X X X X X X X X X

 DBTYPE_R4 X X X X X X X X X X X X X X X

 DBTYPE_R8 X X X X X X X X X X X X X X X

 DBTYPE_CY X X X X X X X X X X X X X X X

 DBTYPE_DECIMAL X X X X X X X X X X X X X X X

 DBTYPE_NUMERIC X X X X X X X X X X X X X X X

124 Developing ADO.NET and OLE DB Applications

Table 33. Data conversions from DB2 types to OLE DB types (continued)

 OLE DB Type Indicator

DB2 Data Types

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 F

L

O

A

T

D

O

U

B

L

E

 D

E

C

I

M

A

L

N

U

M

E

R

I

C

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

For Bit

Data

 B

L

O

B

 D

A

T

A

L

I

N

K

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 DBTYPE_DATE X X X X X X X X X X X X X X

 DBTYPE_BOOL X X X X X X X X X X X X X X X

 DBTYPE_BYTES X X X X X X X X X X X X X X X X X X

 DBTYPE_BSTR X X X X X X X X X X X X X X X X X X X

 DBTYPE_STR X X X X X X X X X X X X X X X X X X X

 DBTYPE_WSTR X X X X X X X X X X X X X X X X X X X

 DBTYPE_VARIANT X X X X X X X X X X X X X X X X X X X

 DBTYPE_IDISPATCH

 DBTYPE_IUNKNOWN X

 DBTYPE_GUID X X X X X X X X X X

 DBTYPE_ERROR

 DBTYPE_BYREF

 DBTYPE_ARRAY

 DBTYPE_VECTOR

 DBTYPE_UDT

 DBTYPE_DBDATE X X X X X X X X X X X X X

Chapter 5. OLE DB 125

Table 33. Data conversions from DB2 types to OLE DB types (continued)

 OLE DB Type Indicator

DB2 Data Types

 S

M

A

L

L

I

N

T

 I

N

T

E

G

E

R

 B

I

G

I

N

T

 R

E

A

L

 F

L

O

A

T

D

O

U

B

L

E

 D

E

C

I

M

A

L

N

U

M

E

R

I

C

 D

A

T

E

 T

I

M

E

 T

I

M

E

S

T

A

M

P

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 C

L

O

B

 G

R

A

P

H

I

C

 V

A

R

G

R

A

P

H

I

C

 L

O

N

G

V

A

R

G

R

A

P

H

I

C

 D

B

C

L

O

B

For Bit

Data

 B

L

O

B

 D

A

T

A

L

I

N

K

 C

H

A

R

 V

A

R

C

H

A

R

 L

O

N

G

V

A

R

C

H

A

R

 DBTYPE_DBTIME X X X X X X X X X X

 DBTYPE_DBTIMESTAMP X X X X X X X X X X X X X

 DBTYPE_FILETIME X X X X X X X X X X X X X X

 DBTYPE_PROP_VARIANT X X X X X X X X X X X X X X X

 DBTYPE_HCHAPTER

 DBTYPE_VARNUMERIC

Note: When the application performs the ISequentialStream::Read to get the data from the storage object, the format

of the data returned depends on the column data type:

v For non character and binary data types, the data of the column is exposed as a sequence of bytes which

represent those values in the operating system.

v For character data type, the data is first converted to DBTYPE_STR.

v For DBCLOB, the data is first converted to DBTYPE_WCHAR.

IBM OLE DB Provider restrictions

Following are the restrictions for the IBM OLE DB Provider:

v IBMDADB2 supports auto commit and user-controlled transaction scope with

the ITransactionLocal interface. Auto commit transaction scope is the default

scope. Nested transactions are not supported.

v RestartPosition is not supported when the command text contains parameters.

v IBMDADB2 does not quote table names passed through the DBID parameters,

which are parameters used by the IOpenRowset interface. Instead, the OLE DB

consumer must add quotes to the table names when quotes are required.

126 Developing ADO.NET and OLE DB Applications

IBM OLE DB Provider support for OLE DB components and interfaces

The following tables list the OLE DB components and interfaces that are supported

by the IBM OLE DB Provider for DB2 and the Microsoft OLE DB Provider for

ODBC.

 Table 34. Blobs

Interface DB2 ODBC Provider

ISequentialStream Yes Yes

 Table 35. Commands

Interface DB2 ODBC Provider

IAccessor Yes Yes

ICommand Yes Yes

ICommandPersist No No

ICommandPrepare Yes Yes

ICommandProperties Yes Yes

ICommandText Yes Yes

ICommandWithParameters Yes Yes

IColumnsInfo Yes Yes

IColumnsRowset Yes Yes

IConvertType Yes Yes

ISupportErrorInfo Yes Yes

 Table 36. DataSources

Interface DB2 ODBC Provider

IConnectionPoint No Yes

IDBAsynchNotify (consumer) No No

IDBAsynchStatus No No

IDBConnectionPointContainer No Yes

IDBCreateSession Yes Yes

IDBDataSourceAdmin No No

IDBInfo Yes Yes

IDBInitialize Yes Yes

IDBProperties Yes Yes

IPersist Yes No

IPersistFile Yes Yes

ISupportErrorInfo Yes Yes

 Table 37. Enumerators

Interface DB2 ODBC Provider

IDBInitialize Yes Yes

IDBProperties Yes Yes

IParseDisplayName Yes No

Chapter 5. OLE DB 127

Table 37. Enumerators (continued)

Interface DB2 ODBC Provider

ISourcesRowset Yes Yes

ISupportErrorInfo Yes Yes

 Table 38. Error Lookup Service

Interface DB2 ODBC Provider

IErrorLookUp Yes Yes

 Table 39. Error Objects

Interface DB2 ODBC Provider

IErrorInfo Yes No

Yes No

ISQLErrorInfo (custom) Yes No

 Table 40. Multiple Results

Interface DB2 ODBC Provider

IMultipleResults Yes Yes

ISupportErrorInfo Yes Yes

 Table 41. Rowsets

Interface DB2 ODBC Provider

IAccessor Yes Yes

IColumnsRowset Yes Yes

IColumnsInfo Yes Yes

IConvertType Yes Yes

IChapteredRowset No No

IConnectionPointContainer Yes Yes

IDBAsynchStatus No No

IParentRowset No No

IRowset Yes Yes

IRowsetChange Yes Yes

IRowsetChapterMember No No

IRowsetFind No No

IRowsetIdentity Yes Yes

IRowsetIndex No No

IRowsetInfo Yes Yes

IRowsetLocate Yes Yes

IRowsetNotify (consumer) Yes No

IRowsetRefresh Cursor Service Component Yes

IRowsetResynch Cursor Service Component Yes

IRowsetScroll Yes1 Yes

128 Developing ADO.NET and OLE DB Applications

Table 41. Rowsets (continued)

Interface DB2 ODBC Provider

IRowsetUpdate Cursor Service Component Yes

IRowsetView No No

ISupportErrorInfo Yes Yes

Note:

1. The values to be returned are approximations. Deleted rows will not be skipped.

 Table 42. Sessions

Interface DB2 ODBC Provider

IAlterIndex No No

IAlterTable No No

IDBCreateCommand Yes Yes

IDBSchemaRowset Yes Yes

IGetDataSource Yes Yes

IIndexDefinition No No

IOpenRowset Yes Yes

ISessionProperties Yes Yes

ISupportErrorInfo Yes Yes

ITableDefinition No No

ITableDefinitionWithConstraints No No

ITransaction Yes Yes

ITransactionJoin Yes Yes

ITransactionLocal Yes Yes

ITransactionObject No No

ITransactionOptions No Yes

 Table 43. View Objects

Interface DB2 ODBC Provider

IViewChapter No No

IViewFilter No No

IViewRowset No No

IViewSort No No

IBM OLE DB Provider support for OLE DB properties

The following table shows the OLE DB properties that are supported by the IBM

OLE DB Provider for DB2:

 Table 44. Properties Supported by the IBM OLE DB Provider for DB2: Data Source (DBPROPSET_DATASOURCE)

Properties Default Value R/W

DBPROP_MULTIPLECONNECTIONS VARIANT_FALSE R

DBPROP_RESETDATASOURCE DBPROPVAL_RD_RESETALL R/W

Chapter 5. OLE DB 129

Table 45. Properties Supported by the IBM OLE DB Provider for DB2: DB2 Data Source

(DBPROPSET_DB2DATASOURCE)

Properties Default Value R/W

DB2PROP_REPORTISLONGFORLONGTYPES VARIANT_FALSE R/W

DB2PROP_RETURNCHARASWCHAR VARIANT_TRUE R/W

DB2PROP_SORTBYORDINAL VARIANT_FALSE R/W

 Table 46. Properties Supported by the IBM OLE DB Provider for DB2: Data Source Information

(DBPROPSET_DATASOURCEINFO)

Properties Default Value R/W

 DBPROP_ACTIVESESSIONS

0

 R

DBPROP_ASYNCTXNABORT VARIANT_FALSE R

DBPROP_ASYNCTXNCOMMIT VARIANT_FALSE R

DBPROP_BYREFACCESSORS VARIANT_FALSE R

DBPROP_COLUMNDEFINITION DBPROPVAL_CD_NOTNULL R

DBPROP_CONCATNULLBEHAVIOR DBPROPVAL_CB_NULL R

DBPROP_CONNECTIONSTATUS DBPROPVAL_CS_INITIALIZED R

DBPROP_DATASOURCENAME N/A R

DBPROP_DATASOURCEREADONLY VARIANT_FALSE R

DBPROP_DBMSNAME N/A R

DBPROP_DBMSVER N/A R

DBPROP_DSOTHREADMODEL DBPROPVAL_RT_FREETHREAD R

DBPROP_GROUPBY DBPROPVAL_GB_CONTAINS_SELECT R

DBPROP_IDENTIFIERCASE DBPROPVAL_IC_UPPER R

DBPROP_MAXINDEXSIZE 0 R

DBPROP_MAXROWSIZE 0 R

DBPROP_MAXROWSIZEINCLUDESBLOB VARIANT_TRUE R

DBPROP_MAXTABLEINSELECT 0 R

DBPROP_MULTIPLEPARAMSETS VARIANT_FALSE R

DBPROP_MULTIPLERESULTS DBPROPVAL_MR_SUPPORTED R

DBPROP_MULTIPLESTORAGEOBJECTS VARIANT_TRUE R

DBPROP_MULTITABLEUPDATE VARIANT_FALSE R

DBPROP_NULLCOLLATION DBPROPVAL_NC_LOW R

DBPROP_OLEOBJECTS DBPROPVAL_OO_BLOB R

DBPROP_ORDERBYCOLUMNSINSELECT VARIANT_FALSE R

 DBPROP

 _OUTPUTPARAMETERAVAILABILITY

 DBPROPVAL_OA_ATEXECUTE R

DBPROP_PERSISTENTIDTYPE DBPROPVAL_PT_NAME R

DBPROP_PREPAREABORTBEHAVIOR DBPROPVAL_CB_DELETE R

DBPROP_PROCEDURETERM “STORED PROCEDURE” R

DBPROP_PROVIDERFRIENDLYNAME “IBM OLE DB Provider for DB2” R

130 Developing ADO.NET and OLE DB Applications

Table 46. Properties Supported by the IBM OLE DB Provider for DB2: Data Source Information

(DBPROPSET_DATASOURCEINFO) (continued)

Properties Default Value R/W

DBPROP_PROVIDERNAME “IBMDADB2.DLL” R

DBPROP_PROVIDEROLEDBVER “02.7” R

DBPROP_PROVIDERVER N/A R

DBPROP_QUOTEIDENTIFIERCASE DBPROPVAL_IC_SENSITIVE R

 DBPROP

 _ROWSETCONVERSIONSONCOMMAND

 VARIANT_TRUE R

DBPROP_SCHEMATERM “SCHEMA” R

 DBPROP_SCHEMAUSAGE DBPROPVAL_SU_DML_STATEMENTS |

DBPROPVAL_SU_TABLE_DEFINITION |

DBPROPVAL_SU_INDEX_DEFINITION |

DBPROPVAL_SU_PRIVILEGE_DEFINITION

 R

 DBPROP_SQLSUPPORT DBPROPVAL_SQL_ODBC_EXTENDED |

DBPROPVAL_SQL_ESCAPECLAUSES |

DBPROPVAL_SQL_ANSI92_ENTRY

 R

DBPROP_SERVERNAME N/A R

DBPROP_STRUCTUREDSTORAGE DBPROPVAL_SS_ISEQUENTIALSTREAM R

 DBPROP_SUBQUERIES DBPROPVAL_SQ_CORRELATEDSUBQUERIES |

DBPROPVAL_SQ_COMPARISON |

DBPROPVAL_SQ_EXISTS |

DBPROPVAL_SQ_IN |

DBPROPVAL_SQ_QUANTIFIED |

 R

DBPROP_SUPPORTEDTXNDDL DBPROPVAL_TC_ALL R

 DBPROP_SUPPORTEDTXNISOLEVELS DBPROPVAL_TI_CURSORSTABILITY |

DBPROPVAL_TI_READCOMMITTED |

DBPROPVAL_TI_READUNCOMMITTED |

DBPROPVAL_TI_SERIALIZABLE |

 R

 DBPROP_SUPPORTEDTXNISORETAIN DBPROPVAL_TR_COMMIT_DC |

DBPROPVAL_TR_ABORT_NO |

 R

DBPROP_TABLETERM “TABLE” R

DBPROP_USERNAME N/A R

 Table 47. Properties Supported by the IBM OLE DB Provider for DB2: Initialization (DBPROPSET_DBINIT)

Properties Default Value R/W

DBPROP_AUTH_PASSWORD N/A R/W

DBPROP_INIT_TIMEOUT (1) 0 R/W

 DBPROP_AUTH_PERSIST

_SENSITIVE_AUTHINFO

VARIANT_FALSE R/W

DBPROP_AUTH_USERID N/A R/W

DBPROP_INIT_DATASOURCE N/A R/W

Chapter 5. OLE DB 131

Table 47. Properties Supported by the IBM OLE DB Provider for DB2: Initialization

(DBPROPSET_DBINIT) (continued)

Properties Default Value R/W

DBPROP_INIT_HWND N/A R/W

DBPROP_INIT_MODE DB_MODE_READWRITE R/W

DBPROP_INIT_OLEDBSERVICES 0xFFFFFFFF R/W

DBPROP_INIT_PROMPT DBPROMPT_NOPROMPT R/W

DBPROP_INIT_PROVIDERSTRING N/A R/W

 Table 48. Properties Supported by the IBM OLE DB Provider for DB2: Rowset (DBPROPSET_ROWSET)

Properties Default Value R/W

DBPROP_ABORTPRESERVE VARIANT_FALSE R

DBPROP_ACCESSORDER DBPROPVAL_AO_RANDOM R

DBPROP_BLOCKINGSTORAGEOBJECTS VARIANT_FALSE R

DBPROP_BOOKMARKS VARIANT_FALSE R/W

DBPROP_BOOKMARKSKIPPED VARIANT_FALSE R

DBPROP_BOOKMARKTYPE DBPROPVAL_BMK_NUMERIC R

DBPROP_CACHEDEFERRED VARIANT_FALSE R/W

DBPROP_CANFETCHBACKWARDS VARIANT_FALSE R/W

DBPROP_CANHOLDROWS VARIANT_FALSE R

DBPROP_CANSCROLLBACKWARDS VARIANT_FALSE R/W

DBPROP_CHANGEINSERTEDROWS VARIANT_FALSE R

DBPROP_COMMITPRESERVE VARIANT_TRUE R/W

DBPROP_COMMANDTIMEOUT 0 R/W

DBPROP_DEFERRED VARIANT_FALSE R

DBPROP_IAccessor VARIANT_TRUE R

DBPROP_IColumnsInfo VARIANT_TRUE R

DBPROP_IColumnsRowset VARIANT_TRUE R/W

DBPROP_IConvertType VARIANT_TRUE R

DBPROP_IMultipleResults VARIANT_FALSE R/W

DBPROP_IRowset VARIANT_TRUE R

DBPROP_IRowChange VARIANT_FALSE R/W

DBPROP_IRowsetFind VARIANT_FALSE R

DBPROP_IRowsetIdentity VARIANT_TRUE R

DBPROP_IRowsetInfo VARIANT_TRUE R

DBPROP_IRowsetLocate VARIANT_FALSE R/W

DBPROP_IRowsetScroll VARIANT_FALSE R/W

DBPROP_IRowsetUpdate VARIANT_FALSE R

DBPROP_ISequentialStream VARIANT_TRUE R

DBPROP_ISupportErrorInfo VARIANT_TRUE R

DBPROP_LITERALBOOKMARKS VARIANT_FALSE R

DBPROP_LITERALIDENTITY VARIANT_TRUE R

132 Developing ADO.NET and OLE DB Applications

Table 48. Properties Supported by the IBM OLE DB Provider for DB2: Rowset (DBPROPSET_ROWSET) (continued)

Properties Default Value R/W

DBPROP_LOCKMODE DBPROPVAL_LM_SINGLEROW R/W

DBPROP_MAXOPENROWS 32767 R

DBPROP_MAXROWS 0 R/W

DBPROP_NOTIFICATIONGRANULARITY DBPROPVAL_NT_SINGLEROW R/W

DBPROP_NOTIFICATION PHASES

 DBPROPVAL_NP_OKTODO

DBPROPBAL_NP_ABOUTTODO

DBPROPVAL_NP_SYNCHAFTER

DBPROPVAL_NP_FAILEDTODO

DBPROPVAL_NP_DIDEVENT

R

DBPROP_NOTIFYROWSETRELEASE

 DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

 DBPROP

_NOTIFYROWSETFETCHPOSITIONCHANGE

 DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_NOTIFYCOLUMNSET

 DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_NOTIFYROWDELETE

 DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_NOTIFYROWINSERT

 DBPROPVAL_NP_OKTODO

DBPROPVAL_NP_ABOUTTODO

R

DBPROP_ORDEREDBOOKMARKS VARIANT_FALSE R

DBPROP_OTHERINSERT VARIANT_FALSE R

DBPROP_OTHERUPDATEDELETE VARIANT_FALSE R/W

DBPROP_OWNINSERT VARIANT_FALSE R

DBPROP_OWNUPDATEDELETE VARIANT_FALSE R

DBPROP_QUICKRESTART VARIANT_FALSE R/W

DBPROP_REMOVEDELETED VARIANT_FALSE R/W

DBPROP_ROWTHREADMODEL DBPROPVAL_RT_FREETHREAD R

DBPROP_SERVERCURSOR VARIANT_TRUE R

DBPROP_SERVERDATAONINSERT VARIANT_FALSE R

DBPROP_UNIQUEROWS VARIANT_FALSE R/W

DBPROP_UPDATABILITY 0 R/W

 Table 49. Properties Supported by the IBM OLE DB Provider for DB2: DB2 Rowset (DBPROPSET_DB2ROWSET)

Properties Default Value R/W

DBPROP_ISLONGMINLENGTH 32000 R/W

Chapter 5. OLE DB 133

Table 50. Properties Supported by the IBM OLE DB Provider for DB2: Session (DBPROPSET_SESSION)

Properties Default Value R/W

DBPROP_SESS_AUTOCOMMITISOLEVELS DBPROPVAL_TI_CURSORSTABILITY R/W

Note:

1. The timeout is applicable only when using the TCP/IP protocol to connect to

the server. The timeout is enforced only during the TCP/IP sock connect. If the

sock connect completes before the specified timeout expires, the timeout will no

longer be enforced for the rest of the initialization process. If the client-reroute

feature is used then the timeout will be doubled. In general, when client

re-route is enabled, the connection timeout behavior is dictated by client

re-route.

Connections to data sources using the IBM OLE DB Provider

The following examples show how to connect to a DB2 data source using the IBM

OLE DB Provider for DB2:

Example 1: Visual Basic application using ADO

Dim db As ADODB.Connection

Set db = New ADODB.Connection

db.Provider = “IBMDADB2”

db.CursorLocation = adUseClient

...

Example 2: C/C++ application using IDataInitialize and Service

Component

hr = CoCreateInstance (

 CLSID_MSDAINITIALIZE,

 NULL,

 CLSCTX_INPROC_SERVER,

 IID_IDataInitialize,

 (void**)&pIDataInitialize);

hr = pIDataInitialize–>CreateDBInstance(

 CLSID_IBMDADB2, // ClassID of IBMDADB2

 NULL,

 CLSCTX_INPROC_SERVER,

 NULL,

 IID_IDBInitialize,

 (IUnknown**)&pIDBInitialize);

ADO applications

ADO connection string keywords

To specify ADO (ActiveX Data Objects) connection string keywords, specify the

keyword using the keyword=value format in the provider (connection) string.

Delimit multiple keywords with a semicolon (;).

The following table describes the keywords supported by the IBM OLE DB

Provider for DB2:

134 Developing ADO.NET and OLE DB Applications

Table 51. Keywords supported by the IBM OLE DB Provider for DB2

Keyword Value Meaning

DSN Name of the database alias The DB2 database alias in the database

directory.

UID User ID The user ID used to connect to the DB2

server.

PWD Password of UID Password for the user ID used to connect to

the DB2 server.

Other DB2 CLI configuration keywords also affect the behavior of the IBM OLE

DB Provider.

Connections to data sources with Visual Basic ADO

applications

To connect to a DB2 data source using the IBM OLE DB Provider for DB2, specify

the IBMDADB2 provider name.

Updatable scrollable cursors in ADO applications

The IBM OLE DB Provider for DB2 natively supports read-only, forward-only,

read-only scrollable, and updatable scrollable cursors. An ADO application that

wants to access updatable scrollable cursors can set the cursor location to either

adUseClient or adUseServer. Setting the cursor location to adUseServer causes the

cursor to materialize on the server.

Limitations for ADO applications

Following are the limitations for ADO applications:

v ADO applications calling stored procedures must have their parameters created

and explicitly bound. The Parameters.Refresh method for automatically

generating parameters is not supported for DB2 Server for VSE & VM.

v There is no support for default parameter values.

v When inserting a new row using a server-side scrollable cursor, use the

AddNew() method with the Fieldlist and Values arguments. This is more

efficient than calling AddNew() with no arguments following Update() calls for

each column. Each AddNew() and Update() call is a separate request to the

server and therefore, is less efficient than a single call to AddNew().

v Newly inserted rows are not updatable with a server-side scrollable cursor.

v Tables with long or LOB data are not updatable when using a server-side

scrollable cursor.

IBM OLE DB Provider support for ADO methods and

properties

The IBM OLE DB Provider supports the following ADO methods and properties:

 Table 52. Command Methods

Method/Property OLE DB Interface/Property IBM OLE DB Support

Cancel ICommand Yes

CreateParameter Yes

Execute Yes

Chapter 5. OLE DB 135

Table 53. Command Properties

Method/Property OLE DB Interface/Property IBM OLE DB Support

ActiveConnection (ADO specific)

Command Text ICommandText Yes

 Command Timeout ICommandProperties::SetProperties

DBPROP_COMMANDTIMEOUT

Yes

CommandType (ADO specific)

Prepared ICommandPrepare Yes

State (ADO specific)

 Table 54. Command Collections

Method/Property OLE DB Interface/Property IBM OLE DB Support

 Parameters ICommandWithParameter

DBSCHEMA

 _PROCEDURE_PARAMETERS

 Yes

 Properties ICommandProperties

IDBProperties

 Yes

 Table 55. Connection Methods

Method/Property OLE DB Interface/Property IBM OLE DB Support

 BeginTrans

CommitTrans

RollbackTrans

 ITransactionLocal Yes (but not nested)

Yes (but not nested)

Yes (but not nested)

 Execute ICommand

IOpenRowset

 Yes

 Open IDBCreateSession

IDBInitialize

 Yes

 OpenSchema

 adSchemaColumnPrivileges

 adSchemaColumns

 adSchemaForeignKeys

 adSchemaIndexes

 adSchemaPrimaryKeys

 adSchemaProcedureParam

 adSchemaProcedures

 adSchemaProviderType

 adSchemaStatistics

 adSchemaTablePrivileges

 adSchemaTables

 IDBSchemaRowset

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Cancel Yes

136 Developing ADO.NET and OLE DB Applications

Table 56. Connection Properties

Method/Property OLE DB Interface/Property IBM OLE DB Support

 Attributes

 adXactCommitRetaining

 adXactRollbackRetaining

 ITransactionLocal

Yes

Yes

 CommandTimeout ICommandProperties

DBPROP_COMMAND_TIMEOUT

 Yes

ConnectionString (ADO specific)

 ConnectionTimeout IDBProperties

DBPROP_INIT_TIMEOUT

 No

 CursorLocation:

 adUseClient

 adUseNone

 adUseServer

(Use OLE DB Cursor Service)

(Not Used)

Yes

No

Yes

 DefaultDataBase IDBProperties

DBPROP_CURRENTCATALOG

 No

 IsolationLevel ITransactionLocal

DBPROP_SESS

 _AUTOCOMMITISOLEVELS

 Yes

 Mode

 adModeRead

 adModeReadWrite

 adModeShareDenyNone

 adModeShareDenyRead

 adModeShareDenyWrite

 adModeShareExclusive

 adModeUnknown

 adModeWrite

 IDBProperties

DBPROP_INIT_MODE

No

Yes

No

No

No

No

No

No

Provider ISourceRowset::GetSourceRowset Yes

State (ADO specific)

Version (ADO specific)

 Table 57. Connection Collection

Method/Property OLE DB Interface/Property IBM OLE DB Support

Errors IErrorRecords Yes

Properties IDBProperties Yes

Chapter 5. OLE DB 137

Table 58. Error Properties

Method/Property OLE DB Interface/Property IBM OLE DB Support

 Description

NativeError

Number

Source

SQLState

IErrorRecords

 Yes

Yes

Yes

Yes

Yes

 HelpContext

HelpFile

 No

No

 Table 59. Field Methods

Method/Property OLE DB Interface/Property IBM OLE DB Support

 AppendChunk

GetChunk

 ISequentialStream Yes

Yes

 Table 60. Field Properties

Method/Property OLE DB Interface/Property IBM OLE DB Support

 Actual Size IAccessor

IRowset

 Yes

 Attributes

 DataFormat

 DefinedSize

 Name

 NumericScale

 Precision

 Type

 IColumnInfo

Yes

Yes

Yes

Yes

Yes

Yes

OriginalValue IRowsetUpdate Yes (Cursor Service)

 UnderlyingValue IRowsetRefresh

IRowsetResynch

 Yes

 (Cursor Service)

Yes

 (Cursor Service)

 Value IAccessor

IRowset

 Yes

 Table 61. Field Collection

Method/Property OLE DB Interface/Property IBM OLE DB Support

 Properties IDBProperties

IRowsetInfo

 Yes

 Table 62. Parameter Methods

Method/Property OLE DB Interface/Property IBM OLE DB Support

AppendChunk ISequentialStream Yes

138 Developing ADO.NET and OLE DB Applications

Table 62. Parameter Methods (continued)

Method/Property OLE DB Interface/Property IBM OLE DB Support

 Attributes

 Direction

 Name

 NumericScale

 Precision

 Scale

 Size

 Type

 ICommandWithParameter

DBSCHEMA

 _PROCEDURE_PARAMETERS

Yes

No

Yes

Yes

Yes

Yes

Yes

 Value IAccessor

ICommand

 Yes

 Table 63. Parameter Collection

Method/Property OLE DB Interface/Property IBM OLE DB Support

Properties Yes

 Table 64. RecordSet Methods

Method/Property OLE DB Interface/Property IBM OLE DB Support

AddNew IRowsetChange Yes

Cancel Yes

CancelBatch IRowsetUpdate::Undo Yes (Cursor Service)

CancelUpdate Yes (Cursor Service)

Clone IRowsetLocate Yes

 Close IAccessor

IRowset

 Yes

CompareBookmarks No

Delete IRowsetChange Yes

 GetRows IAccessor

IRowset

 Yes

 Move IRowset

IRowsetLocate

Yes

 MoveFirst IRowset

IRowsetLocate

 Yes

 MoveNext IRowset

IRowsetLocate

 Yes

MoveLast IRowsetLocate Yes

MovePrevious IRowsetLocate Yes

NextRecordSet IMultipleResults Yes

Chapter 5. OLE DB 139

Table 64. RecordSet Methods (continued)

Method/Property OLE DB Interface/Property IBM OLE DB Support

 Open ICommand

IOpenRowset

 Yes

 Requery ICommand

IOpenRowset

 Yes

Resync IRowsetRefresh Yes (Cursor Service)

Supports IRowsetInfo Yes

 Update

UpdateBatch

 IRowsetChange

IRowsetUpdate

 Yes

Yes (Cursor Service)

 Table 65. RecordSet Properties

Method/Property OLE DB Interface/Property IBM OLE DB Support

 AbsolutePage IRowsetLocate

IRowsetScroll

 Yes

Yes1

 AbsolutePosition IRowsetLocate

IRowsetScroll

 Yes

Yes1

 ActiveConnection IDBCreateSession

IDBInitialize

 Yes

BOF (ADO specific)

 Bookmark IAccessor

IRowsetLocate

 Yes

 CacheSize cRows in IRowsetLocate

IRowset

 Yes

 CursorType

 adOpenDynamic

 adOpenForwardOnly

 adOpenKeySet

 adOpenStatic

 ICommandProperties

No

Yes

Yes

Yes

EditMode IRowsetUpdate Yes (Cursor Service)

EOF (ADO specific)

 Filter IRowsetLocate

IRowsetView

IRowsetUpdate

IViewChapter

IViewFilter

 No

LockType ICommandProperties Yes

MarshallOption No

140 Developing ADO.NET and OLE DB Applications

Table 65. RecordSet Properties (continued)

Method/Property OLE DB Interface/Property IBM OLE DB Support

 MaxRecords ICommandProperties

IOpenRowset

 Yes

PageCount IRowsetScroll Yes1

PageSize (ADO specific)

Sort (ADO specific)

Source (ADO specific)

State (ADO specific)

Status IRowsetUpdate Yes (Cursor Service)

Note:

1. The values to be returned are approximations. Deleted rows will not be skipped.

 Table 66. RecordSet Collection

Method/Property OLE DB Interface/Property IBM OLE DB Support

Fields IColumnInfo Yes

 Properties IDBProperties

IRowsetInfo::GetProperties

 Yes

Compilation and linking of C/C++ applications and the IBM OLE DB

Provider

C/C++ applications that use the constant CLSID_IBMDADB2 must include the

ibmdadb2.h file, which can be found in the SQLLIB\include directory. These

applications must define DBINITCONSTANTS before the include statement. The

following example shows the correct sequence of C/C++ preprocessor directives:

 #define DBINITCONSTANTS

 #include "ibmdadb2.h"

Connections to data sources in C/C++ applications using the

IBM OLE DB Provider

To connect to a DB2 data source using the IBM OLE DB Provider for DB2 in a

C/C++ application, you can use one of the two OLE DB core interfaces,

IDBPromptInitialize or IDataInitialize, or you can call the COM API

CoCreateInstance. The IDataInitialize interface is exposed by the OLE DB

Service Component, and the IDBPromptInitialize is exposed by the Data Links

Component.

COM+ distributed transaction support and the IBM OLE DB Provider

OLE DB applications running in a Microsoft Component Services (COM+)

environment on Windows 2000 or XP can use the ITransactionJoin interface to

participate in distributed transactions with multiple DB2 Database for Linux,

UNIX, and Windows, host, and System i™ database servers as well as other

resource managers that comply with the COM+ specifications.

Chapter 5. OLE DB 141

Prerequisites

To use the COM+ distributed transaction support offered by the IBM OLE DB

Provider for DB2, ensure that your server meets the following prerequisites.

Note: These requirements are only for the Windows-based computers where DB2

clients are installed.

v Windows 2000 with Service Pack 3 or later

v Windows XP

Enablement of COM+ support in C/C++ database applications

To run a C or C++ application in COM+ transactional mode, you can create the

IBMDADB2 data source instance using CoCreateInstance, get a session object, and

use JoinTransaction. See the description of how to connect a C or C++ application

to a data source for more information.

To run an ADO application in COM+ transactional mode, see the description of

how to connect a C or C++ application to a data source.

To use a component in an COM+ package in transactional mode, set the

Transactions property of the component to one of the following values:

v “Required”

v “Required New”

v “Supported”

For information about these values, see the COM+ documentation.

142 Developing ADO.NET and OLE DB Applications

Chapter 6. OLE DB .NET Data Provider

The OLE DB .NET Data Provider uses the IBM DB2 OLE DB Driver, which is

referred to in a ConnectionString object as IBMDADB2. The connection string

keywords supported by the OLE DB .NET Data Provider are the same as those

supported by the IBM OLE DB Provider for DB2. Also, the OLE DB .NET Data

Provider has the same restrictions as the IBM DB2 OLE DB Provider. There are

additional restrictions for the OLE DB .NET Data Provider, which are identified in

the topic: OLE DB .NET Data Provider restrictions.

In order to use the OLE DB .NET Data Provider, you must have the .NET

Framework Version 1.1, 2.0, or 3.0 installed.

For DB2 Universal Database for AS/400 and iSeries, the following fix is required

on the server: APAR ii13348.

The following are all the supported connection keywords for the OLE DB .NET

Data Provider:

 Table 67. Useful ConnectionString keywords for the OLE DB .NET Data Provider

Keyword Value Meaning

PROVIDER IBMDADB2 Specifies the IBM OLE DB

Provider for DB2 (required)

DSN or Data Source database alias The DB2 database alias as

cataloged in the database

directory

UID user ID The user ID used to connect

to the DB2 data server

PWD password The password for the user ID

used to connect to the DB2

data server

Note: For the full list of ConnectionString keywords, see the Microsoft

documentation.

The following is an example of creating an OleDbConnection to connect to the

SAMPLE database:

[Visual Basic .NET]

Dim con As New OleDbConnection("Provider=IBMDADB2;" +

 "Data Source=sample;UID=userid;PWD=password;")

con.Open()

[C#]

OleDbConnection con = new OleDbConnection("Provider=IBMDADB2;" +

 "Data Source=sample;UID=userid;PWD=password;");

con.Open()

OLE DB .NET Data Provider restrictions

The following table identifies usage restrictions for the IBM OLE DB .NET Data

Provider:

© Copyright IBM Corp. 2006, 2008 143

r0011826.dita

Table 68. IBM OLE DB .NET Data Provider restrictions

Class or feature Restriction description DB2 servers affected

ASCII character streams You cannot use ASCII character streams with OleDbParameters when using

DbType.AnsiString or DbType.AnsiStringFixedLength.

The OLE DB .NET Data Provider will throw the following exception:

"Specified cast is not valid"

All

ADORecord ADORecord is not supported. All

ADORecordSet and

Timestamp

As documented in MSDN, the ADORecordSet variant time resolves to one second.

Consequently, all fractional seconds are lost when a DB2 Timestamp column is

stored into a ADORecordSet. Similarly, after filling a DataSet from a ADORecordSet,

the Timestamp columns in the DataSet will not have any fractional seconds.

All

Chapters Chapters are not supported. All

Key information The OLE DB .NET Data Provider cannot retrieve key information when opening an

IDataReader at the same time.

DB2 for VM/VSE

Key information from

stored procedures

The OLE DB .NET Data Provider can retrieve key information about a result set

returned by a stored procedure only from DB2 Database for Linux, UNIX, and

Windows. This is because the DB2 servers for platforms other than Linux, UNIX,

and Windows do not return extended describe information for the result sets

opened in the stored procedure.

In order to retrieve key information of a result set returned by a stored procedure

on DB2 Database for Linux, UNIX, and Windows, you need to set the following

registry variable on the DB2 server:

db2set DB2_APM_PERFORMANCE=8

Setting this server-side DB2 registry variable will keep the result set meta-data

available on the server for a longer period of time, thus allowing OLE DB to

successfully retrieve the key information. However, depending on the server

workload, the meta-data might not be available long enough before the OLE DB

Provider queries for the information. As such, there is no guarantee that the key

information will always be available for result sets returned from a store procedure.

In order to retrieve any key information about a CALL statement, the application

must execute the CALL statement. Calling OleDbDataAdapter.FillSchema() or

OleDbCommand.ExecuteReader(CommandBehavior.SchemaOnly |

CommandBehavior.KeyInfo), will not actually execute the stored procedure call.

Therefore, you will not retrieve any key information for the result set that is to be

returned by the stored procedure.

All

Key information from

batched SQL statements

When using batched SQL statements that return multiple results, the FillSchema()

method attempts to retrieve schema information only for the first SQL statement in

the batched SQL statement list. If this statement does not return a result set then no

table is created. For example:

[C#]

cmd.CommandText =

"INSERT INTO ORG(C1) VALUES(1000); SELECT C1 FROM ORG;";

da = new OleDbDataAdapter(cmd);

da.FillSchema(ds, SchemaType.Source);

No table will be created in the data set because the first statement in the batch SQL

statement is an ″INSERT″ statement, which does not return a result set.

All

144 Developing ADO.NET and OLE DB Applications

Table 68. IBM OLE DB .NET Data Provider restrictions (continued)

Class or feature Restriction description DB2 servers affected

OleDbCommandBuilder The UPDATE, DELETE and INSERT statements automatically generated by the

OleDbCommandBuilder are incorrect if the SELECT statement contains any columns

of the following data types:

v CLOB

v BLOB

v DBCLOB

v LONG VARCHAR

v LONG VARCHAR FOR BIT DATA

v LONG VARGRAPHIC

If you are connecting to a DB2 server other than DB2 Database for Linux, UNIX,

and Windows, then columns of the following data types also cause this problem:

v VARCHAR1

v VARCHAR FOR BIT DATA1

v VARGRAPHIC1

v REAL

v FLOAT or DOUBLE

v TIMESTAMP

Note:

1. Columns of these data types are applicable if they are defined to be VARCHAR

values greater than 254 bytes, VARCHAR values FOR BIT DATA greater than

254 bytes, or VARGRAPHICs greater than 127 bytes. This condition is only

valid if you are connecting to a DB2 server other than DB2 Database for Linux,

UNIX, and Windows.

The OleDbCommandBuilder generates SQL statements that use all of the selected

columns in an equality comparison in the WHERE clause, but the data types listed

previously cannot be used in an equality comparison.

Note: Note that this restriction will affect the IDbDataAdapter.Update() method

that relies on the OleDbCommandBuilder to automatically generate the UPDATE,

DELETE, and INSERT statements. The UPDATE operation will fail if the generated

statement contains any one of the data types listed previously.

All

OleDbCommandBuilder.

DeriveParameters

Case-sensitivity is important when using DeriveParameters(). The stored procedure

name specified in the OleDbCommand.CommandText needs to be in the same case as

how it is stored in the DB2 system catalog tables. To see how stored procedure

names are stored, call OpenSchema(OleDbSchemaGuid.Procedures) without

supplying the procedure name restriction. This will return all the stored procedure

names. By default, DB2 stores stored procedure names in uppercase, so most often,

you need to specify the stored procedure name in uppercase.

All

OleDbCommandBuilder.

DeriveParameters

The OleDbCommandBuilder.DeriveParameters() method does not include the

ReturnValue parameter in the generated OleDbParameterCollection. SqlClient and

the IBM Data Server Provider for .NET by default adds the parameter with

ParameterDirection.ReturnValue to the generated ParameterCollection.

All

OleDbCommandBuilder.

DeriveParameters

The OleDbCommandBuilder.DeriveParameters() method will fail for overloaded

stored procedures. If you have multiple stored procedures of the name ″MYPROC″

with each of them taking a different number of parameters or different type of

parameter, the OleDbCommandBuilder.DeriveParameters() will retrieve all the

parameters for all the overloaded stored procedures.

All

OleDbCommandBuilder.

DeriveParameters

If the application does not qualify a stored procedure with a schema,

DeriveParameters() will return all the parameters for that procedure name.

Therefore, if multiple schemas exist for the same procedure name,

DeriveParameters() will return all the parameters for all the procedures with the

same name.

All

OleDbConnection.

ChangeDatabase

The OleDbConnection.ChangeDatabase() method is not supported. All

Chapter 6. OLE DB .NET Data Provider 145

Table 68. IBM OLE DB .NET Data Provider restrictions (continued)

Class or feature Restriction description DB2 servers affected

OleDbConnection.

ConnectionString

Use of nonprintable characters such as ’\b’, ’\a’ or ’\O’ in the connection string

will cause an exception to be thrown.

The following keywords have restrictions:

Data Source

The data source is the name of the database, not the server. You can

specify the SERVER keyword, but it is ignored by the IBMDADB2

provider.

Initial Catalog and Connect Timeout

These keywords are not supported. In general, the OLE DB .NET Data

Provider will ignore all unrecognized and unsupported keywords.

However, specifying these keywords will cause the following exception:

Multiple-step OLE DB operation generated errors. Check each

OLE DB status value, if available. No work was done.

ConnectionTimeout

ConnectionTimeout is read only.

All

OleDbConnection.

GetOleDbSchemaTable

Restriction values are case-sensitive, and need to match the case of the database

objects stored in the system catalog tables, which defaults to uppercase.

For instance, if you have created a table in the following manner:

CREATE TABLE abc(c1 SMALLINT)

DB2 will store the table name in uppercase (″ABC″) in the system catalog.

Therefore, you will need to use ″ABC″ as the restriction value. For instance:

schemaTable = con.GetOleDbSchemaTable(OleDbSchemaGuid.Tables,

 new object[] { null, null, "ABC", "TABLE" });

All

OleDbDataAdapter and

DataColumnMapping

The source column name is case-sensitive. It needs to match the case as stored in

the DB2 catalogs, which by default is uppercase.

For example:

colMap = new DataColumnMapping("EMPNO", "Employee ID");

All

OleDbDataReader.

GetSchemaTable

The OLE DB .NET Data Provider is not able to retrieve extended describe

information from servers that do not return extended describe information. if you

are connecting to a server that does not support extended describe (the affected

servers), the following columns in the metadata table returned from

IDataReader.GetSchemaTable() are invalid:

v IsReadOnly

v IsUnique

v IsAutoIncrement

v BaseSchemaName

v BaseCatalogName

 DB2 for OS/390,

 V7 or lower

DB2 for OS/400

DB2 for VM/VSE

Stored procedures: no

column names for

result sets

The DB2 for OS/390 version 6.1 server does not return column names for result

sets returned from a stored procedure. The OLE DB .NET Data Provider maps

these unnamed columns to their ordinal position (for example, ″1″, ″2″ ″3″). This is

contrary to the mapping documented in MSDN: "Column1", "Column2", "Column3".

DB2 for OS/390

version 6.1

Hints and tips

Connection pooling in OLE DB .NET Data Provider

applications

The OLE DB .NET Data Provider automatically pools connections using OLE DB

session pooling. Connection string arguments can be used to enable or disable OLE

146 Developing ADO.NET and OLE DB Applications

DB services including pooling. For example, the following connection string will

disable OLE DB session pooling and automatic transaction enlistment.

Provider=IBMDADB2;OLE DB Services=-4;Data Source=SAMPLE;

The following table describes the ADO connection string attributes you can use to

set the OLE DB services:

 Table 69. Setting OLE DB services by using ADO connection string attributes

Services enabled Value in connection string

All services (the default) ″OLE DB Services = -1;″

All services except pooling ″OLE DB Services = -2;″

All services except pooling and

auto-enlistment

″OLE DB Services = -4;″

All services except client cursor ″OLE DB Services = -5;″

All services except client cursor and pooling ″OLE DB Services = -6;″

No services ″OLE DB Services = 0;″

For more information about OLE DB session pooling or resource pooling, as well

as how to disable pooling by overriding OLE DB provider service defaults, see the

OLE DB Programmer’s Reference in the MSDN library located at:

http://msdn.microsoft.com/library

Time columns in OLE DB .NET Data Provider applications

The following sections describe how to implement time columns in OLE DB .NET

Data Provider applications.

Inserting using parameter markers

You want to insert a time value into a Time column:

command.CommandText = "insert into mytable(c1) values(?)";

where column c1 is a Time column. Here are two methods to bind a time value to

the parameter marker:

Using OleDbParameter.OleDbType = OleDbType.DBTime

Because OleDbType.DBTime maps to a TimeSpan object, you must supply a

TimeSpan object as the parameter value. The parameter value cannot be a String or

a DateTime object, it must be a TimeSpan object. For example:

 p1.OleDbType = OleDbType.DBTime;

 p1.Value = TimeSpan.Parse("0.11:20:30");

 rowsAffected = cmd.ExecuteNonQuery();

The format of the TimeSpan is represented as a string in the format

″[-]d.hh:mm:ss.ff″ as documented in the MSDN documentation.

Using OleDbParameter.OleDbType = OleDbType.DateTime

This will force the OLE DB .NET Data Provider to convert the parameter value to

a DateTime object, instead of a TimeSpan object, consequently the parameter value

can be any valid string/object that can be converted into a DateTime object. This

means values such as ″11:20:30″ will work. The value can also be a DateTime

Chapter 6. OLE DB .NET Data Provider 147

object. The value cannot be a TimeSpan object since a TimeSpan object cannot be

converted to a DateTime object -- TimeSpan doesn’t implement IConvertible.

For example:

 p1.OleDbType = OleDbType.DBTimeStamp;

 p1.Value = "11:20:30";

 rowsAffected = cmd.ExecuteNonQuery();

Retrieval

To retrieve a time column you need to use the IDataRecord.GetValue() method or

the OleDbDataReader.GetTimeSpan() method.

For example:

TimeSpan ts1 = ((OleDbDataReader)reader).GetTimeSpan(0);

TimeSpan ts2 = (TimeSpan) reader.GetValue(0);

ADORecordset objects in OLE DB .NET Data Provider

applications

Following are considerations regarding the use of ADORecordset objects.

v The ADO type adDBTime class is mapped to the .NET Framework DateTime class.

OleDbType.DBTime corresponds to a TimeSpan object.

v You cannot assign a TimeSpan object to an ADORecordset object’s Time field. This

is because the ADORecordset object’s Time field expects a DateTime object. When

you assign a TimeSpan object to an ADORecordset object, you will get the

following message:

Method’s type signature is not Interop compatible.

You can only populate the Time field with a DateTime object, or a String that can

be parsed into a DateTime object.

v When you fill a DataSet with a ADORecordset using the OleDbDataAdapter, the

Time field in the ADORecordset is converted to a TimeSpan column in the DataSet.

v Recordsets do not store primary keys or constraints. Therefore, no key

information is added when filling out a DataSet from a Recordset using the

MissingSchemaAction.AddWithKey.

148 Developing ADO.NET and OLE DB Applications

Chapter 7. ODBC .NET Data Provider

The ODBC .NET Data Provider makes ODBC calls to a DB2 data source using the

DB2 CLI Driver. Therefore, the connection string keywords supported by the

ODBC .NET Data Provider are the same as those supported by the DB2 CLI driver.

Also, the ODBC .NET Data Provider has the same restrictions as the DB2 CLI

driver. There are additional restrictions for the ODBC .NET Data Provider, which

are identified in the topic: ODBC .NET Data Provider restrictions.

In order to use the ODBC .NET Data Provider, you must have the .NET

Framework Version 1.1, 2.0, or 3.0 installed. For DB2 Universal Database for

AS/400 and iSeries, the following fix is required on the server: APAR II13348.

The following are the supported connection keywords for the ODBC .NET Data

Provider:

 Table 70. Useful ConnectionString keywords for the ODBC .NET Data Provider

Keyword Value Meaning

DSN database alias The DB2 database alias as

cataloged in the database

directory

UID user ID The user ID used to connect

to the DB2 server

PWD password The password for the user ID

used to connect to the DB2

server

Note: For the full list of ConnectionString keywords, see the Microsoft

documentation.

The following is an example of creating an OdbcConnection to connect to the

SAMPLE database:

[Visual Basic .NET]

Dim con As New OdbcConnection("DSN=sample;UID=userid;PWD=password;")

con.Open()

[C#]

OdbcConnection con = new OdbcConnection("DSN=sample;UID=userid;PWD=password;");

con.Open()

ODBC .NET Data Provider restrictions

The following table identifies usage restrictions for the IBM ODBC .NET Data

Provider:

© Copyright IBM Corp. 2006, 2008 149

r0011829.dita

Table 71. IBM ODBC .NET Data Provider restrictions

Class or feature Restriction description DB2 servers affected

ASCII character streams You cannot use ASCII character streams with OdbcParameters when using

DbType.AnsiString or DbType.AnsiStringFixedLength.

The ODBC .NET Data Provider will throw the following exception:

"Specified cast is not valid"

All

Command.Prepare Before executing a command (Command.ExecuteNonQuery or Command.ExecuteReader),

you must explicitly run OdbcCommand.Prepare() if the CommandText has changed

since the last prepare. If you do not call OdbcCommand.Prepare() again, the ODBC

.NET Data Provider will execute the previously prepared CommandText.

For Example:

[C#]

command.CommandText="select CLOB(’ABC’) from table1";

command.Prepare();

command.ExecuteReader();

command.CommandText="select CLOB(’XYZ’) from table2";

// This ends up re-executing the first statement

command.ExecuteReader();

All

CommandBehavior.

SequentialAccess

When using IDataReader.GetChars() to read from a reader created with

CommandBehavior.SequentialAccess, you must allocate a buffer that is large enough

to hold the entire column. Otherwise, you will hit the following exception:

Requested range extends past the end of the array.

 at System.Runtime.InteropServices.Marshal.Copy(Int32 source,

 Char[] destination, Int32 startIndex, Int32 length)

 at System.Data.Odbc.OdbcDataReader.GetChars(Int32 i,

 Int64 dataIndex, Char[] buffer, Int32 bufferIndex, Int32 length)

 at OleRestrict.TestGetCharsAndBufferSize(IDbConnection con)

The following example demonstrates how to allocate an adequate buffer:

CREATE TABLE myTable(c0 int, c1 CLOB(10K))

SELECT c1 FROM myTable;

[C#]

cmd.CommandText = "SELECT c1 from myTable";

IDataReader reader =

cmd.ExecuteReader(CommandBehavior.SequentialAccess);

Int32 iChunkSize = 10;

Int32 iBufferSize = 10;

Int32 iFieldOffset = 0;

Char[] buffer = new Char[iBufferSize];

reader.Read();

reader.GetChars(0, iFieldOffset, buffer, 0, iChunkSize);

The call to GetChars() will throw the following exception:

"Requested range extends past the end of the array"

To ensure that GetChars() does not throw the above exception, you must set the

BufferSize to the size of the column, as follows:

Int32 iBufferSize = 10000;

Note that the value of 10,000 for iBufferSize corresponds to the value of 10K

allocated to the CLOB column c1.

All

150 Developing ADO.NET and OLE DB Applications

Table 71. IBM ODBC .NET Data Provider restrictions (continued)

Class or feature Restriction description DB2 servers affected

CommandBehavior.

SequentialAccess

The ODBC .NET Data Provider throws the following exception when there is no

more data to read when using OdbcDataReader.GetChars():

NO_DATA - no error information available

 at System.Data.Odbc.OdbcConnection.HandleError(

 HandleRef hrHandle, SQL_HANDLE hType, RETCODE retcode)

 at System.Data.Odbc.OdbcDataReader.GetData(

 Int32 i, SQL_C sqlctype, Int32 cb)

 at System.Data.Odbc.OdbcDataReader.GetChars(

 Int32 i, Int64 dataIndex, Char[] buffer,

 Int32 bufferIndex, Int32 length)

All

CommandBehavior.

SequentialAccess

You may not be able to use large chunksizes, such as a value of 5000, when using

OdbcDataReader.GetChars(). When you attempt to use a large chunk size, the

ODBC .NET Data Provider will throw the following exception:

Object reference not set to an instance of an object.

 at System.Runtime.InteropServices.Marshal.Copy(Int32 source,

 Char[] destination, Int32 startIndex, Int32 length)

 at System.Data.Odbc.OdbcDataReader.GetChars(

 Int32 i, Int64 dataIndex, Char[] buffer,

 Int32 bufferIndex, Int32 length)

 at OleRestrict.TestGetCharsAndBufferSize(IDbConnection con)

All

Connection pooling The ODBC .NET Data Provider does not control connection pooling. Connection

pooling is handled by the ODBC Driver Manager. For more information on

connection pooling, see the ODBC Programmer’s Reference in the MSDN library

located at

http://msdn.microsoft.com/library

All

DataColumnMapping The case of the source column name needs to match the case used in the system

catalog tables, which is upper-case by default.

All

Decimal columns Parameter markers are not supported for Decimal columns.

You generally use OdbcType.Decimal for an OdbcParameter if the target SQLType is a

Decimal column; however, when the ODBC .NET Data Provider sees the

OdbcType.Decimal, it binds the parameter using C-type of SQL_C_WCHAR and SQLType

of SQL_VARCHAR, which is invalid.

For example:

[C#]

cmd.CommandText = "SELECT dec_col FROM MYTABLE WHERE dec_col > ? ";

OdbcParameter p1 = cmd.CreateParameter();

p1.DbType = DbType.Decimal;

p1.Value = 10.0;

cmd.Parameters.Add(p1);

IDataReader rdr = cmd.ExecuteReader();

You will get an exception:

ERROR [07006] [IBM][CLI Driver][SQLDS/VM]

 SQL0301N The value of input host variable or parameter

 number "" cannot be used because of its data type.

 SQLSTATE=07006

DB2 for VM/VSE

Chapter 7. ODBC .NET Data Provider 151

Table 71. IBM ODBC .NET Data Provider restrictions (continued)

Class or feature Restriction description DB2 servers affected

Key information The schema name used to qualify the table name (for example, MYSCHEMA.MYTABLE)

must match the connection user ID. The ODBC .NET Data Provider is unable to

retrieve any key information in which the specified schema is different from the

connection user id.

For example:

CREATE TABLE USERID2.TABLE1(c1 INT NOT NULL PRIMARY KEY);

[C#]

// Connect as user bob

odbcCon = new OdbcConnection("DSN=sample;UID=bob;PWD=mypassword");

OdbcCommand cmd = odbcCon.CreateCommand();

// Select from table with schema USERID2

cmd.CommandText="SELECT * FROM USERID2.TABLE1";

// Fails - No key info retrieved

da.FillSchema(ds, SchemaType.Source);

// Fails - SchemaTable has no primary key

cmd.ExecuteReader(CommandBehavior.KeyInfo)

// Throws exception because no primary key

cbuilder.GetUpdateCommand();

All

Key information The ODBC .NET Data Provider cannot retrieve key information when opening a

IDataReader at the same time. When the ODBC .NET Data Provider opens a

IDataReader, a cursor on the server is opened. If key information is requested, it

will then call SQLPrimaryKeys() or SQLStatistic() to get the key information, but

these schema functions will open another cursor. Since DB2 for VM/VSE does not

support cursor withhold, the first cursor is then closed. Consequently,

IDataReader.Read() calls to the IDataReader will result in the following exception:

System.Data.Odbc.OdbcException: ERROR [HY010] [IBM][CLI Driver]

 CLI0125E Function sequence error. SQLSTATE=HY010

DB2 for VM/VSE

Key information You must refer to database objects in your SQL statements using the same case that

the database objects are stored in the system catalog tables. By default database

objects are stored in uppercase in the system catalog tables, so most often, you

need to use uppercase.

The ODBC .NET Data Provider scans SQL statements to retrieve database object

names and passes them to schema functions such as SQLPrimaryKeys and

SQLStatistics, which issue queries for these objects in the system catalog tables.

The database object references must match exactly how they are stored in the

system catalog tables, otherwise, an empty result set is returned.

 DB2 for OS/390

DB2 for OS/400

DB2 for VM/VSE

Key information for

batched non-select SQL

statements

The ODBC .NET Data Provider is unable to retrieve any key information for a

batch statement that does not start with ″SELECT″.

 DB2 for OS/390

DB2 for OS/400

DB2 for VM/VSE

LOB columns The ODBC .NET Data Provider does not support LOB datatypes. Consequently,

whenever the DB2 server returns a SQL_CLOB (-99), SQL_BLOB (-98) or

SQL_DBCLOB (-350) the ODBC .NET Data Provider will throw the following

exception:

"Unknown SQL type - -98" (for Blob column)

"Unknown SQL type - -99" (for Clob column)

"Unknown SQL type - -350" (for DbClob column)

Any methods that directly or indirectly access LOB columns will fail.

All

152 Developing ADO.NET and OLE DB Applications

Table 71. IBM ODBC .NET Data Provider restrictions (continued)

Class or feature Restriction description DB2 servers affected

OdbcCommand.Cancel Executing statements after running OdbcCommand.Cancel can lead to the following

exception:

"ERROR [24000] [Microsoft][ODBC Driver Manager]

 Invalid cursor state"

All

OdbcCommandBuilder The OdbcCommandBuilder fails to generate commands against servers that do not

support escape characters. When the OdbcCommandBuilder generates commands, it

first makes a call to SQLGetInfo, requesting the SQL_SEARCH_PATTERN_ESCAPE

attribute. If the server does not support escape characters an empty string is

returned, which causes the ODBC .NET Data Provider to throw the following

exception:

Index was outside the bounds of the array.

 at System.Data.Odbc.OdbcConnection.get_EscapeChar()

 at System.Data.Odbc.OdbcDataReader.GetTableNameFromCommandText()

 at System.Data.Odbc.OdbcDataReader.BuildMetaDataInfo()

 at System.Data.Odbc.OdbcDataReader.GetSchemaTable()

 at System.Data.Common.CommandBuilder.BuildCache(

 Boolean closeConnection)

 at System.Data.Odbc.OdbcCommandBuilder.GetUpdateCommand()

DB2 for OS/390,

DBCS servers only;

DB2 for VM/VSE,

DBCS servers only

OdbcCommandBuilder Case-sensitivity is important when using the OdbcCommandBuilder to automatically

generate UPDATE, DELETE, and INSERT statements. By default, DB2 stores

schema information (such as table names, and column names) in the system catalog

tables in upper case, unless they have been explicitly created with case-sensitivity

(by adding quotes around database objects during create-time). As such, your SQL

statements must match the case that is stored in the catalogs (which by default is

uppercase).

For example, if you created a table using the following statement:

"db2 create table mytable (c1 int) "

then DB2 will store the table name ″mytable″ in the system catalog tables as

″MYTABLE″.

The following code example demonstrates proper use the OdbcCommandBuilderclass:

[C#]

OdbcCommand cmd = odbcCon.CreateCommand();

cmd.CommandText = "SELECT * FROM MYTABLE";

OdbcDataAdapter da = new OdbcDataAdapter(cmd);

OdbcCommandBuilder cb = new OdbcCommandBuilder(da);

OdbcCommand updateCmd = cb.GetUpdateCommand();

In this example, if you do not refer to the table name in upper-case characters, then

you will get the following exception:

"Dynamic SQL generation for the UpdateCommand is not

supported against a SelectCommand that does not return

any key column information."

All

OdbcCommandBuilder The commands generated by the OdbcCommandBuilder are incorrect when the

SELECT statement contains the following column data types:

REAL

FLOAT or DOUBLE

TIMESTAMP

These data types cannot be used in the WHERE clause for SELECT statements.

 DB2 for OS/390

DB2 for OS/400

DB2 for VM/VSE

OdbcCommandBuilder.

DeriveParameters

The DeriveParameters() method is mapped to SQLProcedureColumns and it uses the

CommandText property for the name of the stored procedure. Since CommandText does

not contain the name of the stored procedure (using full ODBC call syntax),

SQLProcedureColumns is called with the procedure name identified according to the

ODBC call syntax. For example:

"{ CALL myProc(?) }"

This which will result in an empty result set, where no columns are found for the

procedure).

All

Chapter 7. ODBC .NET Data Provider 153

Table 71. IBM ODBC .NET Data Provider restrictions (continued)

Class or feature Restriction description DB2 servers affected

OdbcCommandBuilder.

DeriveParameters

To use DeriveParameters(), specify the stored procedure name in the CommandText

(for example, cmd.CommandText = "MYPROC"). The procedure name must match the

case stored in the system catalog tables. DeriveParameters() will return all the

parameters for that procedure name it finds in the system catalog tables. Remember

to change the CommandText back to the full ODBC call syntax before executing the

statement.

All

OdbcCommandBuilder.

DeriveParameters

The ReturnValue parameter is not returned for the ODBC .NET Data Provider. All

OdbcCommandBuilder.

DeriveParameters

DeriveParameters() does not support fully qualified stored procedure names. For

example, calling DeriveParameters() for CommandText = "MYSCHEMA.MYPROC" will

fail. Here, no parameters are returned.

All

OdbcCommandBuilder.

DeriveParameters

DeriveParameters() will not work for overloaded stored procedures. The

SQLProcedureColumns will return all the parameters for all versions of the stored

procedure.

All

OdbcConnection.

ChangeDatabase

The OdbcConnection.ChangeDatabase() method is not supported. All

OdbcConnection.

ConnectionString

v The Server keyword is ignored.

v The Connect Timeout keyword is ignored. DB2 CLI does not support connection

timeouts, so setting this property will not affect the driver.

v Connection pooling keywords are ignored. Specifically, this affects the following

keywords: Pooling, Min Pool Size, Max Pool Size, Connection Lifetime and

Connection Reset.

All

OdbcDataReader.

GetSchemaTable

The ODBC .NET Data Provider is not able to retrieve extended describe

information from servers that do not return extended describe information.

Therefore, if you are connecting to a server that does not support extended describe

(the affected servers), the following columns in the metadata table returned from

IDataReader.GetSchemaTable() are invalid:

v IsReadOnly

v IsUnique

v IsAutoIncrement

v BaseSchemaName

v BaseCatalogName

 DB2 for OS/390,

 version 7 or lower

DB2 for OS/400

DB2 for VM/VSE

Stored procedures To call a stored procedure, you need to specify the full ODBC call syntax.

For example, to call the stored procedure, MYPROC, that takes a VARCHAR(10) as a

parameter:

[C#]

OdbcCommand cmd = odbcCon.CreateCommand();

cmd.CommandType = CommandType.Text;

cmd.CommandText = "{ CALL MYPROC(?) }"

OdbcParameter p1 = cmd.CreateParameter();

p1.Value = "Joe";

p1.OdbcType = OdbcType.NVarChar;

cmd.Parameters.Add(p1);

cmd.ExecuteNonQuery();

Note: Note that you must use the full ODBC call syntax even if you are using

CommandType.StoredProcedure. This is documented in MSDN, under the

OdbcCommand.CommandText Property.

All

Stored procedures: no

column names for

result sets

The DB2 for OS/390 version 6.1 server does not return column names for result

sets returned from a stored procedure. The ODBC .NET Data Provider maps these

unnamed columns to their ordinal position (for example, ″1″, ″2″ ″3″). This is

contrary to the mapping documented in MSDN: "Column1", "Column2", "Column3".

DB2 for OS/390

version 6.1

Unique index

promotion to primary

key

The ODBC .NET Data Provider promotes nullable unique indexes to primary keys.

This is contrary to the MSDN documentation, which states that nullable unique

indexes should not be promoted to primary keys.

All

154 Developing ADO.NET and OLE DB Applications

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2008 155

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 72. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-01 Yes

Administrative Routines and

Views

SC23-5843-01 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-01 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-01 Yes

Command Reference SC23-5846-01 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-01 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-01 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-01 Yes

Database Security Guide SC23-5850-01 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-01 Yes

Developing Embedded SQL

Applications

SC23-5852-01 Yes

Developing Java Applications SC23-5853-01 Yes

Developing Perl and PHP

Applications

SC23-5854-01 No

Developing User-defined Routines

(SQL and External)

SC23-5855-01 Yes

Getting Started with Database

Application Development

GC23-5856-01 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-01 Yes

Internationalization Guide SC23-5858-01 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-01 Yes

Net Search Extender

Administration and User’s Guide

SC23-8509-01 Yes

Partitioning and Clustering Guide SC23-5860-01 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-01 No

156 Developing ADO.NET and OLE DB Applications

Table 72. DB2 technical information (continued)

Name Form Number Available in print

Quick Beginnings for DB2

Servers

GC23-5864-01 Yes

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-01 Yes

SQL Reference, Volume 1 SC23-5861-01 Yes

SQL Reference, Volume 2 SC23-5862-01 Yes

System Monitor Guide and

Reference

SC23-5865-01 Yes

Troubleshooting Guide GI11-7857-01 No

Tuning Database Performance SC23-5867-01 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-01 Yes

Workload Manager Guide and

Reference

SC23-5870-01 Yes

pureXML Guide SC23-5871-01 Yes

XQuery Reference SC23-5872-01 No

 Table 73. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-01 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-01 Yes

DB2 Connect User’s Guide SC23-5841-01 Yes

 Table 74. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix A. Overview of the DB2 technical information 157

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 155.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

158 Developing ADO.NET and OLE DB Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix A. Overview of the DB2 technical information 159

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. Non-Administrative and Non-Root

DB2 Information Centers always run in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to obtain and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

160 Developing ADO.NET and OLE DB Applications

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix A. Overview of the DB2 technical information 161

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

162 Developing ADO.NET and OLE DB Applications

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 163

164 Developing ADO.NET and OLE DB Applications

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2008 165

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

166 Developing ADO.NET and OLE DB Applications

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

The following terms are trademarks or registered trademarks of the International

Business Machines Corporation in the United States, other countries, or both.

 pureXML OS/390

DB2 Connect DB2 Universal Database

UniData Redbooks

z/OS Informix

AS/400 IBM

DB2 SQL/400

MVS ibm.com

UniVerse iSeries

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in

the United States, other countries, or both.

v Intel is a registered trademark of Intel Corporation or its subsidiaries in the

United States and other countries.

v Microsoft, and Windows are trademarks of Microsoft Corporation in the United

States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 167

168 Developing ADO.NET and OLE DB Applications

Index

Special characters
.NET

application development
supported software 2

C# applications
building on Windows 111

calling stored procedures 109

compile and link options 113

connecting to database 103

executing SQL statements 107

reading result sets 109

common language runtime
external routine development support 39

routine example 86

routines 39, 40, 51, 52, 53

debugging CLR routines 56

routines
compile and link options 55

Visual Basic applications
building on Windows 111

calling stored procedures 109

compile and link options 112

connecting to database 103

executing SQL statements 107

reading result sets 109

.NET applications
deployingdeployment

.NET applications 2

Numerics
32-bit support

external routines 30

64-bit support
external routines 30

A
ActiveX Data Object (ADO) specification

IBM Data Server Provider for .NET 101

ADO .NET applications
common base classes 103

developing 1

ADO (ActiveX Data Object) specification
IBM Data Server Provider for .NET 101

ADO applications
connection string keywords 134

IBM OLE DB Provider support for ADO methods and

properties 135

limitations 135

stored procedures 135

updatable scrollable cursors 135

ADORecordset objects 148

application development
IBM Data Server Provider for .NET 101

IBM DB2 Development Add-In 3

routines 5

applications
ADO

limitations 135

applications (continued)
ADO (continued)

updatable scrollable cursors 135

connecting to data sources
IBM OLE DB Provider 141

supported by IBM OLE DB Provider 115

Visual Basic
connecting to data source 135

B
backup

external routine libraries 29

books
printed

ordering 158

C
C language

procedures
example 90

XML support 90

XQuery support 90

routines
32-bit routines on a 64-bit database server 31

C/C++ applications
IBM OLE DB Provider

compiling and linking 141

connecting to 141

C/C++ language
routines

32-bit routines on a 64-bit database server 31

C# .NET
applications

building on Windows 111

compile and link options 113

routines
example 86

CLR (common language runtime)
procedures

returning result sets 45

routines 39

building 51, 52, 53

compile and link options 55

creating 49

design considerations 40

development support 39

development tools 40

examples of CLR procedures in C# 60

examples of CLR UDFs in C# 94

parameters 43

restrictions 47

security 46

XML support 86

XQuery support 86

CLR routines
.NET

debugging 56

© Copyright IBM Corp. 2006, 2008 169

common language runtime
function examples 71

procedure examples 76

procedures
returning result sets 45

routines 39

building 51, 52, 53

creating 49

Dbinfo structure usage 43

design considerations 40

development support 39

development tools 40

errors 57

examples 59, 71, 76

examples of CLR functions in C# 94

examples of CLR procedures in C# 60

parameters 43

restrictions 47

scratchpad 43

security 46

supported SQL data types in 41

connection keywords
ODBC .NET Data Provider 149

OLE DB .NET Data Provider 143

connection pooling
IBM Data Server Provider for .NET 104

OLE DB .NET Data Provider
OLE applications 146

creating
routines 35

common language runtime 49

cursors
IBM OLE DB Provider 119

scrollable
ADO applications 135

updatable
ADO applications 135

D
data types

mappings
OLE DB and DB2 119

Data types
supported

in ADO.NET database applications 106

DB2 Information Center
languages 159

updating 160

versions 159

viewing in different languages 159

DB2GENERAL parameter style 24

DB2SQL parameter style for external routines 24

dbinfo argument
table functions 10

debugging
routines

.NET CLR 56

documentation
overview 155

PDF 155

printed 155

terms and conditions of use 162

E
errors

.NET CLR routines 57

external routines
32-bit support 30

64-bit support 30

APIs 17

class files
modifying 29

restores 29

security 28

classes
deploying 27

creating 23, 35

features 7

libraries
backing up 29

deploying 27

managing 29

modifying 29

performance 29

restoring 29

security 28

naming conflicts 28

overview 5

parameter styles 24

performance 29

programming languages 17

F
functions

external
features 7

G
GENERAL parameter style for external routines 24

GENERAL WITH NULLS parameter style for external

routines 24

H
help

configuring language 159

SQL statements 158

I
IBM Data Server Provider for .NET 101

calling stored procedures 109

common base classes 103

connecting to database 103

connection pooling 104

data types
supported in ADO.NET database applications 106

database system requirements 101

executing SQL statements 107

overview 1

reading result sets 109

IBM DB2 Development Add-In 3

IBM OLE DB Provider
ADO applications 134

automatic enablement of OLE DB services 118

170 Developing ADO.NET and OLE DB Applications

IBM OLE DB Provider (continued)
C/C++ applications

connections to data sources 141

compiling and linking C/C++ applications 141

connecting Visual Basic applications to data source 135

connections to data sources 134

consumer 115

cursors 119

cursors in ADO applications 135

data conversion
from DB2 types to OLE DB types 123

data conversion from OLE DB to DB2 types 120

enabling MTS support in DB2 142

for DB2
installing 115

limitations for ADO applications 135

LOBs 116

MTS and COM distributed transaction support 141

OLE DB support 127

provider 115

restrictions 126

schema rowsets 116

support for ADO methods and properties 135

supported application types 115

supported OLE DB properties 129

threading 116

J
Java

routines
parameter styles 24

table functions execution model 12

L
large objects (LOBs)

IBM OLE DB Provider 116

LOBs (large objects)
IBM OLE DB Provider 116

M
methods

external
features 7

Microsoft OLE DB Provider for ODBC
OLE DB support 127

Microsoft Transaction Server (MTS)
enabling support in DB2 142

MTS and COM distributed transaction support 141

MTS (Microsoft Transaction Server)
support

enabling in DB2 142

MTS and COM distributed transaction support
IBM OLE DB Provider 141

N
notices 165

O
ODBC .NET Data Provider

overview 1, 149

ODBC .NET Data Provider (continued)
restrictions 149

OLE DB
BLOB support 127

Command support 127

component and interface support 127

connections to data sources using IBM OLE DB

Provider 134

data conversion
from DB2 to OLE DB types 123

from OLE DB to DB2 types 120

data types
mappings with DB2 119

RowSet support 127

services automatically enabled 118

Session support 127

supported properties 129

table functions 115

View Objects support 127

OLE DB .NET Data Provider
ADORecordset objects 148

OLE applications
connection pooling 146

time columns 147

overview 1, 143

restrictions 143

ordering DB2 books 158

P
parameter styles

overview 24

performance
external routines 29

routines
benefits 5

problem determination
information available 162

tutorials 162

procedures
common language runtime (CLR)

examples 60

result sets
.NET CLR (C# examples) 60

.NET CLR (procedure) 45

properties
OLE DB 129

R
restoring

external routine libraries 29

restrictions
IBM OLE DB Provider 126

routines 32

result sets
reading

IBM Data Server Provider for .NET 109

returning
.NET CLR procedures 45

routines
altering 27

benefits 5

C/C++
32-bit routines on a 64-bit database server 31

performance 31

Index 171

routines (continued)
C/C++ (continued)

xml data type support 31

classes 27

CLR
errors 57

COBOL
xml data type support 31

common language runtime
building 51, 52, 53

creating 49

description 39

design considerations 40

development support 39

development tools 40

errors 57

examples 59

examples of CLR functions (UDFs) 94

examples of CLR procedures in C# 60

examples of Visual Basic .NET CLR functions 71

examples of Visual Basic .NET CLR procedures 76

EXECUTION CONTROL clause 46

restrictions 47

returning result sets 45

scratchpad usage 43

security 46

supported SQL data types in 41

xml data type support 31

defining scratchpad structure 16

description 5

external
32-bit and 64-bit support 30

backup and restore of library and class files 29

common language runtime 39, 49, 51, 52, 53

creating 23, 35

deployment of libraries and classes 27

features 7

forbidden statements 32

library management 29

modifying library and class files 29

naming conflicts 28

overview 5

parameter styles 24

performance 29

restrictions 7, 32

security 28

supported APIs and programming languages 17

xml data type support 31

forbidden statements 32

Java
xml data type support 31

libraries 27

methods 34

portability between 32-bit and 64-bit platforms 16

procedures 34

restrictions 32

scalar UDFs
overview 8

user-defined 34

writing 34

S
SAMPLE database

connecting
ODBC .NET Data Provider 149

OLE DB .NET Data Provider 143

scalar functions
description 8

processing model 9

schemas
rowsets 116

SCRATCHPAD option
preserving state 13

user-defined functions (UDFs) 13

scratchpads
32-bit and 64-bit platforms 16

for UDFs and methods 13

SQL (Structured Query Language)
parameter style for external routines 24

SQL statements
displaying help 158

executing
IBM Data Server Provider for .NET 107

SQL-result argument
table functions 10

SQL-result-ind argument
table functions 10

system requirements
IBM OLE DB Provider for DB2 115

T
table functions

Java execution model 12

user-defined table functions 10

table user-defined functions (UDFs)
processing model 10

terms and conditions
use of publications 162

threads
IBM OLE DB Provider 116

IBM OLE DB Provider for DB2 115

troubleshooting
online information 162

tutorials 162

trusted context
using connection string keywords 104

tutorials
problem determination 162

troubleshooting 162

Visual Explain 161

U
updates

DB2 Information Center 160

user-defined functions
common language runtime UDFs

examples in C# 94

DETERMINISTIC 13

NOT DETERMINISTIC 13

re-entrant 13

saving state 13

scalar
FINAL CALL 9

SCRATCHPAD option 13

scratchpad portability between 32-bit and 64-bit

platforms 16

table 10

FINAL CALL 10

NO FINAL CALL 10

processing model 10

172 Developing ADO.NET and OLE DB Applications

user-defined functions (continued)
table (continued)

SQL-result argument 10

SQL-result-ind argument 10

V
versions

IBM OLE DB Provider for DB2 115

Visual Basic
applications

connecting to data source 135

cursor considerations 135

data control support 135

Visual Basic .NET
applications

compile and link options 112

building applications 111

Visual Explain
tutorial 161

X
XML

data type 31

Index 173

174 Developing ADO.NET and OLE DB Applications

����

Printed in USA

SC23-5851-01

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

De
ve

lo
pi

ng

AD

O.
NE

T
an

d
OL

E
DB

Ap

pl
ic

at
io

ns

�
�

�

	Contents
	Chapter 1. ADO.NET application development
	Deploying .NET applications (Windows)
	Supported .NET development software
	DB2 integration in Visual Studio

	Chapter 2. External routines
	Overview of external routines
	Benefits of using routines
	External routine features
	External function and method features
	External scalar functions
	External scalar function and method processing model
	External table functions
	External table function processing model
	Table function execution model for Java
	Scratchpads for external functions and methods
	Scratchpads on 32-bit and 64-bit operating systems

	Supported APIs and programming languages for external routine development
	Comparison of supported APIs and programming languages for external routine development

	External routine creation
	External routine parameter styles
	External routine library and class management
	Deployment of external routine libraries and classes
	Security of external routine library or class files
	Resolution of external routine libraries and classes
	Modifications to external routine library and class files
	Backup and restore of external routine library and class files
	External routine library management and performance

	32-bit and 64-bit support for external routines
	Performance of routines with 32-bit libraries on 64-bit database servers
	XML data type support in external routines
	Restrictions on external routines
	Writing routines
	Creating external routines

	Chapter 3. .NET common language runtime (CLR) routines
	Support for external routine development in .NET CLR languages
	Tools for developing .NET CLR routines
	Designing .NET CLR routines
	SQL data type representation in .NET CLR routines
	Parameters in .NET CLR routines
	Returning result sets from .NET CLR procedures
	Security and execution modes for CLR routines
	Restrictions on .NET CLR routines

	Creating .NET CLR routines
	Creating .NET CLR routines from DB2 Command Window

	Building .NET CLR routine code
	Building .NET common language runtime (CLR) routine code using sample build scripts
	Building .NET common language runtime (CLR) routine code from DB2 Command Window
	CLR .NET routine compile and link options

	Debugging .NET CLR routines
	Errors related to .NET CLR routines

	Examples of .NET CLR routines
	Examples of C# .NET CLR procedures
	Examples of Visual Basic .NET CLR functions
	Examples of Visual Basic .NET CLR procedures
	Example: XML and XQuery support in C# .NET CLR procedure
	Example: XML and XQuery support in C procedure
	Examples of C# .NET CLR functions

	Chapter 4. IBM Data Server Provider for .NET
	IBM Data Server Provider for .NET database system requirements
	32-bit and 64-bit support for ADO.NET applications
	Programming applications to use the IBM Data Server Provider for .NET
	Generic coding with the ADO.NET common base classes
	Connecting to a database from an application using the IBM Data Server Provider for .NET
	Connection pooling with the IBM Data Server Provider for .NET
	Creating a trusted connection through IBM Data Server Provider for .NET
	SQL data type representation in ADO.NET database applications
	Executing SQL statements from an application using the IBM Data Server Provider for .NET
	Reading result sets from an application using the IBM Data Server Provider for .NET
	Calling stored procedures from an application using the IBM Data Server Provider for .NET

	Building .NET applications
	Building Visual Basic .NET applications
	Building C# .NET applications
	Visual Basic .NET application compile and link options
	C# .NET application compile and link options

	Chapter 5. IBM OLE DB Provider for DB2
	Application Types Supported by the IBM OLE DB Provider for DB2
	OLE DB services
	Thread model supported by the IBM OLE DB Provider
	Large object manipulation with the IBM OLE DB Provider
	Schema rowsets supported by the IBM OLE DB Provider
	OLE DB services automatically enabled by the IBM OLE DB Provider

	Data services
	Supported cursor modes for the IBM OLE DB Provider
	Data type mappings between DB2 and OLE DB
	Data conversion for setting data from OLE DB Types to DB2 Types
	Data conversion for setting data from DB2 types to OLE DB types

	IBM OLE DB Provider restrictions
	IBM OLE DB Provider support for OLE DB components and interfaces
	IBM OLE DB Provider support for OLE DB properties
	Connections to data sources using the IBM OLE DB Provider
	ADO applications
	ADO connection string keywords
	Connections to data sources with Visual Basic ADO applications
	Updatable scrollable cursors in ADO applications
	Limitations for ADO applications
	IBM OLE DB Provider support for ADO methods and properties

	Compilation and linking of C/C++ applications and the IBM OLE DB Provider
	Connections to data sources in C/C++ applications using the IBM OLE DB Provider

	COM+ distributed transaction support and the IBM OLE DB Provider
	Enablement of COM+ support in C/C++ database applications

	Chapter 6. OLE DB .NET Data Provider
	OLE DB .NET Data Provider restrictions
	Hints and tips
	Connection pooling in OLE DB .NET Data Provider applications
	Time columns in OLE DB .NET Data Provider applications
	ADORecordset objects in OLE DB .NET Data Provider applications

	Chapter 7. ODBC .NET Data Provider
	ODBC .NET Data Provider restrictions

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

