
DB2 Version 9.5

for Linux, UNIX, and Windows

Developing User-defined Routines (SQL and External)

SC23-5855-00

���

DB2 Version 9.5

for Linux, UNIX, and Windows

Developing User-defined Routines (SQL and External)

SC23-5855-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 363.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Who should use this book vii

How this book is structured vii

Chapter 1. Overview of routines 1

Routines 1

Benefits of using routines 1

Types of routines 3

System-defined and user-defined routines 5

System-defined routines 5

User-defined routines 6

Comparison of system-defined and user-defined

routines 7

Determining when to use system-defined or

user-defined routines 8

Functional types of routines 8

Routines: Procedures 9

Routines: Functions 10

Routines: Methods 14

Comparison of functional types of routines . . . 15

Determining what functional type of routine to

use 18

Implementations of routines 19

Built-in routine implementation 20

Sourced routine implementation 20

SQL routine implementation 20

External routine implementation 21

Supported APIs and programming languages for

external routine development 21

Comparison of supported APIs and

programming languages for external routine

development 22

Comparison of routine implementations 27

Determining what routine implementation to use 29

Usage of routines 30

Administration of databases with system-defined

routines 30

Extension of SQL function support with

user-defined functions 31

Auditing using SQL table functions 32

Tools for developing routines 34

Data server developer tool routine development

support 35

SQL statements that can be executed in routines . . 35

SQL access levels in routines 40

Determining what SQL statements can be

executed in routines 40

Portability of routines 42

Interoperability of routines 42

Performance of routines 43

Security of routines 50

Securing routines 51

Authorizations and binding of routines that contain

SQL 52

Data conflicts when procedures read from or write

to tables 55

Global variables and XA transactions 57

Chapter 2. Developing routines 59

Chapter 3. Overview of SQL routines 61

SQL routines 61

Tools for developing SQL routines 62

SQL routine development in the data server

developer tool 62

SQL Procedural Language (SQL PL) 62

Inline SQL PL 63

SQL PL in SQL procedures 64

Inline SQL PL and SQL functions, triggers, and

compound SQL (dynamic) statements 65

CREATE statements for SQL routines 66

Determining when to use SQL routines or external

routines 67

Determining when to use SQL procedures or SQL

functions 68

Determining when to use dynamic compound SQL

statements or SQL procedures 69

Rewriting SQL procedures as SQL user-defined

functions 70

Chapter 4. Developing SQL procedures 73

SQL procedures 73

Features of SQL procedures 73

Designing SQL procedures 74

Parts of SQL procedures 74

Structure of SQL procedures 75

Array support in SQL procedures 77

Parameters in SQL procedures 79

Parameter markers 79

Variables in SQL procedures (DECLARE, SET

statements) 85

XML and XQuery support in SQL procedures . . 86

SQLCODE and SQLSTATE variables in SQL

procedures 86

Compound statements and scope of variables in

SQL procedures 87

Effect of commits and rollbacks on XML

parameter and variable values in SQL procedures 88

Cursors in SQL procedures 88

Cursors for XQuery expressions in SQL

procedures 89

SQL PL logic elements in the SQL-procedure

body 91

Variable related statements 91

Conditional statements in SQL procedures . . . 91

Looping statements in SQL procedures 93

Transfer of control statements in SQL procedures 96

Condition handlers in SQL procedures 99

Returning result sets from SQL procedures . . 100

© Copyright IBM Corp. 1993, 2007 iii

Receiving procedure result sets in SQL routines 101

Creating SQL procedures 101

Creating SQL procedures from the command

line 101

Customizing precompile and bind options for

SQL procedures 102

Improving the performance of SQL procedures . . 104

Chapter 5. Overview of external

routines 111

External routines 111

External routine features 111

External routine creation 112

External routine library and class management . . 113

Deployment of external routine libraries and

classes 114

Security of external routine library or class files 114

Resolution of external routine libraries and

classes 115

Modifications to external routine library and

class files 115

Backup and restore of external routine library

and class files 116

External routine library management and

performance 116

Supported APIs and programming languages for

external routine development 117

Comparison of supported APIs and

programming languages for external routine

development 117

32-bit and 64-bit support for external routines . . 123

Performance of routines with 32-bit libraries on

64-bit database servers 124

External routine parameter styles 124

Restrictions on external routines 127

Chapter 6. Developing external

routines 131

External function and method features 131

External scalar functions 131

External scalar function and method processing

model 133

External table functions 133

External table function processing model . . . 134

Table function execution model for Java . . . 135

Scratchpads for external functions and methods 136

Scratchpads on 32-bit and 64-bit operating

systems 140

XML data type support in external routines . . . 140

Writing routines 141

Creating external routines 143

.NET common language runtime (CLR) routines 144

Support for external routine development in

.NET CLR languages 145

Tools for developing .NET CLR routines . . . 146

Designing .NET CLR routines 146

Creating .NET CLR routines 153

Building .NET CLR routine code 156

Debugging .NET CLR routines 161

Examples of .NET CLR routines 164

C and C++ routines 203

Support for external routine development in C 204

Support for external routine development in

C++ 204

Tools for developing C and C++ routines . . . 205

Designing C and C++ routines 205

Include file required for C and C++ routine

development (sqludf.h) 206

Parameters in C and C++ routines 206

Supported SQL data types in C and C++

routines 218

SQL data type handling in C and C++ routines 221

Passing arguments to C, C++, OLE, or COBOL

routines 228

Graphic host variables in C and C++ routines 240

C++ type decoration 240

Returning result sets from C and C++

procedures 242

Creating C and C++ routines 243

Building C and C++ routine code 245

Building C and C++ routine code using sample

bldrtn scripts 245

Building C and C++ routine code from DB2

Command Window 251

Compile and link options for C and C++

routines 252

Building embedded SQL stored procedures in C

or C++ with configuration files 262

Building user-defined functions in C or C++

with configuration files (AIX) 263

Rebuilding DB2 routine shared libraries . . . 264

Updating the database manager configuration

file 265

Chapter 7. COBOL procedures 267

Support for external procedure development in

COBOL 269

Supported SQL data types in COBOL embedded

SQL applications 269

Building COBOL routines 272

Compile and link options for COBOL routines 272

Building IBM COBOL routines on AIX 277

Building UNIX Micro Focus COBOL routines 278

Building IBM COBOL routines on Windows . . 279

Building Micro Focus COBOL routines on

Windows 280

Chapter 8. Java routines 283

Supported Java routine development software . . 283

JDBC and SQLJ application programming interface

support for Java routines 284

Specification of an SDK for Java routine

development (UNIX) 284

Specification of a driver for Java routines 285

Tools for developing Java (JDBC and SQLJ)

routines 286

Designing Java routines 286

Supported SQL data types in Java routines . . 287

Connection contexts in SQLJ routines 289

Parameters in Java routines 289

iv Developing User-defined Routines (SQL and External)

Parameter style JAVA procedures 290

Parameter style JAVA Java functions and

methods 291

DB2GENERAL routines 292

DB2GENERAL UDFs 292

Supported SQL data types in DB2GENERAL

routines 294

Java classes for DB2GENERAL routines . . . 295

DB2GENERAL Java class:

COM.IBM.db2.app.StoredProc 296

DB2GENERAL Java class:

COM.IBM.db2.app.UDF 297

DB2GENERAL Java class:

COM.IBM.db2.app.Lob 299

DB2GENERAL Java class:

COM.IBM.db2.app.Blob 299

DB2GENERAL Java class:

COM.IBM.db2.app.Clob 299

Passing parameters of data type ARRAY to Java

routines 300

Returning result sets from JDBC procedures . . 301

Returning result sets from SQLJ procedures . . 301

Receiving procedure result sets in JDBC

applications and routines 302

Receiving procedure result sets in SQLJ

applications and routines 303

Restrictions on Java routines 304

Table function execution model for Java . . . 305

Creating Java routines 306

Creating Java routines from the command line 307

Building Java routine code 309

Building JDBC routines 309

Building SQL routines 310

Compile and link options for Java (SQLJ)

routines 311

Deploying Java routine class files to DB2 database

servers 312

JAR file administration on the database server 312

Updating Java routine classes 313

Examples of Java (JDBC) routines 314

Example: Array data type in Java (JDBC)

procedure 314

Example: XML and XQuery support in Java

(JDBC) procedure 314

Chapter 9. OLE automation routine

design 319

Creating OLE automation routines 319

OLE routine object instances and scratchpad

considerations 320

Supported SQL data types in OLE automation . . 320

OLE automation routines in BASIC and C++ . . . 321

Chapter 10. OLE DB user-defined

table functions 325

Creating an OLE DB table UDF 325

Fully qualified rowset names 327

Supported SQL data types in OLE DB 328

Chapter 11. Routine invocation 331

Authorizations and binding of routines that

contain SQL 332

Routine names and paths 335

Nested routine invocations 336

Invoking 32-bit routines on a 64-bit database server 337

Routine code page considerations 337

References to procedures 338

Procedure selection 338

Calling procedures 339

References to functions 347

Function selection 348

Distinct types as UDF or method parameters 349

LOB values as UDF parameters 350

Invoking scalar functions or methods 350

Invoking user-defined table functions 351

Appendix A. Overview of the DB2

technical information 353

DB2 technical library in hardcopy or PDF format 353

Ordering printed DB2 books 356

Displaying SQL state help from the command line

processor 356

Accessing different versions of the DB2

Information Center 357

Displaying topics in your preferred language in the

DB2 Information Center 357

Updating the DB2 Information Center installed on

your computer or intranet server 358

DB2 tutorials 359

DB2 troubleshooting information 360

Terms and Conditions 360

Appendix B. Notices 363

Index 367

Contents v

vi Developing User-defined Routines (SQL and External)

About this book

This book provides information concerning the development of user-defined

routines when a system-defined routine that provides the required functionality is

not available.

Who should use this book

This book is intended for database architects, database administrators, and

application developers of all levels.

v Database architects interested in learning about how routine objects can be

created and used to modularize SQL and related logic that can be reused in

multiple contexts within the database architecture.

v Database administrators interested in learning how to create, manage, deploy,

secure, troubleshoot, and improve system performance by using user-defined

routines within a database management system.

v Application developers interested in learning how and when to encapsulate SQL

statements and application logic into routines so as to improve application

modularity and performance as well as the step by step method of designing,

creating, and building user-defined routines. Application developers should have

experience writing SQL statements and programming experience using one of

the supported programming languages for routine development (C, C++, Java™,

COBOL, C#, Visual Basic, or another .NET CLR supported programming

language).

How this book is structured

The major subject areas discussed in the chapters of this book are as follows:

Overviews

v Chapter 1, “Overview of routines,” presents an overview of

system-defined and user-defined routines, the functional types,

implementations, usage, and tools to develop routines.

v Chapter 3, “Overview of SQL routines,” provides information about SQL

routines and how to determine when to use SQL routines, procedures, or

functions.

v Chapter 5, “Overview of external routines,” presents general information

about external routines.

Routine, procedure and function development

v Chapter 2, “Developing routines,” generally describes the routine

development procedure.

v Chapter 4, “Developing SQL procedures,” describes the features, design,

and creation of SQL procedures.

v Chapter 6, “Developing external routines,” includes descriptions

outlining the development of C, C++, and .NET CLR routines.

v Chapter 7, “COBOL procedures,” presents information on how to

develop COBOL routines.

v Chapter 8, “Java routines,” describes the development of Java routines.

© Copyright IBM Corp. 1993, 2007 vii

v Chapter 9, “OLE automation routine design,” provides information for

the development of Object Linking and Embedding (OLE) automation

routines.

v Chapter 10, “OLE DB user-defined table functions,” describes how to

create Object Linking and Embedding (OLE) DB user-defined table

functions.

Routine invocation

v Chapter 11, “Routine invocation,” discusses how to invoke the routine

after it has been developed.

viii Developing User-defined Routines (SQL and External)

Chapter 1. Overview of routines

Routines are a type of database object that you can use to encapsulate logic that

can be invoked like a programming sub-routine. There are many useful

applications of routines within a database or database application architecture. You

can use routines to improve overall database design, database performance, and

data security, as well as to implement basic auditing mechanisms, and more.

Before deciding to implement a routine, it is important that you understand what

routines are, how they are implemented, and how they can be used. The following

concept topics will help you gain an understanding of routines so that you can

make informed decisions about when and how to use them in your database

environment:

v “Benefits of using routines”

v “Types of routines” on page 3

v “Tools for developing routines” on page 34

v “Usage of routines” on page 30

v “SQL access levels in routines” on page 40

v “External routine creation” on page 112

v “Performance of routines” on page 43

v “Security of routines” on page 50

After learning about routines, you might want to perform one of the following

tasks:

v “Determining when to use system-defined or user-defined routines” on page 8

v “Determining what functional type of routine to use” on page 18

v “Determining what routine implementation to use” on page 29

v “Tools for developing routines” on page 34

Routines

Routines are database objects that can encapsulate programming and database

logic that can be invoked like a programming sub-routine from a variety of SQL

interfaces. Routines can be system-defined, which means that they are provided

with the product, or user-defined, which means that users can create them.

Routines can be implemented using SQL statements, a programming language, or

a mix of both. Different types of routines provide different interfaces that can be

used to extend the functionality of SQL statements, client applications, and some

database objects.

For a complete view of the types of routines and implementations that are

supported by DB2®, refer to the topic: “Types of routines” on page 3.

The many features of routines are part of why there are so many useful

applications of routines.

Benefits of using routines

The following benefits can be gained by using routines:

© IBM Corporation 1993, 2007 1

Encapsulate application logic that can be invoked from an SQL interface

In an environment containing many different client applications that have

common requirements, the effective use of routines can simplify code

reuse, code standardization, and code maintenance. If a particular aspect of

common application behavior needs to be changed in an environment

where routines are used, only the affected routine that encapsulates the

behavior requires modification. Without routines, application logic changes

are required in each application.

Enable controlled access to other database objects

Routines can be used to control access to database objects. A user might

not have permission to generally issue a particular SQL statement, such as

CREATE TABLE; however the user can be given permission to invoke

routines that contain one or more specific implementations of the

statement, thus simplifying privilege management through encapsulation

of privileges.

Improve application performance by reducing network traffic

When applications run on a client computer, each SQL statement is sent

separately from the client computer to the database server computer to be

executed and each result set is returned separately. This can result in high

levels of network traffic. If a piece of work can be identified that requires

extensive database interaction and little user interaction, it makes sense to

install this piece of work on the server to minimize the quantity of

network traffic and to allow the work to be done on the more powerful

database servers.

Allow for faster, more efficient SQL execution

Because routines are database objects, they are more efficient at

transmitting SQL requests and data than client applications. Therefore, SQL

statements executed within routines can perform better than if executed in

client applications. Routines that are created with the NOT FENCED clause

run in the same process as the database manager, and can therefore use

shared memory for communication, which can result in improved

application performance.

Allow the interoperability of logic implemented in different programming

languages

Because code modules might be implemented by different programmers in

different programming languages, and because it is generally desirable to

reuse code when possible, DB2 routines support a high degree of

interoperability.

v Client applications in one programming language can invoke routines

that are implemented in a different programming language. For example

C client applications can invoke .NET common language runtime

routines.

v Routines can invoke other routines regardless of the routine type or

routine implementation. For example a Java procedure can invoke an

embedded SQL scalar function.

v Routines created in a database server on one operating system can be

invoked from a DB2 client running on a different operating system.

The benefits described above are just some of the many benefits of using routines.

Using routines can be beneficial to a variety of users including database

administrators, database architects, and database application developers. For this

reason there are many useful applications of routines that you might want to

explore.

2 Developing User-defined Routines (SQL and External)

There are various kinds of routines that address particular functional needs and

various routine implementations. The choice of routine type and implementation

can impact the degree to which the above benefits are exhibited. In general,

routines are a powerful way of encapsulating logic so that you can extend your

SQL, and improve the structure, maintenance, and potentially the performance of

your applications.

Types of routines

There are many different types of routines. Routines can be grouped in different

ways, but are primarily grouped by their system or user definitions, by their

functionality, and by their implementation.

The supported routine definitions are:

v “System-defined routines” on page 5

v “User-defined routines” on page 6

The supported functional types of routines are:

v “Routines: Procedures” on page 9 (also called stored procedures)

v “Routines: Functions” on page 10

v “Routines: Methods” on page 14

The supported routine implementations are:

v “Built-in routine implementation” on page 20

v “Sourced routine implementation” on page 20

v “SQL routine implementation” on page 20

v “External routine implementation” on page 21

The following diagram illustrates the classification hierarchy of routines. All

routines can be either system-defined or user-defined. The functional types of

routines are in dark grey/blue boxes and the supported routine implementations

are in light grey/orange boxes. Built-in routine implementations are emphasized,

because this type of implementation is unique.

Chapter 1. Overview of routines 3

The various types of routines provide extensive support for extending SQL

language functionality and for developing more modular database applications.

Built-in
aggregate
functions

Built-in
scalar
functions

Sourced
scalar
functions

External
table
functions

External
scalar
functions

Sourced
aggregate
functions

Routines

Aggregate
functions

Functions

Methods

Procedures
Scalar
functions

SQL scalar
functions

Row
functions

SQL row
functions

Table
functions

Scalar
methods

SQL table
functions

SQL
s
methods
calar

External
scalar
methods

SQL
procedures

External
procedures

Figure 1. Classifications of routines

4 Developing User-defined Routines (SQL and External)

System-defined and user-defined routines

One of the most straight-forward ways of categorizing routines is to divide them

into “System-defined routines” and “User-defined routines” on page 6.

System-defined routines are routines that are provided with the product. These

routines provide a wide variety of support for tasks ranging from administrative

functions to database system and catalog reporting. They are immediately

ready-to-use and require no prerequisite setup or registration steps, although users

require the necessary privileges to invoke these routines.

User-defined routines are routines that users create themselves. User-defined

routines provide a means for users to extend the SQL language beyond the support

which is currently available. User-defined routines can be implemented in a variety

of ways which include sourcing (re-using the logic of) built-in routines, using SQL

statements only, or using SQL with another programming language.

System-defined routines

System-defined routines are routines that are provided with the product. These

routines provide a wide variety of routine support for tasks ranging from

administrative functions to database system and catalog reporting. They are

characterized by the fact that they are immediately ready-to-use, require no

prerequisite setup or routine registration steps, although users require privileges to

invoke these routines. These can include built-in and system-defined routines,

previously called SQL Administrative Routines.

Built-in system-defined routines provide standard operator support and basic

scalar function and aggregate function support. Built-in routines are the first choice

of routine that you should use because they are strongly typed and will provide

the best performance. Do not create external routines that duplicate the behavior of

built-in routines. External routines cannot perform as well or be as secure as

built-in routines.

Other system-defined routines that you can use are provided with DB2 in the

SYSPROC, SYSFUN, and SYSTOOLS schemas. These routines are essentially SQL

and external routines that are defined by the system and provided with the

product. Although these additional routines are shipped with DB2, they are not

built-in routines. Instead they are implemented as pre-installed user-defined

routines. These routines typically encapsulate a utility function. Some examples of

these include: SNAP_GET_TAB_V91, HEALTH_DB_HI, SNAP_WRITE_FILE, and

REBIND_ROUTINE_PACKAGE. You can immediately use these functions and

procedures, provided that you have the SYSPROC schema and SYSFUN schema in

your CURRENT PATH special register. It is a good idea to peruse the set of DB2

provided system-defined routines if you are considering implementing an external

routine that performs administrative functionality.

Of particular interest, you might find the ADMIN_CMD procedure useful as it

provides a standard interface for executing many popular DB2 commands through

an SQL interface.

System-defined routines make it faster and easier for you to implement complex

SQL queries and powerful database applications since they are ready-to-use.

Chapter 1. Overview of routines 5

User-defined routines

DB2 provides routines that capture the functionality of most commonly used

arithmetic, string, and casting functions. However, DB2 also allows you to create

routines to encapsulate logic of your own. These routines are called user-defined

routines. You can create your own “Routines: Procedures” on page 9, “Routines:

Functions” on page 10 and “Routines: Methods” on page 14 in any of the

supported implementation styles for the routine type. Generally the prefix

’user-defined’ is not used when referring to procedures and methods. User-defined

functions are also commonly called UDFs.

User-defined routine creation

User-defined procedures, functions and methods are created in the database by

executing the appropriate CREATE statement for the routine type. These routine

creation statements include:

v “CREATE PROCEDURE statement” in the SQL Reference

v “CREATE FUNCTION statement” in the SQL Reference

v “CREATE METHOD statement” in the SQL Reference

The clauses specific to each of the CREATE statements define characteristics of the

routine, such as the routine name, the number and type of routine arguments, and

details about the routine logic. DB2 uses the information provided by the clauses

to identify and run the routine when it is invoked. Upon successful execution of

the CREATE statement for a routine, the routine is created in the database. The

characteristics of the routine are stored in the DB2 catalog views that users can

query. Executing the CREATE statement to create a routine is also referred to as

defining a routine or registering a routine.

User-defined routine definitions are stored in the SYSTOOLS system catalog table

schema.

User-defined routine logic implementation

There are three implementation styles that can be used to specify the logic of a

routine:

v “Sourced routine implementation” on page 20: user-defined routines can be

sourced from the logic of existing built-in routines.

v “SQL routine implementation” on page 20: user-defined routines can be

implemented using only SQL statements.

v “External routine implementation” on page 21: user-defined routines can be

implemented using one of a set of supported programming languages.

When routines are created in a non-SQL programming language, the library or

class built from the code is associated with the routine definition by the value

specified in the EXTERNAL NAME clause. When the routine is invoked the

library or class associated with the routine is run.

User-defined routines can include a variety of SQL statements, but not all SQL

statements.

User-defined routines are strongly typed, but type handling and error-handling

mechanisms must be developed or enhanced by routine developers.

Upon database migration it might be necessary to verify or update routine

implementations.

6 Developing User-defined Routines (SQL and External)

In general, user-defined routines perform well, but not as well as system-defined

routines.

User-defined routines can invoke system-defined routines and other user-defined

routines implemented in any of the supported formats. This flexibility allows users

to essentially have the freedom to build a complete library of routine modules that

can be re-used.

In general, user-defined routines provide a means for extending the SQL language

and for modularizing logic that will be re-used by multiple queries or database

applications where system-defined routines do not exist.

Comparison of system-defined and user-defined routines

Understanding the differences between system-defined and user-defined routines

can help you determine whether you actually need to build your own routines or

whether you can re-use existing routines. The ability to determine when to re-use

existing routines and when to develop your own routines can save you time and

effort as well as ensure that you are maximizing routine performance.

System-defined routines and user-defined routines differ in a variety of ways.

These differences are summarized in the following table:

 Table 1. Comparison of system-defined and user-defined routines

Characteristic System-defined routines User-defined routines

Feature support Extensive numerical operator, string

manipulation, and administrative

functionality available for immediate

use.

To use these routines, simply invoke

the routines from supported

interfaces.

Although not all SQL statements are

supported within user-defined

routines, a great many are supported.

You can also wrap calls to

system-defined routines within

user-defined routines if you want to

extend the functionality of the

system-defined routines. User-defined

routines provide a limitless

opportunity for routine logic

implementation.

To use these routines, you must first

develop them and then you can

invoke them from supported

interfaces.

Maintenance No maintenance is required. External routines require that you

manage the associated external

routine libraries.

Migration No or little migration impact. Release to release migrations might

require you to verify your routines.

Performance Perform better than equivalent

user-defined routines.

Generally do not perform as well as

equivalent system-defined routines.

Stability Strong type support and error

handling.

Type support and error handling

must be programmed by the routine

developer.

Whenever it is possible to do so, you should choose to use the system-defined

routines. These are provided to facilitate SQL statement formulation and

application development and are optimized to perform well. User-defined routines

Chapter 1. Overview of routines 7

give you the flexibility to build your own routines where no system-defined

routine performs the specific business logic that you want to implement.

Determining when to use system-defined or user-defined

routines

System-defined routines provide you with time-saving ready-to-use encapsulated

functionality whereas user-defined routines provide you with the flexibility to

define your own routines when no system-defined routine adequately contains the

functionality that you require.

To determine whether to use a system-defined or user-defined routine, do the

following:

1. Determine what functionality you want the routine to encapsulate.

2. Check the list of available system-defined routines to see if there are any that

meet some or all of your requirements.

v If there is a system-defined routine that meets some, but not all of your

requirements:

– Determine if the functionality that is missing, is functionality that you can

add simply to your application? If so, use the system-defined routine and

modify your application to cover the missing functionality. If the missing

functionality is not easily added to your application or if the missing

functionality would have to be repeated in many places consider creating

a user-defined routine that contains the missing functionality and that

invokes the system-defined routine.

– If you expect that your routine requirements will evolve and that you

might have to frequently modify the routine definition, consider using a

user-defined routine rather than the system-defined routine.

– Determine if there are additional parameters that you might want to pass

into or out of the routine. If there are, consider creating a user-defined

routine that encapsulates an invocation to the system-defined routine.
v If no system-defined routine adequately captures the functionality that you

want to encapsulate, create a user-defined routine.

To save time and effort, whenever possible consider using system-defined routines.

There will be times when the functionality that you require will not be available

within a system-defined routine. For these cases you must create a user-defined

routine. Other times it might be possible to include a call to system-defined routine

from a user-defined routine that covers the extra functionality that you require.

Functional types of routines

There are different functional types of routines. Each functional type provides

support for invoking routines from different interfaces for different purposes. Each

functional type of routine provides a different set of features and SQL support.

v

“Routines: Procedures” on page 9, also called stored procedures, serve as

sub-routine extensions to client applications, routines, triggers, and dynamic

compound statements. Procedures are invoked by executing the CALL statement

with a reference to a procedure. Procedures can have input, output, and

input-output parameters, can execute a wide variety of SQL statements, and

return multiple result sets to the caller.

v

8 Developing User-defined Routines (SQL and External)

“Routines: Functions” on page 10 are relationships between sets of input data

values and a set of result values. Functions enable you to extend and customize

SQL. Functions are invoked from within elements of SQL statements such as a

select-list, expression, or a FROM clause. There are four types of functions:

aggregate functions, scalar functions, row functions, and table functions.

v

“Routines: Methods” on page 14 allow you to access user-defined type attributes

as well as to define additional behaviors for user-defined types. A structured

type is a user-defined data type containing one or more named attributes, each

of which has a data type. Attributes are properties that describe an instance of a

type. A geometric shape, for example, might have attributes such as its list of

Cartesian coordinates. A method is generally implemented for a structured type

as an operation on the attributes of the structured type. For a geometric shape a

method might calculate the volume of the shape.

For specific details on each of the functional routine types refer to the topics for

each routine type.

Routines: Procedures

Procedures, also called stored procedures, are database objects created by executing

the CREATE PROCEDURE statement. Procedures can encapsulate logic and SQL

statement and can serve as sub-routine extensions to client applications, routines,

triggers, and dynamic compound statements. Procedures are invoked by executing

the CALL statement with a reference to a procedure. Procedures can take input,

output, and input-output parameters, execute a wide variety of SQL statements,

and return multiple result sets to the caller.

Features

v Enable the encapsulation of logic elements and SQL statements that

formulate a particular subroutine module

v Can be called from client applications, other routines, triggers, and

dynamic compound statements - from anywhere that the CALL

statement can be executed.

v Return multiple result-sets

v Support the execution of a large set of SQL statements including SQL

statements that read or modify table data in both single and multiple

partition databases

v Parameter support for input, output, and input-output parameters

v Nested procedure calls and function invocations are supported

v Recursive calls to procedures are supported

v Savepoints and transaction control are supported within procedures

Limitations

v Procedures cannot be invoked from within SQL statements other than

the CALL statement. As an alternative, functions can be used to express

logic that transforms column values.

v Output parameter values and result sets of procedure calls cannot be

directly used by another SQL statement. Application logic must be used

to assign these to variables that can be used in subsequent SQL

statements.

v Procedures cannot preserve state between invocations.

– Refer to the topic ″Restrictions on procedures″

Chapter 1. Overview of routines 9

Common uses

v Standardization of application logic

– If multiple applications must similarly access or modify the database,

a procedure can provide a single interface for the logic. The procedure

is then available for re-use. Should the interface need to change to

accommodate a change in business logic, only the single procedure

must be modified.
v Isolation of database operations from non-database logic within

applications

– Procedures facilitate the implementation of sub-routines that

encapsulate the logic and database accesses associated with a

particular task that can be reused in multiple instances. For example,

an employee management application can encapsulate the database

operations specific to the task of hiring an employee. Such a

procedure might insert employee information into multiple tables,

calculate the employee’s weekly pay based on an input parameter,

and return the weekly pay value as an output parameter. Another

procedure could do statistical analysis of data in a table and return

result sets that contain the results of the analysis.
v Simplification of the management of privileges for a group of SQL

statements

– By allowing a grouping of multiple SQL statements to be

encapsulated into one named database object, procedures allow

database administrators to manage fewer privileges. Instead of having

to grant the privileges required to execute each of the SQL statements

in the routine, they must only manage the privilege to invoke the

routine.

Supported implementations

v There are system-defined procedures that are ready-to-use, or users can

create user-defined procedures. The following user-defined

implementations are supported for procedures:

– SQL implementation

– External implementation

- Refer to the topic, ″Supported external routine implementation

programming languages″.

Routines: Functions

Functions are relationships between sets of input data values and a set of result

values. They enable you to extend and customize SQL. Functions are invoked from

within elements of SQL statements such as a select-list or a FROM clause. There

are four types of functions:

v “Aggregate functions” in the SQL Reference

v “Routines: Scalar functions” on page 12

v “Routines: Row functions” on page 13

v “Routines: Table functions” on page 13

Aggregate functions

Also called a column function, this type of function returns a scalar value

that is the result of an evaluation over a set of like input values. The

similar input values can, for example, be specified by a column within a

table, or by tuples in a VALUES clause. This set of values is called the

10 Developing User-defined Routines (SQL and External)

argument set. For example, the following query finds the total quantity of

bolts that are in stock or on order by using the SUM aggregate function:

 SELECT SUM (qinstock + qonorder)

 FROM inventory

 WHERE description LIKE ’%Bolt%’

Scalar functions

A scalar function is a function that, for each set of one or more scalar

parameters, returns a single scalar value. Examples of scalar functions

include the LENGTH function, and the SUBSTR function. Scalar functions

can also be created that do complex mathematical calculations on function

input parameters. Scalar functions can be referenced anywhere that an

expression is valid within an SQL statement, such as in a select-list, or in a

FROM clause. The following example shows a query that references the

built-in LENGTH scalar function:

 SELECT lastname, LENGTH(lastname)

 FROM employee

Row functions

A row function is a function that for each set of one or more scalar

parameters returns a single row. Row functions can only be used as a

transform function mapping attributes of a structured type into built-in

data type values in a row.

Table functions

Table functions are functions that for a group of sets of one or more

parameters, return a table to the SQL statement that references it. Table

functions can only be referenced in the FROM clause of a SELECT

statement. The table that is returned by a table function can participate in

joins, grouping operations, set operations such as UNION, and any

operation that could be applied to a read-only view. The following

example demonstrates an SQL table function that updates an inventory

table and returns the result set of a query on the updated inventory table:

CREATE FUNCTION updateInv(itemNo VARCHAR(20), amount INTEGER)

 RETURNS TABLE (productName VARCHAR(20),

 quantity INTEGER)

 LANGUAGE SQL

 MODIFIES SQL DATA

 BEGIN ATOMIC

 UPDATE Inventory as I

 SET quantity = quantity + amount

 WHERE I.itemID = itemNo;

 RETURN

 SELECT I.itemName, I.quantity

 FROM Inventory as I

 WHERE I.itemID = itemNo;

 END

 Functions provide support for the following features:

v Functions are supported across the DB2 brand database products including,

among others, DB2, DB2 for z/OS®, and DB2 Universal Database™ for iSeries™

v Moderate support for SQL statement execution

v Parameter support for input parameters and scalar or aggregate function return

values

v Efficient compilation of function logic into queries that reference functions

v External functions provide support for storing intermediate values between the

individual function sub-invocations for each row or value

Chapter 1. Overview of routines 11

There are system-defined functions that are ready-to-use, or users can create

user-defined functions. Functions can be implemented as SQL functions or as

external functions. SQL functions are easy to implement. External methods provide

support for flexible logic implementation, allow a user to develop method logic in

their preferred programming language, and provide the ability to store

intermediate values.

Routines: Scalar functions

A scalar function is a function that, for each set of one or more scalar parameters,

returns a single scalar value. Examples of scalar functions include the LENGTH

function, and the SUBSTR function. Scalar functions can also be created that do

complex mathematical calculations on function input parameters. Scalar functions

can be referenced anywhere that an expression is valid within an SQL statement,

such as in a select-list, or in a FROM clause.

Features

v Built-in scalar functions perform well.

v Built-in scalar functions are strongly typed.

v Can be referenced with SQL statements wherever expressions are

supported.

v Logic is executed on the server as part of the SQL statement that

references it.

v Output of a scalar UDF can be used directly by the statement that

references the function.

v When used in predicates, scalar UDF usage can improve overall query

performance. When a scalar functions are applied to a set of candidate

rows at the server, it can act as a filter, thus limiting the number of rows

that must be returned to the client.

v For external scalar user-defined functions, state can be maintained

between the iterative invocations of the function by using a scratchpad.

Limitations

v By design, they only return a single scalar value.

v Transaction management is not supported within scalar functions.

Commits and rollbacks cannot be executed within scalar function bodies.

v Result sets cannot be returned from scalar functions.

v In a single partition database user-defined external scalar UDFs can

contain SQL statements. These statements can read data from tables, but

cannot modify data in tables.

v In a multi-partition database environment, user-defined scalar UDFs

cannot contain SQL statements.

v Refer to: Restrictions on scalar functions.

Common uses

v To manipulate strings within SQL statements.

v To perform basic mathematical operations within SQL statements.

v User-defined scalar functions can be created to extend the existing set of

built-in scalar functions. For example, you can create a complex

mathematical function, by re-using the existing built-in scalar functions

along with other logic.

Supported implementations

v Sourced implementation

v External implementation

12 Developing User-defined Routines (SQL and External)

– Refer to the topic, “Comparison of supported APIs and programming

languages for external routine development” on page 22.

Routines: Row functions

A row function is a function, which can only be used with user-defined structured

types, that for each set of one or more scalar parameters returns a single row. Row

functions can only be used as a transform function mapping attributes of a

structured type into built-in data type values in a row. Row functions cannot be

used in a standalone manner or within SQL statements outside of the context of

abstract data types.

Features

v Allows you to map structured type attributes to a row of built-in data

type values.

Limitations

v Cannot be used in a standalone manner or in SQL statements outside of

the context of user-defined structured types.

v Refer to the topic: ″Restrictions on row functions″

Common uses

To make structured type attributes accessible in queries or operations. For

example, consider a user-defined structured data type named, ’manager’

that extends another structured type person and that has a combination of

person attributes and manager specific attributes. If you wanted to refer to

these values in a query, you qould create a row function to translate the

attribute values into a row of values that can be referenced.

Supported implementations

v SQL implementation

Routines: Table functions

Table functions are functions that for a group of sets of one or more parameters,

returns a table to the SQL statement that references it. Table functions can only be

referenced in the FROM clause of a SELECT statement. The table that is returned

by a table function can participate in joins, grouping operations, set operation such

as UNION, and any operation that could be applied to a read-only view.

Features

v Returns a set of data values for processing.

v Can be referenced as part of a SQL query.

v Can make operating system calls, read data from files or even access

data across a network in a single partitioned database.

v Results of table function invocations can be directly accessed by the SQL

statement that references the table function.

v SQL table functions can encapsulate SQL statements that modify SQL

table data. External table functions cannot encapsulate SQL statements.

v For a single table function reference, a table function can be iteratively

invoked multiple times and maintain state between these invocations by

using a scratchpad.

Limitations

v Transaction management is not supported within user-defined table

functions. Commits and rollbacks cannot be executed within table UDFs.

v Result sets cannot be returned from table functions.

v Not designed for single invocations.

Chapter 1. Overview of routines 13

v Can only be referenced in the FROM clause of a query.

v User-defined external table functions can read SQL data, but cannot

modify SQL data. As an alternative SQL table functions can be used to

contain SQL statements that modify SQL data.

v Refer to the topic, ″Restrictions on table functions″.

Common uses

v Encapsulate a complex, but commonly used sub-query.

v Provide a tabular interface to non-relational data. For example a

user-defined external table function can read a spreadsheet and produce

a table of values that can be directly inserted into a table or directly and

immediately accessed within a query.

Supported implementations

v SQL implementation

v External implementation

Routines: Methods

Methods allow you to access structured type attributes as well as to define

additional behaviors for structured types. A structured type is a user-defined data

type containing one or more named attributes, each of which has a data type.

Attributes are properties that describe an instance of a type. A geometric shape, for

example, might have attributes such as its list of Cartesian coordinates.

Methods are generally implemented for a structured type to represent operations

on the attributes of the structured type. For a geometric shape a method might

calculate the volume of the shape. Methods share all of the features of scalar

functions.

Features

v Ability to access structured type attributes

v Ability to set structured type attributes

v Ability to create operations on structured type attributes and return a

function value

v Sensitive to the dynamic type of the subject type

Limitations

v Can only return a scalar value

v Can only be used with structured types

v Cannot be invoked for typed tables

Common uses

v Create operations on structured types

v Encapsulate the structured type

Supported implementations

There are no system-defined methods. Users can create user-defined

methods for existing user-defined structured types. Methods can be

implemented using one of the following implementations:

v “SQL routine implementation” on page 20

v “External routine implementation” on page 21: C, C++, Java, C# (using

OLE API), Visual Basic (using OLE API)

14 Developing User-defined Routines (SQL and External)

SQL methods are easy to implement, but are generally designed in conjunction

with the design of a structured type. External methods provide greater support for

flexible logic implementation and allow a user to develop method logic in their

preferred programming language.

Comparison of functional types of routines

Understanding the differences between procedures, functions, and methods can

help you determine which functional type to implement when building your own

routines and can help you determine where and how you can reference existing

routines. This can save you time and effort as well as ensure that you are

maximizing the functionality and performance of routines.

“Routines: Procedures” on page 9, “Routines: Functions” on page 10, and

“Routines: Methods” on page 14 differ in a variety of ways. These differences are

outlined in the following table:

Chapter 1. Overview of routines 15

Table 2. Comparison of the functional types of routine

Characteristic Procedures Functions Methods

Unique functional

characteristics and

useful applications

v Enable the

encapsulation of

logic and SQL

statements.

v Serve as

sub-routine

extensions to client

applications,

routines, triggers,

and dynamic

compound

statements.

v Procedures are

invoked by

executing the

CALL statement

with a reference to

a procedure.

v Nested procedure

calls are supported

v Recursive

procedure calls are

supported

v Parameter support

for input, output,

and input-output

parameters

v Extensive support

for SQL statement

execution

v Can return one or

more result-sets

v Savepoints and

transaction control

v Enable the

encapsulation of

logic and SQL

statements.

v Functions are

relationships

between sets of

input data values

and a set of result

values.

v Functions enable

you to extend and

customize SQL.

v Functions are

invoked from

within elements of

SQL statements

such as a select-list

or a FROM clause.

v Moderate support

for SQL statement

execution.

v Parameter support

for input

parameters and

scalar or aggregate

function return

values.

v External functions

provide support

for storing

intermediate

values between the

individual function

sub-invocations for

each row or value

using a scratchpad.

v Efficient

compilation of

function logic into

queries that

reference functions.

v Enable the

encapsulation of

logic and SQL

statements.

v Methods allow you

to access

structured type

attributes as well

as to define

additional

behaviors for

structured types.

v Ability to access

structured type

attributes.

v Ability to set

structured type

attributes.

v Ability to create

operations on

structured type

attributes and

return a function

value.

Functional sub-types

of routine

v Not applicable v Scalar functions

v Aggregate

functions

v Row functions

v Table functions

v Not applicable

16 Developing User-defined Routines (SQL and External)

Table 2. Comparison of the functional types of routine (continued)

Characteristic Procedures Functions Methods

Invocation interface v Invocation is done

through execution

of the CALL

statement with a

reference to the

procedure.

v Procedure

invocation

supported

wherever CALL

statement is

supported.

v Invocation is done

within an SQL

statement within a

column select-list,

an expression, or

in a FROM clause

of a select

statement, among

other locations.

v Invocation is done

within an SQL

statement that

references the

structured type

associated with the

method.

Are there any system

defined routines of

this type?

v Yes, many.

v See the SQL

reference for a list

of system-defined

procedures.

v Yes, many.

v See the SQL

reference for a list

of system-defined

functions.

v No

Supported

user-defined routine

implementations

v SQL

v External

– C/C++ (with

embedded SQL

or CLI API

calls)

– COBOL

– Java (JDBC)

– Java (SQLJ)

– .NET CLR

– OLE: Visual

Basic, Visual

C++

v SQL

v External

– C/C++

– Java (JDBC)

– Java (SQLJ)

– .NET CLR

– OLE DB: Visual

Basic, Visual

C++ (table

functions only)

v SQL

v External

– C

– C++

Nested call support

Yes No, however

functions are

repeatedly invoked

for every value in the

input set and

intermediate values

can be stored using a

scratchpad.

No

Performance

Perform well if

routine logic is

efficient and best

practices are adopted.

v Perform well if

routine logic is

efficient and best

practices are

adopted.

v Can perform better

than a logically

equivalent

procedure, if the

logic only queries

data and does not

modify data.

Good performance

Chapter 1. Overview of routines 17

Table 2. Comparison of the functional types of routine (continued)

Characteristic Procedures Functions Methods

Portability v Highly portable

v Particularly

portable if SQL

implementation is

used.

v 32-bit and 64-bit

external routines

supported in a

variety of

programming

languages

v Highly portable

v Particularly

portable if SQL

implementation is

used.

v 32-bit and 64-bit

external routines

supported in a

variety of

programming

languages

Highly portable

Interoperability v Procedures can call

other procedures

and can contain

SQL statements

that invoke

functions with SQL

access levels less

than or equal to

the SQL access

level of the

procedure.

v Functions can

contain SQL

statements that

invoke other

functions and can

call procedures

with SQL access

levels less than or

equal to the SQL

access level of the

function.

v Methods can

invoke functions

with an SQL access

level less than or

equal to the SQL

access level of the

method.

v Methods cannot

call procedures or

other methods

Restrictions v Table functions can

only return a

single

table-reference that

must be referenced

in the FROM

clause of a

SELECT statement.

output.

In general the functional characteristics and applications of routines determine

what routine type should be used. However, performance and the supported

routine implementations also play an important role in determining what routine

type should be used.

Determining what functional type of routine to use

Procedures, functions, and methods provide different functional routine and

feature support. Determining what routine type to use or implement will

determine where and how you can reference and invoke the routine functionality,

influence what routine implementations you can use, and can influence what types

of functionality your routine can contain. Determining what routine type is best

suited to your needs before beginning to implement it will save you time and

possible frustration later.

Read about the functional types of routines to learn about their characteristics.

To determine whether to use a procedure, function, or method, do the following:

18 Developing User-defined Routines (SQL and External)

1. Determine what functionality you want the routine to encapsulate, what

interface you want to invoke the routine from, and what routine

implementation you want to use.

v See the following topic:

– Comparison of functional types of routines

to determine what functional routine types support these requirements.
2. Determine what SQL statements you want to include in the routine.

v See the following topic:

– List of SQL statements that can be executed in routines
v Determine what functional routines support the execution of the required

SQL statements.
3. If the routine will only include one or more queries, consider using SQL

functions. SQL functions perform well in this situation because they are

compiled in-line with the SQL statements that reference them, unlike

procedures, which are compiled and invoked separately.

4. Determine whether in the future you might need to extend the functionality of

the routine to include functionality of another routine type (for example,

procedures support more SQL statements and in general more SQL features

than do functions). To avoid having to rewrite a function into a procedure later,

consider implementing a procedure now.

In general functional and SQL requirements motivate the choice of what functional

type of routine to implement. However, there are cases where it is possible to

create logically equivalent routines with different functional types. For example, it

is possible to rewrite most basic procedures that return a single result-set as a table

function. You can also easily re-write basic procedures with only a single output

parameter as scalar functions.

Once you have determined what functional type of routine to use, you might be

interested in learning more about routine implementations or in determining what

routine implementation to use.

Implementations of routines

Routines can be implemented in a variety of ways. A routine implementation is

essentially the underlying form of the routine that contains the logic that is run

when a routine is invoked. Understanding the different supported routine

implementations can help you understand how routines work and help you

determine which routine implementation to choose when implementing

user-defined routines.

The available routine implementations include:

v “Built-in routine implementation” on page 20

v “Sourced routine implementation” on page 20

v “SQL routine implementation” on page 20

v “External routine implementation” on page 21

“System-defined routines” on page 5 can be implemented as built-in routines, SQL

routines, or external routines. However, their implementation is essentially

invisible to the user and in general is of little concern to the user.

Chapter 1. Overview of routines 19

“User-defined routines” on page 6 can be implemented as sourced routines, SQL

routines, or external routines.

The characteristics of each of the implementations differ and can result in more or

less functionality support. Before deciding on a particular implementation, it is a

good idea to review the supported functionality and restrictions associated with

each implementation, by reading about each of the implementations and then by

reading the topic:

v “Comparison of routine implementations” on page 27

A good understanding of the routine implementations can help you make good

implementation decisions as well as help you to debug and troubleshoot existing

routines.

Built-in routine implementation

Built-in routines are built into the code of the DB2 database manager. These

routines are strongly typed and perform well because their logic is native to the

database code. These routines are found in the SYSIBM schema. Some examples of

built-in scalar and aggregate functions include:

v Built-in scalar functions: +, -, *, /, substr, concat, length, char, decimal, days

v Built-in aggregate functions: avg, count, min, max, stdev, sum, variance

Built-in functions comprise most of the commonly required casting, string

manipulation, and arithmetic functionality. You can immediately use these

functions in your SQL statements. For a complete list of available built-in

functions, see the SQL Reference.

Sourced routine implementation

A routine that is implemented with a sourced routine implementation is one that

duplicates the semantics of another function, called its source function. Currently

only scalar and aggregate functions can be sourced functions. Sourced functions

are particularly useful for allowing a distinct type to selectively inherit the

semantics of its source type. Sourced functions are essentially a special form of an

SQL implementation for a function.

SQL routine implementation

A SQL routine implementation is composed entirely of SQL statements. SQL

routine implementations are characterized by the fact that the SQL statements that

define the logic of the routines are included within the CREATE statement used to

create the routine in the database. SQL routines are quick and easy to implement

because of their simple syntax, and perform well due to their close relationship

with DB2.

The SQL Procedural Language (SQL PL) is a language extension of basic SQL that

consists of statements and language elements that can be used to implement

programming logic in SQL. SQL PL includes a set of statements for declaring

variables and condition handlers (DECLARE statement) assigning values to

variables (assignment-statement), and for implementing procedural logic

(control-statements) such as IF, WHILE, FOR, GOTO, LOOP, SIGNAL, and others.

SQL and SQL PL, or where restricted a subset of SQL PL, can be used to create

SQL procedures, functions, and methods. SQL routine implementations can contain

traditional SQL statements as well as SQL PL statements, although depending on

the functional type of the routine, the execution of some SQL statements might be

restricted.

20 Developing User-defined Routines (SQL and External)

In general SQL procedures support more features than SQL functions including a

powerful and easy to implement error-handling mechanism. SQL routines cannot

directly make system calls and cannot directly perform operations on entities that

reside outside of the database.

External routine implementation

An external routine implementation is one in which the routine logic is defined by

programming language code that resides external to the database. As with other

routine implementations, routines with external implementations are created in the

database by executing a CREATE statement. The routine logic stored in a compiled

library resides on the database server in a special directory path. The association of

the routine name with the external code application is asserted by the specification

of the EXTERNAL clause in the CREATE statement.

External routines can be written in any of the supported external routine

programming languages.

External routine implementation can be somewhat more complex than SQL routine

implementation. However, they are extremely powerful because they allow you to

harness the full functionality and performance of the chosen implementation

programming language. External functions also have the advantage of being able

to access and manipulate entities that reside outside of the database, such as the

network or file system. For routines that require a smaller degree of interaction

with the DB2 database, but that must contain a lot of logic or very complex logic,

an external routine implementation is a good choice.

As an example, external routines are ideal to use to implement new functions that

operate on and enhance the utility of built-in data types, such as a new string

function that operate on a VARCHAR data type or a complicated mathematical

function that operates on a DOUBLE data type. External routine implementations

are also ideal for logic that might involve an external action, such as sending an

email.

If you are already comfortable programming in one of the supported external

routine programming languages, and need to encapsulate logic with a greater

emphasis on programming logic than data access, once you learn the steps

involved in creating routines with external implementation, you will soon discover

just how powerful they can be.

Supported APIs and programming languages for external

routine development

You can develop DB2 external routines (procedures and functions) using the

following APIs and associated programming languages:

v ADO.NET

– .NET Common Language Runtime programming languages
v CLI

v Embedded SQL

– C

– C++

– COBOL (Only supported for procedures)
v JDBC

– Java

Chapter 1. Overview of routines 21

v OLE

– Visual Basic

– Visual C++

– Any other programming language that supports this API.
v OLE DB (Only supported for table functions)

– Any programming language that supports this API.
v SQLJ

– Java

Comparison of supported APIs and programming languages

for external routine development

It is important to consider the characteristics and limitations of the various

supported external routine application programming interfaces (APIs) and

programming languages before you start implementing external routines. This will

ensure that you choose the right implementation from the start and that the

routine features that you require are available.

 Table 3. Comparison of external routine APIs and programming languages

API and

programming

language Feature support Performance Security Scalability Limitations

SQL (includes

SQL PL)

v SQL is a high

level language

that is easy to

learn and use,

which makes

implementation

go quickly.

v SQL Procedural

Language (SQL

PL) elements

allow for

control-flow

logic around

SQL operations

and queries.

v Strong data

type support.

v Very good.

v SQL routines

perform better

than Java

routines.

v SQL routines

perform as well

as C and C++

external

routines

created with

the NOT

FENCED

clause.

v Very safe.

v SQL procedures

run in the same

memory as the

database

manager.

v Highly

scalable.

v Cannot access

the database

server file

system.

v Cannot invoke

applications

that reside

outside of the

database.

22 Developing User-defined Routines (SQL and External)

Table 3. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

Embedded SQL

(includes C and

C++)

v Low level, but

powerful

programming

language.

v Very good.

v C and C++

routines

perform better

than Java

routines.

v C and C++

routines

created with

the NOT

FENCED

clause perform

as well as SQL

routines.

v C and C++

routines are

prone to

programming

errors.

v Programmers

must be

proficient in C

to avoid

making

common

memory and

pointer

manipulation

errors which

make routine

implementation

more tedious

and time

consuming.

v C and C++

routines should

be created with

the FENCED

clause and the

NOT

THREADSAFE

clause to avoid

the disruption

of the database

manager

should an

exception occur

in the routine

at run time.

These are

default clauses.

The use of

these clauses

can somewhat

negatively

impact

performance,

but ensure safe

execution. See:

Security of

routines .

v Scalability is

reduced when

C and C++

routines are

created with

the FENCED

and NOT

THREADSAFE

clauses. These

routines are

run in an

isolated db2fmp

process apart

from the

database

manager

process. One

db2fmp process

is required per

concurrently

executed

routine.

v There are

multiple

supported

parameter

passing styles

which can be

confusing.

Users should

use parameter

style SQL as

much as

possible.

Chapter 1. Overview of routines 23

Table 3. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

Embedded SQL

(COBOL)

v High-level

programming

language good

for developing

business,

typically file

oriented,

applications.

v Pervasively

used in the

past for

production

business

applications,

although its

popularity is

decreasing.

v COBOL does

not contain

pointer support

and is a linear

iterative

programming

language.

v COBOL

routines do not

perform as well

as routines

created with

any of the

other external

routine

implementation

options.

v No information

at this time.

v No information

at this time.

v You can create

and invoke

32-bit COBOL

procedures in

64-bit DB2

instances,

however these

routines will

not perform as

well as 64-bit

COBOL

procedures

within a 64-bit

DB2 instance.

JDBC (Java) and

SQLJ (Java)

v High-level

object-oriented

programming

language

suitable for

developing

standalone

applications,

applets, and

servlets.

v Java objects

and data types

facilitate the

establishment

of database

connections,

execution of

SQL

statements, and

manipulation

of data.

v Java routines

do not perform

as well as C

and C++

routines or SQL

routines.

v Java routines

are safer than

C and C++

routines,

because the

control of

dangerous

operations is

handled by the

Java Virtual

Machine (JVM).

This increases

reliability and

makes it very

difficult for the

code of one

Java routine to

harm another

routine running

in the same

process.

v Good

scalability

v Java routines

created with

the FENCED

THREADSAFE

clause (the

default) scale

well. All fenced

Java routines

will share a

few JVMs.

More than one

JVM might be

in use on the

system if the

Java heap of a

particular

db2fmp process

is approaching

exhaustion.

v To avoid

potentially

dangerous

operations,

Java Native

Interface (JNI)

calls from Java

routines are not

permitted.

24 Developing User-defined Routines (SQL and External)

Table 3. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

.NET common

language runtime

supported

languages

(includes C#,

Visual Basic, and

others)

v Part of the

Microsoft®

.NET model of

managed code.

v Source code is

compiled into

intermediate

language (IL)

byte code that

can be

interpreted by

the Microsoft

.NET

Framework

common

language

runtime.

v CLR assemblies

can be built up

from

sub-assemblies

that were

compiled from

different .NET

programming

language

source code,

which allows

users to re-use

and integrate

code modules

written in

various

languages.

v CLR routines

can only be

created with

the FENCED

NOT

THREADSAFE

clause so as to

minimize the

possibility of

database

manager

interruption at

runtime. This

can somewhat

negatively

impact

performance

v CLR routines

can only be

created with

the FENCED

NOT

THREADSAFE

clause. They

are therefore

safe because

they will be

run outside of

the database

manager in a

separate

db2fmp

process.

v No information

available.

v Refer to the

topic,

″Restrictions on

.NET CLR

routines″.

Chapter 1. Overview of routines 25

Table 3. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

v OLE v OLE routines

can be

implemented in

Visual C++,

Visual Basic,

and other

languages

supported by

OLE.

v The speed of

OLE automated

routines

depends on the

language used

to implement

them. In

general they

are slower than

non-OLE

C/C++

routines.

v OLE routines

can only run in

FENCED NOT

THREADSAFE

mode, and

therefore OLE

automated

routines do not

scale well.

v No information

available.

v No information

available.

v No information

available.

26 Developing User-defined Routines (SQL and External)

Table 3. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

v OLE DB v OLE DB can be

used to create

user-defined

table functions.

v OLE DB

functions

connect to

external OLE

DB data

sources.

v Performance of

OLE DB

functions

depends on the

OLE DB

provider,

however in

general OLE

DB functions

perform better

than logically

equivalent Java

functions, but

slower than

logically

equivalent C,

C++, or SQL

functions.

However some

predicates from

the query

where the

function is

invoked might

be evaluated at

the OLE DB

provider,

therefore

reducing the

number of

rows that DB2

has to process

which can

frequently

result in

improved

performance.

v No information

available.

v No information

available.

v OLE DB can

only be used to

create

user-defined

table functions.

Comparison of routine implementations

Understanding the differences between the supported routine implementations can

help you determine which routine implementation to use when building your own

routines. This can save you time and effort as well as ensure that you are

maximizing the functionality and performance of routines

Built-in, sourced, SQL, and external routine implementations differ in a variety of

ways. These differences are outlined in the following table:

Chapter 1. Overview of routines 27

Table 4. Comparison of routine implementations

Characteristic Built-in Sourced SQL External

Features and uses v Strong data type

support.

v Perform very well

because their logic

is native to the

database manager

code.

v Many common

casting, string

manipulation, and

arithmetic built-in

functions are

located in the

SYSIBM schema.

v Strong data type

support.

v Used to provide

basic extensions to

the functionality of

built-in functions.

v SQL and SQL PL

provide high level

programming

language support

that makes

implementing

routine logic fast

and easy.

v Strong data type

support.

v Used to extend the

set of built-in

functions with

more complex

functions that can

execute SQL

statements.

v Developers can

program logic in

the supported

programming

language of their

choice.

v Complicated logic

can be

implemented.

v External actions,

actions with impact

outside of the

database, are

directly supported.

This can include

reading from or

writing to the

server file system,

invoking an

application or

script on the server,

and issuing SQL

statements that are

not supported in

the SQL, sourced,

or built-in

implementations.

Implementation is

built into the

database manager

code?

v Yes v No v No v No

Supported functional

routine types that can

have this

implementation

v Not applicable v Functions

– Scalar functions

– Aggregate

functions

v Procedures

v Functions

v Methods

v Procedures

v Functions

v Methods

Supported SQL

statements

v Not applicable v Not applicable v Most SQL

statements,

including all SQL

PL statements, can

be executed in

routines.

v Refer to the topic,

″SQL statements

that can be

executed in

routines″.

v Many SQL

statements,

including a sub-set

of SQL PL

statements, can be

executed in

routines.

v Refer to the topic,

″SQL statements

that can be

executed in

routines″.

28 Developing User-defined Routines (SQL and External)

Table 4. Comparison of routine implementations (continued)

Characteristic Built-in Sourced SQL External

Performance v Very fast v In general, about as

fast as built-in

functions.

v Very good

performance if the

SQL is efficiently

written, database

operations are

emphasized more

than programming

logic, and SQL

routine best

practices are

adopted. Refer to

the topic, ″SQL

routine best

practices″.

v Very good

performance if the

programming logic

is efficiently

written and

external routine

best practices are

adopted. Refer to

the topic, ″External

routine best

practices″.

Portability v Not applicable v Sourced functions

can easily be

dropped and

recreated in other

DB2 databases.

v SQL functions can

be easily dropped

and re-created in

other databases.

v External functions

can be dropped

and re-created in

other databases,

however care must

be taken to ensure

that the

environment is

compatible and

that the required

supported software

is available. Refer

to the topic,

″Deploying

external routines″.

Interoperability v Not applicable v They can be

referenced

wherever built-in

functions can be

referenced. Sourced

functions cannot

invoke other

functions.

v SQL routines can

be referenced in

many parts of SQL

statements. A SQL

routine can invoke

other SQL and

external routines

with SQL access

levels that are

equal to or less

than the SQL

access level of the

SQL routine.

v External routines

can invoke external

routines and other

SQL routines with

SQL access levels

that are equal to or

less than the SQL

access level of the

external routine.

In general the functional characteristics and applications of routines determine

what routine type should be used. However, performance and the supported

routine implementations also play an important role in determining what routine

type should be used.

Determining what routine implementation to use

The choice of using or creating a routine with a built-in, sourced, SQL, or external

routine implementation can influence what functionality the routine can provide,

the performance of the routine, and the likelihood of runtime problems that might

require debugging.

Chapter 1. Overview of routines 29

Whenever possible, if there is an existing system-defined routine that provides the

support that you require, use it. Use existing built-in routines whenever possible. If

the functionality you require is very similar to that of an existing built-in function,

consider creating a sourced function that extends it.

If you must create a routine, follow the procedure below. It is important to

determine what routine implementation to use before proceeding too far with

routine design.

To determine whether to use a sourced, SQL, or external routine implementation

when creating a routine, do the following:

1. Determine whether you want to create a procedure, function, or method. This

should always be your first step when developing a routine. Also determine

what are the support implementations for that routine type. See:

v Comparison of functional types of routines
2. Determine what SQL statements you want to include in the routine. The set of

SQL statements that you want to execute in a routine can limit your choice of

routine implementation. See:

v Determining what SQL statements can be executed in routines
3. Determine if now or in the future the routine logic must access data, files, or

applications that reside external to the database. The data, files, or applications

might reside in the file system of the database server or in the available

network.

v If the routine logic must access entities outside of the database, you must use

an external routine implementation.
4. Determine the number of queries to be included in the routine relative to the

quantity of procedural flow logic.

v If the routine logic contains primarily procedural flow logic and very few

queries, create an external routine.

v If the routine logic contains many queries and a minimal amount of

procedural flow logic, create an SQL routine.

Usage of routines

Routines can be used to solve many common problems faced by database

architects, database administrators, and application developers alike. They can help

improve the structure, maintenance, and performance of your applications. Some

examples of scenarios in which you might use routines are listed below:

v Administering databases with routines

v Extending SQL function support with user-defined functions

v Auditing data changes using routines and other SQL features

Administration of databases with system-defined routines

Administering databases through applications is possible and has become easier

with the introduction of system-defined routines for the explicit purpose of doing

administrative functions. As of Version 8.1, DB2 provides a set of system-defined

procedures and functions in the SYSPROC, SYSFUN, and SYSTOOLS schemas that

are ready-to-use for doing administrative tasks, including the execution of DB2

commands through an SQL interface, modification of configuration parameters,

package management, snapshot related tasks, and more. You might choose to use

system-defined administrative routines if you require an application to perform

administrative tasks or if you want to access the results of administrative tasks

30 Developing User-defined Routines (SQL and External)

through an SQL interface so that you filter, sort, modify, or reuse the results in

another query and if you don’t want to create your own routines to do this.

As of DB2 Universal Database Version 9.1 there is a new system-defined

administrative routine, named the ADMIN_CMD. It along with the many other

system-defined routines provide comprehensive administration support.

ADMIN_CMD for invoking DB2 commands through a SQL interface

 As of Version 9.1, there is a new system-defined administrative routine

called the ADMIN_CMD that allows you to execute DB2 commands

through an SQL interface. Essentially this routine allows you to pass in as

an argument a DB2 command with appropriate flags and values as a string

parameter. The routine executes the string containing the DB2 command

and returns the results in a tabular or scalar format that can be used as

part of a larger query or operation. This functionality makes it easier than

ever to write administrative database applications.

System-defined administrative routines

 Examples of other system-defined routines include: SNAPSHOT_TABLE,

HEALTH_DB_HI, SNAPSHOT_FILEW, REBIND_ROUTINE_PACKAGE.

These and many more system-defined routines can be used from the CLP

or in database applications wherever invocation of the specified routine is

supported.

 The ADMIN_CMD routine and the other system-defined routines are

available for use provided that you have the SYSPROC schema and

SYSFUN schema names included in your CURRENT PATH value, which

they are by default.

 For examples of how to use the system-defined routines, refer to

system-defined routine specific reference documentation.

Extension of SQL function support with user-defined

functions

If no system-defined functions encapsulate the logic that you require, you can

create your own user-defined functions. User-defined functions are a great way of

extending the basic set of SQL functions. Whether you or a group of users need a

function to implement a complex mathematical formula, specific string

manipulation, or to do some semantic transformations of values, you can easily

create a high-performance SQL function to do this that can be referenced like any

existing built-in SQL function.

For example, consider a user that requires a function that converts a value in one

monetary currency to another monetary currency. Such a function is not available

within the set of system-defined routines. This function can be created however as

a user-defined SQL scalar function. Once created this function can be referenced

wherever scalar functions are supported within an SQL statement.

Another user might require a more complex function that sends an email

whenever a change is made to a particular column in a table. Such a function is

not available within the set of system-defined routines. This function can be

created however as a user-defined external procedure with a C programming

language implementation. Once created, this procedure can be referenced wherever

procedures are supported, including from within triggers.

Chapter 1. Overview of routines 31

These examples demonstrate how easily you can extend the SQL language by

creating user-defined routines.

Auditing using SQL table functions

Database administrators interested in monitoring table data accesses and table data

modifications made by database users can audit transactions on a table by creating

and using SQL table functions that modify SQL data.

Any table function that encapsulates SQL statements that perform a business task,

such as updating an employee’s personal information, can additionally include

SQL statements that record, in a separate table, details about the table accesses or

modifications made by the user that invoked the function. An SQL table function

can even be written so that it returns a result set of table rows that were accessed

or modified in the body of the table function. The returned result set of rows can

be inserted into and stored in a separate table as a history of the changes made to

the table.

For the list of privileges required to create and register an SQL table function, see

the following statements:

v CREATE FUNCTION (SQL Scalar, Table, or Row) statement

The definer of the SQL table function must also have authority to run the SQL

statements encapsulated in the SQL table function body. Refer to the list of

privileges required for each encapsulated SQL statement. To grant INSERT,

UPDATE, DELETE privileges on a table to a user, see the following statement:

v GRANT (Table, View, or Nickname Privileges) statement

The tables accessed by the SQL table function must exist prior to invocation of the

SQL table function.

Example 1: Auditing accesses of table data using an SQL table function

 This function accesses the salary data of all employees in a department

specified by input argument deptno. It also records in an audit table,

named audit_table, the user ID that invoked the function, the name of the

table that was read from, a description of what information was accessed,

and the current time. Note that the table function is created with the

keywords MODIFIES SQL DATA because it contains an INSERT statement

that modifies SQL data.

 CREATE FUNCTION sal_by_dept (deptno CHAR(3))

 RETURNS TABLE (lastname VARCHAR(10),

 firstname VARCHAR(10),

 salary INTEGER)

 LANGUAGE SQL

 MODIFIES SQL DATA

 NO EXTERNAL ACTION

 NOT DETERMINISTIC

 BEGIN ATOMIC

 INSERT INTO audit_table(user, table, action, time)

 VALUES (USER,

 ’EMPLOYEE’,

 ’Read employee salaries in department: ’ || deptno,

 CURRENT_TIMESTAMP);

 RETURN

 SELECT lastname, firstname, salary

 FROM employee as E

 WHERE E.dept = deptno;

 END

32 Developing User-defined Routines (SQL and External)

Example 2: Auditing updates to table data using an SQL table function

 This function updates the salary of an employee specified by updEmpNum, by

the amount specified by amount, and also records in an audit table named

audit_table, the user that invoked the routine, the name of the table that

was modified, and the type of modification made by the user. A SELECT

statement that references a data change statement (here an UPDATE

statement) in the FROM clause is used to return the updated row values.

Note that the table function is created with the keywords MODIFIES SQL

DATA because it contains both an INSERT statement and a SELECT

statement that references the data change statement, UPDATE.

 CREATE FUNCTION update_salary(updEmpNum CHAR(4), amount INTEGER)

 RETURNS TABLE (emp_lastname VARCHAR(10),

 emp_firstname VARCHAR(10),

 newSalary INTEGER)

 LANGUAGE SQL

 MODIFIES SQL DATA

 NO EXTERNAL ACTION

 NOT DETERMINISTIC

 BEGIN ATOMIC

 INSERT INTO audit_table(user, table, action, time)

 VALUES (USER,

 ’EMPLOYEE’,

 ’Update emp salary. Values: ’

 || updEmpNum || ’ ’ || char(amount),

 CURRENT_TIMESTAMP);

 RETURN

 SELECT lastname, firstname, salary

 FROM FINAL TABLE(UPDATE employee

 SET salary = salary + amount

 WHERE employee.empnum = updEmpNum);

 END

Example 3: Invoking an SQL table function used for auditing transactions

 The following shows how a user might invoke the routine to update an

employee’s salary by 500 yen:

SELECT emp_lastname, emp_firstname, newsalary

 FROM TABLE(update_salary(CHAR(’1136’), 500)) AS T

A result set is returned with the last name, first name, and new salary for

the employee. The invoker of the function will not know that the audit

record was made.

EMP_LASTNAME EMP_FIRSTNAME NEWSALARY

------------ ------------- -----------

JONES GWYNETH 90500

The audit table would include a new record such as the following:

USER TABLE ACTION TIME

-------- ---------- ----------------------------------- --------------------------

MBROOKS EMPLOYEE Update emp salary. Values: 1136 500 2003-07-24-21.01.38.459255

Example 4: Retrieving rows modified within the body of an SQL table function

 This function updates the salary of an employee, specified by an employee

number EMPNUM, by an amount specified by amount, and returns the

original values of the modified row or rows to the caller. This example

makes use of a SELECT statement that references a data change statement

in the FROM clause. Specifying OLD TABLE within the FROM clause of

this statement flags the return of the original row data from the table

employee that was the target of the UPDATE statement. Using FINAL

Chapter 1. Overview of routines 33

TABLE, instead of OLD TABLE, would flag the return of the row values

subsequent to the update of table employee.

CREATE FUNCTION update_salary (updEmpNum CHAR(4), amount DOUBLE)

 RETURNS TABLE (empnum CHAR(4),

 emp_lastname VARCHAR(10),

 emp_firstname VARCHAR(10),

 dept CHAR(4),

 newsalary integer)

 LANGUAGE SQL

 MODIFIES SQL DATA

 NO EXTERNAL ACTION

 DETERMINISTIC

 BEGIN ATOMIC

 RETURN

 SELECT empnum, lastname, firstname, dept, salary

 FROM OLD TABLE(UPDATE employee

 SET salary = salary + amount

 WHERE employee.empnum = updEmpNum);

 END

Tools for developing routines

There are various development environments and tools available for developing

procedures and functions. Some of these tools are provided with DB2 Universal

Database for Linux®, UNIX®, and Windows® whereas others are integrated

components within popular integrated development environments. There are

graphical and non-graphical interfaces and tools that can be used to develop

procedures and functions.

The following graphical user-interface (GUI) tool, provided with DB2, is available

for developing routines in DB2 database servers:

v data server developer tool

The following command line interface, provided with DB2, is available for

developing routines in DB2 database servers:

v DB2 Command Line Processor (DB2 CLP)

Several IBM® software products provide graphical tools for developing routines in

DB2 database servers including, but not limited to:

v IBM Distributed Unified Debugger

v IBM Rational® Application Developer

v IBM Rational Web Developer

v IBM WebSphere® Studio

Several open source software products provide graphical tools for developing

routines in DB2 database servers including, but not limited to:

v DB2 Web Tools for the Eclipse Framework

Some DB2 features can be used to add graphical tool support for developing

routines from within software provided by other vendors, including:

v IBM DB2 Development Add-In for Microsoft Visual Studio .NET 1.2

There are no tools available for developing methods.

34 Developing User-defined Routines (SQL and External)

Data server developer tool routine development support

The data server developer tool provides an easy-to-use development environment

for creating, building, debugging, testing, and deploying stored procedures. The

data server developer tool provides graphical tools which simplify the process of

creating routines by allowing you to focus on the stored procedure logic rather

than the details of generating the basic CREATE statement, building, and installing

stored procedures on a DB2 server. Additionally, with the developer tool, you can

develop stored procedures on one operating system and build them on other

server operating systems.

The developer tool is a graphical application that supports rapid development.

Using the developer tool, you can perform the following tasks:

v Create new stored procedures.

v Build stored procedures on local and remote DB2 servers.

v Modify and rebuild existing stored procedures.

v Test and debug the execution of installed stored procedures.

The data server developer tool is installed from a separate CD that is included

with DB2 Universal Database. After you install data server developer tool, you can

launch it from the following locations:

v On Windows: Start > All Programs > data server developer tool > data server

developer tool 9.5 > Developer Tool

v On Linux: Programming > data server developer tool > Developer Tool,

depending on your desktop environment.

You can also launch data server developer tool from the Control Center for DB2

for OS/390®. You can start data server developer tool as a separate process from

the Control Center Tools menu, toolbar, or Stored Procedures folder. In addition,

from the data server developer tool Project window, you can export one or more

selected SQL stored procedures built to a DB2 for OS/390 server to a specified file

capable of running within the command line processor (CLP).

The data server developer tool allows you to manage your work in projects. Each

data server developer tool project saves your connections to specific databases,

such as DB2 for OS/390 servers. In addition, you can create filters to display

subsets of the stored procedures on each database. When opening a new or

existing data server developer tool project, you can filter stored procedures so that

you view them based on their name, schema, language, or collection ID (for

OS/390 only).

SQL statements that can be executed in routines

Successful execution of SQL statements in routines is subject to restrictions and

conditional on certain prerequisites being met, however, it is possible to execute

many SQL statements in routines.

The following table lists all supported SQL statements, including SQL PL

control-statements, and identifies if you can execute each SQL statement within the

various types of routines. For each SQL statement listed in the first column, in each

of the subsequent columns identifying the supported routine types and

implementations, an X indicates if the statement is executable within the routine. A

separate column identifies the minimum required SQL access level that must be

Chapter 1. Overview of routines 35

specified for the statement execution to be allowed. Unless otherwise noted in a

footnote, all of the SQL statements can be executed both statically and dynamically.

 Table 5. SQL statements that can be executed in routines

SQL statement

Executable in

SQL procedures

Executable in

SQL functions

Executable in

external

procedures

Executable in

external

functions

Minimum

required SQL

data access level

ALLOCATE

CURSOR

X X X MODIFIES SQL

DATA

ALTER

{BUFFERPOOL,

DATABASE

PARTITION

GROUP,

FUNCTION,

METHOD,

NICKNAME,

PROCEDURE,

SEQUENCE,

SERVER, TABLE,

TABLESPACE,

TYPE, USER

MAPPING,

VIEW}

X X MODIFIES SQL

DATA

ASSOCIATE

LOCATORS

X

BEGIN

DECLARE

SECTION

X X NO SQL(1)

CALL X X X X READS SQL

DATA

CASE X CONTAINS SQL

CLOSE X X X READS SQL

DATA

COMMENT ON X X X MODIFIES SQL

DATA

COMMIT X(4) X(4) MODIFIES SQL

DATA

Compound SQL X X X X CONTAINS SQL

CONNECT(2)

36 Developing User-defined Routines (SQL and External)

Table 5. SQL statements that can be executed in routines (continued)

SQL statement

Executable in

SQL procedures

Executable in

SQL functions

Executable in

external

procedures

Executable in

external

functions

Minimum

required SQL

data access level

CREATE {ALIAS,

BUFFERPOOL,

DATABASE

PARTITION

GROUP,

DISTINCT TYPE,

EVENT

MONITOR,

FUNCTION,

FUNCTION

MAPPING,

INDEX, INDEX

EXTENSION,

METHOD,

NICKNAME,

PROCEDURE,

SCHEMA,

SEQUENCE,

SERVER, TABLE,

TABLESPACE,

TRANSFORM,

TRIGGER, TYPE,

TYPE MAPPING,

USER MAPPING,

VIEW, WRAPPER

}

X (6) X MODIFIES SQL

DATA

DECLARE

CURSOR

X X NO SQL(1)

DECLARE

GLOBAL

TEMPORARY

TABLE

X X X MODIFIES SQL

DATA

DELETE X X X X MODIFIES SQL

DATA

DESCRIBE(7) X X READS SQL

DATA

DISCONNECT(2)

DROP X(6) X X MODIFIES SQL

DATA

END DECLARE

SECTION

X X NO SQL(1)

EXECUTE X X X CONTAINS

SQL(3)

EXECUTE

IMMEDIATE

X x X CONTAINS

SQL(3)

EXPLAIN X X X MODIFIES SQL

DATA

FETCH X X X READS SQL

DATA

Chapter 1. Overview of routines 37

Table 5. SQL statements that can be executed in routines (continued)

SQL statement

Executable in

SQL procedures

Executable in

SQL functions

Executable in

external

procedures

Executable in

external

functions

Minimum

required SQL

data access level

FLUSH EVENT

MONITOR

X X MODIFIES SQL

DATA

FLUSH

PACKAGE

CACHE

X X MODIFIES SQL

DATA

FOR X X READS SQL

DATA

FREE LOCATOR X X X CONTAINS SQL

GET

DIAGNOSTICS

X X READS SQL

DATA

GOTO X CONTAINS SQL

GRANT X X X MODIFIES SQL

DATA

IF X X CONTAINS SQL

INCLUDE X X NO SQL

INSERT X X X X MODIFIES SQL

DATA

ITERATE X X CONTAINS SQL

LEAVE X X CONTAINS SQL

LOCK TABLE X X X CONTAINS SQL

LOOP X CONTAINS SQL

MERGE X X X X MODIFIES SQL

DATA

OPEN X X X READS SQL

DATA(5)

PREPARE X X X CONTAINS SQL

REFRESH TABLE X X MODIFIES SQL

DATA

RELEASE

RELEASE

SAVEPOINT

X X X MODIFIES SQL

DATA

RENAME TABLE X X MODIFIES SQL

DATA

RENAME

TABLESPACE

X X MODIFIES SQL

DATA

REPEAT X CONTAINS SQL

RESIGNAL X MODIFIES SQL

DATA

RETURN X CONTAINS SQL

REVOKE X X MODIFIES SQL

DATA

ROLLBACK(4) X X

38 Developing User-defined Routines (SQL and External)

Table 5. SQL statements that can be executed in routines (continued)

SQL statement

Executable in

SQL procedures

Executable in

SQL functions

Executable in

external

procedures

Executable in

external

functions

Minimum

required SQL

data access level

ROLLBACK TO

SAVEPOINT

X X X MODIFIES SQL

DATA

SAVEPOINT X MODIFIES SQL

DATA

select-statement X X X READS SQL

DATA

SELECT INTO X X X READS SQL

DATA(5)

SET

CONNECTION(2)

SET INTEGRITY X MODIFIES SQL

DATA

SET special

register

X X X X CONTAINS SQL

SET variable X X CONTAINS SQL

SIGNAL X X MODIFIES SQL

DATA

UPDATE X X X MODIFIES SQL

DATA

VALUES INTO X X X READS SQL

DATA

WHENEVER X X NO SQL(1)

WHILE X X

Note:

1. Although the NO SQL option implies that no SQL statements can be specified,

non-executable statements are not restricted.

2. Connection management statements are not allowed in any routine execution

context.

3. It depends on the statement being executed. The statement specified for the

EXECUTE statement must be a statement that is allowed in the context of the

particular SQL access level in effect. For example, if the SQL access level

READS SQL DATA is in effect, the statement cannot be INSERT, UPDATE, or

DELETE.

4. The COMMIT statement and the ROLLBACK statement without the TO

SAVEPOINT clause can be used in a stored procedure, but only if the stored

procedure is called directly from an application, or indirectly through nested

stored procedure calls from an application. (If any trigger, function, method, or

atomic compound statement is in the call chain to the stored procedure,

COMMIT or ROLLBACK of a unit of work is not allowed.)

5. If the SQL access level READS SQL DATA is in effect, no SQL data change

statement can be embedded in the SELECT INTO statement or in the cursor

referenced by the OPEN statement.

6. SQL procedures can only issue CREATE and DROP statements for indexes,

tables, and views.

Chapter 1. Overview of routines 39

7. The DESCRIBE SQL statement has a different syntax than that of the CLP

DESCRIBE command.

SQL access levels in routines

The degree to which routines can execute SQL statements is determined by the

SQL access level of the routine. The SQL access level for a routine is determined by

both what is permitted for the particular type of routine and what limitation is

specified explicitly within the CREATE statement that defines a routine.

The SQL access levels follow:

v NO SQL

v CONTAINS SQL

v READS SQL

v MODIFIES SQL

This SQL access level clause is used to provide information to the database

manager about the statement so that the statement can be executed safely by the

database manager and with the best possible performance.

The default and maximal SQL access levels for different types of routines are

shown below:

 Table 6. Default and maximum SQL access levels for routines

Routine type Default SQL access level Maximum allowed SQL access level

SQL procedures MODIFIES SQL DATA MODIFIES SQL DATA

SQL functions (scalar functions) READS SQL DATA MODIFIES SQL DATA

SQL functions (table functions) READS SQL DATA MODIFIES SQL DATA

External procedures MODIFIES SQL DATA MODIFIES SQL DATA

External functions (scalar functions) READS SQL DATA READS SQL DATA

External functions (table functions) READS SQL DATA READS SQL DATA

Optimal performance of routines is achieved when the most restrictive SQL access

clause that is valid is specified in the routine CREATE statement.

In the CREATE statement for a routine:

v If you explicitly specify READS SQL DATA, no SQL statement in the routine can

modify data.

v If you explicitly specify CONTAINS SQL DATA, no SQL statement in the routine

can modify or read data.

v If you explicitly specify NO SQL, there must be no executable SQL statements in

the routine.

Determining what SQL statements can be executed in routines

Many, but not all SQL statements can be executed in routines. Execution of a

particular SQL statement within a routine is dependent on the type of routine, the

implementation of the routine, the maximum SQL access level specified for the

routine, and the privileges of the routine definer and invoker.

40 Developing User-defined Routines (SQL and External)

Determining what SQL statements can be executed within a routine before you

implement your routine can ensure that you make the right choice of routine type

and implementation from the start.

To successfully execute a SQL statement in a routine, the following prerequisites

must be met:

v The SQL access level of the routine must permit the execution of the particular

SQL statement.

– The SQL access level of a routine is specified in the CREATE statement for the

routine.

– Some SQL access levels are not supported for certain types of routines. Refer

to the restrictions below.
v The routine definer must have the necessary privileges to execute the SQL

statement.

– The privileges required to execute every supported SQL statement are

provided in the SQL Reference.
v No other separate restriction restricts the execution of the statement.

– Refer to the SQL Reference for a list of restrictions specific to the given SQL

statement.

The following restrictions limit the set of SQL statements that can be executed

within routines. In particular these restrictions limit what SQL access levels can be

specified for particular types of routines:

v External functions cannot be specified with the MODIFIES SQL DATA access

level.

v External procedures that will be called from a trigger cannot be specified with a

MODIFIES SQL DATA access level.

To determine what SQL statements can be invoked in a particular routine, do the

following:

1. Determine the SQL access level of the routine. If it is an existing routine,

examine the CREATE statement that was used to create the routine. The SQL

access level clause might be explicitly defined in the DDL as one of: NO SQL,

CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA. If no such

clause is explicitly specified, then the default value for the routine is implied.

v For SQL procedures the default is MODIFIES SQL DATA.

v For SQL functions the default is MODIFIES SQL DATA.

v For external procedures the default is MODIFIES SQL DATA.

v For external functions the default is READS SQL DATA.
2. Refer to the table in the topic, ″SQL statements that can be executed in

routines″. Look up the SQL statement of interest by name.

3. Check if the SQL statement is supported for the specific type of routine and

implementation.

4. Verify that the required SQL access level to execute the statement matches the

SQL access level of the routine.

5. Carefully read any usage notes or footnotes to ensure that there are no other

restrictions on the SQL statement execution.

Chapter 1. Overview of routines 41

If the SQL statement is indicated as being executable within a routine, the routine

SQL access level meets the prerequisites for executing the statement within the

routine, and all other prerequisites have been met, the SQL statement should be

successfully executable from the routine.

Portability of routines

Routine portability refers to the ease with which a routine can be deployed.

Portability comprises such factors as operating system compatibility, run-time

environment compatibility, software compatibility, invocation interface

compatibility as well as other routine implementation factors such as compatibility

of support for the SQL statements executed within a routine.

Routine portability is essential if the environment to which you will deploy a

routine is not identical to the environment in which the routine was developed. In

general DB2 routines are highly portable between operating systems and even

between the various DB2 Universal Database products and editions. It is a good

idea to consider the potential portability problems before you begin developing

routines so that you minimize the likelihood of rework later.

The following topics include information related to factors that can limit the

portability of routines:

v Supported DB2 Universal Database for Linux, UNIX, and Windows editions

v Supported development and compiler software

v SQL statements that can be executed in routines

v Restrictions on routines

v Deploying routines

Interoperability of routines

The interoperability of routines of different types and with different programming

implementations ensures that routines can be highly re-useable modules

throughout the life-span of a database system. Because code modules are often

implemented by different programmers with programming expertise in different

programming languages, and because it is generally desirable to reuse code

wherever possible to save on development time and costs, DB2 routine

infrastructure is designed to support a high degree of routine interoperability.

Interoperability of routines is characterized by the ability to reference and invoke

routines of different types and implementations from other routines seamlessly and

without any additional requirements. DB2 routines are interoperable in the

following ways:

v A client application in one programming language can invoke routines that are

implemented in a different programming language.

– For example, C client applications can invoke .NET common language

runtime routines.
v A routine can invoke another routine regardless of the routine type or the

implementation language of the routine.

– For example a Java procedure (one type of routine) can invoke an SQL scalar

function (another type of routine with a different implementation language).
v A routine created in a database server on one operating system can be invoked

from a DB2 client running on a different operating system.

42 Developing User-defined Routines (SQL and External)

There are various kinds of routines that address particular functional needs and

various routine implementations. The choice of routine type and implementation

can impact the degree to which the above benefits are exhibited. In general,

routines are a powerful way of encapsulating logic so that you can extend your

SQL and improve the structure, maintenance, and potentially the performance of

your applications.

Performance of routines

The performance of routines is impacted by a variety of factors including the type

and implementation of the routine, the number of SQL statements within the

routine, the degree of complexity of the SQL in the routine, the number of

parameters to the routine, the efficiency of the logic within the routine

implementation, the error handling within the routines and more. Because users

often choose to implement routines to improve the performance of applications, it

is important to get the most out of routine performance.

The following table outlines some of the general factors that impact routine

performance and gives recommendations on how to improve routine performance

by altering each factor. For further details on performance factors that impact

specific routine types, refer to the performance and tuning topics for the specific

routine type.

 Table 7. Performance considerations and routine performance recommendations

Performance consideration Performance recommendation

Routine type: procedure, function, method v Procedures, functions, and methods serve different

purposes and are referenced in different places. Their

functional differences make it difficult to compare their

performance directly.

v In general procedures can sometimes be rewritten as

functions (particularly if they return a scalar value and

only query data) and enjoy slight performance

improvements, however these benefits are generally a

result of simplifying the SQL required to implement

the SQL logic.

v User-defined functions with complex initializations can

make use of scratchpads to store any values required

in the first invocation so that they can be used in

subsequent invocations.

Routine implementation: system-defined or user-defined v For equivalent logic, built-in routines perform the best,

followed by system-defined routines, because they

enjoy a closer relationship with the database engine

than do user-defined routines.

v User-defined routines can perform very well if they

are well coded and follow best practices.

Chapter 1. Overview of routines 43

Table 7. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Routine implementation: SQL or external routine

implementation

v SQL routines are more efficient than external routines

because they are executed directly by the DB2

database server.

v SQL procedures generally perform better than logically

equivalent external procedures.

v For simple logic, SQL function performance will be

comparable to that of an equivalent external function.

v For complex logic, such as math algorithms and string

manipulation functions that require little SQL, it is

better to use an external routine in a low level

programming language such as C since there is less

dependence on SQL support.

v See Comparison of routine implementations for a

comparison of the features, including performance, of

the supported external routine programming language

options.

External routine implementation programming language v See: Comparison of external routine APIs and

programming languages for a comparison of the

performance features that you should consider when

selecting an external routine implementation.

v Java (JDBC and SQLJ APIs)

– Java routines with very large memory requirements

are best created with the FENCED NOT

THREADSAFE clause specified. Java routines with

average memory requirements can be specified with

the FENCED THREADSAFE clause.

– For fenced threadsafe Java routine invocations, DB2

attempts to choose a threaded Java fenced mode

process with a Java heap that is large enough to run

the routine. Failure to isolate large heap consumers

in their own process can result in out-of-Java-heap

errors in multi-threaded Java db2fmp processes.

FENCED THREADSAFE routines, in contrast,

perform better because they can share a small

number of JVMs.

v C and C++

– In general C and C++ routines perform better than

other external routine implementations and as well

as SQL routines.

– To perform their best C and C++ routines should be

compiled in 32-bit format if they will be deployed

to a 32-bit DB2 instance and in 64-bit format if they

will be deployed to a 64-bit DB2 instance.

v COBOL

– In general COBOL performance is good, but

COBOL is not a recommended routine

implementation.

44 Developing User-defined Routines (SQL and External)

Table 7. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Number of SQL statements within the routine v Routines should contain more than one SQL statement,

otherwise the overhead of routine invocation is not

performance cost effective.

v Logic that must make several database queries, process

intermediate results, and ultimately return a subset of

the data that was worked with is the best logic for

routine encapsulation. Complex data mining, and large

updates requiring lookups of related data are

examples of this type of logic. Heavy SQL processing

is done on the database server and only the smaller

data result set is passed back to the caller.

Complexity of SQL statements within the routine v It makes good sense to include very complex queries

within your routines so that you capitalize on the

greater memory and performance capabilities of the

database server.

v Do not worry about the SQL statements being overly

complex.

Static or dynamic SQL execution within routines v In general static SQL performs better than dynamic

SQL. In routines there are no additional differences

when you use static or dynamic SQL.

Number of parameters to routines v Minimizing the number of parameters to routines can

improve routine performance as this minimizes the

number of buffers to be passed between the routine

and routine invoker.

Data types of routine parameters v

You can improve the performance of routines by using

VARCHAR parameters instead of CHAR parameters in

the routine definition. Using VARCHAR data types

instead of CHAR data types prevents DB2 from

padding parameters with spaces before passing the

parameter and decreases the amount of time required

to transmit the parameter across a network.

For example, if your client application passes the

string ″A SHORT STRING″ to a routine that expects a

CHAR(200) parameter, DB2 has to pad the parameter

with 186 spaces, null-terminate the string, then send

the entire 200 character string and null-terminator

across the network to the routine.

In comparison, passing the same string, ″A SHORT

STRING″, to a routine that expects a VARCHAR(200)

parameter results in DB2 simply passing the 14

character string and a null terminator across the

network.

Initialization of parameters to routines v It is a good idea to always initialize input parameters

to routines, particularly if the input routine parameter

values are null. For null value routine parameters, a

shorter or empty buffer can be passed to the routine

instead of a full sized buffer, which can improve

performance.

Chapter 1. Overview of routines 45

Table 7. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Number of local variables in routines v Minimizing the number of local variables declared

within a routine can improve performance by

minimizing the number of SQL statements executed

within the routine.

v In general aim to use as few variables as possible.

Re-use variables if this will not be semantically

confusing.

Initialization of local variables in routines v If possible, it is a good practice to initialize multiple

local variables within a single SQL statement as this

saves on the total SQL execution time for the routine.

Number of result sets returned by procedures v If you can reduce the number of result sets returned

by a routine you can improve routine performance.

Size of result sets returned by routines v Make sure that for each result set returned by a

routine, the query defining the result filters the

columns returned and the number of rows returned as

much as possible. Returning unnecessary columns or

rows of data is not efficient and can result in

sub-optimal routine performance.

Efficiency of logic within routines v As with any application, the performance of a routine

can be limited by a poorly implemented algorithm.

Aim to be as efficient as possible when programming

routines and apply generally recommended coding

best practices as much as possible.

v Analyze your SQL and wherever possible reduce your

query to its simplest form. This can often be done by

using CASE expressions instead of CASE statements or

by collapsing multiple SQL statements into a single

statement that uses a CASE expression as a switch.

46 Developing User-defined Routines (SQL and External)

Table 7. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Run-time mode of routine (FENCED or NOT FENCED

clause specification)

NOT FENCED clause usage:

v In general, creating your routine with the NOT

FENCED clause, which makes it runs in the same

process as the DB2 database manager, is preferable

over creating it with the FENCED clause, which makes

it run in a special DB2 process outside of the engine’s

address space.

v While you can expect improved routine performance

when running routines as not fenced, user code in

unfenced routines can accidentally or maliciously

corrupt the database or damage the database control

structures. You should only use the NOT FENCED

clause when you need to maximize performance

benefits, and if you deem the routine to be secure. (For

information on assessing and mitigating the risks of

registering C/C++ routines as NOT FENCED, refer to

Security of routines. If the routine is not safe enough

to run in the database manager’s process, use the

FENCED clause when creating the routine. To limit the

creation and running of potentially unsafe code, DB2

requires that a user have a special privilege,

CREATE_NOT_FENCED_ROUTINE in order to create

NOT FENCED routines.

v If an abnormal termination occurs while you are

running a NOT FENCED routine, the database

manager will attempt an appropriate recovery if the

routine is registered as NO SQL. However, for routines

not defined as NO SQL, the database manager will

fail.

v NOT FENCED routines must be precompiled with the

WCHARTYPE NOCONVERT option if the routine

uses GRAPHIC or DBCLOB data.

Chapter 1. Overview of routines 47

Table 7. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Run-time mode of routine (FENCED or NOT FENCED

clause specification)

FENCED THREADSAFE clause usage

v Routines created with the FENCED THREADSAFE

clause run in the same process as other routines. More

specifically, non-Java routines share one process, while

Java(TM) routines share another process, separate from

routines written in other languages. This separation

protects Java routines from the potentially more error

prone routines written in other languages. Also, the

process for Java routines contains a JVM, which incurs

a high memory cost and is not used by other routine

types. Multiple invocations of FENCED THREADSAFE

routines share resources, and therefore incur less

system overhead than FENCED NOT THREADSAFE

routines, which each run in their own dedicated

process.

v If you feel your routine is safe enough to run in the

same process as other routines, use the THREADSAFE

clause when registering it. As with NOT FENCED

routines, information on assessing and mitigating the

risks of registering C/C++ routines as FENCED

THREADSAFE is in the topic, ″Security considerations

for routines″.

v If a FENCED THREADSAFE routine abnormally ends,

only the thread running this routine is terminated.

Other routines in the process continue running.

However, the failure that caused this thread to

abnormally end can adversely affect other routine

threads in the process, causing them to trap, hang, or

have damaged data. After one thread abends, the

process is no longer used for new routine invocations.

Once all the active users complete their jobs in this

process, it is terminated.

v When you register Java routines, they are deemed

THREADSAFE unless you indicate otherwise. All

other LANGUAGE types are NOT THREADSAFE by

default. Routines using LANGUAGE OLE and OLE

DB cannot be specified as THREADSAFE.

v NOT FENCED routines must be THREADSAFE. It is

not possible to register a routine as NOT FENCED

NOT THREADSAFE (SQLCODE -104).

v Users on UNIX(R) can see their Java and C

THREADSAFE processes by looking for db2fmp (Java)

or db2fmp (C).

48 Developing User-defined Routines (SQL and External)

Table 7. Performance considerations and routine performance recommendations (continued)

Performance consideration Performance recommendation

Run-time mode of routine (FENCED or NOT FENCED

clause specification)

FENCED NOT THREADSAFE mode

v FENCED NOT THREADSAFE routines each run in

their own dedicated process. If you are running

numerous routines, this can have a detrimental effect

on database system performance. If the routine is not

safe enough to run in the same process as other

routines, use the NOT THREADSAFE clause when

registering the routine.

v On UNIX, NOT THREADSAFE processes appear as

db2fmp (pid) (where pid is the process id of the agent

using the fenced mode process) or as db2fmp (idle) for

a pooled NOT THREADSAFE db2fmp.

Level of SQL access in routine: NO SQL, CONTAINS

SQL, READS SQL DATA, MODIFIES SQL DATA

v Routines that are created with a lower level of SQL

access clause will perform better than routines created

with a higher level of SQL access clause. Therefore you

should declare your routines with the most restrictive

level of SQL access clause. For example, if your

routine only reads SQL data, do not create it with the

MODIFIES SQL DATA clause, but rather create it with

the more restrictive READS SQL DATA clause.

Determinism of routine (DETERMINISTIC or NOT

DETERMINISTIC clause specification)

v Declaring a routine with the DETERMINISTIC or NOT

DETERMINISTIC clause has no impact on routine

performance.

Number and complexity of external actions made by

routine (EXTERNAL ACTION clause specification)

v Depending on the number of external actions and the

complexity of external actions performed by an

external routine, routine performance can be hindered.

Factors that contribute to this are network traffic,

access to files for writing or reading, the time required

to execute the external action, and the risk associated

with hangs in external action code or behaviors.

Routine invocation when input parameters are null

(CALLED ON NULL INPUT clause specification)

v If receiving null input parameter values results in no

logic being executed and an immediate return by the

routine, you can modify your routine so that it is not

fully invoked when null input parameter values are

detected. To create a routine that ends invocation early

if routine input parameters are received, create the

routine and specify the CALLED ON NULL INPUT

clause.

Procedure parameters of type XML v The passing of parameters of data type XML is

significantly less efficient in external procedures

implemented in either the C or JAVA programming

language than in SQL procedures. When passing one

or more parameters of data type XML, consider using

SQL procedures instead of external procedures.

v XML data is materialized when passed to stored

procedures as IN, OUT, or INOUT parameters. If you

are using Java stored procedures, the heap size

(JAVA_HEAP_SZ configuration parameter) might need

to be increased based on the quantity and size of XML

arguments, and the number of external stored

procedures that are being executed concurrently.

Chapter 1. Overview of routines 49

Once routines are created and deployed, it might be harder to determine what

environmental and routine specific factors are impacting routine performance, and

hence it is important to design routines with performance in mind.

Security of routines

The security of routines is paramount to ensure their continued functioning, to

minimize the risk of tampering, and to protect the database system environment.

There are a few categories of routine security considerations each with varying

levels of risk. One must be aware of these risks when developing or maintaining

routines so as to mitigate unfortunate outcomes as much as possible.

Security control of who can create routines

The security of routines begins when users are given the necessary privileges to

execute the CREATE statement required to create routines in the database. When

granting these privileges, it is important to understand the corresponding risks:

v Users with the privilege to execute the CREATE statement for a routine can

create multiple routines.

v Users with the privilege to execute the CREATE statement for a routine can

create routines that can modify the database layout or database data subject to

the other privileges that user has.

v Users that successfully create routines are automatically granted the EXECUTE

privilege required to invoke the routine.

v Users that successfully create routines are automatically granted the ALTER

ROUTINE privilege required to modify the routine.

To minimize the risk of users modifying the database and data:

v Minimize the number of users that have the privilege to create routines.

v Ensure that the user IDs of departed employees are removed, or if they are

re-used, be sure to assess the procedure related privileges.

Refer to the topics on controlling access to database objects and data for more on

how to grant and revoke privileges from one, many, or all database users.

Security control of who can invoke routines

It is easy to determine when users require privileges: they are unable to do

something. It is harder to determine when users no longer require these privileges.

This is particularly true when it comes to users with privileges to invoke routines,

as allowing them to retain their privileges can introduce risks:

v Users that have been granted the EXECUTE privilege to invoke a routine will

continue to be able to invoke the routine until this privilege is removed. If the

routine contains sensitive logic or acts on sensitive data this can be a business

risk.

To minimize the risk of users modifying the database and data:

v Minimize the number of users that have the privilege to invoke routines.

v Ensure that the user IDs of departed employees are removed, or if they are

re-used, be sure to assess the procedure related privileges.

v If you suspect that someone is maliciously invoking routines, you should revoke

the EXECUTE privilege for each of those routines.

50 Developing User-defined Routines (SQL and External)

Security control of routines defined with FENCED or NOT

FENCED clauses

When formulating the CREATE statement for a routine, you must determine

whether you want to specify the FENCED clause or NOT FENCED clause. Once

you understand the benefits of creating a routine as fenced or unfenced it is

important to assess the risks associated with running routines with external

implementations as NOT FENCED.

v Routines created with the NOT FENCED clause can accidentally or maliciously

corrupt the database manager’s shared memory, damage the database control

structures, or access database manager resources which can cause the database

manager to fail. There is also the risk that they will corrupt databases and their

tables.

To ensure the integrity of the database manager and its databases:

v Thoroughly screen routines you intend to create that specify the NOT FENCED

clause. These routines must be fully tested, debugged, and not exhibit any

unexpected side-effects. In the examination of the routine code, pay close

attention to memory management and the use of static variables. The greatest

potential for corruption arises when code does not properly manage memory or

incorrectly uses static variables. These problems are prevalent in languages other

than Java(TM) and .NET programming languages.

In order to register a NOT FENCED routine, the

CREATE_NOT_FENCED_ROUTINE authority is required. When granting the

CREATE_NOT_FENCED_ROUTINE authority, be aware that the recipient can

potentially gain unrestricted access to the database manager and all its resources.

Note: NOT FENCED routines are not supported in Common Criteria compliant

configurations.

Securing routines

When creating routines it is important to ensure that the routines, routine libraries

(in the case of external routines), and the privileges of the users that will interact

with the routines are managed with routine security in mind.

Although it might not be necessary to have anything as elaborate as a routine

security strategy, it helps to be mindful of the factors contributing to the security of

routines and to follow a disciplined approach when securing routines.

Prerequisites

v Read the topic, ″Security of routines″.

v To fully secure routines within the database system you must have:

– Root user access on the database server operating system.

– One of the DBADM or SYSADM authorities.

Whether you are creating a routine, or assessing an existing routine, the procedure

for securing a routine is similar.

1. Limit the number of user IDs with the privileges required to create routines

and ensure that these users are allowed to have these privileges.

v Upon successful execution of the CREATE statement for a routine, this user

ID will automatically be granted other privileges including the EXECUTE

Chapter 1. Overview of routines 51

privilege, which allows the user to invoke the routine, and the GRANT

EXECUTE privilege, which allows the user to grant the ability to invoke the

routine to other users.

v Ensure that the users with this privilege are few and that the right users get

this privilege.
2. Assess the routine for potentially malicious or inadequately reviewed or tested

code.

v Consider the origin of the routine. Is the party that supplied the routine

reliable?

v Look for malicious code such as code that attempts to read or write to the

database server file system and or replace files there.

v Look for poorly implemented code related to memory management, pointer

manipulation, and the use of static variables that might cause the routine to

fail.

v Verify that the code has been adequately tested.
3. Reject routines that appear to be excessively unsafe or poorly coded - the risk is

not always worth it.

4. Contain the risks associated with only somewhat potentially risky routines.

v SQL user-defined SQL routines are by default created as NOT FENCED

THREADSAFE routines, because they are safe to run within the database

manager memory space. For these routines you do not need to do anything.

v Specify the FENCED clause in the CREATE statement for the routine. This

will ensure that the routine operation does not affect the database manager.

This is a default clause.

v If the routine is multi-threaded, specify the NOT THREADSAFE clause in the

CREATE statement for the routine. This will ensure that any failures or

malicious code in the routine do not impact other routines that might run in

a shared thread process.
5. If the routine is an external routine, you must put the routine implementation

library or class file on the database server. Follow the general recommendations

for deploying routines and the specific recommendations for deploying external

routine library or class files.

Authorizations and binding of routines that contain SQL

When discussing routine level authorization it is important to define some roles

related to routines, the determination of the roles, and the privileges related to

these roles:

Package Owner

The owner of a particular package that participates in the implementation

of a routine. The package owner is the user who executes the BIND

command to bind a package with a database, unless the OWNER

precompile/BIND option is used to override the package ownership and

set it to an alternate user. Upon execution of the BIND command, the

package owner is granted EXECUTE WITH GRANT privilege on the

package. A routine library or executable can be comprised of multiple

packages and therefore can have multiple package owners associated with

it.

Routine Definer

 The ID that issues the CREATE statement to register a routine. The routine

definer is generally a DBA, but is also often the routine package owner.

52 Developing User-defined Routines (SQL and External)

When a routine is invoked, at package load time, the authorization to run

the routine is checked against the definer’s authorization to execute the

package or packages associated with the routine (not against the

authorization of the routine invoker). For a routine to be successfully

invoked, the routine definer must have one of:

v EXECUTE privilege on the package or packages of the routine and

EXECUTE privilege on the routine

v SYSADM or DBADM authority

If the routine definer and the routine package owner are the same user,

then the routine definer will have the required EXECUTE privileges on the

packages. If the definer is not the package owner, the definer must be

explicitly granted EXECUTE privilege on the packages by the package

owner or any user with SYSADM or DBADM authority.

 Upon issuing the CREATE statement that registers the routine, the definer

is implicitly granted the EXECUTE WITH GRANT OPTION privilege on

the routine.

 The routine definer’s role is to encapsulate under one authorization ID, the

privileges of running the packages associated with a routine and the

privilege of granting EXECUTE privilege on the routine to PUBLIC or to

specific users that need to invoke the routine.

Note: For SQL routines the routine definer is also implicitly the package

owner. Therefore the definer will have EXECUTE WITH GRANT OPTION

on both the routine and on the routine package upon execution of the

CREATE statement for the routine.

Routine Invoker

The ID that invokes the routine. To determine which users will be invokers

of a routine, it is necessary to consider how a routine can be invoked.

Routines can be invoked from a command window or from within an

embedded SQL application. In the case of methods and UDFs the routine

reference will be embedded in another SQL statement. A procedure is

invoked by using the CALL statement. For dynamic SQL in an application,

the invoker is the runtime authorization ID of the immediately higher-level

routine or application containing the routine invocation (however, this ID

can also depend on the DYNAMICRULES option with which the

higher-level routine or application was bound). For static SQL, the invoker

is the value of the OWNER precompile/BIND option of the package that

contains the reference to the routine. To successfully invoke the routine,

these users will require EXECUTE privilege on the routine. This privilege

can be granted by any user with EXECUTE WITH GRANT OPTION

privilege on the routine (this includes the routine definer unless the

privilege has been explicitly revoked), SYSADM or DBADM authority by

explicitly issuing a GRANT statement.

As an example, if a package associated with an application containing dynamic

SQL was bound with DYNAMICRULES BIND, then its runtime authorization ID

will be its package owner, not the person invoking the package. Also, the package

owner will be the actual binder or the value of the OWNER precompile/bind

option. In this case, the invoker of the routine assumes this value rather than the

ID of the user who is executing the application.

Note:

Chapter 1. Overview of routines 53

1. For static SQL within a routine, the package owner’s privileges must be

sufficient to execute the SQL statements in the routine body. These SQL

statements might require table access privileges or execute privileges if there

are any nested references to routines.

2. For dynamic SQL within a routine, the userid whose privileges will be

validated are governed by the DYNAMICRULES option of the BIND of the

routine body.

3. The routine package owner must GRANT EXECUTE on the package to the

routine definer. This can be done before or after the routine is registered, but it

must be done before the routine is invoked otherwise an error (SQLSTATE

42051) will be returned.

The steps involved in managing the execute privilege on a routine are detailed in

the diagram and text that follows:

1. Definer performs the appropriate CREATE statement to register the routine.

This registers the routine in DB2 with its intended level of SQL access,

Database
administrator 1 has:

User ID of the
routine invoker has:

EXECUTE on package
privilege

EXECUTE WITH GRANT
OPTION on routine privilege

Binds the routine package
using the BIND command

Discuss the
location of the
routine library

Grants the EXECUTE
on package privilege

Grants the EXECUTE on routine

privilege to the routine invoker

Database
administrator 1

Programmer 1

Creates the routine using
the CREATE statement

The routine is

successfully invoked

EXECUTE on
routine privilege

Invokes the routine

Programmer 1 has:

EXECUTE WITH GRANT
OPTION on package privilege

Figure 2. Managing the EXECUTE privilege on routines

54 Developing User-defined Routines (SQL and External)

establishes the routine signature, and also points to the routine executable. The

definer, if not also the package owner, needs to communicate with the package

owners and authors of the routine programs to be clear on where the routine

libraries reside so that this can be correctly specified in the EXTERNAL clause

of the CREATE statement. By virtue of a successful CREATE statement, the

definer has EXECUTE WITH GRANT privilege on the routine, however the

definer does not yet have EXECUTE privilege on the packages of the routine.

2. Definer must grant EXECUTE privilege on the routine to any users who are to

be permitted use of the routine. (If the package for this routine will recursively

call this routine, then this step must be done before the next step.)

3. Package owners precompile and bind the routine program, or have it done on

their behalf. Upon a successful precompile and bind, the package owner is

implicitly granted EXECUTE WITH GRANT OPTION privilege on the

respective package. This step follows step one in this list only to cover the

possibility of SQL recursion in the routine. If such recursion does not exist in

any particular case, the precompile/bind could precede the issuing of the

CREATE statement for the routine.

4. Each package owner must explicitly grant EXECUTE privilege on their

respective routine package to the definer of the routine. This step must come at

some time after the previous step. If the package owner is also the routine

definer, this step can be skipped.

5. Static usage of the routine: the bind owner of the package referencing the

routine must have been given EXECUTE privilege on the routine, so the

previous step must be completed at this point. When the routine executes, DB2

verifies that the definer has the EXECUTE privilege on any package that is

needed, so step 3 must be completed for each such package.

6. Dynamic usage of the routine: the authorization ID as controlled by the

DYNAMICRULES option for the invoking application must have EXECUTE

privilege on the routine (step 4), and the definer of the routine must have the

EXECUTE privilege on the packages (step 3).

Data conflicts when procedures read from or write to tables

To preserve the integrity of the database, it is necessary to avoid conflicts when

reading from and writing to tables. For example, suppose an application is

updating the EMPLOYEE table, and the statement calls a routine. Suppose that the

routine tries to read the EMPLOYEE table and encounters the row being updated

by the application. The row is in an indeterminate state from the perspective of the

routine- perhaps some columns of the row have been updated while other have

not. If the routine acts on this partially updated row, it can take incorrect actions.

To avoid this sort of problem, DB2 does not allow operations that conflict on any

table.

To describe how DB2 avoids conflicts when reading from and writing to tables

from routines, the following two terms are needed:

top-level statement

A top-level statement is any SQL statement issued from an application, or

from a stored procedure that was invoked as a top-level statement. If a

procedure is invoked within a dynamic compound statement or a trigger,

the compound statement or the statement that causes the firing of the

trigger is the top-level statement. If an SQL function or an SQL method

contains a nested CALL statement, the statement invoking the function or

the method is the top-level statement.

Chapter 1. Overview of routines 55

table access context

A table access context refers to the scope where conflicting operations on a

table are allowed. A table access context is created whenever:

v A top-level statement issues an SQL statement.

v A UDF or method is invoked.

v A procedure is invoked from a trigger, a dynamic compound statement,

an SQL function or an SQL method.

For example, when an application calls a stored procedure, the CALL is a

top-level statement and therefore gets a table access context. If the stored

procedure does an UPDATE, the UPDATE is also a top-level statement

(since the stored procedure was invoked as a top-level statement) and

therefore gets a table access context. If the UPDATE invokes a UDF, the

UDF gets a separate table access context and SQL statements inside the

UDF are not top-level statements.

Once a table has been accessed for reading or writing, it is protected from conflicts

within the top-level statement that made the access. The table can be read or

written from a different top-level statement or from a routine invoked from a

different top-level statement.

The following rules are applied:

1. Within a table access context, a given table can be both read from and written

to without causing a conflict.

2. If a table is being read within a table access context then other contexts can also

read the table. If any other context attempts to write to the table, however, a

conflict occurs.

3. If a table is being written within a table access context, then no other context

can read or write to the table without causing a conflict.

If a conflict occurs, an error (SQLCODE -746, SQLSTATE 57053) is returned to the

statement that caused the conflict.

The following is an example of table read and write conflicts:

Suppose an application issues the statement:

 UPDATE t1 SET c1 = udf1(c2)

UDF1 contains the statements:

 DECLARE cur1 CURSOR FOR SELECT c1, c2 FROM t1

 OPEN cur1

This will result in a conflict because rule 3 is violated. This form of conflict can

only be resolved by redesigning the application or UDF.

The following does not result in a conflict:

Suppose an application issues the statements:

 DECLARE cur2 CURSOR FOR SELECT udf2(c1) FROM t2

 OPEN cur2

 FETCH cur2 INTO :hv

 UPDATE t2 SET c2 = 5

UDF2 contains the statements:

56 Developing User-defined Routines (SQL and External)

DECLARE cur3 CURSOR FOR SELECT c1, c2 FROM t2

 OPEN cur3

 FETCH cur3 INTO :hv

With the cursor, UDF2 is allowed to read table T2 since two table access contexts

can read the same table. The application is allowed to update T2 even though

UDF2 is reading the table because UDF2 was invoked in a different application

level statement than the update.

Global variables and XA transactions

In an XA environment, global variable objects will not change. Session global

variables, within an XA transaction, are not available to other sessions joining the

transaction.

Introduction

If a global variable is created within a session, then it cannot be used by other

sessions until the unit of work has committed. However, the newly created

variable can be used within the session that created it before the unit of work is

committed. This behavior is consistent with other created objects such as tables.

The length attribute and data type of a global variable does not vary once it is

created. Furthermore the global variable cannot be altered at all (e.g., its default

value).

The setting of a global variable’s value is non-transactional. Hence, an application

cannot rollback the setting of the value of a global variable. Note the following:

v If the creation of a global variable is rolled back then the variable no longer

exists.

v If the drop of a global variable is rolled back, the value of the global variable

will be what it was before the drop.

Session global variables can have a default value defined for them. This value is

automatically assigned to the variable as soon as it is first referenced in a session.

XA interaction

Session global variables are scoped to a per session level within an XA transaction

and are not available to other sessions that join the transaction.

Global variables are non-transactional state objects. Hence, in an XA environment

(for both tightly coupled transactions and loosely coupled transactions), global

variable objects (both existence and value) will not change at XA_end (nor for

other XA APIs, like XA_start, XA_rollback).

Note: In contrast, DB2 has implemented declared global temporary tables as

transactional state objects. Hence, when the following XA APIs are executed,

declared global temporary tables are dropped.

v XA_rollback

v XA_end(SUCCESS)

v XA_start(NOFLAGS)

v XA_start(JOIN)

Chapter 1. Overview of routines 57

58 Developing User-defined Routines (SQL and External)

Chapter 2. Developing routines

Development of routines is often done when there is no system-defined routine

available that provides the functionality that is required.

There are different functional types of routines and routine implementations,

however the basic steps for developing routines are generally common for all

routines. You must determine what type of routine to create, what implementation

to use, define the interface for the routine, develop the routine logic, execute SQL

to create the routine, test your routine, and then deploy it for general use.

Depending on what type of routine you choose to develop there are some specific

procedures you must follow. This topic will direct you to the appropriate topics for

getting started with routine development.

Prerequisites

v Read and understand basic routine concepts:

– To learn about types of routines, useful applications of routines, tools

for developing routines, routine best practices and more, see the topic:

- Chapter 1, “Overview of routines,” on page 1
v Learn about the available routine development tools that make it faster

and easier to develop routines:

– To learn about the available tools for routine development, see the

topic:

- “Tools for developing routines” on page 34

Procedure

1. Determine if an existing system-defined routine already meets your routine

needs.

v If a system-defined routine meets your needs, you might want to refer to

Chapter 11, “Routine invocation,” on page 331.
2. Determine what functional type of routine to develop.

3. Determine what routine implementation to use.

v If a SQL routine is required, refer to the information about “SQL routines” on

page 61.

v If an external routine is required, refer to the information about “External

routines” on page 111.

The development of SQL and external routines is similar, but there are differences.

For both types of routines, you must first design your logic, and then to create the

routine in the database you must execute a routine functional type specific

CREATE statement. These routine creation statements include CREATE

PROCEDURE, CREATE FUNCTION, and CREATE METHOD. The clauses specific

to each of the CREATE statements define characteristics of the routine, including

the routine name, the number and type of routine parameters, and details about

the routine logic. DB2 uses the information provided by the clauses to identify and

run the routine when it is invoked. Upon successful execution of the CREATE

statement for a routine, the routine is created in the database. The characteristics of

the routine are stored in DB2’s system catalog tables that users can query.

Executing the CREATE statement to create a routine is also referred to as defining

a routine or registering a routine.

© Copyright IBM Corp. 1993, 2007 59

Because external routines have their logic implemented in user-created libraries or

classes located in the database file system, additional steps are required to program

the logic, build it, and properly locate the resulting library or class file.

Once you have developed routines, you might want to:

v Debug routines

v Deploy routines to production environments

v Grant privileges to execute routines to users

v Invoke routines

v Tune the performance of routines

60 Developing User-defined Routines (SQL and External)

Chapter 3. Overview of SQL routines

SQL routines are routines that have logic implemented with only SQL statements,

including SQL Procedural Language (SQL PL) statements. They are characterized

by having their routine-body logic contained within the CREATE statement that is

used to create them. You can create SQL procedures, SQL functions, and SQL

methods. Although they are all implemented in SQL, each routine functional type

has different features.

Before deciding to implement a SQL routine, it is important that you first

understand what SQL routines are, how they are implemented, and used by

reading an ″Overview of routines″. With that knowledge you can then learn more

about SQL routine from the following concept topics so that you can make

informed decisions about when and how to use them in your database

environment:

v SQL procedures

v SQL functions

v Tools for developing SQL routines

v SQL Procedural Language (SQL PL)

v Comparison of SQL PL and inline SQL PL

v SQL PL statements and features

v Supported inline SQL PL statements and features

v Determining when to use SQL procedures or SQL functions

v Restrictions on SQL routines

After having learned about SQL routines, you might want to do one of the

following tasks:

v Develop SQL procedures

v Develop SQL functions

v Develop SQL methods

SQL routines

SQL routines are routines that have logic implemented with only SQL statements,

including SQL Procedural Language (SQL PL) statements. They are characterized

by having their routine-body logic contained within the CREATE statement that is

used to create them. This is in contrast with external routines that have their

routine logic implemented in a library built form programming source code. In

general SQL routines can contain and execute fewer SQL statements than external

routines; however they can be every bit as powerful and high performing when

implemented according to best practices.

You can create SQL procedures, SQL functions, and SQL methods. Although they

are all implemented in SQL, each routine functional type has different features.

© Copyright IBM Corp. 1993, 2007 61

Tools for developing SQL routines

SQL routine development tools make it faster and easier to create SQL procedures.

The following GUI and command line tools can be used to create SQL procedures:

v DB2 tools

– Command Line Processor (CLP)

– IBM data server developer tool

– IBM Database Development Add-In for Visual Studio .NET 1.2
v IBM Software Group and IBM Information Management Tools

– IBM Rational Application Developer

– IBM WebSphere Application Server

SQL routine development in the data server developer tool

The data server developer tool is a separately installed development environment

that provides support for SQL routine development. Within the data server

developer tool you will find tools and documentation support for performing the

following SQL routine development tasks:

v Creating SQL routines

v Creating SQL routines that will work on DB2 Universal Database for z/OS

database servers

v Modifying SQL routines

v Debugging SQL procedures

v Comparing SQL routine definitions within a project or on a database server

v Deploying SQL routines to DB2 database servers

You can also do many more things within the data server developer tool that can

assist you in developing SQL routines, including: querying, modifying, loading,

and extracting table data, working with XML functions, developing Java routines,

and more!

SQL Procedural Language (SQL PL)

The SQL Procedural Language (SQL PL) is a set of SQL statements that was

introduced in DB2 Universal Database Version 7 to provide the procedural

constructs necessary for implementing control flow logic around traditional SQL

queries and operations. SQL PL has evolved since then and the current set of SQL

PL statements and language features provides support for comprehensive

high-level programming in SQL.

SQL PL is a subset of the SQL Persistent Stored Modules (SQL/PSM) language

standard. The specification of the current SQL/PSM standard can be found in

ANSI/ISO/IEC 9075-4:1999 Information Technology, Database Language SQL, Part

4: Persistent Stored Modules (SQL/PSM).

SQL PL has a simple syntax that includes support for variables, conditional

statements, looping statements, transfer of control statements, error management

statements, and result set manipulation statements. You can use SQL PL in a

variety of contexts including in routines with SQL implementations, and a subset

of SQL PL statements can be used in triggers, and dynamic compound SQL

statements.

SQL PL consists of the following statements:

62 Developing User-defined Routines (SQL and External)

v Variable related statements

– DECLARE <variable> DEFAULT <value>

– DECLARE <condition>

– DECLARE <condition handler>

– DECLARE CURSOR

– SET (assignment-statement)
v Conditional statements

– CASE (2 forms)

– IF
v Looping statements

– FOR

– LOOP

– REPEAT

– WHILE
v Transfer of control statements

– CALL

– GOTO

– ITERATE

– LEAVE

– RETURN
v Error management statements

– SIGNAL

– RESIGNAL
v Result set manipulation statements

– ASSOCIATE LOCATOR(S)

– ALLOCATE CURSOR

Inline SQL PL

Inline SQL PL is a subset of SQL PL features that that can be used within atomic

dynamic compound SQL statements that are used in triggers, SQL functions, SQL

methods, and standalone code. Standalone code refers to SQL PL scripting.

Inline SQL PL is described as ″inline″, because the logic is expanded into and

executed with the SQL statements that reference them.

The following SQL PL statements are considered to be part of the set of inline SQL

PL statements:

v Variable related statements

– DECLARE <variable>

– DECLARE <condition>

– SET statement (assignment statement)
v Conditional statements

– IF

– CASE expression
v Looping statements

– FOR

– WHILE

Chapter 3. Overview of SQL routines 63

v Transfer of control statements

– GOTO

– ITERATE

– LEAVE

– RETURN
v Error management statements

– SIGNAL

– GET DIAGNOSTICS

Other SQL PL statements that are supported in SQL procedures are not supported

in dynamic compound statements. Cursors and condition handlers are not

supported in inline SQL PL and therefore neither is the RESIGNAL statement.

Because inline SQL PL statements must be executed in dynamic compound

statements, there is no support for PREPARE, EXECUTE, or EXECUTE

IMMEDIATE statements.

Also, because they must be used in an atomic dynamic compound SQL statement,

all or none of the member statements must commit successfully. Therefore the

COMMIT and ROLLBACK statements are not supported either.

As for the LOOP and REPEAT statements, the WHILE statement can be used to

implement equivalent logic.

Although triggers and SQL functions only support the inline SQL PL statements, it

is possible to indirectly make use of the larger set of SQL PL statement, by calling

an SQL procedure from these interfaces.

Standalone scripting with inline SQL PL consists of executing a dynamic

compound statement within a Command Line Processor (CLP) script or directly

from a CLP prompt. Dynamic compound SQL statements are bounded by the

keywords BEGIN ATOMIC and END and must end with a non-default terminator

character. They can contain SQL PL and other SQL statements.

Because inline SQL PL statements are expanded within the SQL statements that

reference them rather than being individually compiled, there are some minor

performance considerations that should be considered when you are planning on

whether to implement your procedural logic in SQL PL in an SQL procedure or

with inline SQL PL in a function, trigger, or dynamic compound statement.

SQL PL in SQL procedures

SQL PL statements are primarily used in SQL procedures. SQL procedures can

contain basic SQL statements for querying and modifying data, but they can also

include SQL PL statements for implementing control flow logic around the other

SQL statements. The complete set of SQL PL statements can be used in SQL

procedures.

SQL procedures also support parameters, variables, assignment statements, a

powerful condition and error handling mechanism, nested and recursive calls,

transaction and savepoint support, and the ability to return multiple result sets to

the procedure caller or a client application.

64 Developing User-defined Routines (SQL and External)

SQL PL, when used within SQL procedures, allows you to effectively program in

SQL. The high-level language of SQL PL, strong typing of SQL, and the additional

features that SQL procedures provide makes programming with SQL PL fast and

easy to do.

As a simple example of SQL PL statements being used in a SQL procedure,

consider the following example:

 CREATE PROCEDURE UPDATE_SAL (IN empNum CHAR(6),

 INOUT rating SMALLINT)

 LANGUAGE SQL

 BEGIN

 IF rating = 1 THEN

 UPDATE employee

 SET salary = salary * 1.10, bonus = 1000

 WHERE empno = empNum;

 ELSEIF rating = 2 THEN

 UPDATE employee

 SET salary = salary * 1.05, bonus = 500

 WHERE empno = empNum;

 ELSE

 UPDATE employee

 SET salary = salary * 1.03, bonus = 0

 WHERE empno = empNum;

 END IF;

 END

Inline SQL PL and SQL functions, triggers, and compound

SQL (dynamic) statements

Inline SQL PL statements can be executed from compound SQL (dynamic)

statements, SQL functions, and triggers.

A compound SQL (dynamic) statement is one that allows you to group multiple

SQL statements into an optionally atomic block in which you can declare variables,

and condition handling elements. These statements are compiled by DB2 as a

single SQL statement and can contain inline SQL PL statements.

The bodies of SQL functions and triggers can contain compound SQL statements

and can also include some inline SQL PL statements.

On their own, compound SQL statements are useful for creating short scripts that

perform small units of logical work with minimal control flow, but that have

significant data flow. Within functions and triggers, they allow for more complex

logic to be executed when those objects are used.

As an example of a dynamic compound SQL statement that contains SQL PL,

consider the following:

 BEGIN ATOMIC

 FOR row AS

 SELECT pk, c1, discretize(c1) AS v FROM source

 DO

 IF row.v is NULL THEN

 INSERT INTO except VALUES(row.pk, row.c1);

 ELSE

 INSERT INTO target VALUES(row.pk, row.d);

 END IF;

 END FOR;

 END

Chapter 3. Overview of SQL routines 65

The compound statement is bounded by the keywords BEGIN and END. It

includes use of both the FOR and IF/ELSE control-statements that are part of SQL

PL. The FOR statement is used to iterate through a defined set of rows. For each

row a column’s value is checked and conditionally, based on the value, a set of

values is inserted into another table.

As an example of a trigger that contains SQL PL, consider the following:

 CREATE TRIGGER validate_sched

 NO CASCADE BEFORE INSERT ON c1_sched

 FOR EACH ROW

 MODE DB2SQL

 Vs: BEGIN ATOMIC

 IF (n.ending IS NULL) THEN

 SET n.ending = n.starting + 1 HOUR;

 END IF;

 IF (n.ending > ’21:00’) THEN

 SIGNAL SQLSTATE ’80000’ SET MESSAGE_TEXT =

 ’Class ending time is after 9 PM’;

 ELSE IF (n.DAY=1 or n.DAY-7) THEN

 SIGNAL SQLSTATE ’80001’ SET MESSAGE_TEXT =

 ’Class cannot be scheduled on a weekend’;

 END IF;

 END vs;

This trigger is activated upon an insert to a table named c1_sched and uses SQL

PL to check for and provide a class end time if one has not been provided and to

raise an error if the class end time is after 9 pm or if the class is scheduled on a

weekend. As an example of a scalar SQL function that contains SQL PL, consider

the following:

 CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)

 RETURNS DECIMAL(10,3)

 LANGUAGE SQL MODIFIES SQL

 BEGIN

 DECLARE price DECIMAL(10,3);

 IF Vendor = ’Vendor 1’

 THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);

 ELSE IF Vendor = ’Vendor 2’

 THEN SET price = (SELECT Price FROM V2Table WHERE Pid = GetPrice.Pid);

 END IF;

 RETURN price;

 END

This simple function returns a scalar price value, based on the value of an input

parameter that identifies a vendor. It also uses the IF statement.

For more complex logic that requires output parameters, the passing of result sets

or other more advanced procedural elements SQL procedures might be more

appropriate.

CREATE statements for SQL routines

SQL routines are created by executing the appropriate CREATE statement for the

routine type. In the CREATE statement you also specify the routine body, which

for an SQL routine must be composed only of SQL or SQL PL statements. You can

use the IBM DB2 Development Center to help you create, debug, and run SQL

procedures. SQL procedures, functions, and methods can also be created using the

DB2 command line processor.

66 Developing User-defined Routines (SQL and External)

SQL procedures, functions, and methods each have a respective CREATE

statement. Although the syntax for these statements is different, there are some

common elements to them. In each you must specify the routine name, and

parameters if there are to be any as well as a return type. You can also specify

additional keywords that provide DB2 with information about the logic contained

in the routine. DB2 uses the routine prototype and the additional keywords to

identify the routine at invocation time, and to execute the routine with the required

feature support and best performance possible.

For specific information on creating SQL procedures in the DB2 Development

Center or from the Command Line Processor, or on creating functions and

methods, refer to the related topics.

Determining when to use SQL routines or external routines

When implementing routine logic you can choose to implement SQL routines or

external routines. There are reasons for choosing each of these two

implementations.

To determine when to choose to implement an SQL routine or an external routine,

read the following to determine what if any factors might limit your choice.

v Choose to implement SQL routines if:

– SQL PL and SQL statements provide adequate support to implement the logic

that you require.

– The routine logic consists primarily of SQL statements that query or modify

data and performance is a concern. Logic that contains a relatively small

amount of control-flow logic relative to the number of SQL statements that

query or modify database data will generally perform better with an SQL

routine implementation. SQL PL is intended to be used for implementing

procedural logic around database operations and not primarily for

programming complex logic.

– The SQL statements that you need to execute can be executed in an external

routine implementation.

– You want to make the modules highly portable between operating system

environments and minimize the dependency on programming language code

compilers and script interpreters.

– You want to implement the logic quickly and easily using a high level

programming language.

– You are more comfortable working with SQL than with scripting or

programming languages.

– You want to secure the logic within the database management system.

– You want to minimize routine maintenance and routine package maintenance

upon release migration or operating system upgrades.

– You want to minimize the amount of code required to implement the logic.

– You want to make use of strong data typing and minimize the risk of data

type conversion errors.

– You want to maximize the safety of the code that is implemented by

minimizing the risk of memory management, pointer manipulation, or other

common programming pitfalls.

– ou want to benefit from special SQL caching support made available when

SQL PL is used.
v Choose to implement an external procedure if:

Chapter 3. Overview of SQL routines 67

– If the routine logic is very complex and consists of few SQL statements and

routine performance is a concern. Logic such as a complex math algorithm,

that involves a large amount of string manipulation, or that does not access

the database will generally perform better with an external routine

implementation.

– If the SQL statements that you need to execute can be executed in an external

routine implementation.

– The routine logic will make operating system calls - this can only be done

with external routines.

– The routine logic must read from or write to files - this can only be done with

external routines.

– Write to the server file system. Do this only with caution.

– Invoke an application or script that resides on the database server.

– Issue particular SQL statements that are not supported in SQL procedures.

– You are more comfortable programming in a programming language other

than SQL PL.

By default if SQL routines can meet your needs, use them. Generally it is a

requirement to implement complex logic or to access files or scripts on the

database server that motivates the decision to use external routines. Particularly

since SQL PL is fast and easy to learn and implement.

Determining when to use SQL procedures or SQL functions

When faced with the choice of implementing logic with SQL PL in an SQL

procedure or an SQL function, there are reasons for choosing each of these two

implementations.

Read the following to determine when to choose to use an SQL procedure or an

SQL function.

Choose to implement an SQL function if:

v Functional requirements can be met by an SQL function and you don’t anticipate

later requiring the features provided by an SQL procedure.

v Performance is a priority and the logic to be contained in the routine consists

only of queries or returns only a single result set.

When they only contain queries or the return of a single result set an SQL

function performs better than a logically equivalent SQL procedure, because of

how SQL functions are compiled.

In SQL procedures, static queries in the form of SELECT statements and

full-select statements are compiled individually, such that each query becomes a

section of a query access plan in a package when the SQL procedure is created.

There is no recompilation of this package until the SQL procedure is recreated or

the package is rebound to the database. This means that the performance of the

queries is determined based on information available to the database manager at

a time earlier than the SQL procedure execution time and hence might not be

optimal. Also with an SQL procedure there is also a small overhead entailed

when the database manager transfers between executing procedural flow

statements and SQL statements that query or modify data.

SQL functions however are expanded and compiled within the SQL statement

that references them which means that they are compiled each time that SQL

statement is compiled which depending on the statement might happen

68 Developing User-defined Routines (SQL and External)

dynamically. Because SQL functions are not directly associated with a package,

there is no overhead entailed when the database manager transfers between

executing procedural flow statements and SQL statements that query or modify

data.

Choose to implement an SQL procedure if:

v SQL PL features that are only supported in SQL procedures are required. This

includes: output parameter support, use of a cursor, the ability to return

multiple result sets to the caller, full condition handling support, transaction and

savepoint control, or other features.

v You want to execute non-SQL PL statements that can only be executed in SQL

procedures.

v You want to modify data and modifying data is not supported for the type of

function you need.

Although it isn’t always obvious, you can often easily re-write SQL procedures as

SQL functions that perform equivalent logic. This can be an effective way to

maximize performance when every little performance improvement counts.

Determining when to use dynamic compound SQL statements or SQL

procedures

When determining how to implement an atomic block of SQL PL and other SQL

statements you might be faced with a choice between using dynamic compound

SQL statements or SQL procedures. Although SQL procedures internally make use

of dynamic compound SQL statements, the choice to use one or the other might

depend on other factors.

Performance

If a dynamic compound SQL statement can functionally meet your needs, using

one is preferable, because the SQL statements that are members of a dynamic

compound SQL statement are compiled and executed as a single block. Also these

statements generally perform better than CALL statements to logically equivalent

SQL procedures.

At SQL procedure creation time, the procedure is compiled and a package is

created. The package contains the best execution path for accessing data as of the

SQL procedure compile time. Dynamic compound SQL statements are compiled

when they are executed. The best execution path for accessing data for these

statements is determined using the most up to date database information which

can mean that their access plan can be better than that of a logically equivalent

SQL procedure that was created at an earlier time which means that they might

perform better.

Complexity of the required logic

If the logic to be implemented is complex, SQL procedures are likely preferable,

because they support the comprehensive SQL PL with which you can easily

implement efficient logic.

If the logic is quite simple and the number of statements is relatively small,

consider using inline SQL PL in a dynamic compound statement or function. SQL

procedures can handle simple logic, but use of SQL procedures incurs some

overhead that if not required is best avoided.

Chapter 3. Overview of SQL routines 69

Number of SQL statements to be executed

In cases where only one or two SQL statements are to be executed, there might be

no benefit in using a SQL procedure. This might actually negatively impact the

total performance required to execute these statements. In such a case, it is better

to use inline SQL PL in a dynamic compound statement.

Atomicity and transaction control

Atomicity is another consideration. Dynamic compound statements must be

atomic. Commits and rollbacks are not supported in dynamic compound

statements. If transaction control is required of if support for rollback to a

savepoint is required SQL procedures must be used.

Security

Security can also be a consideration. SQL procedures can only be executed by users

with EXECUTE privilege on the procedure. This can be useful if you need to limit

who can execute a particular piece of logic. The ability to execute a dynamic

compound statement can also be managed; however SQL procedure execution

authorization provides an extra layer of security control.

Feature support

If you want to take advantage of the many features only available in SQL

procedures including the use of parameters, condition and error handlers, and the

ability to return one or more result sets to the caller, you must use SQL procedures.

Modularity, longevity, and re-use

SQL procedures are database objects that are persistently stored in the database

and can be consistently referenced by multiple applications or scripts. Dynamic

compound statements are not stored in the database and therefore the logic they

contain cannot be readily re-used.

By default if SQL routines can meet your needs, use them. Generally it is a

requirement to implement complex logic or to use the features supported by SQL

procedures, but not available to dynamic compound statements that motivates the

decision to use SQL procedures.

Rewriting SQL procedures as SQL user-defined functions

To maximize performance in a database management system, if possible, it can

sometimes be beneficial to rewrite simple SQL procedures as SQL functions.

Procedures and functions share the fact that their routine-bodies are implemented

with a compound block that can contain SQL PL. In both, the same SQL PL

statements are included within compound blocks bounded by BEGIN and END

keywords.

There are some things to note when translating an SQL procedure into an SQL

function:

v The primary and only reason to do this is to improve routine performance when

the logic only queries data.

v In a scalar function you might have to declare variables to hold the return value

to get around the fact that you cannot directly assign a value to any output

70 Developing User-defined Routines (SQL and External)

parameter of the function. The output value of a user-defined scalar function is

only specified in the RETURN statement for the function.

v If an SQL function is going to modify data, it must be explicitly created using

the MODIFIES SQL clause so that is can contain SQL statements that modify

data.

In the example that follows an SQL procedure and an SQL scalar function that are

logically equivalent are shown. These two routines functionally provide the same

output value given the same input values, however they are implemented and

invoked in slightly different ways.

 CREATE PROCEDURE GetPrice (IN Vendor CHAR(20),

 IN Pid INT,

 OUT price DECIMAL(10,3))

 LANGUAGE SQL

 BEGIN

 IF Vendor = ’Vendor 1’

 THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);

 ELSE IF Vendor = ’Vendor 2’

 THEN SET price = (SELECT Price FROM V2Table

 WHERE Pid = GetPrice.Pid);

 END IF;

 END

This procedure takes in two input parameter values and returns an output

parameter value that is conditionally determined based on the input parameter

values. It uses the IF statement. This SQL procedure is invoked by executing the

CALL statement. For example from the CLP, you might execute the following:

 CALL GetPrice(’Vendor 1’, 9456, ?)

The SQL procedure can be rewritten as a logically-equivalent SQL table-function as

follows:

 CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)

 RETURNS DECIMAL(10,3)

 LANGUAGE SQL MODIFIES SQL

 BEGIN

 DECLARE price DECIMAL(10,3);

 IF Vendor = ’Vendor 1’

 THEN SET price = (SELECT ProdPrice FROM V1Table WHERE Id = Pid);

 ELSE IF Vendor = ’Vendor 2’

 THEN SET price = (SELECT Price FROM V2Table

 WHERE Pid = GetPrice.Pid);

 END IF;

 RETURN price;

 END

This function takes in two input parameters and returns a single scalar value,

conditionally based on the input parameter values. It requires the declaration and

use of a local variable named price to hold the value to be returned until the

function returns whereas the SQL procedure can use the output parameter as a

variable. Functionally these two routines are performing the same logic.

Now, of course the execution interface for each of these routines is different.

Instead of simply calling the SQL procedure with the CALL statement, the SQL

function must be invoked within an SQL statement where an expression is

allowed. In most cases this isn’t a problem and might actually be beneficial if the

intention is to immediately operate on the data returned by the routine. Here are

two examples of how the SQL function can be invoked.

Chapter 3. Overview of SQL routines 71

It can be invoked using the VALUES statement:

 VALUES (GetPrice(’Vendor 1’, 9456))

It can also be invoked in a SELECT statement that for example might select values

from a table and filter rows based on the result of the function:

 SELECT VName FROM Vendors WHERE GetPrice(Vname, Pid) < 10

72 Developing User-defined Routines (SQL and External)

Chapter 4. Developing SQL procedures

Developing SQL procedures is similar to developing other types of routines.

Development of SQL procedures covers all of the steps required from the design

stage to the deployment stage.

v SQL procedures

v Designing SQL procedures

v Creating SQL procedures

v Calling SQL procedures

v Debugging SQL procedures

v Tuning SQL procedures

v Deploying SQL procedures

To assist you in developing SQL procedures, several examples of SQL procedures

are available for reference. These examples show a variety of different kinds of

SQL procedures that demonstrate some of the various SQL procedure features.

SQL procedures

SQL procedures are procedures implemented completely with SQL that can be

used to encapsulate logic that can be invoked like a programming sub-routine.

There are many useful applications of SQL procedures within a database or

database application architecture. SQL procedures can be used to create simple

scripts for quickly querying transforming, and updating data or for generating

basic reports, for improving application performance, for modularizing

applications, and for improving overall database design, and database security.

There are many features of SQL procedures which make them powerful routine

options.

Before deciding to implement a SQL procedure, it is important that you

understand what SQL procedures are in the context of SQL routines, how they are

implemented, and how they can be used, by first learning about routines and then

by referring to the topic, ″Overview of SQL procedures″.

Features of SQL procedures

SQL procedures are characterized by many features. SQL procedures:

v Can contain SQL Procedural Language statements and features which support

the implementation of control-flow logic around traditional static and dynamic

SQL statements.

v Are supported in the entire DB2 family brand of database products in which

many if not all of the features supported in DB2 Version 9 are supported.

v Are easy to implement, because they use a simple high-level, strongly typed

language.

v SQL procedures are more reliable than equivalent external procedures.

v Adhere to the SQL99 ANSI/ISO/IEC SQL standard.

v Support input, output, and input-output parameter passing modes.

v Support a simple, but powerful condition and error-handling model.

© Copyright IBM Corp. 1993, 2007 73

v Allow you to return multiple result sets to the caller or to a client application.

v Allow you to easily access the SQLSTATE and SQLCODE values as special

variables.

v Reside in the database and are automatically backed up and restored.

v Can be invoked wherever the CALL statement is supported.

v Support nested procedure calls to other SQL procedures or procedures

implemented in other languages.

v Support recursion.

v Support savepoints and the rolling back of executed SQL statements to provide

extensive transaction control.

v Can be called from triggers.

SQL procedures provide extensive support not limited to what is listed above.

When implemented according to best practices, they can play an essential role in

database architecture, database application design, and in database system

performance.

Designing SQL procedures

Designing SQL procedures requires an understanding of your requirements, SQL

procedure features, how to use the SQL features, and knowledge of any restrictions

that might impede your design. The following topics about SQL procedure design

will help you learn how to design SQL procedures that make best use of SQL

procedure features.

v Parts of SQL procedures

v Cross-platform SQL stored procedure considerations

v Supported SQL PL statements and language features in SQL procedures

v OLTP considerations for SQL procedures

v Performance of SQL procedures

v Rewriting SQL procedures as SQL user-defined functions

v Handling DB2 errors and warnings

Parts of SQL procedures

To understand SQL procedures, it helps to understand the parts of an SQL

procedure. The following are just some of the parts of SQL procedures:

v Structure of SQL procedures

v Parameters in SQL procedures

v Variables in SQL procedures

v SQLCODE and SQLSTATE in SQL procedures

v Atomic blocks and scope of variables in SQL procedures

v Cursors in SQL procedures

v Logic elements in SQL PL

v Condition and error handlers in SQL procedures

v SQL statements that can be executed in SQL procedures

74 Developing User-defined Routines (SQL and External)

Structure of SQL procedures

SQL procedures consist of several logic parts and SQL procedure development

requires you to implement these parts according to a structured format. The format

is quite straight-forward and easy to follow and is intended to simplify the design

and semantics of routines.

The core of an SQL procedure is a compound statement. Compound statements are

bounded by the keywords BEGIN and END. These statements can be ATOMIC or

NOT ATOMIC. By default they are NOT ATOMIC.

Within a compound statement, multiple optional SQL PL objects can be declared

and referenced with SQL statements. The following diagram illustrates the

structured format of a compound statement within SQL procedures:

 label: BEGIN

 Variable declarations

 Condition declarations

 Cursor declarations

 Condition handler declarations

 Assignment, flow of control, SQL statements and other compound statements

 END label

The diagram shows that SQL procedures can consist of one or more optionally

atomic compound statements (or blocks) and that these blocks can be nested or

serially introduced within a single SQL procedure. Within each of these atomic

blocks there is a prescribed order for the optional variable, condition, and handler

declarations. These must precede the introduction of procedural logic implemented

with SQL-control statements and other SQL statements and cursor declarations.

Cursors can be declared anywhere with the set of SQL statements contained in the

SQL procedure body.

To clarify control-flow, SQL procedure atomic blocks can be labeled as can many of

the SQL control-statements contained within them. This makes it easier to be

precise when referencing variables and transfer of control statement references.

Here is an example of an SQL procedure that demonstrates each of the elements

listed above:

 CREATE PROCEDURE DEL_INV_FOR_PROD (IN prod INT, OUT err_buffer VARCHAR(128))

 LANGUAGE SQL

 DYNAMIC RESULT SETS 1

 BEGIN

 DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;

 DECLARE SQLCODE integer DEFAULT 0;

 DECLARE NO_TABLE CONDITION FOR SQLSTATE ’42704’;

 DECLARE cur1 CURSOR WITH RETURN TO CALLER

 FOR SELECT * FROM Inv;

 A: BEGIN ATOMIC

 DECLARE EXIT HANDLER FOR NO_TABLE

 BEGIN

 SET ERR_BUFFER=’Table Inv does not exist’;

 END;

 SET err_buffer = ’’;

 IF (prod < 200)

 DELETE FROM Inv WHERE product = prod;

 ELSE IF (prod < 400)

 UPDATE Inv SET quantity = 0 WHERE product = prod;

 ELSE

Chapter 4. Developing SQL procedures 75

UPDATE Inv SET quantity = NULL WHERE product = prod;

 END IF;

 B: OPEN cur1;

 END

NOT ATOMIC compound statements in SQL procedures

The previous example illustrated a NOT ATOMIC compound statement and is the

default type used in SQL procedures. If an unhandled error condition occurs

within the compound statement, any work that is completed before the error will

not be rolled back, but will not be committed either. The group of statements can

only be rolled back if the unit of work is explicitly rolled back using ROLLBACK

or ROLLBACK TO SAVEPOINT statements. You can also use the COMMIT

statement to commit successful statements if it makes sense to do so.

Here is an example of an SQL procedure with a NOT ATOMIC compound

statement:

 CREATE PROCEDURE not_atomic_proc ()

 LANGUAGE SQL

 SPECIFIC not_atomic_proc

 nap: BEGIN NOT ATOMIC

 INSERT INTO c1_sched (class_code, day)

 VALUES (’R11:TAA’, 1);

 SIGNAL SQLSTATE ’70000’;

 INSERT INTO c1_sched (class_code, day)

 VALUES (’R22:TBB’, 1);

 END nap

When the SIGNAL statement is executed it explicitly raises an error that is not

handled. The procedure returns immediately afterwards. After the procedure

returns, although an error occurred, the first INSERT statement did successfully

execute and inserted a row into the c1_sched table. The procedure neither

committed, nor rolled back the row insert and this remains to be done for the

complete unit of work in which the SQL procedure was called.

ATOMIC compound statements in SQL procedures

As the name suggests, ATOMIC compound statements, can be thought of as a

singular whole. If any unhandled error conditions arise within it, all statements

that have executed up to that point are considered to have failed as well and are

therefore rolled back.

Atomic compound statements cannot be nested inside other ATOMIC compound

statements.

You cannot use the SAVEPOINT statement, the COMMIT statement, or the

ROLLBACK statement from within an ATOMIC compound statement. These are

only supported in NOT ATOMIC compound statements within SQL procedures.

Here is an example of an SQL procedure with an ATOMIC compound statement:

 CREATE PROCEDURE atomic_proc ()

 LANGUAGE SQL

 SPECIFIC atomic_proc

76 Developing User-defined Routines (SQL and External)

ap: BEGIN ATOMIC

 INSERT INTO c1_sched (class_code, day)

 VALUES (’R33:TCC’, 1);

 SIGNAL SQLSTATE ’70000’;

 INSERT INTO c1_sched (class_code, day)

 VALUES (’R44:TDD’, 1);

 END ap

When the SIGNAL statement is executed it explicitly raises an error that is not

handled. The procedure returns immediately afterwards. The first INSERT

statement is rolled back despite successfully executing resulting in a table with no

inserted rows for this procedure.

Labels and SQL procedure compound statements

Labels can optionally be used to name any executable statement in an SQL

procedure, including compound statements and loops. By referencing labels in

other statements you can force the flow of execution to jump out of a compound

statement or loop or additionally to jump to the beginning of a compound

statement or loop. Labels can be referenced by the GOTO, ITERATE, and LEAVE

statements.

Optionally you can supply a corresponding label for the END of a compound

statement. If an ending label is supplied, it must be same as the label used at its

beginning.

Each label must be unique within the body of an SQL procedure.

Labels can also be used to avoid ambiguity if a variable with the same name has

been declared in more than one compound statement if the stored procedure. A

label can be used to qualify the name of an SQL variable.

Array support in SQL procedures

SQL procedures support parameters and variables of array types. Arrays are a

convenient way of passing transient collections of data between an application and

a stored procedure or between two stored procedures.

Within SQL stored procedures, arrays can be manipulated as arrays in

conventional programming languages. Furthermore, arrays are integrated within

the relational model in such a way that data represented as an array can be easily

converted into a table and data in a table column can be aggregated into an array.

The examples below illustrate several operations on arrays. Both examples are

command line processor (CLP) scripts that use the percentage character (%) as a

statement terminator.

Example 1

This example shows two procedures, sub and main. Procedure main creates an

array of 6 integers using an array constructor. It then passes the array to procedure

sum, which computes the sum of all the elements in the input array and returns

the result to main. Procedure sum illustrates the use of array subindexing and of

the CARDINALITY function, which returns the number of elements in an array.

Chapter 4. Developing SQL procedures 77

create type intArray as integer array[100] %

create procedure sum(in numList intArray, out total integer)

begin

declare i, n integer;

set n = CARDINALITY(numList);

set i = 1;

set total = 0;

while (i < n) do

set total = total + numList[i];

set i = i + 1;

end while;

end %

create procedure main(out total integer)

begin

declare numList intArray;

set numList = ARRAY[1,2,3,4,5,6];

call sum(numList, total);

end %

Example 2

In this example, we use two array data types (intArray and stringArray), and a

persons table with two columns (id and name). Procedure processPersons adds

three additional persons to the table, and returns an array with the person names

that contain letter ’o’, ordered by id. The ids and name of the three persons to be

added are represented as two arrays (ids and names). These arrays are used as

arguments to the UNNEST function, which turns the arrays into a two-column

table, whose elements are then inserted into the persons table. Finally, the last set

statement in the procedure uses the ARRAY_AGG aggregate function to compute

the value of the output parameter.

create type intArray as integer array[100] %

create type stringArray as varchar(10) array[100] %

create table persons (id integer, name varchar(10)) %

insert into persons values(2, ’Tom’) %

insert into persons values(4, ’Jill’) %

insert into persons values(1, ’Joe’) %

insert into persons values(3, ’Mary’) %

create procedure processPersons(out witho stringArray)

begin

declare ids intArray;

declare names stringArray;

set ids = ARRAY[5,6,7];

set names = ARRAY[’Bob’, ’Ann’, ’Sue’];

insert into persons(id, name)

(select T.i, T.n from UNNEST(ids, names) as T(i, n));

set witho = (select array_agg(name order by id)

from persons

where name like ’%o%’);

end %

78 Developing User-defined Routines (SQL and External)

Parameters in SQL procedures

SQL procedures support parameters for the passing of SQL values into and out of

procedures.

Parameters can be useful in SQL procedures when implementing logic that is

conditional on a particular input or set of input scalar values or when you need to

return one or more output scalar values and you do not want to return a result set.

It is good to understand the features of and limitations of parameters in SQL

procedures when designing or creating SQL procedures.

v DB2 supports the optional use of a large number of input, output, and

input-output parameters in SQL procedures. The keywords IN, OUT, and

INOUT in the routine signature portion of CREATE PROCEDURE statements

indicate the mode or intended use of the parameter. IN and OUT parameters are

passed by value, and INOUT parameters are passed by reference.

v When multiple parameters are specified for a procedure they must each have a

unique name.

v If a variable is to be declared within the procedure with the same name as a

parameter, the variable must be declared within a labeled atomic block nested

within the procedure. Otherwise DB2 will detect what would otherwise be an

ambiguous name reference.

v Parameters to SQL procedures cannot be named either of SQLSTATE or

SQLCODE regardless of the data type for the parameter.

Refer to the CREATE PROCEDURE (SQL) statement for complete details about

parameter references in SQL procedures.

The following SQL procedure named myparams illustrates the use of IN, INOUT,

and OUT parameter modes. Let us say that SQL procedure is defined in a CLP file

named myfile.db2 and that we are using the command line.

 CREATE PROCEDURE myparams (IN p1 INT, INOUT p2 INT, OUT p3 INT)

 LANGUAGE SQL

 BEGIN

 SET p2 = p1 + 1;

 SET p3 = 2 * p2;

 END@

Parameter markers

A parameter marker, often denoted by a question mark (?), is a place holder in an

SQL statement whose value is obtained during statement execution. An application

associates parameter markers to application variables. During the execution of the

statement, the values of these variables replace each respective parameter marker.

Data conversion might take place during the process.

Benefits of parameter markers

For SQL statements that need to be executed many times, it is often beneficial to

prepare the SQL statement once, and reuse the query plan by using parameter

markers to substitute the input values during runtime. In DB2® 9, a parameter

marker is represented in one of two ways:

v The first style, with a ″?″ character, is used in dynamic SQL execution (dynamic

Embedded SQL, CLI, Perl, etc).

Chapter 4. Developing SQL procedures 79

v The second style represents the embedded SQL standard construction where the

name of the variable is prefixed with a colon (:var1) . This style is used in static

SQL execution and is commonly referred to as a host variable.

Use of either style indicates where an application variable is to be substituted

inside an SQL statement. Parameter markers are referenced by number, and are

numbered sequentially from left to right, starting at one. Before the SQL statement

is executed, the application must bind a variable storage area to each parameter

marker specified in the SQL statement. In addition, the bound variables must be a

valid storage area, and must contain input data values when the prepared

statement is executed against the database.

The following example illustrates an SQL statement containing two parameter

markers.

SELECT * FROM customers WHERE custid = ? AND lastname = ?

Supported types

DB2 supports untyped parameter markers, which can be used in selected locations

of an SQL statement. Table 1 lists the restrictions on parameter marker usage.

 Table 8. Restrictions on parameter marker usage

Untyped parameter marker location Data type

Expression: Alone in a select list Error

Expression: Both operands of an arithmetic

operator

Error

Predicate: Left-hand side operand of an IN

predicate

Error

Predicate: Both operands of a relational

operator

Error

Function: Operand of an aggregation

function

Error

Examples

DB2® provides a rich set of standard interfaces including CLI/ODBC, JDBC, and

ADO.NET to access data efficiently. The following code snippets show the use of

prepared statement with parameter markers for each data access API.

Consider the following table schema for table t1, where column c1 is the primary

key for table t1.

 Table 9. Example table schema

Column name DB2 data type Nullable

c1 INTEGER false

c2 SMALLINT true

c3 CHAR(20) true

c4 VARCHAR(20) true

c5 DECIMAL(8,2) true

c6 DATE true

80 Developing User-defined Routines (SQL and External)

Table 9. Example table schema (continued)

Column name DB2 data type Nullable

c7 TIME true

c8 TIMESTAMP true

c9 BLOB(30) true

The following examples illustrate how to insert a row into table t1 using a

prepared statement.

CLI Example

void parameterExample1(void)

{

 SQLHENV henv;

 SQLHDBC hdbc;

 SQLHSTMT hstmt;

 SQLRETURN rc;

 TCHAR server[] = _T("C:\\mysample\\");

 TCHAR uid[] = _T("db2e");

 TCHAR pwd[] = _T("db2e");

 long p1 = 10;

 short p2 = 100;

 TCHAR p3[100];

 TCHAR p4[100];

 TCHAR p5[100];

 TCHAR p6[100];

 TCHAR p7[100];

 TCHAR p8[100];

 char p9[100];

 long len = 0;

 _tcscpy(p3, _T("data1"));

 _tcscpy(p4, _T("data2"));

 _tcscpy(p5, _T("10.12"));

 _tcscpy(p6, _T("2003-06-30"));

 _tcscpy(p7, _T("12:12:12"));

 _tcscpy(p8, _T("2003-06-30-17.54.27.710000"));

 memset(p9, 0, sizeof(p9));

 p9[0] = ’X’;

 p9[1] = ’Y’;

 p9[2] = ’Z’;

 rc = SQLAllocEnv(&henv);

 // check return code ...

 rc = SQLAllocConnect(henv, &hdbc);

 // check return code ...

 rc = SQLConnect(hdbc, (SQLTCHAR*)server, SQL_NTS,

 (SQLTCHAR*)uid, SQL_NTS, (SQLTCHAR*)pwd, SQL_NTS);

 // check return code ...

 rc = SQLAllocStmt(hdbc, &hstmt);

 // check return code ...

 // prepare the statement

 rc = SQLPrepare(hstmt, _T("INSERT INTO t1 VALUES (?,?,?,?,?,?,?,?,?)"), SQL_NTS);

 // check return code ...

 // bind input parameters

 rc = SQLBindParameter(hstmt, (unsigned short)1, SQL_PARAM_INPUT,

 SQL_C_LONG, SQL_INTEGER, 4, 0, &p1, sizeof(p1), &len);

Chapter 4. Developing SQL procedures 81

// check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)2, SQL_PARAM_INPUT, SQL_C_LONG,

 SQL_SMALLINT, 2, 0, &p2, sizeof(p2), &len);

 // check return code ...

 len = SQL_NTS;

 rc = SQLBindParameter(hstmt, (unsigned short)3, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_CHAR, 0, 0, &p3[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)4, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_VARCHAR, 0, 0, &p4[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)5, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_DECIMAL, 8, 2, &p5[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)6, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_TYPE_DATE, 0, 0, &p6[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)7, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_TYPE_TIME, 0, 0, &p7[0], 100, &len);

 // check return code ...

 rc = SQLBindParameter(hstmt, (unsigned short)8, SQL_PARAM_INPUT, SQL_C_TCHAR,

 SQL_TYPE_TIMESTAMP, 0, 0, &p8[0], 100, &len);

 // check return code ...

 len = 3;

 rc = SQLBindParameter(hstmt, (unsigned short)9, SQL_PARAM_INPUT, SQL_C_BINARY,

 SQL_BINARY, 0, 0, &p9[0], 100, &len);

 // check return code ...

 // execute the prepared statement

 rc = SQLExecute(hstmt);

 // check return code ...

 rc = SQLFreeStmt(hstmt, SQL_DROP);

 // check return code ...

 rc = SQLDisconnect(hdbc);

 // check return code ...

 rc = SQLFreeConnect(hdbc);

 // check return code ...

 rc = SQLFreeEnv(henv);

 // check return code ...

C Example

EXEC SQL BEGIN DECLARE SECTION;

 char hostVarStmt1[50];

 short hostVarDeptnumb;

EXEC SQL END DECLARE SECTION;

/* prepare the statement with a parameter marker */

strcpy(hostVarStmt1, "DELETE FROM org WHERE deptnumb = ?");

EXEC SQL PREPARE Stmt1 FROM :hostVarStmt1;

/* execute the statement for hostVarDeptnumb = 15 */

hostVarDeptnumb = 15;

EXEC SQL EXECUTE Stmt1 USING :hostVarDeptnumb;

82 Developing User-defined Routines (SQL and External)

JDBC Example

public static void parameterExample1() {

 String driver = "com.ibm.db2e.jdbc.DB2eDriver";

 String url = "jdbc:db2e:mysample";

 Connection conn = null;

 PreparedStatement pstmt = null;

 try

 {

 Class.forName(driver);

 conn = DriverManager.getConnection(url);

 // prepare the statement

 pstmt = conn.prepareStatement("INSERT INTO t1 VALUES

 (?, ?, ?, ?, ?, ?, ?, ?, ?)");

 // bind the input parameters

 pstmt.setInt(1, 1);

 pstmt.setShort(2, (short)2);

 pstmt.setString(3, "data1");

 pstmt.setString(4, "data2");

 pstmt.setBigDecimal(5, new java.math.BigDecimal("12.34"));

 pstmt.setDate(6, new java.sql.Date(System.currentTimeMillis()));

 pstmt.setTime(7, new java.sql.Time(System.currentTimeMillis()));

 pstmt.setTimestamp (8, new java.sql.Timestamp(System.currentTimeMillis()));

 pstmt.setBytes(9, new byte[] { (byte)’X’, (byte)’Y’, (byte)’Z’ });

 // execute the statement

 pstmt.execute();

 pstmt.close();

 conn.close();

 }

 catch (SQLException sqlEx)

 {

 while(sqlEx != null)

 {

 System.out.println("SQLERROR: \n" + sqlEx.getErrorCode() +

 ", SQLState: " + sqlEx.getSQLState() +

 ", Message: " + sqlEx.getMessage() +

 ", Vendor: " + sqlEx.getErrorCode());

 sqlEx = sqlEx.getNextException();

 }

 }

 catch (Exception ex)

 {

 ex.printStackTrace();

 }

}

ADO.NET Example [C#]

public static void ParameterExample1()

{

 DB2eConnection conn = null;

 DB2eCommand cmd = null;

 String connString = @"database=.\; uid=db2e; pwd=db2e";

 int i = 1;

 try

 {

 conn = new DB2eConnection(connString);

 conn.Open();

Chapter 4. Developing SQL procedures 83

cmd = new DB2eCommand("INSERT INTO t1 VALUES

 (?, ?, ?, ?, ?, ?, ?, ?, ?)", conn);

 // prepare the command

 cmd.Prepare();

 // bind the input parameters

 DB2eParameter p1 = new DB2eParameter("@p1", DB2eType.Integer);

 p1.Value = ++i;

 cmd.Parameters.Add(p1);

 DB2eParameter p2 = new DB2eParameter("@p2", DB2eType.SmallInt);

 p2.Value = 100;

 cmd.Parameters.Add(p2);

 DB2eParameter p3 = new DB2eParameter("@p3", DB2eType.Char);

 p3.Value = "data1";

 cmd.Parameters.Add(p3);

 DB2eParameter p4 = new DB2eParameter("@p4", DB2eType.VarChar);

 p4.Value = "data2";

 cmd.Parameters.Add(p4);

 DB2eParameter p5 = new DB2eParameter("@p5", DB2eType.Decimal);

 p5.Value = 20.25;

 cmd.Parameters.Add(p5);

 DB2eParameter p6 = new DB2eParameter("@p6", DB2eType.Date);

 p6.Value = DateTime.Now;

 cmd.Parameters.Add(p6);

 DB2eParameter p7 = new DB2eParameter("@p7", DB2eType.Time);

 p7.Value = new TimeSpan(23, 23, 23);

 cmd.Parameters.Add(p7);

 DB2eParameter p8 = new DB2eParameter("@p8", DB2eType.Timestamp);

 p8.Value = DateTime.Now;

 cmd.Parameters.Add(p8);

 byte []barr = new byte[3];

 barr[0] = (byte)’X’;

 barr[1] = (byte)’Y’;

 barr[2] = (byte)’Z’;

 DB2eParameter p9 = new DB2eParameter("@p9", DB2eType.Blob);

 p9.Value = barr;

 cmd.Parameters.Add(p9);

 // execute the prepared command

 cmd.ExecuteNonQuery();

 }

 catch (DB2eException e1)

 {

 for (int i=0; i < e1.Errors.Count; i++)

 {

 Console.WriteLine("Error #" + i + "\n" +

 "Message: " + e1.Errors[i].Message + "\n" +

 "Native: " + e1.Errors[i].NativeError.ToString() + "\n" +

 "SQL: " + e1.Errors[i].SQLState + "\n");

 }

 }

 catch (Exception e2)

 {

 Console.WriteLine(e2.Message);

 }

 finally

84 Developing User-defined Routines (SQL and External)

{

 if (conn != null && conn.State != ConnectionState.Closed)

 {

 conn.Close();

 conn = null;

 }

 }

}

Variables in SQL procedures (DECLARE, SET statements)

Local variable support in SQL procedures allows you to assign and retrieve SQL

values in support of SQL procedure logic.

Variables in SQL procedures are defined by using the DECLARE statement.

Values can be assigned to variables using the SET statement or the SELECT INTO

statement or as a default value when the variable is declared. Literals, expressions,

the result of a query, and special register values can be assigned to variables.

Variable values can be assigned to SQL procedure parameters, other variables in

the SQL procedure, and can be referenced as parameters within SQL statements

that executed within the routine.

The following example demonstrates various methods for assigning and retrieving

variable values.

 CREATE PROCEDURE proc_vars()

 SPECIFIC proc_vars

 LANGUAGE SQL

 BEGIN

 DECLARE v_rcount INTEGER;

 DECLARE v_max DECIMAL (9,2);

 DECLARE v_adate, v_another DATE;

 DECLARE v_total INTEGER DEFAULT 0; -- (1)

 SET v_total = v_total + 1 -- (2)

 SELECT MAX(salary) -- (3)

 INTO v_max FROM employee;

 VALUES CURRENT_DATE INTO v_date; -- (4)

 SELECT CURRENT DATE, CURRENT DATE -- (5)

 INTO v_adate, v_another

 FROM SYSIBM.SYSDUMMY1;

 DELETE FROM T;

 GET DIAGNOSTICS v_rcount = ROW_COUNT; -- (6)

 END

When declaring a variable, you can specify a default value using the DEFAULT

clause as in line (1). Line (2) shows that a SET statement can be used to assign a

single variable value. Variables can also be set by executing a SELECT or FETCH

statement in combination with the INTO clause as shown in line (3). Lines (4) and

(5) show how the VALUES INTO statement can be used to evaluate a function or

special register and assign the value to a variable or to multiple variables.

Chapter 4. Developing SQL procedures 85

You can also assign the result of a GET DIAGNOSTICS statement to a variable.

GET DIAGNOSTICS can be used to get a handle on the # of affected rows

(updated for an UPDATE statement, DELETE for a DELETE statement) or to get

the return status of a just executed SQL statement. Line (6) shows how the number

of rows modified by the just previously executed DELETE statement can be

assigned to a variable.

XML and XQuery support in SQL procedures

SQL procedures support parameters and variables of data type XML. They can be

used in SQL statements in the same way as variables of any other data type. In

addition, variables of data type XML can be passed as parameters to XQuery

expressions in XMLEXISTS, XMLQUERY and XMLTABLE expressions.

The following example shows the declaration, use, and assignment of XML

parameters and variables in an SQL procedure:

 CREATE TABLE T1(C1 XML) %

 CREATE PROCEDURE proc1(IN parm1 XML, IN parm2 VARCHAR(32000))

 LANGUAGE SQL

 BEGIN

 DECLARE var1 XML;

 /* check if the value of XML parameter parm1

 contains an item with a value less than 200 */

 IF(XMLEXISTS(’$x/ITEM[value < 200]’ passing by ref parm1 as "x"))THEN

 /* if it does, insert the value of parm1 into table T1 */

 INSERT INTO T1 VALUES(parm1);

 END IF;

 /* parse parameter parm2’s value and assign it to a variable */

 SET var1 = XMLPARSE(document parm2 preserve whitespace);

 /* insert variable var1 into table T1

 INSERT INTO T1 VALUES(var1);

 END %

In the example above there is a table T1 with an XML column. The SQL procedure

accepts two parameters of data type XML named parm1 and parm2. Within the SQL

procedure an XML variable is declared named var1.

The logic of the SQL procedure checks if the value of XML parameter parm1

contains an item with a value less than 200. If it does, the XML value is directly

inserted into column C1 in table T1.

Then the value of parameter parm2 is parsed using the XMLPARSE function and

assigned to XML variable var1. The XML variable value is then also inserted into

column C1 in table T1.

The ability to implement control flow logic around XQuery operations makes it

easy to develop complex algorithms that query and access XML data stored in a

database.

SQLCODE and SQLSTATE variables in SQL procedures

To perform error handling or to help you debug your SQL procedures, you might

find it useful to test the value of the SQLCODE or SQLSTATE values, return these

86 Developing User-defined Routines (SQL and External)

values as output parameters or as part of a diagnostic message string, or insert

these values into a table to provide basic tracing support.

To use the SQLCODE and SQLSTATE values within SQL procedures, you must

declare the following SQL variables in the SQL procedure body:

 DECLARE SQLCODE INTEGER DEFAULT 0;

 DECLARE SQLSTATE CHAR(5) DEFAULT ‘00000’;

DB2 implicitly sets these variables whenever a statement is executed. If a statement

raises a condition for which a handler exists, the values of the SQLSTATE and

SQLCODE variables are available at the beginning of the handler execution.

However, the variables are reset as soon as the first statement in the handler is

executed. Therefore, it is common practice to copy the values of SQLSTATE and

SQLCODE into local variables in the first statement of the handler. In the following

example, a CONTINUE handler for any condition is used to copy the SQLCODE

variable into another variable named retcode. The variable retcode can then be

used in the executable statements to control procedural logic, or pass the value

back as an output parameter.

BEGIN

 DECLARE SQLCODE INTEGER DEFAULT 0;

 DECLARE retcode INTEGER DEFAULT 0;

 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION, SQLWARNING, NOT FOUND

 SET retcode = SQLCODE;

 executable-statements

END

Note: When you access the SQLCODE or SQLSTATE variables in an SQL

procedure, DB2 sets the value of SQLCODE to 0 and SQLSTATE to ‘00000’ for the

subsequent statement.

Compound statements and scope of variables in SQL

procedures

SQL procedures can contain one or more compound statements. They can be

introduced in serial or can be nested within another compound statement. Each

compound statement introduces a new scope in which variables might or might

not be available for use.

The use of labels to identify a compound statement is important as the label can be

used to qualify and uniquely identify variables declared within the compound

statement. This is particularly important when referencing of variables in different

compound statements or in nested compound statements.

In the following example there are two declarations of the variable a. One instance

of it is declared in the outer compound statement that is labelled by lab1, and the

second instance is declared in the inner compound statement labelled by lab2. As it

is written, DB2 will presume that the reference to a in the assignment-statement is

the one which is in the local scope of the compound block, labelled by lab2.

However, if the intended instance of the variable a is the one declared in the

compound statement block labeled with lab1, then to correctly reference it in the

innermost compound block, the variable should be qualified with the label of that

block. That is, it should be qualified as: lab1.a.

 CREATE PROCEDURE P1 ()

 LANGUAGE SQL

 lab1: BEGIN

 DECLARE a INT DEFAULT 100;

Chapter 4. Developing SQL procedures 87

lab2: BEGIN

 DECLARE a INT DEFAULT NULL;

 SET a = a + lab1.a;

 UPDATE T1

 SET T1.b = 5

 WHERE T1.b = a; <-- Variable a refers to lab2.a

 unless qualified otherwise

 lab2: END;

 END lab1@

The outermost compound statement in an SQL procedure can be declared to be

atomic, by adding the keyword ATOMIC after the BEGIN keyword. If any error

occurs in the execution of the statements that comprise the atomic compound

statement, then the entire compound statement is rolled back.

Effect of commits and rollbacks on XML parameter and

variable values in SQL procedures

Commits and rollbacks within SQL procedures affect the values of parameters and

variables of data type XML. During the execution of SQL procedures, upon a

commit or rollback operation, the values assigned to XML parameters and XML

variables will no longer be available.

Attempts to reference an SQL variable or SQL parameter of data type XML after a

commit or rollback operation will cause an error (SQL1354N, 560CE) to be raised.

To successfully reference XML parameters and variables after a commit or rollback

operation occurs, new values must first be assigned to them.

Consider the availability of XML parameter and variable values when adding

ROLLBACK and COMMIT statements to SQL procedures.

Cursors in SQL procedures

In SQL procedures, a cursor make it possible to define a result set (a set of data

rows) and perform complex logic on a row by row basis. By using the same

mechanics, an SQL procedure can also define a result set and return it directly to

the caller of the SQL procedure or to a client application.

A cursor can be viewed as a pointer to one row in a set of rows. The cursor can

only reference one row at a time, but can move to other rows of the result set as

needed.

To use cursors in SQL procedures, you need to do the following:

1. Declare a cursor that defines a result set.

2. Open the cursor to establish the result set.

3. Fetch the data into local variables as needed from the cursor, one row at a time.

4. Close the cursor when done

To work with cursors you must use the following SQL statements:

v DECLARE CURSOR

v OPEN

v FETCH

v CLOSE

88 Developing User-defined Routines (SQL and External)

The following example demonstrates the basic use of a read-only cursor within an

SQL procedure:

 CREATE PROCEDURE sum_salaries(OUT sum INTEGER)

 LANGUAGE SQL

 BEGIN

 DECLARE p_sum INTEGER;

 DECLARE p_sal INTEGER;

 DECLARE c CURSOR FOR SELECT SALARY FROM EMPLOYEE;

 DECLARE SQLSTATE CHAR(5) DEFAULT ’00000’;

 SET p_sum = 0;

 OPEN c;

 FETCH FROM c INTO p_sal;

 WHILE(SQLSTATE = ’00000’) DO

 SET p_sum = p_sum + p_sal;

 FETCH FROM c INTO p_sal;

 END WHILE;

 CLOSE c;

 SET sum = p_sum;

 END%

Here is a more complex example of use of a cursor within an SQL procedure. This

example demonstrates the combined use of a cursor and SQL PL statements.

Cursors for XQuery expressions in SQL procedures

SQL Procedures support the definition of cursors on XQuery expressions. A cursor

on an XQuery expression allows you to iterate over the elements of the XQuery

sequence returned by the expression.

Unlike cursors defined on SQL statements, which can be defined either statically or

dynamically, cursors on XQuery expressions can only be defined dynamically. To

declare a cursor dynamically, it is necessary to declare a variable of type CHAR or

VARCHAR to contain the XQuery expression that will define the cursor result set.

The XQuery expression must be prepared before the cursor can be opened and the

result set resolved.

An example of an SQL procedure that dynamically declares a cursor for an XQuery

expression, opens the cursor, and fetches XML data is shown here:

CREATE PROCEDURE xmlProc(IN inCust XML, OUT resXML XML)

SPECIFIC xmlProc

LANGUAGE SQL

BEGIN

 DECLARE SQLSTATE CHAR(5);

 DECLARE stmt_text VARCHAR (1024);

 DECLARE customer XML;

 DECLARE cityXml XML;

 DECLARE city VARCHAR (100);

 DECLARE stmt STATEMENT;

 DECLARE cur1 CURSOR FOR stmt;

 -- Get the city of the input customer

 SET cityXml = XMLQUERY(’$cust/customerinfo//city’ passing inCust as "cust");

 SET city = XMLCAST(cityXml as VARCHAR(100));

 -- Iterate over all the customers from the city using an XQUERY cursor

 -- and collect the customer name values into the output XML value

Chapter 4. Developing SQL procedures 89

SET stmt_text = ’XQUERY for $cust

 in db2-fn:xmlcolumn("CUSTOMER.INFO")

 /*:customerinfo/*:addr[*:city= "’ || city ||’"]

 return <Customer>{$cust/../@Cid}{$cust/../*:name}</Customer>’;

 -- Use the name of the city for the input customer data as a prefix

 SET resXML = cityXml;

 PREPARE stmt FROM stmt_text;

 OPEN cur1;

 FETCH cur1 INTO customer;

 WHILE (SQLSTATE = ’00000’) DO

 SET resXML = XMLCONCAT(resXML, customer);

 FETCH cur1 INTO customer;

 END WHILE;

 set resXML = XMLQUERY(’<result> {$res} </result>’

 passing resXML as "res");

END

This SQL procedure collects the IDs and names of customers defined in a table

name CUSTOMER that are located in the same city as the customer for which

XML data is provided as an input parameter.

The SQL procedure above can be called by executing the CALL statement as

follows:

 CALL xmlProc(xmlparse(document ’<customerinfo Cid="5002">

 <name>Jim Noodle</name>

 <addr country="Canada">

 <street>25 EastCreek</street>

 <city>Markham</city>

 <prov-state>Ontario</prov-state>

 <pcode-zip>N9C-3T6</pcode-zip>

 </addr>

 <phone type="work">905-566-7258</phone>

 </customerinfo>’ PRESERVE WHITESPACE),?,?)

If this SQL procedure is created and run against the SAMPLE database, it returns

XML data for two customers.

Since parameter markers are not supported for XML values, a workaround to this

limitation is to construct a dynamic SQL statement out of concatenated statement

fragments that include the value of one or more local variables.

For example:

DECLARE person_name VARCHAR(128);

SET person_name = "Joe";

SET stmt_text = ’ for $fname in db2-fn:sqlquery

 ("SELECT doc

 FROM T1

 WHERE DOCID=1")//fullname where $fname/first = ’’’ person_name || ’’’;

This example returns a result set in a variable assignment for an XQuery statement

that contains an SQL fullselect. The result set contains the full names of persons

with the first name Joe. Functionally, the SQL portion selects the XML documents

from column doc in table T1 that have an ID of 1. The XQuery portion then selects

the fullname values in the XML documents where the value first is Joe.

90 Developing User-defined Routines (SQL and External)

SQL PL logic elements in the SQL-procedure body

Sequential execution is the most basic path that program execution can take. With

this method, the program starts execution at the first line of the code, followed by

the next, and continues until the final statement in the code has been executed.

This approach works fine for very simple tasks, but tends to lack usefulness

because it can only handle one situation. Programs often need to be able to decide

what to do in response to changing circumstances. By controlling a code’s

execution path, a specific piece of code can then be used to intelligently handle

more than one situation.

SQL PL provides support for variables and flow of control statements that can be

used to control the sequence of statement execution. Statements such as IF and

CASE are used to conditionally execute blocks of SQL PL statements, while other

statements, such as WHILE and REPEAT, are typically used to execute a set of

statements repetitively until a task is complete.

Although there are many types of SQL PL statements, there are a few categories

into which these can be sorted:

v Variable related statements

v Conditional statements

v Loop statements

v Transfer of control statements

Variable related statements

Variable related SQL statements are used to declare variables and to assign values

to variables. There are a few types of variable related statements:

v DECLARE <variable> statement in SQL procedures

v DECLARE <condition> statement in SQL procedures

v DECLARE <condition handler> statement in SQL procedures

v DECLARE CURSOR in SQL procedures

v SET (assignment-statement) in SQL procedures

These statements provide the necessary support required to make use of the other

types of SQL PL statements and SQL statements that will make use of variable

values.

Conditional statements in SQL procedures

Conditional statements are used to define what logic is to be executed based on

the status of some condition being satisfied. There are two types of conditional

statements supported in SQL procedures:

v CASE

v IF

These statements are similar; however the CASE statements extends the IF

statement.

CASE statement in SQL procedures

CASE statements can be used to conditionally enter into some logic based on the

status of a condition being satisfied. There are two types of CASE statements:

v Simple case statement: used to enter into some logic based on a literal value

Chapter 4. Developing SQL procedures 91

v Searched case statement: used to enter into some logic based on the value of an

expression

The WHEN clause of the CASE statement defines the value that when satisfied

determines the flow of control.

Here is an example of an SQL procedure with a CASE statement with a

simple-case-statement-when-clause:

 CREATE PROCEDURE UPDATE_DEPT (IN p_workdept)

 LANGUAGE SQL

 BEGIN

 DECLARE v_workdept CHAR(3);

 SET v_workdept = p_workdept;

 CASE v_workdept

 WHEN ’A00’ THEN

 UPDATE department SET deptname = ’D1’;

 WHEN ’B01’ THEN

 UPDATE department SET deptname = ’D2’;

 ELSE

 UPDATE department SET deptname = ’D3’;

 END CASE

 END

Here is an example of CASE statement with a searched-case-statement-when-
clause:

 CREATE PROCEDURE UPDATE_DEPT (IN p_workdept)

 LANGUAGE SQL

 BEGIN

 DECLARE v_workdept CHAR(3);

 SET v_workdept = p_workdept;

 CASE

 WHEN v_workdept = ’A00’ THEN

 UPDATE department SET deptname = ’D1’;

 WHEN v_workdept = ’B01’ THEN

 UPDATE department SET deptname = ’D2’;

 ELSE

 UPDATE department SET deptname = ’D3’;

 END CASE

 END

The examples provided above are logically equivalent, however it is important to

note that CASE statements with a searched-case-statement-when-clause can be very

powerful. Any supported SQL expression can be used here. These expressions can

contain references to variables, parameters, special registers, and more.

IF statement in SQL procedures

IF statements can be used to conditionally enter into some logic based on the

status of a condition being satisfied. The IF statement is logically equivalent to a

CASE statements with a searched-case-statement-when clause.

The IF statement supports the use of optional ELSE IF clauses and a default ELSE

clause. An END IF clause is required to indicate the end of the statement.

Here is an example of procedure that contains an IF statement:

92 Developing User-defined Routines (SQL and External)

CREATE PROCEDURE UPDATE_SAL (IN empNum CHAR(6),

 INOUT rating SMALLINT)

 LANGUAGE SQL

 BEGIN

 IF rating = 1 THEN

 UPDATE employee

 SET salary = salary * 1.10, bonus = 1000

 WHERE empno = empNum;

 ELSEIF rating = 2 THEN

 UPDATE employee

 SET salary = salary * 1.05, bonus = 500

 WHERE empno = empNum;

 ELSE

 UPDATE employee

 SET salary = salary * 1.03, bonus = 0

 WHERE empno = empNum;

 END IF;

 END

Looping statements in SQL procedures

Looping statements provide support for repeatedly executing some logic until a

condition is met. The following looping statements are supported in SQL PL:

v FOR

v LOOP

v REPEAT

v WHILE

The FOR statement is distinct from the others, because it is used to iterate over

rows of a defined result set, whereas the others are using for iterating over a series

of SQL statements until for each a condition is satisfied.

Labels can be defined for all loop-control-statements to identify them.

FOR statement in SQL procedures

FOR statements are a special type of looping statement, because they are used to

iterate over rows in a defined read-only result set. When a FOR statement is

executed a cursor is implicitly declared such that for each iteration of the FOR-loop

the next row is the result set if fetched. Looping continues until there are no rows

left in the result set.

The FOR statement simplifies the implementation of a cursor and makes it easy to

retrieve a set of column values for a set of rows upon which logical operations can

be performed.

Here is an example of an SQL procedure that contains only a simple FOR

statement:

 CREATE PROCEDURE P()

 LANGUAGE SQL

 BEGIN ATOMIC

 DECLARE fullname CHAR(40);

 FOR v AS cur1 CURSOR FOR

 SELECT firstnme, midinit, lastname FROM employee

 DO

 SET fullname = v.lastname || ’,’ || v.firstnme

 ||’ ’ || v.midinit;

 INSERT INTO tnames VALUES (fullname);

 END FOR;

 END

Chapter 4. Developing SQL procedures 93

Note: Logic such as is shown in the example above would be better implemented

using the CONCAT function. The simple example serves to demonstrate the

syntax.

The for-loop-name specifies a label for the implicit compound statement generated

to implemented the FOR statement. It follows the rules for the label of a

compound statement. The for-loop-name can be used to qualify the column names

in the result set as returned by the select-statement.

The cursor-name simply names the cursor that is used to select the rows from the

result set. If it is not specified, the DB2 database manager will automatically

generate a unique cursor name internally.

The column names of the select statement must be unique and a FROM clause

specifying a table (or multiple tables if doing some kind of JOIN or UNION) is

required. The tables and columns referenced must exist prior to the loop being

executed. Global temporary tables can be referenced.

Positioned updates and deletes are not supported in the FOR loop. Searched

updates and deletes however are allowed.

The cursor that is created in support of the FOR statement cannot be referenced

outside of the FOR loop.

LOOP statement in SQL procedures

The LOOP statement is a special type of looping statement, because has no

terminating condition clause. It defines a series of statements that are executed

repeatedly until another piece of logic, generally a transfer of control statement,

forces the flow of control to jump to some point outside of the loop.

The LOOP statement is generally used in conjunction with one of the following

statements: LEAVE, GOTO, ITERATE, or RETURN. These statements can force

control to just after the loop, to a specified location in the SQL procedure, to the

start of the loop to begin another iteration of the loop, or to exit the SQL

procedure. To indicate where to pass flow to when using these statements, labels

are used.

The LOOP statement is useful when you have complicated logic in a loop which

you might need to exit in more than one way, however it should be used with care

to avoid instances of infinite loops.

If the LOOP statement is used alone without a transfer of control statement, the

series of statements included in the loop will be executed indefinitely or until a

database condition occurs that raises a condition handler that forces a change in

the control flow or a condition occurs that is not handled that forces the return of

the SQL procedure.

Here is an example of an SQL procedure that contains a LOOP statement. It also

uses the ITERATE and LEAVE statements.

 CREATE PROCEDURE ITERATOR()

 LANGUAGE SQL

 BEGIN

 DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);

 DECLARE at_end INTEGER DEFAULT 0;

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE c1 CURSOR FOR SELECT deptno, deptname

94 Developing User-defined Routines (SQL and External)

FROM department ORDER BY deptno;

 DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;

 OPEN c1;

 ins_loop: LOOP

 FETCH c1 INTO v_deptno, v_deptname;

 IF at_end = 1 THEN

 LEAVE ins_loop;

 ELSEIF v_dept = ’D11’ THEN

 ITERATE ins_loop;

 END IF;

 INSERT INTO department (deptno, deptname)

 VALUES (’NEW’, v_deptname);

 END LOOP;

 CLOSE c1;

 END

WHILE statement in SQL procedures

The WHILE statement defines a set of statements to be executed until a condition

that is evaluated at the beginning of the WHILE loop is false. The

while-loop-condition (an expression) is evaluated before each iteration of the loop.

Here is an example of an SQL procedure with a simple WHILE loop:

 CREATE PROCEDURE sum_mn (IN p_start INT

 ,IN p_end INT

 ,OUT p_sum INT)

 SPECIFIC sum_mn

 LANGUAGE SQL

 smn: BEGIN

 DECLARE v_temp INTEGER DEFAULT 0;

 DECLARE v_current INTEGER;

 SET v_current = p_start;

 WHILE (v_current <= p_end) DO

 SET v_temp = v_temp + v_current;

 SET v_current = v_current + 1;

 END WHILE;

 p_sum = v_current;

 END smn;

Note: Logic such as is shown in the example above would be better implemented

using a mathematical formula. The simple example serves to demonstrate the

syntax.

REPEAT statement in SQL procedures

The REPEAT statement defines a set of statements to be executed until a condition

that is evaluated at the end of the REPEAT loop is true. The repeat-loop-condition

is evaluated at the completion of each iteration of the loop.

With a WHILE statement, the loop is not entered if the while-loop-condition is

false at 1st pass. The REPEAT statement is useful alternative; however it is

noteworthy that while-loop logic can be rewritten as a REPEAT statement.

Here is an SQL procedure that includes a REPEAT statement:

Chapter 4. Developing SQL procedures 95

CREATE PROCEDURE sum_mn2 (IN p_start INT

 ,IN p_end INT

 ,OUT p_sum INT)

 SPECIFIC sum_mn2

 LANGUAGE SQL

 smn2: BEGIN

 DECLARE v_temp INTEGER DEFAULT 0;

 DECLARE v_current INTEGER;

 SET v_current = p_start;

 REPEAT

 SET v_temp = v_temp + v_current;

 SET v_current = v_current + 1;

 UNTIL (v_current > p_end)

 END REPEAT;

 END

Transfer of control statements in SQL procedures

Transfer of control statements are used to redirect the flow of control within an

SQL procedure. This unconditional branching can be used to cause the flow of

control to jump from one point to another point, which can either precede or

follow the transfer of control statement. The supported transfer of control

statements in SQL procedures are:

v GOTO

v ITERATE

v LEAVE

v RETURN

Transfer of control statements can be used anywhere within an SQL procedure,

however ITERATE and LEAVE are generally used in conjunction with a LOOP

statement or other looping statements.

GOTO statement in SQL procedures

The GOTO statement is a straightforward and basic flow of control statement that

causes an unconditional change in the flow of control. It is used to branch to a

specific user-defined location using labels defined in the SQL procedure.

Use of the GOTO statement is generally considered to be poor programming

practice and is not recommended. Extensive use of GOTO tends to lead to

unreadable code especially when procedures grow long. Besides, GOTO is not

necessary because there are better statements available to control the execution

path. There are no specific situations that require the use of GOTO; instead it is

more often used for convenience.

Here is an example of an SQL procedure that contains a GOTO statement:

 CREATE PROCEDURE adjust_salary (IN p_empno CHAR(6),

 IN p_rating INTEGER,

 OUT p_adjusted_salary DECIMAL (8,2))

 LANGUAGE SQL

 BEGIN

 DECLARE new_salary DECIMAL (9,2);

 DECLARE service DATE; -- start date

 SELECT salary, hiredate INTO v_new_salary, v_service

 FROM employee

 WHERE empno = p_empno;

96 Developing User-defined Routines (SQL and External)

IF service > (CURRENT DATE - 1 year) THEN

 GOTO exit;

 END IF;

 IF p_rating = 1 THEN

 SET new_salary = new_salary + (new_salary * .10);

 END IF;

 UPDATE employee SET salary = new_salary WHERE empno = p_empno;

 exit:

 SET p_adjusted_salary = v_new_salary;

 END

This example demonstrates what of the good uses of the GOTO statement:

skipping almost to the end of a procedure or loop so as not to execute some logic,

but to ensure that some other logic does still get executed.

You should be aware of a few additional scope considerations when using the

GOTO statement:

v If the GOTO statement is defined in a FOR statement, the label must be defined

inside the same FOR statement, unless it is in a nested FOR statement or nested

compound statement.

v If the GOTO statement is defined in a compound statement, the label must be

defined in side the same compound statement, unless it is in a nested FOR

statement or nested compound statement.

v If the GOTO statement is defined in a handler, the label must be defined in the

same handler, following the other scope rules.

v If the GOTO statement is defined outside of a handler, the label must not be

defined within a handler.

v If the label is not defined within a scope that the GOTO statement can reach, an

error is returned (SQLSTATE 42736).

ITERATE statement in SQL procedures

The ITERATE statement is used to cause the flow of control to return to the

beginning of a labeled LOOP statement.

Here is an example of an SQL procedure that contains an ITERATE statement:

 CREATE PROCEDURE ITERATOR()

 LANGUAGE SQL

 BEGIN

 DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);

 DECLARE at_end INTEGER DEFAULT 0;

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE c1 CURSOR FOR SELECT deptno, deptname

 FROM department ORDER BY deptno;

 DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;

 OPEN c1;

 ins_loop: LOOP

 FETCH c1 INTO v_deptno, v_deptname;

 IF at_end = 1 THEN

 LEAVE ins_loop;

 ELSEIF v_dept = ’D11’ THEN

 ITERATE ins_loop;

 END IF;

Chapter 4. Developing SQL procedures 97

INSERT INTO department (deptno, deptname)

 VALUES (’NEW’, v_deptname);

 END LOOP;

 CLOSE c1;

 END

In the example, the ITERATE statement is used to return the flow of control to the

LOOP statement defined with label ins_loop when a column value in a fetched

row matches a certain value. The position of the ITERATE statement ensures that

no values are inserted into the department table.

LEAVE statement in SQL procedures

The LEAVE statement is used to transfer the flow of control out of a loop or

compound statement.

Here is an example of an SQL procedure that contain a LEAVE statement:

 CREATE PROCEDURE ITERATOR()

 LANGUAGE SQL

 BEGIN

 DECLARE v_deptno CHAR(3); DECLARE v_deptname VARCHAR(29);

 DECLARE at_end INTEGER DEFAULT 0;

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE c1 CURSOR FOR SELECT deptno, deptname

 FROM department ORDER BY deptno;

 DECLARE CONTINUE HANDLER FOR not_found SET at_end = 1;

 OPEN c1;

 ins_loop: LOOP

 FETCH c1 INTO v_deptno, v_deptname;

 IF at_end = 1 THEN

 LEAVE ins_loop;

 ELSEIF v_dept = ’D11’ THEN

 ITERATE ins_loop;

 END IF;

 INSERT INTO department (deptno, deptname)

 VALUES (’NEW’, v_deptname);

 END LOOP;

 CLOSE c1;

END

In the example, the LEAVE statement is used to exit the LOOP statement defined

with label ins_loop. It is nested within an IF statement and therefore is

conditionally executed when the IF-condition is true which becomes true when

there are no more rows found in the cursor. The position of the LEAVE statement

ensures that no further iterations of the loop are executed once a NOT FOUND

error is raised.

RETURN statement in SQL procedures

The RETURN statement is used to unconditionally and immediately terminate an

SQL procedure by returning the flow of control to the caller of the stored

procedure.

98 Developing User-defined Routines (SQL and External)

It is mandatory that when the RETURN statement is executed that it return an

integer value. If the return value is not provided, the default is 0. The value is

typically used to indicate success or failure of the procedure’s execution. The value

can be a literal, variable, or an expression that evaluates to an integer value.

You can use one or more RETURN statements in a stored procedure. The RETURN

statement can be used anywhere after the declaration blocks within the

SQL-procedure-body.

To return multiple output values, parameters can be used instead. Parameter

values must be set prior to the RETURN statement being executed.

Here is an example of an SQL procedure that uses the RETURN statement:

 CREATE PROCEDURE return_test (IN p_empno CHAR(6),

 IN p_emplastname VARCHAR(15))

 LANGUAGE SQL

 SPECIFIC return_test

 BEGIN

 DECLARE v_lastname VARCHAR (15);

 SELECT lastname INTO v_lastname

 FROM employee

 WHERE empno = p_empno;

 IF v_lastname = p_emplastname THEN

 RETURN 1;

 ELSE

 RETURN -1;

 END IF;

 END rt

In the example, if the parameter p_emplastname matches the value stored in table

employee, the procedure returns 1. If it does not match, it returns -1.

Condition handlers in SQL procedures

Condition handlers determine the behavior of your SQL procedure when a

condition occurs. You can declare one or more condition handlers in your SQL

procedure for general conditions, named conditions, or specific SQLSTATE values.

If a statement in your SQL procedure raises an SQLWARNING or NOT FOUND

condition, and you have declared a handler for the respective condition, DB2

passes control to the corresponding handler. If you have not declared a handler for

such a condition, DB2 passes control to the next statement in the SQL procedure

body. If the SQLCODE and SQLSTATE variables have been declared, they will

contain the corresponding values for the condition.

If a statement in your SQL procedure raises an SQLEXCEPTION condition, and

you declared a handler for the specific SQLSTATE or the SQLEXCEPTION

condition, DB2 passes control to that handler. If the SQLSTATE and SQLCODE

variables have been declared, their values after the successful execution of a

handler will be ‘00000’ and 0 respectively.

If a statement in your SQL procedure raises an SQLEXCEPTION condition, and

you have not declared a handler for the specific SQLSTATE or the

SQLEXCEPTION condition, DB2 terminates the SQL procedure and returns to the

caller.

Chapter 4. Developing SQL procedures 99

Returning result sets from SQL procedures

In SQL procedures, cursors can be used to do more than iterate through rows of a

result set. They can also be used to return result sets to the calling program. Result

sets can be retrieved by SQL procedures (in the case of a nested procedure calls) or

client applications programmed in C using the CLI application programming

interface, Java, CLI, or .NET CLR languages.

Prerequisites

v Authority to create an SQL procedure

To return a result set from an SQL procedure, you must:

1. Specify the DYNAMIC RESULT SETS clause in the CREATE PROCEDURE

statement

2. DECLARE the cursor using the WITH RETURN clause

3. Open the cursor in the SQL procedure

4. Keep the cursor open for the client application - do not close it

Here is an example of an SQL procedure that only returns a single result set:

 CREATE PROCEDURE read_emp()

 SPECIFIC read_emp

 LANGUAGE SQL

 DYNAMIC RESULT SETS 1

 Re: BEGIN

 DECLARE c_emp CURSOR WITH RETURN FOR

 SELECT salary, bonus, comm.

 FROM employee

 WHERE job != ’PRES’;

 OPEN c_emp;

 END Re

If the cursor is closed using the CLOSE statement prior to the return of the SQL

procedure, the cursor result set will not be returned to the caller or client

application.

Multiple result sets can be returned from an SQL procedure by using multiple

cursors. To return multiple cursors the following must be done:

v Specify the DYNAMIC RESULT SETS clause in the CREATE PROCEDURE

statement. Specify the maximum possible number of result sets likely to be

returned. The number of results sets actually returned must not exceed this

number.

v Declare cursors for each of the result sets to be returned that specify the WITH

RETURN clause.

v Open the cursors to be returned.

v Keep the cursor open for the client application - do not close them.

One cursor is required per result set that is to be returned.

Result sets are returned to the caller in the order in which they are opened.

Once you have created the SQL procedure that returns a result set you might want

to call it and retrieve the result set.

100 Developing User-defined Routines (SQL and External)

Receiving procedure result sets in SQL routines

You can receive result sets from procedures you invoke from within an SQL-bodied

routine.

You must know how many result sets the invoked procedure will return. For each

result set that the invoking routine receives, a result set must be declared.

To accept procedure result sets from within an SQL-bodied routine:

1. DECLARE result set locators for each result set that the procedure will return.

For example:

 DECLARE result1 RESULT_SET_LOCATOR VARYING;

 DECLARE result2 RESULT_SET_LOCATOR VARYING;

 DECLARE result3 RESULT_SET_LOCATOR VARYING;

2. Invoke the procedure. For example:

 CALL targetProcedure();

3. ASSOCIATE the result set locator variables (defined above) with the invoked

procedure. For example:

 ASSOCIATE RESULT SET LOCATORS(result1, result2, result3)

 WITH PROCEDURE targetProcedure;

4. ALLOCATE the result set cursors passed from the invoked procedure to the

result set locators. For example:

 ALLOCATE rsCur CURSOR FOR RESULT SET result1;

5. FETCH rows from the result sets. For example:

 FETCH rsCur INTO ...

Creating SQL procedures

Creating SQL procedures is similar to creating any database object in that it

consists of executing a DDL SQL statement.

SQL procedures are created by executing the CREATE PROCEDURE statement

which can be done using graphical development environment tools or by directly

executing the statement from the DB2 Command Line Processor (CLP), a DB2

Command Window, the DB2 Command Editor, or another DB2 interface.

When creating SQL procedures, you can specify how the precompiler and binder

should generate the procedure package, what authorization ID should be used to

set the SQL procedure definer in the DB2 catalog views, and to set other package

options.

Creating SQL procedures from the command line

Prerequisites

v The user must have the privileges required to execute the CREATE

PROCEDURE statement for an SQL procedure.

v Privileges to execute all of the SQL statements included within the

SQL-procedure-body of the procedure.

v Any database objects referenced in the CREATE PROCEDURE statement for the

SQL procedure must exist prior to the execution of the statement.

Procedure

Chapter 4. Developing SQL procedures 101

v Select an alternate terminating character for the Command Line Processor (DB2

CLP) other than the default terminating character, which is a semicolon (’;’), to

use in the script that you will prepare in the next step.

This is required so that the CLP can distinguish the end of SQL statements that

appear within the body of a routine’s CREATE statement from the end of the

CREATE PROCEDURE statement itself. The semicolon character must be used to

terminate SQL statements within the SQL routine body and the chosen alternate

terminating character should be used to terminate the CREATE statement and

any other SQL statements that you might contain within your CLP script.

For example, in the following CREATE PROCEDURE statement, the ’at;’ sign

(’@’) is used as the terminating character for a DB2 CLP script named

myCLPscript.db2:

 CREATE PROCEDURE UPDATE_SALARY_IF

 (IN employee_number CHAR(6), IN rating SMALLINT)

 LANGUAGE SQL

 BEGIN

 DECLARE not_found CONDITION FOR SQLSTATE ’02000’;

 DECLARE EXIT HANDLER FOR not_found

 SIGNAL SQLSTATE ’20000’ SET MESSAGE_TEXT = ’Employee not found’;

 IF (rating = 1)

 THEN UPDATE employee

 SET salary = salary * 1.10, bonus = 1000

 WHERE empno = employee_number;

 ELSEIF (rating = 2)

 THEN UPDATE employee

 SET salary = salary * 1.05, bonus = 500

 WHERE empno = employee_number;

 ELSE UPDATE employee

 SET salary = salary * 1.03, bonus = 0

 WHERE empno = employee_number;

 END IF;

 END

@

v Run the DB2 CLP script containing the CREATE PROCEDURE statement for the

procedure from the command line, using the following CLP command:

 db2 -td <terminating-character> -vf <CLP-script-name>

where <terminating-character> is the terminating character used in the CLP script

file CLP-script-name that is to be run.

The DB2 CLP option -td indicates that the CLP terminator default is to be reset

with terminating character. The -vf indicates that the CLP’s optional verbose (-v)

option is to be used, which will cause each SQL statement or command in the

script to be displayed to the screen as it is run, along with any output that

results from its execution. The -f option indicates that the target of the command

is a file.

To run the specific script shown in the first step, issue the following command

from the system command prompt:

 db2 -td@ -vf myCLPscript.db2

Customizing precompile and bind options for SQL procedures

The precompile and bind options for SQL procedures can be customized by setting

the instance-wide DB2 registry variable, DB2_SQLROUTINE_PREPOPTS with the

command:

 db2set DB2_SQLROUTINE_PREPOPTS=<options>

Only the following options are allowed:

102 Developing User-defined Routines (SQL and External)

BLOCKING {UNAMBIG | ALL | NO}

 DATETIME {DEF | USA | EUR | ISO | JIS | LOC}

 DEGREE {1 | degree-of-parallelism | ANY}

 DYNAMICRULES {BIND | RUN}

 DYNAMICRULES {BIND | RUN | DEFINERUN | DEFINEBIND | INVOKERUN | INVOKEBIND }

 EXPLAIN {NO | YES | ALL}

 EXPLSNAP {NO | YES | ALL}

 FEDERATED {NO | YES}

 INSERT {DEF | BUF}

 ISOLATION {CS |RR |UR |RS |NC}

 QUERYOPT optimization-level

 REOPT {ALWAYS |NONE |ONCE}

 VALIDATE {RUN | BIND}

These options can be changed at the procedure level with the SET_ROUTINE_OPTS

stored procedure. The values of the options set for the creation of SQL procedures

in the current session can be obtained with the GET_ROUTINE_OPTS function.

Example.

 The SQL procedures used in this example will be defined in CLP scripts

(given below). These scripts are not in the sqlproc samples directory, but

you can easily create these files by cutting-and-pasting the CREATE

procedure statements into your own files.

 The examples use a table named ″expenses″, which you can create in the

sample database as follows:

 db2 connect to sample

 db2 CREATE TABLE expenses(amount DOUBLE, date DATE)

 db2 connect reset

To begin, specify the use of ISO format for dates as an instance-wide

setting:

 db2set DB2_SQLROUTINE_PREPOPTS="DATETIME ISO"

 db2stop

 db2start

Stopping and restarting DB2 is necessary for the change to take affect.

 Then connect to the database:

 db2 connect to sample

The first procedure is defined in CLP script maxamount.db2 as follows:

 CREATE PROCEDURE maxamount(OUT maxamnt DOUBLE)

 BEGIN

 SELECT max(amount) INTO maxamnt FROM expenses;

 END @

It will be created with options DATETIME ISO and ISOLATION UR:

 db2 "CALL SET_ROUTINE_OPTS(GET_ROUTINE_OPTS() || ’ ISOLATION UR’)"

 db2 -td@ -vf maxamount.db2

The next procedure is defined in CLP script fullamount.db2 as follows:

CREATE PROCEDURE fullamount(OUT fullamnt DOUBLE)

BEGIN

 SELECT sum(amount) INTO fullamnt FROM expenses;

END @

It will be created with option ISOLATION CS (note that we are not using the

instance-wide DATETIME ISO setting in this case):

Chapter 4. Developing SQL procedures 103

CALL SET_ROUTINE_OPTS(’ISOLATION CS’)

 db2 -td@ -vf fullamount.db2

The last procedure in the example is defined in CLP script perday.db2 as

follows:

CREATE PROCEDURE perday()

BEGIN

 DECLARE cur1 CURSOR WITH RETURN FOR

 SELECT date, sum(amount)

 FROM expenses

 GROUP BY date;

 OPEN cur1;

END @

The last SET_ROUTINE_OPTS call uses the NULL value as the argument. This

restores the global setting specified in the DB2_SQLROUTINE_PREPOPTS

registry, so the last procedure will be created with option DATETIME ISO:

 CALL SET_ROUTINE_OPTS(NULL)

 db2 -td@ -vf perday.db2

Improving the performance of SQL procedures

Overview of how DB2 compiles SQL PL and inline SQL PL

Before discussing how to improve the performance of SQL procedures we should

discuss how DB2 compiles them upon the execution of the CREATE PROCEDURE

statement.

When an SQL procedure is created, DB2 separates the SQL queries in the

procedure body from the procedural logic. To maximize performance, the SQL

queries are statically compiled into sections in a package. For a statically compiled

query, a section consists mainly of the access plan selected by the DB2 optimizer

for that query. A package is a collection of sections. For more information on

packages and sections, please refer to the DB2 SQL Reference. The procedural logic

is compiled into a dynamically linked library.

During the execution of a procedure, every time control flows from the procedural

logic to an SQL statement, there is a ″context switch″ between the DLL and the

DB2 engine. As of DB2 Version 8.1, SQL procedures run in ″unfenced mode″. That

is they run in the same addressing space as the DB2 engine. Therefore the context

switch we refer to here is not a full context switch at the operating system level,

but rather a change of layer within DB2. Reducing the number of context switches

in procedures that are invoked very often, such as procedures in an OLTP

application, or that process large numbers of rows, such as procedures that

perform data cleansing, can have a noticeable impact on their performance.

Whereas an SQL procedure containing SQL PL is implemented by statically

compiling its individual SQL queries into sections in a package, an inline SQL PL

function is implemented, as the name suggests, by inlining the body of the

function into the query that uses it. Queries in SQL functions are compiled

together, as if the function body were a single query. The compilation occurs every

time a statement that uses the function is compiled. Unlike what happens in SQL

procedures, procedural statements in SQL functions are not executed in a different

layer than dataflow statements. Therefore, there is no context switch every time

control flows from a procedural to a dataflow statement or vice versa.

104 Developing User-defined Routines (SQL and External)

If there are no side-effects in your logic use an SQL function

instead

Because of the difference in compilation between SQL PL in procedures and inline

SQL PL in functions, it is reasonable to presume that a piece of procedural code

will execute faster in a function than in a procedure if it only queries SQL data and

does no data modifications - that is it has no side-effects on the data in the

database or external to the database.

That is only good news if all the statements that you need to execute are

supported in SQL functions. SQL functions can not contain SQL statements that

modify the database. As well, only a subset of SQL PL is available in the inline

SQL PL of functions. For example, you cannot execute CALL statements, declare

cursors, or return result sets in SQL functions.

Here is an example of an SQL procedure containing SQL PL that was a good

candidate for conversion to an SQL function to maximize performance:

 CREATE PROCEDURE GetPrice (IN Vendor CHAR&(20&),

 IN Pid INT, OUT price DECIMAL(10,3))

 LANGUAGE SQL

 BEGIN

 IF Vendor eq; ssq;Vendor 1ssq;

 THEN SET price eq; (SELECT ProdPrice

 FROM V1Table

 WHERE Id = Pid);

 ELSE IF Vendor eq; ssq;Vendor 2ssq;

 THEN SET price eq; (SELECT Price FROM V2Table

 WHERE Pid eq; GetPrice.Pid);

 END IF;

 END

Here is the rewritten SQL function:

 CREATE FUNCTION GetPrice (Vendor CHAR(20), Pid INT)

 RETURNS DECIMAL(10,3)

 LANGUAGE SQL

 BEGIN

 DECLARE price DECIMAL(10,3);

 IF Vendor = ’Vendor 1’

 THEN SET price = (SELECT ProdPrice

 FROM V1Table

 WHERE Id = Pid);

 ELSE IF Vendor = ’Vendor 2’

 THEN SET price = (SELECT Price FROM V2Table

 WHERE Pid = GetPrice.Pid);

 END IF;

 RETURN price;

 END

Remember that the invocation of a function is different than a procedure. To

invoke the function, use the VALUES statement or invoke the function where an

expression is valid, such as in a SELECT or SET statement. Any of the following

are valid ways of invoking the new function:

 VALUES (GetPrice(’IBM’, 324))

 SELECT VName FROM Vendors WHERE GetPrice(Vname, Pid) < 10

 SET price = GetPrice(Vname, Pid)

Chapter 4. Developing SQL procedures 105

Avoid multiple statements in an SQL PL procedure when just

one is sufficient

Although it is generally a good idea to write concise SQL, it is very ease to forget

to do this in practice. For example the following SQL statements:

 INSERT INTO tab_comp VALUES (item1, price1, qty1);

 INSERT INTO tab_comp VALUES (item2, price2, qty2);

 INSERT INTO tab_comp VALUES (item3, price3, qty3);

can be rewritten as a single statement:

 INSERT INTO tab_comp VALUES (item1, price1, qty1),

 (item2, price2, qty2),

 (item3, price3, qty3);

The multi-row insert will require roughly one third of the time required to execute

the three original statements. Isolated, this improvement might seem negligible,

but if the code fragment is executed repeatedly, for example in a loop or in a

trigger body, the improvement can be significant.

Similarly, a sequence of SET statements like:

 SET A = expr1;

 SET B = expr2;

 SET C = expr3;

can be written as a single VALUES statement:

 VALUES expr1, expr2, expr3 INTO A, B, C;

This transformation preserves the semantics of the original sequence if there are no

dependencies between any two statements. To illustrate this, consider:

 SET A = monthly_avg * 12;

 SET B = (A / 2) * correction_factor;

Converting the previous two statements to:

 VALUES (monthly_avg * 12, (A / 2) * correction_factor) INTO A, B;

does not preserve the original semantics because the expressions before the INTO

keyword are evaluated ’in parallel’. This means that the value assigned to B is not

based on the value assigned to A, which was the intended semantics of the original

statements.

Reduce multiple SQL statements to a single SQL expression

Like other programming languages, the SQL language provides two types of

conditional constructs: procedural (IF and CASE statements) and functional (CASE

expressions). In most circumstances where either type can be used to express a

computation, using one or the other is a matter of taste. However, logic written

using CASE expressions is not only more compact, but also more efficient than

logic written using CASE or IF statements.

Consider the following fragment of SQL PL code:

 IF (Price <= MaxPrice) THEN

 INSERT INTO tab_comp(Id, Val) VALUES(Oid, Price);

 ELSE

 INSERT INTO tab_comp(Id, Val) VALUES(Oid, MaxPrice);

 END IF;

106 Developing User-defined Routines (SQL and External)

The condition in the IF clause is only being used to decide what value is inserted

in the tab_comp.Val column. To avoid the context switch between the procedural

and the dataflow layers, the same logic can be expressed as a single INSERT with a

CASE expression:

 INSERT INTO tab_comp(Id, Val)

 VALUES(Oid,

 CASE

 WHEN (Price <= MaxPrice) THEN Price

 ELSE MaxPrice

 END);

It’s worth noting that CASE expressions can be used in any context where a scalar

value is expected. In particular, they can be used on the right-hand side of

assignments. For example:

 IF (Name IS NOT NULL) THEN

 SET ProdName = Name;

 ELSEIF (NameStr IS NOT NULL) THEN

 SET ProdName = NameStr;

 ELSE

 SET ProdName = DefaultName;

 END IF;

can be rewritten as:

 SET ProdName = (CASE

 WHEN (Name IS NOT NULL) THEN Name

 WHEN (NameStr IS NOT NULL) THEN NameStr

 ELSE DefaultName

 END);

In fact, this particular example admits an even better solution:

 SET ProdName = COALESCE(Name, NameStr, DefaultName);

Don’t underestimate the benefit of taking the time to analyze and consider

rewriting your SQL. The performance benefits will pay you back many times over

for the time invested in analyzing and rewriting your procedure.

Exploit the set-at-a-time semantics of SQL

Procedural constructs such as loops, assignment and cursors allow us to express

computations that would not be possible to express using just SQL DML

statements. But when we have procedural statements at our disposal, there is a

risk that we could turn to them even when the computation at hand can, in fact,

be expressed using just SQL DML statements. As we’ve mentioned earlier, the

performance of a procedural computation can be orders of magnitude slower than

the performance of an equivalent computation expressed using DML statements.

Consider the following fragment of code:

 DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;

 OPEN cur1;

 FETCH cur1 INTO v1, v2;

 WHILE SQLCODE <> 100 DO

 IF (v1 > 20) THEN

 INSERT INTO tab_sel VALUES (20, v2);

 ELSE

 INSERT INTO tab_sel VALUES (v1, v2);

 END IF;

 FETCH cur1 INTO v1, v2;

 END WHILE;

Chapter 4. Developing SQL procedures 107

To begin with, the loop body can be improved by applying the transformation

discussed in the last section - ″Reduce multiple SQL statements to a single SQL

expression″:

 DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;

 OPEN cur1;

 FETCH cur1 INTO v1, v2;

 WHILE SQLCODE <> 100 DO

 INSERT INTO tab_sel VALUES (CASE

 WHEN v1 > 20 THEN 20

 ELSE v1

 END, v2);

 FETCH cur1 INTO v1, v2;

 END WHILE;

But upon closer inspection, the whole block of code can be written as an INSERT

with a sub-SELECT:

 INSERT INTO tab_sel (SELECT (CASE

 WHEN col1 > 20 THEN 20

 ELSE col1

 END),

 col2

 FROM tab_comp);

In the original formulation, there was a context switch between the procedural and

the dataflow layers for each row in the SELECT statements. In the last formulation,

there is no context switch at all, and the optimizer has a chance to globally

optimize the full computation.

On the other hand, this dramatic simplification would not have been possible if

each of the INSERT statements targeted a different table, as shown below:

 DECLARE cur1 CURSOR FOR SELECT col1, col2 FROM tab_comp;

 OPEN cur1;

 FETCH cur1 INTO v1, v2;

 WHILE SQLCODE <> 100 DO

 IF (v1 > 20) THEN

 INSERT INTO tab_default VALUES (20, v2);

 ELSE

 INSERT INTO tab_sel VALUES (v1, v2);

 END IF;

 FETCH cur1 INTO v1, v2;

 END WHILE;

However, the set-at-a-time nature of SQL can also be exploited here:

 INSERT INTO tab_sel (SELECT col1, col2

 FROM tab_comp

 WHERE col1 <= 20);

 INSERT INTO tab_default (SELECT col1, col2

 FROM tab_comp

 WHERE col1 > 20);

When looking at improving the performance of existing procedural logic, any time

spent in eliminating cursor loops will likely pay off.

Keep the DB2 optimizer informed

When a procedure is created, its individual SQL queries are compiled into sections

in a package. The DB2 optimizer chooses an execution plan for a query based,

among other things, on table statistics (for example, table sizes or the relative

frequency of data values in a column) and indexes available at the time the query

is compiled. When tables suffer significant changes, it may be a good idea to let

108 Developing User-defined Routines (SQL and External)

DB2 collect statistics on these tables again. And when statistics are updated or new

indexes are created, it may also be a good idea to rebind the packages associated

with SQL procedures that use the tables, to let DB2 create plans that exploit the

latest statistics and indexes.

Table statistics can be updated using the RUNSTATS command. To rebind the

package associated with an SQL procedure, you can use the

REBIND_ROUTINE_PACKAGE built-in procedure that is available in DB2 Version

8.1. For example, the following command can be used to rebind the package for

procedure MYSCHEMA.MYPROC:

 CALL SYSPROC.REBIND_ROUTINE_PACKAGE(’P’, ’MYSCHEMA.MYPROC’, ’ANY’)

where ’P’ indicates that the package corresponds to a procedure and ’ANY’

indicates that any of the functions and types in the SQL path are considered for

function and type resolution. See the Command Reference entry for the REBIND

command for more details.

Use arrays

You can use arrays to efficiently pass collections of data between applications and

stored procedures and to store and manipulate transient collections of data within

SQL procedures without having to use relational tables. Operators on arrays

available within SQL procedures allow for the efficient storage and retrieval of

data. Applications that create arrays of moderate size will experience significantly

better performance than applications that create very large arrays (on the scale of

multiple megabytes), as the entire array is stored in main memory. See Related links

section for additional information.

Chapter 4. Developing SQL procedures 109

110 Developing User-defined Routines (SQL and External)

Chapter 5. Overview of external routines

External routines are characterized primarily by the fact that their routine logic is

implemented in programming language code and not in SQL.

Before deciding to implement an external routine, it is important that you

understand what external routines are, how they are implemented, and how they

can be used. The following concept topics will help you get an understanding of

external routines so that you can make informed decisions about when and how to

use them in your database environment:

v “External routine features”

v External routine creation

v External routine library or class management

v Supported programming languages for external routine development

v 32-bit and 64-bit support for external routines

v External routine parameter styles

v Restrictions on external routines

Once you have an understanding of external routine concepts you might want to:

v “Creating external routines” on page 143

External routines

External routines are routines that have their logic implemented in a programming

language application that resides outside of the database, in the file system of the

database server. The association of the routine with the external code application is

asserted by the specification of the EXTERNAL clause in the CREATE statement of

the routine.

You can create external procedures, external functions, and external methods.

Although they are all implemented in external programming languages, each

routine functional type has different features. Before deciding to implement an

external routine, it is important that you first understand what external routines

are, and how they are implemented and used, by reading the topic, ″Overview of

external routines″. With that knowledge you can then learn more about external

routines from the topics targeted by the related links so that you can make

informed decisions about when and how to use them in your database

environment.

External routine features

External routines provide support for most of the common routine features as well

as support for additional features not supported by SQL routines. The following

features are unique to external routines:

Access to files, data, and applications residing outside of the database

External routines can access and manipulate data or files that reside

outside of the database itself. They can also invoke applications that reside

outside of the database. The data, files, or applications might, for example,

reside in the database server file system or within the available network.

© IBM Corporation 1993, 2007 111

Variety of external routine parameter style options

The implementation of external routines in a programming language can

be done using a choice of parameter styles. Although there might be a

preferred parameter style for a chosen programming language, there is

sometimes choice. Some parameter styles provide support for the passing

of additional database and routine property information to and from the

routine in a structure named dbinfo structure that might be useful within

the routine logic.

Preservation of state between external function invocations with a scratchpad

External user-defined functions provide support for state preservation

between function invocations for a set of values. This is done with a

structure called a scratchpad. This can be useful both for functions that

return aggregated values and for functions that require initial setup logic

such as initialization of buffers.

Call-types identify individual external function invocations

External user-defined functions are invoked multiple times for a set of

values. Each invocation is identified with a call-type value that can be

referenced within the function logic. For example there are special

call-types for the first invocation of a function, for data fetching calls, and

for the final invocation. Call-types are useful, because specific logic can be

associated with a particular call-type.

External routine creation

External routines are created in a similar way as routines with other

implementations. However there are a few additional steps required because the

routine implementation requires the coding, compilation, and deployment of

source code.

There are two parts to an external routine:

v The CREATE statement that defines the routine.

v The external library or class that implements the routine-body

Upon the successful execution of a CREATE statement that defines a routine, the

routine is created within the database. The statement must at a minimum define

the name of the routine, the routine parameter signature that will be used in the

routine implementation, and the location of the external library or class built from

the routine implementation source code.

External routine implementation must be coded in one of the supported

programming languages and then built into a library or class file that must be

installed in the file system of the database server.

An external routine cannot be successfully invoked until it has been created in the

database and the library or class associated with the routine has been put in the

location specified by the EXTERNAL clause.

The development of external routines generally consists of the following tasks:

v Determining what functional type of routine to implement.

v Choosing one of the supported external routine programming languages for the

routine implementation.

v Designing the routine.

v Connecting to a database and creating the routine in the database.

112 Developing User-defined Routines (SQL and External)

– This is done by executing one of the CREATE PROCEDURE, CREATE

FUNCTION, or CREATE METHOD statements or by using a graphical tool

that automates this step.

– This task, also known as defining or registering a routine, can occur at any

time before you invoke the routine, except in the following circumstances:

- For Java routines that reference an external JAR file or files, the external

code and JAR files must be coded and compiled before the routine is

created in the database using the routine type specific CREATE statement.

- Routines that execute SQL statements and refer to themselves directly must

be created in the database by issuing the CREATE statement before the

external code associated with the routine is precompiled and bound. This

also applies to situations where there is a cycle of references, for example,

Routine A references Routine B, which references Routine A.
v Coding the routine logic such that it corresponds to the routine definition.

v Building the routine and generating a library or class file.

– For embedded SQL routines this includes: precompiling , compiling, and link

the code as well as binding the routine package to the target database.

– For non-embedded SQL routines this includes: compiling and linking the

code.
v Deploying the library or class file to the database server in the location specified

in the routine definition.

v Granting the EXECUTE privilege on the routine to the routine invoker or

invokers (if they are not the routine definer).

v Invoking, testing, and debugging the routine.

The steps required to create an external routine can all be done using the DB2

Command Line Processor or a DB2 Command Window. Tools can be of assistance

in automating some or all of these steps.

External routine library and class management

To successfully develop and invoke external routines, external routine library and

class files must be deployed and managed properly.

External routine library and class file management can be minimal if care is taken

when external routines are first created and library and class files deployed.

The main external routine management considerations are the following:

v Deployment of external routine library and class files

v Security of external routine library and class files

v Resolution of external routine libraries and classes

v Modifications to external routine library and class files

v Backup and restore of external routine library and class files

System administrators, database administrators and database application

developers should all take responsibility to ensure that external routine library and

class files are secure and correctly preserved during routine development and

database administration tasks.

Chapter 5. Overview of external routines 113

Deployment of external routine libraries and classes

Deployment of external routine libraries and classes refers to the copying of

external routine libraries and classes to the database server once they have been

built from source code.

External routine library, class, or assembly files must be copied into the DB2

function directory or a sub-directory of this directory on the database server. This is

the recommended external routine deployment location. To find out more about

the function directory, see the description of the EXTERNAL clause for either of the

following SQL statements: CREATE PROCEDURE or CREATE FUNCTION.

You can copy the external routine class, library, or assembly to other directory

locations on the server, depending on the API and programming language used to

implement the routine, however this is generally discouraged. If this is done, to

successfully invoke the routine you must take particular note of the fully qualified

path name and ensure that this value is used with the EXTERNAL NAME clause.

Library and class files can be copied to the database server file system using most

generally available file transfer tools. Java routines can be copied from a computer

where a DB2 client is installed to a DB2 database server using special

system-defined procedures designed specifically for this purpose. See the topics on

Java routines for more details.

When executing the appropriate SQL language CREATE statement for the routine

type: CREATE PROCEDURE or CREATE FUNCTION, be sure to specify the

appropriate clauses, paying particular attention to the EXTERNAL NAME clause.

v Specify the LANGUAGE clause with the appropriate value for the chosen API or

programming language. Examples include: CLR, C, JAVA.

v Specify the PARAMETER STYLE clause with the name of the supported parameter

style that was implemented in the routine code.

v Specify the EXTERNAL clause with the name of the library, class, or assembly file

to be associated with the routine using one of the following values:

– the fully qualified path name of the routine library, class, or assembly file.

– the relative path name of the routine library, class, or assembly file relative to

the function directory.

By default DB2 will look for the library, class, or assembly file by name in the

function directory unless a fully qualified or relative path name for it is specified

in the EXTERNAL clause.

Security of external routine library or class files

External routine libraries are stored in the file system on the database server and

are not backed up or protected in any way by the DB2 database manager. For

routines to continue to successfully be invoked, it is imperative that the library

associated with the routine continue to exist in the location specified in the

EXTERNAL clause of the CREATE statement used to create the routine. Do not

move or delete routine libraries after creating routines; doing so will cause routine

invocations to fail.

To prevent routine libraries from being accidentally or intentionally deleted or

replaced, you must restrict access to the directories on the database server that

contain routine libraries and restrict access to the routine library files. This can be

done by using operating system commands to set directory and file permissions.

114 Developing User-defined Routines (SQL and External)

Resolution of external routine libraries and classes

DB2 external routine library resolution is performed at the DB2 instance level. This

means that in DB2 instances containing multiple DB2 databases, external routines

can be created in one database that use external routine libraries already being

used for a routine in another database.

Instance level external routine resolution supports code re-use by allowing multiple

routine definitions to be associated with a single library. When external routine

libraries are not re-used in this way, and instead copies of the external routine

library exist in the file system of the database server, library name conflicts can

happen. This can specifically happen when there are multiple databases in a single

instance and the routines in each database are associated with their own copies of

libraries and classes of routine bodies. A conflict arises when the name of a library

or class used by a routine in one database is identical to the name of a library or

class used by a routine in another database (in the same instance).

To minimize the likelihood of this happening, it is recommended that a single copy

of a routine library be stored in the instance level function directory

(sqllib/function directory) and that the EXTERNAL clause of all of the routine

definitions in each of the databases reference the unique library.

If two functionally different routine libraries must be created with the same name,

it is important to take additional steps to minimize the likelihood of library name

conflicts.

For C, C++, COBOL, and ADO.NET routines:

Library name conflicts can be minimized or resolved by:

1. Storing the libraries with routine bodies in separate directories for each

database.

2. Creating the routines with an EXTERNAL NAME clause value that

specifies the full path of the given library (instead of a relative path).

For Java routines:

Class name conflicts cannot be resolved by moving the class files in

question into different directories, because the CLASSPATH environment

variable is instance-wide. The first class encountered in the CLASSPATH is

the one that is used. Therefore, if you have two different Java routines that

reference a class with the same name, one of the routines will use the

incorrect class. There are two possible solutions: either rename the affected

classes, or create a separate instance for each database.

Modifications to external routine library and class files

Modifications to an existing external routine’s logic might be necessary after an

external routine has been deployed and it is in use in a production database

system environment. Modifications to existing routines can be made, but it is

important that they be done carefully so as to define a clear takeover point in time

for the updates and to minimize the risk of interrupting any concurrent

invocations of the routine.

If an external routine library requires an update, do not recompile and relink the

routine to the same target file (for example, sqllib/function/foo.a) that the current

routine is using while the database manager is running. If a current routine

invocation is accessing a cached version of the routine process and the underlying

Chapter 5. Overview of external routines 115

library is replaced, this can cause the routine invocation to fail. If it is necessary to

change the body of a routine without stopping and restarting DB2, complete the

following steps:

1. Create the new external routine library with a different library or class file

name.

2. If it is an embedded SQL routine, bind the routine package to the database

using the BIND command.

3. Use the ALTER ROUTINE statement to change the routine definition so that the

EXTERNAL NAME clause references the updated routine library or class. If the

routine body to be updated is used by routines cataloged in multiple databases,

the actions prescribed in this section must be completed for each affected

database.

4. For updating Java routines that are built into JAR files, you must issue a CALL

SQLJ.REFRESH_CLASSES() statement to force DB2 to load the new classes. If

you do not issue the CALL SQLJ.REFRESH_CLASSES() statement after you

update Java routine classes, DB2 continues to use the previous versions of the

classes. DB2 refreshes the classes when a COMMIT or ROLLBACK occurs.

Once the routine definition has been updated, all subsequent invocations of the

routine will load and run the new external routine library or class.

Backup and restore of external routine library and class files

External routine libraries are not backed up with other database objects when a

database backup is performed. They are similarly not restored when a database is

restored.

If the purpose of a database backup and restore is to re-deploy a database, then

external routine library files must be copied from the original database server file

system to the target database server file system in such a way as to preserve the

relative path names of the external routine libraries.

External routine library management and performance

External routine library management can impact routine performance, because the

DB2 database manager dynamically caches external routine libraries in an effort to

improve performance in accordance with routine usage. For optimal external

routine performance consider the following:

v Keep the number of routines in each library as small as possible. It is better to

have numerous small external routine libraries than a few large ones.

v

Group together within source code the routine functions of routines that are

commonly invoked together. When the code is compiled into an external routine

library the entry points of commonly invoked routines will be closer together

which allows the database manager to provide better caching support. The

improved caching support is due to the efficiency that can be gained by loading

a single external routine library once and then invoking multiple external

routine functions within that library.

For external routines implemented in the C or C++ programming language, the

cost of loading a library is paid only once for libraries that are consistently in

use by C routines. After a routine is invoked once, all subsequent invocations

from the same thread in the process, do not need to re-load the routine’s library.

116 Developing User-defined Routines (SQL and External)

Supported APIs and programming languages for external routine

development

You can develop DB2 external routines (procedures and functions) using the

following APIs and associated programming languages:

v ADO.NET

– .NET Common Language Runtime programming languages
v CLI

v Embedded SQL

– C

– C++

– COBOL (Only supported for procedures)
v JDBC

– Java
v OLE

– Visual Basic

– Visual C++

– Any other programming language that supports this API.
v OLE DB (Only supported for table functions)

– Any programming language that supports this API.
v SQLJ

– Java

Comparison of supported APIs and programming languages

for external routine development

It is important to consider the characteristics and limitations of the various

supported external routine application programming interfaces (APIs) and

programming languages before you start implementing external routines. This will

ensure that you choose the right implementation from the start and that the

routine features that you require are available.

Chapter 5. Overview of external routines 117

Table 10. Comparison of external routine APIs and programming languages

API and

programming

language Feature support Performance Security Scalability Limitations

SQL (includes

SQL PL)

v SQL is a high

level language

that is easy to

learn and use,

which makes

implementation

go quickly.

v SQL Procedural

Language (SQL

PL) elements

allow for

control-flow

logic around

SQL operations

and queries.

v Strong data

type support.

v Very good.

v SQL routines

perform better

than Java

routines.

v SQL routines

perform as well

as C and C++

external

routines

created with

the NOT

FENCED

clause.

v Very safe.

v SQL procedures

run in the same

memory as the

database

manager.

v Highly

scalable.

v Cannot access

the database

server file

system.

v Cannot invoke

applications

that reside

outside of the

database.

118 Developing User-defined Routines (SQL and External)

Table 10. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

Embedded SQL

(includes C and

C++)

v Low level, but

powerful

programming

language.

v Very good.

v C and C++

routines

perform better

than Java

routines.

v C and C++

routines

created with

the NOT

FENCED

clause perform

as well as SQL

routines.

v C and C++

routines are

prone to

programming

errors.

v Programmers

must be

proficient in C

to avoid

making

common

memory and

pointer

manipulation

errors which

make routine

implementation

more tedious

and time

consuming.

v C and C++

routines should

be created with

the FENCED

clause and the

NOT

THREADSAFE

clause to avoid

the disruption

of the database

manager

should an

exception occur

in the routine

at run time.

These are

default clauses.

The use of

these clauses

can somewhat

negatively

impact

performance,

but ensure safe

execution. See:

Security of

routines .

v Scalability is

reduced when

C and C++

routines are

created with

the FENCED

and NOT

THREADSAFE

clauses. These

routines are

run in an

isolated db2fmp

process apart

from the

database

manager

process. One

db2fmp process

is required per

concurrently

executed

routine.

v There are

multiple

supported

parameter

passing styles

which can be

confusing.

Users should

use parameter

style SQL as

much as

possible.

Chapter 5. Overview of external routines 119

Table 10. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

Embedded SQL

(COBOL)

v High-level

programming

language good

for developing

business,

typically file

oriented,

applications.

v Pervasively

used in the

past for

production

business

applications,

although its

popularity is

decreasing.

v COBOL does

not contain

pointer support

and is a linear

iterative

programming

language.

v COBOL

routines do not

perform as well

as routines

created with

any of the

other external

routine

implementation

options.

v No information

at this time.

v No information

at this time.

v You can create

and invoke

32-bit COBOL

procedures in

64-bit DB2

instances,

however these

routines will

not perform as

well as 64-bit

COBOL

procedures

within a 64-bit

DB2 instance.

JDBC (Java) and

SQLJ (Java)

v High-level

object-oriented

programming

language

suitable for

developing

standalone

applications,

applets, and

servlets.

v Java objects

and data types

facilitate the

establishment

of database

connections,

execution of

SQL

statements, and

manipulation

of data.

v Java routines

do not perform

as well as C

and C++

routines or SQL

routines.

v Java routines

are safer than

C and C++

routines,

because the

control of

dangerous

operations is

handled by the

Java Virtual

Machine (JVM).

This increases

reliability and

makes it very

difficult for the

code of one

Java routine to

harm another

routine running

in the same

process.

v Good

scalability

v Java routines

created with

the FENCED

THREADSAFE

clause (the

default) scale

well. All fenced

Java routines

will share a

few JVMs.

More than one

JVM might be

in use on the

system if the

Java heap of a

particular

db2fmp process

is approaching

exhaustion.

v To avoid

potentially

dangerous

operations,

Java Native

Interface (JNI)

calls from Java

routines are not

permitted.

120 Developing User-defined Routines (SQL and External)

Table 10. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

.NET common

language runtime

supported

languages

(includes C#,

Visual Basic, and

others)

v Part of the

Microsoft .NET

model of

managed code.

v Source code is

compiled into

intermediate

language (IL)

byte code that

can be

interpreted by

the Microsoft

.NET

Framework

common

language

runtime.

v CLR assemblies

can be built up

from

sub-assemblies

that were

compiled from

different .NET

programming

language

source code,

which allows

users to re-use

and integrate

code modules

written in

various

languages.

v CLR routines

can only be

created with

the FENCED

NOT

THREADSAFE

clause so as to

minimize the

possibility of

database

manager

interruption at

runtime. This

can somewhat

negatively

impact

performance

v CLR routines

can only be

created with

the FENCED

NOT

THREADSAFE

clause. They

are therefore

safe because

they will be

run outside of

the database

manager in a

separate

db2fmp

process.

v No information

available.

v Refer to the

topic,

″Restrictions on

.NET CLR

routines″.

Chapter 5. Overview of external routines 121

Table 10. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

v OLE v OLE routines

can be

implemented in

Visual C++,

Visual Basic,

and other

languages

supported by

OLE.

v The speed of

OLE automated

routines

depends on the

language used

to implement

them. In

general they

are slower than

non-OLE

C/C++

routines.

v OLE routines

can only run in

FENCED NOT

THREADSAFE

mode, and

therefore OLE

automated

routines do not

scale well.

v No information

available.

v No information

available.

v No information

available.

122 Developing User-defined Routines (SQL and External)

Table 10. Comparison of external routine APIs and programming languages (continued)

API and

programming

language Feature support Performance Security Scalability Limitations

v OLE DB v OLE DB can be

used to create

user-defined

table functions.

v OLE DB

functions

connect to

external OLE

DB data

sources.

v Performance of

OLE DB

functions

depends on the

OLE DB

provider,

however in

general OLE

DB functions

perform better

than logically

equivalent Java

functions, but

slower than

logically

equivalent C,

C++, or SQL

functions.

However some

predicates from

the query

where the

function is

invoked might

be evaluated at

the OLE DB

provider,

therefore

reducing the

number of

rows that DB2

has to process

which can

frequently

result in

improved

performance.

v No information

available.

v No information

available.

v OLE DB can

only be used to

create

user-defined

table functions.

32-bit and 64-bit support for external routines

Support for 32-bit and 64-bit external routines is determined by the specification of

one of the following two clauses in the CREATE statement for the routines:

FENCED clause or NOT FENCED clause.

The routine-body of an external routine is written in a programming language and

compiled into a library or class file that is loaded and run when the routine is

invoked. The specification of the FENCED or NOT FENCED clause determines

whether the external routine runs in a fenced environment distinct from the

database manager or in the same addressing space as the database manager which

can yield better performance through the use of shared memory instead of TCPIP

for communications. By default routines are always created as fenced regardless of

the other clauses selected.

Chapter 5. Overview of external routines 123

The following table illustrates DB2’s support for running fenced and unfenced

32-bit and 64-bit routines on 32-bit and 64-bit database servers that are running the

same operating system.

 Table 11. Support for 32-bit and 64-bit external routines

Bit-width of routine 32-bit server 64-bit server

32-bit fenced procedure or UDF Supported Supported

64-bit fenced procedure or UDF Not supported (4) Supported

32-bit unfenced procedure or UDF Supported Supported (2)

64-bit unfenced procedure or UDF Not supported (4) Supported

The footnotes in the table above correspond to:

v (1) Running a 32-bit routine on a 64-bit server is not as fast as running a 64-bit

routine on a 64-bit server.

v (2) 32-bit routines must be created as FENCED and NOT THREADSAFE to work

on a 64-bit server.

v (3) It is not possible to invoke 32-bit routines on Linux IA 64-bit database

servers.

v (4) 64-bit applications and routines cannot be run in 32-bit addressing spaces.

The important thing to note in the table is that 32-bit unfenced procedures cannot

run on a 64-bit DB2 server. If you must deploy 32-bit unfenced routines to 64-bit

platforms, remove the NOT FENCED clause from the CREATE statements for these

routines before you catalog them.

Performance of routines with 32-bit libraries on 64-bit database

servers

It is possible to invoke routines with 32-bit routine libraries on 64-bit DB2 database

servers. However, this does not perform as well as invoking a 64-bit routine on a

64-bit server. The reason for the performance degradation is that before each

attempt to execute a 32-bit routine on a 64-bit server, an attempt is first made to

invoke it as a 64-bit library. If this fails, the library is then invoked as a 32-bit

library. A failed attempt to invoke a 32-bit library as a 64-bit library produces an

error message (SQLCODE -444) in the db2diag.log.

Java classes are bit-width independent. Only Java virtual machines (JVMs) are

classified as 32-bit or 64-bit. DB2 only supports the use of JVMs that are the same

bit width as the instance in which they are used. In other words, in a 32-bit DB2

instance only a 32-bit JVM can be used, and in a 64-bit DB2 instance only a 64-bit

JVM can be used. This ensures proper functioning of Java routines and the best

possible performance.

External routine parameter styles

External routine implementations must conform to a particular convention for the

exchange of routine parameter values. These conventions are known as parameter

styles. An external routine parameter style is specified when the routine is created

by specifying the PARAMETER STYLE clause. Parameter styles characterize the

specification and order in which parameter values will be passed to the external

routine implementation. They also specify what if any additional values will be

passed to the external routine implementation. For example, some parameter styles

124 Developing User-defined Routines (SQL and External)

specify that for each routine parameter value that an additional separate

null-indicator value be passed to the routine implementation to provide

information about the parameters nullability which cannot otherwise be easily

determined with a native programming language data type.

The table below provides a list of the available parameter styles, the routine

implementations that support each parameter style, the functional routine types

that support each parameter style, and a description of the parameter style:

 Table 12. Parameter styles

Parameter

style

Supported

language

Supported

routine type Description

SQL

1

v C/C++

v OLE

v .NET

common

language

runtime

languages

v COBOL

2

v UDFs

v stored

procedures

v methods

In addition to the parameters passed during invocation, the

following arguments are passed to the routine in the following

order:

v A null indicator for each parameter or result declared in the

CREATE statement.

v The SQLSTATE to be returned to DB2.

v The qualified name of the routine.

v The specific name of the routine.

v The SQL diagnostic string to be returned to DB2.

Depending on options specified in the CREATE statement and the

routine type, the following arguments can be passed to the routine

in the following order:

v A buffer for the scratchpad.

v The call type of the routine.

v The dbinfo structure (contains information about the database).

DB2SQL

1

v C/C++

v OLE

v .NET

common

language

runtime

languages

v COBOL

v stored

procedures

In addition to the parameters passed during invocation, the

following arguments are passed to the stored procedure in the

following order:

v A vector containing a null indicator for each parameter on the

CALL statement.

v The SQLSTATE to be returned to DB2.

v The qualified name of the stored procedure.

v The specific name of the stored procedure.

v The SQL diagnostic string to be returned to DB2.

If the DBINFO clause is specified in the CREATE PROCEDURE

statement, a dbinfo structure (it contains information about the

database) is passed to the stored procedure.

Chapter 5. Overview of external routines 125

Table 12. Parameter styles (continued)

Parameter

style

Supported

language

Supported

routine type Description

JAVA v Java v UDFs

v stored

procedures

PARAMETER STYLE JAVA routines use a parameter passing

convention that conforms to the Java language and SQLJ Routines

specification.

For stored procedures, INOUT and OUT parameters will be passed

as single entry arrays to facilitate the returning of values. In

addition to the IN, OUT, and INOUT parameters, Java method

signatures for stored procedures include a parameter of type

ResultSet[] for each result set specified in the DYNAMIC RESULT

SETS clause of the CREATE PROCEDURE statement.

For PARAMETER STYLE JAVA UDFs and methods, no additional

arguments to those specified in the routine invocation are passed.

PARAMETER STYLE JAVA routines do not support the DBINFO or

PROGRAM TYPE clauses. For UDFs, PARAMETER STYLE JAVA

can only be specified when there are no structured data types

specified as parameters and no structured type, CLOB, DBCLOB, or

BLOB data types specified as return types (SQLSTATE 429B8). Also,

PARAMETER STYLE JAVA UDFs do not support table functions,

call types, or scratchpads.

DB2GENERAL v Java v UDFs

v stored

procedures

v methods

This type of routine will use a parameter passing convention that is

defined for use with Java methods. Unless you are developing table

UDFs, UDFs with scratchpads, or need access to the dbinfo

structure, it is recommended that you use PARAMETER STYLE

JAVA.

For PARAMETER STYLE DB2GENERAL routines, no additional

arguments to those specified in the routine invocation are passed.

GENERAL v C/C++

v .NET

common

language

runtime

languages

v COBOL

v stored

procedures

A PARAMETER STYLE GENERAL stored procedure receives

parameters from the CALL statement in the invoking application or

routine. If the DBINFO clause is specified in the CREATE

PROCEDURE statement, a dbinfo structure (it contains information

about the database) is passed to the stored procedure.

GENERAL is the equivalent of SIMPLE stored procedures for DB2

Universal Database for z/OS and OS/390.

GENERAL

WITH NULLS

v C/C++

v .NET

common

language

runtime

languages

v COBOL

v stored

procedures

A PARAMETER STYLE GENERAL WITH NULLS stored procedure

receives parameters from the CALL statement in the invoking

application or routine. Also included is a vector containing a null

indicator for each parameter on the CALL statement. If the

DBINFO clause is specified in the CREATE PROCEDURE

statement, a dbinfo structure (it contains information about the

database) is passed to the stored procedure.

GENERAL WITH NULLS is the equivalent of SIMPLE WITH

NULLS stored procedures for DB2 Universal Database for z/OS

and OS/390.

Note:

1. For UDFs and methods, PARAMETER STYLE SQL is equivalent to

PARAMETER STYLE DB2SQL.

2. COBOL can only be used to develop stored procedures.

3. .NET common language runtime methods are not supported.

126 Developing User-defined Routines (SQL and External)

Restrictions on external routines

The following restrictions apply to external routines and should be considered

when developing or debugging external routines.

Restrictions that apply to all external routines:

v New threads cannot be created in external routines.

v Connection level APIs cannot be called from within external functions or

external methods.

v Receiving inputs from the keyboard and displaying outputs to standard output

is not possible from external routines. Do not use standard input-output streams.

For example:

– In external Java routine code, do not issue the System.out.println()

methods.

– In external C or C++ routine code, do not issue printf().

– In external COBOL routine code, do not issue display

Although external routines cannot display data to standard output, they can

include code that writes data to a file on the database server file system.

For fenced routines that run in UNIX environments, the target directory where

the file is to be created, or the file itself, must have the appropriate permissions

such that the owner of the sqllib/adm/.fenced file can create it or write to it.

For not fenced routines, the instance owner must have create, read, and write

permissions for the directory in which the file is opened.

Note: DB2 does not attempt to synchronize any external input or output

performed by a routine with DB2’s own transactions. So, for example, if a UDF

writes to a file during a transaction, and that transaction is later backed out for

some reason, no attempt is made to discover or undo the writes to the file.

v Connection-related statements or commands cannot be executed in external

routines. This restriction applies to the following statements: including:

– BACKUP

– CONNECT

– CONNECT TO

– CONNECT RESET

– CREATE DATABASE

– DROP DATABASE

– FORWARD RECOVERY

– RESTORE
v Operating system function usage within routines is not recommended. The use

of these functions is not restricted except in the following cases:

– User-defined signal handlers must not be installed for external routines.

Failure to adhere to this restriction can result in unexpected external

routine run-time failures, database abends, or other problems. Installing

signal handlers can also interfere with operation of the JVM for Java

routines.

– System calls that terminate a process can abnormally terminate one of DB2’s

processes and result in database system or database application failure.

Other system calls can also cause problems if they interfere with the normal

operation of the DB2; database manager. For example, a function that

Chapter 5. Overview of external routines 127

attempts to unload a library containing a user-defined function from memory

could cause severe problems. Be careful in coding and testing external

routines containing system calls.
v External routines must not contain commands that would terminate the current

process. An external routine must always return control to the DB2 database

manager without terminating the current process.

v External routine libraries, classes, or assemblies must not be updated while the

database is active except in special cases. If an update is required while the DB2

database manager is active, and stopping and starting the instance is not an

option, create the new library, class, or assembly for the routine with a different.

Then, use the ALTER statement to change the external routine’s EXTERNAL

NAME clause value so that it references the name of the new library, class, or

assembly file.

v Environment variable DB2CKPTR is not available in external routines. All other

environment variables with names beginning with ’DB2’ are captured at the time

the database manager is started and are available for use in external routines.

v Some environment variables with names that do not start with ’DB2’ are not

available to external routines that are fenced. For example, the LIBPATH

environment variable is not available for use. However these variables are

available to external routines that are not fenced.

v Environment variable values that were set after the DB2 database manager is

started are not available to external routines.

v Use of protected resources, resources that can only be accessed by one process at

a time, within external routines should be limited. If used, try to reduce the

likelihood of deadlocks when two external routines try to access the protected

resource. If two or more external routines deadlock while attempting to access

the protected resource, the DB2 database manager will not be able to detect or

resolve the situation. This will result in hung external routine processes.

v Memory for external routine parameters should not be explicitly allocated on the

DB2 database server. The DB2 database manager automatically allocates storage

based upon the parameter declaration in the CREATE statement for the routine.

Do not alter any storage pointers for parameters in external routines. Attempting

to change a pointer with a locally created storage pointer can result in memory

leaks, data corruption, or abends.

v Do not use static or global data in external routines. DB2 cannot guarantee that

the memory used by static or global variables will be untouched between

external routine invocations. For UDFs and methods, you can use scratchpads to

store values for use between invocations.

v All SQL parameter values are buffered. This means that a copy of the value is

made and passed to the external routine. If there are changes made to the input

parameters of an external routine, these changes will have no effect on SQL

values or processing. However, if an external routine writes more data to an

input or output parameter than is specified by the CREATE statement, memory

corruption has occurred, and the routine can abend.

Restrictions that apply to external procedures only

v When returning result sets from nested stored procedures, you can open a cursor

with the same name on multiple nesting levels. However, pre-version 8

applications will only be able to access the first result set that was opened. This

restriction does not apply to cursors that are opened with a different package

level.

128 Developing User-defined Routines (SQL and External)

Restrictions that apply to external functions only

v External functions cannot return result sets. All cursors opened within an

external function must be closed by the time the final-call invocation of the

function completes.

v Dynamic allocations of memory in an external routine should be freed before the

external routine returns. Failure to do so will result in a memory leak and the

continuous growth in memory consumption of a DB2 process that could result

in the database system running out of memory.

For external user-defined functions and external methods, scratchpads can be

used to allocate dynamic memory required for multiple function invocations.

When scratchpads are used in this way, specify the FINAL CALL attribute in the

CREATE FUNCTION or CREATE METHOD statement. This ensures that

allocated memory is freed before the routine returns.

Chapter 5. Overview of external routines 129

130 Developing User-defined Routines (SQL and External)

Chapter 6. Developing external routines

External function and method features

External functions and external methods provide support for functions that, for a

given set of input data, might be invoked multiple times and produce a set of

output values.

To learn more about the features of external functions and methods, see the

following topics:

v “External scalar functions”

v “External scalar function and method processing model” on page 133

v “External table functions” on page 133

v “External table function processing model” on page 134

v “Table function execution model for Java” on page 135

v “Scratchpads for external functions and methods” on page 136

v “Scratchpads on 32-bit and 64-bit operating systems” on page 140

These features are unique to external functions and methods and do not apply to

SQL functions and SQL methods.

External scalar functions

External scalar functions are scalar functions that have their logic implemented in

an external programming language.

These functions can be developed and used to extend the set of existing SQL

functions and can be invoked in the same manner as DB2 built-in functions such

as LENGTH and COUNT. That is, they can be referenced in SQL statements

wherever an expression is valid.

The execution of external scalar function logic takes place on the DB2 database

server, however unlike built-in or user-defined SQL scalar functions, the logic of

external functions can access the database server filesystem, perform system calls

or access a network.

External scalar functions can read SQL data, but cannot modify SQL data.

External scalar functions can be repeatedly invoked for a single reference of the

function and can maintain state between these invocations by using a scratchpad,

which is a memory buffer. This can be powerful if a function requires some initial,

but expensive, setup logic. The setup logic can be done on a first invocation using

the scratchpad to store some values that can be accessed or updated in subsequent

invocations of the scalar function.

Features of external scalar functions

v Can be referenced as part of an SQL statement anywhere an expression

is supported.

v The output of a scalar function can be used directly by the invoking SQL

statement.

v For external scalar user-defined functions, state can be maintained

between the iterative invocations of the function by using a scratchpad.

© Copyright IBM Corp. 1993, 2007 131

v Can provide a performance advantage when used in predicates, because

they are executed at the server. If a function can be applied to a

candidate row at the server, it can often eliminate the row from

consideration before transmitting it to the client machine, reducing the

amount of data that must be passed from server to client.

Limitations

v Cannot do transaction management within a scalar function. That is, you

cannot issue a COMMIT or a ROLLBACK within a scalar function.

v Cannot return result sets.

v Scalar functions are intended to return a single scalar value per set of

inputs.

v External scalar functions are not intended to be used for a single

invocation. They are designed such that for a single reference to the

function and a given set of inputs, that the function be invoked once per

input, and return a single scalar value. On the first invocation, scalar

functions can be designed to do some setup work, or store some

information that can be accessed in subsequent invocations. SQL scalar

functions are better suited to functionality that requires a single

invocation.

v

In a single partition database external scalar functions can contain SQL

statements. These statements can read data from tables, but cannot

modify data in tables. If the database has more than one partition then

there must be no SQL statements in an external scalar function. SQL

scalar functions can contain SQL statements that read or modify data.

Common uses

v Extend the set of DB2 built-in functions.

v Perform logic inside an SQL statement that SQL cannot natively

perform.

v Encapsulate a scalar query that is commonly reused as a subquery in

SQL statements. For example, given a postal code, search a table for the

city where the postal code is found.

Supported languages

v C

v C++

v Java

v OLE

v .NET common language runtime languages

Note:

1. There is a limited capability for creating aggregate functions. Also known as

column functions, these functions receive a set of like values (a column of data)

and return a single answer. A user-defined aggregate function can only be

created if it is sourced upon a built-in aggregate function. For example, if a

distinct type SHOESIZE exists that is defined with base type INTEGER, you

could define a function, AVG(SHOESIZE), as an aggregate function sourced on the

existing built-in aggregate function, AVG(INTEGER).

2. You can also create function that return a row. These are known as row

functions and can only be used as a transform function for structured types.

The output of a row function is a single row.

132 Developing User-defined Routines (SQL and External)

External scalar function and method processing model

The processing model for methods and scalar UDFs that are defined with the

FINAL CALL specification is as follows:

FIRST call

This is a special case of the NORMAL call, identified as FIRST to enable

the function to perform any initial processing. Arguments are evaluated

and passed to the function. Normally, the function will return a value on

this call, but it can return an error, in which case no NORMAL or FINAL

call is made. If an error is returned on a FIRST call, the method or UDF

must clean up before returning, because no FINAL call will be made.

NORMAL call

These are the second through second-last calls to the function, as dictated

by the data and the logic of the statement. The function is expected to

return a value with each NORMAL call after arguments are evaluated and

passed. If NORMAL call returns an error, no further NORMAL calls are

made, but the FINAL call is made.

FINAL call

This is a special call, made at end-of-statement processing (or CLOSE of a

cursor), provided that the FIRST call succeeded. No argument values are

passed on a FINAL call. This call is made so that the function can clean up

any resources. The function does not return a value on this call, but can

return an error.

For methods or scalar UDFs not defined with FINAL CALL, only NORMAL calls

are made to the function, which normally returns a value for each call. If a

NORMAL call returns an error, or if the statement encounters another error, no

more calls are made to the function.

Note: This model describes the ordinary error processing for methods and scalar

UDFs. In the event of a system failure or communication problem, a call indicated

by the error processing model cannot be made. For example, for a FENCED UDF,

if the db2udf fenced process is somehow prematurely terminated, DB2 cannot make

the indicated calls.

External table functions

A user-defined table function delivers a table to the SQL in which it is referenced.

A table UDF reference is only valid in a FROM clause of a SELECT statement.

When using table functions, observe the following:

v Even though a table function delivers a table, the physical interface between

DB2 and the UDF is one-row-at-a-time. There are five types of calls made to a

table function: OPEN, FETCH, CLOSE, FIRST, and FINAL. The existence of

FIRST and FINAL calls depends on how you define the UDF. The same call-type

mechanism that can be used for scalar functions is used to distinguish these

calls.

v Not every result column defined in the RETURNS clause of the CREATE

FUNCTION statement for the table function has to be returned. The DBINFO

keyword of CREATE FUNCTION, and corresponding dbinfo argument enable the

optimization that only those columns needed for a particular table function

reference need be returned.

v The individual column values returned conform in format to the values returned

by scalar functions.

Chapter 6. Developing external routines 133

v The CREATE FUNCTION statement for a table function has a CARDINALITY

specification. This specification enables the definer to inform the DB2 optimizer

of the approximate size of the result so that the optimizer can make better

decisions when the function is referenced.

Regardless of what has been specified as the CARDINALITY of a table function,

exercise caution against writing a function with infinite cardinality, that is, a

function that always returns a row on a FETCH call. There are many situations

where DB2 expects the end-of-table condition, as a catalyst within its query

processing. Using GROUP BY or ORDER BY are examples where this is the case.

DB2 cannot form the groups for aggregation until end-of-table is reached, and it

cannot sort until it has all the data. So a table function that never returns the

end-of-table condition (SQL-state value ’02000’) can cause an infinite processing

loop if you use it with a GROUP BY or ORDER BY clause.

External table function processing model

The processing model for table UDFs that are defined with the FINAL CALL

specification is as follows:

FIRST call

This call is made before the first OPEN call, and its purpose is to enable

the function to perform any initial processing. The scratchpad is cleared

prior to this call. Arguments are evaluated and passed to the function. The

function does not return a row. If the function returns an error, no further

calls are made to the function.

OPEN call

This call is made to enable the function to perform special OPEN

processing specific to the scan. The scratchpad (if present) is not cleared

prior to the call. Arguments are evaluated and passed. The function does

not return a row on an OPEN call. If the function returns an error from the

OPEN call, no FETCH or CLOSE call is made, but the FINAL call will still

be made at end of statement.

FETCH call

FETCH calls continue to be made until the function returns the SQLSTATE

value signifying end-of-table. It is on these calls that the UDF develops and

returns a row of data. Argument values can be passed to the function, but

they are pointing to the same values that were passed on OPEN. Therefore,

the argument values might not be current and should not be relied upon.

If you do need to maintain current values between the invocations of a

table function, use a scratchpad. The function can return an error on a

FETCH call, and the CLOSE call will still be made.

CLOSE call

This call is made at the conclusion of the scan or statement, provided that

the OPEN call succeeded. Any argument values will not be current. The

function can return an error.

FINAL call

The FINAL call is made at the end of the statement, provided that the

FIRST call succeeded. This call is made so that the function can clean up

any resources. The function does not return a value on this call, but can

return an error.

For table UDFs not defined with FINAL CALL, only OPEN, FETCH, and CLOSE

calls are made to the function. Before each OPEN call, the scratchpad (if present) is

cleared.

134 Developing User-defined Routines (SQL and External)

The difference between table UDFs that are defined with FINAL CALL and those

defined with NO FINAL CALL can be seen when examining a scenario involving a

join or a subquery, where the table function access is the ″inner″ access. For

example, in a statement such as:

 SELECT x,y,z,... FROM table_1 as A,

 TABLE(table_func_1(A.col1,...)) as B

 WHERE...

In this case, the optimizer would open a scan of table_func_1 for each row of

table_1. This is because the value of table_1’s col1, which is passed to table_func_1,

is used to define the table function scan.

For NO FINAL CALL table UDFs, the OPEN, FETCH, FETCH, ..., CLOSE sequence

of calls repeats for each row of table_1. Note that each OPEN call will get a clean

scratchpad. Because the table function does not know at the end of each scan

whether there will be more scans, it must clean up completely during CLOSE

processing. This could be inefficient if there is significant one-time open processing

that must be repeated.

FINAL CALL table UDFs, provide a one-time FIRST call, and a one-time FINAL

call. These calls are used to amortize the expense of the initialization and

termination costs across all the scans of the table function. As before, the OPEN,

FETCH, FETCH, ..., CLOSE calls are made for each row of the outer table, but

because the table function knows it will get a FINAL call, it does not need to clean

everything up on its CLOSE call (and reallocate on subsequent OPEN). Also note

that the scratchpad is not cleared between scans, largely because the table function

resources will span scans.

At the expense of managing two additional call types, the table UDF can achieve

greater efficiency in these join and subquery scenarios. Deciding whether to define

the table function as FINAL CALL depends on how it is expected to be used.

Table function execution model for Java

For table functions written in Java and using PARAMETER STYLE DB2GENERAL,

it is important to understand what happens at each point in DB2’s processing of a

given statement. The following table details this information for a typical table

function. Covered are both the NO FINAL CALL and the FINAL CALL cases,

assuming SCRATCHPAD in both cases.

 Point in scan time

 NO FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

 FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

Before the first OPEN for the table

function

No calls. v Class constructor is called (means

new scratchpad). UDF method is

called with FIRST call.

v Constructor initializes class and

scratchpad variables. Method

connects to Web server.

Chapter 6. Developing external routines 135

Point in scan time

 NO FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

 FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

At each OPEN of the table function v Class constructor is called (means

new scratchpad). UDF method is

called with OPEN call.

v Constructor initializes class and

scratchpad variables. Method

connect to Web server, and opens

the scan for Web data.

v UDF method is opened with

OPEN call.

v Method opens the scan for

whatever Web data it wants.

(Might be able to avoid reopen

after a CLOSE reposition,

depending on what is saved in the

scratchpad.)

At each FETCH for a new row of

table function data

v UDF method is called with FETCH

call.

v Method fetches and returns next

row of data, or EOT.

v UDF method is called with FETCH

call.

v Method fetches and returns new

row of data, or EOT.

At each CLOSE of the table function v UDF method is called with CLOSE

call. close() method if it exists for

class.

v Method closes its Web scan and

disconnects from the Web server.

close() does not need to do

anything.

v UDF method is called with CLOSE

call.

v Method might reposition to the top

of the scan, or close the scan. It can

save any state in the scratchpad,

which will persist.

After the last CLOSE of the table

function

No calls. v UDF method is called with FINAL

call. close() method is called if it

exists for class.

v Method disconnects from the Web

server. close() method does not

need to do anything.

Note:

1. The term ″UDF method″ refers to the Java class method that implements the

UDF. This is the method identified in the EXTERNAL NAME clause of the

CREATE FUNCTION statement.

2. For table functions with NO SCRATCHPAD specified, the calls to the UDF

method are as indicated in this table, but because the user is not asking for any

continuity with a scratchpad, DB2 will cause a new object to be instantiated

before each call, by calling the class constructor. It is not clear that table

functions with NO SCRATCHPAD (and thus no continuity) can do useful

things, but they are supported.

Scratchpads for external functions and methods

A scratchpad enables a user-defined function or method to save its state from one

invocation to the next. For example, here are two situations where saving state

between invocations is beneficial:

1. Functions or methods that, to be correct, depend on saving state.

An example of such a function or method is a simple counter function that

returns a ’1’ the first time it is called, and increments the result by one each

successive call. Such a function could, in some circumstances, be used to

number the rows of a SELECT result:

136 Developing User-defined Routines (SQL and External)

SELECT counter(), a, b+c, ...

 FROM tablex

 WHERE ...

The function needs a place to store the current value for the counter between

invocations, where the value will be guaranteed to be the same for the

following invocation. On each invocation, the value can then be incremented

and returned as the result of the function.

This type of routine is NOT DETERMINISTIC. Its output does not depend

solely on the values of its SQL arguments.

2. Functions or methods where the performance can be improved by the ability to

perform some initialization actions.

An example of such a function or method, which might be a part of a

document application, is a match function, which returns ’Y’ if a given

document contains a given string, and ’N’ otherwise:

 SELECT docid, doctitle, docauthor

 FROM docs

 WHERE match(’myocardial infarction’, docid) = ’Y’

This statement returns all the documents containing the particular text string

value represented by the first argument. What match would like to do is:

v First time only.

Retrieve a list of all the document IDs that contain the string ’myocardial

infarction’ from the document application, that is maintained outside of

DB2. This retrieval is a costly process, so the function would like to do it

only one time, and save the list somewhere handy for subsequent calls.

v On each call.

Use the list of document IDs saved during the first call to see if the

document ID that is passed as the second argument is contained in the list.
This type of routine is DETERMINISTIC. Its answer only depends on its input

argument values. What is shown here is a function whose performance, not

correctness, depends on the ability to save information from one call to the

next.

Both of these needs are met by the ability to specify a SCRATCHPAD in the

CREATE statement:

 CREATE FUNCTION counter()

 RETURNS int ... SCRATCHPAD;

 CREATE FUNCTION match(varchar(200), char(15))

 RETURNS char(1) ... SCRATCHPAD 10000;

The SCRATCHPAD keyword tells DB2 to allocate and maintain a scratchpad for a

routine. The default size for a scratchpad is 100 bytes, but you can determine the

size (in bytes) for a scratchpad. The match example is 10000 bytes long. DB2

initializes the scratchpad to binary zeros before the first invocation. If the

scratchpad is being defined for a table function, and if the table function is also

defined with NO FINAL CALL (the default), DB2 refreshes the scratchpad before

each OPEN call. If you specify the table function option FINAL CALL, DB2 does

not examine or change the content of the scratchpad after its initialization. For

scalar functions defined with scratchpads, DB2 also does not examine or change

the scratchpad’s content after its initialization. A pointer to the scratchpad is

passed to the routine on each invocation, and DB2 preserves the routine’s state

information in the scratchpad.

So for the counter example, the last value returned could be kept in the scratchpad.

And the match example could keep the list of documents in the scratchpad if the

Chapter 6. Developing external routines 137

scratchpad is big enough, otherwise it could allocate memory for the list and keep

the address of the acquired memory in the scratchpad. Scratchpads can be variable

length: the length is defined in the CREATE statement for the routine.

The scratchpad only applies to the individual reference to the routine in the

statement. If there are multiple references to a routine in a statement, each

reference has its own scratchpad, thus scratchpads cannot be used to communicate

between references. The scratchpad only applies to a single DB2 agent (an agent is

a DB2 entity that performs processing of all aspects of a statement). There is no

″global scratchpad″ to coordinate the sharing of scratchpad information between

the agents. This is especially important for situations where DB2 establishes

multiple agents to process a statement (in either a single partition or multiple

partition database). In these cases, even though there might only be a single

reference to a routine in a statement, there could be multiple agents doing the

work, and each would have its own scratchpad. In a multiple partition database,

where a statement referencing a UDF is processing data on multiple partitions, and

invoking the UDF on each partition, the scratchpad would only apply to a single

partition. As a result, there is a scratchpad on each partition where the UDF is

executed.

If the correct execution of a function depends on there being a single scratchpad

per reference to the function, then register the function as DISALLOW PARALLEL.

This will force the function to run on a single partition, thereby guaranteeing that

only a single scratchpad will exist per reference to the function.

Because it is recognized that a UDF or method might require system resources, the

UDF or method can be defined with the FINAL CALL keyword. This keyword tells

DB2 to call the UDF or method at end-of-statement processing so that the UDF or

method can release its system resources. It is vital that a routine free any resources

it acquires; even a small leak can become a big leak in an environment where the

statement is repetitively invoked, and a big leak can cause a DB2 crash.

Since the scratchpad is of a fixed size, the UDF or method can itself include a

memory allocation and thus, can make use of the final call to free the memory. For

example, the preceding match function cannot predict how many documents will

match the given text string. So a better definition for match is:

 CREATE FUNCTION match(varchar(200), char(15))

 RETURNS char(1) ... SCRATCHPAD 10000 FINAL CALL;

For UDFs or methods that use a scratchpad and are referenced in a subquery, DB2

might make a final call, if the UDF or method is so specified, and refresh the

scratchpad between invocations of the subquery. You can protect yourself against

this possibility, if your UDFs or methods are ever used in subqueries, by defining

the UDF or method with FINAL CALL and using the call-type argument, or by

always checking for the binary zero state of the scratchpad.

If you do specify FINAL CALL, note that your UDF or method receives a call of

type FIRST. This could be used to acquire and initialize some persistent resource.

Following is a simple Java example of a UDF that uses a scratchpad to compute

the sum of squares of entries in a column. This example takes in a column and

returns a column containing the cumulative sum of squares from the top of the

column to the current row entry:

 CREATE FUNCTION SumOfSquares(INTEGER)

 RETURNS INTEGER

 EXTERNAL NAME ’UDFsrv!SumOfSquares’

138 Developing User-defined Routines (SQL and External)

DETERMINISTIC

 NO EXTERNAL ACTION

 FENCED

 NOT NULL CALL

 LANGUAGE JAVA

 PARAMETER STYLE DB2GENERAL

 NO SQL

 SCRATCHPAD 10

 FINAL CALL

 DISALLOW PARALLEL

 NO DBINFO@

 // Sum Of Squares using Scratchpad UDF

 public void SumOfSquares(int inColumn,

 int outSum)

 throws Exception

 {

 int sum = 0;

 byte[] scratchpad = getScratchpad();

 // variables to read from SCRATCHPAD area

 ByteArrayInputStream byteArrayIn = new ByteArrayInputStream(scratchpad);

 DataInputStream dataIn = new DataInputStream(byteArrayIn);

 // variables to write into SCRATCHPAD area

 byte[] byteArrayCounter;

 int i;

 ByteArrayOutputStream byteArrayOut = new ByteArrayOutputStream(10);

 DataOutputStream dataOut = new DataOutputStream(byteArrayOut);

 switch(getCallType())

 {

 case SQLUDF_FIRST_CALL:

 // initialize data

 sum = (inColumn * inColumn);

 // save data into SCRATCHPAD area

 dataOut.writeInt(sum);

 byteArrayCounter = byteArrayOut.toByteArray();

 for(i = 0; i < byteArrayCounter.length; i++)

 {

 scratchpad[i] = byteArrayCounter[i];

 }

 setScratchpad(scratchpad);

 break;

 case SQLUDF_NORMAL_CALL:

 // read data from SCRATCHPAD area

 sum = dataIn.readInt();

 // work with data

 sum = sum + (inColumn * inColumn);

 // save data into SCRATCHPAD area

 dataOut.writeInt(sum);

 byteArrayCounter = byteArrayOut.toByteArray();

 for(i = 0; i < byteArrayCounter.length; i++)

 {

 scratchpad[i] = byteArrayCounter[i];

 }

 setScratchpad(scratchpad);

 break;

 }

 //set the output value

 set(2, sum);

 } // SumOfSquares UDF

Chapter 6. Developing external routines 139

Please note that there is a built-in DB2 function that performs the same task as the

SumOfSquares UDF. This example was chosen to demonstrate the use of a

scratchpad.

Scratchpads on 32-bit and 64-bit operating systems

To make your UDF or method code portable between 32-bit and 64-bit operating

systems, you must take care in the way you create and use scratchpads that

contain 64-bit values. It is recommended that you do not declare an explicit length

variable for a scratchpad structure that contains one or more 64-bit values, such as

64-bit pointers or sqlint64 BIGINT variables.

Following is a sample structure declaration for a scratchpad:

 struct sql_scratchpad

 {

 sqlint32 length;

 char data[100];

 };

When defining its own structure for the scratchpad, a routine has two choices:

1. Redefine the entire scratchpad sql_scratchpad, in which case it needs to

include an explicit length field. For example:

 struct sql_spad

 {

 sqlint32 length;

 sqlint32 int_var;

 sqlint64 bigint_var;

 };

 void SQL_API_FN routine(..., struct sql_spad* scratchpad, ...)

 {

 /* Use scratchpad */

 }

2. Redefine just the data portion of the scratchpad sql_scratchpad, in which case

no length field is needed.

 struct spaddata

 {

 sqlint32 int_var;

 sqlint64 bigint_var;

 };

 void SQL_API_FN routine(..., struct sql_scratchpad* spad, ...)

 {

 struct spaddata* scratchpad = (struct spaddata*)spad→data;

 /* Use scratchpad */

 }

Since the application cannot change the value in the length field of the scratchpad,

there is no significant benefit to coding the routine as shown in the first example.

The second example is also portable between computers with different word sizes,

so it is the preferred way of writing the routine.

XML data type support in external routines

External procedures and functions written in the following programming

languages support parameters and variables of data type XML:

v C

v C++

v COBOL

v Java

140 Developing User-defined Routines (SQL and External)

v .NET CLR languages

External OLE and OLEDB routines do not support parameters of data type XML.

XML data type values are represented in external routine code in the same way as

CLOB data types.

When declaring external routine parameters of data type XML, the CREATE

PROCEDURE and CREATE FUNCTION statements that will be used to create the

routines in the database must specify that the XML data type is to be stored as a

CLOB data type. The size of the CLOB value should be close to the size of the

XML document represented by the XML parameter.

The CREATE PROCEDURE statement below shows a CREATE PROCEDURE

statement for an external procedure implemented in the C programming language

with an XML parameter named parm1:

 CREATE PROCEDURE myproc(IN parm1 XML AS CLOB(2M), IN parm2 VARCHAR(32000))

 LANGUAGE C

 FENCED

 PARAMETER STYLE SQL

 EXTERNAL NAME ’mylib!myproc’;

Similar considerations apply when creating external UDFs, as shown in the

example below:

 CREATE FUNCTION myfunc (IN parm1 XML AS CLOB(2M))

 RETURNS SMALLINT

 LANGUAGE C

 PARAMETER STYLE SQL

 DETERMINISTIC

 NOT FENCED

 NULL CALL

 NO SQL

 NO EXTERNAL ACTION

 EXTERNAL NAME ’mylib1!myfunc’

XML data is materialized when passed to stored procedures as IN, OUT, or INOUT

parameters. If you are using Java stored procedures, the heap size

(JAVA_HEAP_SZ configuration parameter) might need to be increased based on

the quantity and size of XML arguments, and the number of external stored

procedures that are being executed concurrently.

Within external routine code, XML parameter and variable values are accessed, set,

and modified in the same way as in database applications.

Writing routines

The three types of routines (procedures, UDFs, and methods) have much in

common with regards to how they are written. For instance, the three routine types

employ some of the same parameter styles, support the use of SQL through

various client interfaces (embedded SQL, CLI, and JDBC), and can all invoke other

routines. To this end, the following steps represent a single approach for writing

routines.

There are some routine features that are specific to a routine type. For example,

result sets are specific to stored procedures, and scratchpads are specific to UDFs

Chapter 6. Developing external routines 141

and methods. When you come across a step not applicable to the type of routine

you are developing, go to the step that follows it.

Before writing a routine, you must decide the following:

v The type of routine you need.

v The programming language you will use to write it.

v Which interface to use if you require SQL statements in your routine.

See also the topics on Security, Library and Class Management, and Performance

considerations.

To create a routine body, you must:

1. Applicable only to external routines. Accept input parameters from the invoking

application or routine and declare output parameters. How a routine accepts

parameters is dependent on the parameter style you will create the routine

with. Each parameter style defines the set of parameters that are passed to the

routine body and the order that the parameters are passed.

For example, the following is a signature of a UDF body written in C (using

sqludf.h) for PARAMETER STYLE SQL:

SQL_API_RC SQL_API_FN product (SQLUDF_DOUBLE *in1,

 SQLUDF_DOUBLE *in2,

 SQLUDF_DOUBLE *outProduct,

 SQLUDF_NULLIND *in1NullInd,

 SQLUDF_NULLIND *in2NullInd,

 SQLUDF_NULLIND *productNullInd,

 SQLUDF_TRAIL_ARGS)

2. Add the logic that the routine is to perform. Some features that you can

employ in the body of your routines are as follows:

v Calling other routines (nesting), or calling the current routine (recursion).

v In routines that are defined to have SQL (CONTAINS SQL, READS SQL, or

MODIFIES SQL), the routine can issue SQL statements. The types of

statements that can be invoked is controlled by how routines are registered.

v In external UDFs and methods, use scratchpads to save state from one call to

the next.

v In SQL procedures, use condition handlers to determine the SQL procedure’s

behavior when a specified condition occurs. You can define conditions based

on SQLSTATEs.
3. Applicable only to stored procedures. Return one or more result sets. In addition to

individual parameters that are exchanged with the calling application, stored

procedures have the capability to return multiple result sets. Only SQL routines

and CLI, ODBC, JDBC, and SQLJ routines and clients can accept result sets.

In addition to writing your routine, you also need to register it before you can

invoke it. This is done with the CREATE statement that matches the type of

routine you are developing. In general, the order in which you write and register

your routine does not matter. However, the registration of a routine must precede

its being built if it issues SQL that references itself. In this case, for a bind to be

successful, the routine’s registration must have already occurred.

142 Developing User-defined Routines (SQL and External)

Creating external routines

External routines including procedures and functions are created in a similar way

as routines with other implementations, however there are a few more steps

required, because the routine implementation requires the coding, compilation, and

deployment of source code.

You would choose to implement an external routine if:

v You want to encapsulate complex logic into a routine that accesses the database

or that performs an action outside of the database.

v You require the encapsulated logic to be invoked from any of: multiple

applications, the CLP, another routine (procedure, function (UDF), or method),

or a trigger.

v You are most comfortable coding this logic in a programming language rather

than using SQL and SQL PL statements.

v You require the routine logic to perform operations external to the database such

as writing or reading to a file on the database server, the running of another

application, or logic that cannot be represented with SQL and SQL PL

statements.

Prerequisites

v Knowledge of external routine implementation. To learn about external routines

in general, see the topic:

– “External routines” on page 111

– “External routine creation” on page 112
v The DB2 Client must be installed.

v The database server must be running an operating system that supports the

chosen implementation programming language compilers and development

software.

v The required compilers and runtime support for the chosen programming

language must be installed on the database server

v Authority to execute the CREATE PROCEDURE, CREATE FUNCTION, or

CREATE METHOD statement.

For a list of restrictions associated with external routines see:

v “Restrictions on external routines” on page 127

Procedure

1. Code the routine logic in the chosen programming language.

v For general information about external routines, routine features, and routine

feature implementation, see the topics referenced in the Prerequisites section.

v Use or import any required header files required to support the execution of

SQL statements.

v Declare variables and parameters correctly using programming language

data types that map to DB2 SQL data types.
2. Parameters must be declared in accordance with the format required by the

parameter style for the chosen programming language. For more on parameters

and prototype declarations see:

v “External routine parameter styles” on page 124
3. Build your code into a library or class file.

Chapter 6. Developing external routines 143

4. Copy the library or class file into the DB2 function directory on the database

server. It is recommended that you store assemblies or libraries associated with

DB2 routines in the function directory. To find out more about the function

directory, see the EXTERNAL clause of either of the following statements:

CREATE PROCEDURE or CREATE FUNCTION.

You can copy the assembly to another directory on the server if you wish, but

to successfully invoke the routine you must note the fully qualified path name

of your assembly as you will require it for the next step.

5. Execute either dynamically or statically the appropriate SQL language CREATE

statement for the routine type: CREATE PROCEDURE or CREATE FUNCTION.

v Specify the LANGUAGE clause with the appropriate value for the chosen API or

programming language. Examples include: CLR, C, JAVA.

v Specify the PARAMETER STYLE clause with the name of the supported

parameter style that was implemented in the routine code.

v Specify the EXTERNAL clause with the name of the library, class, or assembly

file to be associated with the routine using one of the following values:

– the fully qualified path name of the routine library, class, or assembly file .

– the relative path name of the routine library, class, or assembly file relative

to the function directory.
By default DB2 will look for the library, class, or assembly file by name in

the function directory unless a fully qualified or relative path name for it is

specified in the EXTERNAL clause.

v Specify DYNAMIC RESULT SETS with a numeric value if your routine is a

procedure and it will return one or more result sets to the caller.

v Specify any other clauses required to characterize the routine.

To invoke your external routine, see Routine invocation

.NET common language runtime (CLR) routines

In DB2, a common language runtime (CLR) routine is an external routine created

by executing a CREATE PROCEDURE or CREATE FUNCTION statement that

references a .NET assembly as its external code body.

The following terms are important in the context of CLR routines:

.NET Framework

A Microsoft application development environment comprised of the CLR

and .NET Framework class library designed to provide a consistent

programming environment for developing and integrating code pieces.

Common language runtime (CLR)

The runtime interpreter for all .NET Framework applications.

intermediate language (IL)

Type of compiled byte-code interpreted by the .NET Framework CLR.

Source code from all .NET compatible languages compiles to IL byte-code.

assembly

A file that contains IL byte-code. This can either be a library or an

executable.

 You can implement CLR routines in any language that can be compiled into an IL

assembly. These languages include, but are not limited to: Managed C++, C#,

Visual Basic, and J#.

144 Developing User-defined Routines (SQL and External)

Before developing a CLR routine, it is important to both understand the basics of

routines and the unique features and characteristics specific to CLR routines. To

learn more about routines and CLR routines see:

v “Benefits of using routines” on page 1

v “Supported SQL data types for the IBM Data Server Provider for .NET” on page

146

v “Parameters in .NET CLR routines” on page 148

v “Returning result sets from .NET CLR procedures” on page 150

v “Restrictions on .NET CLR routines” on page 152

v “Errors related to .NET CLR routines” on page 162

Developing a CLR routine is easy. For step-by-step instructions on how to develop

a CLR routine and complete examples see:

v “Creating .NET CLR routines from DB2 Command Window” on page 154

v “Examples of C# .NET CLR procedures” on page 164

v “Examples of C# .NET CLR functions” on page 198

Support for external routine development in .NET CLR

languages

To develop external routines in .NET CLR languages and successfully run them,

you will need to use supported operating systems, versions of DB2 database

servers and clients, and development software.

Supported operating systems for developing .NET CLR routines

with .NET Framework 1.1 or .NET Framework 2.0

v Windows 2000

v Windows XP (32-bit edition)

v Windows Server 2003 (32-bit edition)

Supported DB2 database servers and clients for .NET CLR

routine development

The following minimum DB2 database servers and clients must be installed:

v DB2 server: Minimum supported version is DB2 Version 8.2.

v DB2 client: Minimum supported version is DB2 Version 7.2.

Required development software for .NET CLR routines

One of the following two software products must be installed on the same

computer as the DB2 database server:

v Microsoft .NET Framework, Version 1.1

v Microsoft .NET Framework, Version 2.0

The Microsoft .NET Framework is independently available or as part of one of the

following development kits:

v Microsoft .NET Framework Version 1.1 Software Development Kit

v Microsoft .NET Framework Version 2.0 Software Development Kit

.NET CLR external routines can be implemented in any language that can be

compiled into an IL assembly by the Microsoft .NET Framework. These languages

include, but are not limited to: Managed C++, C#, Visual Basic, and J#.

Chapter 6. Developing external routines 145

Tools for developing .NET CLR routines

Tools can make the task of developing .NET CLR routines that interact with DB2

database faster and easier.

.NET CLR routines can be developed in Microsoft Visual Studio .NET using

graphical tools available in:

v IBM DB2 Development Add-In for Microsoft Visual Studio .NET 1.2

The following command line interfaces, provided with DB2, are also available for

developing .NET CLR routines on DB2 database servers:

v DB2 Command Line Processor (DB2 CLP)

v DB2 Command Window

Designing .NET CLR routines

When designing .NET CLR routines, you should take into account both general

external routine design considerations and .NET CLR specific design

considerations.

Knowledge and experience with .NET application development and general

knowledge of external routines. The following topics can provide you with some of

the required prerequisite information.

For more information on the features and uses of external routines see:

v External routines

For more information on the characteristics of .NET CLR routines, see:

v .NET CLR routines

With the prerequisite knowledge, designing embedded SQL routines consists

mainly of learning about the unique features and characteristics of .NET CLR

routines:

v Include assemblies that provide support for SQL statement execution in .NET

CLR routines (IBM.Data.DB2)

v Supported SQL data types in .NET CLR routines

v Parameters to .NET CLR routines

v Returning result sets from .NET CLR routines

v Security and execution control mode settings for .NET CLR routines

v Restrictions on .NET CLR routines

v Returning result sets from .NET CLR procedures

After having learned about the .NET CLR characteristics, you might want to:

″Create .NET CLR routines″.

Supported SQL data types for the IBM Data Server Provider for

.NET

The following table lists the mappings between the DB2Type data types in the IBM

Data Server Provider for .NET, the DB2 data type, and the corresponding .NET

Framework data type:

146 Developing User-defined Routines (SQL and External)

Table 13. Mapping DB2 Data Types to .NET data types

DB2Type Enum DB2 Data Type .NET Data Type

SmallInt SMALLINT Int16

Integer INTEGER Int32

BigInt BIGINT Int64

Real REAL Single

Real370(2) REAL Single

Double DOUBLE PRECISION Double

Float FLOAT Double

Decimal DECIMAL Decimal

Numeric DECIMAL Decimal

Date DATE DateTime

Time TIME TimeSpan

Timestamp TIMESTAMP DateTime

Char CHAR String

VarChar VARCHAR String

LongVarChar(1) LONG VARCHAR String

Binary CHAR FOR BIT DATA Byte[]

VarBinary VARCHAR FOR BIT DATA Byte[]

LongVarBinary(1)

LONG VARCHAR FOR BIT

DATA Byte[]

Graphic GRAPHIC String

VarGraphic VARGRAPHIC String

LongVarGraphic(1) LONG GRAPHIC String

Clob CLOB String

Blob BLOB Byte[]

DbClob DBCLOB(N) String

Xml(3) XML IBM.Data.DB2Types.DB2Xml

Note:

1. These data types are not supported in DB2 .NET common language runtime

routines. They are only supported in client applications.

2. A DB2Parameter.Value property of the type DB2Type.Xml can accept variables

of the following types: String, Byte[], DB2Xml, and XmlReader.

3. The Real370 enumeration can only be used for parameters in SQL statements

that are executed against DB2 Universal Database for OS/390 and z/OS

databases.

Note: The dbinfo structure is passed into CLR functions and procedures as a

parameter. The scratchpad and call type for CLR UDFs are also passed into CLR

routines as parameters. For information about the appropriate CLR data types for

these parameters, see the related topic:

v Parameters in CLR routines

Chapter 6. Developing external routines 147

Parameters in .NET CLR routines

Parameter declaration in .NET CLR routines must conform to the requirements of

one of the supported parameter styles, and must respect the parameter keyword

requirements of the particular .NET language used for the routine. If the routine is

to use a scratchpad, the dbinfo structure, or to have a PROGRAM TYPE MAIN

parameter interface, there are additional details to consider. This topic addresses all

CLR parameter considerations.

Supported parameter styles for CLR routines

The parameter style of the routine must be specified at routine creation time in the

EXTERNAL clause of the CREATE statement for the routine. The parameter style

must be accurately reflected in the implementation of the external CLR routine

code. The following DB2 parameter styles are supported for CLR routines:

v SQL (Supported for procedures and functions)

v GENERAL (Supported for procedures only)

v GENERAL WITH NULLS (Supported for procedures only)

v DB2SQL (Supported for procedures and functions)

For more information about these parameter styles see the topic:

v Parameter styles for external routines

CLR routine parameter null indicators

If the parameter style chosen for a CLR routine requires that null indicators be

specified for the parameters, the null indicators are to be passed into the CLR

routine as System.Int16 type values, or in a System.Int16[] value when the

parameter style calls for a vector of null indicators.

When the parameter style dictates that the null indicators be passed into the

routine as distinct parameters, as is required for parameter style SQL, one

System.Int16 null indicator is required for each parameter.

In .NET languages distinct parameters must be prefaced with a keyword to

indicate if the parameter is passed by value or by reference. The same keyword

that is used for a routine parameter must be used for the associated null indicator

parameter. The keywords used to indicate whether an argument is passed by value

or by reference are discussed in more detail below.

For more information about parameter style SQL and other supported parameter

styles, see the topic:

v Parameter styles for external routines

Passing CLR routine parameters by value or by reference

.NET language routines that compile into intermediate language (IL) byte-code

require that parameters be prefaced with keywords that indicate the particular

properties of the parameter such as whether the parameter is passed by value, by

reference, is an input only, or an output only parameter.

Parameter keywords are .NET language specific. For example to pass a parameter

by reference in C#, the parameter keyword is ref, whereas in Visual Basic, a by

148 Developing User-defined Routines (SQL and External)

reference parameter is indicated by the byRef keyword. The keywords must be

used to indicate the SQL parameter usage (IN, OUT, INOUT) that was specified in the

CREATE statement for the routine.

The following rules apply when applying parameter keywords to .NET language

routine parameters in DB2 routines:

v IN type parameters must be declared without a parameter keyword in C#, and

must be declared with the byVal keyword in Visual Basic.

v INOUT type parameters must be declared with the language specific keyword that

indicates that the parameter is passed by reference. In C# the appropriate

keyword is ref. In Visual Basic, the appropriate keyword is byRef.

v OUT type parameters must be declared with the language specific keyword that

indicates that the parameter is an output only parameter. In C#, use the out

keyword. In Visual Basic, the parameter must be declared with the byRef

keyword. Output only parameters must always be assigned a value before the

routine returns to the caller. If the routine does not assign a value to an output

only parameter, an error will be raised when the .NET routine is compiled.

Here is what a C#, parameter style SQL procedure prototype looks like for a

routine that returns a single output parameter language.

 public static void Counter (out String language,

 out Int16 languageNullInd,

 ref String sqlState,

 String funcName,

 String funcSpecName,

 ref String sqlMsgString,

 Byte[] scratchPad,

 Int32 callType);

It is clear that the parameter style SQL is implemented because of the extra null

indicator parameter, languageNullInd associated with the output parameter

language, the parameters for passing the SQLSTATE, the routine name, the routine

specific name, and optional user-defined SQL error message. Parameter keywords

have been specified for the parameters as follows:

v In C# no parameter keyword is required for input only parameters.

v In C# the ’out’ keyword indicates that the variable is an output parameter only,

and that its value has not been initialized by the caller.

v In C# the ’ref’ keyword indicates that the parameter was initialized by the caller,

and that the routine can optionally modify this value.

See the .NET language specific documentation regarding parameter passing to

learn about the parameter keywords in that language.

Note: DB2 controls allocation of memory for all parameters and maintains CLR

references to all parameters passed into or out of a routine.

No parameter marker is required for procedure result sets

No parameter markers is required in the procedure declaration of a procedure for a

result set that will be returned to the caller. Any cursor statement that is not closed

from inside of a CLR stored procedure will be passed back to its caller as a result

set.

For more on result sets in CLR routines, see:

v

Chapter 6. Developing external routines 149

Dbinfo structure as CLR parameter

The dbinfo structure used for passing additional database information parameters

to and from a routine is supported for CLR routines through the use of an IL

dbinfo class. This class contains all of the elements found in the C language

sqludf_dbinfo structure except for the length fields associated with the strings. The

length of each string can be found using the .NET language Length property of the

particular string.

To access the dbinfo class, simply include the IBM.Data.DB2 assembly in the file

that contains your routine, and add a parameter of type sqludf_dbinfo to your

routine’s signature, in the position specified by the parameter style used.

UDF scratchpad as CLR parameter

If a scratchpad is requested for a user defined function, it is passed into the routine

as a System.Byte[] parameter of the specified size.

CLR UDF call type or final call parameter

For user-defined functions that have requested a final call parameter or for table

functions, the call type parameter is passed into the routine as a System.Int32 data

type.

PROGRAM TYPE MAIN supported for CLR procedures

Program type MAIN is supported for .NET CLR procedures. Procedures defined as

using Program Type MAIN must have the following signature:

 void functionname(Int32 NumParams, Object[] Params)

Returning result sets from .NET CLR procedures

You can develop CLR procedures that return result sets to a calling routine or

application. Result sets cannot be returned from CLR functions (UDFs).

The .NET representation of a result set is a DB2DataReader object which can be

returned from one of the various execute calls of a DB2Command object. Any

DB2DataReader object whose Close() method has not explicitly been called prior to

the return of the procedure, can be returned. The order in which result sets are

returned to the caller is the same as the order in which the DB2DataReader objects

were instantiated. No additional parameters are required in the function definition

in order to return a result set.

An understanding of how to create CLR routines will help you to follow the steps

in the procedure below for returning results from a CLR procedure.

v “Creating .NET CLR routines from DB2 Command Window” on page 154

To return a result set from a CLR procedure:

1. In the CREATE PROCEDURE statement for the CLR routine you must specify

along with any other appropriate clauses, the DYNAMIC RESULT SETS clause

with a value equal to the number of result sets that are to be returned by the

procedure.

2. No parameter marker is required in the procedure declaration for a result set

that is to be returned to the caller.

150 Developing User-defined Routines (SQL and External)

3. In the .NET language implementation of your CLR routine, create a

DB2Connection object, a DB2Command object, and a DB2Transaction object. A

DB2Transaction object is responsible for rolling back and committing database

transactions.

4. Initialize the Transaction property of the DB2Command object to the

DB2Transaction object.

5. Assign a string query to the DB2Command object’s CommandText property that

defines the result set that you want to return.

6. Instantiate a DB2DataReader, and assign to it, the result of the invocation of the

DB2Command object method ExecuteReader. The result set of the query will be

contained in the DB2DataReader object.

7. Do not execute the Close() method of the DB2DataReader object at any point

prior to the procedure’s return to the caller. The still open DB2DataReader object

will be returned as a result set to the caller.

When more than one DB2DataReader is left open upon the return of a

procedure, the DB2DataReaders are returned to the caller in the order of their

creation. Only the number of result sets specified in the CREATE PROCEDURE

statement will be returned to the caller.

8. Compile your .NET CLR language procedure and install the assembly in the

location specified by the EXTERNAL clause in the CREATE PROCEDURE

statement. Execute the CREATE PROCEDURE statement for the CLR

procedure, if you have not already done so.

9. Once the CLR procedure assembly has been installed in the appropriate

location and the CREATE PROCEDURE statement has successfully been

executed, you can invoke the procedure with the CALL statement to see the

result sets return to the caller.

For information on calling procedures and other types of routines, see the topic:

v Chapter 11, “Routine invocation,” on page 331

Security and execution modes for CLR routines

As a database administrator or application developer, you might want to protect

the assemblies associated with your DB2 external routines from unwelcome

tampering to restrict the actions of routines at run time. DB2 .NET common

language runtime (CLR) routines support the specification of an execution control

mode that identifies what types of actions a routine will be allowed to perform at

run time. At run time, DB2 can detect if the routine attempts to perform actions

beyond the scope of its specified execution control mode, which can be helpful

when determining whether an assembly has been compromised.

To set the execution control mode of a CLR routine, specify the optional

EXECUTION CONTROL clause in the CREATE statement for the routine. Valid

modes are:

v SAFE

v FILEREAD

v FILEWRITE

v NETWORK

v UNSAFE

To modify the execution control mode in an existing CLR routine, execute the

ALTER PROCEDURE or ALTER FUNCTION statement.

If the EXECUTION CONTROL clause is not specified for a CLR routine, by default

the CLR routine is run using the most restrictive execution control mode: SAFE.

Chapter 6. Developing external routines 151

Routines that are created with this execution control mode can only access

resources that are controlled by the database manager. Less restrictive execution

control modes allow a routine to access files (FILEREAD or FILEWRITE) or

perform network operations such as accessing a web page (NETWORK). The

execution control mode UNSAFE specifies that no restrictions are to be placed on

the behavior of the routine. Routines defined with UNSAFE execution control

mode can execute binary code.

These modes represent a hierarchy of allowable actions, and a higher-level mode

includes the actions that are allowed below it in the hierarchy. For example,

execution control mode NETWORK allows a routine to access web pages on the

internet, read and write to files, and access resources that are controlled by the

database manager. It is recommended to use the most restrictive execution control

mode possible, and to avoid using the UNSAFE mode.

If DB2 detects at run time that a CLR routine is attempting an action outside of the

scope of its execution control mode, DB2 will return error (SQLSTATE 38501).

The EXECUTION CONTROL clause can only be specified for LANGUAGE CLR

routines. The scope of applicability of the EXECUTION CONTROL clause is

limited to the .NET CLR routine itself, and does not extend to any other routines

that it might call.

Refer to the syntax of the CREATE statement for the appropriate routine type for a

full description of the supported execution control modes.

Restrictions on .NET CLR routines

The general implementation restrictions that apply to all external routines or

particular routine classes (procedure or UDF) also apply to CLR routines. There are

some restrictions that are particular to CLR routines. These restrictions are listed

here.

The CREATE METHOD statement with LANGUAGE CLR clause is not

supported

You cannot create external methods for DB2 structured types that reference a CLR

assembly. The use of a CREATE METHOD statement that specifies the

LANGUAGE clause with value CLR is not supported.

CLR procedures cannot be implemented as NOT FENCED procedures

CLR procedures cannot be run as unfenced procedures. The CREATE

PROCEDURE statement for a CLR procedure can not specify the NOT FENCED

clause.

EXECUTION CONTROL clause restricts the logic contained in the

routine

The EXECUTION CONTROL clause and associated value determine what types of

logic and operations can be executed in a .NET CLR routine. By default the

EXECUTION CONTROL clause value is set to SAFE. For routine logic that reads

files, writes to files, or that accesses the internet, a non-default and less restrictive

value for the EXECUTION CONTROL clause must be specified.

152 Developing User-defined Routines (SQL and External)

Maximum decimal precision is 29, maximum decimal scale is 28 in a

CLR routine

The DECIMAL data type in DB2 is represented with a precision of 31 digits and a

scale of 28 digits. The .NET CLR System.Decimal data type is limited to a precision

of 29 digits and a scale of 28 digits. Therefore, DB2 external CLR routines must not

assign a value to a System.Decimal data type that has a value greater than

(2^96)-1, which is the highest value that can be represented using a 29 digit

precision and 28 digit scale. DB2 will raise a runtime error (SQLSTATE 22003,

SQLCODE -413) if such an assignment occurs. At the time of execution of the

CREATE statement for the routine, if a DECIMAL data type parameter is defined

with a scale greater than 28, DB2 will raise an error (SQLSTATE 42613, SQLCODE

-628).

If you require your routine to manipulate decimal values with the maximum

precision and scale supported by DB2, you can implement your external routine in

a different programming language such as Java.

Data types not supported in CLR routines

The following DB2 SQL data types are not supported in CLR routines:

v LONG VARCHAR

v LONG VARCHAR FOR BIT DATA

v LONG GRAPHIC

v ROWID

Running a 32-bit CLR routine on a 64-bit instance

CLR routines cannot be run on 64- bit instances, because the .NET Framework

cannot be installed on 64-bit operating systems at this time.

.NET CLR not supported for implementing security plug-ins

The .NET CLR is not supported for compiling and linking source code for security

plug-in libraries.

Creating .NET CLR routines

Creating .NET CLR routines consists of:

v Executing a CREATE statement that defines the routine in a DB2 database server

v Developing the routine implementation that corresponds to the routine

definition

The ways in which you can create .NET CLR routines follow:

v Using the graphical tools provided with the DB2 Database Development Add-In

for Visual Studio .NET 1.2

v Using the DB2 Command Window

In general it is easiest to create .NET CLR routines using the DB2 Database

Development Add-In for Visual Studio .NET 1.2. If this is not available for use, the

DB2 Command Window provides similar support through a command line

interface.

Prerequisites

Chapter 6. Developing external routines 153

v Review the .NET CLR Routine Overview.

v Ensure that you have access to a DB2 Version 9 server, including instances and

databases.

v Ensure that the operating system is at a version level that is supported by DB2

database products.

v Ensure that the Microsoft .NET development software is at a version level that is

supported for .NET CLR routine development.

v Authority to execute the CREATE PROCEDURE or CREATE FUNCTION

statement.

For a list of restrictions associated with CLR routines see:

v Restrictions on CLR routines

Create .NET CLR routines from one of the following interfaces:

v Visual Studio .NET when the IBM DB2 Development Add-In for Microsoft

Visual Studio .NET 1.2 is also installed. When the Add-In is installed, graphical

tools integrated into Visual Studio .NET are available for creating .NET CLR

routines that work in DB2 database servers.

v DB2 Command Window

To create .NET CLR routines from DB2 Command Window, see:

v Creating .NET CLR routines from DB2 Command Window

Creating .NET CLR routines from DB2 Command Window

Procedures and functions that reference an intermediate language assembly are

created in the same way as any external routine is created. You would choose to

implement an external routine in a .NET language if:

v You want to encapsulate complex logic into a routine that accesses the database

or that performs an action outside of the database.

v You require the encapsulated logic to be invoked from any of: multiple

applications, the CLP, another routine (procedure, function (UDF), or method),

or a trigger.

v You are most comfortable coding this logic in a .NET language.

Prerequisites

v Knowledge of CLR routine implementation. To learn about CLR routines

in general and about CLR features, see:

– “.NET common language runtime (CLR) routines” on page 144
v The database server must be running a Windows operating system that

supports the Microsoft .NET Framework.

v The .NET Framework, version 1.1 or 2.0, must be installed on the server.

The .NET Framework is independently available or as part of the

Microsoft .NET Framework 1.1 Software Development Kit or .NET

Framework 2.0 Software Development Kit.

v

The following versions of DB2 must be installed:

– Server: DB2 8.2 or a later release.

– Client: Any client that can attach to a DB2 8.2 instance will be able to

invoke a CLR routine. It is recommended that you install DB2 Version

7.2 or a later release on the client.

154 Developing User-defined Routines (SQL and External)

http://www.ibm.com/software/data/db2/udb/sysreqs.html

v Authority to execute the CREATE statement for the external routine. For

the privileges required to execute the CREATE PROCEDURE statement

or CREATE FUNCTION statement, see the details of the appropriate

statement.

For a list of restrictions associated with CLR routines see:

v “Restrictions on .NET CLR routines” on page 152

Procedure

1. Code the routine logic in any CLR supported language.

v For general information about .NET CLR routines and .NET CLR routine

features see the topics referenced in the Prerequisites section

v Use or import the IBM.Data.DB2 assembly if your routine will execute SQL.

v Declare host variables and parameters correctly using data types that map to

DB2 SQL data types. For a data type mapping between DB2 and .NET data

types:

– “Supported SQL data types for the IBM Data Server Provider for .NET”

on page 146
v Parameters and parameter null indicators must be declared using one of

DB2’s supported parameter styles and according to the parameter

requirements for .NET CLR routines. As well, scratchpads for UDFs, and the

DBINFO class are passed into CLR routines as parameters. For more on

parameters and prototype declarations see:

– “Parameters in .NET CLR routines” on page 148
v If the routine is a procedure and you want to return a result set to the caller

of the routine, you do not require any parameters for the result set. For more

on returning result sets from CLR routines:

– “Returning result sets from .NET CLR procedures” on page 150
v Set a routine return value if required. CLR scalar functions require that a

return value is set before returning. CLR table functions require that a return

code is specified as an output parameter for each invocation of the table

function. CLR procedures do not return with a return value.
2. Build your code into an intermediate language (IL) assembly to be executed by

the CLR. For information on how to build CLR .NET routines that access DB2,

see the following topic:

v “Building common language runtime (CLR) .NET routines” in the manual

called Developing ADO.NET and OLE DB Applications

3. Copy the assembly into the DB2 function directory on the database server. It is

recommended that you store assemblies or libraries associated with DB2

routines in the function directory. To find out more about the function directory,

see the EXTERNAL clause of either of the following statements: CREATE

PROCEDURE or CREATE FUNCTION.

You can copy the assembly to another directory on the server if you want, but

to successfully invoke the routine you must note the fully qualified path name

of your assembly as you will require it for the next step.

4. Execute either dynamically or statically the appropriate SQL language CREATE

statement for the routine type: CREATE PROCEDURE or CREATE FUNCTION.

v Specify the LANGUAGE clause with value: CLR.

v Specify the PARAMETER STYLE clause with the name of the supported

parameter style that was implemented in the routine code.

v Specify the EXTERNAL clause with the name of the assembly to be associated

with the routine using one of the following values:

Chapter 6. Developing external routines 155

– the fully qualified path name of the routine assembly.

– the relative path name of the routine assembly relative to the function

directory.
By default DB2 will look for the assembly by name in the function directory

unless a fully qualified or relative path name for the library is specified in

the EXTERNAL clause.

When the CREATE statement is executed, if the assembly specified in the

EXTERNAL clause is not found by DB2 you will receive an error (SQLCODE

-20282) with reason code 1.

v Specify the DYNAMIC RESULT SETS clause with an integer value equivalent

to the maximum number of result sets that might be returned by the routine.

v You can not specify the NOT FENCED clause for CLR procedures. By default

CLR procedures are executed as FENCED procedures.

To invoke your CLR routine, see the topic: ″Routine invocation″.

Building .NET CLR routine code

Once .NET CLR routine implementation code has been written, it must be built

before the routine assembly can be deployed and the routine invoked. The steps

required to build .NET CLR routines are similar to those required to build any

external routine however there are some differences.

There are three ways to build .NET CLR routines:

v Using the graphical tools provided with the DB2 Database Development Add-In

for Visual Studio .NET 1.2

v Using DB2 sample batch files

v Entering commands from a DB2 Command Window

The DB2 sample build scripts and batch files for routines are designed for building

DB2 sample routines (procedures and user-defined functions) as well as user

created routines for a particular operating system using the default supported

compilers.

There is a separate set of DB2 sample build scripts and batch files for C# and

Visual Basic. In general it is easiest to build .NET CLR routines using the graphical

tools or the build scripts which can easily be modified if required, however it is

often helpful to know how to build routines from DB2 Command Window as well.

Building .NET common language runtime (CLR) routine code

using sample build scripts

Building .NET common language runtime (CLR) routine source code is a sub-task

of creating .NET CLR routines. This task can be done quickly and easily using DB2

sample batch files. The sample build scripts can be used for source code with or

without SQL statements. The build scripts take care of the compilation, linking,

and deployment of the built assembly to the function directory.

As alternatives, you can simplify the task of building .NET CLR routine code by

doing so in Visual Studio .NET or you do the steps in the DB2 sample build scripts

manually. Refer to:

v Building .NET common language runtime (CLR) routines in Visual Studio .NET

v Building .NET common language runtime (CLR) routines using DB2 Command

Window

156 Developing User-defined Routines (SQL and External)

The programming language specific sample build scripts for building C# and

Visual Basic .NET CLR routines are named bldrtn. They are located in DB2

directories along with sample programs that can be built with them as follows:

v For C: sqllib/samples/cs/

v For C++: sqllib/samples/vb/

The bldrtn scripts can be used to build source code files containing both

procedures and user-defined functions. The script does the following:

v Establishes a connection with a user-specified database

v Compiles and links the source code to generate an assembly with a .DLL file

suffix

v Copies the assembly to the DB2 function directory on the database server

The bldrtn scripts accept two arguments:

v The name of a source code file without any file suffix

v The name of a database to which a connection will be established

The database parameter is optional. If no database name is supplied, the program

uses the default sample database. Since routines must be built on the same

instance where the database resides, no arguments are required for a user ID and

password.

Prerequisites

v The required .NET CLR routine operating system and development

software prerequisites must be satisfied. See: ″Support for .NET CLR

routine development″.

v Source code file containing one or more routine implementations.

v The name of the database within the current DB2 instance in which the

routines are to be created.

Procedure

 To build a source code file that contains one or more routine code

implementations, follow the steps below.

1. Open a DB2 Command Window.

2. Copy your source code file into the same directory as thebldrtnscript

file.

3. If the routines will be created in the sample database, enter the build

script name followed by the name of the source code file without the

.cs or .vb file extension:

 bldrtn <file-name>

If the routines will be created in another database, enter the build script

name, the source code file name without any file extension, and the

database name:

 bldrtn <file-name> <database-name>

The script compiles and links the source code and produces an

assembly. The script then copies the assembly to the function directory

on the database server

4. If this is not the first time that the source code file containing the

routine implementations was built, stop and restart the database to

Chapter 6. Developing external routines 157

ensure the new version of the shared library is used by DB2. You can

do this by entering db2stop followed by db2start on the command

line.

 Once you have successfully built the routine shared library and deployed it to the

function directory on the database server, you should complete the steps associated

with the task of creating C and C++ routines.

Creating .NET CLR routines includes a step for executing the CREATE statement

for each routine that was implemented in the source code file. After routine

creation is completed you can invoke your routines.

Building .NET common language runtime (CLR) routine code

from DB2 Command Window

Building .NET CLR routine source code is a sub-task of creating .NET CLR

routines. This task can be done manually from DB2 Command Window. The same

procedure can be followed regardless of whether there are SQL statements within

the routine code or not. The task steps include compilation of source code written

in a .NET CLR supported programming language into an assembly with a .DLL

file suffix.

As alternatives, you can simplify the task of building .NET CLR routine code by

doing so in Visual Studio .NET or by using DB2 sample build scripts. Refer to:

v Building .NET common language runtime (CLR) routines in Visual Studio .NET

v Building .NET common language runtime (CLR) routines using sample build

scripts

Prerequisites

v Required operating system and .NET CLR routine development software

prerequisites have been satisfied. See: ″Support for .NET CLR routine

development″.

v Source code written in a supported .NET CLR programming language

containing one or more .NET CLR routine implementations.

v The name of the database within the current DB2 instance in which the routines

are to be created.

v The operating specific compile and link options required for building .NET CLR

routines.

To build a source code file that contains one or more .NET CLR routine code

implementations, follow the steps below. An example follows that demonstrates

each of the steps:

1. Open a DB2 Command Window.

2. Navigate to the directory that contains your source code file.

3. Establish a connection with the database in which the routines will be created.

4. Compile the source code file.

5. Link the source code file to generate a shared library. This requires the use of

some DB2 specific compile and link options.

6. Copy the assembly file with the .DLL file suffix to the DB2 function directory

on the database server.

7. If this is not the first time that the source code file containing the routine

implementations was built, stop and restart the database to ensure the new

version of the shared library is used by DB2. You can do this by issuing the

db2stop command followed by the db2start command.

158 Developing User-defined Routines (SQL and External)

Once you have successfully built and deployed the routine library, you should

complete the steps associated with the task of creating .NET CLR routines.

Creating .NET CLR routines includes a step for executing the CREATE statement

for each routine that was implemented in the source code file. This step must also

be completed before you will be able to invoke the routines.

Example

The following example demonstrates the re-building of a .NET CLR source code

file. Steps are shown for both a Visual Basic code file named myVBfile.vb

containing routine implementations as well as for a C# code file named

myCSfile.cs. The routines are being built on a Windows 2000 operating system

using Microsoft .NET Framework 1.1 to generate a 64-bit assembly.

1. Open a DB2 Command Window.

2. Navigate to the directory that contains your source code file.

3. Establish a connection with the database in which the routines will be created.

 db2 connect to <database-name>

4. Compile the source code file using the recommended compile and link options

(where $DB2PATH is the install path of the DB2 instance. Replace this value

before running the command):

 C# example

 ===================

 csc /out:myCSfile.dll /target:library

 /reference:$DB2PATH%\bin\netf11\IBM.Data.DB2.dll myCSfile.cs

 Visual Basic example

 ====================

 vbc /target:library /libpath:$DB2PATH\bin\netf11

 /reference:$DB2PATH\bin\netf11\IBM.Data.DB2.dll

 /reference:System.dll

 /reference:System.Data.dll myVBfile.vb

The compiler will generate output if there are any errors. This step generates an

export file named myfile.exp.

5. Copy the shared library to the DB2 function directory on the database server.

 C# example

 ====================

 rm -f ~HOME/sqllib/function/myCSfile.DLL

 cp myCSfile $HOME/sqllib/function/myCSfile.DLL

 Visual Basic example

 ====================

 rm -f ~HOME/sqllib/function/myVBfile.DLL

 cp myVBfile $HOME/sqllib/function/myVBfile.DLL

This step ensures that the routine library is in the default directory where DB2

looks for routine libraries. Refer to the topic on creating .NET CLR routines for

more on deploying routine libraries.

6. Stop and restart the database as this is a re-building of a previously built

routine source code file.

 db2stop

 db2start

Building .NET CLR routines is generally most easily done using the operating

specific sample build scripts which also can be used as a reference for how to

build routines from the command line.

Chapter 6. Developing external routines 159

CLR .NET routine compile and link options

The following are the compile and link options recommended by DB2 for building

Common Language Runtime (CLR) .NET routines on Windows with either the

Microsoft Visual Basic .NET compiler or the Microsoft C# compiler, as

demonstrated in the samples\.NET\cs\bldrtn.bat and samples\.NET\vb\bldrtn.bat

batch files.

 Compile and link options for bldrtn

Compile and link options using the Microsoft C# compiler:

csc The Microsoft C# compiler.

/out:%1.dll /target:library

Output the dynamic link library as a stored procedure assembly dll.

/debug Use the debugger.

/lib: "%DB2PATH%"\bin\netf20\

Use the library path for .NET Framework Version 2.0.

 There are three supported versions of the .NET framework for applications:

version 1.1, version 2.0, and version 3.0. There is a dynamic link library for each

in separate sub-directories. For .NET Framework Version 1.1, use the

"%DB2PATH%"\bin\netf11 sub-directory. For .NET Framework Version 2.0 and 3.0,

use the "%DB2PATH%"\bin\netf20 sub-directory.

/reference:IBM.Data.DB2.dll

Use the DB2 dynamic link library for the IBM Data Server Provider for .NET

Refer to your compiler documentation for additional compiler options.

Compile and link options using the Microsoft Visual Basic .NET compiler:

vbc The Microsoft Visual Basic .NET compiler.

/out:%1.dll /target:library

Output the dynamic link library as a stored procedure assembly dll.

/debug Use the debugger.

/libpath:"%DB2PATH%"\bin\netf20\

Use the library path for .NET Framework Version 2.0.

 There are three supported versions of the .NET framework for applications:

version 1.1, version 2.0, and version 3.0. There is a dynamic link library for each

in separate sub-directories. For .NET Framework Version 1.1, use the

"%DB2PATH%"\bin\netf11 sub-directory. For .NET Framework Version 2.0 and 3.0,

use the "%DB2PATH%"\bin\netf20 sub-directory.

/reference:IBM.Data.DB2.dll

Use the DB2 dynamic link library for the IBM Data Server Provider for .NET.

/reference:System.dll

Reference the Microsoft Windows System dynamic link library.

/reference:System.Data.dll

Reference the Microsoft Windows System Data dynamic link library.

Refer to your compiler documentation for additional compiler options.

160 Developing User-defined Routines (SQL and External)

Debugging .NET CLR routines

Debugging .NET CLR routines might be required if you fail to be able to create a

routine, invoke a routine, or if upon invocation a routine does not behave or

perform as expected.

Consider the following when debugging .NET CLR routines:

v Verify that a supported operating system for .NET CLR routine development is

being used.

v Verify that both a supported DB2 database server and DB2 client for .NET CLR

routine development are being used.

v Verify that supported Microsoft .NET Framework development software is being

used.

v If routine creation failed:

– Verify that the user has the required authority and privileges to execute the

CREATE PROCEDURE or CREATE FUNCTION statement.
v If routine invocation failed:

– Verify that the user has authority to execute the routine. If an error

(SQLCODE -551, SQLSTATE 42501), this is likely because the invoker does

not have the EXECUTE privilege on the routine. This privilege can be granted

by a user with SYSADM authorization, DBADM authorization, or by the

definer of the routine.

– Verify that the routine parameter signature used in the CREATE statement for

the routine matches the routine parameter signature in the routine

implementation.

– Verify that the data types used in the routine implementation are compatible

with the data types specified in the routine parameter signature in the

CREATE statement.

– Verify that in the routine implementation that the .NET CLR language specific

keywords used to indicate the method by which the parameter must be

passed (by value or by reference) are valid.

– Verify that the value specified in the EXTERNAL clause in the CREATE

PROCEDURE or CREATE FUNCTION statement matches the location where

the .NET CLR assembly that contains the routine implementation is located

on the file system of the computer where the DB2 database server is installed.

– If the routine is a function, verify that all of the applicable call types have

been programmed correctly in the routine implementation. This is particularly

important if the routine was defined with the FINAL CALL clause.
v If the routine is not behaving as expected:

– Modify your routine such that it outputs diagnostic information to a file

located in a globally accessible directory. Output of diagnostic information to

the screen is not possible from .NET CLR routines. Do not direct output to

files in directories used by DB2 database managers or DB2 databases.

– Debug your routine locally by writing a simple .NET application that invokes

the routine entry point directly. For information on how to use debugging

features in Microsoft Visual Studio .NET, consult the Microsoft Visual Studio

.NET compiler documentation.

For more information on common errors related to .NET CLR routine creation and

invocation, see:

v Common errors related to .NET CLR routine development

Chapter 6. Developing external routines 161

Errors related to .NET CLR routines

Although external routines share a generally common implementation, there are

some DB2 errors that might arise that are specific to CLR routines. This reference

lists the most commonly encountered .NET CLR related errors listed by their

SQLCODE or behavior along with some debugging suggestions. DB2 errors related

to routines can be classified as follows:

Routine creation time errors

Errors that arise when the CREATE statement for the routine is executed.

Routine runtime errors

Errors that arise during the routine invocation or execution.

Regardless of when a DB2 routine related error is raised by DB2, the error message

text details the cause of the error and the action that the user should take to

resolve the problem. Additional routine error scenario information can be found in

the db2diag.log diagnostic log file.

CLR routine creation time errors

SQLCODE -451, SQLSTATE 42815

This error is raised upon an attempt to execute a CREATE TYPE statement

that includes an external method declaration specifying the LANGUAGE

clause with value CLR. You can not create DB2 external methods for

structured types that reference a CLR assembly at this time. Change the

LANGUAGE clause so that it specifies a supported language for the

method and implement the method in that alternate language.

SQLCODE -449, SQLSTATE 42878

The CREATE statement for the CLR routine contains an invalidly

formatted library or function identification in the EXTERNAL NAME

clause. For language CLR, the EXTERNAL clause value must specifically

take the form: ’<a>:!<c>’ as follows:

v <a> is the CLR assembly file in which the class is located.

v is the class in which the method to invoke resides.

v <c> is the method to invoke.

No leading or trailing blank characters are permitted between the single

quotation marks, object identifiers, and the separating characters (for

example, ’ <a> ! ’ is invalid). Path and file names, however, can

contain blanks if the platform permits. For all file names, the file can be

specified using either the short form of the name (example: math.dll) or

the fully qualified path name (example: d:\udfs\math.dll). If the short

form of the file name is used, if the platform is UNIX or if the routine is a

LANGUAGE CLR routine, then the file must reside in the function

directory. If the platform is Windows and the routine is not a LANGUAGE

CLR routine then the file must reside in the system PATH. File extensions

(examples: .a (on UNIX), .dll (on Windows)) should always be included

in the file name.

CLR routine runtime errors

SQLCODE -20282, SQLSTATE 42724, reason code 1

The external assembly specified by the EXTERNAL clause in the CREATE

statement for the routine was not found.

v Check that the EXTERNAL clause specifies the correct routine assembly

name and that the assembly is located in the specified location. If the

162 Developing User-defined Routines (SQL and External)

EXTERNAL clause does not specify a fully qualified path name to the

desired assembly, DB2 presumes that the path name provided is a

relative path name to the assembly, relative to the DB2 function

directory.

SQLCODE -20282, SQLSTATE 42724, reason code 2

An assembly was found in the location specified by the EXTERNAL clause

in the CREATE statement for the routine, but no class was found within

the assembly to match the class specified in the EXTERNAL clause.

v Check that the assembly name specified in the EXTERNAL clause is the

correct assembly for the routine and that it exists in the specified

location.

v Check that the class name specified in the EXTERNAL clause is the

correct class name and that it exists in the specified assembly.

SQLCODE -20282, SQLSTATE 42724, reason code 3

An assembly was found in the location specified by the EXTERNAL clause

in the CREATE statement for the routine, that had a correctly matching

class definition, but the routine method signature does not match the

routine signature specified in the CREATE statement for the routine.

v Check that the assembly name specified in the EXTERNAL clause is the

correct assembly for the routine and that it exists in the specified

location.

v Check that the class name specified in the EXTERNAL clause is the

correct class name and that it exists in the specified assembly.

v Check that the parameter style implementation matches the parameter

style specified in the CREATE statement for the routine.

v Check that the order of the parameter implementation matches the

parameter declaration order in the CREATE statement for the routine

and that it respects the extra parameter requirements for the parameter

style.

v Check that the SQL parameter data types are correctly mapped to CLR

.NET supported data types.

SQLCODE -4301, SQLSTATE 58004, reason code 5 or 6

An error occurred while attempting to start or communicate with a .NET

interpreter. DB2 was unable to load a dependent .NET library [reason code

5] or a call to the .NET interpreter failed [reason code 6].

v Ensure that the DB2 instance is configured correctly to run a .NET

procedure or function (mscoree.dll must be present in the system PATH).

Ensure that db2clr.dll is present in the sqllib/bin directory, and that

IBM.Data.DB2 is installed in the global assembly cache. If these are not

present, ensure that the .NET Framework version 1.1, or a later version, is

installed on the database server, and that the database server is running

DB2 version 8.2 or a later release.

SQLCODE -4302, SQLSTATE 38501

 An unhandled exception occurred while executing, preparing to execute, or

subsequent to executing the routine. This could be the result of a routine

logic programming error that was unhandled or could be the result of an

internal processing error. For errors of this type, the .NET stack traceback

that indicates where the unhandled exception occurred will be written to

the db2diag.log.

 This error can also occur if the routine attempted an action that is beyond

the scope of allowed actions for the specified execution mode for the

Chapter 6. Developing external routines 163

routine. In this case, an entry will be made in the db2diag.log specifically

indicating that the exception occurred due to an execution control

violation. The exception stack traceback that indicates where the violation

occurred will also be included.

 Determine if the assembly of the routine has been compromised or recently

modified. If the routine has been validly modified, this problem can be

occurring because the EXECUTION CONTROL mode for the routine is no

longer set to a mode that is appropriate for the changed logic. If you are

certain that the assembly has not been wrongfully tampered with, you can

modify the routine’s execution mode with the ALTER PROCEDURE or

ALTER FUNCTION statement as appropriate. Refer to the following topic

for more information:

v “Security and execution modes for CLR routines” on page 151

Examples of .NET CLR routines

When developing .NET CLR routines, it is helpful to refer to examples to get a

sense of what the CREATE statement and the .NET CLR routine code should look

like. The following topics contain examples of .NET CLR procedures and functions

(including both scalar and table functions):

.NET CLR procedures

v Examples of Visual Basic .NET CLR procedures

v Examples of C# .NET CLR procedures

.NET CLR functions

v Examples of Visual Basic .NET CLR functions

v Examples of C# .NET CLR functions

Examples of C# .NET CLR procedures

Once the basics of procedures, also called stored procedures, and the essentials of

.NET common language runtime routines are understood, you can start using CLR

procedures in your applications.

This topic contains examples of CLR procedures implemented in C# that illustrate

the supported parameter styles, passing parameters, including the dbinfo structure,

how to return a result set and more. For examples of CLR UDFs in C#:

v “Examples of C# .NET CLR functions” on page 198

Before working with the CLR procedure examples you might want to read the

following concept topics:

v “.NET common language runtime (CLR) routines” on page 144

v “Creating .NET CLR routines from DB2 Command Window” on page 154

v “Benefits of using routines” on page 1

v “Building common language runtime (CLR) .NET routines” in the manual called

Developing ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own C# CLR

procedures:

v The C# external code file

164 Developing User-defined Routines (SQL and External)

v Example 1: C# parameter style GENERAL procedure

v Example 2: C# parameter style GENERAL WITH NULLS procedure

v Example 3: C# parameter style SQL procedure

v Example 4: C# procedure returning a result set

v Example 5: C# procedure accessing the dbinfo structure

v Example 6: C# procedure in PROGRAM TYPE MAIN style

The C# external code file

 The examples show a variety of C# procedure implementations. Each

example consists of two parts: the CREATE PROCEDURE statement and

the external C# code implementation of the procedure from which the

associated assembly can be built.

 The C# source file that contains the procedure implementations of the

following examples is named gwenProc.cs and has the following format:

 Table 14. C# external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 namespace bizLogic

 {

 class empOps

 { ...

 // C# procedures

 ...

 }

 }

The file inclusions are indicated at the top of the file. The IBM.Data.DB2

inclusion is required if any of the procedures in the file contain SQL. There

is a namespace declaration in this file and a class empOps that contains the

procedures. The use of namespaces is optional. If a namespace is used, the

namespace must appear in the assembly path name provided in the

EXTERNAL clause of the CREATE PROCEDURE statement.

 It is important to note the name of the file, the namespace, and the name

of the class, that contains a given procedure implementation. These names

are important, because the EXTERNAL clause of the CREATE

PROCEDURE statement for each procedure must specify this information

so that DB2 can locate the assembly and class of the CLR procedure.

Example 1: C# parameter style GENERAL procedure

This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

procedure

v C# code for a parameter style GENERAL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus is calculated, based on the employee’s salary,

and returned along with the employee’s full name. If the employee is not

found, an empty string is returned.

Chapter 6. Developing external routines 165

Table 15. Code to create a C# parameter style GENERAL procedure

 CREATE PROCEDURE setEmpBonusGEN(IN empID CHAR(6), INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpBonusGEN

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 MODIFIES SQL DATA

 EXECUTION CONTROL SAFE

 FENCED

 THREADSAFE

 DYNAMIC RESULT SETS 0

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!SetEmpBonusGEN’ ;

 public static void SetEmpBonusGEN(String empID,

 ref Decimal bonus,

 out String empName)

 {

 // Declare local variables

 Decimal salary = 0;

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + ’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 empName = reader.GetString(0) + " " +

 reader.GetString(1) + ". " +

 reader.GetString(2);

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 bonus = salary * (Decimal)0.025;

 }

 else

 {

 bonus = salary * (Decimal)0.05;

 }

 }

 }

 else // Employee not found

 {

 empName = ""; // Set output parameter

 }

 reader.Close();

 }

Example 2: C# parameter style GENERAL WITH NULLS procedure

This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

WITH NULLS procedure

v C# code for a parameter style GENERAL WITH NULLS procedure

166 Developing User-defined Routines (SQL and External)

This procedure takes an employee ID and a current bonus amount as

input. If the input parameter is not null, it retrieves the employee’s name

and salary. If the current bonus amount is zero, a new bonus based on

salary is calculated and returned along with the employee’s full name. If

the employee data is not found, a NULL string and integer is returned.

 Table 16. Code to create a C# parameter style GENERAL WITH NULLS procedure

 CREATE PROCEDURE SetEmpbonusGENNULL(IN empID CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpbonusGENNULL

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 DYNAMIC RESULT SETS 0

 MODIFIES SQL DATA

 EXECUTION CONTROL SAFE

 FENCED

 THREADSAFE

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!SetEmpBonusGENNULL’

 ;

Chapter 6. Developing external routines 167

Table 16. Code to create a C# parameter style GENERAL WITH NULLS

procedure (continued)

 public static void SetEmpBonusGENNULL(String empID,

 ref Decimal bonus,

 out String empName,

 Int16[] NullInds)

 {

 Decimal salary = 0;

 if (NullInds[0] == -1) // Check if the input is null

 {

 NullInds[1] = -1; // Return a NULL bonus value

 empName = ""; // Set output value

 NullInds[2] = -1; // Return a NULL empName value

 }

 else

 {

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + "’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 empName = reader.GetString(0) + " "

 +

 reader.GetString(1) + ". " +

 reader.GetString(2);

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 bonus = salary * (Decimal)0.025;

 NullInds[1] = 0; // Return a non-NULL value

 }

 else

 {

 bonus = salary * (Decimal)0.05;

 NullInds[1] = 0; // Return a non-NULL value

 }

 }

 }

 else // Employee not found

 {

 empName = "*sdq;; // Set output parameter

 NullInds[2] = -1; // Return a NULL value

 }

 reader.Close();

 }

 }

Example 3: C# parameter style SQL procedure

This example shows the following:

v CREATE PROCEDURE statement for a parameter style SQL procedure

v C# code for a parameter style SQL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus based on salary is calculated and returned

168 Developing User-defined Routines (SQL and External)

along with the employee’s full name. If the employee is not found, an

empty string is returned.

 Table 17. Code to create a C# procedure in parameter style SQL with parameters

 CREATE PROCEDURE SetEmpbonusSQL(IN empID CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpbonusSQL

 LANGUAGE CLR

 PARAMETER STYLE SQL

 DYNAMIC RESULT SETS 0

 MODIFIES SQL DATA

 FENCED

 THREADSAFE

 EXECUTION CONTROL SAFE

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!SetEmpBonusSQL’ ;

Chapter 6. Developing external routines 169

Table 17. Code to create a C# procedure in parameter style SQL with

parameters (continued)

 public static void SetEmpBonusSQL(String empID,

 ref Decimal bonus,

 out String empName,

 Int16 empIDNullInd,

 ref Int16 bonusNullInd,

 out Int16 empNameNullInd,

 ref string sqlStateate,

 string funcName,

 string specName,

 ref string sqlMessageText)

 {

 // Declare local host variables

 Decimal salary eq; 0;

 if (empIDNullInd == -1) // Check if the input is null

 {

 bonusNullInd = -1; // Return a NULL bonus value

 empName = "";

 empNameNullInd = -1; // Return a NULL empName value

 }

 else

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY

 "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + "’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 empName = reader.GetString(0) + " "

 +

 reader.GetString(1) + ". " +

 reader.GetString(2);

 empNameNullInd = 0;

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 bonus = salary * (Decimal)0.025;

 bonusNullInd = 0; // Return a non-NULL value

 }

 else

 {

 bonus = salary * (Decimal)0.05;

 bonusNullInd = 0; // Return a non-NULL value

 }

 }

 }

 else // Employee not found

 }

 empName = ""; // Set output parameter

 empNameNullInd = -1; // Return a NULL value

 }

 reader.Close();

 }

 }

170 Developing User-defined Routines (SQL and External)

Example 4: C# parameter style GENERAL procedure returning a result set

This example shows the following:

v CREATE PROCEDURE statement for an external C# procedure returning

a result set

v C# code for a parameter style GENERAL procedure that returns a result

set

This procedure accepts the name of a table as a parameter. It returns a

result set containing all the rows of the table specified by the input

parameter. This is done by leaving a DB2DataReader for a given query

result set open when the procedure returns. Specifically, if reader.Close()

is not executed, the result set will be returned.

 Table 18. Code to create a C# procedure that returns a result set

 CREATE PROCEDURE ReturnResultSet(IN tableName

 VARCHAR(20))

 SPECIFIC ReturnResultSet

 DYNAMIC RESULT SETS 1

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME

 ’gwenProc.dll:bizLogic.empOps!ReturnResultSet’ ;

 public static void ReturnResultSet(string tableName)

 {

 DB2Command myCommand = DB2Context.GetCommand();

 // Set the SQL statement to be executed and execute it.

 myCommand.CommandText = "SELECT * FROM " + tableName;

 DB2DataReader reader = myCommand.ExecuteReader();

 // The DB2DataReader contains the result of the query.

 // This result set can be returned with the procedure,

 // by simply NOT closing the DB2DataReader.

 // Specifically, do NOT execute reader.Close();

 }

Example 5: C# parameter style SQL procedure accessing the dbinfo structure

This example shows the following:

v CREATE PROCEDURE statement for a procedure accessing the dbinfo

structure

v C# code for a parameter style SQL procedure that accesses the dbinfo

structure

To access the dbinfo structure, the DBINFO clause must be specified in the

CREATE PROCEDURE statement. No parameter is required for the dbinfo

structure in the CREATE PROCEDURE statement however a parameter

must be created for it, in the external routine code. This procedure returns

only the value of the current database name from the dbname field in the

dbinfo structure.

Chapter 6. Developing external routines 171

Table 19. Code to create a C# procedure that accesses the dbinfo structure

 CREATE PROCEDURE ReturnDbName(OUT dbName VARCHAR(20))

 SPECIFIC ReturnDbName

 DYNAMIC RESULT SETS 0

 LANGUAGE CLR

 PARAMETER STYLE SQL

 FENCED

 THREADSAFE

 EXECUTION CONTROL SAFE

 DBINFO

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!ReturnDbName’

 ;

 public static void ReturnDbName(out string dbName,

 out Int16 dbNameNullInd,

 ref string sqlStateate,

 string funcName,

 string specName,

 ref string sqlMessageText,

 sqludf_dbinfo dbinfo)

 {

 // Retrieve the current database name from the

 // dbinfo structure and return it.

 // ** Note! ** dbinfo field names are case sensitive

 dbName = dbinfo.dbname;

 dbNameNullInd = 0; // Return a non-null value;

 // If you want to return a user-defined error in

 // the SQLCA you can specify a 5 digit user-defined

 // sqlStateate and an error message string text.

 // For example:

 //

 // sqlStateate = "ABCDE";

 // sqlMessageText = "A user-defined error has occurred"

 //

 // DB2 returns the above values to the client in the

 // SQLCA structure. The values are used to generate a

 // standard DB2 sqlStateate error.

 }

Example 6: C# procedure with PROGRAM TYPE MAIN style

This example shows the following:

v CREATE PROCEDURE statement for a procedure using a main program

style

v C# parameter style GENERAL WITH NULLS code in using a MAIN

program style

To implement a routine in a main program style, the PROGRAM TYPE

clause must be specified in the CREATE PROCEDURE statement with the

value MAIN. Parameters are specified in the CREATE PROCEDURE

statement however in the code implementation, parameters are passed into

the routine in an argc integer parameter and an argv array of parameters.

172 Developing User-defined Routines (SQL and External)

Table 20. Code to create a C# procedure in program type MAIN style

 CREATE PROCEDURE MainStyle(IN empID CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC MainStyle

 DYNAMIC RESULT SETS 0

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 MODIFIES SQL DATA

 FENCED

 THREADSAFE

 EXECUTION CONTROL SAFE

 PROGRAM TYPE MAIN

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!main’ ;

Chapter 6. Developing external routines 173

Table 20. Code to create a C# procedure in program type MAIN style (continued)

 public static void main(Int32 argc, Object[]

 argv)

 {

 String empID = (String)argv[0]; // argv[0] has nullInd:argv[3]

 Decimal bonus = (Decimal)argv[1]; // argv[1] has nullInd:argv[4]

 // argv[2] has nullInd:argv[5]

 Decimal salary = 0; Int16[] NullInds =

 (Int16[])argv[3];

 if ((NullInds[0]) == (Int16)(-1)) // Check if empID is null

 {

 NullInds[1] = (Int16)(-1); // Return a NULL bonus value

 argv[1] = (String)""; // Set output parameter empName

 NullInds[2] = (Int16)(-1); // Return a NULL empName value

 Return;

 }

 else

 DB2Command myCommand = DB2Context.GetCommand();

 myCommand.CommandText =

 "SELECT FIRSTNME, MIDINIT, LASTNAME, salary "

 + "FROM EMPLOYEE "

 + "WHERE EMPNO = ’" + empID + "’";

 DB2DataReader reader = myCommand.ExecuteReader();

 if (reader.Read()) // If employee record is found

 {

 // Get the employee’s full name and salary

 argv[2] = (String) (reader.GetString(0) + " " +

 reader.GetString(1) + ".

 " +

 reader.GetString(2));

 NullInds[2] = (Int16)0;

 salary = reader.GetDecimal(3);

 if (bonus == 0)

 {

 if (salary > 75000)

 {

 argv[1] = (Decimal)(salary * (Decimal)0.025);

 NullInds[1] = (Int16)(0); // Return a non-NULL value

 }

 else

 {

 argv[1] = (Decimal)(salary * (Decimal)0.05);

 NullInds[1] = (Int16)(0); // Return a non-NULL value

 }

 }

 }

 else // Employee not found

 {

 argv[2] = (String)(""); // Set output parameter

 NullInds[2] = (Int16)(-1); // Return a NULL value

 }

 reader.Close();

 }

 }

Examples of Visual Basic .NET CLR functions

Once you understand the basics of user-defined functions (UDFs), and the

essentials of CLR routines, you can start exploiting CLR UDFs in your applications

174 Developing User-defined Routines (SQL and External)

and database environment. This topic contains some examples of CLR UDFs to get

you started. For examples of CLR procedures in Visual Basic:

v “Examples of Visual Basic .NET CLR procedures” on page 180

Before working with the CLR UDF examples you may want to read the following

concept topics:

v “.NET common language runtime (CLR) routines” on page 144

v “Creating .NET CLR routines from DB2 Command Window” on page 154

v “External scalar functions” on page 131

v “Building common language runtime (CLR) .NET routines” in the manual called

Developing ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own Visual Basic

CLR UDFs:

v The Visual Basic external code file

v Example 1: Visual Basic parameter style SQL table function

v Example 2: Visual Basic parameter style SQL scalar function

The Visual Basic external code file

 The following examples show a variety of Visual Basic UDF

implementations. The CREATE FUNCTION statement is provided for each

UDF with the corresponding Visual Basic source code from which the

associated assembly can be built. The Visual Basic source file that contains

the functions declarations used in the following examples is named

gwenVbUDF.cs and has the following format:

 Table 21. Visual Basic external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 Namespace bizLogic

 ...

 ’ Class definitions that contain UDF declarations

 ’ and any supporting class definitions

 ...

End Namespace

The function declarations must be contained in a class within a Visual

Basic file. The use of namespaces is optional. If a namespace is used, the

namespace must appear in the assembly path name provided in the

EXTERNAL clause of the CREATE PROCEDURE statement. The

IBM.Data.DB2. inclusion is required if the function contains SQL.

Example 1: Visual Basic parameter style SQL table function

 This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL table function

v Visual Basic code for a parameter style SQL table function

 This table function returns a table containing rows of employee data that

was created from a data array. There are two classes associated with this

Chapter 6. Developing external routines 175

example. Class person represents the employees, and the class empOps

contains the routine table UDF that uses class person. The employee salary

information is updated based on the value of an input parameter. The data

array in this example is created within the table function itself on the first

call of the table function. Such an array could have also been created by

reading in data from a text file on the filesystem. The array data values are

written to a scratchpad so that the data can be accessed in subsequent calls

of the table function.

 On each call of the table function, one record is read from the array and

one row is generated in the table that is returned by the function. The row

is generated in the table, by setting the output parameters of the table

function to the desired row values. After the final call of the table function

occurs, the table of generated rows is returned.

 Table 22. Code to create a Visual Basic parameter style SQL table function

 CREATE FUNCTION TableUDF(double)

 RETURNS TABLE (name varchar(20),

 job varchar(20),

 salary double)

 EXTERNAL NAME ’gwenVbUDF.dll:bizLogic.empOps!TableUDF’

 LANGUAGE CLR

 PARAMETER STYLE SQL

 NOT DETERMINISTIC

 FENCED

 SCRATCHPAD 10

 FINAL CALL

 DISALLOW PARALLEL

 NO DBINFO

 EXECUTION CONTROL SAFE

176 Developing User-defined Routines (SQL and External)

Table 22. Code to create a Visual Basic parameter style SQL table function (continued)

 Class Person

 ’ The class Person is a supporting class for

 ’ the table function UDF, tableUDF, below.

 Private name As String

 Private position As String

 Private salary As Int32

 Public Sub New(ByVal newName As String, _

 ByVal newPosition As String, _

 ByVal newSalary As Int32)

 name = newName

 position = newPosition

 salary = newSalary

 End Sub

 Public Property GetName() As String

 Get

 Return name

 End Get

 Set (ByVal value As String)

 name = value

 End Set

 End Property

 Public Property GetPosition() As String

 Get

 Return position

 End Get

 Set (ByVal value As String)

 position = value

 End Set

 End Property

 Public Property GetSalary() As Int32

 Get

 Return salary

 End Get

 Set (ByVal value As Int32)

 salary = value

 End Set

 End Property

 End Class

Chapter 6. Developing external routines 177

Table 22. Code to create a Visual Basic parameter style SQL table function (continued)

 Class empOps

 Public Shared Sub TableUDF(byVal factor as Double, _

 byRef name As String, _

 byRef position As String, _

 byRef salary As Double, _

 byVal factorNullInd As Int16, _

 byRef nameNullInd As Int16, _

 byRef positionNullInd As Int16, _

 byRef salaryNullInd As Int16, _

 byRef sqlState As String, _

 byVal funcName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String, _

 byVal scratchPad As Byte(), _

 byVal callType As Int32)

 Dim intRow As Int16

 intRow = 0

 ’ Create an array of Person type information

 Dim staff(2) As Person

 staff(0) = New Person("Gwen", "Developer", 10000)

 staff(1) = New Person("Andrew", "Developer", 20000)

 staff(2) = New Person("Liu", "Team Leader", 30000)

 ’ Initialize output parameter values and NULL indicators

 salary = 0

 name = position = ""

 nameNullInd = positionNullInd = salaryNullInd = -1

 Select callType

 Case -2 ’ Case SQLUDF_TF_FIRST:

 Case -1 ’ Case SQLUDF_TF_OPEN:

 intRow = 1

 scratchPad(0) = intRow ’ Write to scratchpad

 Case 0 ’ Case SQLUDF_TF_FETCH:

 intRow = scratchPad(0)

 If intRow > staff.Length

 sqlState = "02000" ’ Return an error SQLSTATE

 Else

 ’ Generate a row in the output table

 ’ based on the staff array data.

 name = staff(intRow).GetName()

 position = staff(intRow).GetPosition()

 salary = (staff(intRow).GetSalary()) * factor

 nameNullInd = 0

 positionNullInd = 0

 salaryNullInd = 0

 End If

 intRow = intRow + 1

 scratchPad(0) = intRow ’ Write scratchpad

 Case 1 ’ Case SQLUDF_TF_CLOSE:

 Case 2 ’ Case SQLUDF_TF_FINAL:

 End Select

 End Sub

 End Class

Example 2: Visual Basic parameter style SQL scalar function

178 Developing User-defined Routines (SQL and External)

This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL scalar

function

v Visual Basic code for a parameter style SQL scalar function

 This scalar function returns a single count value for each input value that

it operates on. For an input value in the nth position of the set of input

values, the output scalar value is the value n. On each call of the scalar

function, where one call is associated with each row or value in the input

set of rows or values, the count is increased by one and the current value

of the count is returned. The count is then saved in the scratchpad memory

buffer to maintain the count value between each call of the scalar function.

 This scalar function can be easily invoked if for example we have a table

defined as follows:

 CREATE TABLE T (i1 INTEGER);

 INSERT INTO T VALUES 12, 45, 16, 99;

A simple query such as the following can be used to invoke the scalar

function:

 SELECT my_count(i1) as count, i1 FROM T;

The output of such a query would be:

 COUNT I1

 ----------- ----------

 1 12

 2 45

 3 16

 4 99

This scalar UDF is quite simple. Instead of returning just the count of the

rows, you could use a scalar function to format data in an existing column.

For example you might append a string to each value in an address

column or you might build up a complex string from a series of input

strings or you might do a complex mathematical evaluation over a set of

data where you must store an intermediate result.

 Table 23. Code to create a Visual Basic parameter style SQL scalar function

 CREATE FUNCTION mycount(INTEGER)

 RETURNS INTEGER

 LANGUAGE CLR

 PARAMETER STYLE SQL

 NO SQL

 SCRATCHPAD 10

 FINAL CALL

 FENCED

 EXECUTION CONTROL SAFE

 NOT DETERMINISTIC

 EXTERNAL NAME ’gwenUDF.dll:bizLogic.empOps!CountUp’;

Chapter 6. Developing external routines 179

Table 23. Code to create a Visual Basic parameter style SQL scalar function (continued)

 Class empOps

 Public Shared Sub CountUp(byVal input As Int32, _

 byRef outCounter As Int32, _

 byVal nullIndInput As Int16, _

 byRef nullIndOutCounter As Int16, _

 byRef sqlState As String, _

 byVal qualName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String, _

 byVal scratchPad As Byte(), _

 byVal callType As Int32)

 Dim counter As Int32

 counter = 1

 Select callType

 case -1 ’ case SQLUDF_TF_OPEN_CALL

 scratchPad(0) = counter

 outCounter = counter

 nullIndOutCounter = 0

 case 0 ’case SQLUDF_TF_FETCH_CALL:

 counter = scratchPad(0)

 counter = counter + 1

 outCounter = counter

 nullIndOutCounter = 0

 scratchPad(0) = counter

 case 1 ’case SQLUDF_CLOSE_CALL:

 counter = scratchPad(0)

 outCounter = counter

 nullIndOutCounter = 0

 case Else ’ Should never enter here

 ’ These cases won’t occur for the following reasons:

 ’ Case -2 (SQLUDF_TF_FIRST) —>No FINAL CALL in CREATE stmt

 ’ Case 2 (SQLUDF_TF_FINAL) —>No FINAL CALL in CREATE stmt

 ’ Case 255 (SQLUDF_TF_FINAL_CRA) —>No SQL used in the function

 ’

 ’ * Note!*

 ’ ---------

 ’ The Else is required so that at compile time

 ’ out parameter outCounter is always set *

 outCounter = 0

 nullIndOutCounter = -1

 End Select

 End Sub

 End Class

Examples of Visual Basic .NET CLR procedures

Once the basics of procedures, also called stored procedures, and the essentials of

.NET common language runtime routines are understood, you can start using CLR

procedures in your applications.

This topic contains examples of CLR procedures implemented in Visual Basic;

that illustrate the supported parameter styles, passing parameters, including the

dbinfo structure, how to return a result set and more. For examples of CLR UDFs

in Visual Basic:

v “Examples of Visual Basic .NET CLR functions” on page 174

180 Developing User-defined Routines (SQL and External)

Before working with the CLR procedure examples you might want to read the

following concept topics:

v “.NET common language runtime (CLR) routines” on page 144

v “Creating .NET CLR routines from DB2 Command Window” on page 154

v “Benefits of using routines” on page 1

v “Building common language runtime (CLR) .NET routines” in the manual called

Developing ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own Visual Basic

CLR procedures:

v The Visual Basic external code file

v Example 1: Visual Basic parameter style GENERAL procedure

v Example 2: Visual Basic parameter style GENERAL WITH NULLS procedure

v Example 3: Visual Basic parameter style SQL procedure

v Example 4: Visual Basic procedure returning a result set

v Example 5: Visual Basic procedure accessing the dbinfo structure

v Example 6: Visual Basic procedure in PROGRAM TYPE MAIN style

The Visual Basic external code file

 The examples show a variety of Visual Basic procedure implementations.

Each example consists of two parts: the CREATE PROCEDURE statement

and the external Visual Basic code implementation of the procedure from

which the associated assembly can be built.

 The Visual Basic source file that contains the procedure implementations of

the following examples is named gwenVbProc.vb and has the following

format:

 Table 24. Visual Basic external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 Namespace bizLogic

 Class empOps

 ...

 ’ Visual Basic procedures

 ...

 End Class

 End Namespace

The file inclusions are indicated at the top of the file. The IBM.Data.DB2

inclusion is required if any of the procedures in the file contain SQL. There

is a namespace declaration in this file and a class empOps that contains the

procedures. The use of namespaces is optional. If a namespace is used, the

namespace must appear in the assembly path name provided in the

EXTERNAL clause of the CREATE PROCEDURE statement.

 It is important to note the name of the file, the namespace, and the name

of the class, that contains a given procedure implementation. These names

are important, because the EXTERNAL clause of the CREATE

Chapter 6. Developing external routines 181

PROCEDURE statement for each procedure must specify this information

so that DB2 can locate the assembly and class of the CLR procedure.

Example 1: Visual Basic parameter style GENERAL procedure

 This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

procedure

v Visual Basic code for a parameter style GENERAL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus is calculated, based on the employee salary,

and returned along with the employee’s full name. If the employee is not

found, an empty string is returned.

 Table 25. Code to create a Visual Basic parameter style GENERAL procedure

 CREATE PROCEDURE SetEmpBonusGEN(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC setEmpBonusGEN

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 DYNAMIC RESULT SETS 0

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusGEN’

182 Developing User-defined Routines (SQL and External)

Table 25. Code to create a Visual Basic parameter style GENERAL procedure (continued)

 Public Shared Sub SetEmpBonusGEN(ByVal empId As String, _

 ByRef bonus As Decimal, _

 ByRef empName As String)

 Dim salary As Decimal

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 salary = 0

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + "FROM EMPLOYEE " _

 + "WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 empName = myReader.GetString(0) + " " _

 + myReader.GetString(1) + ". " _

 + myReader.GetString(2)

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 bonus = salary * 0.025

 Else

 bonus = salary * 0.05

 End If

 End If

 Else ’ Employee not found

 empName = "" ’ Set output parameter

 End If

 myReader.Close()

 End Sub

Example 2: Visual Basic parameter style GENERAL WITH NULLS procedure

 This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL

WITH NULLS procedure

v Visual Basic code for a parameter style GENERAL WITH NULLS

procedure

This procedure takes an employee ID and a current bonus amount as

input. If the input parameter is not null, it retrieves the employee’s name

and salary. If the current bonus amount is zero, a new bonus based on

salary is calculated and returned along with the employee’s full name. If

the employee data is not found, a NULL string and integer is returned.

Chapter 6. Developing external routines 183

Table 26. Code to create a Visual Basic parameter style GENERAL WITH NULLS procedure

 CREATE PROCEDURE SetEmpBonusGENNULL(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpBonusGENNULL

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 DYNAMIC RESULT SETS 0

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusGENNULL’

 Public Shared Sub SetEmpBonusGENNULL(ByVal empId As String, _

 ByRef bonus As Decimal, _

 ByRef empName As String, _

 byVal nullInds As Int16())

 Dim salary As Decimal

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 salary = 0

 If nullInds(0) = -1 ’ Check if the input is null

 nullInds(1) = -1 ’ Return a NULL bonus value

 empName = "" ’ Set output parameter

 nullInds(2) = -1 ’ Return a NULL empName value

 Return

 Else

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + "FROM EMPLOYEE " _

 + "WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 empName = myReader.GetString(0) + " " _

 + myReader.GetString(1) + ". " _

 + myReader.GetString(2)

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 bonus = Salary * 0.025

 nullInds(1) = 0 ’Return a non-NULL value

 Else

 bonus = salary * 0.05

 nullInds(1) = 0 ’ Return a non-NULL value

 End If

 Else ’Employee not found

 empName = "" ’ Set output parameter

 nullInds(2) = -1 ’ Return a NULL value

 End If

 End If

 myReader.Close()

 End If

 End Sub

184 Developing User-defined Routines (SQL and External)

Example 3: Visual Basic parameter style SQL procedure

 This example shows the following:

v CREATE PROCEDURE statement for a parameter style SQL procedure

v Visual Basic code for a parameter style SQL procedure

This procedure takes an employee ID and a current bonus amount as

input. It retrieves the employee’s name and salary. If the current bonus

amount is zero, a new bonus based on salary is calculated and returned

along with the employee’s full name. If the employee is not found, an

empty string is returned.

 Table 27. Code to create a Visual Basic procedure in parameter style SQL with parameters

 CREATE PROCEDURE SetEmpBonusSQL(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC SetEmpBonusSQL

 LANGUAGE CLR

 PARAMETER STYLE SQL

 DYNAMIC RESULT SETS 0

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!SetEmpBonusSQL’

Chapter 6. Developing external routines 185

Table 27. Code to create a Visual Basic procedure in parameter style SQL with

parameters (continued)

 Public Shared Sub SetEmpBonusSQL(byVal empId As String, _

 byRef bonus As Decimal, _

 byRef empName As String, _

 byVal empIdNullInd As Int16, _

 byRef bonusNullInd As Int16, _

 byRef empNameNullInd As Int16, _

 byRef sqlState As String, _

 byVal funcName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String)

 ’ Declare local host variables

 Dim salary As Decimal

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 salary = 0

 If empIdNullInd = -1 ’ Check if the input is null

 bonusNullInd = -1 ’ Return a NULL Bonus value

 empName = ""

 empNameNullInd = -1 ’ Return a NULL empName value

 Else

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + "FROM EMPLOYEE " _

 + " WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 empName = myReader.GetString(0) + " "

 + myReader.GetString(1) _

 + ". " + myReader.GetString(2)

 empNameNullInd = 0

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 bonus = salary * 0.025

 bonusNullInd = 0 ’ Return a non-NULL value

 Else

 bonus = salary * 0.05

 bonusNullInd = 0 ’ Return a non-NULL value

 End If

 End If

 Else ’ Employee not found

 empName = "" ’ Set output parameter

 empNameNullInd = -1 ’ Return a NULL value

 End If

 myReader.Close()

 End If

 End Sub

Example 4: Visual Basic parameter style GENERAL procedure returning a result

set

 This example shows the following:

186 Developing User-defined Routines (SQL and External)

v CREATE PROCEDURE statement for an external Visual Basic procedure

returning a result set

v Visual Basic code for a parameter style GENERAL procedure that

returns a result set

This procedure accepts the name of a table as a parameter. It returns a

result set containing all the rows of the table specified by the input

parameter. This is done by leaving a DB2DataReader for a given query

result set open when the procedure returns. Specifically, if reader.Close()

is not executed, the result set will be returned.

 Table 28. Code to create a Visual Basic procedure that returns a result set

 CREATE PROCEDURE ReturnResultSet(IN tableName VARCHAR(20))

 SPECIFIC ReturnResultSet

 DYNAMIC RESULT SETS 1

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!ReturnResultSet’

Public Shared Sub ReturnResultSet(byVal tableName As String)

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 myCommand = DB2Context.GetCommand()

 ’ Set the SQL statement to be executed and execute it.

 myCommand.CommandText = "SELECT * FROM " + tableName

 myReader = myCommand.ExecuteReader()

 ’ The DB2DataReader contains the result of the query.

 ’ This result set can be returned with the procedure,

 ’ by simply NOT closing the DB2DataReader.

 ’ Specifically, do NOT execute reader.Close()

 End Sub

Example 5: Visual Basic parameter style SQL procedure accessing the dbinfo

structure

 This example shows the following:

v CREATE PROCEDURE statement for a procedure accessing the dbinfo

structure

v Visual Basic code for a parameter style SQL procedure that accesses the

dbinfo structure

To access the dbinfo structure, the DBINFO clause must be specified in the

CREATE PROCEDURE statement. No parameter is required for the dbinfo

structure in the CREATE PROCEDURE statement however a parameter

must be created for it, in the external routine code. This procedure returns

only the value of the current database name from the dbname field in the

dbinfo structure.

Chapter 6. Developing external routines 187

Table 29. Code to create a Visual Basic procedure that accesses the dbinfo structure

 CREATE PROCEDURE ReturnDbName(OUT dbName VARCHAR(20))

 SPECIFIC ReturnDbName

 LANGUAGE CLR

 PARAMETER STYLE SQL

 DBINFO

 FENCED

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!ReturnDbName’

 Public Shared Sub ReturnDbName(byRef dbName As String, _

 byRef dbNameNullInd As Int16, _

 byRef sqlState As String, _

 byVal funcName As String, _

 byVal specName As String, _

 byRef sqlMessageText As String, _

 byVal dbinfo As sqludf_dbinfo)

 ’ Retrieve the current database name from the

 ’ dbinfo structure and return it.

 dbName = dbinfo.dbname

 dbNameNullInd = 0 ’ Return a non-null value

 ’ If you want to return a user-defined error in

 ’ the SQLCA you can specify a 5 digit user-defined

 ’ SQLSTATE and an error message string text.

 ’ For example:

 ’

 ’ sqlState = "ABCDE"

 ’ msg_token = "A user-defined error has occurred"

 ’

 ’ These will be returned by DB2 in the SQLCA. It

 ’ will appear in the format of a regular DB2 sqlState

 ’ error.

 End Sub

Example 6: Visual Basic procedure with PROGRAM TYPE MAIN style

 This example shows the following:

v CREATE PROCEDURE statement for a procedure using a main program

style

v Visual Basic parameter style GENERAL WITH NULLS code in using a

MAIN program style

To implement a routine in a main program style, the PROGRAM TYPE

clause must be specified in the CREATE PROCEDURE statement with the

value MAIN. Parameters are specified in the CREATE PROCEDURE

statement however in the code implementation, parameters are passed into

the routine in an argc integer parameter and an argv array of parameters.

 Table 30. Code to create a Visual Basic procedure in program type MAIN style

 CREATE PROCEDURE MainStyle(IN empId CHAR(6),

 INOUT bonus Decimal(9,2),

 OUT empName VARCHAR(60))

 SPECIFIC mainStyle

 DYNAMIC RESULT SETS 0

 LANGUAGE CLR

 PARAMETER STYLE GENERAL WITH NULLS

 FENCED

 PROGRAM TYPE MAIN

 EXTERNAL NAME ’gwenVbProc.dll:bizLogic.empOps!Main’

188 Developing User-defined Routines (SQL and External)

Table 30. Code to create a Visual Basic procedure in program type MAIN style (continued)

 Public Shared Sub Main(byVal argc As Int32, _

 byVal argv As Object())

 Dim myCommand As DB2Command

 Dim myReader As DB2DataReader

 Dim empId As String

 Dim bonus As Decimal

 Dim salary As Decimal

 Dim nullInds As Int16()

 empId = argv(0) ’ argv[0] (IN) nullInd = argv[3]

 bonus = argv(1) ’ argv[1] (INOUT) nullInd = argv[4]

 ’ argv[2] (OUT) nullInd = argv[5]

 salary = 0

 nullInds = argv(3)

 If nullInds(0) = -1 ’ Check if the empId input is null

 nullInds(1) = -1 ’ Return a NULL Bonus value

 argv(1) = "" ’ Set output parameter empName

 nullInds(2) = -1 ’ Return a NULL empName value

 Return

 Else

 ’ If the employee exists and the current bonus is 0,

 ’ calculate a new employee bonus based on the employee’s

 ’ salary. Return the employee name and the new bonus

 myCommand = DB2Context.GetCommand()

 myCommand.CommandText = _

 "SELECT FIRSTNME, MIDINIT, LASTNAME, SALARY " _

 + " FROM EMPLOYEE " _

 + " WHERE EMPNO = ’" + empId + "’"

 myReader = myCommand.ExecuteReader()

 If myReader.Read() ’ If employee record is found

 ’ Get the employee’s full name and salary

 argv(2) = myReader.GetString(0) + " " _

 + myReader.GetString(1) + ". " _

 + myReader.GetString(2)

 nullInds(2) = 0

 salary = myReader.GetDecimal(3)

 If bonus = 0

 If salary > 75000

 argv(1) = salary * 0.025

 nullInds(1) = 0 ’ Return a non-NULL value

 Else

 argv(1) = Salary * 0.05

 nullInds(1) = 0 ’ Return a non-NULL value

 End If

 End If

 Else ’ Employee not found

 argv(2) = "" ’ Set output parameter

 nullInds(2) = -1 ’ Return a NULL value

 End If

 myReader.Close()

 End If

 End Sub

Chapter 6. Developing external routines 189

Example: XML and XQuery support in C# .NET CLR procedure

Once the basics of procedures, the essentials of .NET common language runtime

routines, XQuery and XML are understood, you can start creating and using CLR

procedures with XML features.

The example below demonstrates a C# .NET CLR procedure with parameters of

type XML as well as how to update and query XML data.

Prerequisites

Before working with the CLR procedure example you might want to read

the following concept topics:

v Common language runtime (CLR) routines

v Creating CLR routines

v Benefits of using routines

v “Building common language runtime (CLR) .NET routines” in the

manual called Developing ADO.NET and OLE DB Applications

The examples below makes use of a table named xmlDataTable that is

defined as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

 (7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

 <street>Elm</street>

190 Developing User-defined Routines (SQL and External)

</doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Bob</name>

 <town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))@

Procedure

Use the following examples as references when making your own C# CLR

procedures:

v The C# external code file

v Example 1: C# parameter style GENERAL procedure with XML features

 The C# external code file

The example consists of two parts: the CREATE PROCEDURE statement and the

external C# code implementation of the procedure from which the associated

assembly can be built.

The C# source file that contains the procedure implementations of the following

examples is named gwenProc.cs and has the following format:

 Table 31. C# external code file format

 using System;

 using System.IO;

 using System.Data;

 using IBM.Data.DB2;

 using IBM.Data.DB2Types;

 namespace bizLogic

 {

 class empOps

 { ...

 // C# procedures

 ...

 }

 }

The file inclusions are indicated at the top of the file. The IBM.Data.DB2 inclusion is

required if any of the procedures in the file contain SQL. The IBM.Data.DB2Types

inclusion is required if any of the procedures in the file contains parameters or

variables of type XML. There is a namespace declaration in this file and a class

empOps that contains the procedures. The use of namespaces is optional. If a

namespace is used, the namespace must appear in the assembly path name

provided in the EXTERNAL clause of the CREATE PROCEDURE statement.

It is important to note the name of the file, the namespace, and the name of the

class, that contains a given procedure implementation. These names are important,

because the EXTERNAL clause of the CREATE PROCEDURE statement for each

procedure must specify this information so that DB2 can locate the assembly and

class of the CLR procedure.

Chapter 6. Developing external routines 191

Example 1: C# parameter style GENERAL procedure with XML features

This example shows the following:

v CREATE PROCEDURE statement for a parameter style GENERAL procedure

v C# code for a parameter style GENERAL procedure with XML parameters

This procedure takes two parameters, an integer inNum and inXML. These values are

inserted into the table xmlDataTable. Then an XML value is retrieved using

XQuery. Another XML value is retrieved using SQL. The retrieved XML values are

assigned to two output parameters, outXML1 and outXML2. No result sets are

returned.

 Table 32. Code to create a C# parameter style GENERAL procedure

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K)

)

 LANGUAGE CLR

 PARAMETER STYLE GENERAL

 DYNAMIC RESULT SETS 0

 FENCED

 THREADSAFE

 DETERMINISTIC

 NO DBINFO

 MODIFIES SQL DATA

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc.dll:bizLogic.empOps!xmlProc1’ ;

 //***

 // Stored Procedure: xmlProc1

 //

 // Purpose: insert XML data into XML column

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: outXML1 -- XML data returned - value retrieved using XQuery

 // outXML2 -- XML data returned - value retrieved using SQL

 //***

192 Developing User-defined Routines (SQL and External)

Table 32. Code to create a C# parameter style GENERAL procedure (continued)

 public static void xmlProc1 (int inNum, DB2Xml inXML,

 out DB2Xml outXML1, out DB2Xml outXML2)

 {

 // Create new command object from connection context

 DB2Parameter parm;

 DB2Command cmd;

 DB2DataReader reader = null;

 outXML1 = DB2Xml.Null;

 outXML2 = DB2Xml.Null;

 // Insert input XML parameter value into a table

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "INSERT INTO "

 + "xmlDataTable(num , xdata) "

 + "VALUES(?, ?)";

 parm = cmd.Parameters.Add("@num", DB2Type.Integer);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@num"].Value = inNum;

 parm = cmd.Parameters.Add("@data", DB2Type.Xml);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@data"].Value = inXML ;

 cmd.ExecuteNonQuery();

 cmd.Close();

 // Retrieve XML value using XQuery

 and assign value to an XML output parameter

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "XQUERY for $x " +

 "in db2-fn:xmlcolumn(\"xmlDataTable.xdata\")/doc "+

 "where $x/make = \’Mazda\’ " +

 "return <carInfo>{$x/make}{$x/model}</carInfo>";

 reader = cmd.ExecuteReader();

 reader.CacheData= true;

 if (reader.Read())

 { outXML1 = reader.GetDB2Xml(0); }

 else

 { outXML1 = DB2Xml.Null; }

 reader.Close();

 cmd.Close();

 // Retrieve XML value using SQL

 and assign value to an XML output parameter value

 cmd = DB2Context.GetCommand();

 cmd.CommandText = "SELECT xdata "

 + "FROM xmlDataTable "

 + "WHERE num = ?";

 parm = cmd.Parameters.Add("@num", DB2Type.Integer);

 parm.Direction = ParameterDirection.Input;

 cmd.Parameters["@num"].Value = inNum;

 reader = cmd.ExecuteReader();

 reader.CacheData= true;

 if (reader.Read())

 { outXML2 = reader.GetDB2Xml(0); }

 else

 { outXML = DB2Xml.Null; }

 reader.Close() ;

 cmd.Close();

 return;

 }

Chapter 6. Developing external routines 193

Example: XML and XQuery support in C procedure

Once the basics of procedures, the essentials of C routines, XQuery and XML are

understood, you can start creating and using C procedures with XML features.

The example below demonstrates a C procedure with parameters of type XML as

well as how to update and query XML data.

Prerequisites

Before working with the C procedure example you might want to read the

following concept topics:

v C routines

v Creating C routines

v Benefits of using routines

v Building C routines

The examples below makes use of a table named xmlDataTable that is

defined as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

 (7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

 <street>Elm</street>

194 Developing User-defined Routines (SQL and External)

</doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Bob</name>

 <town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))

Procedure

Use the following examples as references when making your own C

procedures:

v The C external code file

v Example 1: C parameter style SQL procedure with XML features

 The C external code file

The example consists of two parts: the CREATE PROCEDURE statement and the

external C code implementation of the procedure from which the associated

assembly can be built.

The C source file that contains the procedure implementations of the following

examples is named gwenProc.SQC and has the following format:

 Table 33. C external code file format

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include <sqlda.h>

 #include <sqlca.h>

 #include <sqludf.h>

 #include <sql.h>

 #include <memory.h>

 // C procedures

 ...

The file inclusions are indicated at the top of the file. There are no extra include

files required for XML support in embedded SQL routines.

It is important to note the name of the file and the name of the function that

corresponds to the procedure implementation. These names are important, because

the EXTERNAL clause of the CREATE PROCEDURE statement for each procedure

must specify this information so that the DB2 database manager can locate the

library and entry point that corresponds to the C procedure.

Example 1: C parameter style SQL procedure with XML features

This example shows the following:

v CREATE PROCEDURE statement for a parameter style SQL procedure

v C code for a parameter style SQL procedure with XML parameters

This procedure receives two input parameters. The first input parameter is named

inNum and is of type INTEGER. The second input parameters is named inXML and

is of type XML. The values of the input parameters are used to insert a row into

Chapter 6. Developing external routines 195

the table xmlDataTable. Then an XML value is retrieved using an SQL statement.

Another XML value is retrieved using an XQuery expression. The retrieved XML

values are respectively assigned to two output parameters, out1XML and out2XML.

No result sets are returned.

 Table 34. Code to create a C parameter style SQL procedure

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K),

 OUT inXML XML as CLOB (1K)

)

 LANGUAGE C

 PARAMETER STYLE SQL

 DYNAMIC RESULT SETS 0

 FENCED

 THREADSAFE

 DETERMINISTIC

 NO DBINFO

 MODIFIES SQL DATA

 PROGRAM TYPE SUB

 EXTERNAL NAME ’gwenProc!xmlProc1’ ;

 //***

 // Stored Procedure: xmlProc1

 //

 // Purpose: insert XML data into XML column

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: out1XML -- XML data returned - value retrieved using XQuery

 // out2XML -- XML data returned - value retrieved using SQL

 //***

196 Developing User-defined Routines (SQL and External)

Table 34. Code to create a C parameter style SQL procedure (continued)

#ifdef __cplusplus

extern "C"

#endif

SQL_API_RC SQL_API_FN testSecA1(sqlint32* inNum,

 SQLUDF_CLOB* inXML,

 SQLUDF_CLOB* out1XML,

 SQLUDF_CLOB* out2XML,

 SQLUDF_NULLIND *inNum_ind,

 SQLUDF_NULLIND *inXML_ind,

 SQLUDF_NULLIND *out1XML_ind,

 SQLUDF_NULLIND *out2XML_ind,

 SQLUDF_TRAIL_ARGS)

{

 char *str;

 FILE *file;

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 sqlint32 hvNum1;

 SQL TYPE IS XML AS CLOB(200) hvXML1;

 SQL TYPE IS XML AS CLOB(200) hvXML2;

 SQL TYPE IS XML AS CLOB(200) hvXML3;

 EXEC SQL END DECLARE SECTION;

 /* Check null indicators for input parameters */

 if ((*inNum_ind < 0) || (*inXML_ind < 0)) {

 strcpy(sqludf_sqlstate, "38100");

 strcpy(sqludf_msgtext, "Received null input");

 return 0;

 }

 /* Copy input parameters to host variables */

 hvNum1 = *inNum;

 hvXML1.length = inXML->length;

 strncpy(hvXML1.data, inXML->data, inXML->length);

 /* Execute SQL statement */

 EXEC SQL

 INSERT INTO xmlDataTable (num, xdata) VALUES (:hvNum1, :hvXML1);

 /* Execute SQL statement */

 EXEC SQL

 SELECT xdata INTO :hvXML2

 FROM xmlDataTable

 WHERE num = :hvNum1;

 sprintf(stmt5, "SELECT XMLQUERY(’for $x in $xmldata/doc

 return <carInfo>{$x/model}</carInfo>’

 passing by ref xmlDataTable.xdata

 as \"xmldata\" returning sequence)

 FROM xmlDataTable WHERE num = ?");

 EXEC SQL PREPARE selstmt5 FROM :stmt5 ;

 EXEC SQL DECLARE c5 CURSOR FOR selstmt5;

 EXEC SQL OPEN c5 using :hvNum1;

 EXEC SQL FETCH c5 INTO :hvXML3;

 exit:

 /* Set output return code */

 *outReturnCode = sqlca.sqlcode;

 *outReturnCode_ind = 0;

 return 0;

}

Chapter 6. Developing external routines 197

Examples of C# .NET CLR functions

Once you understand the basics of user-defined functions (UDFs), and the

essentials of CLR routines, you can start exploiting CLR UDFs in your applications

and database environment. This topic contains some examples of CLR UDFs to get

you started. For examples of CLR procedures in C#:

v “Examples of C# .NET CLR procedures” on page 164

Before working with the CLR UDF examples you might want to read the following

concept topics:

v “.NET common language runtime (CLR) routines” on page 144

v “Creating .NET CLR routines from DB2 Command Window” on page 154

v “External scalar functions” on page 131

v “Building common language runtime (CLR) .NET routines” in the manual called

Developing ADO.NET and OLE DB Applications

The examples below make use of a table named EMPLOYEE that is contained in the

SAMPLE database.

Use the following examples as references when making your own C# CLR UDFs:

v The C# external code file

v Example 1: C# parameter style SQL table function

v Example 2: C# parameter style SQL scalar function

The C# external code file

The following examples show a variety of C# UDF implementations. The

CREATE FUNCTION statement is provided for each UDF with the

corresponding C# source code from which the associated assembly can be

built. The C# source file that contains the functions declarations used in the

following examples is named gwenUDF.cs and has the following format:

 Table 35. C# external code file format

 using System;

 using System.IO;

 using IBM.Data.DB2;

 namespace bizLogic

 {

 ...

 // Class definitions that contain UDF declarations

 // and any supporting class definitions

 ...

 }

The function declarations must be contained in a class within a C# file. The

use of namespaces is optional. If a namespace is used, the namespace must

appear in the assembly path name provided in the EXTERNAL clause of

the CREATE PROCEDURE statement. The IBM.Data.DB2. inclusion is

required if the function contains SQL.

Example 1: C# parameter style SQL table function

 This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL table function

198 Developing User-defined Routines (SQL and External)

v C# code for a parameter style SQL table function

 This table function returns a table containing rows of employee data that

was created from a data array. There are two classes associated with this

example. Class person represents the employees, and the class empOps

contains the routine table UDF that uses class person. The employee salary

information is updated based on the value of an input parameter. The data

array in this example is created within the table function itself on the first

call of the table function. Such an array could have also been created by

reading in data from a text file on the filesystem. The array data values are

written to a scratchpad so that the data can be accessed in subsequent calls

of the table function.

 On each call of the table function, one record is read from the array and

one row is generated in the table that is returned by the function. The row

is generated in the table, by setting the output parameters of the table

function to the desired row values. After the final call of the table function

occurs, the table of generated rows is returned.

 Table 36. Code to create a C# parameter style SQL table function

 CREATE FUNCTION tableUDF(double)

 RETURNS TABLE (name varchar(20),

 job varchar(20),

 salary double)

 EXTERNAL NAME ’gwenUDF.dll:bizLogic.empOps!tableUDF’

 LANGUAGE CLR

 PARAMETER STYLE SQL

 NOT DETERMINISTIC

 FENCED

 THREADSAFE

 SCRATCHPAD 10

 FINAL CALL

 EXECUTION CONTROL SAFE

 DISALLOW PARALLEL

 NO DBINFO

Chapter 6. Developing external routines 199

Table 36. Code to create a C# parameter style SQL table function (continued)

 // The class Person is a supporting class for

 // the table function UDF, tableUDF, below.

 class Person

 {

 private String name;

 private String position;

 private Int32 salary;

 public Person(String newName, String newPosition, Int32

 newSalary)

 {

 this.name = newName;

 this.position = newPosition;

 this.salary = newSalary;

 }

 public String getName()

 {

 return this.name;

 }

 public String getPosition()

 {

 return this.position;

 }

 public Int32 getSalary()

 {

 return this.salary;

 }

 }

200 Developing User-defined Routines (SQL and External)

Table 36. Code to create a C# parameter style SQL table function (continued)

 class empOps

 {

 {

 public static void TableUDF(Double factor, out String name,

 out String position, out Double salary,

 Int16 factorNullInd, out Int16 nameNullInd,

 out Int16 positionNullInd, out Int16 salaryNullInd,

 ref String sqlState, String funcName,

 String specName, ref String sqlMessageText,

 Byte[] scratchPad, Int32 callType)

 {

 Int16 intRow = 0;

 // Create an array of Person type information

 Person[] Staff = new

 Person[3];

 Staff[0] = new Person("Gwen", "Developer", 10000);

 Staff[1] = new Person("Andrew", "Developer", 20000);

 Staff[2] = new Person("Liu", "Team Leader", 30000);

 salary = 0;

 name = position = "";

 nameNullInd = positionNullInd = salaryNullInd = -1;

 switch(callType)

 {

 case (-2): // Case SQLUDF_TF_FIRST:

 break;

 case (-1): // Case SQLUDF_TF_OPEN:

 intRow = 1;

 scratchPad[0] = (Byte)intRow; // Write to scratchpad

 break;

 case (0): // Case SQLUDF_TF_FETCH:

 intRow = (Int16)scratchPad[0];

 if (intRow > Staff.Length)

 {

 sqlState = "02000"; // Return an error SQLSTATE

 }

 else

 {

 // Generate a row in the output table

 // based on the Staff array data.

 name =

 Staff[intRow-1].getName();

 position = Staff[intRow-1].getPosition();

 salary = (Staff[intRow-1].getSalary[]) * factor;

 nameNullInd = 0;

 positionNullInd = 0;

 salaryNullInd = 0;

 }

 intRow++;

 scratchPad[0] = (Byte)intRow; // Write scratchpad

 break;

 case (1): // Case SQLUDF_TF_CLOSE:

 break;

 case (2): // Case SQLUDF_TF_FINAL:

 break;

 }

 }

 }

Chapter 6. Developing external routines 201

Example 2: C# parameter style SQL scalar function

 This example shows the following:

v CREATE FUNCTION statement for a parameter style SQL scalar

function

v C# code for a parameter style SQL scalar function

This scalar function returns a single count value for each input value that

it operates on. For an input value in the nth position of the set of input

values, the output scalar value is the value n. On each call of the scalar

function, where one call is associated with each row or value in the input

set of rows or values, the count is increased by one and the current value

of the count is returned. The count is then saved in the scratchpad memory

buffer to maintain the count value between each call of the scalar function.

 This scalar function can be easily invoked if for example we have a table

defined as follows:

 CREATE TABLE T (i1 INTEGER);

 INSERT INTO T VALUES 12, 45, 16, 99;

A simple query such as the following can be used to invoke the scalar

function:

 SELECT countUp(i1) as count, i1 FROM T;

The output of such a query would be:

 COUNT I1

 ----------- ----------

 1 12

 2 45

 3 16

 4 99

This scalar UDF is quite simple. Instead of returning just the count of the

rows, you could use a scalar function to format data in an existing column.

For example you might append a string to each value in an address

column or you might build up a complex string from a series of input

strings or you might do a complex mathematical evaluation over a set of

data where you must store an intermediate result.

 Table 37. Code to create a C# parameter style SQL scalar function

 CREATE FUNCTION countUp(INTEGER)

 RETURNS INTEGER

 LANGUAGE CLR

 PARAMETER STYLE SQL

 SCRATCHPAD 10

 FINAL CALL

 NO SQL

 FENCED

 THREADSAFE

 NOT DETERMINISTIC

 EXECUTION CONTROL SAFE

 EXTERNAL NAME ’gwenUDF.dll:bizLogic.empOps!CountUp’ ;

202 Developing User-defined Routines (SQL and External)

Table 37. Code to create a C# parameter style SQL scalar function (continued)

 class empOps

 {

 public static void CountUp(Int32 input,

 out Int32 outCounter,

 Int16 inputNullInd,

 out Int16 outCounterNullInd,

 ref String sqlState,

 String funcName,

 String specName,

 ref String sqlMessageText,

 Byte[] scratchPad,

 Int32 callType)

 {

 Int32 counter = 1; switch(callType)

 {

 case -1: // case SQLUDF_FIRST_CALL

 scratchPad[0] = (Byte)counter;

 outCounter = counter;

 outCounterNullInd = 0;

 break;

 case 0: // case SQLUDF_NORMAL_CALL:

 counter = (Int32)scratchPad[0];

 counter = counter + 1;

 outCounter = counter;

 outCounterNullInd = 0;

 scratchPad[0] =

 (Byte)counter;

 break;

 case 1: // case SQLUDF_FINAL_CALL:

 counter =

 (Int32)scratchPad[0];

 outCounter = counter;

 outCounterNullInd = 0;

 break;

 default: // Should never enter here

 // * Required so that at compile time

 // out parameter outCounter is always set *

 outCounter = (Int32)(0);

 outCounterNullInd = -1;

 sqlState="ABCDE";

 sqlMessageText = "Should not get here: Default

 case!";

 break;

 }

 }

 }

C and C++ routines

C and C++ routines are external routines that are created by executing a CREATE

PROCEDURE, CREATE FUNCTION, or CREATE METHOD statement that

references a library built from C or C++ source code as its external code body.

C and C++ routines can optionally execute SQL statements by including embedded

SQL statements.

The following terms are important in the context of C and C++ routines:

Chapter 6. Developing external routines 203

CREATE statement

The SQL language CREATE statement used to create the routine in the

database.

Routine-body source code

The source code file containing the C or C++ routine implementation that

corresponds to the CREATE statement EXTERNAL clause specification.

Precompiler

The DB2 utility that pre-parses the routine source code implementation to

validate SQL statements contained in the code and generates a package.

Compiler

The programming language specific software required to compile and link

the source code implementation.

Package

The file containing the runtime access path information that DB2 will use

at routine runtime to execute the SQL statements contained in the routine

code implementation.

Routine library

A file that contains the compiled form of the routine source code. In

Windows this is sometimes called a DLL, because these files have .dll file

extensions.

Before developing a C or C++ routine, it is important to both understand the

basics of routines and the unique features and characteristics specific to C and C++

routines. An understanding of the Embedded SQL API and the basics of embedded

SQL application development is also important. To learn more about these subjects,

refer to the following topics:

v External routines

v Embedded SQL

v Include files for C and C++ routines

v Parameters in C and C++ routines

v Restrictions on C and C++ routines

Developing a C or C++ routines involves following a series of step by step

instructions and looking at C or C++ routine examples. Refer to:

v Creating C and C++ routines

v Examples of C procedures

v Examples of C user-defined functions

Support for external routine development in C

To develop external routines in C you must use supported compilers and

development software.

The supported compilers and development software for DB2 database application

development in C can all be used for external routine development in C.

Support for external routine development in C++

To develop external routines in C++ you must use supported compilers and

development software.

204 Developing User-defined Routines (SQL and External)

The supported compilers and development software for DB2 database application

development in C can all be used for external routine development in C++.

Tools for developing C and C++ routines

The tools supported for C and C++ routines are the same as those supported for

embedded SQL C and C++ applications.

There are no DB2 development environments or graphical user interface tools for

developing, debugging, or deploying embedded SQL applications or routines.

The following command line interfaces are commonly used for developing,

debugging, and deploying embedded SQL applications and routines:

v DB2 Command Line Processor

v DB2 Command Window

These interfaces support the execution of the SQL statements required to create

routines in a database. The PREPARE command and the BIND command required

to build C and C++ routines that contain embedded SQL can also be issued from

these interfaces.

Designing C and C++ routines

Designing C and C++ routines is a task that should precede creating C and C++

routines. Designing C and C++ routines is generally related to both designing

external routines implemented in other programming languages and designing

embedded SQL applications.

Prerequisites

v General knowledge of external routines

v C or C++ programming experience

v Optional: Knowledge of and experience with embedded SQL or CLI application

development (if the routine will execute SQL statements)

The following topics can provide you with some of the required prerequisite

information.

For more information on the features and uses of external routines:

v Refer to the topic, “External routine implementation” on page 21

For more information on the characteristics of the embedded SQL API:

v Refer to the topic, “Embedded SQL” in the manual called Developing Embedded

SQL Applications

With the prerequisite knowledge, designing embedded SQL routines consists

mainly of learning about the unique features and characteristics of C and C++

routines:

v “Include file required for C and C++ routine development (sqludf.h)” on page

206

v “Parameters in C and C++ routines” on page 206

v “Parameter style SQL C and C++ procedures” on page 208

v “Parameter style SQL C and C++ functions” on page 211

v “SQL data type handling in C and C++ routines” on page 221

v “Graphic host variables in C and C++ routines” on page 240

Chapter 6. Developing external routines 205

v “Returning result sets from C and C++ procedures” on page 242

v “C++ type decoration” on page 240

v “Restrictions on external routines” on page 127

After having learned about the C and C++ characteristics, you might want:

v “Creating C and C++ routines” on page 243

Include file required for C and C++ routine development

(sqludf.h)

The sqludf.h include file contains structures, definitions, and values that are useful

when writing routines. Although this file has ’udf’ in its name, (for historical

reasons) it is also useful for stored procedures and methods. When compiling your

routine, you need to reference the directory that contains this file. This directory is

sqllib/include.

The sqludf.h include file is self-describing. The following is a brief summary of its

content:

1. Structure definitions for arguments that are represented by structures in C or

C++:

v VARCHAR FOR BIT DATA arguments and result

v LONG VARCHAR (with or without FOR BIT DATA) arguments and result

v LONG VARGRAPHIC arguments and result

v All the LOB types, SQL arguments and result

v The scratchpad

v The dbinfo structure
2. C language type definitions for all the SQL data types, for use in the definition

of routine arguments corresponding to SQL arguments and result having the

data types. These are the definitions with names SQLUDF_x and

SQLUDF_x_FBD where x is a SQL data type name, and FBD represents For Bit

Data.

Also included is a C language type for an argument or result that is defined

with the AS LOCATOR clause. This is applicable only to UDFs and methods.

3. Definition of C language types for the scratchpad and call-type arguments, with

an enum type definition of the call-type argument.

4. Macros for defining the standard trailing arguments, both with and without the

inclusion of scratchpad and call-type arguments. This corresponds to the presence

and absence of SCRATCHPAD and FINAL CALL keywords in the function

definition. These are the SQL-state, function-name, specific-name,

diagnostic-message, scratchpad, and call-type UDF invocation arguments. Also

included are definitions for referencing these constructs, and the various valid

SQLSTATE values.

5. Macros for testing whether the SQL arguments are null.

A corresponding include file for COBOL exists: sqludf.cbl. This file only includes

definitions for the scratchpad and dbinfo structures.

Parameters in C and C++ routines

Parameter declaration in C and C++ routines must conform to the requirements of

one of the supported parameter styles and the program type. If the routine is to

use a scratchpad, the dbinfo structure, or to have a PROGRAM TYPE MAIN

parameter interface, there are additional details to consider including:

206 Developing User-defined Routines (SQL and External)

v “Parameter styles supported for C and C++ routines”

v “Parameter style SQL C and C++ procedures” on page 208

v “Parameter style SQL C and C++ functions” on page 211

v “Parameter null indicators in C and C++ routines”

v “Passing parameters by value or by reference in C and C++ routines” on page

213

v “Parameters are not required for C and C++ procedure result sets” on page 213

v “Dbinfo structure as C or C++ routine parameter” on page 213

v “Scratchpad as C or C++ function parameter” on page 216

v “Program type MAIN support for C and C++ procedures” on page 217

It is very important that you implement the parameter interface to C and C++

routines correctly. This can be easily done with just a bit of care taken to ensure

that the correct parameter style and data types are chosen and implemented

according to the specification.

Parameter styles supported for C and C++ routines

The following parameter styles are supported for C and C++ routines:

v SQL (Supported for procedures and functions; recommended)

v GENERAL (Supported for procedures)

v GENERAL WITH NULLS (Supported for procedures)

It is strongly recommended that the parameter style SQL be used for all C and

C++ routines. This parameter style supports NULL values, provides a standard

interface for reporting errors, as well as supporting scratchpads and call types.

To specify the parameter style to be used for a routine, you must specify the

PARAMETER STYLE clause in the CREATE statement for the routine at routine

creation time.

The parameter style must be accurately reflected in the implementation of the C or

C++ routine code.

For more information about these parameter styles refer to: ″Syntax for passing

parameters to C and C++ routines″.

Parameter null indicators in C and C++ routines

If the parameter style chosen for a C or C++ routine (procedure or function)

requires that a null indicator parameter be specified for each of the SQL

parameters, as is required by parameter style SQL and GENERAL, the null

indicators are to be passed as parameters of data type SQLUDF_NULLIND*. For

parameter style GENERAL WITH NULLS, they must be passed as an array of type

SQLUDF_NULLIND. This data type is defined in embedded SQL application and

routine include file: sqludf.h.

Null-indicator parameters indicate whether the corresponding parameter value is

equivalent to NULL in SQL or if it has a literal value. If the null indicator value for

a parameter is 0, this indicates that the parameter value is not null. If the

null-indicator value for a parameter is -1, the parameter is to be considered to have

a value equivalent to the SQL value NULL.

When null indicators are used it is important to include code within your routine

that:

Chapter 6. Developing external routines 207

v Checks null-indicator values for input parameters before using them.

v Sets null indicator values for output parameters before the routine returns.

For more information about parameter SQL refer to:

v “External routine parameter styles” on page 124

v “Parameter style SQL C and C++ functions” on page 211

v “Parameter style SQL C and C++ procedures”

Parameter style SQL C and C++ procedures

C and C++ procedures should be created using the PARAMETER STYLE SQL

clause in the CREATE PROCEDURE statement. The parameter passing conventions

of this parameter style should be implemented in the corresponding procedure

code implementation.

The C and C++ PARAMETER STYLE SQL signature implementation required for

procedures follows this format:

 SQL_API_RC SQL_API_FN function-name (

 SQL-arguments,

 SQL-argument-inds,

 sqlstate,

 routine-name,

 specific-name,

 diagnostic-message)

SQL_API_RC SQL_API_FN

SQL_API_RC and SQL_API_FN are macros that specify the return type and

calling convention for a C or C++ procedure, which can vary across

supported operating systems. The use of these macros is required for C

and C++ routines. The macros are declared in embedded SQL application

and routine include file sqlsystm.h.

function-name

Name of the C or C++ function within the code file. This value does not

have to be the same as the name of the procedure specified within the

corresponding CREATE PROCEDURE statement. This value in

combination with the library name however must be specified in the

EXTERNAL NAME clause to identify the correct function entry point

within the library to be used. For C++ routines, the C++ compiler applies

type decoration to the entry point name. Either the type decorated name

needs to be specified in the EXTERNAL NAME clause, or the entry point

should be defined as extern "C" in the user code. The function name must

be explicitly exported.

SQL-arguments

C or C++ arguments that correspond to the set of SQL parameters

specified in the CREATE PROCEDURE statement. IN, OUT, and INOUT

mode parameters are passed using individual pointer values.

SQL-argument-inds

C or C++ null indicators that correspond to the set of SQL parameters

specified in the CREATE PROCEDURE statement. For each IN, OUT, and

INOUT mode parameter, there must be an associated null-indicator

parameter. Null indicators can be passed as individual arguments of type

SQLUDF_NULLIND or as part of a single array of null indicators defined

as SQLUDF_NULLIND*.

sqlstate Input-output parameter value used by the routine to signal warning or

error conditions. Typically this argument is used to assign a user-defined

208 Developing User-defined Routines (SQL and External)

SQLSTATE value that corresponds to an error or a warning that can be

passed back to the caller. SQLSTATE values of the form 38xxx, where xxx is

any numeric value are available for user-defined SQLSTATE error values.

SQLSTATE values of the form 01Hxx where xx is any numeric value are

available for user-defined SQLSTATE warning values.

routine-name

Input parameter value that contains the qualified routine name. This value

is generated by DB2 and passed to the routine in the form

<schema-name>.<routine-name> where <schema-name> and

<routine-name> correspond respectively to the ROUTINESCHEMA column

value and ROUTINENAME column value for the routine within the

SYSCAT.ROUTINES catalog view. This value can be useful if a single

routine implementation is used by multiple different routine definitions.

When the routine definition name is passed into the routine, logic can be

conditionally executed based on which definition was used. The routine

name can also be useful when formulating diagnostic information

including error messages, or when writing to a log file.

specific-name

Input parameter value that contains the unique routine specific name. This

value is generated by DB2 and passed to the routine. This value

corresponds to the SPECIFICNAME column value for the routine in the

SYSCAT.ROUTINES view. It can be useful in the same way as the

routine-name.

diagnostic-message

Output parameter value optionally used by the routine to return message

text to the invoking application or routine. This parameter is intended to

be used as a complement to the SQLSTATE argument. It can be used to

assign a user-defined error-message to accompany a user-defined

SQLSTATE value which can provide more detailed diagnostic error or

warning information to the caller of the routine.

Note: To simplify the writing of C and C++ procedure signatures the macro

definition SQLUDF_TRAIL_ARGS defined in sqludf.h can be used in the procedure

signature in place of using individual arguments to implement the non-SQL data

type arguments.

The following is an example of a C or C++ procedure implementation that accepts

a single input parameter, and returns a single output parameter and a result set:

/**

 Routine: cstp

 Purpose: Returns an output parameter value based on an input

 parameter value

 Shows how to:

 - define a procedure using PARAMETER STYLE SQL

 - define NULL indicators for the parameter

 - execute an SQL statement

 - how to set a NULL indicator when parameter is

 not null

 Parameters:

 IN: inParm

 OUT: outParm

 When PARAMETER STYLE SQL is defined for the routine

Chapter 6. Developing external routines 209

(see routine registration script spcreate.db2), in

 addition to the parameters passed during invocation,

 the following arguments are passed to the routine

 in the following order:

 - one null indicator for each IN/INOUT/OUT parameter

 ordered to match order of parameter declarations

 - SQLSTATE to be returned to DB2 (output)

 - qualified name of the routine (input)

 - specific name of the routine (input)

 - SQL diagnostic string to return an optional

 error message text to DB2 (output)

 See the actual parameter declarations below to see

 the recommended datatypes and sizes for them.

 CODE TIP:

 Instead of coding the ’extra’ parameters:

 sqlstate, qualified name of the routine,

 specific name of the routine, diagnostic message,

 a macro SQLUDF_TRAIL_ARGS can be used instead.

 This macro is defined in DB2 include file sqludf.h

 TIP EXAMPLE:

 The following is equivalent to the actual prototype

 used that makes use of macro definitions included in

 sqludf.h. The form actually implemented is simpler

 and removes datatype concerns.

 extern "C" SQL_API_RC SQL_API_FN OutLanguage(

 sqlint16 *inParm,

 double *outParm,

 sqlint16 *inParmNullInd,

 sqlint16 *outParmNullInd,

 char sqlst[6],

 char qualName[28],

 char specName[19],

 char diagMsg[71])

)

***/

extern "C" SQL_API_RC SQL_API_FN cstp (sqlint16 *inParm,

 double *outParm,

 SQLUDF_NULLIND *inParmNullInd,

 SQLUDF_NULLIND *outParmNullInd,

 SQLUDF_TRAIL_ARGS)

{

 EXEC SQL INCLUDE SQLCA;

 EXEC SQL BEGIN DECLARE SECTION;

 sqlint16 sql_inParm;

 EXEC SQL END DECLARE SECTION;

 sql_inParm = *inParm;

 EXEC SQL DECLARE cur1 CURSOR FOR

 SELECT value

 FROM table01

 WHERE index = :sql_inParm;

 *outParm = (*inParm) + 1;

 *outParmNullInd = 0;

210 Developing User-defined Routines (SQL and External)

EXEC SQL OPEN cur1;

 return (0);

}

The corresponding CREATE PROCEDURE statement for this procedure follows:

 CREATE PROCEDURE cproc(IN inParm INT, OUT outParm INT)

 LANGUAGE c

 PARAMETER STYLE sql

 DYNAMIC RESULT SETS 1

 FENCED

 THREADSAFE

 RETURNS NULL ON NULL INPUT

 EXTERNAL NAME ’c_rtns!cstp’

The preceding statement assumes that the C or C++ procedure implementation is

in a library file named c_rtns and a function named cstp.

Parameter style SQL C and C++ functions

C and C++ user-defined functions should be created using the PARAMETER

STYLE SQL clause in the CREATE FUNCTION statement. This The parameter

passing conventions of this parameter style should be implemented in the

corresponding source code implementation. The C and C++ PARAMETER STYLE

SQL signature implementation required for user-defined functions follows this

format:

 SQL_API_RC SQL_API_FN function-name (SQL-arguments,

 SQL-argument-inds,

 SQLUDF_TRAIL_ARGS)

SQL_API_RC SQL_API_FN

SQL_API_RC and SQL_API_FN are macros that specify the return type and

calling convention for a C or C++ user-defined function, which can vary

across supported operating systems. The use of these macros is required

for C and C++ routines. The macros are declared in embedded SQL

application and routine include file sqlsystm.h.

function-name

Name of the C or C++ function within the code file. This value does not

have to be the same as the name of the function specified within the

corresponding CREATE FUNCTION statement. This value in combination

with the library name however must be specified in the EXTERNAL

NAME clause to identify the correct function entry point within the library

to be used. For C++ routines, the C++ compiler applies type decoration to

the entry point name. Either the type decorated name needs to be specified

in the EXTERNAL NAME clause, or the function declaration within the

source code file should be prefixed with extern "C" as shown in the

following example: extern ″C″ SQL_API_RC SQL_API_FN OutLanguage(

char *, sqlint16 *, char *, char *, char *, char *);

SQL-arguments

C or C++ arguments that correspond to the set of SQL parameters

specified in the CREATE FUNCTION statement.

SQL-argument-inds

For each SQL-argument a null indicator parameter is required to specify

whether the parameter value is intended to be interpreted within the

routine implementation as a NULL value in SQL. Null indicators must be

specified with data type SQLUDF_NULLIND. This data type is defined in

embedded SQL routine include file sqludf.h.

Chapter 6. Developing external routines 211

SQLUDF_TRAIL_ARGS

A macro defined in embedded SQL routine include file sqludf.h that once

expanded defines the additional trailing arguments required for a complete

parameter style SQL signature. There are two macros that can be used:

SQLUDF_TRAIL_ARGS and SQLUDF_TRAIL_ARGS_ALL.

SQLUDF_TRAIL_ARGS when expanded, as defined in sqludf.h, is

equivalent to the addition of the following routine arguments:

SQLUDF_CHAR *sqlState,

SQLUDF_CHAR qualName,

SQLUDF_CHAR specName,

SQLUDF_CHAR *sqlMessageText,

In general these arguments are not required or generally used as part of

user-defined function logic. They represent the output SQLSTATE value to

be passed back to the function invoker, the input fully qualified function

name, input function specific name, and output message text to be

returned with the SQLSTATE. SQLUDF_TRAIL_ARGS_ALL when

expanded, as defined in sqludf.h, is equivalent to the addition of the

following routine arguments:

SQLUDF_CHAR qualName,

SQLUDF_CHAR specName,

SQLUDF_CHAR sqlMessageText,

SQLUDF_SCRAT *scratchpad

SQLUDF_CALLT *callType

If the UDF CREATE statement includes the SCRATCHPAD clause or the

FINAL CALL clause, then the macro SQLUDF_TRAIL_ARGS_ALL must be used.

In addition to arguments provided with SQLUDF_TRAIL_ARGS, this macro

also contains pointers to a scratchpad structure, and a call type value.

The following is an example of a simple C or C++ UDF that returns in an output

parameter the value of the product of its two input parameter values:

SQL_API_RC SQL_API_FN product (SQLUDF_DOUBLE *in1,

 SQLUDF_DOUBLE *in2,

 SQLUDF_DOUBLE *outProduct,

 SQLUDF_NULLIND *in1NullInd,

 SQLUDF_NULLIND *in2NullInd,

 SQLUDF_NULLIND *productNullInd,

 SQLUDF_TRAIL_ARGS)

{

 /* Check that input parameter values are not null

 by checking the corresponding null indicator values

 0 : indicates parameter value is not NULL

 -1 : indicates parameter value is NULL

 If values are not NULL, calculate the product.

 If values are NULL, return a NULL output value. */

 if ((*in1NullInd != -1) &&

 *in2NullInd != -1))

 {

 *outProduct = (*in1) * (*in2);

 *productNullInd = 0;

 }

 else

 {

 *productNullInd = -1;

 }

 return (0);

}

212 Developing User-defined Routines (SQL and External)

The corresponding CREATE FUNCTION statement that can be used to create this

UDF could be:

CREATE FUNCTION product(in1 DOUBLE, in2 DOUBLE)

 RETURNS DOUBLE

 LANGUAGE C

 PARAMETER STYLE SQL

 NO SQL

 FENCED THREADSAFE

 DETERMINISTIC

 RETURNS NULL ON NULL INPUT

 NO EXTERNAL ACTION

 EXTERNAL NAME ’c_rtns!product’

The preceding SQL statement assumes that the C or C++ function is in a library

file in the function directory named c_rtns.

Passing parameters by value or by reference in C and C++

routines

For C and C++ routines, parameter values must always be passed by reference to

routines using pointers. This is required for input-only, input-output, and output

parameters. by reference.

Null-indicator parameters must also be passed by reference to routines using

pointers.

Note: DB2 controls the allocation of memory for all parameters and maintains C or

C++ references to all parameters passed into or out of a routine. There is no need

to allocate or free memory associated with routine parameters and null indicators.

Parameters are not required for C and C++ procedure result sets

No parameter is required in the CREATE PROCEDURE statement signature for a

procedure or in the associated procedure implementation in order to return a result

set to the caller.

Result sets returned from C procedures, are returned using cursors.

For more on returning result sets from LANGUAGE C procedures, see:

v “Returning result sets from C and C++ procedures” on page 242

Dbinfo structure as C or C++ routine parameter

The dbinfo structure is a structure that contains database and routine information

that can be passed to and from a routine implementation as an extra argument if

and only if the DBINFO clause is included in the CREATE statement for the

routine.

The dbinfo structure is supported LANGUAGE C routines through the use of the

sqludf_dbinfo structure. This C structure is defined in the DB2 include file

sqludf.h located in the sqllib\include directory.

The sqludf_dbinfo structure is defined as follows:

SQL_STRUCTURE sqludf_dbinfo

{

 unsigned short dbnamelen; /* Database name length */

 unsigned char dbname[SQLUDF_MAX_IDENT_LEN]; /* Database name */

 unsigned short authidlen; /* Authorization ID length */

 unsigned char authid[SQLUDF_MAX_IDENT_LEN]; /* Authorization ID */

 union db_cdpg codepg; /* Database code page */

 unsigned short tbschemalen; /* Table schema name length */

Chapter 6. Developing external routines 213

unsigned char tbschema[SQLUDF_MAX_IDENT_LEN]; /* Table schema name */

 unsigned short tbnamelen; /* Table name length */

 unsigned char tbname[SQLUDF_MAX_IDENT_LEN]; /* Table name */

 unsigned short colnamelen; /* Column name length */

 unsigned char colname[SQLUDF_MAX_IDENT_LEN]; /* Column name */

 unsigned char ver_rel[SQLUDF_SH_IDENT_LEN]; /* Database version/release */

 unsigned char resd0[2]; /* Alignment */

 sqluint32 platform; /* Platform */

 unsigned short numtfcol; /* # of entries in TF column*/

 /* List array */

 unsigned char resd1[2]; /* Reserved */

 sqluint32 procid; /* Current procedure ID */

 unsigned char resd2[32]; /* Reserved */

 unsigned short *tfcolumn; /* Tfcolumn to be allocated */

 /* dynamically if a table */

 /* function is defined; */

 /* else a NULL pointer */

 char *appl_id; /* Application identifier */

 sqluint32 dbpartitionnum; /* Database partition number*/

 /* where routine executed */

 unsigned char resd3[16]; /* Reserved */

};

Although, not all of the fields in the dbinfo structure might be useful within a

routine, several of the values in this structure’s fields might be useful when

formulating diagnostic error message information. For example, if an error occurs

within a routine, it might be useful to return the database name, database name

length, the database code page, the current authorization ID, and the length of the

current authorization ID.

To reference the sqludf_dbinfo structure in a LANGUAGE C routine

implementation:

v Add the DBINFO clause to the CREATE statement that defines the routine.

v Include the sqludf.h header file at the top of the file containing the routine

implementation.

v Add a parameter of type sqludf_dbinfo to the routine signature in the position

specified by the parameter style used.

Here is an example of a C procedure with PARAMETER STYLE GENERAL that

demonstrates the use of the dbinfo structure. Here is the CREATE PROCEDURE

statement for the procedure. Note that as specified by the EXTERNAL NAME

clause, the procedure implementation is located in a library file named spserver

that contains a C function named DbinfoExample:

 CREATE PROCEDURE DBINFO_EXAMPLE (IN job CHAR(8),

 OUT salary DOUBLE,

 OUT dbname CHAR(128),

 OUT dbversion CHAR(8),

 OUT errorcode INTEGER)

 DYNAMIC RESULT SETS 0

 LANGUAGE C

 PARAMETER STYLE GENERAL

 DBINFO

 FENCED NOT THREADSAFE

 READS SQL DATA

 PROGRAM TYPE SUB

 EXTERNAL NAME ’spserver!DbinfoExample’@

Here is the C procedure implementation that corresponds to the procedure

definition:

214 Developing User-defined Routines (SQL and External)

/***

 Routine: DbinfoExample

 IN: inJob - a job type, used in a SELECT predicate

 OUT: salary - average salary of employees with job injob

 dbname - database name retrieved from DBINFO

 dbversion - database version retrieved from DBINFO

 outSqlError - sqlcode of error raised (if any)

 sqludf_dbinfo - pointer to DBINFO structure

 Purpose: This routine takes in a job type and returns the

 average salary of all employees with that job, as

 well as information about the database (name,

 version of database). The database information

 is retrieved from the dbinfo object.

 Shows how to:

 - define IN/OUT parameters in PARAMETER STYLE GENERAL

 - declare a parameter pointer to the dbinfo structure

 - retrieve values from the dbinfo structure

***/

SQL_API_RC SQL_API_FN DbinfoExample(char inJob[9],

 double *salary,

 char dbname[129],

 char dbversion[9],

 sqlint32 *outSqlError,

 struct sqludf_dbinfo * dbinfo

)

{

 /* Declare a local SQLCA */

 struct sqlca sqlca;

 EXEC SQL WHENEVER SQLERROR GOTO return_error;

 /* SQL host variable declaration section */

 /* Each host variable names must be unique within a code

 file, or the the precompiler raises SQL0307 error */

 EXEC SQL BEGIN DECLARE SECTION;

 char dbinfo_injob[9];

 double dbinfo_outsalary;

 sqlint16 dbinfo_outsalaryind;

 EXEC SQL END DECLARE SECTION;

 /* Initialize output parameters - se strings to NULL */

 memset(dbname, ’\0’, 129);

 memset(dbversion, ’\0’, 9);

 *outSqlError = 0;

 /* Copy input parameter into local host variable */

 strcpy(dbinfo_injob, inJob);

 EXEC SQL SELECT AVG(salary) INTO:dbinfo_outsalary

 FROM employee

 WHERE job =:dbinfo_injob;

 *salary = dbinfo_outsalary;

 /* Copy values from the DBINFO structure into the output parameters

 You must explicitly null-terminate the strings.

 Information such as the database name, and the version of the

 database product can be found in the DBINFO structure as well as

 other information fields. */

 strncpy(dbname, (char *)(dbinfo->dbname), dbinfo->dbnamelen);

 dbname[dbinfo->dbnamelen] = ’\0’;

 strncpy(dbversion, (char *)(dbinfo->ver_rel), 8);

 dbversion[8] = ’\0’;

Chapter 6. Developing external routines 215

return 0;

 /* Copy SQLCODE to OUT parameter if SQL error occurs */

 return_error:

 {

 *outSqlError = SQLCODE;

 EXEC SQL WHENEVER SQLERROR CONTINUE;

 return 0;

 }

} /* DbinfoExample function */

Scratchpad as C or C++ function parameter

The scratchpad structure, used for storing UDF values between invocations for

each UDF input value, is supported in C and C++ routines through the use of the

sqludf_scrat structure. This C structure is defined in the DB2 include file sqludf.h.

To reference the sqludf_scrat structure, include the sqludf.h header file at the top of

the file containing the C or C++ function implementation, and use the

SQLUDF_TRAIL_ARGS_ALL macro within the signature of the routine

implementation.

The following example demonstrates a C scalar function implementation that

includes a parameter of type SQLUDF_TRAIL_ARGS_ALL:

 #ifdef __cplusplus

 extern "C"

 #endif

 void SQL_API_FN ScratchpadScUDF(SQLUDF_INTEGER *outCounter,

 SQLUDF_SMALLINT *counterNullInd,

 SQLUDF_TRAIL_ARGS_ALL)

 {

 struct scalar_scratchpad_data *pScratData;

 /* SQLUDF_CALLT and SQLUDF_SCRAT are */

 /* parts of SQLUDF_TRAIL_ARGS_ALL */

 pScratData = (struct scalar_scratchpad_data *)SQLUDF_SCRAT->data;

 switch (SQLUDF_CALLT)

 {

 case SQLUDF_FIRST_CALL:

 pScratData->counter = 1;

 break;

 case SQLUDF_NORMAL_CALL:

 pScratData->counter = pScratData->counter + 1;

 break;

 case SQLUDF_FINAL_CALL:

 break;

 }

 *outCounter = pScratData->counter;

 *counterNullInd = 0;

 } /* ScratchpadScUDF */

The SQLUDF_TRAIL_ARGS_ALL macro expands to define other parameter values

including one called SQLUDF_SCRAT that defines a buffer parameter to be used

as a scratchpad. When the scalar function is invoked for a set of values, for each

time the scalar function is invoked, the buffer is passed as a parameter to the

function. The buffer can be used to be accessed

The SQLUDF_TRAIL_ARGS_ALL macro value also defines another parameter

SQLUDF_CALLT. This parameter is used to indicate a call type value. Call type

216 Developing User-defined Routines (SQL and External)

values can be used to identify if a function is being invoked for the first time for a

set of values, the last time, or at a time in the middle of the processing.

Program type MAIN support for C and C++ procedures

Although the default PROGRAM TYPE clause value SUB is generally

recommended for C procedures, the PROGRAM TYPE clause value MAIN is

supported in CREATE PROCEDURE statements where the LANGUAGE clause

value is C.

The PROGRAM TYPE clause value MAIN is required for routines with greater

than ninety parameters.

When a PROGRAM TYPE MAIN clause is specified, procedures must be

implemented using a signature that is consistent with the default style for a main

routine in a C source code file. This does not mean that the routine must be

implemented by a function named main, but rather that the parameters be passed

in the format generally associated with a default type main routine application

implementation that uses typical C programming argc and argv arguments.

Here is an example of a C or C++ routine signature that adheres to the PGRAM

TYPE MAIN specification:

 SQL_API_RC SQL_API_FN functionName(int argc, char **argv)

 {

 ...

 }

The total number of arguments to the function is specified by the value of argc.

The argument values are passed as array elements within the argv array. The

number and order of the arguments depends on the PARAMETER STYLE clause

value specified in the CREATE PROCEDURE statement.

As an example, consider the following CREATE PROCEDURE statement for a C

procedure specified to have a PROGRAM TYPE MAIN style and the recommended

PARAMETER STYLE SQL:

CREATE PROCEDURE MAIN_EXAMPLE (

 IN job CHAR(8),

 OUT salary DOUBLE)

SPECIFIC CPP_MAIN_EXAMPLE

DYNAMIC RESULT SETS 0

NOT DETERMINISTIC

LANGUAGE C

PARAMETER STYLE SQL

NO DBINFO

FENCED NOT THREADSAFE

READS SQL DATA

PROGRAM TYPE MAIN

EXTERNAL NAME ’spserver!MainExample’@

The routine signature implementation that corresponds to this CREATE

PROCEDURE statement follows:

//***

// Stored Procedure: MainExample

//

// SQL parameters:

// IN: argv[1] - job (char[8])

// OUT: argv[2] - salary (double)

//***

Chapter 6. Developing external routines 217

SQL_API_RC SQL_API_FN MainExample(int argc, char **argv)

{

 ...

}

Because PARAMETER STYLE SQL is used, in addition to the SQL parameter

values passed at procedure invocation time, the additional parameters required for

that style are also passed to the routine.

Parameter values can be accessed by referencing the argv array element of interest

within the source code. For the example given above, the argc and the argv array

elements contain the following values:

 argc : Number of argv array elements

 argv[0]: The function name

 argv[1]: Value of parameter job (char[8], input)

 argv[2]: Value of parameter salary (double, output)

 argv[3]: null indicator for parameter job

 argv[4]: null indicator for parameter salary

 argv[5]: sqlstate (char[6], output)

 argv[6]: qualName (char[28], output)

 argv[7]: specName (char[19], output)

 argv[8]: diagMsg (char[71], output)

Supported SQL data types in C and C++ routines

The following table lists the supported mappings between SQL data types and C

data types for routines. Accompanying each C/C++ data type is the corresponding

defined type from sqludf.h.

 Table 38. SQL Data Types Mapped to C/C++ Declarations

SQL Column Type C/C++ Data Type SQL Column Type Description

SMALLINT

 sqlint16

SQLUDF_SMALLINT

16-bit signed integer

INTEGER

 sqlint32

SQLUDF_INTEGER

32-bit signed integer

BIGINT

 sqlint64

SQLUDF_BIGINT

64-bit signed integer

 REAL

FLOAT(n) where 1<=n<=24

 float

SQLUDF_REAL

Single-precision floating point

 DOUBLE

FLOAT

FLOAT(n) where 25<=n<=53

 double

SQLUDF_DOUBLE

Double-precision floating point

DECIMAL(p, s) Not supported.

To pass a decimal value, define the parameter

to be of a data type castable from DECIMAL

(for example CHAR or DOUBLE) and

explicitly cast the argument to this type.

218 Developing User-defined Routines (SQL and External)

Table 38. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type C/C++ Data Type SQL Column Type Description

CHAR(n) char[n+1] where n is large enough

to hold the data

 1<=n<=254

SQLUDF_CHAR

Fixed-length, null-terminated character string

CHAR(n) FOR BIT DATA char[n] where n is large enough

to hold the data

 1<=n<=254

SQLUDF_CHAR

Fixed-length, not null-terminated character

string

VARCHAR(n) char[n+1] where n is large enough

to hold the data

 1<=n<=32 672

SQLUDF_VARCHAR

Null-terminated varying length string

VARCHAR(n) FOR BIT DATA

 struct {

 sqluint16 length;

 char[n]

}

1<=n<=32 672

SQLUDF_VARCHAR_FBD

Not null-terminated varying length character

string

LONG VARCHAR

 struct {

 sqluint16 length;

 char[n]

}

1<=n<=32 700

SQLUDF_LONG

Not null-terminated varying length character

string

CLOB(n)

 struct {

 sqluint32 length;

 char data[n];

}

1<=n<=2 147 483 647

SQLUDF_CLOB

Not null-terminated varying length character

string with 4-byte string length indicator

BLOB(n)

 struct {

 sqluint32 length;

 char data[n];

}

1<=n<=2 147 483 647

SQLUDF_BLOB

Not null-terminated varying binary string

with 4-byte string length indicator

Chapter 6. Developing external routines 219

Table 38. SQL Data Types Mapped to C/C++ Declarations (continued)

SQL Column Type C/C++ Data Type SQL Column Type Description

DATE

 char[11]

SQLUDF_DATE

Null-terminated character string of the

following format:

yyyy-mm-dd

TIME

 char[9]

SQLUDF_TIME

Null-terminated character string of the

following format:

hh.mm.ss

TIMESTAMP

 char[27]

SQLUDF_STAMP

Null-terminated character string of the

following format:

yyyy-mm-dd-hh.mm.ss.nnnnnn

LOB LOCATOR

 sqluint32

SQLUDF_LOCATOR

32-bit signed integer

GRAPHIC(n) sqldbchar[n+1] where n is large

enough to hold the data

 1<=n<=127

SQLUDF_GRAPH

Fixed-length, null-terminated double-byte

character string

VARGRAPHIC(n) sqldbchar[n+1] where n is large

enough to hold the data

 1<=n<=16 336

SQLUDF_GRAPH

Null-terminated, variable-length double-byte

character string

LONG VARGRAPHIC

 struct {

 sqluint16 length;

 sqldbchar[n]

}

1<=n<=16 350

SQLUDF_LONGVARG

Not null-terminated, variable-length

double-byte character string

DBCLOB(n)

 struct {

 sqluint32 length;

 sqldbchar data[n];

}

1<=n<=1 073 741 823

SQLUDF_DBCLOB

Not null-terminated varying length character

string with 4-byte string length indicator

XML AS CLOB

 struct {

 sqluint32 length;

 char data[n];

}

1<=n<=2 147 483 647

SQLUDF_CLOB

Not null-terminated varying length serialized

character string with 4-byte string length

indicator.

220 Developing User-defined Routines (SQL and External)

Note: XML data types can only be implemented as CLOB data types in external

routines implemented in C or C++.

Note: The following data types are only available in the DBCS or EUC

environment when precompiled with the WCHARTYPE NOCONVERT option:

v GRAPHIC(n)

v VARGRAPHIC(n)

v LONG VARGRAPHIC

v DBCLOB(n)

SQL data type handling in C and C++ routines

This section identifies the valid types for routine parameters and results, and it

specifies how the corresponding argument should be defined in your C or C++

language routine. All arguments in the routine must be passed as pointers to the

appropriate data type. Note that if you use the sqludf.h include file and the types

defined there, you can automatically generate language variables and structures

that are correct for the different data types and compilers. For example, for BIGINT

you can use the SQLUDF_BIGINT data type to hide differences in the type

required for BIGINT representation between different compilers.

It is the data type for each parameter defined in the routine’s CREATE statement

that governs the format for argument values. Promotions from the argument’s data

type might be needed to get the value in the appropriate format. Such promotions

are performed automatically by DB2 on argument values. However, if incorrect

data types are specified in the routine code, then unpredictable behavior, such as

loss of data or abends, will occur.

For the result of a scalar function or method, it is the data type specified in the

CAST FROM clause of the CREATE FUNCTION statement that defines the format.

If no CAST FROM clause is present, then the data type specified in the RETURNS

clause defines the format.

In the following example, the presence of the CAST FROM clause means that the

routine body returns a SMALLINT and that DB2 casts the value to INTEGER

before passing it along to the statement where the function reference occurs:

 ... RETURNS INTEGER CAST FROM SMALLINT ...

In this case, the routine must be written to generate a SMALLINT, as defined later

in this section. Note that the CAST FROM data type must be castable to the

RETURNS data type, therefore, it is not possible to arbitrarily choose another data

type.

The following is a list of the SQL types and their C/C++ language representations.

It includes information on whether each type is valid as a parameter or a result.

Also included are examples of how the types could appear as an argument

definition in your C or C++ language routine:

v SMALLINT

Valid. Represent in C as SQLUDF_SMALLINT or sqlint16.

Example:

 sqlint16 *arg1; /* example for SMALLINT */

When defining integer routine parameters, consider using INTEGER rather than

SMALLINT because DB2 does not promote INTEGER arguments to SMALLINT.

For example, suppose you define a UDF as follows:

Chapter 6. Developing external routines 221

CREATE FUNCTION SIMPLE(SMALLINT)...

If you invoke the SIMPLE function using INTEGER data, (... SIMPLE(1)...),

you will receive an SQLCODE -440 (SQLSTATE 42884) error indicating that the

function was not found, and end-users of this function might not perceive the

reason for the message. In the preceding example, 1 is an INTEGER, so you can

either cast it to SMALLINT or define the parameter as INTEGER.

v INTEGER or INT

Valid. Represent in C as SQLUDF_INTEGER or sqlint32. You must #include

sqludf.h or #include sqlsystm.h to pick up this definition.

Example:

 sqlint32 *arg2; /* example for INTEGER */

v BIGINT

Valid. Represent in C as SQLUDF_BIGINT or sqlint64.

Example:

 sqlint64 *arg3; /* example for INTEGER */

DB2 defines the sqlint64 C language type to overcome differences between

definitions of the 64-bit signed integer in compilers and operating systems. You

must #include sqludf.h or #include sqlsystm.h to pick up the definition.

v REAL or FLOAT(n) where 1 <= n <= 24

Valid. Represent in C as SQLUDF_REAL or float.

Example:

 float *result; /* example for REAL */

v DOUBLE or DOUBLE PRECISION or FLOAT or FLOAT(n) where 25 <= n <= 53

Valid. Represent in C as SQLUDF_DOUBLE or double.

Example:

 double *result; /* example for DOUBLE */

v DECIMAL(p,s) or NUMERIC(p,s)

Not valid because there is no C language representation. If you want to pass a

decimal value, you must define the parameter to be of a data type castable from

DECIMAL (for example CHAR or DOUBLE) and explicitly cast the argument to

this type. In the case of DOUBLE, you do not need to explicitly cast a decimal

argument to a DOUBLE parameter, because DB2 promotes it automatically.

Example:

Suppose you have two columns, WAGE as DECIMAL(5,2) and HOURS as

DECIMAL(4,1), and you wish to write a UDF to calculate weekly pay based on

wage, number of hours worked and some other factors. The UDF could be as

follows:

 CREATE FUNCTION WEEKLY_PAY (DOUBLE, DOUBLE, ...)

 RETURNS DECIMAL(7,2) CAST FROM DOUBLE

 ...;

For the preceding UDF, the first two parameters correspond to the wage and

number of hours. You invoke the UDF WEEKLY_PAY in your SQL select

statement as follows:

 SELECT WEEKLY_PAY (WAGE, HOURS, ...) ...;

Note that no explicit casting is required because the DECIMAL arguments are

castable to DOUBLE.

Alternatively, you could define WEEKLY_PAY with CHAR arguments as follows:

 CREATE FUNCTION WEEKLY_PAY (VARCHAR(6), VARCHAR(5), ...)

 RETURNS DECIMAL (7,2) CAST FROM VARCHAR(10)

 ...;

222 Developing User-defined Routines (SQL and External)

You would invoke it as follows:

 SELECT WEEKLY_PAY (CHAR(WAGE), CHAR(HOURS), ...) ...;

Observe that explicit casting is required because DECIMAL arguments are not

promotable to VARCHAR.

An advantage of using floating point parameters is that it is easy to perform

arithmetic on the values in the routine; an advantage of using character

parameters is that it is always possible to exactly represent the decimal value.

This is not always possible with floating point.

v CHAR(n) or CHARACTER(n) with or without the FOR BIT DATA modifier.

Valid. Represent in C as SQLUDF_CHAR or char...[n+1] (this is a C

null-terminated string).

Example:

 char arg1[14]; /* example for CHAR(13) */

 char *arg1; /* also acceptable */

Input routine parameters of data type CHAR are always automatically null

terminated. For a CHAR(n) input parameter, where n is the length of the CHAR

data type, n bytes of data are moved to the buffer in the routine implementation

and the character in the n + 1 position is set to the ASCII null terminator

character (X’00’).

Output parameters of procedures and return values of functions of data type

CHAR must be explicitly null terminated by the routine. For a return value of a

UDF specified by the RETURNS clause, such as RETURNS CHAR(n), or a

procedure output parameter specified as CHAR(n), where n is the length of the

CHAR value, a null terminator character must exist within the first n+1 bytes of

the buffer. If a null terminator is found within the first n+1 bytes of the buffer,

the remaining bytes, up to byte n, are set to ASCII blank characters X’20’). If no

null terminator is found, an SQL error (SQLSTATE 39501) results.

For input and output parameters of procedures or function return values of data

type CHAR that also specify the FOR BIT DATA clause, which indicates that the

data is to be manipulated in its binary form, null terminators are not used to

indicate the end of the parameter value. For either a RETURNS CHARn) FOR

BIT DATA function return value or a CHAR(n) FOR BIT DATA output

parameter, the first n bytes of the buffer are copied over regardless of any

occurrences of string null terminators within the first n bytes. Null terminator

characters identified within the buffer are ignored as null terminators and

instead are simply treated as normal data.

Exercise caution when using the normal C string handling functions in a routine

that manipulates a FOR BIT DATA value, because many of these functions look

for a null terminator to delimit a string argument and null terminators (X’00’)

can legitimately appear in the middle of a FOR BIT DATA value. Using the C

functions on FOR BIT DATA values might cause the undesired truncation of the

data value.

When defining character routine parameters, consider using VARCHAR rather

than CHAR as DB2 does not promote VARCHAR arguments to CHAR and

string literals are automatically considered as VARCHARs. For example, suppose

you define a UDF as follows:

 CREATE FUNCTION SIMPLE(INT,CHAR(1))...

If you invoke the SIMPLE function using VARCHAR data, (...

SIMPLE(1,’A’)...), you will receive an SQLCODE -440 (SQLSTATE 42884) error

indicating that the function was not found, and end-users of this function might

not perceive the reason for the message. In the preceding example, ’A’ is

VARCHAR, so you can either cast it to CHAR or define the parameter as

VARCHAR.

Chapter 6. Developing external routines 223

v VARCHAR(n) FOR BIT DATA or LONG VARCHAR with or without the FOR

BIT DATA modifier.

Valid. Represent VARCHAR(n) FOR BIT DATA in C as SQLUDF_VARCHAR_FBD.

Represent LONG VARCHAR in C as SQLUDF_LONG. Otherwise represent these

two SQL types in C as a structure similar to the following from the sqludf.h

include file:

 struct sqludf_vc_fbd

 {

 unsigned short length; /* length of data */

 char data[1]; /* first char of data */

 };

The [1] indicates an array to the compiler. It does not mean that only one

character is passed; because the address of the structure is passed, and not the

actual structure, it provides a way to use array logic.

These values are not represented as C null-terminated strings because the

null-character could legitimately be part of the data value. The length is

explicitly passed to the routine for parameters using the structure variable

length. For the RETURNS clause, the length that is passed to the routine is the

length of the buffer. What the routine body must pass back, using the structure

variable length, is the actual length of the data value.

Example:

 struct sqludf_vc_fbd *arg1; /* example for VARCHAR(n) FOR BIT DATA */

 struct sqludf_vc_fbd *result; /* also for LONG VARCHAR FOR BIT DATA */

v VARCHAR(n) without FOR BIT DATA.

Valid. Represent in C as SQLUDF_VARCHAR or char...[n+1]. (This is a C

null-terminated string.)

For a VARCHAR(n) parameter, DB2 will put a null in the (k+1) position, where

k is the length of the particular string. The C string-handling functions are well

suited for manipulation of these values. For a RETURNS VARCHAR(n) value or

an output parameter of a stored procedure, the routine body must delimit the

actual value with a null because DB2 will determine the result length from this

null character.

Example:

 char arg2[51]; /* example for VARCHAR(50) */

 char *result; /* also acceptable */

v DATE

Valid. Represent in C same as SQLUDF_DATE or CHAR(10), that is as char...[11].

The date value is always passed to the routine in ISO format:

yyyy-mm-dd

Example:

 char arg1[11]; /* example for DATE */

 char *result; /* also acceptable */

Note: For DATE, TIME and TIMESTAMP return values, DB2 demands the

characters be in the defined form, and if this is not the case the value could be

misinterpreted by DB2 (For example, 2001-04-03 will be interpreted as April 3

even if March 4 is intended) or will cause an error (SQLCODE -493, SQLSTATE

22007).

v TIME

Valid. Represent in C same as SQLUDF_TIME or CHAR(8), that is, as char...[9].

The time value is always passed to the routine in ISO format:

hh.mm.ss

Example:

224 Developing User-defined Routines (SQL and External)

char *arg; /* example for TIME */

 char result[9]; /* also acceptable */

v TIMESTAMP

Valid. Represent in C as SQLUDF_STAMP or CHAR(26), that is, as char...[27]. The

timestamp value is always passed with format:

yyyy-mm-dd-hh.mm.ss.nnnnnn

Example:

 char arg1[27]; /* example for TIMESTAMP */

 char *result; /* also acceptable */

v GRAPHIC(n)

Valid. Represent in C as SQLUDF_GRAPH or sqldbchar[n+1]. (This is a

null-terminated graphic string). Note that you can use wchar_t[n+1] on

operating systems where wchar_t is defined to be 2 bytes in length; however,

sqldbchar is recommended.

For a GRAPHIC(n) parameter, DB2 moves n double-byte characters to the buffer

and sets the following two bytes to null. Data passed from DB2 to a routine is in

DBCS format, and the result passed back is expected to be in DBCS format. This

behavior is the same as using the WCHARTYPE NOCONVERT precompiler

option. For a RETURNS GRAPHIC(n) value or an output parameter of a stored

procedure, DB2 looks for an embedded GRAPHIC null CHAR, and if it finds it,

pads the value out to n with GRAPHIC blank characters.

When defining graphic routine parameters, consider using VARGRAPHIC rather

than GRAPHIC as DB2 does not promote VARGRAPHIC arguments to

GRAPHIC. For example, suppose you define a routine as follows:

 CREATE FUNCTION SIMPLE(GRAPHIC)...

If you invoke the SIMPLE function using VARGRAPHIC data,

(... SIMPLE(’graphic_literal’)...), you will receive an SQLCODE -440

(SQLSTATE 42884) error indicating that the function was not found, and

end-users of this function might not understand the reason for this message. In

the preceding example, graphic_literal is a literal DBCS string that is

interpreted as VARGRAPHIC data, so you can either cast it to GRAPHIC or

define the parameter as VARGRAPHIC.

Example:

 sqldbchar arg1[14]; /* example for GRAPHIC(13) */

 sqldbchar *arg1; /* also acceptable */

v VARGRAPHIC(n)

Valid. Represent in C as SQLUDF_GRAPH or sqldbchar[n+1]. (This is a

null-terminated graphic string). Note that you can use wchar_t[n+1] on

operating systems where wchar_t is defined to be 2 bytes in length; however,

sqldbchar is recommended.

For a VARGRAPHIC(n) parameter, DB2 will put a graphic null in the (k+1)

position, where k is the length of the particular occurrence. A graphic null refers

to the situation where all the bytes of the last character of the graphic string

contain binary zeros (’\0’s). Data passed from DB2 to a routine is in DBCS

format, and the result passed back is expected to be in DBCS format. This

behavior is the same as using the WCHARTYPE NOCONVERT precompiler

option. For a RETURNS VARGRAPHIC(n) value or an output parameter of a

stored procedure, the routine body must delimit the actual value with a graphic

null, because DB2 will determine the result length from this graphic null

character.

Example:

 sqldbchar args[51], /* example for VARGRAPHIC(50) */

 sqldbchar *result, /* also acceptable */

Chapter 6. Developing external routines 225

v LONG VARGRAPHIC

Valid. Represent in C as SQLUDF_LONGVARG or a structure:

 struct sqludf_vg

 {

 unsigned short length; /* length of data */

 sqldbchar data[1]; /* first char of data */

 };

Note that in the preceding structure, you can use wchar_t in place of sqldbchar

on operating systems where wchar_t is defined to be 2 bytes in length, however,

the use of sqldbchar is recommended.

The [1] merely indicates an array to the compiler. It does not mean that only one

graphic character is passed. Because the address of the structure is passed, and

not the actual structure, it provides a way to use array logic.

These are not represented as null-terminated graphic strings. The length, in

double-byte characters, is explicitly passed to the routine for parameters using

the structure variable length. Data passed from DB2 to a routine is in DBCS

format, and the result passed back is expected to be in DBCS format. This

behavior is the same as using the WCHARTYPE NOCONVERT precompiler

option. For the RETURNS clause or an output parameter of a stored procedure,

the length that is passed to the routine is the length of the buffer. What the

routine body must pass back, using the structure variable length, is the actual

length of the data value, in double byte characters.

Example:

 struct sqludf_vg *arg1; /* example for VARGRAPHIC(n) */

 struct sqludf_vg *result; /* also for LONG VARGRAPHIC */

v BLOB(n) and CLOB(n)

Valid. Represent in C as SQLUDF_BLOB, SQLUDF_CLOB, or a structure:

 struct sqludf_lob

 {

 sqluint32 length; /* length in bytes */

 char data[1]; /* first byte of lob */

 };

The [1] merely indicates an array to the compiler. It does not mean that only one

character is passed; because the address of the structure is passed, and not the

actual structure, it provides a way to use array logic.

These are not represented as C null-terminated strings. The length is explicitly

passed to the routine for parameters using the structure variable length. For the

RETURNS clause or an output parameter of a stored procedure, the length that

is passed back to the routine, is the length of the buffer. What the routine body

must pass back, using the structure variable length, is the actual length of the

data value.

Example:

 struct sqludf_lob *arg1; /* example for BLOB(n), CLOB(n) */

 struct sqludf_lob *result;

v DBCLOB(n)

Valid. Represent in C as SQLUDF_DBCLOB or a structure:

 struct sqludf_lob

 {

 sqluint32 length; /* length in graphic characters */

 sqldbchar data[1]; /* first byte of lob */

 };

Note that in the preceding structure, you can use wchar_t in place of sqldbchar

on operating systems where wchar_t is defined to be 2 bytes in length, however,

the use of sqldbchar is recommended.

226 Developing User-defined Routines (SQL and External)

The [1] merely indicates an array to the compiler. It does not mean that only one

graphic character is passed; because the address of the structure is passed, and

not the actual structure, it provides a way to use array logic.

These are not represented as null-terminated graphic strings. The length is

explicitly passed to the routine for parameters using the structure variable

length. Data passed from DB2 to a routine is in DBCS format, and the result

passed back is expected to be in DBCS format. This behavior is the same as

using the WCHARTYPE NOCONVERT precompiler option. For the RETURNS

clause or an output parameter of a stored procedure, the length that is passed to

the routine is the length of the buffer. What the routine body must pass back,

using the structure variable length, is the actual length of the data value, with

all of these lengths expressed in double byte characters.

Example:

 struct sqludf_lob *arg1; /* example for DBCLOB(n) */

 struct sqludf_lob *result;

v Distinct Types

Valid or invalid depending on the base type. Distinct types will be passed to

the UDF in the format of the base type of the UDT, so can be specified if and

only if the base type is valid.

Example:

 struct sqludf_lob *arg1; /* for distinct type based on BLOB(n) */

 double *arg2; /* for distinct type based on DOUBLE */

 char res[5]; /* for distinct type based on CHAR(4) */

v XML

Valid. Represent in C as SQLUDF_XML or in the way as a CLOB data type is

represented; that is with a structure:

 struct sqludf_lob

 {

 sqluint32 length; /* length in bytes */

 char data[1]; /* first byte of lob */

 };

The [1] merely indicates an array to the compiler. It does not mean that only one

character is passed; because the address of the structure is passed, and not the

actual structure, it provides a way to use array logic.

These are not represented as C null-terminated strings. The length is explicitly

passed to the routine for parameters using the structure variable length. For the

RETURNS clause or an output parameter of a stored procedure, the length that

is passed back to the routine, is the length of the buffer. What the routine body

must pass back, using the structure variable length, is the actual length of the

data value.

Example:

 struct sqludf_lob *arg1; /* example for XML(n) */

 struct sqludf_lob *result;

The assignment and access of XML parameter and variable values in C and C++

external routine code is done in the same way as for CLOB values.

v Distinct Types AS LOCATOR, or any LOB type AS LOCATOR

Valid for parameters and results of UDFs and methods. It can only be used to

modify LOB types or any distinct type that is based on a LOB type. Represent in

C as SQLUDF_LOCATOR or a four byte integer.

The locator value can be assigned to any locator host variable with a compatible

type and then be used in an SQL statement. This means that locator variables

are only useful in UDFs and methods defined with an SQL access indicator of

CONTAINS SQL or higher. For compatibility with existing UDFs and methods,

Chapter 6. Developing external routines 227

the locator APIs are still supported for NOT FENCED NO SQL UDFs. Use of

these APIs is not encouraged for new functions.

Example:

 sqludf_locator *arg1; /* locator argument */

 sqludf_locator *result; /* locator result */

EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB LOCATOR arg_loc;

 SQL TYPE IS CLOB LOCATOR res_loc;

EXEC SQL END DECLARE SECTION;

/* Extract some characters from the middle */

/* of the argument and return them */

*arg_loc = arg1;

EXEC SQL VALUES SUBSTR(arg_loc, 10, 20) INTO :res_loc;

*result = res_loc;

v Structured Types

Valid for parameters and results of UDFs and methods where an appropriate

transform function exists. Structured type parameters will be passed to the

function or method in the result type of the FROM SQL transform function.

Structured type results will be passed in the parameter type of the TO SQL

transform function.

Passing arguments to C, C++, OLE, or COBOL routines

In addition to the SQL arguments that are specified in the DML reference for a

routine, DB2 passes additional arguments to the external routine body. The nature

and order of these arguments is determined by the parameter style with which you

registered your routine. To ensure that information is exchanged correctly between

invokers and the routine body, you must ensure that your routine accepts

arguments in the order they are passed, according to the parameter style being

used. The sqludf include file can aid you in handling and using these arguments.

The following parameter styles are applicable only to LANGUAGE C,

LANGUAGE OLE, and LANGUAGE COBOL routines.

PARAMETER STYLE SQL routines

��

�

�

SQL-argument

SQL-argument-ind

 sqlstate routine-name �

� specific-name diagnostic-message

scratchpad

call-type

dbinfo
 ��

PARAMETER STYLE DB2SQL procedures

��

�

SQL-argument

SQL-argument-ind-array

 sqlstate routine-name �

� specific-name diagnostic-message

dbinfo
 ��

228 Developing User-defined Routines (SQL and External)

PARAMETER STYLE GENERAL procedures

��

�

SQL-argument

dbinfo
 ��

PARAMETER STYLE GENERAL WITH NULLS procedures

��

�

SQL-argument

SQL-argument-ind-array

dbinfo
 ��

Note: For UDFs and methods, PARAMETER STYLE SQL is equivalent to

PARAMETER STYLE DB2SQL.

The arguments for the above parameter styles are described as follows:

SQL-argument...

Each SQL-argument represents one input or output value defined when the

routine was created. The list of arguments is determined as follows:

v For a scalar function, one argument for each input parameter to the

function followed by one SQL-argument for the result of the function.

v For a table function, one argument for each input parameter to the

function followed by one SQL-argument for each column in the result

table of the function.

v For a method, one SQL-argument for the subject type of the method, then

one argument for each input parameter to the method followed by one

SQL-argument for the result of the method.

v For a stored procedure, one SQL-argument for each parameter to the

stored procedure.

Each SQL-argument is used as follows:

v Input parameter of a function or method, subject type of a method, or

an IN parameter of a stored procedure

This argument is set by DB2 before calling the routine. The value of each

of these arguments is taken from the expression specified in the routine

invocation. It is expressed in the data type of the corresponding

parameter definition in the CREATE statement.

v Result of a function or method or an OUT parameter of a stored

procedure

This argument is set by the routine before returning to DB2. DB2

allocates the buffer and passes its address to the routine. The routine

puts the result value into the buffer. Enough buffer space is allocated by

DB2 to contain the value expressed in the data type. For character types

and LOBs, this means the maximum size, as defined in the create

statement, is allocated.

For scalar functions and methods, the result data type is defined in the

CAST FROM clause, if it is present, or in the RETURNS clause, if no

CAST FROM clause is present.

For table functions, DB2 defines a performance optimization where

every defined column does not have to be returned to DB2. If you write

Chapter 6. Developing external routines 229

your UDF to take advantage of this feature, it returns only the columns

required by the statement referencing the table function. For example,

consider a CREATE FUNCTION statement for a table function defined

with 100 result columns. If a given statement referencing the function is

only interested in two of them, this optimization enables the UDF to

return only those two columns for each row and not spend time on the

other 98 columns. See the dbinfo argument below for more information

on this optimization.

For each value returned, the routine should not return more bytes than

is required for the data type and length of the result. Maximums are

defined during the creation of the routine’s catalog entry. An overwrite

by the routine can cause unpredictable results or an abnormal

termination.

v INOUT parameter of a stored procedure

This argument behaves as both an IN and an OUT parameter and

therefore follows both sets of rules shown above. DB2 will set the

argument before calling the stored procedure. The buffer allocated by

DB2 for the argument is large enough to contain the maximum size of

the data type of the parameter defined in the CREATE PROCEDURE

statement. For example, an INOUT parameter of a CHAR type could

have a 10 byte varchar going in to the stored procedure, and a 100 byte

varchar coming out of the stored procedure. The buffer is set by the

stored procedure before returning to DB2.

DB2 aligns the data for SQL-argument according to the data type and the

server operating system, also known as platform.

SQL-argument-ind...

There is an SQL-argument-ind for each SQL-argument passed to the routine.

The nth SQL-argument-ind corresponds to the nth SQL-argument and

indicates whether the SQL-argument has a value or is NULL.

 Each SQL-argument-ind is used as follows:

v Input parameter of a function or method, subject type of a method, or

an IN parameter of a stored procedure

This argument is set by DB2 before calling the routine. It contains one of

the following values:

0 The argument is present and not NULL.

-1 The argument is present and its value is NULL.
If the routine is defined with RETURNS NULL ON NULL INPUT, the

routine body does not need to check for a NULL value. However, if it is

defined with CALLED ON NULL INPUT, any argument can be NULL

and the routine should check SQL-argument-ind before using the

corresponding SQL-argument.

v Result of a function or method or an OUT parameter of a stored

procedure

This argument is set by the routine before returning to DB2. This

argument is used by the routine to signal if the particular result value is

NULL:

0 The result is not NULL.

-1 The result is the NULL value.
Even if the routine is defined with RETURNS NULL ON NULL INPUT,

the routine body must set the SQL-argument-ind of the result. For

example, a divide function could set the result to null when the

denominator is zero.

230 Developing User-defined Routines (SQL and External)

For scalar functions and methods, DB2 treats a NULL result as an

arithmetic error if the following is true:

– The database configuration parameter dft_sqlmathwarn is YES

– One of the input arguments is a null because of an arithmetic error

This is also true if you define the function with the RETURNS NULL

ON NULL INPUT option

For table functions, if the UDF takes advantage of the optimization using

the result column list, then only the indicators corresponding to the

required columns need be set.

v INOUT parameter of a stored procedure

This argument behaves as both an IN and an OUT parameter and

therefore follows both sets of rules shown above. DB2 will set the

argument before calling the stored procedure. The SQL-argument-ind is

set by the stored procedure before returning to DB2.

Each SQL-argument-ind takes the form of a SMALLINT value. DB2 aligns

the data for SQL-argument-ind according to the data type and the server

operating system.

SQL-argument-ind-array

There is an element in SQL-argument-ind-array for each SQL-argument

passed to the stored procedure. The nth element in SQL-argument-ind-array

corresponds to the nth SQL-argument and indicates whether the

SQL-argument has a value or is NULL

 Each element in SQL-argument-ind-array is used as follows:

v IN parameter of a stored procedure

This element is set by DB2 before calling the routine. It contains one of

the following values:

0 The argument is present and not NULL.

-1 The argument is present and its value is NULL.
If the stored procedure is defined with RETURNS NULL ON NULL

INPUT, the stored procedure body does not need to check for a NULL

value. However, if it is defined with CALLED ON NULL INPUT, any

argument can be NULL and the stored procedure should check

SQL-argument-ind before using the corresponding SQL-argument.

v OUT parameter of a stored procedure

This element is set by the routine before returning to DB2. This

argument is used by the routine to signal if the particular result value is

NULL:

0 or positive

The result is not NULL.

negative

The result is the NULL value.

 v INOUT parameter of a stored procedure

This element behaves as both an IN and an OUT parameter and

therefore follows both sets of rules shown above. DB2 will set the

argument before calling the stored procedure. The element of

SQL-argument-ind-array is set by the stored procedure before returning to

DB2.

Each element of SQL-argument-ind-array takes the form of a SMALLINT

value. DB2 aligns the data for SQL-argument-ind-array according to the data

type and the server operating system.

Chapter 6. Developing external routines 231

sqlstate This argument is set by the routine before returning to DB2. It can be used

by the routine to signal warning or error conditions. The routine can set

this argument to any value. The value ’00000’ means that no warning or

error situations were detected. Values that start with ’01’ are warning

conditions. Values that start with anything other than ’00’ or ’01’ are error

conditions. When the routine is called, the argument contains the value

’00000’.

 For error conditions, the routine returns an SQLCODE of -443. For warning

conditions, the routine returns an SQLCODE of +462. If the SQLSTATE is

38001 or 38502, then the SQLCODE is -487.

 The sqlstate takes the form of a CHAR(5) value. DB2 aligns the data for

sqlstate according to the data type and the server operating system.

routine-name

This argument is set by DB2 before calling the routine. It is the qualified

function name, passed from DB2 to the routine

 The form of the routine-name that is passed is:

 schema.routine

The parts are separated by a period. Two examples are:

 PABLO.BLOOP WILLIE.FINDSTRING

This form enables you to use the same routine body for multiple external

routines, and still differentiate between the routines when it is invoked.

Note: Although it is possible to include the period in object names and

schema names, it is not recommended. For example, if a function, ROTATE is

in a schema, OBJ.OP, the routine name that is passed to the function is

OBJ.OP.ROTATE, and it is not obvious if the schema name is OBJ or OBJ.OP.

The routine-name takes the form of a VARCHAR(257) value. DB2 aligns the

data for routine-name according to the data type and the server operating

system.

specific-name

This argument is set by DB2 before calling the routine. It is the specific

name of the routine passed from DB2 to the routine.

 Two examples are:

 WILLIE_FIND_FEB99 SQL9904281052440430

This first value is provided by the user in his CREATE statement. The

second value is generated by DB2 from the current timestamp when the

user does not specify a value.

 As with the routine-name argument, the reason for passing this value is to

give the routine the means of distinguishing exactly which specific routine

is invoking it.

 The specific-name takes the form of a VARCHAR(18) value. DB2 aligns the

data for specific-name according to the data type and the server operating

system.

diagnostic-message

This argument is set by the routine before returning to DB2. The routine

can use this argument to insert message text in a DB2 message.

232 Developing User-defined Routines (SQL and External)

When the routine returns either an error or a warning, using the sqlstate

argument described previously, it can include descriptive information here.

DB2 includes this information as a token in its message.

 DB2 sets the first character to null before calling the routine. Upon return,

it treats the string as a C null-terminated string. This string will be

included in the SQLCA as a token for the error condition. At least the first

part of this string will appear in the SQLCA or DB2 CLP message.

However, the actual number of characters that will appear depends on the

lengths of the other tokens, because DB2 truncates the tokens to conform to

the limit on total token length imposed by the SQLCA. Avoid using X’FF’

in the text since this character is used to delimit tokens in the SQLCA.

 The routine should not return more text than will fit in the VARCHAR(70)

buffer that is passed to it. An overwrite by the routine can cause

unpredictable results or an abend.

 DB2 assumes that any message tokens returned from the routine to DB2

are in the same code page as the routine. Your routine should ensure that

this is the case. If you use the 7-bit invariant ASCII subset, your routine

can return the message tokens in any code page.

 The diagnostic-message takes the form of a VARCHAR(70) value. DB2 aligns

the data for diagnostic-message according to the data type and the server

operating system.

scratchpad

This argument is set by DB2 before invoking the UDF or method. It is only

present for functions and methods that specified the SCRATCHPAD

keyword during registration. This argument is a structure, exactly like the

structure used to pass a value of any of the LOB data types, with the

following elements:

v An INTEGER containing the length of the scratchpad. Changing the

length of the scratchpad will result in SQLCODE -450 (SQLSTATE 39501)

v The actual scratchpad initialized to all binary 0s as follows:

– For scalar functions and methods, it is initialized before the first call,

and not generally looked at or modified by DB2 thereafter.

– For table functions, the scratchpad is initialized prior to the FIRST call

to the UDF if FINAL CALL is specified on the CREATE FUNCTION.

After this call, the scratchpad content is totally under control of the

table function. If NO FINAL CALL was specified or defaulted for a

table function, then the scratchpad is initialized for each OPEN call,

and the scratchpad content is completely under control of the table

function between OPEN calls. (This can be very important for a table

function used in a join or subquery. If it is necessary to maintain the

content of the scratchpad across OPEN calls, then FINAL CALL must

be specified in your CREATE FUNCTION statement. With FINAL

CALL specified, in addition to the normal OPEN, FETCH and CLOSE

calls, the table function will also receive FIRST and FINAL calls, for

the purpose of scratchpad maintenance and resource release.)

The scratchpad can be mapped in your routine using the same type as

either a CLOB or a BLOB, since the argument passed has the same

structure.

 Ensure your routine code does not make changes outside of the scratchpad

buffer. An overwrite by the routine can cause unpredictable results, an

abend, and might not result in a graceful failure by DB2.

Chapter 6. Developing external routines 233

If a scalar UDF or method that uses a scratchpad is referenced in a

subquery, DB2 might decide to refresh the scratchpad between invocations

of the subquery. This refresh occurs after a final-call is made, if FINAL

CALL is specified for the UDF.

 DB2 initializes the scratchpad so that the data field is aligned for the

storage of any data type. This can result in the entire scratchpad structure,

including the length field, being improperly aligned.

call-type

This argument, if present, is set by DB2 before invoking the UDF or

method. This argument is present for all table functions and for scalar

functions and methods that specified FINAL CALL during registration

 All the current possible values for call-type follow. Your UDF or method

should contain a switch or case statement that explicitly tests for all the

expected values, rather than containing “if A do AA, else if B do BB, else it

must be C so do CC” type logic. This is because it is possible that

additional call types will be added in the future, and if you do not

explicitly test for condition C you will have trouble when new possibilities

are added.

Note:

1. For all values of call-type, it might be appropriate for the routine to set

a sqlstate and diagnostic-message return value. This information will not

be repeated in the following descriptions of each call-type. For all calls

DB2 will take the indicated action as described previously for these

arguments.

2. The include file sqludf.h is intended for use with routines. The file

contains symbolic defines for the following call-type values, which are

spelled out as constants.

 For scalar functions and methods call-type contains:

SQLUDF_FIRST_CALL (-1)

This is the FIRST call to the routine for this statement. The

scratchpad (if any) is set to binary zeros when the routine is called.

All argument values are passed, and the routine should do

whatever one-time initialization actions are required. In addition, a

FIRST call to a scalar UDF or method is like a NORMAL call, in

that it is expected to develop and return an answer.

Note: If SCRATCHPAD is specified but FINAL CALL is not, then

the routine will not have this call-type argument to identify the

very first call. Instead, it will have to rely on the all-zero state of

the scratchpad.

SQLUDF_NORMAL_CALL (0)

This is a NORMAL call. All the SQL input values are passed, and

the routine is expected to develop and return the result. The

routine can also return sqlstate and diagnostic-message information.

SQLUDF_FINAL_CALL (1)

This is a FINAL call, that is no SQL-argument or SQL-argument-ind

values are passed, and attempts to examine these values can cause

unpredictable results. If a scratchpad is also passed, it is untouched

from the previous call. The routine is expected to release resources

at this point.

234 Developing User-defined Routines (SQL and External)

SQLUDF_FINAL_CRA (255)

This is a FINAL call, identical to the FINAL call described

previously, with one additional characteristic, namely that it is

made to routines that are defined as being able to issue SQL, and it

is made at such a time that the routine must not issue any SQL

except CLOSE cursor. (SQLCODE -396, SQLSTATE 38505) For

example, when DB2 is in the middle of COMMIT processing, it can

not tolerate new SQL, and any FINAL call issued to a routine at

that time would be a 255 FINAL call. Routines that are not defined

as containing any level of SQL access will never receive a 255

FINAL call, whereas routines that do use SQL might be given

either type of FINAL call.

 Releasing resources

 A scalar UDF or method is expected to release resources it has required,

for example, memory. If FINAL CALL is specified for the routine, then that

FINAL call is a natural place to release resources, provided that

SCRATCHPAD is also specified and is used to track the resource. If FINAL

CALL is not specified, then any resource acquired should be released on

the same call.

 For table functions call-type contains:

SQLUDF_TF_FIRST (-2)

This is the FIRST call, which only occurs if the FINAL CALL

keyword was specified for the UDF. The scratchpad is set to binary

zeros before this call. Argument values are passed to the table

function. The table function can acquire memory or perform other

one-time only resource initialization. This is not an OPEN call, that

call follows this one. On a FIRST call the table function should not

return any data to DB2 as DB2 ignores the data.

SQLUDF_TF_OPEN (-1)

This is the OPEN call. The scratchpad will be initialized if NO

FINAL CALL is specified, but not necessarily otherwise. All SQL

argument values are passed to the table function on OPEN. The

table function should not return any data to DB2 on the OPEN call.

SQLUDF_TF_FETCH (0)

This is a FETCH call, and DB2 expects the table function to return

either a row comprising the set of return values, or an end-of-table

condition indicated by SQLSTATE value ’02000’. If scratchpad is

passed to the UDF, then on entry it is untouched from the previous

call.

SQLUDF_TF_CLOSE (1)

This is a CLOSE call to the table function. It balances the OPEN

call, and can be used to perform any external CLOSE processing

(for example, closing a source file), and resource release

(particularly for the NO FINAL CALL case).

 In cases involving a join or a subquery, the OPEN/FETCH.../
CLOSE call sequences can repeat within the execution of a

statement, but there is only one FIRST call and only one FINAL

call. The FIRST and FINAL call only occur if FINAL CALL is

specified for the table function.

Chapter 6. Developing external routines 235

SQLUDF_TF_FINAL (2)

This is a FINAL call, which only occurs if FINAL CALL was

specified for the table function. It balances the FIRST call, and

occurs only once per execution of the statement. It is intended for

the purpose of releasing resources.

SQLUDF_TF_FINAL_CRA (255)

This is a FINAL call, identical to the FINAL call described above,

with one additional characteristic, namely that it is made to UDFs

which are defined as being able to issue SQL, and it is made at

such a time that the UDF must not issue any SQL except CLOSE

cursor. (SQLCODE -396, SQLSTATE 38505) For example, when DB2

is in the middle of COMMIT processing, it can not tolerate new

SQL, and any FINAL call issued to a UDF at that time would be a

255 FINAL call. Note that UDFs which are not defined as

containing any level of SQL access will never receive a 255 FINAL

call, whereas UDFs which do use SQL can be given either type of

FINAL call.

Releasing resources

 Write routines to release any resources that they acquire. For table

functions, there are two natural places for this release: the CLOSE call and

the FINAL call. The CLOSE call balances each OPEN call and can occur

multiple times in the execution of a statement. The FINAL call only occurs

if FINAL CALL is specified for the UDF, and occurs only once per

statement.

 If you can apply a resource across all OPEN/FETCH/CLOSE sequences of

the UDF, write the UDF to acquire the resource on the FIRST call and free

it on the FINAL call. The scratchpad is a natural place to track this

resource. For table functions, if FINAL CALL is specified, the scratchpad is

initialized only before the FIRST call. If FINAL CALL is not specified, then

it is reinitialized before each OPEN call.

 If a resource is specific to each OPEN/FETCH/CLOSE sequence, write the

UDF to free the resource on the CLOSE call.

Note: When a table function is in a subquery or join, it is very possible

that there will be multiple occurrences of the OPEN/FETCH/CLOSE

sequence, depending on how the DB2 Optimizer chooses to organize the

execution of the statement.

 The call-type takes the form of an INTEGER value. DB2 aligns the data for

call-type according to the data type and the server operating system.

dbinfo

This argument is set by DB2 before calling the routine. It is only present if

the CREATE statement for the routine specifies the DBINFO keyword. The

argument is the sqludf_dbinfo structure defined in the header file

sqludf.h. The variables in this structure that contain names and identifiers

might be longer than the longest value possible in this release of DB2, but

they are defined this way for compatibility with future releases. You can

use the length variable that complements each name and identifier variable

to read or extract the portion of the variable that is actually used. The

dbinfo structure contains the following elements:

 1. Database name length (dbnamelen)

The length of database name below. This field is an unsigned short

integer.

236 Developing User-defined Routines (SQL and External)

2. Database name (dbname)

The name of the currently connected database. This field is a long

identifier of 128 characters. The database name length field described

previously identifies the actual length of this field. It does not contain

a null terminator or any padding.

 3. Application Authorization ID Length (authidlen)

The length of application authorization ID below. This field is an

unsigned short integer.

 4. Application authorization ID (authid)

The application run-time authorization ID. This field is a long

identifier of 128 characters. It does not contain a null terminator or

any padding. The application authorization ID length field described

above identifies the actual length of this field.

 5. Environment code pages (codepg)

This is a union of three 48-byte structures; one is common to all DB2

database products (cdpg_db2), one is used by routines written for

older versions of DB2 database (cdpg_cs), and the last is for use by

older versions of DB2 Universal Database for z/OS and OS/390

(cdpg_mvs). For portability, it is recommended that the common

structure, cdpg_db2, be used in all routines.

The cdpg_db2 structure is made up of an array (db2_ccsids_triplet) of

three sets of code page information representing the possible encoding

schemes in the database as follows:

a. ASCII encoding scheme. Note that for compatibility with previous

version of DB2 database, if the database is a Unicode database

then the information for the Unicode encoding scheme will be

placed here as well as appearing in the third element.

b. EBCDIC encoding scheme

c. Unicode encoding scheme

Following the encoding scheme information is the array index of the

encoding scheme for the routine (db2_encoding_scheme).Each element

of the array is composed of three fields:

v db2_sbcs. Single byte code page, an unsigned long integer.

v db2_dbcs. Double byte code page, an unsigned long integer.

v db2_mixed. Composite code page (also called mixed code page), an

unsigned long integer.
 6. Schema name length (tbschemalen)

The length of schema name below. Contains 0 (zero) if a table name is

not passed. This field is an unsigned short integer.

 7. Schema name (tbschema)

Schema for the table name below. This field is a long identifier of 128

characters. It does not contain a null terminator or any padding. The

schema name length field described previously identifies the actual

length of this field.

 8. Table name length (tbnamelen)

The length of the table name below. Contains 0 (zero) if a table name is

not passed. This field is an unsigned short integer.

 9. Table name (tbname)

This is the name of the table being updated or inserted. This field is

set only if the routine reference is the right-side of a SET clause in an

Chapter 6. Developing external routines 237

UPDATE statement, or an item in the VALUES list of an INSERT

statement. This field is a long identifier of 128 characters. It does not

contain a null terminator or any padding. The table name length field

described previously, identifies the actual length of this field. The

schema name field described previously, together with this field form

the fully qualified table name.

10. Column name length (colnamelen)

Length of column name below. It contains a 0 (zero) if a column name

is not passed. This field is an unsigned short integer.

11. Column name (colname)

Under the exact same conditions as for table name, this field contains

the name of the column being updated or inserted; otherwise, it is not

predictable. This field is a long identifier of 128 characters. It does not

contain a null terminator or any padding. The column name length field

described above, identifies the actual length of this field.

12. Version/Release number (ver_rel)An 8 character field that identifies

the product and its version, release, and modification level with the

format pppvvrrm where:

v ppp identifies the product as follows:

DSN DB2 Universal Database for z/OS or OS/390

ARI SQL/DS or DB2 for VM or VSE

QSQ DB2 Universal Database for iSeries

SQL DB2 Database for Linux, UNIX, and Windows
v vv is a two digit version identifier.

v rr is a two digit release identifier.

v m is a one digit modification level identifier.
13. Reserved field (resd0)

This field is for future use.

14. Platform (platform)

The operating system (platform) for the application server, as follows:

SQLUDF_PLATFORM_AIX

AIX®

SQLUDF_PLATFORM_HP

HP-UX

SQLUDF_PLATFORM_LINUX

Linux

SQLUDF_PLATFORM_MVS

OS/390

SQLUDF_PLATFORM_NT

Windows 2000, Windows XP

SQLUDF_PLATFORM_SUN

Solaris operating system

SQLUDF_PLATFORM_WINDOWS95

Windows 95, Windows 98, Windows Me

SQLUDF_PLATFORM_UNKNOWN

Unknown operating system or platform

238 Developing User-defined Routines (SQL and External)

For additional operating systems that are not contained in the above

list, see the contents of the sqludf.h file.

15. Number of table function column list entries (numtfcol)

The number of non-zero entries in the table function column list

specified in the table function column list field below.

16. Reserved field (resd1)

This field is for future use.

17. Routine id of the stored procedure that invoked the current routine

(procid)

The stored procedure’s routine id matches the ROUTINEID column in

SYSCAT.ROUTINES, which can be used to retrieve the name of the

invoking stored procedure. This field is a 32-bit signed integer.

18. Reserved field (resd2)

This field is for future use.

19. Table function column list (tfcolumn)

If this is a table function, this field is a pointer to an array of short

integers that is dynamically allocated by DB2. If this is any other type

of routine, this pointer is null.

This field is used only for table functions. Only the first n entries,

where n is specified in the number of table function column list entries

field, numtfcol, are of interest. n can be equal to 0, and n is less than

or equal to the number of result columns defined for the function in

the RETURNS TABLE(...) clause of the CREATE FUNCTION

statement. The values correspond to the ordinal numbers of the

columns that this statement needs from the table function. A value of

‘1’ means the first defined result column, ‘2’ means the second defined

result column, and so on, and the values can be in any order. Note

that n could be equal to zero, that is, the variable numtfcol might be

zero, for a statement similar to SELECT COUNT(*) FROM TABLE(TF(...))

AS QQ, where no actual column values are needed by the query.

This array represents an opportunity for optimization. The UDF need

not return all values for all the result columns of the table function,

only those needed in the particular context, and these are the columns

identified (by number) in the array. Since this optimization can

complicate the UDF logic in order to gain the performance benefit, the

UDF can choose to return every defined column.

20. Unique application identifier (appl_id)

This field is a pointer to a C null-terminated string that uniquely

identifies the application’s connection to DB2. It is generated by DB2

at connect time.

The string has a maximum length of 32 characters, and its exact

format depends on the type of connection established between the

client and DB2. Generally it takes the form:

 x.y.ts

where the x and y vary by connection type, but the ts is a 12 character

time stamp of the form YYMMDDHHMMSS, which is potentially

adjusted by DB2 to ensure uniqueness.

 Example: *LOCAL.db2inst.980707130144

21. Reserved field (resd3)

This field is for future use.

Chapter 6. Developing external routines 239

Graphic host variables in C and C++ routines

Any routine written in C or C++ that receives or returns graphic data through its

parameter input or output should generally be precompiled with the

WCHARTYPE NOCONVERT option. This is because graphic data passed through

these parameters is considered to be in DBCS format, rather than the wchar_t

process code format. Using NOCONVERT means that graphic data manipulated in

SQL statements in the routine will also be in DBCS format, matching the format of

the parameter data.

With WCHARTYPE NOCONVERT, no character code conversion occurs between

the graphic host variable and the database manager. The data in a graphic host

variable is sent to, and received from, the database manager as unaltered DBCS

characters. If you do not use WCHARTYPE NOCONVERT, it is still possible for

you to manipulate graphic data in wchar_t format in a routine; however, you must

perform the input and output conversions manually.

CONVERT can be used in FENCED routines, and it will affect the graphic data in

SQL statements within the routine, but not data passed through the routine’s

parameters. NOT FENCED routines must be built using the NOCONVERT option.

In summary, graphic data passed to or returned from a routine through its input or

output parameters is in DBCS format, regardless of how it was precompiled with

the WCHARTYPE option.

C++ type decoration

The names of C++ functions can be overloaded. Two C++ functions with the same

name can coexist if they have different arguments, for example:

 int func(int i)

and

 int func(char c)

C++ compilers type-decorate or ’mangle’ function names by default. This means

that argument type names are appended to their function names to resolve them,

as in func__Fi and func__Fc for the two earlier examples. The mangled names will

be different on each operating system, so code that explicitly uses a mangled name

is not portable.

On Windows operating systems, the type-decorated function name can be

determined from the .obj (object) file.

With the Microsoft Visual C++ compiler on Windows, you can use the dumpbin

command to determine the type-decorated function name from the .obj (object)

file, as follows:

 dumpbin /symbols myprog.obj

where myprog.obj is your program object file.

On UNIX operating systems, the type-decorated function name can be determined

from the .o (object) file, or from the shared library, using the nm command. This

command can produce considerable output, so it is suggested that you pipe the

output through grep to look for the right line, as follows:

 nm myprog.o | grep myfunc

240 Developing User-defined Routines (SQL and External)

where myprog.o is your program object file, and myfunc is the function in the

program source file.

The output produced by all of these commands includes a line with the mangled

function name. On UNIX, for example, this line is similar to the following:

 myfunc__FPlT1PsT3PcN35| 3792|unamex| | ...

Once you have obtained the mangled function name from one of the preceding

commands, you can use it in the appropriate command. This is demonstrated later

in this section using the mangled function name obtained from the preceding

UNIX example. A mangled function name obtained on Windows would be used in

the same way.

When registering a routine with the CREATE statement, the EXTERNAL NAME

clause must specify the mangled function name. For example:

 CREATE FUNCTION myfunco(...) RETURNS...

 ...

 EXTERNAL NAME ’/whatever/path/myprog!myfunc__FPlT1PsT3PcN35’

 ...

If your routine library does not contain overloaded C++ function names, you have

the option of using extern "C" to force the compiler to not type-decorate function

names. (Note that you can always overload the SQL function names given to

UDFs, because DB2 resolves what library function to invoke based on the name

and the parameters it takes.)

In this example, the UDFs fold and findvwl are not type-decorated by the

compiler, and should be registered in the CREATE FUNCTION statement using

#include <string.h>

#include <stdlib.h>

#include "sqludf.h"

/*---*/

/* function fold: output = input string is folded at point indicated */

/* by the second argument. */

/* inputs: CLOB, input string */

/* LONG position to fold on */

/* output: CLOB folded string */

/*---*/

extern "C" void fold(

 SQLUDF_CLOB *in1, /* input CLOB to fold */

 ...

 ...

}

/* end of UDF: fold */

/*---*/

/* function find_vowel: */

/* returns the position of the first vowel. */

/* returns error if no vowel. */

/* defined as NOT NULL CALL */

/* inputs: VARCHAR(500) */

/* output: INTEGER */

/*---*/

extern "C" void findvwl(

 SQLUDF_VARCHAR *in, /* input smallint */

 ...

 ...

}

/* end of UDF: findvwl */

Chapter 6. Developing external routines 241

their plain names. Similarly, if a C++ stored procedure or method is coded with

extern "C", its undecorated function name would be used in the CREATE

statement.

Returning result sets from C and C++ procedures

You can develop C and C++ procedures that return result sets to a calling routine

or application that is implemented using an API that supports the retrieval of

procedure result sets. Most APIs support the retrieval of procedure result sets,

however embedded SQL does not.

The C and C++ representation of a result set is an SQL cursor. Any SQL cursor that

has been declared, opened, and not explicitly closed within a procedure, prior to

the return of the procedure can be returned to the caller. The order in which result

sets are returned to the caller is the same as the order in which cursor objects are

opened within the routine. No additional parameters are required in the CREATE

PROCEDURE statement or in the procedure implementation in order to return a

result set.

Prerequisites

 A general understanding of how to create C and C++ routines will help

you to follow the steps in the procedure below for returning results from a

C or C++ procedure.

 Creating C and C++ routines

 Cursors declared in C or C++ embedded SQL procedures are not scrollable

cursors.

Procedure

 To return a result set from a C or C++ procedure:

1. In the CREATE PROCEDURE statement for the C or C++ procedure

you must specify along with any other appropriate clauses, the

DYNAMIC RESULT SETS clause with a value equal to the maximum

number of result sets that are to be returned by the procedure.

2. No parameter marker is required in the procedure declaration for a

result set that is to be returned to the caller.

3. In the C or C++ procedure implementation of your routine, declare a

cursor using the DECLARE CURSOR statement within the declaration

section in which host variables are declared. The cursor declaration

associates an SQL with the cursor.

4. Within the C or C++ routine code, open the cursor by executing the

OPEN statement. This executes the query specified in the DECLARE

CURSOR statement and associates the result of the query with the

cursor.

5. Optional: Fetch rows in the result set associated with the cursor using

the FETCH statement.

6.

Do not execute the CLOSE statement used for closing the cursor at any

point prior to the procedure’s return to the caller. The open cursor will

be returned as a result set to the caller when the procedure returns.

When more than one cursor is left open upon the return of a

procedure, the result sets associated with the cursors are returned to

the caller in the order in which they were opened. No more than the

maximum number of result sets specified by the DYNAMIC RESULT

242 Developing User-defined Routines (SQL and External)

SETS clause value can be returned with the procedure. If the number of

cursors left open in the procedure implementation is greater than the

value specified by the DYNAMIC RESULT SETS clause, the excess

result sets are simply not returned. No error or warning will be raised

by DB2 in this situation.

 Once the creation of the C or C++ procedure is completed successfully, you can

invoke the procedure with the CALL statement from the DB2 Command Line

Processor or a DB2 Command Window to verify that the result sets are

successfully being returned to the caller.

For information on calling procedures and other types of routines:

v Routine invocation

Creating C and C++ routines

Procedures and functions that reference a C or C++ library are created in a similar

way to external routines with other implementations. This task comprises a few

steps including the formulation of the CREATE statement for the routine, the

coding of the routine implementation, pre-compilation, compilation and linking of

code, and the deployment of source code.

You would choose to implement a C or C++ routine if:

v You want to encapsulate complex logic into a routine that accesses the database

or that performs an action outside of the database.

v You require the encapsulated logic to be invoked from any of: multiple

applications, the CLP, another routine (procedure, function (UDF), or method),

or a trigger.

v You are most comfortable coding this logic using an embedded SQL

programming language such as C or C++.

Prerequisites

v Knowledge of C and C++ routine implementation. To learn about C and C++

routines in general see:

– “C and C++ routines” on page 203
v The DB2 Client which includes application development support must be

installed on the client computer.

v The database server must be running an operating system that supports a DB2

supported C or C++ compiler for routine development.

v The required compilers must be installed on the database server.

v Authority to execute the CREATE statement for the external routine. For the

privileges required to execute the CREATE PROCEDURE statement or the

CREATE FUNCTION statement, see the documentation for the statement.

Procedure

1. Code the routine logic in the chosen programming language: C or C++.

v For general information about C and C++ routines and C and C++ routine

features, see the topics referenced in the Prerequisites section.

v Include any C or C++ header files required for additional C functionality as

well as the DB2 C or C++ header files required for SQL data type and SQL

execution support. Include the following header files: sqludf.h, sql.h, sqlda.h,

sqlca.h, and memory.h.

Chapter 6. Developing external routines 243

v A routine parameter signature must be implemented using one of the

supported parameter styles. It is strongly recommended that parameter style

SQL be used for all C and C++ routines. Scratchpads and dbinfo structures

are passed into C and C++ routines as parameters. For more on parameter

signatures and parameter implementations see:

– “Parameters in C and C++ routines” on page 206

– “Parameter style SQL C and C++ procedures” on page 208

– “Parameter style SQL C and C++ procedures” on page 208
v Declare host variables and parameter markers in the same manner as is done

for embedded SQL C and C++ applications. Be careful to correctly use data

types that map to DB2 SQL data types. For more on data type mapping

between DB2 and C or C++ data types refer to:

– Supported SQL data types for C and C++ applications and routines
v Include routine logic. Routine logic can consist of any code supported in the

C or C++ programming language. It can also include the execution of

embedded SQL statements which is implemented in the same way as for

embedded SQL applications. For more on executing SQL statements in

embedded SQL see:

– ″Executing SQL statements in embedded SQL applications″

v If the routine is a procedure and you want to return a result set to the caller

of the routine, you do not require any parameters for the result set. For more

on returning result sets from routines:

– Returning result sets from C and C++ procedures
v Set a routine return value at the end of the routine.

2. Build your code to produce a library file. For information on how to build

embedded SQL C and C++ routines, see:

v “Building C and C++ routine code” on page 245
3. Copy the library into the DB2 function directory on the database server. It is

recommended that you store libraries associated with DB2 routines in the

function directory. To find out more about the function directory, see the

EXTERNAL clause of either of the following statements: CREATE PROCEDURE

or CREATE FUNCTION.

You can copy the library to another directory on the server, but to successfully

invoke the routine you must note the fully qualified path name of your library

as you will require it for the next step.

4. Execute either dynamically or statically the appropriate SQL language CREATE

statement for the routine type: CREATE PROCEDURE or CREATE FUNCTION.

v Specify the LANGUAGE clause with value: C

v Specify the PARAMETER STYLE clause with the name of the supported

parameter style that was implemented in the routine code. It is strongly

recommended that PARAMETER STYLE SQL be used.

v Specify the EXTERNAL clause with the name of the library to be associated

with the routine using one of the following values:

– the fully qualified path name of the routine library

– the relative path name of the routine library relative to the function

directory.
By default DB2 will look for the library in the function directory unless a

fully qualified or relative path name for it is specified in the EXTERNAL

clause.

244 Developing User-defined Routines (SQL and External)

v Specify DYNAMIC RESULT SETS with a numeric value if your routine is a

procedure and it will return one or more result sets to the caller.

v Specify any other non-default clause values in the CREATE statement to be

used to characterize the routine.

To invoke your C or C++ routine, see Routine invocation.

Building C and C++ routine code

Once embedded SQL C or C++ routine implementation code has been written, it

must be built into a library and deployed before the routine can be invoked.

Although the steps required to build embedded SQL C and C++ routines are

similar to those required to build embedded SQL C and C++ applications, there are

some differences. The same steps can be followed if there are no embedded SQL

statements within the routines - the procedure will be faster and simpler.

There are two ways to build C and C++ routines:

v Using DB2 sample build scripts (UNIX) or build batch files (Windows)

v Entering DB2 and C or C++ compiler commands from a DB2 Command

Window

The DB2 sample build scripts and batch files for routines are designed for building

DB2 sample routines (procedures and user-defined functions) as well as user

created routines for a particular operating system using the default supported

compilers.

There is a separate set of DB2 sample build scripts and batch files for C and C++.

In general it is easiest to build embedded SQL routines using the build scripts or

batch files, which can easily be modified if required, however it is often helpful to

know how to build routines from DB2 Command Window as well.

For more information on each of the methods for building routines, refer to the

related links.

Building C and C++ routine code using sample bldrtn scripts

Building C and C++ routine source code is a sub-task of creating C and C++

routines. This task can be done quickly and easily using DB2 sample build scripts

(UNIX) and batch files (Windows). The sample build scripts can be used for source

code with or without embedded SQL statements. The build scripts take care of the

pre-compilation, compilation, and linking of C and C++ source code that would

otherwise have to be done in individual steps from the command line. They also

take care of binding any packages to the specified database.

The sample build scripts for building C and C++ routines are named bldrtn. They

are located in DB2 directories along with sample programs that can be built with

them as follows:

v For C: sqllib/samples/c/

v For C++: sqllib/samples/cpp/

The bldrtn script can be used to build a source code file containing both

procedures and function implementations. The script does the following:

v Establishes a connection with a user-specified database

v Precompiles the user-specified source code file

Chapter 6. Developing external routines 245

v Binds the package to the current database

v Compiles and links the source code to generate a shared library

v Copies the shared library to the DB2 function directory on the database server

The bldrtn scripts accept two arguments:

v The name of a source code file without any file extension

v The name of a database to which a connection will be established

The database parameter is optional. If no database name is supplied, the program

uses the default sample database. Since routines must be built on the same

instance where the database resides, no arguments are required for a user ID and

password.

Prerequisites

v Source code file containing one or more routine implementations.

v The name of the database within the current DB2 instance in which the routines

are to be created.

To build a source code file that contains one or more routine code

implementations, follow the steps below.

1. Open a DB2 Command Window.

2. Copy your source code file into the same directory as the bldrtn script file.

3. If the routines will be created in the sample database, enter the build script

name followed by the name of the source code file without the .sqc or .sqC file

extension:

 bldrtn <file-name>

If the routines will be created in another database, enter the build script name,

the source code file name without any file extension, and the database name:

 bldrtn <file-name> <database-name>

The script precompiles, compiles and links the source code and produces a

shared library. The script then copies the shared library to the function

directory on the database server.

4. If this is not the first time that the source code file containing the routine

implementations was built, stop and restart the database to ensure the new

version of the shared library is used by DB2. You can do this by entering

db2stop followed by db2start on the command line.

Once you have successfully built the routine shared library and deployed it to the

function directory on the database server, you should complete the steps associated

with the task of creating C and C++ routines. After routine creation is completed

you will be able to invoke your routines.

Building routines in C or C++ using the sample build script

(UNIX)

DB2 provides build scripts for compiling and linking C and C++ programs. These

are located in the sqllib/samples/c directory for routines in C and

sqllib/samples/cpp directory for routines in C++, along with sample programs

that can be built with these files.

246 Developing User-defined Routines (SQL and External)

The script, bldrtn, contains the commands to build routines (stored procedures

and user-defined functions). The script compiles the routines into a shared library

that can be loaded by the database manager and called by a client application.

The first parameter, $1, specifies the name of your source file. The second

parameter, $2, specifies the name of the database to which you want to connect.

The database parameter is optional. If no database name is supplied, the program

uses the default sample database. And since the stored procedure must be built on

the same instance where the database resides, there are no parameters for user ID

and password.

The following examples show you how to build routine shared libraries with:

v stored procedures

v non-embedded SQL user-defined functions (UDFs)

v embedded SQL user-defined functions (UDFs)

Stored procedure shared library

To build the sample program spserver from the source file spserver.sqc for C and

spserver.sqC for C++:

1. If connecting to the sample database, enter the build script name and program

name:

 bldrtn spserver

If connecting to another database, also enter the database name:

 bldrtn spserver database

The script copies the shared library to the server in the path sqllib/function.

2. Next, catalog the routines by running the spcat script on the server:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling spdrop.db2, then catalogs them by calling

spcreate.db2, and finally disconnects from the database. You can also call the

spdrop.db2 and spcreate.db2 scripts individually.

3. Then, if this is not the first time the stored procedure is built, stop and restart

the database to ensure the new version of the shared library is recognized. You

can do this by entering db2stop followed by db2start on the command line.

Once you build the shared library, spserver, you can build the client application,

spclient, that accesses the shared library.

You can build spclient by using the script, bldapp.

To call the stored procedures in the shared library, run the sample client

application by entering: spclient database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its alias, or another database name.

userid Is a valid user ID.

Chapter 6. Developing external routines 247

password

Is a valid password for the user ID.

The client application accesses the shared library, spserver, and executes a number

of stored procedure functions on the server database. The output is returned to the

client application.

Embedded SQL UDF shared library

To build the embedded SQL user-defined function program, udfemsrv, from the

source file udfemsrv.sqc for C and udfemsrv.sqC for C++, if connecting to the

sample database, enter the build script name and program name:

 bldrtn udfemsrv

If connecting to another database, also enter the database name:

 bldrtn udfemsrv database

The script copies the UDF to the sqllib/function directory.

Once you build udfemsrv, you can build the client application, udfemcli, that calls

it. You can build the udfemcli client program from the source file udfemcli.sqc, in

sqllib/samples/c, using the script, bldapp.

To call the UDFs in the shared library, run the client application by entering:

udfemcli database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its alias, or another database name.

userid Is a valid user ID.

password

Is a valid password for the user ID.

The client application accesses the shared library, udfemsrv, and executes the

user-defined functions on the server database. The output is returned to the client

application.

Building C/C++ routines on Windows

DB2 provides build scripts for compiling and linking DB2 API and embedded SQL

programs in C and C++. These are located in the sqllib\samples\c and

sqllib\samples\cpp directories, along with sample programs that can be built with

these files.

The batch file bldrtn.bat contains the commands to build embedded SQL routines

(stored procedures and user-defined functions). The batch file builds a DLL on the

server. It takes two parameters, represented inside the batch file by the variables %1

and %2.

The first parameter, %1, specifies the name of your source file. The batch file uses

the source file name for the DLL name. The second parameter, %2, specifies the

248 Developing User-defined Routines (SQL and External)

name of the database to which you want to connect. Since the DLL must be built

on the same instance where the database resides, there are no parameters for user

ID and password.

Only the first parameter, the source file name, is required. Database name is

optional. If no database name is supplied, the program uses the default sample

database.

The following examples show you how to build routine DLLs with:

v stored procedures

v non-embedded SQL user-defined functions (UDFs)

v embedded SQL user-defined functions (UDFs)

Stored procedure DLL

To build the spserver DLL from either the C source file, spserver.sqc, or the C++

source file, spserver.sqx:

1. Enter the batch file name and program name:

 bldrtn spserver

If connecting to another database, also enter the database name:

 bldrtn spserver database

The batch file uses the module definition file spserver.def, contained in the

same directory as the sample programs, to build the DLL. The batch file copies

the DLL, spserver.dll, to the server in the path sqllib\function.

2. Next, catalog the routines by running the spcat script on the server:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling spdrop.db2, then catalogs them by calling

spcreate.db2, and finally disconnects from the database. You can also call the

spdrop.db2 and spcreate.db2 scripts individually.

3. Then, stop and restart the database to allow the new DLL to be recognized. If

necessary, set the file mode for the DLL so the DB2 instance can access it.

Once you build the DLL, spserver, you can build the client application spclient

that calls it.

You can build spclient by using the batch file, bldapp.bat.

To call the DLL, run the sample client application by entering:

spclient database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its alias, or another database name.

userid Is a valid user ID.

password

Is a valid password for the user ID.

The client application accesses the DLL, spserver, and executes a number of

routines on the server database. The output is returned to the client application.

Chapter 6. Developing external routines 249

Non-embedded SQL UDF DLL

To build the user-defined function udfsrv from the source file udfsrv.c, enter:

 bldrtn udfsrv

The batch file uses the module definition file, udfsrv.def, contained in the same

directory as the sample program files, to build the user-defined function DLL. The

batch file copies the user-defined function DLL, udfsrv.dll, to the server in the

path sqllib\function.

Once you build udfsrv, you can build the client application, udfcli, that calls it.

DB2 CLI, as well as embedded SQL C and C++ versions of this program are

provided.

You can build the DB2 CLI udfcli program from the udfcli.c source file in

sqllib\samples\cli using the batch file bldapp.

You can build the embedded SQL C udfcli program from the udfcli.sqc source

file in sqllib\samples\c using the batch file bldapp.

You can build the embedded SQL C++ udfcli program from the udfcli.sqx source

file in sqllib\samples\cpp using the batch file bldapp.

To run the UDF, enter:

 udfcli

The calling application calls the ScalarUDF function from the udfsrv DLL.

Embedded SQL UDF DLL

To build the embedded SQL user-defined function library udfemsrv from the C

source file udfemsrv.sqc in sqllib\samples\c, or from the C++ source file

udfemsrv.sqx in sqllib\samples\cpp, enter:

 bldrtn udfemsrv

If connecting to another database, also enter the database name:

 bldrtn udfemsrv database

The batch file uses the module definition file, udfemsrv.def, contained in the same

directory as the sample programs, to build the user-defined function DLL. The

batch file copies the user-defined function DLL, udfemsrv.dll, to the server in the

path sqllib\function.

Once you build udfemsrv, you can build the client application, udfemcli, that calls

it. You can build udfemcli from the C source file udfemcli.sqc in

sqllib\samples\c, or from the C++ source file udfemcli.sqx in sqllib\samples\cpp

using the batch file bldapp.

To run the UDF, enter:

 udfemcli

The calling application calls the UDFs in the udfemsrv DLL.

250 Developing User-defined Routines (SQL and External)

Building C and C++ routine code from DB2 Command Window

Building C and C++ routine source code is a sub-task of creating C and C++

routines. This task can be done manually from the command line. The same

procedure can be followed regardless of whether there are embedded SQL

statements within the C or C++ routine code or not. The task steps include

pre-compilation, compilation, and linking of C and C++ source code containing

routine implementations, binding the generated package (if there were embedded

SQL statements), and deploying the routine library. You might choose to do this

task from a DB2 Command Window as part of testing the use of a precompiler,

compiler, or bind option, if you want to defer binding the routine packages until a

later time, or if you are developing customized build scripts.

As an alternative, you can use DB2 sample build scripts to simplify this task. Refer

to: Building embedded SQL C and C++ routine code using sample build scripts.

Prerequisites

v Source code file containing one or more embedded SQL C or C++ routine

implementations.

v The name of the database within the current DB2 instance in which the routines

are to be created.

v The operating specific compile and link options required for building C and C++

routines. Refer to the topics referenced in the related links at the bottom of this

topic.

To build a source code file that contains one or more routine code

implementations, follow the steps below. An example follows that demonstrates

each of the steps:

1. Open a DB2 Command Window.

2. Navigate to the directory that contains your source code file.

3. Establish a connection with the database in which the routines will be created.

4. Precompile the source code file.

5. Bind the package that was generated to the database.

6. Compile the source code file.

7. Link the source code file to generate a shared library. This requires the use of

some DB2 specific compile and link options for the compiler being used.

8. Copy the shared library to the DB2 function directory on the database server.

9. If this is not the first time that the source code file containing the routine

implementations was built, stop and restart the database to ensure the new

version of the shared library is used by DB2. You can do this by issuing the

db2stop command followed by the db2start command.

Once you have successfully built and deployed the routine library, you should

complete the steps associated with the task of creating C and C++ routines.

Creating C and C++ routines includes a step for executing the CREATE statement

for each routine that was implemented in the source code file. This step must also

be completed before you will be able to invoke the routines.

Example

The following example demonstrates the re-building of an embedded SQL C++

source code file named myfile.sqC containing routine implementations. The

Chapter 6. Developing external routines 251

routines are being built on an AIX operating system using the default supported

IBM VisualAge® C++ compiler to generate a 32-bit routine library.

1. Open a DB2 Command Window.

2. Navigate to the directory that contains your source code file.

3. Establish a connection with the database in which the routines will be created.

 db2 connect to <database-name>

4. Precompile the source code file using the PREPARE command.

 db2 prep myfile.sqC bindfile

The precompiler will generate output indicating if the precompilation

proceeded successfully or if there were any errors. This step generates bindfile

named myfile.bnd that can be used to generate a package in the next step.

5. Bind the package that was generated to the database using the BIND

command.

 db2 bind myfile.bnd

The bind utility will generate output indicating if the bind proceeded

successfully or if there were any errors.

6. Compile the source code file using the recommended compile and link options:

 xlC_r -qstaticinline -I$HOME/sqllib/include -c $myfile.C

The compiler will generate output if there are any errors. This step generates an

export file named myfile.exp.

7. Link the source code file to generate a shared library.

 xlC_r -qmkshrobj -o $1 $1.o -L$ HOME/sqllib/include/lib32 -lDB2

The linker will generate output if there are any errors. This step generates a

shared library file name myfile.

8. Copy the shared library to the DB2 function directory on the database server.

 rm -f ~HOME/sqllib/function/myfile

 cp myfile $HOME/sqllib/function/myfile

This step ensures that the routine library is in the default directory where DB2

looks for routine libraries. Refer to the topic on creating C and C++ routines for

more on deploying routine libraries.

9. Stop and restart the database as this is a re-building of a previously built

routine source code file.

 db2stop

 db2start

Building C and C++ routines is generally most easily done using the operating

specific sample build scripts which also can be used as a reference for how to

build routines from the command line.

Compile and link options for C and C++ routines

AIX C routine compile and link options

The following are the compile and link options recommended by DB2 for building

C routines (stored procedures and user-defined functions) with the AIX IBM C

compiler, as demonstrated in the bldrtn build script.

252 Developing User-defined Routines (SQL and External)

Compile and link options for bldrtn

 Compile options:

xlc_r Use the multi-threaded version of the IBM C compiler, needed as the routines can

run in the same process as other routines (THREADSAFE) or in the engine itself

(NOT FENCED).

$EXTRA_CFLAG

Contains ″-q64″ for an instance where 64-bit support is enabled; otherwise, it

contains no value.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

xlc_r Use the multi-threaded version of the compiler as a front end for the linker.

$EXTRA_CFLAG

Contains ″-q64″ for an instance where 64-bit support is enabled; otherwise, it

contains no value.

-qmkshrobj

Create the shared library.

-o $1 Specify the output file name.

$1.o Specify the object file.

-ldb2 Link with the DB2 library.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For example:

$HOME/sqllib/$LIB. If you do not specify the -L option, the compiler assumes the

following path: /usr/lib:/lib.

-bE:$1.exp

Specify an export file. The export file contains a list of the routines.

Refer to your compiler documentation for additional compiler options.

AIX C++ routine compile and link options

The following are the compile and link options recommended by DB2 for building

C++ routines (stored procedures and user-defined functions) with the AIX IBM XL

C/C++ compiler, as demonstrated in the bldrtn build script.

Compile and link options for bldrtn

 Compile options:

xlC_r The multi-threaded version of the IBM XL C/C++ compiler, needed as the

routines can run in the same process as other routines (THREADSAFE) or in the

engine itself (NOT FENCED).

$EXTRA_CFLAG

Contains ″-q64″ for an instance where 64-bit support is enabled; otherwise, it

contains no value.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $HOME/sqllib/include.

-c Perform compile only; no link. Compile and link are separate steps.

Chapter 6. Developing external routines 253

Link options:

xlC_r Use the multi-threaded version of the compiler as a front-end for the linker.

$EXTRA_CFLAG

Contains ″-q64″ for an instance where 64-bit support is enabled; otherwise, it

contains no value.

-qmkshrobj

Create a shared library.

-o $1 Specify the output as a shared library file.

$1.o Specify the program object file.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For example:

$HOME/sqllib/$LIB. If you do not specify the -L option, the compiler assumes the

following path: /usr/lib:/lib.

-ldb2 Link with the DB2 library.

-bE:$1.exp

Specify an export file. The export file contains a list of the routines.

Refer to your compiler documentation for additional compiler options.

HP-UX C routine compile and link options

The following are the compile and link options recommended by DB2 for building

C routines (stored procedures and user-defined functions) with the HP-UX C

compiler, as demonstrated in the bldrtn build script.

254 Developing User-defined Routines (SQL and External)

Compile and link options for bldrtn

 Compile options:

cc The C compiler.

$EXTRA_CFLAG

If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the

value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX

platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.

For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W

Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N

Must be used to generate 32-bit code for HP-UX on PA-RISC.

+u1 Allow unaligned data access. Use only if your application uses unaligned data.

+z Generate position-independent code.

-Ae Enables HP ANSI extended mode.

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: -I$DB2PATH/include.

-D_POSIX_C_SOURCE=199506L

POSIX thread library option that ensures _REENTRANT is defined, needed as the

routines can run in the same process as other routines (THREADSAFE) or in the

engine itself (NOT FENCED).

-c Perform compile only; no link. Compile and link are separate steps.

Link options:

ld Use the linker to link.

-b Create a shared library rather than a normal executable.

-o $1 Specify the output as a shared library file.

$1.o Specify the program object file.

$EXTRA_LFLAG

Specify the runtime path. If set, for 32-bit it contains the value

″+b$HOME/sqllib/lib32″, and for 64-bit: ″+b$HOME/sqllib/lib64″. If not set, it

contains no value.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For 32-bit:

$HOME/sqllib/lib32; for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

-lpthread

Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

HP-UX C++ routine compile and link options

The following are the compile and link options recommended by DB2 for building

C++ routines (stored procedures and user-defined functions) with the HP-UX C++

compiler, as demonstrated in the bldrtn build script.

Chapter 6. Developing external routines 255

Compile and link options for bldrtn

 Compile options:

aCC The HP aC++ compiler.

$EXTRA_CFLAG

If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the

value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX

platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.

For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W

Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N

Must be used to generate 32-bit code for HP-UX on PA-RISC.

+u1 Allows unaligned data access.

+z Generate position-independent code.

-ext Allow various C++ extensions including ″long long″ support.

-mt Allows threads support for the HP aC++ compiler, needed as the routines can run

in the same process as other routines (THREADSAFE) or in the engine itself (NOT

FENCED).

-I$DB2PATH/include

Specify the location of the DB2 include files. For example: $DB2PATH/include

-c Perform compile only; no link. Compile and link are separate steps.

256 Developing User-defined Routines (SQL and External)

Link options:

aCC Use the HP aC++ compiler as a front end for the linker.

$EXTRA_CFLAG

If the HP-UX platform is IA64 and 64-bit support is enabled, this flag contains the

value +DD64; if 32-bit support is enabled, it contains the value +DD32. If the HP-UX

platform is PA-RISC and 64-bit support is enabled, it contains the value +DA2.0W.

For 32-bit support on a PA-RISC platform, this flag contains the value +DA2.0N.

+DD64 Must be used to generate 64-bit code for HP-UX on IA64.

+DD32 Must be used to generate 32-bit code for HP-UX on IA64.

+DA2.0W

Must be used to generate 64-bit code for HP-UX on PA-RISC.

+DA2.0N

Must be used to generate 32-bit code for HP-UX on PA-RISC.

-mt Allows threads support for the HP aC++ compiler, needed as the routines can run

in the same process as other routines (THREADSAFE) or in the engine itself (NOT

FENCED).

-b Create a shared library rather than a normal executable.

-o $1 Specify the executable.

$1.o Specify the program object file.

$EXTRA_LFLAG

Specify the runtime path. If set, for 32-bit it contains the value

-Wl,+b$HOME/sqllib/lib32, and for 64-bit: -Wl,+b$HOME/sqllib/lib64. If not set, it

contains no value.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For 32-bit:

″$HOME/sqllib/lib32″; for 64-bit: ″$HOME/sqllib/lib64″.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Linux C routine compile and link options

The following are the compile and link options recommended by DB2 for building

C routines (stored procedures and user-defined functions) with the Linux C

compiler, as demonstrated in the bldrtn build script.

Chapter 6. Developing external routines 257

Compile and link options for bldrtn

 Compile options:

$CC The gcc or xlc_r compiler

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-I$DB2PATH/include

Specify the location of the DB2 include files.

-c Perform compile only; no link. This script file has separate compile and link steps.

-D_REENTRANT

Defines _REENTRANT, needed as the routines can run in the same process as

other routines (THREADSAFE) or in the engine itself (NOT FENCED).

Link options:

$CC The gcc or xlc_r compiler; use the compiler as a front end for the linker.

$LINK_FLAGS

Contains the value ″$EXTRA_C_FLAGS $SHARED_LIB_FLAG″

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

$SHARED_LIB_FLAG

Contains -shared for gcc compiler or -qmkshrobj for xlc_r compiler.

-o $1 Specify the executable.

$1.o Include the program object file.

$EXTRA_LFLAG

Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains

the value ″-Wl,-rpath,$DB2PATH/lib32″. For 64-bit it contains the value

″-Wl,-rpath,$DB2PATH/lib64″.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

-lpthread

Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

Linux C++ routine compile and link options

These are the compile and link options recommended by DB2 for building C++

routines (stored procedures and user-defined functions) with the Linux C++

compiler, as demonstrated in the bldrtn build script.

258 Developing User-defined Routines (SQL and External)

Compile and link options for bldrtn

 Compile options:

g++ The GNU/Linux C++ compiler.

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-fpic Generate position independent code.

-I$DB2PATH/include

Specify the location of the DB2 include files.

-c Perform compile only; no link. This script file has separate compile and link steps.

-D_REENTRANT

Defines _REENTRANT, needed as the routines can run in the same process as

other routines (THREADSAFE) or in the engine itself (NOT FENCED).

Link options:

g++ Use the compiler as a front end for the linker.

$EXTRA_C_FLAGS

Contains one of the following:

v -m31 on Linux for zSeries only, to build a 32-bit library;

v -m32 on Linux for x86, x86_64 and POWER, to build a 32-bit library;

v -m64 on Linux for zSeries, POWER, x86_64, to build a 64-bit library; or

v No value on Linux for IA64, to build a 64-bit library.

-shared

Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

$EXTRA_LFLAG

Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains

the value ″-Wl,-rpath,$DB2PATH/lib32″. For 64-bit it contains the value

″-Wl,-rpath,$DB2PATH/lib64″.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

-ldb2 Link with the DB2 library.

-lpthread

Link with the POSIX thread library.

Refer to your compiler documentation for additional compiler options.

Solaris C routine compile and link options

These are the compile and link options recommended by DB2 for building C

routines (stored procedures and user-defined functions) with the Forte C compiler,

as demonstrated in the bldrtn build script.

Chapter 6. Developing external routines 259

Compile and link options for bldrtn

 Compile options:

cc The C compiler.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-mt Allow multi-threaded support, needed as the routines can run in the same process

as other routines (THREADSAFE) or in the engine itself (NOT FENCED).

-DUSE_UI_THREADS

Allows Sun’s ″UNIX International″ threads APIs.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include

Specify the location of the DB2 include files.

-c Perform compile only; no link. This script has separate compile and link steps.

Link options:

cc Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-mt This is required because the DB2 library is linked with -mt.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

$EXTRA_LFLAG

Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains

the value ″-R$DB2PATH/lib32″, and for 64-bit it contains the value

″-R$DB2PATH/lib64″.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Solaris C++ routine compile and link options

These are the compile and link options recommended by DB2 for building C++

routines (stored procedures and user-defined functions) with the Forte C++

compiler, as demonstrated in the bldrtn build script.

260 Developing User-defined Routines (SQL and External)

Compile and link options for bldrtn

 Compile options:

CC The C++ compiler.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-mt Allow multi-threaded support, needed as the routines can run in the same process

as other routines (THREADSAFE) or in the engine itself (NOT FENCED).

-DUSE_UI_THREADS

Allows Sun’s ″UNIX International″ threads APIs.

-Kpic Generate position-independent code for shared libraries.

-I$DB2PATH/include

Specify the location of the DB2 include files.

-c Perform compile only; no link. This script has separate compile and link steps.

Link options:

CC Use the compiler as a front end for the linker.

-xarch=$CFLAG_ARCH

This option ensures that the compiler will produce valid executables when linking

with libdb2.so. The value for $CFLAG_ARCH is set to either ″v8plusa″ for 32-bit,

or ″v9″ for 64-bit.

-mt This is required because the DB2 library is linked with -mt.

-G Generate a shared library.

-o $1 Specify the executable.

$1.o Include the program object file.

-L$DB2PATH/$LIB

Specify the location of the DB2 static and shared libraries at link-time. For

example, for 32-bit: $HOME/sqllib/lib32, and for 64-bit: $HOME/sqllib/lib64.

$EXTRA_LFLAG

Specify the location of the DB2 shared libraries at run-time. For 32-bit it contains

the value ″-R$DB2PATH/lib32″, and for 64-bit it contains the value

″-R$DB2PATH/lib64″.

-ldb2 Link with the DB2 library.

Refer to your compiler documentation for additional compiler options.

Windows C and C++ routine compile and link options

The following are the compile and link options recommended by DB2 for building

C and C++ routines (stored procedures and user-defined functions) on Windows

with the Microsoft Visual C++ compiler, as demonstrated in the bldrtn.bat batch

file.

Chapter 6. Developing external routines 261

Compile and link options for bldrtn

 Compile options:

%BLDCOMP%

Variable for the compiler. The default is cl, the Microsoft Visual C++ compiler. It

can be also set to icl, the Intel™ C++ Compiler for 32-bit and 64-bit applications,

or ecl, the Intel C++ Compiler for Itanium 64-bit applications.

-Zi Enable debugging information

-Od Disable optimization.

-c Perform compile only; no link. Compile and link are separate steps.

-W2 Output warning, error, and severe and unrecoverable error messages.

-DWIN32

Compiler option necessary for Windows operating systems.

-MD Link using MSVCRT.LIB

Link options:

link Use the linker to link.

-debug Include debugging information.

-out:%1.dll

Build a .DLL file.

%1.obj Include the object file.

db2api.lib

Link with the DB2 library.

-def:%1.def

Module definition file.

Refer to your compiler documentation for additional compiler options.

Building embedded SQL stored procedures in C or C++ with

configuration files

The configuration file, stp.icc, in sqllib/samples/c and sqllib/samples/cpp,

allows you to build DB2 embedded SQL stored procedures in C and C++ on AIX.

To use the configuration file to build the embedded SQL stored procedure shared

library spserver from the source file spserver.sqc, do the following:

1. Set the STP environment variable to the program name by entering:

v For bash or Korn shell:

 export STP=spserver

v For C shell:

 setenv STP spserver

2. If you have an stp.ics file in your working directory, produced by building a

different program with the stp.icc file, delete the stp.ics file with this

command:

 rm stp.ics

An existing stp.ics file produced for the same program you are going to build

again does not have to be deleted.

3. Compile the sample program by entering:

 vacbld stp.icc

262 Developing User-defined Routines (SQL and External)

Note: The vacbld command is provided by VisualAge C++.

The stored procedure shared library is copied to the server in the path

sqllib/function.

Next, catalog the stored procedures in the shared library by running the spcat

script on the server:

 spcat

This script connects to the sample database, uncatalogs the stored procedures if

they were previously cataloged by calling spdrop.db2, then catalogs them by

calling spcreate.db2, and finally disconnects from the database. You can also call

the spdrop.db2 and spcreate.db2 scripts individually.

Then, stop and restart the database to allow the new shared library to be

recognized. If necessary, set the file mode for the shared library so the DB2

instance can access it.

Once you build the stored procedure shared library, spserver, you can build the

client application, spclient, that calls the stored procedures in it. You can build

spclient using the configuration file, emb.icc.

To call the stored procedures, run the sample client application by entering:

spclient database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password

Is a valid password.

The client application accesses the shared library, spserver, and executes a number

of stored procedure functions on the server database. The output is returned to the

client application.

Building user-defined functions in C or C++ with configuration

files (AIX)

The configuration file, udf.icc, in sqllib/samples/c and sqllib/samples/cpp,

allows you to build user-defined functions in C and C++ on AIX.

To use the configuration file to build the user-defined function program udfsrv

from the source file udfsrv.c, do the following:

1. Set the UDF environment variable to the program name by entering:

v For bash or Korn shell:

 export UDF=udfsrv

v For C shell:

 setenv UDF udfsrv

Chapter 6. Developing external routines 263

2. If you have a udf.ics file in your working directory, produced by building a

different program with the udf.icc file, delete the udf.ics file with this

command:

 rm udf.ics

An existing udf.ics file produced for the same program you are going to build

again does not have to be deleted.

3. Compile the sample program by entering:

 vacbld udf.icc

Note: The vacbld command is provided by VisualAge C++.

The UDF library is copied to the server in the path sqllib/function.

If necessary, set the file mode for the user-defined function so the DB2 instance can

run it.

Once you build udfsrv, you can build the client application, udfcli, that calls it.

DB2 CLI and embedded SQL versions of this program are provided.

You can build the DB2 CLI udfcli program from the source file udfcli.c, in

sqllib/samples/cli, by using the configuration file cli.icc.

You can build the embedded SQL udfcli program from the source file udfcli.sqc,

in sqllib/samples/c, by using the configuration file emb.icc.

To call the UDF, run the sample calling application by entering the executable

name:

 udfcli

The calling application calls the ScalarUDF function from the udfsrv library.

Rebuilding DB2 routine shared libraries

DB2 will cache the shared libraries used for stored procedures and user-defined

functions once loaded. If you are developing a routine, you might want to test

loading the same shared library a number of times, and this caching can prevent

you from picking up the latest version of a shared library. The way to avoid

caching problems depends on the type of routine:

1. Fenced, not threadsafe routines. The database manager configuration keyword

KEEPFENCED has a default value of YES. This keeps the fenced mode process

alive. This default setting can interfere with reloading the library. It is best to

change the value of this keyword to NO while developing fenced, not

threadsafe routines, and then change it back to YES when you are ready to load

the final version of your shared library. For more information, see “Updating

the database manager configuration file” on page 265.

2. Trusted or threadsafe routines. Except for SQL routines (including SQL

procedures), the only way to ensure that an updated version of a DB2 routine

library is picked up when that library is used for trusted, or threadsafe

routines, is to recycle the DB2 instance by entering db2stop followed by

db2start on the command line. This is not needed for an SQL routine because

when it is recreated, the compiler uses a new unique library name to prevent

possible conflicts.

For routines other than SQL routines, you can also avoid caching problems by

creating the new version of the routine with a differently named library (for

264 Developing User-defined Routines (SQL and External)

example foo.a becomes foo.1.a), and then using either the ALTER PROCEDURE or

ALTER FUNCTION SQL statement with the new library.

Updating the database manager configuration file

This file contains important settings for application development.

The keyword KEEPFENCED has the default value YES. For fenced, not threadsafe

routines (stored procedures and UDFs), this keeps the routine process alive. It is

best to change the value of this keyword to NO while developing these routines,

and then change it back to YES when you are ready to load the final version of

your shared library. For more information, see “Rebuilding DB2 routine shared

libraries” on page 264.

Note: KEEPFENCED was known as KEEPDARI in previous versions of DB2.

For Java application development, you need to update the JDK_PATH keyword with

the path where the Java Development Kit is installed.

Note: JDK_PATH was known as JDK11_PATH in previous versions of DB2.

To change these settings enter:

 db2 update dbm cfg using <keyword> <value>

For example, to set the keyword KEEPFENCED to NO:

 db2 update dbm cfg using KEEPFENCED NO

To set the JDK_PATH keyword to the directory /home/db2inst/jdk13:

 db2 update dbm cfg using JDK_PATH /home/db2inst/jdk13

To view the current settings in the database manager configuration file, enter:

 db2 get dbm cfg

Note: On Windows, you need to enter these commands in a DB2 command

window.

Chapter 6. Developing external routines 265

266 Developing User-defined Routines (SQL and External)

Chapter 7. COBOL procedures

COBOL procedures are to be written in a similar manner as COBOL subprograms.

Handling parameters in a COBOL procedure

Each parameter to be accepted or passed by a procedure must be declared

in the LINKAGE SECTION. For example, this code fragment comes from a

procedure that accepts two IN parameters (one CHAR(15) and one INT),

and passes an OUT parameter (an INT):

 LINKAGE SECTION.

 01 IN-SPERSON PIC X(15).

 01 IN-SQTY PIC S9(9) USAGE COMP-5.

 01 OUT-SALESSUM PIC S9(9) USAGE COMP-5.

Ensure that the COBOL data types you declare map correctly to SQL data

types. For a detailed list of data type mappings between SQL and COBOL,

see ″Supported SQL Data Types in COBOL″.

 Each parameter must then be listed in the PROCEDURE DIVISION. The

following example shows a PROCEDURE DIVISION that corresponds to

the parameter definitions from the previous LINKAGE SECTION example.

 PROCEDURE DIVISION USING IN-SPERSON

 IN-SQTY

 OUT-SALESSUM.

Exiting a COBOL procedure

To properly exit the procedure use the following commands:

MOVE SQLZ-HOLD-PROC TO RETURN-CODE.

GOBACK.

With these commands, the procedure returns correctly to the client

application. This is especially important when the procedure is called by a

local COBOL client application.

 When building a COBOL procedure, it is strongly recommended that you use the

build script written for your operating system and compiler. Build scripts for Micro

Focus COBOL are found in the sqllib/samples/cobol_mf directory. Build scripts for

IBM COBOL are found in the sqllib/samples/cobol directory.

The following is an example of a COBOL procedure that accepts two input

parameters, and then returns an output parameter and a result set:

 IDENTIFICATION DIVISION.

 PROGRAM-ID. "NEWSALE".

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 INSERT-STMT.

 05 FILLER PIC X(24) VALUE "INSERT INTO SALES (SALES".

 05 FILLER PIC X(24) VALUE "_PERSON,SALES) VALUES (’".

 05 SPERSON PIC X(16).

 05 FILLER PIC X(2) VALUE "’,".

 05 SQTY PIC S9(9).

 05 FILLER PIC X(1) VALUE ")".

 EXEC SQL BEGIN DECLARE SECTION END-EXEC.

 01 INS-SMT-INF.

 05 INS-STMT.

 49 INS-LEN PIC S9(4) USAGE COMP.

© Copyright IBM Corp. 1993, 2007 267

49 INS-TEXT PIC X(100).

 01 SALESSUM PIC S9(9) USAGE COMP-5.

 EXEC SQL END DECLARE SECTION END-EXEC.

 EXEC SQL INCLUDE SQLCA END-EXEC.

 LINKAGE SECTION.

 01 IN-SPERSON PIC X(15).

 01 IN-SQTY PIC S9(9) USAGE COMP-5.

 01 OUT-SALESSUM PIC S9(9) USAGE COMP-5.

 PROCEDURE DIVISION USING IN-SPERSON

 IN-SQTY

 OUT-SALESSUM.

 MAINLINE.

 MOVE 0 TO SQLCODE.

 PERFORM INSERT-ROW.

 IF SQLCODE IS NOT EQUAL TO 0

 GOBACK

 END-IF.

 PERFORM SELECT-ROWS.

 PERFORM GET-SUM.

 GOBACK.

 INSERT-ROW.

 MOVE IN-SPERSON TO SPERSON.

 MOVE IN-SQTY TO SQTY.

 MOVE INSERT-STMT TO INS-TEXT.

 MOVE LENGTH OF INSERT-STMT TO INS-LEN.

 EXEC SQL EXECUTE IMMEDIATE :INS-STMT END-EXEC.

 GET-SUM.

 EXEC SQL

 SELECT SUM(SALES) INTO :SALESSUM FROM SALES

 END-EXEC.

 MOVE SALESSUM TO OUT-SALESSUM.

 SELECT-ROWS.

 EXEC SQL

 DECLARE CUR CURSOR WITH RETURN FOR SELECT * FROM SALES

 END-EXEC.

 IF SQLCODE = 0

 EXEC SQL OPEN CUR END-EXEC

 END-IF.

The corresponding CREATE PROCEDURE statement for this procedure is as

follows:

CREATE PROCEDURE NEWSALE (IN SALESPERSON CHAR(15),

 IN SALESQTY INT,

 OUT SALESSUM INT)

 RESULT SETS 1

 EXTERNAL NAME ’NEWSALE!NEWSALE’

 FENCED

 LANGUAGE COBOL

 PARAMETER STYLE SQL

 MODIFIES SQL DATA

The preceding statement assumes that the COBOL function exists in a library

called NEWSALE.

Note: When registering a COBOL procedure on Windows operating systems, take

the following precaution when identifying a stored procedure body in the CREATE

statement’s EXTERNAL NAME clause. If you use an absolute path id to identify

the procedure body, you must append the .dll extension. For example:

CREATE PROCEDURE NEWSALE (IN SALESPERSON CHAR(15),

 IN SALESQTY INT,

 OUT SALESSUM INT)

 RESULT SETS 1

268 Developing User-defined Routines (SQL and External)

EXTERNAL NAME ’NEWSALE!NEWSALE’

 FENCED

 LANGUAGE COBOL

 PARAMETER STYLE SQL

 MODIFIES SQL DATA

 EXTERNAL NAME ’d:\mylib\NEWSALE.dll’

Support for external procedure development in COBOL

To develop external procedures in COBOL you must use the supported COBOL

development software.

All of the development software supported for database application development

in COBOL can also be used for external procedure development in COBOL.

Supported SQL data types in COBOL embedded SQL applications

Certain predefined COBOL data types correspond to DB2 database column types.

Only these COBOL data types can be declared as host variables.

The following table shows the COBOL equivalent of each column type. When the

precompiler finds a host variable declaration, it determines the appropriate SQL

type value. The database manager uses this value to convert the data exchanged

between the application and itself.

Not every possible data description for host variables is recognized. COBOL data

items must be consistent with the ones described in the following table. If you use

other data items, an error can result.

 Table 39. SQL Data Types Mapped to COBOL Declarations

SQL Column Type1 COBOL Data Type

SQL Column Type

Description

 SMALLINT

(500 or 501)

01 name PIC S9(4) COMP-5. 16-bit signed integer

 INTEGER

(496 or 497)

01 name PIC S9(9) COMP-5. 32-bit signed integer

 BIGINT

(492 or 493)

01 name PIC S9(18) COMP-5. 64-bit signed integer

 DECIMAL(p,s)

(484 or 485)

01 name PIC S9(m)V9(n) COMP-3. Packed decimal

 REAL2

(480 or 481)

01 name USAGE IS COMP-1. Single-precision floating

point

 DOUBLE3

(480 or 481)

01 name USAGE IS COMP-2. Double-precision floating

point

 CHAR(n)

(452 or 453)

01 name PIC X(n). Fixed-length character

string

Chapter 7. COBOL procedures 269

Table 39. SQL Data Types Mapped to COBOL Declarations (continued)

SQL Column Type1 COBOL Data Type

SQL Column Type

Description

 VARCHAR(n)

(448 or 449)

 01 name.

 49 length PIC S9(4) COMP-5.

 49 name PIC X(n).

1<=n<=32 672

Variable-length character

string

 LONG VARCHAR

(456 or 457)

 01 name.

 49 length PIC S9(4) COMP-5.

 49 data PIC X(n).

32 673<=n<=32 700

Long variable-length

character string

 CLOB(n)

(408 or 409)

 01 MY-CLOB USAGE IS SQL TYPE IS CLOB(n).

1<=n<=2 147 483 647

Large object

variable-length character

string

 CLOB locator variable4

(964 or 965)

01 MY-CLOB-LOCATOR USAGE IS SQL TYPE IS

CLOB-LOCATOR.

Identifies CLOB entities

residing on the server

 CLOB file reference variable4

(920 or 921)

01 MY-CLOB-FILE USAGE IS SQL TYPE IS

CLOB-FILE.

Descriptor for file

containing CLOB data

 BLOB(n)

(404 or 405)

01 MY-BLOB USAGE IS SQL TYPE IS BLOB(n).

1<=n<=2 147 483 647

Large object

variable-length binary

string

 BLOB locator variable4

(960 or 961)

01 MY-BLOB-LOCATOR USAGE IS SQL TYPE IS

BLOB-LOCATOR.

Identifies BLOB entities

residing on the server

 BLOB file reference variable4

(916 or 917)

01 MY-BLOB-FILE USAGE IS SQL TYPE IS

BLOB-FILE.

Descriptor for file

containing BLOB data

 DATE

(384 or 385)

01 identifier PIC X(10). 10-byte character string

 TIME

(388 or 389)

01 identifier PIC X(8). 8-byte character string

 TIMESTAMP

(392 or 393)

01 identifier PIC X(26). 26-byte character string

 XML5

(988 or 989)

 01 name USAGE IS SQL TYPE IS XML

AS CLOB (size).

XML value

The following data types are only available in the DBCS environment.

270 Developing User-defined Routines (SQL and External)

Table 40. SQL Data Types Mapped to COBOL Declarations

SQL Column Type1 COBOL Data Type

SQL Column Type

Description

 GRAPHIC(n)

(468 or 469)

01 name PIC G(n) DISPLAY-1. Fixed-length double-byte

character string

 VARGRAPHIC(n)

(464 or 465)

 01 name.

 49 length PIC S9(4) COMP-5.

 49 name PIC G(n) DISPLAY-1.

1<=n<=16 336

Variable length

double-byte character

string with 2-byte string

length indicator

 LONG VARGRAPHIC

(472 or 473)

 01 name.

 49 length PIC S9(4) COMP-5.

 49 name PIC G(n) DISPLAY-1.

16 337<=n<=16 350

Variable length

double-byte character

string with 2-byte string

length indicator

 DBCLOB(n)

(412 or 413)

01 MY-DBCLOB USAGE IS SQL TYPE IS DBCLOB(n).

1<=n<=1 073 741 823

Large object

variable-length double-byte

character string with

4-byte string length

indicator

 DBCLOB locator variable4

(968 or 969)

01 MY-DBCLOB-LOCATOR USAGE IS SQL TYPE IS

DBCLOB-LOCATOR.

Identifies DBCLOB entities

residing on the server

 DBCLOB file reference

variable4

(924 or 925)

01 MY-DBCLOB-FILE USAGE IS SQL TYPE IS

DBCLOB-FILE.

Descriptor for file

containing DBCLOB data

Note:

1. The first number under SQL Column Type indicates that an indicator variable is not provided, and the second

number indicates that an indicator variable is provided. An indicator variable is needed to indicate NULL values,

or to hold the length of a truncated string. These are the values that would appear in the SQLTYPE field of the

SQLDA for these data types.

2. FLOAT(n) where 0 < n < 25 is a synonym for REAL. The difference between REAL and DOUBLE in the SQLDA is

the length value (4 or 8).

3. The following SQL types are synonyms for DOUBLE:

v FLOAT

v FLOAT(n) where 24 < n < 54 is a synonym for DOUBLE.

v DOUBLE PRECISION

4. This is not a column type but a host variable type.

5. The SQL_TYP_XML/SQL_TYP_NXML value is returned by DESCRIBE requests only. It cannot be used directly

by the application to bind application resources to XML values.

The following are additional rules for supported COBOL data types:

v PIC S9 and COMP-3/COMP-5 are required where shown.

v You can use level number 77 instead of 01 for all column types except

VARCHAR, LONG VARCHAR, VARGRAPHIC, LONG VARGRAPHIC and all

LOB variable types.

v Use the following rules when declaring host variables for DECIMAL(p,s) column

types. See the following sample:

 01 identifier PIC S9(m)V9(n) COMP-3

Chapter 7. COBOL procedures 271

– Use V to denote the decimal point.

– Values for n and m must be greater than or equal to 1.

– The value for n + m cannot exceed 31.

– The value for s equals the value for n.

– The value for p equals the value for n + m.

– The repetition factors (n) and (m) are optional. The following examples are all

valid:

 01 identifier PIC S9(3)V COMP-3

 01 identifier PIC SV9(3) COMP-3

 01 identifier PIC S9V COMP-3

 01 identifier PIC SV9 COMP-3

– PACKED-DECIMAL can be used instead of COMP-3.
v Arrays are not supported by the COBOL precompiler.

Building COBOL routines

Compile and link options for COBOL routines

AIX IBM COBOL routine compile and link options

The following are the compile and link options recommended by DB2 for building

COBOL routines (stored procedures) with the IBM COBOL for AIX compiler on

AIX, as demonstrated in the bldrtn build script.

Compile and link options for bldrtn

 Compile Options:

cob2 The IBM COBOL for AIX compiler.

-qpgmname\(mixed\)

Instructs the compiler to permit CALLs to library entry points with mixed-case

names.

-qlib Instructs the compiler to process COPY statements.

-c Perform compile only; no link. Compile and link are separate steps.

-I$DB2PATH/include/cobol_a

Specify the location of the DB2 include files. For example: $HOME/sqllib/include/
cobol_a.

272 Developing User-defined Routines (SQL and External)

Link Options:

cob2 Use the compiler to link edit.

-o $1 Specify the output as a shared library file.

$1.o Specify the stored procedure object file.

checkerr.o

Include the utility object file for error-checking.

-bnoentry

Do not specify the default entry point to the shared library.

-bE:$1.exp

Specify an export file. The export file contains a list of the stored procedures.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For example:

$HOME/sqllib/lib32.

-ldb2 Link with the database manager library.

Refer to your compiler documentation for additional compiler options.

AIX Micro Focus COBOL routine compile and link options

The following are the compile and link options recommended by DB2 for building

COBOL routines (stored procedures) with the Micro Focus COBOL compiler on

AIX, as demonstrated in the bldrtn build script. Note that the DB2 MicroFocus

COBOL include files are found by setting up the COBCPY environment variable,

so no -I flag is needed in the compile step. Refer to the bldapp script for an

example.

Compile and link options for bldrtn

 Compile options:

cob The MicroFocus COBOL compiler.

-c Perform compile only; no link. Compile and link are separate steps.

$EXTRA_COBOL_FLAG="-C MFSYNC"

Enables 64-bit support.

-x Compile to an object module when used with the -c option.

Link options:

cob Use the compiler as a front-end for the linker.

-x Produce a shared library.

-o $1 Specify the executable program.

$1.o Specify the program object file.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For example:

$HOME/sqllib/lib32.

-ldb2 Link to the DB2 library.

-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Chapter 7. COBOL procedures 273

HP-UX Micro Focus COBOL routine compile and link options

The following are the compile and link options recommended by DB2 for building

COBOL routines (stored procedures) with the Micro Focus COBOL compiler on

HP-UX, as demonstrated in the bldrtn build script.

Compile and link options for bldrtn

 Compile options:

cob The COBOL compiler.

$EXTRA_COBOL_FLAG

Contains ″-C MFSYNC″ if the HP-UX platform is IA64 and 64-bit support is

enabled.

Link options:

-y Specify that the desired output is a shared library.

-o $1 Specify the executable.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries.

-ldb2 Link to the DB2 shared library.

-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Solaris Micro Focus COBOL routine compile and link options

The following are the compile and link options recommended by DB2 for building

COBOL routines (stored procedures) with the Micro Focus COBOL compiler on

Solaris, as demonstrated in the bldrtn build script.

Compile and link options for bldrtn

 Compile options:

cob The COBOL compiler.

-cx Compile to object module.

$EXTRA_COBOL_FLAG

For 64-bit support, contains the value ″-C MFSYNC″; otherwise it contains no

value.

274 Developing User-defined Routines (SQL and External)

Link options:

cob Use the compiler as a front-end for the linker.

-y Create a self-contained standalone shared library.

-o $1 Specify the executable program.

$1.o Specify the program object file.

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries. For example:

$HOME/sqllib/lib64.

-ldb2 Link to the DB2 library.

-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Linux Micro Focus COBOL routine compile and link options

The following are the compile and link options recommended by DB2 for building

COBOL routines (stored procedures) with the Micro Focus COBOL compiler on

Linux, as demonstrated in the bldrtn build script.

Compile and link options for bldrtn

Compile and Link options:

cob The COBOL compiler

$EXTRA_COBOL_FLAG

For 64-bit support, contains the value ″-C MFSYNC″; otherwise it contains no

value.

-y Specify to compile to self-contained callable shared object

-o $1 Specify the executable.

$1.cbl Specify the source file

-L$DB2PATH/$LIB

Specify the location of the DB2 runtime shared libraries.

-ldb2 Link to the DB2 library.

-ldb2gmf

Link to the DB2 exception-handler library for Micro Focus COBOL.

Refer to your compiler documentation for additional compiler options.

Windows IBM COBOL routine compile and link options

The following are the compile and link options recommended by DB2 for building

COBOL routines (stored procedures and user-defined functions) on Windows with

the IBM VisualAge COBOL compiler, as demonstrated in the bldrtn.bat batch file.

Chapter 7. COBOL procedures 275

Compile and link options for bldrtn

 Compile options:

cob2 The IBM VisualAge COBOL compiler.

-qpgmname(mixed)

Instructs the compiler to permit CALLs to library entry points with mixed-case

names.

-c Perform compile only; no link. This batch file has separate compile and link steps.

-qlib Instructs the compiler to process COPY statements.

-Ipath Specify the location of the DB2 include files. For example: -I"%DB2PATH%\include\
cobol_a".

%EXTRA_COMPFLAG%

If "set IBMCOB_PRECOMP=true" is uncommented, the IBM COBOL precompiler is

used to precompile the embedded SQL. It is invoked with one of the following

formulations, depending on the input parameters:

-q"SQL(’database sample CALL_RESOLUTION DEFERRED’)"

precompile using the default sample database, and defer call resolution.

-q"SQL(’database %2 CALL_RESOLUTION DEFERRED’)"

precompile using a database specified by the user, and defer call

resolution.

Link options:

ilink Use the IBM VisualAge COBOL linker.

/free Free format.

/nol No logo.

/dll Create the DLL with the source program name.

db2api.lib

Link with the DB2 library.

%1.exp Include the export file.

%1.obj Include the program object file.

iwzrwin3.obj

Include the object file provided by IBM VisualAge COBOL.

Refer to your compiler documentation for additional compiler options.

Windows Micro Focus COBOL routine compile and link options

The following are the compile and link options recommended by DB2 for building

COBOL routines (stored procedures and user-defined functions) on Windows with

the Micro Focus COBOL compiler, as demonstrated in the bldrtn.bat batch file.

Compile and link options for bldrtn

 Compile options:

cobol The Micro Focus COBOL compiler.

/case Prevent external symbols being converted to uppercase.

276 Developing User-defined Routines (SQL and External)

Link options:

cbllink

Use the Micro Focus COBOL linker to link edit.

/d Create a .dll file.

db2api.lib

Link with the DB2 API library.

Refer to your compiler documentation for additional compiler options.

Building IBM COBOL routines on AIX

DB2 provides build scripts for compiling and linking COBOL embedded SQL and

DB2 administrative API programs. These are located in the sqllib/samples/cobol

directory, along with sample programs that can be built with these files.

The script, bldrtn, in sqllib/samples/cobol, contains the commands to build

routines (stored procedures). The script compiles the routines into a shared library

that can be called by a client application.

The first parameter, $1, specifies the name of your source file. The second

parameter, $2, specifies the name of the database to which you want to connect.

Since the shared library must be built on the same instance where the database

resides, there are no parameters for user ID and password.

Only the first parameter, source file name, is required. The script uses the source

file name, $1, for the shared library name. Database name is optional. If no

database name is supplied, the program uses the default sample database.

To build the sample program outsrv from the source file outsrv.sqb, connecting to

the sample database, enter:

 bldrtn outsrv

If connecting to another database, also include the database name:

 bldrtn outsrv database

The script file copies the shared library to the server in the path sqllib/function.

Once you build the routine shared library, outsrv, you can build the client

application, outcli, that calls the routine within the library. You can build outcli

using the script file bldapp.

To call the routine, run the sample client application by entering:

 outcli database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password

Is a valid password for the user ID.

Chapter 7. COBOL procedures 277

The client application accesses the shared library, outsrv, and executes the routine

of the same name on the server database, and then returns the output to the client

application.

Building UNIX Micro Focus COBOL routines

DB2 provides build scripts for compiling and linking Micro Focus COBOL

embedded SQL and DB2 API programs. These are located in the

sqllib/samples/cobol_mf directory, along with sample programs that can be built

with these files.

The script, bldrtn, contains the commands to build routines (stored procedures).

The script compiles the routine source file into a shared library that can be called

by a client application.

The first parameter, $1, specifies the name of your source file. The script uses the

source file name for the shared library name. The second parameter, $2, specifies

the name of the database to which you want to connect. Since the shared library

must be built in the same instance where the database resides, there are no

parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is optional.

If no database name is supplied, the program uses the default sample database.

Before building Micro Focus COBOL routines, you must run the following

commands:

 db2stop

 db2set DB2LIBPATH=$LD_LIBRARY_PATH

 db2set DB2ENVLIST="COBDIR LD_LIBRARY_PATH"

 db2set

 db2start

Ensure that db2stop stops the database. The last db2set command is issued to

check your settings: make sure DB2LIBPATH and DB2ENVLIST are set correctly.

To build the sample program outsrv from the source file outsrv.sqb, if connecting

to the sample database, enter:

 bldrtn outsrv

If connecting to another database, also enter the database name:

 bldrtn outsrv database

The script file copies the shared library to the server in the path sqllib/function.

Once you build the stored procedure outsrv, you can build the client application

outcli that calls it. You can build outcli using the script file, bldapp.

To call the stored procedure, run the sample client application by entering:

 outcli database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its alias, or another name.

userid Is a valid user ID.

278 Developing User-defined Routines (SQL and External)

password

Is a valid password for the user ID.

The client application accesses the shared library, outsrv, and executes the stored

procedure function of the same name on the server database. The output is then

returned to the client application.

Building IBM COBOL routines on Windows

DB2 provides build scripts for compiling and linking DB2 API and embedded SQL

programs in IBM COBOL. These are located in the sqllib\samples\cobol directory,

along with sample programs that can be built with these files.

DB2 supports two precompilers for building IBM COBOL applications on

Windows, the DB2 precompiler and the IBM COBOL precompiler. The default is

the DB2 precompiler. The IBM COBOL precompiler can be selected by

uncommenting the appropriate line in the batch file you are using. Precompilation

with IBM COBOL is done by the compiler itself, using specific precompile options.

The batch file, bldrtn.bat, contains the commands to build embedded SQL

routines (stored procedures). The batch file compiles the routines into a DLL on the

server. It takes two parameters, represented inside the batch file by the variables %1

and %2.

The first parameter, %1, specifies the name of your source file. The batch file uses

the source file name, %1, for the DLL name. The second parameter, %2, specifies the

name of the database to which you want to connect. Since the stored procedure

must be built on the same instance where the database resides, there are no

parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is optional.

If no database name is supplied, the program uses the default sample database.

If using the default DB2 precompiler, bldrtn.bat passes the parameters to the

precompile and bind file, embprep.bat.

If using the IBM COBOL precompiler, bldrtn.bat copies the .sqb source file to a

.cbl source file. The compiler performs the precompile on the .cbl source file with

specific precompile options.

To build the sample program outsrv from the source file outsrv.sqb, connecting to

the sample database, enter:

 bldrtn outsrv

If connecting to another database, also include the database name:

 bldrtn outsrv database

The batch file copies the DLL to the server in the path sqllib\function.

Once you build the DLL outsrv, you can build the client application outcli that

calls the routine within the DLL (which has the same name as the DLL). You can

build outcli using the batch file bldapp.bat.

To call the outsrv routine, run the sample client application by entering:

 outcli database userid password

Chapter 7. COBOL procedures 279

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its remote alias, or some other name.

userid Is a valid user ID.

password

Is a valid password for the user ID.

The client application accesses the DLL, outsrv, and executes the routine of the

same name on the server database, and then returns the output to the client

application.

Building Micro Focus COBOL routines on Windows

DB2 provides build scripts for compiling and linking DB2 API and embedded SQL

programs in Micro Focus COBOL. These are located in the sqllib\samples\
cobol_mf directory, along with sample programs that can be built with these files.

The batch file bldrtn.bat contains the commands to build embedded SQL routines

(stored procedures). The batch file compiles the routines into a DLL on the server.

The batch file takes two parameters, represented inside the batch file by the

variables %1 and %2.

The first parameter, %1, specifies the name of your source file. The batch file uses

the source file name, %1, for the DLL name. The second parameter, %2, specifies the

name of the database to which you want to connect. Since the stored procedure

must be built on the same instance where the database resides, there are no

parameters for user ID and password.

Only the first parameter, source file name, is required. Database name is optional.

If no database name is supplied, the program uses the default sample database.

To build the sample program outsrv from the source file outsrv.sqb, if connecting

to the sample database, enter:

 bldrtn outsrv

If connecting to another database, also enter the database name:

 bldrtn outsrv database

The script file copies the DLL to the server in the path sqllib/function.

Once you build the DLL, outsrv, you can build the client application, outcli, that

calls the routine within the DLL (which has the same name as the DLL). You can

build outcli using the batch file, bldapp.bat.

To call the outsrv routine, run the sample client application by entering:

 outcli database userid password

where

database

Is the name of the database to which you want to connect. The name could

be sample, or its alias, or another name.

userid Is a valid user ID.

280 Developing User-defined Routines (SQL and External)

password

Is a valid password for the user ID.

The client application accesses the DLL, outsrv, which executes the routine of the

same name on the server database. The output is then returned to the client

application.

Chapter 7. COBOL procedures 281

282 Developing User-defined Routines (SQL and External)

Chapter 8. Java routines

Java routines are external routines that have a Java programming language

implementation. Java routines are created in a database by executing a CREATE

PROCEDURE or CREATE FUNCTION statement. This statement must indicate

that the routine is implemented in Java with the LANGUAGE JAVA clause. It must

also specify with the EXTERNAL clause, the Java class that implements it.

External procedures, functions, and methods can be created in Java.

Java routines can execute SQL statements.

The following terms are important in the context of Java routines:

JDBC An application programming interface for accessing data in databases that

supports dynamic SQL execution.

SQLJ An application programming interface for accessing data in databases that

supports dynamic and static SQL execution.

CREATE statement

The SQL language CREATE statement used to create the routine in the

database.

Routine-body source code

The source code file containing the Java routine implementation. The Java

routine can access the database using either JDBC or SQLJ application

programming interfaces.

JDBC Application programming interface that provides support for dynamic SQL

statement execution in Java code.

SQLJ Application programming interface that provides support for static SQL

statement execution in Java code.

SDK for Java

Software development kit for Java provided and required for Java source

code compilation.

Routine class

A Java source code file containing the compiled form of Java routine

source code. Java class files can exist on their own or they can be one of a

collection of Java class files within a JAR file.

Before developing a Java routine, it is important to both understand the basics of

routines and the unique features of Java routines. An understanding of Java

database application development using either JDBC or SQLJ is also important. To

learn more about these subjects, see the topics:

v “External routine creation” on page 112

v Java database application development

Supported Java routine development software

To develop and deploy external routines in Java you must use supported Java

development software.

© IBM Corporation 1993, 2007 283

The minimum supported software development kit (SDK) version for Java routine

development is:

v IBM SDK for Java 1.4.2

The maximum supported SDK version for Java routine development is:

v IBM SDK for Java 5

It is recommended that you use the SDK for Java that is installed with the DB2

Database for Linux, UNIX, and Windows product, however an alternate SDK for

Java can be specified, however the SDK must be of the same bit-width as the DB2

instance.

All other development software supported for DB2 database application

development in Java can be used for external routine development in Java.

JDBC and SQLJ application programming interface support for Java

routines

External routines developed in Java can make use of the following application

programming interfaces (APIs):

v JDBC

v SQLJ

Starting in DB2 Version 9.5, the default driver is the IBM Data Server Driver for

JDBC and SQLJ. This supports both the JDBC and SQLJ APIs and can be used to

develop external Java routines.

The IBM Data Server Type 2 Driver can also be used for Java routine development

but only provides support for JDBC Type 2. It is strongly recommended that you

use the IBM Data Server Driver for JDBC and SQLJ as the IBM Data Server Type 2

Driver is deprecated.

The procedures for implementing Java routines are the same regardless which API

or driver is used.

Specification of an SDK for Java routine development (UNIX)

To build and run Java routine code in UNIX environments, the DB2 database

manager configuration parameter JDK_PATH must be set to the path of an SDK for

Java that is installed on the DB2 database server. If the installation process for the

DB2 Database for Linux, UNIX, and Windows product installs an SDK for Java, by

default the JDK_PATH parameter is set to the path of that SDK for Java:

v $INSTDIR/sqllib/java/jdk32 for DB2 database servers installed in Linux on x86

environments

v $INSTDIR/sqllib/java/jdk64 for DB2 database servers that provide an SDK

installed in all other environments

The JDK_PATH parameter value can be changed to specify another SDK for Java

installed on the computer, however the SDK must be of the same bit-width as the

DB2 instance.

Prerequisites

v User must have access to the DB2 database server.

284 Developing User-defined Routines (SQL and External)

v User must have the authority to read and update the database manager

configuration file.

v User must have authority to install an SDK for Java in the file system where the

DB2 instance is installed.

Procedure

1. Check the JDK_PATH parameter value by issuing the following command from

a DB2 Command Window:

 db2 get dbm cfg

You might want to redirect the output to a file for easier viewing. The

JDK_PATH parameter value appears near the beginning of the output.

2. If you want to use a different SDK for Java, install it on the DB2 database

server and note the installation path. You will require the install path value for

the next step.

3. Update the JDK_PATH parameter value by issuing the following command

from a DB2 Command Window where <path> is the path where the other SDK

for Java is installed:

 db2 update dbm cfg using JDK_PATH <path>

4. Stop and restart your DB2 instance by issuing the following DB2 commands

from a DB2 Command Window:

db2stop;

db2start;

5. Verify that the JDK_PATH parameter value is correctly set by issuing the

following command from a DB2 Command Window:

 db2 get dbm cfg

After you complete these steps the specified SDK for Java will be used for building

and running Java routines. The CLASSPATH, PATH, and LIBPATH environment

variables within the environment are set automatically.

Specification of a driver for Java routines

Java routine development and invocation requires that a JDBC or SQLJ driver be

specified. Java routines can use one of the following two drivers:

v IBM Data Server Driver for JDBC and SQLJ

v DB2 Type 2 Driver

By default, DB2 uses the IBM Data Server Driver for JDBC and SQLJ. This driver is

preferred because it is more robust, the DB2 Type 2 Driver is deprecated, and

because it is a prerequisite if Java routines contain:

v Parameters of data type XML

v Variables of data type XML

v References to XML data

v References to XML functions

v Any other native-XML feature

If problems occur in the migration of existing Java routines, the

DB2_USE_DB2JCCT2_JROUTINE DB2 environment variable can be set to the value, NO,

to use the legacy IBM DB2 Type 2 Driver. This can be done by issuing the

following command from a DB2 command window:

Chapter 8. Java routines 285

db2set DB2_USE_DB2JCCT2_JROUTINE=NO

After issuing this command, you must stop and restart the DB2 instance in order

for the change to take effect.

Tools for developing Java (JDBC and SQLJ) routines

Tools make Java routine development go quickly and easily. The following DB2

tool provides graphical user-interface support for developing, debugging, and

deploying Java routines:

v data server developer tool

The following command line interfaces can also be used for developing,

debugging, and deploying Java routines:

v DB2 Command Line Processor

v DB2 Command Window

Other IBM software products provide graphical tools for developing Java routines

including:

v IBM Rational Application Developer

v Distributed Unified Debugger

Designing Java routines

Designing Java routines is a task that should precede creating Java routines.

Designing Java routines is related to both designing external routines implemented

in other programming languages and designing Java database applications.

Knowledge and experience with embedded SQL application development as well

as general knowledge of external routines. The following topics can provide you

with some of the required prerequisite information.

For more information on the features and uses of external routines, see:

v External routines

For more information about how to program a basic Java application using either

the JDBC or SQLJ application programming interfaces, see:

v Programming a JDBC application

v Programming a SQLJ application

With the prerequisite knowledge, designing Java routines consists mainly of

learning about the unique features and characteristics of Java routines:

v SQL data type representation

v Parameters in Java routines

v “Parameter style JAVA procedures” on page 290

v Parameter style JAVA functions

v Returning result sets from Java (JDBC) procedures

v Returning result sets from Java (SQLJ) procedures

v Restrictions on Java routines

v Java table function execution model

After having learned about the Java characteristics, you might want to:

286 Developing User-defined Routines (SQL and External)

v Create Java routines

Supported SQL data types in Java routines

Java programming language data types must be used in Java source code to store

SQL data type values according to the JDBC and SQLJ application programming

interface specification. The DB2 Driver for JDBC and SQLJ converts the data

exchanged between Java source code and a DB2 database according to specific data

type mappings.

The data mappings are valid for:

v Java database applications

v Java routines defined as and implemented using PARAMETER STYLE JAVA

The Java data types that map to SQL data types are as follows:

 Table 41. SQL Data Types Mapped to Java Declarations

SQL Column Type Java Data Type SQL Column Type Description

 SMALLINT

(500 or 501)

short, boolean 16-bit, signed integer

 INTEGER

(496 or 497)

int 32-bit, signed integer

 BIGINT

1

(492 or 493)

long 64-bit, signed integer

 REAL

(480 or 481)

float Single precision floating point

 DOUBLE

(480 or 481)

double Double precision floating point

 DECIMAL(p,s)

(484 or 485)

java.math.BigDecimal Packed decimal

 CHAR(n)

(452 or 453)

java.lang.String Fixed-length character string of length n

where n is from 1 to 254

 CHAR(n)

FOR BIT DATA

byte[] Fixed-length character string of length n

where n is from 1 to 254

 VARCHAR(n)

(448 or 449)

java.lang.String Variable-length character string

 VARCHAR(n)

FOR BIT DATA

byte[] Variable-length character string

 LONG VARCHAR

(456 or 457)

java.lang.String Long variable-length character string

Chapter 8. Java routines 287

Table 41. SQL Data Types Mapped to Java Declarations (continued)

SQL Column Type Java Data Type SQL Column Type Description

 LONG VARCHAR

FOR BIT DATA

byte[] Long variable-length character string

 BLOB(n)

(404 or 405)

java.sql.Blob Large object variable-length binary string

 CLOB(n)

(408 or 409)

java.sql.Clob Large object variable-length character

string

 DBCLOB(n)

(412 or 413)

java.sql.Clob Large object variable-length double-byte

character string

 DATE

(384 or 385)

java.sql.Date 10-byte character string

 TIME

(388 or 389)

java.sql.Time 8-byte character string

 TIMESTAMP

(392 or 393)

java.sql.Timestamp 26-byte character string

 GRAPHIC(n)

(468 or 469)

java.lang.String Fixed-length double-byte character string

 VARGRAPHIC(n)

(464 or 465)

java.lang.String Non-null-terminated varying double-byte

character string with 2-byte string length

indicator

 LONGVARGRAPHIC

(472 or 473)

java.lang.String Non-null-terminated varying double-byte

character string with 2-byte string length

indicator

 XML(n)

(408 or 409)

java.sql.Clob The XML data type is represented in the

same way as a CLOB data type; that is as

a large object variable-length character

string

 ARRAY

java.sql.Array An array of SQL data.

Note:

1. For Java applications connected from a DB2 Universal Database Version 8.1

client to a DB2 Universal Database Version 7.1 (or 7.2) server, note the

following: when the getObject() method is used to retrieve a BIGINT value, a

java.math.BigDecimal object is returned.

2. Parameters of an SQL array data type are mapped to class

com.ibm.db2.ARRAY.

3. LONG VARCHAR, LONG VARGRAPHIC, XML, REFERENCE, UDT and

ARRAY are not supported for the ARRAY data type.

288 Developing User-defined Routines (SQL and External)

Connection contexts in SQLJ routines

With the introduction of multithreaded routines in DB2 Universal Database,

Version 8, it is important that SQLJ routines avoid the use of the default connection

context. That is, each SQL statement must explicitly indicate the ConnectionContext

object, and that context must be explicitly instantiated in the Java method. For

instance, in previous releases of DB2, a SQLJ routine could be written as follows:

 class myClass

 {

 public static void myRoutine(short myInput)

 {

 DefaultContext ctx = DefaultContext.getDefaultContext();

 #sql { some SQL statement };

 }

 }

This use of the default context causes all threads in a multithreaded environment

to use the same connection context, which, in turn, will result in unexpected

failures.

The SQLJ routine above must be changed as follows:

 #context MyContext;

 class myClass

 {

 public static void myRoutine(short myInput)

 {

 MyContext ctx = new MyContext("jdbc:default:connection", false);

 #sql [ctx] { some SQL statement };

 ctx.close();

 }

 }

This way, each invocation of the routine will create its own unique

ConnectionContext (and underlying JDBC connection), which avoids unexpected

interference by concurrent threads.

Parameters in Java routines

Parameter declaration in Java routines must conform to the requirements of one of

the supported parameter styles. The following two parameter styles are supported

for Java routines:

v PARAMETER STYLE JAVA

v PARAMETER STYLE DB2GENERAL

It is strongly recommended that you specify the PARAMETER STYLE JAVA clause

in the routine CREATE statement. With PARAMETER STYLE JAVA, a routine will

use a parameter passing convention that conforms to the Java language and SQLJ

Routines specification.

There are some Java routine features that cannot be implemented or used with

PARAMETER STYLE JAVA. These are as follows:

v table functions

v scratchpads in functions

v access to the DBINFO structure in functions

v the ability to make a FINAL CALL (and a separate first call) to a function or

method

Chapter 8. Java routines 289

If you need to implement the above features you can implement your routine in C,

or write it in Java, using parameter style DB2GENERAL.

Aside from these specific cases, you should always create and implement your

Java routines using PARAMETER STYLE JAVA.

Parameter style JAVA procedures

The recommended parameter style for Java procedure implementations is

PARAMETER STYLE JAVA.

The signature of PARAMETER STYLE JAVA stored procedures follows this format:

public static void method-name (SQL-arguments, ResultSet[] result-set-array)

 throws SQLException

method-name

Name of the method. During routine registration, this value is specified

with the class name in the EXTERNAL NAME clause of the CREATE

PROCEDURE statement.

SQL-arguments

Corresponds to the list of input parameters in the CREATE PROCEDURE

statement. OUT or INOUT mode parameters are passed as single-element

arrays. For each result set that is specified in the DYNAMIC RESULT SETS

clause of the CREATE PROCEDURE statement, a single-element array of

type ResultSet is appended to the parameter list.

result-set-array

Name of the array of ResultSet objects. For every result set declared in the

DYNAMIC RESULT SETS parameter of the CREATE PROCEDURE

statement, a parameter of type ResultSet[] must be declared in the Java

method signature.

The following is an example of a Java stored procedure that accepts an input

parameter, and then returns an output parameter and a result set:

public static void javastp(int inparm,

 int[] outparm,

 ResultSet[] rs

)

 throws SQLException

{

 Connection con = DriverManager.getConnection("jdbc:default:connection");

 PreparedStatement stmt = null;

 String sql = SELECT value FROM table01 WHERE index = ?";

 //Prepare the query with the value of index

 stmt = con.prepareStatement(sql);

 stmt.setInt(1, inparm);

 //Execute query and set output parm

 rs[0] = stmt.executeQuery();

 outparm[0] = inparm + 1;

 //Close open resources

 if (stmt != null) stmt.close();

 if (con != null) con.close();

 return;

}

The corresponding CREATE PROCEDURE statement for this stored procedure is as

follows:

290 Developing User-defined Routines (SQL and External)

CREATE PROCEDURE javaproc(IN in1 INT, OUT out1 INT)

 LANGUAGE java

 PARAMETER STYLE java

 DYNAMIC RESULT SETS 1

 FENCED THREADSAFE

 EXTERNAL NAME ’myjar:stpclass.javastp’

The preceding statement assumes that the method is in a class called stpclass,

located in a JAR file that has been cataloged to the database with the Jar ID myjar

Note:

1. PARAMETER STYLE JAVA routines use exceptions to pass error data back to

the invoker. For complete information, including the exception call stack, refer

to administration notification log. Other than this detail, there are no other

special considerations for invoking PARAMETER STYLE JAVA routines.

2. JNI calls are not supported in Java routines. However, it is possible to invoke C

functionality from Java routines by nesting an invocation of a C routine. This

involves moving the desired C functionality into a routine, registering it, and

invoking it from within the Java routine.

Parameter style JAVA Java functions and methods

The recommended parameter style for Java functions and methods is PARAMETER

STYLE JAVA.

The signature of PARAMETER STYLE JAVA functions and methods follows this

format:

public static return-type method-name (SQL-arguments) throws SQLException

return-type

The data type of the value to be returned by the scalar routine. Inside the

routine, the return value is passed back to the invoker through a return

statement.

method-name

Name of the method. During routine registration, this value is specified

with the class name in the EXTERNAL NAME clause of the routine’s

CREATE statement.

SQL-arguments

Corresponds to the list of input parameters in the routine’s CREATE

statement.

The following is an example of a Java function that returns the product of its two

input arguments:

public static double product(double in1, double in2) throws SQLException

{

 return in1 * in2;

}

The corresponding CREATE FUNCTION statement for this scalar function is as

follows:

CREATE FUNCTION product(in1 DOUBLE, in2 DOUBLE)

 RETURNS DOUBLE

 LANGUAGE java

 PARAMETER STYLE java

 NO SQL

 FENCED THREADSAFE

Chapter 8. Java routines 291

DETERMINISTIC

 RETURNS NULL ON NULL INPUT

 NO EXTERNAL ACTION

 EXTERNAL NAME ’myjar:udfclass.product’

The preceding statement assumes that the method is in a class called udfclass that

is located in a JAR file that has been installed to the database server with the Jar

ID myjar. JAR files can be installed to a database server using the INSTALL_JAR

system-defined procedure.

DB2GENERAL routines

PARAMETER STYLE DB2GENERAL routines are written in Java. Creating

DB2GENERAL routines is very similar to creating routines in other supported

programming languages. Once you have created and registered them, you can call

them from programs in any language. Typically, you can call JDBC APIs from your

stored procedures, but you cannot call them from UDFs.

When developing routines in Java, it is strongly recommended that you register

them using the PARAMETER STYLE JAVA clause in the CREATE statement.

PARAMETER STYLE DB2GENERAL is still available to enable the implementation

of the following features in Java routines:

v table functions

v scratchpads

v access to the DBINFO structure

v the ability to make a FINAL CALL (and a separate first call) to the function or

method

If you have PARAMETER STYLE DB2GENERAL routines that do not use any of

the above features, it is recommended that you migrate them to PARAMETER

STYLE JAVA for portability.

DB2GENERAL UDFs

You can create and use UDFs in Java just as you would in other languages, with

only a few minor differences when compared to C UDFs. After you code the UDF,

you register it with the database. You can then refer to it in your applications.

In general, if you declare a UDF taking arguments of SQL types t1, t2, and t3,

returning type t4, it will be called as a Java method with the expected Java

signature:

 public void name (T1 a, T2 b, T3 c, T4 d) {.....}

Where:

v name is the Java method name

v T1 through T4 are the Java types that correspond to SQL types t1 through t4.

v a, b, and c are variable names for the input arguments.

v d is an variable name that represents the output argument.

For example, given a UDF called sample!test3 that returns INTEGER and takes

arguments of type CHAR(5), BLOB(10K), and DATE, DB2 expects the Java

implementation of the UDF to have the following signature:

292 Developing User-defined Routines (SQL and External)

import COM.ibm.db2.app.*;

 public class sample extends UDF {

 public void test3(String arg1, Blob arg2, String arg3,

 int result) {... }

 }

Java routines that implement table functions require more arguments. Beside the

variables representing the input, an additional variable appears for each column in

the resulting row. For example, a table function can be declared as:

 public void test4(String arg1, int result1,

 Blob result2, String result3);

SQL NULL values are represented by Java variables that are not initialized. These

variables have a value of zero if they are primitive types, and Java null if they are

object types, in accordance with Java rules. To tell an SQL NULL apart from an

ordinary zero, you can call the function isNull for any input argument:

 {

 if (isNull(1)) { /* argument #1 was a SQL NULL */ }

 else { /* not NULL */ }

 }

In the above example, the argument numbers start at one. The isNull() function,

like the other functions that follow, are inherited from the COM.ibm.db2.app.UDF

class.

To return a result from a scalar or table UDF, use the set() method in the UDF, as

follows:

 {

 set(2, value);

 }

Where ’2’ is the index of an output argument, and value is a literal or variable of a

compatible type. The argument number is the index in the argument list of the

selected output. In the first example in this section, the int result variable has an

index of 4; in the second, result1 through result3 have indices of 2 through 4.

Like C modules used in UDFs and stored procedures, you cannot use the Java

standard I/O streams (System.in, System.out, and System.err) in Java routines.

Remember that all the Java class files (or the JARs that contain the classes) that

you use to implement a routine must reside in the sqllib/function directory, or in

a directory specified in the database manager’s CLASSPATH.

Typically, DB2 calls a UDF many times, once for each row of an input or result set

in a query. If SCRATCHPAD is specified in the CREATE FUNCTION statement of

the UDF, DB2 recognizes that some ″continuity″ is needed between successive

invocations of the UDF, and therefore the implementing Java class is not

instantiated for each call, but generally speaking once per UDF reference per

statement. Generally it is instantiated before the first call and used thereafter, but

can for table functions be instantiated more often. If, however, NO SCRATCHPAD

is specified for a UDF, either a scalar or table function, then a clean instance is

instantiated for each call to the UDF.

A scratchpad can be useful for saving information across calls to a UDF. While

Java and OLE UDFs can either use instance variables or set the scratchpad to

Chapter 8. Java routines 293

achieve continuity between calls, C and C++ UDFs must use the scratchpad. Java

UDFs access the scratchpad with the getScratchPad() and setScratchPad() methods

available in COM.ibm.db2.app.UDF.

For Java table functions that use a scratchpad, control when you get a new

scratchpad instance by using the FINAL CALL or NO FINAL CALL option on the

CREATE FUNCTION statement.

The ability to achieve continuity between calls to a UDF by means of a scratchpad

is controlled by the SCRATCHPAD and NO SCRATCHPAD option of CREATE

FUNCTION, regardless of whether the DB2 scratchpad or instance variables are

used.

For scalar functions, you use the same instance for the entire statement.

Note that every reference to a Java UDF in a query is treated independently, even

if the same UDF is referenced multiple times. This is the same as what happens for

OLE, C and C++ UDFs as well. At the end of a query, if you specify the FINAL

CALL option for a scalar function then the object’s close() method is called. For

table functions the close() method will always be invoked as indicated in the

subsection which follows this one. If you do not define a close() method for your

UDF class, then a stub function takes over and the event is ignored.

If you specify the ALLOW PARALLEL clause for a Java UDF in the CREATE

FUNCTION statement, DB2 may elect to evaluate the UDF in parallel. If this

occurs, several distinct Java objects may be created on different partitions. Each

object receives a subset of the rows.

As with other UDFs, Java UDFs can be FENCED or NOT FENCED. NOT FENCED

UDFs run inside the address space of the database engine; FENCED UDFs run in a

separate process. Although Java UDFs cannot inadvertently corrupt the address

space of their embedding process, they can terminate or slow down the process.

Therefore, when you debug UDFs written in Java, you should run them as

FENCED UDFs.

Supported SQL data types in DB2GENERAL routines

When you call PARAMETER STYLE DB2GENERAL routines, DB2 converts SQL

types to and from Java types for you. Several of these classes are provided in the

Java package COM.ibm.db2.app.

 Table 42. DB2 SQL Types and Java Objects

SQL Column Type Java Data Type

SMALLINT short

INTEGER int

BIGINT long

REAL1 float

DOUBLE double

DECIMAL(p,s) java.math.BigDecimal

NUMERIC(p,s) java.math.BigDecimal

CHAR(n) java.lang.String

CHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob

294 Developing User-defined Routines (SQL and External)

Table 42. DB2 SQL Types and Java Objects (continued)

SQL Column Type Java Data Type

VARCHAR(n) java.lang.String

VARCHAR(n) FOR BIT DATA COM.ibm.db2.app.Blob

LONG VARCHAR java.lang.String

LONG VARCHAR FOR BIT DATA COM.ibm.db2.app.Blob

GRAPHIC(n) java.lang.String

VARGRAPHIC(n) String

LONG VARGRAPHIC2 String

BLOB(n)2 COM.ibm.db2.app.Blob

CLOB(n)2 COM.ibm.db2.app.Clob

DBCLOB(n)2 COM.ibm.db2.app.Clob

DATE3 String

TIME3 String

TIMESTAMP3 String

Note:

1. The difference between REAL and DOUBLE in the SQLDA is the length value (4 or 8).

2. The Blob and Clob classes are provided in the COM.ibm.db2.app package. Their

interfaces include routines to generate an InputStream and OutputStream for reading

from and writing to a Blob, and a Reader and Writer for a Clob.

3. SQL DATE, TIME, and TIMESTAMP values use the ISO string encoding in Java, as they

do for UDFs coded in C.

Instances of classes COM.ibm.db2.app.Blob and COM.ibm.db2.app.Clob represent the

LOB data types (BLOB, CLOB, and DBCLOB). These classes provide a limited

interface to read LOBs passed as inputs, and write LOBs returned as outputs.

Reading and writing of LOBs occur through standard Java I/O stream objects. For

the Blob class, the routines getInputStream() and getOutputStream() return an

InputStream or OutputStream object through which the BLOB content can be

processed bytes-at-a-time. For a Clob, the routines getReader() and getWriter() will

return a Reader or Writer object through which the CLOB or DBCLOB content can

be processed characters-at-a-time.

If such an object is returned as an output using the set() method, code page

conversions might be applied in order to represent the Java Unicode characters in

the database code page.

Java classes for DB2GENERAL routines

This interface provides the following routine to fetch a JDBC connection to the

embedding application context:

 public java.sql.Connection getConnection()

You can use this handle to run SQL statements. Other methods of the StoredProc

interface are listed in the file sqllib/samples/java/StoredProc.java.

There are five classes/interfaces that you can use with Java Stored Procedures or

UDFs:

v COM.ibm.db2.app.StoredProc

Chapter 8. Java routines 295

v COM.ibm.db2.app.UDF

v COM.ibm.db2.app.Lob

v COM.ibm.db2.app.Blob

v COM.ibm.db2.app.Clob

DB2GENERAL Java class: COM.IBM.db2.app.StoredProc

A Java class that contains methods intended to be called as PARAMETER STYLE

DB2GENERAL stored procedures must be public and must implement this Java

interface. You must declare such a class as follows:

public class user-STP-class extends COM.ibm.db2.app.StoredProc{ ... }

You can only call inherited methods of the COM.ibm.db2.app.StoredProc interface

in the context of the currently executing stored procedure. For example, you cannot

use operations on LOB arguments, result-setting or status-setting calls after a

stored procedure returns. A Java exception will be thrown if you violate this rule.

Argument-related calls use a column index to identify the column being

referenced. These start at 1 for the first argument. All arguments of a PARAMETER

STYLE DB2GENERAL stored procedure are considered INOUT and thus are both

inputs and outputs.

Any exception returned from the stored procedure is caught by the database and

returned to the caller with SQLCODE -4302, SQLSTATE 38501. A JDBC

SQLException or SQLWarning is handled specially and passes its own SQLCODE,

SQLSTATE etc. to the calling application verbatim.

The following methods are associated with the COM.ibm.db2.app.StoredProc class:

public StoredProc() [default constructor]

This constructor is called by the database before the stored procedure call.

public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL

NULL.

public void set(int, short) throws Exception

public void set(int, int) throws Exception

public void set(int, double) throws Exception

public void set(int, float) throws Exception

public void set(int, java.math.BigDecimal) throws Exception

public void set(int, String) throws Exception

public void set(int, COM.ibm.db2.app.Blob) throws Exception

public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given value.

The index has to refer to a valid output argument, the data type must match, and

the value must have an acceptable length and contents. Strings with Unicode

characters must be representable in the database code page. Errors result in an

exception being thrown.

public java.sql.Connection getConnection() throws Exception

This function returns a JDBC object that represents the calling application’s

connection to the database. It is analogous to the result of a null SQLConnect() call

in a C stored procedure.

296 Developing User-defined Routines (SQL and External)

DB2GENERAL Java class: COM.IBM.db2.app.UDF

A Java class that contains methods intended to be called as PARAMETER STYLE

DB2GENERAL UDFs must be public and must implement this Java interface. You

must declare such a class as follows:

public class user-UDF-class extends COM.ibm.db2.app.UDF{ ... }

You can only call methods of the COM.ibm.db2.app.UDF interface in the context of

the currently executing UDF. For example, you cannot use operations on LOB

arguments, result- or status-setting calls, etc., after a UDF returns. A Java exception

will be thrown if this rule is violated.

Argument-related calls use a column index to identify the column being set. These

start at 1 for the first argument. Output arguments are numbered higher than the

input arguments. For example, a scalar UDF with three inputs uses index 4 for the

output.

Any exception returned from the UDF is caught by the database and returned to

the caller with SQLCODE -4302, SQLSTATE 38501.

The following methods are associated with the COM.ibm.db2.app.UDF class:

public UDF() [default constructor]

This constructor is called by the database at the beginning of a series of UDF calls.

It precedes the first call to the UDF.

public void close()

This function is called by the database at the end of a UDF evaluation, if the UDF

was created with the FINAL CALL option. It is analogous to the final call for a C

UDF. For table functions, close() is called after the CLOSE call to the UDF method

(if NO FINAL CALL is coded or defaulted), or after the FINAL call (if FINAL

CALL is coded). If a Java UDF class does not implement this function, a no-op

stub will handle and ignore this event.

public int getCallType() throws Exception

Table function UDF methods use getCallType() to find out the call type for a

particular call. It returns a value as follows (symbolic defines are provided for

these values in the COM.ibm.db2.app.UDF class definition):

v -2 FIRST call

v -1 OPEN call

v 0 FETCH call

v 1 CLOSE call

v 2 FINAL call
public boolean isNull(int) throws Exception

This function tests whether an input argument with the given index is an SQL

NULL.

public boolean needToSet(int) throws Exception

This function tests whether an output argument with the given index needs to be

set. This can be false for a table UDF declared with DBINFO, if that column is not

used by the UDF caller.

Chapter 8. Java routines 297

public void set(int, short) throws Exception

public void set(int, int) throws Exception

public void set(int, double) throws Exception

public void set(int, float) throws Exception

public void set(int, java.math.BigDecimal) throws Exception

public void set(int, String) throws Exception

public void set(int, COM.ibm.db2.app.Blob) throws Exception

public void set(int, COM.ibm.db2.app.Clob) throws Exception

This function sets the output argument with the given index to the given value.

The index has to refer to a valid output argument, the data type must match, and

the value must have an acceptable length and contents. Strings with Unicode

characters must be representable in the database code page. Errors result in an

exception being thrown.

public void setSQLstate(String) throws Exception

This function can be called from a UDF to set the SQLSTATE to be returned from

this call. A table UDF should call this function with ″02000″ to signal the

end-of-table condition. If the string is not acceptable as an SQLSTATE, an exception

will be thrown.

public void setSQLmessage(String) throws Exception

This function is similar to the setSQLstate function. It sets the SQL message result.

If the string is not acceptable (for example, longer than 70 characters), an exception

will be thrown.

public String getFunctionName() throws Exception

This function returns the name of the executing UDF.

public String getSpecificName() throws Exception

This function returns the specific name of the executing UDF.

public byte[] getDBinfo() throws Exception

This function returns a raw, unprocessed DBINFO structure for the executing UDF,

as a byte array. You must first declare it with the DBINFO option.

public String getDBname() throws Exception

public String getDBauthid() throws Exception

public String getDBtbschema() throws Exception

public String getDBtbname() throws Exception

public String getDBcolname() throws Exception

public String getDBver_rel() throws Exception

public String getDBplatform() throws Exception

public String getDBapplid() throws Exception

These functions return the value of the appropriate field from the DBINFO

structure of the executing UDF.

public int getDBprocid() throws Exception

This function returns the routine id of the procedure which directly or indirectly

invoked this routine. The routine id matches the ROUTINEID column in

SYSCAT.ROUTINES which can be used to retrieve the name of the invoking

procedure. If the executing routine is invoked from an application, getDBprocid()

returns 0.

public int[] getDBcodepg() throws Exception

298 Developing User-defined Routines (SQL and External)

This function returns the SBCS, DBCS, and composite code page numbers for the

database, from the DBINFO structure. The returned integer array has the respective

numbers as its first three elements.

public byte[] getScratchpad() throws Exception

This function returns a copy of the scratchpad of the currently executing UDF. You

must first declare the UDF with the SCRATCHPAD option.

public void setScratchpad(byte[]) throws Exception

This function overwrites the scratchpad of the currently executing UDF with the

contents of the given byte array. You must first declare the UDF with the

SCRATCHPAD option. The byte array must have the same size as getScratchpad()

returns.

DB2GENERAL Java class: COM.IBM.db2.app.Lob

This class provides utility routines that create temporary Blob or Clob objects for

computation inside routines.

The following methods are associated with the COM.ibm.db2.app.Lob class:

public static Blob newBlob() throws Exception

This function creates a temporary Blob. It will be implemented using a LOCATOR

if possible.

public static Clob newClob() throws Exception

This function creates a temporary Clob. It will be implemented using a LOCATOR

if possible.

DB2GENERAL Java class: COM.IBM.db2.app.Blob

An instance of this class is passed by the database to represent a BLOB as routine

input, and can be passed back as output. The application might create instances,

but only in the context of an executing routine. Uses of these objects outside such a

context will throw an exception.

The following methods are associated with the COM.ibm.db2.app.Blob class:

public long size() throws Exception

This function returns the length (in bytes) of the BLOB.

public java.io.InputStream getInputStream() throws Exception

This function returns a new InputStream to read the contents of the BLOB.

Efficient seek/mark operations are available on that object.

public java.io.OutputStream getOutputStream() throws Exception

This function returns a new OutputStream to append bytes to the BLOB.

Appended bytes become immediately visible on all existing InputStream instances

produced by this object’s getInputStream() call.

DB2GENERAL Java class: COM.IBM.db2.app.Clob

An instance of this class is passed by the database to represent a CLOB or

DBCLOB as routine input, and can be passed back as output. The application

Chapter 8. Java routines 299

might create instances, but only in the context of an executing routine. Uses of

these objects outside such a context will throw an exception.

Clob instances store characters in the database code page. Some Unicode characters

cannot not be representede in this code page, and can cause an exception to be

thrown during conversion. This can happen during an append operation, or

during a UDF or StoredProc set() call. This is necessary to hide the distinction

between a CLOB and a DBCLOB from the Java programmer.

The following methods are associated with the COM.ibm.db2.app.Clob class:

public long size() throws Exception

This function returns the length (in characters) of the CLOB.

public java.io.Reader getReader() throws Exception

This function returns a new Reader to read the contents of the CLOB or DBCLOB.

Efficient seek/mark operations are available on that object.

public java.io.Writer getWriter() throws Exception

This function returns a new Writer to append characters to this CLOB or DBCLOB.

Appended characters become immediately visible on all existing Reader instances

produced by this object’s GetReader() call.

Passing parameters of data type ARRAY to Java routines

The ability to pass parameters of data type ARRAY to and from Java procedures is

supported in DB2 9.5.

You would choose to implement the use of arrays being passed between

applications and Java stored procedures if you want to pass:

v large amounts of homogenous data to a procedure using a single parameter.

v a variable number of inputs of the same data type to a procedure using only a

single parameter.

For example, you can pass all the names of students in a class to a procedure

without knowing the number of students using a single parameter. If you did not

use the ARRAY data type, to do this, you would require one parameter per student

name.

To pass a parameter of type ARRAY:

1. The ARRAY data type must be already defined. To define an array type, the

CREATE TYPE statement must be executed.

2. The procedure definition must include a parameter of the defined type. For

example, if an ARRAY data type named IntArray is created by executing the

CREATE TYPE statement, to pass a parameter of this type to a procedure, do

the following:

CREATE PROCEDURE inArray (IN input IntArray)

LANGUAGE JAVA

PARAMETER STYLE JAVA

EXTERNAL NAME ’MyProcs:MyArrayProcs!inArray’;

In the procedure definition, the array parameter is typed as java.sql.Array. Within

the procedure, the argument is mapped to a Java array using the getArray()

method, as shown in the example below. Notice the use of Integer rather than int

(or other primitive types) for arrays.

300 Developing User-defined Routines (SQL and External)

static void inArray(java.sql.Array input)

{

Integer[] inputArr = (Integer [])input.getArray();

int sum = 0;

for(int i=0, i < inputArr.length; i++)

{

sum += inputArr[i];

}

}

For additional information, see the Related links section.

Returning result sets from JDBC procedures

You can develop JDBC procedures that return result sets to the invoking routine or

application. In JDBC procedures, the returning of result sets is handled with

ResultSet objects.

To return a result set from a JDBC procedure:

1. For each result set that is to be returned, include a parameter of type

ResultSet[] in the procedure declaration. For example, the following function

signature accepts an array of ResultSet objects:

 public static void getHighSalaries(

 double inSalaryThreshold, // double input

 int[] errorCode, // SQLCODE output

 ResultSet[] rs) // ResultSet output

2. Open the invoker’s database connection (using a Connection object):

 Connection con =

 DriverManager.getConnection("jdbc:default:connection");

3. Prepare the SQL statement that will generate the result set (using a

PreparedStatement object). In the following example, the prepare is followed by

the assignment of an input variable (called inSalaryThreshold - see the function

signature example above) to the value of the parameter marker (a parameter

marker is indicated with a ″?″) in the query statement.

 String query =

 "SELECT name, job, CAST(salary AS DOUBLE) FROM staff " +

 " WHERE salary > ? " +

 " ORDER BY salary";

 PreparedStatement stmt = con.prepareStatement(query);

 stmt.setDouble(1, inSalaryThreshold);

4. Execute the statement:

 rs[0] = stmt.executeQuery();

5. End the procedure body.

If you have not done so already, develop a client application or caller routine that

will accept result sets from your stored procedure.

Returning result sets from SQLJ procedures

You can develop SQLJ procedures that return result sets to the invoking routine or

application. In SQLJ procedures, the returning of result sets is handled with

ResultSet objects.

To return a result set from an SQLJ procedure:

1. Declare an iterator class to handle query data. For example:

 #sql iterator SpServerEmployees(String, String, double);

Chapter 8. Java routines 301

2. For each result set that is to be returned, include a parameter of type

ResultSet[] in the procedure declaration. For example the following function

signature accepts an array of ResultSet objects:

 public static void getHighSalaries(

 double inSalaryThreshold, // double input

 int[] errorCode, // SQLCODE output

 ResultSet[] rs) // ResultSet output

3. Instantiate an iterator object. For example:

 SpServerEmployees c1;

4. Assign the SQL statement that will generate the result set to an iterator. In the

following example, a host variable (called inSalaryThreshold -- see the function

signature example above) is used in the query’s WHERE clause:

 #sql c1 = {SELECT name, job, CAST(salary AS DOUBLE)

 FROM staff

 WHERE salary > :inSalaryThreshold

 ORDER BY salary};

5. Execute the statement and get the result set:

 rs[0] = c1.getResultSet();

If you have not done so already, develop a client application or caller routine that

will accept result sets from your procedure.

Receiving procedure result sets in JDBC applications and

routines

You can receive result sets from procedures you invoke from a JDBC routine or

application.

To accept procedure result sets from within a JDBC routine or application:

1. Open a database connection (using a Connection object):

 Connection con =

 DriverManager.getConnection("jdbc:db2:sample", userid, passwd);

2. Prepare the CALL statement that will invoke a procedure that returns result

sets (using a CallableStatement object). In the following example, a procedure

named GET_HIGH_SALARIES is invoked. The prepare is followed by the

assignment of an input variable (called inSalaryThreshold -- a numeric value to

be passed to the procedure) to the value of the parameter marker in the

previous statement. (A parameter marker is indicated with a ″?″.)

 String query = "CALL GET_HIGH_SALARIES(?)";

 CallableStatement stmt = con.prepareCall(query);

 stmt.setDouble(1, inSalaryThreshold);

3. Call the procedure:

 stmt.execute();

4. Use the CallableStatement object’s getResultSet() method to accept the first

result set from the procedure and fetch the rows from the result sets using the

fetchAll() method:

 ResultSet rs = stmt.getResultSet();

 // Result set rows are fetched and printed to screen.

 while (rs.next())

 {

 r++;

 System.out.print("Row: " + r + ": ");

 for (int i=1; i <= numOfColumns; i++)

 {

302 Developing User-defined Routines (SQL and External)

System.out.print(rs.getString(i));

 if (i != numOfColumns)

 {

 System.out.print(", ");

 }

 }

 System.out.println();

 }

5. For multiple result sets, use the CallableStatement object’s getNextResultSet()

method to enable the following result set to be read. Then repeat the process in

the previous step, where the ResultSet object accepts the current result set, and

fetches the result set rows. For example:

 while (callStmt.getMoreResults())

 {

 rs = callStmt.getResultSet()

 ResultSetMetaData stmtInfo = rs.getMetaData();

 int numOfColumns = stmtInfo.getColumnCount();

 int r = 0;

 // Result set rows are fetched and printed to screen.

 while (rs.next())

 {

 r++;

 System.out.print("Row: " + r + ": ");

 for (int i=1; i <= numOfColumns; i++)

 {

 System.out.print(rs.getString(i));

 if (i != numOfColumns)

 {

 System.out.print(", ");

 }

 }

 System.out.println();

 }

 }

6. Close the ResultSet object with its close() method:

 rs.close();

Receiving procedure result sets in SQLJ applications and

routines

You can receive result sets from procedures you invoke from an SQLJ routine or

application.

To accept procedure result sets from within an SQLJ routine or application:

1. Open a database connection (using a Connection object):

 Connection con =

 DriverManager.getConnection("jdbc:db2:sample", userid, passwd);

2. Set the default context (using a DefaultContext object):

 DefaultContext ctx = new DefaultContext(con);

 DefaultContext.setDefaultContext(ctx);

3. Set the execution context (using an ExecutionContext object):

 ExecutionContext execCtx = ctx.getExecutionContext();

4. Invoke a procedure that returns result sets. In the following example, a

procedure named GET_HIGH_SALARIES is invoked, and is passed an input

variable (called inSalaryThreshold):

 #sql {CALL GET_HIGH_SALARIES(:in inSalaryThreshold, :out outErrorCode)};

Chapter 8. Java routines 303

5. Declare a ResultSet object, and use the ExecutionContext object’s

getNextResultSet() method to accept result sets from the procedure. For

multiple result sets, put the getNextResultSet() call in a loop structure. Each

result set returned by the procedure will spawn a loop iteration. Inside the

loop, you can fetch the result set rows method, and then close the result set

object (with the ResultSet object’s close() method). For example:

 ResultSet rs = null;

 while ((rs = execCtx.getNextResultSet()) != null)

 {

 ResultSetMetaData stmtInfo = rs.getMetaData();

 int numOfColumns = stmtInfo.getColumnCount();

 int r = 0;

 // Result set rows are fetched and printed to screen.

 while (rs.next())

 {

 r++;

 System.out.print("Row: " + r + ": ");

 for (int i=1; i <= numOfColumns; i++)

 {

 System.out.print(rs.getString(i));

 if (i != numOfColumns)

 {

 System.out.print(", ");

 }

 }

 System.out.println();

 }

 rs.close();

 }

Restrictions on Java routines

The following restrictions apply to Java routines:

v

The system-defined procedure install_jar used to deploy Java routine code in

JAR files to the database server file system cannot be called in a Java database

application when using the DB2 Universal JDBC Driver. This driver does not

support this procedure.

The recommended alternative is to use the DB2 Command Line Processor.

v The PROGRAM TYPE MAIN clause is not supported in CREATE PROCEDURE

or CREATE FUNCTION statements for Java routines regardless of the

PARAMETER STYLE clause value specified.

v

The following features are not supported with parameter style JAVA:

– table functions

– scratchpads in functions

– access to the DBINFO structure in functions

– FINAL CALL invocation in functions
The recommended alternative if you need these features is to create a Java

function using parameter style DB2GENERAL or to create the function using

either the C or C++ programming language.

v

Java Native Interface (JNI) calls from Java routines are not supported.

304 Developing User-defined Routines (SQL and External)

If you need to invoke C or C++ code from a Java routine, you can do so by

invoking a separately defined C or C++ routine.

v NOT FENCED Java routines are currently not supported. A Java routine defined

as NOT FENCED will be invoked as if it had been defined as FENCED

THREADSAFE.

v Java stored procedures cannot depend on any non-system resources, such as

properties files. If you call a Java stored procedure that depends on non-system

resources, those resources are not loaded, and no error is returned.

Table function execution model for Java

For table functions written in Java and using PARAMETER STYLE DB2GENERAL,

it is important to understand what happens at each point in DB2’s processing of a

given statement. The following table details this information for a typical table

function. Covered are both the NO FINAL CALL and the FINAL CALL cases,

assuming SCRATCHPAD in both cases.

 Point in scan time

 NO FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

 FINAL CALL

LANGUAGE JAVA

SCRATCHPAD

Before the first OPEN for the table

function

No calls. v Class constructor is called (means

new scratchpad). UDF method is

called with FIRST call.

v Constructor initializes class and

scratchpad variables. Method

connects to Web server.

At each OPEN of the table function v Class constructor is called (means

new scratchpad). UDF method is

called with OPEN call.

v Constructor initializes class and

scratchpad variables. Method

connect to Web server, and opens

the scan for Web data.

v UDF method is opened with

OPEN call.

v Method opens the scan for

whatever Web data it wants.

(Might be able to avoid reopen

after a CLOSE reposition,

depending on what is saved in the

scratchpad.)

At each FETCH for a new row of

table function data

v UDF method is called with FETCH

call.

v Method fetches and returns next

row of data, or EOT.

v UDF method is called with FETCH

call.

v Method fetches and returns new

row of data, or EOT.

At each CLOSE of the table function v UDF method is called with CLOSE

call. close() method if it exists for

class.

v Method closes its Web scan and

disconnects from the Web server.

close() does not need to do

anything.

v UDF method is called with CLOSE

call.

v Method might reposition to the top

of the scan, or close the scan. It can

save any state in the scratchpad,

which will persist.

After the last CLOSE of the table

function

No calls. v UDF method is called with FINAL

call. close() method is called if it

exists for class.

v Method disconnects from the Web

server. close() method does not

need to do anything.

Chapter 8. Java routines 305

Note:

1. The term ″UDF method″ refers to the Java class method that implements the

UDF. This is the method identified in the EXTERNAL NAME clause of the

CREATE FUNCTION statement.

2. For table functions with NO SCRATCHPAD specified, the calls to the UDF

method are as indicated in this table, but because the user is not asking for any

continuity with a scratchpad, DB2 will cause a new object to be instantiated

before each call, by calling the class constructor. It is not clear that table

functions with NO SCRATCHPAD (and thus no continuity) can do useful

things, but they are supported.

Creating Java routines

Creating Java routines consists of:

v Executing a CREATE statement that defines the routine in a DB2 database server

v Developing the routine implementation that corresponds to the routine

definition

The ways in which you can create Java routines follow:

v Using the data server developer tool

v Using the DB2 routine development features in IBM Rational Application

Developer

v Using the DB2 Command Window

In general it is easiest to create Java routines using the data server developer tool,

although many developers enjoy the ability to create Java routines from within the

integrated Java development environment provided by IBM Rational Application

Developer. If these graphical tools are not available for use, the DB2 Command

Window provides similar support through a command line interface.

Prerequisites

v Review the Java Routine Overview.

v Ensure that you have access to a DB2 Version 9 server, including instances and

databases.

v Ensure that the operating system is at a version level that is supported by DB2

database products.

v Ensure that the Java development software is at a version level that is supported

for Java routine development.

v Ensure that a valid Java driver has been specified for Java routine development.

v Authority to execute the CREATE PROCEDURE or CREATE FUNCTION

statement.

For a list of restrictions associated with Java routines see:

v Restrictions on Java routines

Create Java routines using one of the following procedures:

v Creating Java routines using data server developer tool

v Creating Java routines using Rational Application Developer

v Creating Java routines from DB2 Command Window

306 Developing User-defined Routines (SQL and External)

http://www.ibm.com/software/data/db2/udb/sysreqs.html

Creating Java routines from the command line

Procedures and functions that reference a Java class are created in a similar way to

external routines with other implementations. This task comprises a few steps

including the formulation of the CREATE statement for the routine, the coding and

compilation (translation) of the routine implementation, and the deployment of the

Java class to a DB2 database server.

You would choose to implement a Java routine if:

v You want to encapsulate complex logic into a routine that accesses the database

or that performs an action outside of the database.

v You require the encapsulated logic to be invoked from any of: multiple

applications, the CLP, another routine (procedure, function (UDF), or method),

or a trigger.

v You are most comfortable coding this logic using Java and one of the JDBC or

SQLJ application programming interfaces.

Prerequisites

v Review the Java Routine Overview.

v Ensure that you have access to a DB2 Version 9 database server, including

instances and databases.

v Ensure that the operating system is at a version level that is supported by DB2

database products.

v Ensure that the Java development software is at a version level that is supported

for Java routine development.

v Ensure that a valid Java driver has been specified for Java routine development.

v Authority to execute the CREATE PROCEDURE or CREATE FUNCTION

statement.

Procedure

1. Code the routine logic in Java.

v For general information about Java routines and Java routine features, see the

topics referenced in the Prerequisites section.

v A routine parameter signature must be implemented using one of the

supported parameter styles. It is strongly recommended that parameter style

JAVA be used for all Java routines. For more on parameter signatures and

parameter implementations see:

– Parameters in Java routines

– Parameter style JAVA procedures

– Parameter style SQL JAVA functions
v Declare variables in the same manner as is done for Java database

applications. Be careful to correctly use data types that map to DB2 SQL data

types. For more on data type mapping between DB2 and Java data types see:

– Supported SQL data types for Java applications and routines
v Include routine logic. Routine logic can consist of any code supported in the

Java programming language. It can also include the execution of SQL

statements in the same manner as is done in Java database applications. For

more on executing SQL statements in Java code see:

– Execution of SQL statements in Java (JDBC) code

– Execution of SQL statements in Java (SQLJ) code

Chapter 8. Java routines 307

http://www.ibm.com/software/data/db2/udb/sysreqs.html

v If the routine is a procedure and you might want to to return a result set to

the caller of the routine, you do not require any parameters for the result set.

For more on returning result sets from Java routines:

– Returning result sets Java (JDBC) procedures

– Returning result sets from Java (SQLJ) procedures
v Set a routine return value at the end of the routine.

2. Build your code to produce a Java class file or JAR file containing a collection

of Java class files. For information on how to build Java routine code, see:

v Building Java (JDBC) routines

v Building Java (SQLJ) routines
3. Copy the class file to the DB2 database server or install the JAR file to the DB2

database server. For information on how to do this, see:

v Deploying Java routine class files to the DB2 database server

v Installing JAR files containing Java routine class files

It is recommended that you store class files associated with DB2 routines in the

function directory. To find out more about the function directory, see information

related to the the EXTERNAL clause in one of the following statements: CREATE

PROCEDURE or CREATE FUNCTION.

You can copy the library to another directory on the server if you wish, but to

successfully invoke the routine you must note the fully qualified path name of

your library as you will require it for the next step.

4. Execute either dynamically or statically the appropriate CREATE statement for

the routine type: CREATE PROCEDURE or CREATE FUNCTION.

v Specify the LANGUAGE clause with: JAVA

v Specify the PARAMETER STYLE clause with the name of the supported

parameter style that was implemented in the routine code. It is strongly

recommended that PARAMETER STYLE JAVA be used unless the features you

require are only supported when PARAMETER STYLE DB2GENERAL is

used.

v Specify the EXTERNAL clause with the name of the JAR file or Java class to be

associated with the routine using one of the following values:

– the fully qualified path name of the Java class file

– the relative path name of the routine Java class file relative to the function

directory.

– the JAR file ID of the JAR file on the database server that contains the

Java class
By default DB2 will look for the library in the function directory unless a

JAR file ID and class, fully qualified path name, or relative path name for it

is specified in the EXTERNAL clause.

v Specify DYNAMIC RESULT SETS with a numeric value if your routine is a

procedure and it will return one or more result sets to the caller.

v Specify any other non-default clause values in the CREATE statement to be

used to characterize the routine.

To invoke your Java routine, see Routine invocation

308 Developing User-defined Routines (SQL and External)

Building Java routine code

Once Java routine implementation code has been written, it must be built before

the routine assembly can be deployed and the routine invoked. The steps required

to build Java routines are similar to those required to build any external routine

however there are some differences.

There are a few ways to build Java routines:

v Using the graphical tools provided with the data server developer tool

v Using the graphical tools provided within IBM Rational Application Developer

v Using DB2 sample build scripts

v Entering commands from a DB2 Command Window

The graphical tools and DB2 can be customized to build Java routines for a variety

of operating systems and with a variety of settings. The sample build scripts and

batch files for routines are designed for building DB2 sample routines (procedures

and user-defined functions) for a particular operating system using the default

supported development software.

There is a separate set of DB2 sample build scripts and batch files for Java routines

created with JDBC and SQLJ. In general it is easiest to build Java routines using

the graphical tools or the build scripts which can easily be modified if required,

however it is often helpful to know how to build routines from DB2 Command

Window as well.

Building JDBC routines

You can use a Java makefile or the javac command to build JDBC routines. After

you build those routines, you need to catalog them.

The following steps demonstrate how to build and run these routines:

v The SpServer sample JDBC stored procedure

v The UDFsrv sample user-defined function, which has no SQL statements

v The UDFsqlsv sample user-defined function, which has SQL statements
v To build and run the SpServer.java stored procedure on the server, from the

command line:

1. Compile SpServer.java to produce the file SpServer.class with this command:

 javac SpServer.java

2. Copy SpServer.class to the sqllib\function directory on Windows

operating systems, or to the sqllib/function directory on UNIX.

3. Catalog the routines by running the spcat script on the server. The spcat

script connects to the sample database, uncatalogs the routines if they were

previously cataloged by calling SpDrop.db2, then catalogs them by calling

SpCreate.db2, and finally disconnects from the database. You can also run the

SpDrop.db2 and SpCreate.db2 scripts individually.

4. Stop and restart the database to allow the new class file to be recognized. If

necessary, set the file mode for the class file to ″read″ so it is readable by the

fenced user.

5. Compile and run the SpClient client application to access the stored

procedure class.
v To build and run the UDFsrv.java user-defined function program (user-defined

function with no SQL statements) on the server, from the command line:

Chapter 8. Java routines 309

1. Compile UDFsrv.java to produce the file UDFsrv.class with this command:

 javac UDFsrv.java

2. Copy UDFsrv.class to the sqllib\function directory on Windows operating

systems, or to the sqllib/function directory on UNIX.

3. Compile and run a client program that calls UDFsrv.

To access the UDFsrv library, you can use the UDFcli.java JDBC application,

or the UDFcli.sqlj SQLJ client application. Both versions of the client program

contain the CREATE FUNCTION SQL statement that you use to register the

user-defined functions with the database, and also contain SQL statements

that use the user-defined functions.
v To build and run the UDFsqlsv.java user-defined function program (user-defined

function with SQL statements) on the server, from the command line:

1. Compile UDFsqlsv.java to produce the file UDFsqlsv.class with this

command:

 javac UDFsqlsv.java

2. Copy UDFsqlsv.class to the sqllib\function directory on Windows

operating systems, or to the sqllib/function directory on UNIX.

3. Compile and run a client program that calls UDFsqlsv.

To access the UDFsqlsv library, you can use the UDFsqlcl.java JDBC

application. The client program contains the CREATE FUNCTION SQL

statement that you use to register the user-defined functions with the

database, and also contains SQL statements that use the user-defined

functions.

Building SQL routines

You can use a Java makefile or the bldsqljs build file to build SQLJ routines.

After you build those routines, you need to catalog them.

The following steps demonstrate how to build and run the SpServer sample SQLJ

stored procedure. These steps use the build file, bldsqljs (UNIX), or bldsqljs.bat

(Windows), which contains commands to build either an SQLJ applet or

application.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX, and

%1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies the name

of your program. The second parameter specifies the user ID for the database

instance, the third parameter specifies the password. The fourth parameter

specifies the server name. The fifth parameter specifies the port number. And the

sixth parameter specifies the database name. For all but the first parameter,

program name, default values can be used. See the build file for details about

using default parameter values.

1. Build the stored procedure application with this command:

 bldsqljs SpServer <userid> <password> <server_name> <port_number> <db_name>

2. Catalog the stored procedure with this command:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling SpDrop.db2, then catalogs them by calling

SpCreate.db2, and finally disconnects from the database. You can also run the

SpDrop.db2 and SpCreate.db2 scripts individually.

310 Developing User-defined Routines (SQL and External)

3. Stop and restart the database to allow the new class file to be recognized. If

necessary, set the file mode for the class file to read, so it is readable by the

fenced user.

4. Compile and run the SpClient client application to access the stored procedure

class. You can build SpClient with the application build file, bldsqlj (UNIX) or

bldsqlj.bat (Windows).

Compile and link options for Java (SQLJ) routines

SQLJ routine options for UNIX

The bldsqljs build script builds SQLJ routines on UNIX operating systems.

bldsqljs specifies a set of SQLJ translator and customizer options.

Recommendation: Use the same SQLJ translator and customizer options that

bldsqljs uses when you build your SQLJ routines on UNIX platforms.

The options that bldsqljs includes are:

sqlj The SQLJ translator (also compiles the program).

"${progname}.sqlj"

The SQLJ source file. The progname=${1%.sqlj} command removes the

extension if it was included in the input file name, so when the extension

is added back again, it is not duplicated.

db2sqljcustomize

The SQLJ profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

"${progname}_SJProfile0"

Specifies a serialized profile for the program.

SQLJ routine options for Windows

The bldsqljs.bat batch file builds SQLJ routines on Windows operating systems.

bldsqljs.bat specifies a set of SQLJ translator and customizer options.

Recommendation: Use the same SQLJ translator and customizer options that

bldsqljs.bat uses when you build your SQLJ routines on Windows operating

systems.

The following SQLJ translator and customizer options are used in the bldsqljs.bat

batch file on Windows operating systems. These are the options DB2 recommends

that you use to build SQLJ routines (stored procedures and user-defined functions).

sqlj The SQLJ translator (also compiles the program).

%1.sqlj

The SQLJ source file.

db2sqljcustomize

The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

Chapter 8. Java routines 311

-user Specifies a user ID.

-password

Specifies a password.

%1_SJProfile0

Specifies a serialized profile for the program.

Deploying Java routine class files to DB2 database servers

Java routine implementations must be deployed to the DB2 database server file

system so that they can be located, loaded, and run upon routine invocation.

One or more Java routine implementations can be included in an individual Java

class file. Java class files containing Java routine implementations can be collected

together into JAR files. The Java class files that you use to implement a routine

must reside in either a JAR file you have installed in the DB2 database or in a

directory path included in the CLASSPATH environment variable value for the

DB2 database server.

To deploy individual Java routine class files:

v

Copy the Java class into any directory path on the DB2 database server file

system specified by the CLASSPATH variable.

It is strongly recommended that you store Java class files associated with DB2

routines in the function directory, /u/$DB2INSTANCE/sqllib/function where

/u/$DB2INSTANCE is the directory associated with the currently active database

manager.

The JVM that the DB2 database manager invokes uses the CLASSPATH

environment variable to locate Java class files. DB2 automatically adds the

function directory and sqllib/java/db2java.zip to the front of your CLASSPATH

setting so that you do not have to do this manually.

If you declare a class to be part of a Java package, create subdirectories in the

function directory that correspond to the fully qualified class names and place

the related class files in the corresponding subdirectory. For example, if you

create a class ibm.tests.test1 for a Linux system, store the corresponding Java

bytecode file (named test1.class) in sqllib/function/ibm/tests.

To deploy JAR files containing Java routine class files:

v

You must install the JAR file containing Java routine class files to the DB2

database server file system.

Once the Java routine class files have been deployed and the CREATE statement

has been executed to define the routine in the database, you can invoke the

routine. After you have deployed your Java routines, you might want to invoke

them, debug them, or update the Java routine class files.

JAR file administration on the database server

To deploy JAR files that contain Java routine class files, you must install the JAR

file to the DB2 database server. This can be done from an IBM Data Server Client

by using system-defined routines that install, replace, or remove JAR files on the

DB2 database server.

312 Developing User-defined Routines (SQL and External)

To install, replace, or remove a JAR file in a DB2 instance, use the stored

procedures provided with DB2:

Install

sqlj.install_jar(jar-url, jar-id)

Note: The privileges held by the authorization ID of the caller of

sqlj.install_jar must include at least one of the following:

v CREATEIN privilege for the implicitly or explicitly specified schema

v SYSADM or DBADM authority

Replace

sqlj.replace_jar(jar-url, jar-id)

Remove

sqlj.remove_jar(jar-id)

v jar-url: The URL containing the JAR file to be installed or replaced. The only

URL scheme supported is ’file:’.

v jar-id: A unique string identifier, up to 128 bytes in length. It specifies the JAR

identifier in the database associated with the jar-url file.

Note: When invoked from applications, the stored procedures sqlj.install_jar and

sqlj.remove_jar have an additional parameter. It is an integer value that dictates the

use of the deployment descriptor in the specified JAR file. At present, the

deployment parameter is not supported, and any invocation specifying a nonzero

value will be rejected.

Following are a series of examples of how to use the preceding JAR file

management stored procedures.

To register a JAR located in the path /home/bob/bobsjar.jar with the database

instance as MYJAR:

CALL sqlj.install_jar(’file:/home/bob/bobsjar.jar’, ’MYJAR’)

Subsequent SQL commands that use the bobsjar.jar file refer to it with the name

MYJAR.

To replace MYJAR with a different JAR containing some updated classes:

CALL sqlj.replace_jar(’file:/home/bob/bobsnewjar.jar’, ’MYJAR’)

To remove MYJAR from the database catalogs:

CALL sqlj.remove_jar(’MYJAR’)

Note: On Windows operating systems, DB2 stores JAR files in the path specified

by the DB2INSTPROF instance-specific registry setting. To make JAR files unique

for an instance, you must specify a unique value for DB2INSTPROF for that

instance.

Updating Java routine classes

If you want to change the logic of a Java routine, you must update the routine

source code, compile (translate) the code, and then update the version of the Java

class or JAR file that is deployed to the DB2 database server. To ensure that DB2

Chapter 8. Java routines 313

database manager uses the new version of the Java routine, you must execute a

system-defined procedure that will load the new version of the Java class into

memory.

To update Java routine classes:

1. Deploy the new Java class or JAR file to the DB2 database server.

2. Execute the following system-defined procedure for fenced routines:

 CALL SQLJ.REFRESH_CLASSES()

This will force the DB2 database manager to load the new class into memory

upon the next commit or rollback operation.

For unfenced routines, this step will not work. For unfenced routines, you must

explicitly stop and re-start the DB2 database manager in order for new versions

of Java routine classes to be loaded and used.

If you do not perform the steps above, after you update Java routine classes, the

DB2 database manager will continue to use the previous versions of the classes.

Examples of Java (JDBC) routines

When developing Java routines that use the JDBC application programming

interface, it is helpful to refer to examples to get a sense of what the CREATE

statement and the Java routine code should look like. The following topics contain

examples of Java procedures and functions:

v Examples of Java (JDBC) procedures

v Examples of Java (JDBC) procedures with XML features

v Examples of Java (JDBC) functions

Example: Array data type in Java (JDBC) procedure

An example of a Java routine using the array data type.

The example below illustrates the skeleton of a Java routine with an IN and an

OUT parameter of the array data type.

CREATE TYPE phonenumbers AS VARCHAR(20) ARRAY[10] %

CREATE PROCEDURE javaproc(IN in1 phonenumbers,

 OUT out1 phonenumbers)

 LANGUAGE java

 PARAMETER STYLE java

 FENCED THREADSAFE

 EXTERNAL NAME ’myjar:stpclass.javastp’ %

import java.sql.Array;

public static void javaproc(Array input, Array[] output)

{

output[0] = input;

}

Example: XML and XQuery support in Java (JDBC) procedure

Once the basics of Java procedures, programming in Java using the JDBC

application programming interface (API), and XQuery are understood, you can

start creating and using Java procedures that query XML data.

This example of a Java procedure illustrates:

v the CREATE PROCEDURE statement for a parameter style JAVA procedure

314 Developing User-defined Routines (SQL and External)

v the source code for a parameter style JAVA procedure

v input and output parameters of data type XML

v use of an XML input parameter in a query

v assignment of the result of an XQuery, an XML value, to an output parameter

v assignment of the result of an SQL statement, an XML value, to an output

parameter

Prerequisites

Before working with this Java procedure example you might want to read

the following topics:

v Java routines

v Routines

v Building Java routine code

The examples below makes use of a table named xmlDataTable defined

and containing data as follows:

 CREATE TABLE xmlDataTable

 (

 num INTEGER,

 xdata XML

)@

 INSERT INTO xmlDataTable VALUES

 (1, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Pontiac</make>

 <model>Sunfire</model>

 </doc>’ PRESERVE WHITESPACE)),

 (2, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Mazda</make>

 <model>Miata</model>

 </doc>’ PRESERVE WHITESPACE)),

 (3, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mary</name>

 <town>Vancouver</town>

 <street>Waterside</street>

 </doc>’ PRESERVE WHITESPACE)),

 (4, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Mark</name>

 <town>Edmonton</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (5, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>dog</name>

 </doc>’ PRESERVE WHITESPACE)),

 (6, NULL),

 (7, XMLPARSE(DOCUMENT ’<doc>

 <type>car</type>

 <make>Ford</make>

 <model>Taurus</model>

 </doc>’ PRESERVE WHITESPACE)),

 (8, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

 <name>Kim</name>

 <town>Toronto</town>

 <street>Elm</street>

 </doc>’ PRESERVE WHITESPACE)),

 (9, XMLPARSE(DOCUMENT ’<doc>

 <type>person</type>

Chapter 8. Java routines 315

<name>Bob</name>

 <town>Toronto</town>

 <street>Oak</street>

 </doc>’ PRESERVE WHITESPACE)),

 (10, XMLPARSE(DOCUMENT ’<doc>

 <type>animal</type>

 <name>bird</name>

 </doc>’ PRESERVE WHITESPACE))@

Procedure

Use the following example as references when making your own Java

procedures:

v Table 43

v Table 44 on page 317

 The Java external code file

The example shows a Java procedure implementation. The example consists of two

parts: the CREATE PROCEDURE statement and the external Java code

implementation of the procedure from which the associated Java class can be built.

The Java source file that contains the procedure implementations of the following

examples is named stpclass.java included in a JAR file named myJAR. The file has

the following format:

 Table 43. Java external code file format

 using System;

 import java.lang.*;

 import java.io.*;

 import java.sql.*;

 import java.util.*;

 import com.ibm.db2.jcc.DB2Xml;

 public class stpclass

 { ...

 // Java procedure implementations

 ...

 }

The Java class file imports are indicated at the top of the file. The

com.ibm.db2.jcc.DB2Xml import is required if any of the procedures in the file

contain parameters or variables of type XML will be used.

It is important to note the name of the class file and JAR name that contains a

given procedure implementation. These names are important, because the

EXTERNAL clause of the CREATE PROCEDURE statement for each procedure

must specify this information so that DB2 can locate the class at run time.

Example 1: Parameter style JAVA procedure with XML

parameters

This example shows the following:

v CREATE PROCEDURE statement for a parameter style JAVA procedure

v Java code for a parameter style JAVA procedure with XML parameters

This procedure takes an input parameter, inXML, inserts a row including that value

into a table, queriesXML data using both an SQL statement and an XQuery

expression, and sets two output parameters, outXML1, and outXML2.

316 Developing User-defined Routines (SQL and External)

Table 44. Code to create a parameter style JAVA procedure with XML parameters

 CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

 IN inXML XML as CLOB (1K),

 OUT out1XML XML as CLOB (1K),

 OUT out2XML XML as CLOB (1K)

)

 DYNAMIC RESULT SETS 0

 DETERMINISTIC

 LANGUAGE JAVA

 PARAMETER STYLE JAVA

 MODIFIES SQL DATA

 FENCED

 THREADSAFE

 DYNAMIC RESULT SETS 0

 PROGRAM TYPE SUB

 NO DBINFO

 EXTERNAL NAME ’myJar:stpclass.xmlProc1’@

Chapter 8. Java routines 317

Table 44. Code to create a parameter style JAVA procedure with XML

parameters (continued)

 //***

 // Stored Procedure: XMLPROC1

 //

 // Purpose: Inserts XML data into XML column; queries and returns XML data

 //

 // Parameters:

 //

 // IN: inNum -- the sequence of XML data to be insert in xmldata table

 // inXML -- XML data to be inserted

 // OUT: out1XML -- XML data to be returned

 // out2XML -- XML data to be returned

 //

 //***

 public void xmlProc1(int inNum,

 DB2Xml inXML ,

 DB2Xml[] out1XML,

 DB2Xml[] out2XML

)

 throws Exception

 {

 Connection con = DriverManager.getConnection("jdbc:default:connection");

 // Insert data including the XML parameter value into a table

 String query = "INSERT INTO xmlDataTable (num, inXML) VALUES (?, ?)" ;

 String xmlString = inXML.getDB2String() ;

 stmt = con.prepareStatement(query);

 stmt.setInt(1, inNum);

 stmt.setString (2, xmlString);

 stmt.executeUpdate();

 stmt.close();

 // Query and retrieve a single XML value from a table using SQL

 query = "SELECT xdata from xmlDataTable WHERE num = ? " ;

 stmt = con.prepareStatement(query);

 stmt.setInt(1, inNum);

 ResultSet rs = stmt.executeQuery();

 if (rs.next())

 { out1Xml[0] = (DB2Xml) rs.getObject(1); }

 rs.close() ;

 stmt.close();

 // Query and retrieve a single XML value from a table using XQuery

 query = "XQUERY for $x in db2-fn:xmlcolumn(\"xmlDataTable.xdata\")/doc

 where $x/make = \’Mazda\’

 return <carInfo>{$x/make}{$x/model}</carInfo>";

 stmt = con.createStatement();

 rs = stmt.executeQuery(query);

 if (rs.next())

 { out2Xml[0] = (DB2Xml) rs.getObject(1) ; }

 rs.close();

 stmt.close();

 con.close();

 return ;

 }

318 Developing User-defined Routines (SQL and External)

Chapter 9. OLE automation routine design

Object Linking and Embedding (OLE) automation is part of the OLE 2.0

architecture from Microsoft Corporation. With OLE automation, your applications,

regardless of the language in which they are written, can expose their properties

and methods in OLE automation objects. Other applications, such as Lotus Notes®

or Microsoft Exchange, can then integrate these objects by taking advantage of

these properties and methods through OLE automation.

The applications exposing the properties and methods are called OLE automation

servers or objects, and the applications that access those properties and methods

are called OLE automation controllers. OLE automation servers are COM

components (objects) that implement the OLE IDispatch interface. An OLE

automation controller is a COM client that communicates with the automation

server through its IDispatch interface. COM is the foundation of OLE. For OLE

automation routines, DB2 acts as an OLE automation controller. Through this

mechanism, DB2 can invoke methods of OLE automation objects as external

routines.

Note that all OLE automation topics assume that you are familiar with OLE

automation terms and concepts. For an overview of OLE automation, refer to

Microsoft Corporation: The Component Object Model Specification, October 1995. For

details on OLE automation, refer to OLE Automation Programmer’s Reference,

Microsoft Press, 1996, ISBN 1-55615-851-3.

Creating OLE automation routines

OLE automation routines are implemented as public methods of OLE automation

objects. The OLE automation objects must be externally creatable by an OLE

automation controller, in this case DB2, and support late binding (also called

IDispatch-based binding). OLE automation objects must be registered in the

Windows registry with a class identifier (CLSID), and optionally, an OLE

programmatic ID (progID) to identify the automation object. The progID can

identify an in-process (.DLL) or local (.EXE) OLE automation server, or a remote

server through DCOM (Distributed COM).

To register OLE automation routines:

After you code an OLE automation object, you need to create the methods of the

object as routines using the CREATE statement. Creating OLE automation routines

is very similar to registering C or C++ routines, but you must use the following

options:

v LANGUAGE OLE

v FENCED NOT THREADSAFE, since OLE automation routines must run in

FENCED mode, but cannot be run as THREADSAFE.

The external name consists of the OLE progID identifying the OLE automation

object and the method name separated by ! (exclamation mark):

 CREATE FUNCTION bcounter () RETURNS INTEGER

 EXTERNAL NAME ’bert.bcounter!increment’

 LANGUAGE OLE

 FENCED

 NOT THREADSAFE

© Copyright IBM Corp. 1993, 2007 319

SCRATCHPAD

 FINAL CALL

 NOT DETERMINISTIC

 NULL CALL

 PARAMETER STYLE DB2SQL

 NO SQL

 NO EXTERNAL ACTION

 DISALLOW PARALLEL;

The calling conventions for OLE method implementations are identical to the

conventions for routines written in C or C++. An implementation of the previous

method in the BASIC language looks like the following (notice that in BASIC the

parameters are by default defined as call by reference):

 Public Sub increment(output As Long, _

 indicator As Integer, _

 sqlstate As String, _

 fname As String, _

 fspecname As String, _

 sqlmsg As String, _

 scratchpad() As Byte, _

 calltype As Long)

OLE routine object instances and scratchpad considerations

OLE automation UDFs and methods (methods of OLE automation objects) are

applied on instances of OLE automation objects. DB2 creates an object instance for

each UDF or method reference in an SQL statement. An object instance can be

reused for subsequent method invocations of the UDF or method reference in an

SQL statement, or the instance can be released after the method invocation and a

new instance is created for each subsequent method invocation. The proper

behavior can be specified with the SCRATCHPAD option in the CREATE

statement. For the LANGUAGE OLE clause, the SCRATCHPAD option has the

additional semantic compared to C or C++, that a single object instance is created

and reused for the entire query, whereas if NO SCRATCHPAD is specified, a new

object instance can be created each time a method is invoked.

Using the scratchpad allows a method to maintain state information in instance

variables of the object, across function or method invocations. It also increases

performance as an object instance is only created once and then reused for

subsequent invocations.

Supported SQL data types in OLE automation

DB2 handles type conversion between SQL types and OLE automation types. The

following table summarizes the supported data types and how they are mapped.

 Table 45. Mapping of SQL and OLE Automation Datatypes

SQL Type OLE Automation Type OLE Automation Type Description

SMALLINT short 16-bit signed integer

INTEGER long 32-bit signed integer

REAL float 32-bit IEEE floating-point number

FLOAT or DOUBLE double 64-bit IEEE floating-point number

DATE DATE 64-bit floating-point fractional

number of days since December 30,

1899

TIME DATE

TIMESTAMP DATE

320 Developing User-defined Routines (SQL and External)

Table 45. Mapping of SQL and OLE Automation Datatypes (continued)

SQL Type OLE Automation Type OLE Automation Type Description

CHAR(n) BSTR Length-prefixed string as described

in the OLE Automation Programmer’s

Reference.

VARCHAR(n) BSTR

LONG VARCHAR BSTR

CLOB(n) BSTR

GRAPHIC(n) BSTR Length-prefixed string as described

in the OLE Automation Programmer’s

Reference.

VARGRAPHIC(n) BSTR

LONG GRAPHIC BSTR

DBCLOB(n) BSTR

CHAR(n) SAFEARRAY[unsigned char] 1-dim Byte() array of 8-bit unsigned

data items. (SAFEARRAYs are

described in the OLE Automation

Programmer’s Reference.)

VARCHAR(n) SAFEARRAY[unsigned char]

LONG VARCHAR SAFEARRAY[unsigned char]

CHAR(n) FOR BIT DATA SAFEARRAY[unsigned char]

VARCHAR(n) FOR BIT DATA SAFEARRAY[unsigned char]

LONG VARCHAR FOR BIT DATA SAFEARRAY[unsigned char]

BLOB(n) SAFEARRAY[unsigned char]

Data passed between DB2 and OLE automation routines is passed as call by

reference. SQL types such as BIGINT, DECIMAL, or LOCATORS, or OLE

automation types such as Boolean or CURRENCY that are not listed in the table

are not supported. Character and graphic data mapped to BSTR is converted from

the database code page to the UCS-2 scheme. (UCS-2 is also known as Unicode,

IBM code page 13488). Upon return, the data is converted back to the database

code page from UCS-2. These conversions occur regardless of the database code

page. If these code page conversion tables are not installed, you receive SQLCODE

-332 (SQLSTATE 57017).

OLE automation routines in BASIC and C++

You can implement OLE automation routines in any language. This section shows

you how to implement OLE automation routines using BASIC or C++ as two

sample languages. The following table shows the mapping of OLE automation

types to data types in BASIC and C++.

 Table 46. Mapping of SQL and OLE Data Types to BASIC and C++ Data Types

SQL Type OLE Automation Type

BASIC

Type C++ Type

SMALLINT short Integer short

INTEGER long Long long

REAL float Single float

FLOAT or DOUBLE double Double double

DATE, TIME, TIMESTAMP DATE Date DATE

CHAR(n) BSTR String BSTR

CHAR(n) FOR BIT DATA SAFEARRAY[unsigned char] Byte() SAFEARRAY

VARCHAR(n) BSTR String BSTR

Chapter 9. OLE automation routines 321

Table 46. Mapping of SQL and OLE Data Types to BASIC and C++ Data Types (continued)

SQL Type OLE Automation Type

BASIC

Type C++ Type

VARCHAR(n) FOR BIT DATA SAFEARRAY[unsigned char] Byte() SAFEARRAY

LONG VARCHAR BSTR String BSTR

LONG VARCHAR FOR BIT DATA SAFEARRAY[unsigned char] Byte() SAFEARRAY

BLOB(n) BSTR String BSTR

BLOB(n) FOR BIT DATA SAFEARRAY[unsigned char] Byte() SAFEARRAY

GRAPHIC(n), VARGRAPHIC(n),

LONG GRAPHIC, DBCLOB(n)

BSTR String BSTR

OLE Automation in BASIC

To implement OLE automation routines in BASIC you need to use the BASIC data

types corresponding to the SQL data types mapped to OLE automation types.

The BASIC declaration of the OLE automation UDF, bcounter, looks like the

following:

 Public Sub increment(output As Long, _

 indicator As Integer, _

 sqlstate As String, _

 fname As String, _

 fspecname As String, _

 sqlmsg As String, _

 scratchpad() As Byte, _

 calltype As Long)

OLE Automation in C++

The C++ declaration of the OLE automation UDF, increment, is as follows:

 STDMETHODIMP Ccounter::increment (long *output,

 short *indicator,

 BSTR *sqlstate,

 BSTR *fname,

 BSTR *fspecname,

 BSTR *sqlmsg,

 SAFEARRAY **scratchpad,

 long *calltype);

OLE supports type libraries that describe the properties and methods of OLE

automation objects. Exposed objects, properties, and methods are described in the

Object Description Language (ODL). The ODL description of the above C++

method is as follows:

 HRESULT increment ([out] long *output,

 [out] short *indicator,

 [out] BSTR *sqlstate,

 [in] BSTR *fname,

 [in] BSTR *fspecname,

 [out] BSTR *sqlmsg,

 [in,out] SAFEARRAY (unsigned char) *scratchpad,

 [in] long *calltype);

The ODL description allows you to specify whether a parameter is an input (in),

output (out), or input/output (in,out) parameter. For an OLE automation routine,

the routine input parameters and input indicators are specified as [in] parameters,

and routine output parameters and output indicators as [out] parameters. For the

322 Developing User-defined Routines (SQL and External)

routine trailing arguments, sqlstate is an [out] parameter, fname and fspecname are

[in] parameters, scratchpad is an [in,out] parameter, and calltype is an [in]

parameter.

OLE automation defines the BSTR data type to handle strings. BSTR is defined as a

pointer to OLECHAR: typedef OLECHAR *BSTR. For allocating and freeing BSTRs,

OLE imposes the rule that the called routine frees a BSTR passed in as a

by-reference parameter before assigning the parameter a new value. The same rule

applies for one-dimensional byte arrays that are received by the called routine as

SAFEARRAY**. This rule means the following for DB2 and OLE automation routines:

v [in] parameters: DB2 allocates and frees [in] parameters.

v [out] parameters: DB2 passes in a pointer to NULL. The [out] parameter must be

allocated by the invoked routine and is freed by DB2.

v [in,out] parameters: DB2 initially allocates [in,out] parameters. They can be freed

and re-allocated by the invoked routine. As is true for [out] parameters, DB2

frees the final returned parameter.

All other parameters are passed as pointers. DB2 allocates and manages the

referenced memory.

OLE automation provides a set of data manipulation functions for dealing with

BSTRs and SAFEARRAYs. The data manipulation functions are described in the

OLE Automation Programmer’s Reference.

The following C++ routine returns the first 5 characters of a CLOB input

parameter:

 // UDF DDL: CREATE FUNCTION crunch (CLOB(5k)) RETURNS CHAR(5)

 STDMETHODIMP Cobj::crunch (BSTR *in, // CLOB(5K)

 BSTR *out, // CHAR(5)

 short *indicator1, // input indicator

 short *indicator2, // output indicator

 BSTR *sqlstate, // pointer to NULL

 BSTR *fname, // pointer to function name

 BSTR *fspecname, // pointer to specific name

 BSTR *msgtext) // pointer to NULL

 {

 // Allocate BSTR of 5 characters

 // and copy 5 characters of input parameter

 // out is an [out] parameter of type BSTR, that is,

 // it is a pointer to NULL and the memory does not have to be freed.

 // DB2 will free the allocated BSTR.

 *out = SysAllocStringLen (*in, 5);

 return NOERROR;

 };

An OLE automation server can be implemented as creatable single-use or creatable

multi-use. With creatable single-use, each client (that is, a DB2 FENCED process)

connecting with CoGetClassObject to an OLE automation object will use its own

instance of a class factory, and run a new copy of the OLE automation server if

necessary. With creatable multi-use, many clients connect to the same class factory.

That is, each instantiation of a class factory is supplied by an already running copy

of the OLE server, if any. If there are no copies of the OLE server running, a copy

is automatically started to supply the class object. The choice between single-use

and multi-use OLE automation servers is yours, when you implement your

automation server. A single-use server is recommended for better performance.

Chapter 9. OLE automation routines 323

324 Developing User-defined Routines (SQL and External)

Chapter 10. OLE DB user-defined table functions

Microsoft OLE DB is a set of OLE/COM interfaces that provide applications with

uniform access to data stored in diverse information sources. The OLE DB

component DBMS architecture defines OLE DB consumers and OLE DB providers.

An OLE DB consumer is any system or application that consumes OLE DB

interfaces; an OLE DB provider is a component that exposes OLE DB interfaces.

There are two classes of OLE DB providers: OLE DB data providers, which own data

and expose their data in tabular format as a rowset; and OLE DB service providers,

which do not own their own data, but encapsulate some services by producing

and consuming data through OLE DB interfaces.

The DB2 database system simplifies the creation of OLE DB applications by

enabling you to define table functions that access an OLE DB data source. DB2 is

an OLE DB consumer that can access any OLE DB data or service provider. You

can perform operations including GROUP BY, JOIN, and UNION on data sources

that expose their data through OLE DB interfaces. For example, you can define an

OLE DB table function to return a table from a Microsoft Access database or a

Microsoft Exchange address book, then create a report that seamlessly combines

data from this OLE DB table function with data in your DB2 database.

Using OLE DB table functions reduces your application development effort by

providing built-in access to any OLE DB provider. For C, Java, and OLE

automation table functions, the developer needs to implement the table function,

whereas in the case of OLE DB table functions, a generic built-in OLE DB

consumer interfaces with any OLE DB provider to retrieve data. You only need to

register a table function as LANGUAGE OLEDB, and refer to the OLE DB provider

and the relevant rowset as a data source. You do not have to do any UDF

programming to take advantage of OLE DB table functions.

To use OLE DB table functions with the DB2 database, you must install OLE DB

2.0 or later, available from Microsoft at http://www.microsoft.com. If you attempt

to invoke an OLE DB table function without first installing OLE DB, DB2 issues

SQLCODE -465, SQLSTATE 58032, reason code 35. For the system requirements

and OLE DB providers available for your data sources, refer to your data source

documentation. For the OLE DB specification, see the Microsoft OLE DB 2.0

Programmer’s Reference and Data Access SDK, Microsoft Press, 1998.

Restrictions on using OLE DB table functions: OLE DB table functions cannot

connect to a DB2 database.

Creating an OLE DB table UDF

To define an OLE DB table function with a single CREATE FUNCTION statement,

you must:

v define the table that the OLE DB provider returns

v specify LANGUAGE OLEDB

v identify the OLE DB rowset and provide an OLE DB provider connection string

in the EXTERNAL NAME clause

OLE DB data sources expose their data in tabular form, called a rowset. A rowset is

a set of rows, each having a set of columns. The RETURNS TABLE clause includes

© IBM Corporation 1993, 2007 325

only the columns relevant to the user. The binding of table function columns to

columns of a rowset at an OLE DB data source is based on column names. If the

OLE DB provider is case sensitive, place the column names in quotation marks; for

example, "UPPERcase".

The EXTERNAL NAME clause can take either of the following forms:

 ’server!rowset’

 or

 ’!rowset!connectstring’

where:

server identifies a server registered with the CREATE SERVER statement

rowset identifies a rowset, or table, exposed by the OLE DB provider; this value

should be empty if the table has an input parameter to pass through

command text to the OLE DB provider.

connectstring

contains initialization properties needed to connect to an OLE DB provider.

For the complete syntax and semantics of the connection string, see the

″Data Link API of the OLE DB Core Components″ in the Microsoft OLE DB

2.0 Programmer’s Reference and Data Access SDK, Microsoft Press, 1998.

You can use a connection string in the EXTERNAL NAME clause of a CREATE

FUNCTION statement, or specify the CONNECTSTRING option in a CREATE

SERVER statement.

For example, you can define an OLE DB table function and return a table from a

Microsoft Access database with the following CREATE FUNCTION and SELECT

statements:

 CREATE FUNCTION orders ()

 RETURNS TABLE (orderid INTEGER, ...)

 LANGUAGE OLEDB

 EXTERNAL NAME ’!orders!Provider=Microsoft.Jet.OLEDB.3.51;

 Data Source=c:\msdasdk\bin\oledb\nwind.mdb’;

 SELECT orderid, DATE(orderdate) AS orderdate,

 DATE(shippeddate) AS shippeddate

 FROM TABLE(orders()) AS t

 WHERE orderid = 10248;

Instead of putting the connection string in the EXTERNAL NAME clause, you can

create and use a server name. For example, assuming you have defined the server

Nwind, you could use the following CREATE FUNCTION statement:

 CREATE FUNCTION orders ()

 RETURNS TABLE (orderid INTEGER, ...)

 LANGUAGE OLEDB

 EXTERNAL NAME ’Nwind!orders’;

OLE DB table functions also allow you to specify one input parameter of any

character string data type. Use the input parameter to pass command text directly

to the OLE DB provider. If you define an input parameter, do not provide a rowset

name in the EXTERNAL NAME clause. DB2 passes the command text to the OLE

DB provider for execution and the OLE DB provider returns a rowset to DB2.

Column names and data types of the resulting rowset need to be compatible with

the RETURNS TABLE definition in the CREATE FUNCTION statement. Since

binding to the column names of the rowset is based on matching column names,

you must ensure that you name the columns properly.

326 Developing User-defined Routines (SQL and External)

The following example registers an OLE DB table function, which retrieves store

information from a Microsoft SQL Server 7.0 database. The connection string is

provided in the EXTERNAL NAME clause. Since the table function has an input

parameter to pass through command text to the OLE DB provider, the rowset

name is not specified in the EXTERNAL NAME clause. The query example passes

in a SQL command text that retrieves information about the top three stores from a

SQL Server database.

 CREATE FUNCTION favorites (VARCHAR(600))

 RETURNS TABLE (store_id CHAR (4), name VARCHAR (41), sales INTEGER)

 SPECIFIC favorites

 LANGUAGE OLEDB

 EXTERNAL NAME ’!!Provider=SQLOLEDB.1;Persist Security Info=False;

 User ID=sa;Initial Catalog=pubs;Data Source=WALTZ;

 Locale Identifier=1033;Use Procedure for Prepare=1;

 Auto Translate=False;Packet Size=4096;Workstation ID=WALTZ;

 OLE DB Services=CLIENTCURSOR;’;

 SELECT *

 FROM TABLE (favorites (’ select top 3 sales.stor_id as store_id, ’ ||

 ’ stores.stor_name as name, ’ ||

 ’ sum(sales. qty) as sales ’ ||

 ’ from sales, stores ’ ||

 ’ where sales.stor_id = stores.stor_id ’ ||

 ’ group by sales.stor_id, stores.stor_name ’ ||

 ’ order by sum(sales.qty) desc’)) as f;

Fully qualified rowset names

Some rowsets need to be identified in the EXTERNAL NAME clause through a

fully qualified name. A fully qualified name incorporates either or both of the

following:

v the associated catalog name, which requires the following information:

– whether the provider supports catalog names

– where to put the catalog name in the fully qualified name

– which catalog name separator to use
v the associated schema name, which requires the following information:

– whether the provider supports schema names

– which schema name separator to use

For information on the support offered by your OLE DB provider for catalog and

schema names, refer to the documentation of the literal information of your OLE

DB provider.

If DBLITERAL_CATALOG_NAME is not NULL in the literal information of your provider,

use a catalog name and the value of DBLITERAL_CATALOG_SEPARATOR as a separator.

To determine whether the catalog name goes at the beginning or the end of the

fully qualified name, refer to the value of DBPROP_CATALOGLOCATION in the property

set DBPROPSET_DATASOURCEINFO of your OLE DB provider.

If DBLITERAL_SCHEMA_NAME is not NULL in the literal information of your provider,

use a schema name and the value of DBLITERAL_SCHEMA_SEPARATOR as a separator.

If the names contain special characters or match keywords, enclose the names in

the quote characters specified for your OLE DB provider. The quote characters are

defined in the literal information of your OLE DB provider as

DBLITERAL_QUOTE_PREFIX and DBLITERAL_QUOTE_SUFFIX. For example, in the

Chapter 10. OLE DB user-defined table functions 327

following EXTERNAL NAME the specified rowset includes catalog name pubs and

schema name dbo for a rowset called authors, with the quote character " used to

enclose the names.

 EXTERNAL NAME ’!"pubs"."dbo"."authors"!Provider=SQLOLEDB.1;...’;

For more information on constructing fully qualified names, refer to Microsoft OLE

DB 2.0 Programmer’s Reference and Data Access SDK, Microsoft Press, 1998, and the

documentation for your OLE DB provider.

Supported SQL data types in OLE DB

The following table shows how DB2 data types map to the OLE DB data types as

described in Microsoft OLE DB 2.0 Programmer’s Reference and Data Access SDK,

Microsoft Press, 1998. Use the mapping table to define the appropriate RETURNS

TABLE columns in your OLE DB table functions. For example, if you define an

OLE DB table function with a column of data type INTEGER, DB2 requests the

data from the OLE DB provider as DBTYPE_I4.

For mappings of OLE DB provider source data types to OLE DB data types, refer

to the OLE DB provider documentation. For examples of how the ANSI SQL,

Microsoft Access, and Microsoft SQL Server providers might map their respective

data types to OLE DB data types, refer to the Microsoft OLE DB 2.0 Programmer’s

Reference and Data Access SDK, Microsoft Press, 1998.

 Table 47. Mapping DB2 Data Types to OLE DB

DB2 Data Type OLE DB Data Type

SMALLINT DBTYPE_I2

INTEGER DBTYPE_I4

BIGINT DBTYPE_I8

REAL DBTYPE_R4

FLOAT/DOUBLE DBTYPE_R8

DEC (p, s) DBTYPE_NUMERIC (p, s)

DATE DBTYPE_DBDATE

TIME DBTYPE_DBTIME

TIMESTAMP DBTYPE_DBTIMESTAMP

CHAR(N) DBTYPE_STR

VARCHAR(N) DBTYPE_STR

LONG VARCHAR DBTYPE_STR

CLOB(N) DBTYPE_STR

CHAR(N) FOR BIT DATA DBTYPE_BYTES

VARCHAR(N) FOR BIT DATA DBTYPE_BYTES

LONG VARCHAR FOR BIT DATA DBTYPE_BYTES

BLOB(N) DBTYPE_BYTES

GRAPHIC(N) DBTYPE_WSTR

VARGRAPHIC(N) DBTYPE_WSTR

LONG GRAPHIC DBTYPE_WSTR

DBCLOB(N) DBTYPE_WSTR

328 Developing User-defined Routines (SQL and External)

Note: OLE DB data type conversion rules are defined in the Microsoft OLE DB 2.0

Programmer’s Reference and Data Access SDK, Microsoft Press, 1998. For example:

v To retrieve the OLE DB data type DBTYPE_CY, the data can get converted to

OLE DB data type DBTYPE_NUMERIC(19,4), which maps to DB2 data type

DEC(19,4).

v To retrieve the OLE DB data type DBTYPE_I1, the data can get converted to

OLE DB data type DBTYPE_I2, which maps to DB2 data type SMALLINT.

v To retrieve the OLE DB data type DBTYPE_GUID, the data can get converted to

OLE DB data type DBTYPE_BYTES, which maps to DB2 data type CHAR(12)

FOR BIT DATA.

Chapter 10. OLE DB user-defined table functions 329

330 Developing User-defined Routines (SQL and External)

Chapter 11. Routine invocation

Once a routine has been developed and created in the database by issuing the

CREATE statement, if the appropriate routine privileges have been granted to the

routine definer and routine invoker, the routine can be invoked.

Each routine type serves a different purpose and is used in a different way. The

prerequisites for invoking routines is common, but the implementation of the

invocation differs for each.

Prerequisites for routine invocation

v The routine must have been created in the database using the CREATE

statement.

v For an external routine, the library or class file must be installed in location

specified by the EXTERNAL clause of the CREATE statement, or an error

(SQLCODE SQL0444, SQLSTATE 42724) will occur.

v The routine invoker must have the EXECUTE privilege on the routine. If the

invoker is not authorized to execute the routine, an error (SQLSTATE 42501) will

occur.

Procedure invocation

Procedures are invoked by executing the CALL statement with a reference to a

procedure.

The CALL statement enables the procedure invocation, the passing of parameters

to the procedure, and the receiving of parameters returned from the procedure.

Any accessible result sets returned from a procedure can be processed once the

procedure has successfully returned.

Procedures can be invoked from anywhere that the CALL statement is supported

including:

v client applications

v External routines (procedure, UDF, or method)

v SQL routines (procedure, UDF, or method)

v Triggers (before triggers, after triggers, or instead of triggers)

v Dynamic compound statements

v Command line processor (CLP)

If you choose to invoke a procedure from a client application or from an external

routine, the client application or external routine can be written in a language

other than that of the procedure. For example, a client application written in C++

can use the CALL statement to invoke a procedure written in Java. This provides

programmers with great flexibility to program in their language of choice and to

integrate code pieces written in different languages.

In addition, the client application that invokes the procedure can be executed on a

different operating system than the one where the procedure resides. For example

a client application running on a Windows operating system can use the CALL

statement to invoke a procedure residing on a Linux database server.

© Copyright IBM Corp. 1993, 2007 331

Depending on where a procedure is invoked from there might be some additional

considerations.

Function invocation

Functions are intended to be referenced within SQL statements.

Built-in functions, sourced aggregate functions, and scalar user-defined can be

referenced wherever an expression is allowed within an SQL statement. For

example within the select-list of a query or within the VALUES clause of an

INSERT statement. Table functions can only be referenced in the FROM clause. For

example in the FROM clause of a query or a data change statement.

Method invocation

Methods are similar to scalar functions except that they are used to give behavior

to structured types. Method invocation is the same as scalar user-defined function

invocation, except that one of the parameters to the method must be the structured

type that the method operates on.

Routine invocation related-tasks

To invoke a particular type of routine:

v “Calling procedures from applications or external routines” on page 339

v “Calling procedures from triggers or SQL routines” on page 340

v See “Call a procedure from a CLI application” in the manual called the CLI

Guide and Reference

v “Calling procedures from the Command Line Processor (CLP)” on page 343

v “Invoking scalar functions or methods” on page 350

v “Invoking user-defined table functions” on page 351

Authorizations and binding of routines that contain SQL

When discussing routine level authorization it is important to define some roles

related to routines, the determination of the roles, and the privileges related to

these roles:

Package Owner

The owner of a particular package that participates in the implementation

of a routine. The package owner is the user who executes the BIND

command to bind a package with a database, unless the OWNER

precompile/BIND option is used to override the package ownership and

set it to an alternate user. Upon execution of the BIND command, the

package owner is granted EXECUTE WITH GRANT privilege on the

package. A routine library or executable can be comprised of multiple

packages and therefore can have multiple package owners associated with

it.

Routine Definer

 The ID that issues the CREATE statement to register a routine. The routine

definer is generally a DBA, but is also often the routine package owner.

When a routine is invoked, at package load time, the authorization to run

the routine is checked against the definer’s authorization to execute the

package or packages associated with the routine (not against the

332 Developing User-defined Routines (SQL and External)

authorization of the routine invoker). For a routine to be successfully

invoked, the routine definer must have one of:

v EXECUTE privilege on the package or packages of the routine and

EXECUTE privilege on the routine

v SYSADM or DBADM authority

If the routine definer and the routine package owner are the same user,

then the routine definer will have the required EXECUTE privileges on the

packages. If the definer is not the package owner, the definer must be

explicitly granted EXECUTE privilege on the packages by the package

owner or any user with SYSADM or DBADM authority.

 Upon issuing the CREATE statement that registers the routine, the definer

is implicitly granted the EXECUTE WITH GRANT OPTION privilege on

the routine.

 The routine definer’s role is to encapsulate under one authorization ID, the

privileges of running the packages associated with a routine and the

privilege of granting EXECUTE privilege on the routine to PUBLIC or to

specific users that need to invoke the routine.

Note: For SQL routines the routine definer is also implicitly the package

owner. Therefore the definer will have EXECUTE WITH GRANT OPTION

on both the routine and on the routine package upon execution of the

CREATE statement for the routine.

Routine Invoker

The ID that invokes the routine. To determine which users will be invokers

of a routine, it is necessary to consider how a routine can be invoked.

Routines can be invoked from a command window or from within an

embedded SQL application. In the case of methods and UDFs the routine

reference will be embedded in another SQL statement. A procedure is

invoked by using the CALL statement. For dynamic SQL in an application,

the invoker is the runtime authorization ID of the immediately higher-level

routine or application containing the routine invocation (however, this ID

can also depend on the DYNAMICRULES option with which the

higher-level routine or application was bound). For static SQL, the invoker

is the value of the OWNER precompile/BIND option of the package that

contains the reference to the routine. To successfully invoke the routine,

these users will require EXECUTE privilege on the routine. This privilege

can be granted by any user with EXECUTE WITH GRANT OPTION

privilege on the routine (this includes the routine definer unless the

privilege has been explicitly revoked), SYSADM or DBADM authority by

explicitly issuing a GRANT statement.

As an example, if a package associated with an application containing dynamic

SQL was bound with DYNAMICRULES BIND, then its runtime authorization ID

will be its package owner, not the person invoking the package. Also, the package

owner will be the actual binder or the value of the OWNER precompile/bind

option. In this case, the invoker of the routine assumes this value rather than the

ID of the user who is executing the application.

Note:

Chapter 11. Routine invocation 333

1. For static SQL within a routine, the package owner’s privileges must be

sufficient to execute the SQL statements in the routine body. These SQL

statements might require table access privileges or execute privileges if there

are any nested references to routines.

2. For dynamic SQL within a routine, the userid whose privileges will be

validated are governed by the DYNAMICRULES option of the BIND of the

routine body.

3. The routine package owner must GRANT EXECUTE on the package to the

routine definer. This can be done before or after the routine is registered, but it

must be done before the routine is invoked otherwise an error (SQLSTATE

42051) will be returned.

The steps involved in managing the execute privilege on a routine are detailed in

the diagram and text that follows:

1. Definer performs the appropriate CREATE statement to register the routine.

This registers the routine in DB2 with its intended level of SQL access,

Database
administrator 1 has:

User ID of the
routine invoker has:

EXECUTE on package
privilege

EXECUTE WITH GRANT
OPTION on routine privilege

Binds the routine package
using the BIND command

Discuss the
location of the
routine library

Grants the EXECUTE
on package privilege

Grants the EXECUTE on routine

privilege to the routine invoker

Database
administrator 1

Programmer 1

Creates the routine using
the CREATE statement

The routine is

successfully invoked

EXECUTE on
routine privilege

Invokes the routine

Programmer 1 has:

EXECUTE WITH GRANT
OPTION on package privilege

Figure 3. Managing the EXECUTE privilege on routines

334 Developing User-defined Routines (SQL and External)

establishes the routine signature, and also points to the routine executable. The

definer, if not also the package owner, needs to communicate with the package

owners and authors of the routine programs to be clear on where the routine

libraries reside so that this can be correctly specified in the EXTERNAL clause

of the CREATE statement. By virtue of a successful CREATE statement, the

definer has EXECUTE WITH GRANT privilege on the routine, however the

definer does not yet have EXECUTE privilege on the packages of the routine.

2. Definer must grant EXECUTE privilege on the routine to any users who are to

be permitted use of the routine. (If the package for this routine will recursively

call this routine, then this step must be done before the next step.)

3. Package owners precompile and bind the routine program, or have it done on

their behalf. Upon a successful precompile and bind, the package owner is

implicitly granted EXECUTE WITH GRANT OPTION privilege on the

respective package. This step follows step one in this list only to cover the

possibility of SQL recursion in the routine. If such recursion does not exist in

any particular case, the precompile/bind could precede the issuing of the

CREATE statement for the routine.

4. Each package owner must explicitly grant EXECUTE privilege on their

respective routine package to the definer of the routine. This step must come at

some time after the previous step. If the package owner is also the routine

definer, this step can be skipped.

5. Static usage of the routine: the bind owner of the package referencing the

routine must have been given EXECUTE privilege on the routine, so the

previous step must be completed at this point. When the routine executes, DB2

verifies that the definer has the EXECUTE privilege on any package that is

needed, so step 3 must be completed for each such package.

6. Dynamic usage of the routine: the authorization ID as controlled by the

DYNAMICRULES option for the invoking application must have EXECUTE

privilege on the routine (step 4), and the definer of the routine must have the

EXECUTE privilege on the packages (step 3).

Routine names and paths

The qualified name of a stored procedure or UDF is schema-name.routine-name.

You can use this qualified name anywhere you refer to a stored procedure or UDF.

For example:

 SANDRA.BOAT_COMPARE SMITH.FOO SYSIBM.SUBSTR SYSFUN.FLOOR

However, you can also omit the schema-name., in which case, DB2 will attempt to

identify the stored procedure or UDF to which you are referring. For example:

 BOAT_COMPARE FOO SUBSTR FLOOR

The qualified name of a method is schema-name.type..method-name.

The concept of SQL path is central to DB2’s resolution of unqualified references that

occur when you do not use the schema-name. The SQL path is an ordered list of

schema names. It provides a set of schemas for resolving unqualified references to

stored procedures, UDFs, and types. In cases where a reference matches a stored

procedure, type, or UDF in more than one schema in the path, the order of the

schemas in the path is used to resolve this match. The SQL path is established by

means of the FUNCPATH option on the precompile and bind commands for static

SQL. The SQL path is set by the SET PATH statement for dynamic SQL. The SQL

path has the following default value:

 "SYSIBM","SYSFUN","SYSPROC", "ID"

Chapter 11. Routine invocation 335

This applies to both static and dynamic SQL, where ID represents the current

statement authorization ID.

Routine names can be overloaded, which means that multiple routines, even in the

same schema, can have the same name. Multiple functions or methods with the

same name can have the same number of parameters, as long as the data types

differ. This is not true for stored procedures, where multiple stored procedures

with the same name must have different numbers of parameters. Instances of

different routine types do not overload one-another, except for methods, which are

able to overload functions. For a method to overload a function, the method must

be registered using the WITH FUNCTION ACCESS clause.

A function, a stored procedure, and a method can have identical signatures and be

in the same schema without overloading each other. In the context of routines,

signatures are the qualified routine name concatenated with the defined data types

of all the parameters in the order in which they are defined.

Methods are invoked against instances of their associated structured type. When a

subtype is created, among the attributes it inherits are the methods defined for the

supertype. Hence, a supertype’s methods can also be run against any instances of

its subtypes. When defining a subtype you can override the supertype’s method. To

override a method means to reimplement it specifically for a given subtype. This

facilitates the dynamic dispatch of methods (also known as polymorphism), where

an application will execute the most specific method depending on the type of the

structured type instance (for example, where it is situated in the structured type

hierarchy).

Each routine type has its own selection algorithm that takes into account the facts

of overloading (in the case of methods, and overriding) and SQL path to choose

the most appropriate match for every routine reference.

Nested routine invocations

In the context of routines, nesting refers to the situation where one routine invokes

another. That is to say, the SQL issued by one routine can reference another

routine, which could issue SQL that again references another routine, and so on. If

the series of routines that is referenced contains a routine that was previously

referenced this is said to be a recursive nesting situation.

You can use nesting and recursion in your DB2 routines under the following

restrictions:

64 levels of nesting

You can nest routine invocations up to 64 levels deep. Consider a scenario

in which routine A calls routine B, and routine B calls routine C. In this

example, the execution of routine C is at nesting level 3. A further 61 levels

of nesting are possible.

Other restrictions

A routine cannot call a target routine that is cataloged with a higher SQL

data access level. For example, a UDF created with the CONTAINS SQL

clause can call stored procedures created with either the CONTAINS SQL

clause or the NO SQL clause. However, this routine cannot call stored

procedures created with either the READS SQL DATA clause or the

MODIFIES SQL DATA clause (SQLCODE -577, SQLSTATE 38002). This is

because the invoker’s SQL level does not allow any read or modify

operations to occur (this is inherited by the routine being invoked).

336 Developing User-defined Routines (SQL and External)

Another limitation when nesting routines is that access to tables is

restricted to prevent conflicting read and write operations between

routines.

Invoking 32-bit routines on a 64-bit database server

In 64-bit DB2 instances, it is possible to invoke C and COBOL routines that

reference 32-bit external routine libraries, however these routines must be specified

to run as fenced and not threadsafe. This is done by including both the FENCED

clause and NOT THREADSAFE clause in the routine CREATE statement when

creating a new routine. For routines that have already been created in the 64-bit

instance, the ALTER FUNCTION or ALTER PROCEDURE statements can be used

to modify the routine definition. The first time such a 32- bit routine is invoked in

a 64- environment, there will be a performance degradation. Subsequent

invocations of the 32-bit stored procedure will perform as well as an equivalent

64-bit routine. Use of 32-bit routines in 64-bit DB2 instances is discouraged.

To successfully invoke Java procedures in a 64-bit DB2 instance on a 64-bit

database server, a 64-bit Java Virtual Machine (JVM) is required. 32-bit JVMs are

not supported for running routines in 64-bit DB2 instances. Since Java classes are

platform independent a Java class compiled with a 32-bit software development kit

can run successfully with a 64-bit JVM. Routine performance is not impacted by

doing this.

To invoke existing 32-bit routines on a 64-bit server:

1. Copy the routine class or library to the database routines directory:

v UNIX: sqllib/function

v Windows: sqllib\function
2. Register the stored procedure with the CREATE PROCEDURE statement.

3. Invoke the stored procedure with the CALL statement.

Routine code page considerations

Character data is passed to external routines in the code page implied by the

PARAMETER CCSID option used when the routine was created. Similarly, a

character string that is output from the routine is assumed by the database to use

the code page implied by the PARAMETER CCSID option.

When a client program (using, for example, code page C) accesses a section with a

different code page (for example, code page S) that invokes a routine using a

different code page (for example, code page R), the following events occur:

1. When an SQL statement is invoked, input character data is converted from the

code page of the client application (C) to the one associated with the section

(S). Conversion does not occur for BLOBs or data that will be used as FOR BIT

DATA.

2. If the code page of the routine is not the same as the code page of the section,

then before the routine is invoked, input character data (except for BLOB and

FOR BIT DATA) is converted to the code page of the routine (R).

It is strongly recommended that you precompile, compile, and bind the server

routine using the code page that the routine will be invoked under (R). This

might not be possible in all cases. For example, you can create a Unicode

database in a Windows environment. However, if the Windows environment

does not have the Unicode code page, you have to precompile, compile, and

Chapter 11. Routine invocation 337

bind the application that creates the routine in a Windows code page. The

routine will work if the application has no special delimiter characters that the

precompiler does not understand.

3. When the routine finishes, the database manager converts all output character

data from the routine code page (R) to the section code page (S) if necessary. If

the routine raised an error during its execution, the SQLSTATE and diagnostic

message from the routine will also be converted from the routine code page to

the section code page. Conversion does not happen for BLOB or FOR BIT

DATA character strings.

4. When the statement finishes, output character data is converted from the

section code page (S) back to code page of the client application (C).

Conversion does not occur for BLOBS or for data that was used as FOR BIT

DATA.

By using the DBINFO option on the CREATE FUNCTION, CREATE PROCEDURE,

and CREATE TYPE statements, the routine code page is passed to the routine.

Using this information, a routine that is sensitive to the code page can be written

to operate in many different code pages.

References to procedures

Stored Procedures are invoked from the CALL statement where they are referenced

by a qualified name (schema and stored procedure name), followed by a list of

arguments enclosed by parentheses. A stored procedure can also be invoked

without the schema name, resulting in a choice of possible stored procedures in

different schemas with the same number of parameters.

Each parameter passed to the stored procedure can be composed of a host variable,

parameter marker, expression, or NULL. The following are restrictions for stored

procedure parameters:

v OUT and INOUT parameters must be host variables.

v NULLs cannot be passed to Java stored procedures unless the SQL data type

maps to a Java class type.

v NULLs cannot be passed to PARAMETER STYLE GENERAL stored procedures.

The position of the arguments is important and must conform to the stored

procedure definition for the semantics to be correct. Both the position of the

arguments and the stored procedure definition must conform to the stored

procedure body itself. DB2 does not attempt to shuffle arguments to better match a

stored procedure definition, and DB2 does not understand the semantics of the

individual stored procedure parameters.

Procedure selection

Given a stored procedure invocation, the database manager must decide which of

the possible stored procedures with the same name to call. Stored procedure

resolution is done using the steps that follow.

1. Find all stored procedures from the catalog (SYSCAT.ROUTINES), such that all

of the following are true:

v For invocations where the schema name was specified (that is, qualified

references), the schema name and the stored procedure name match the

invocation name.

338 Developing User-defined Routines (SQL and External)

v For invocations where the schema name was not specified (that is,

unqualified references), the stored procedure name matches the invocation

name, and has a schema name that matches one of the schemas in the SQL

path.

v The number of defined parameters matches the invocation.

v The invoker has the EXECUTE privilege on the stored procedure.
2. Choose the stored procedure whose schema is earliest in the SQL path.

If there are no candidate stored procedures remaining after the first step, an error

is returned (SQLSTATE 42884).

Calling procedures

Once the activities required to create a procedure (also called a stored procedure)

have been completed, a procedure can be invoked by using the CALL statement.

The CALL statement is an SQL statement that enables the procedure invocation,

the passing of parameters to the procedure, and the receiving of parameters

returned from the procedure. Any accessible result sets returned from a procedure

can be processed once the procedure has successfully returned. Procedures can be

invoked from anywhere that the CALL statement is supported including:

v an embedded SQL client application

v an external routine (procedure, UDF, or method)

v an SQL routine (procedure, UDF, or method)

v an SQL trigger (BEFORE TRIGGER, AFTER TRIGGER, or INSTEAD OF

TRIGGER)

v an SQL dynamic compound statement

v from the Command Line Processor (CLP)

If you choose to invoke a procedure from a client application or from an external

routine, the client application or external routine can be written in a language

other than that of the procedure. For example, a client application written in C++

can use the CALL statement to invoke a procedure written in Java. This provides

programmers with great flexibility to program in their language of choice and to

integrate code pieces written in different languages.

In addition, the client application that invokes the procedure can be executed on a

different platform than the one where the procedure resides. For example a client

application running on a Windows platform can use the CALL statement to invoke

a procedure residing on a Linux database server.

To see how you can call a procedure from a particular interface see:

v “Calling procedures from triggers or SQL routines” on page 340

v “Calling procedures from applications or external routines”

v

v Calling procedures from the Command Line Processor (CLP).

Calling procedures from applications or external routines

Invoking a procedure (also called a stored procedure) that encapsulates logic from

a client application or from an application associated with an external routine is

easily done with some simple setup work in the application and by using the

CALL statement.

Chapter 11. Routine invocation 339

The procedure must have been created in the database by executing the CREATE

PROCEDURE statement.

For external procedures, the library or class file must exist in the location specified

by the EXTERNAL clause in the CREATE PROCEDURE statement.

The procedure invoker must have the privileges required to execute the CALL

statement. The procedure invoker in this case is the user ID executing the

application, however special rules apply if the DYNAMICRULES bind option is

used for the application.

Certain elements must be included in your application if you want that application

to invoke a procedure. In writing your application you must do the following:

1. Declare, allocate, and initialize storage for the optional data structures and host

variables or parameter markers required for the CALL statement. To do this:

v Assign a host variable or parameter marker to be used for each parameter of

the procedure.

v Initialize the host variables or parameter markers that correspond to IN or

INOUT parameters.
2. Establish a database connection. Do this by executing an embedded SQL

language CONNECT TO statement, or by coding an implicit database

connection.

3. Code the procedure invocation. After the database connection code, you can

code the procedure invocation. Do this by executing the SQL language CALL

statement. Be sure to specify a host variable, constant, or parameter marker for

each IN, INOUT, OUT parameter that the procedure expects.

4. Add code to process the OUT and INOUT parameters, and result sets. This

code must come after the CALL statement execution.

5. Code a database COMMIT or ROLLBACK. Subsequent to the CALL statement

and evaluation of output parameter values or data returned by the procedure,

you might want your application to commit or roll back the transaction. This

can be done by including a COMMIT or ROLLBACK statement. A procedure

can include a COMMIT or ROLLBACK statement, however it is recommended

practice that transaction management be done within the client application.

Note: Procedures invoked from an application that established a type 2

connection to the database, cannot issue COMMIT or ROLLBACK statements.

6. Disconnect from the database.

7. Prepare, compile, link, and bind your application. If the application is for an

external routine, issue the CREATE statement to create the routine and locate

your external code library in the appropriate function path for your operating

system so that the database manager can find it.

8. Run your application or invoke your external routine. The CALL statement that

you embedded in your application will be invoked.

Note: You can code SQL statements and routine logic at any point between steps 2

and 5.

Calling procedures from triggers or SQL routines

Calling a procedure from an SQL routine, a trigger, or dynamic compound

statement is essentially the same. The same steps are used to implement this call.

This topic explains the steps using a trigger scenario. Any prerequisites or steps

that differ when calling a procedure from a routine or dynamic compound

statement are stated.

340 Developing User-defined Routines (SQL and External)

Prerequisites

v The procedure must have been created in the database by executing the

CREATE PROCEDURE statement.

v For external procedures, the library or class files must be in the location

specified by the EXTERNAL clause of the CREATE PROCEDURE

statement.

v The creator of a trigger that contains a CALL statement must have the

privilege to execute the CALL statement. At runtime when a trigger is

activated it is the authorization of the creator of the trigger that is

checked for the privilege to execute the CALL statement. A user that

executes a dynamic compound statement that contains a CALL

statement, must have the privilege to execute the CALL statement for

that procedure.

v To invoke a trigger, a user must have the privilege to execute the data

change statement associated with the trigger event. Similarly, to

successfully invoke an SQL routine or dynamic compound statement a

user must have the EXECUTE privilege on the routine.

When invoking a procedure from within an SQL trigger, an SQL routine, or a

dynamic compound statement the following restrictions apply:

v In partitioned database environments procedures cannot be invoked from

triggers or SQL UDFs.

v On symmetric multi-processor (SMP) machines, procedure calls from triggers are

executed on a single processor.

v A procedure that is to be called from a trigger must not contain a COMMIT

statement or a ROLLBACK statement that attempts to rollback the unit of work.

The ROLLBACK TO SAVEPOINT statement is supported within the procedure

however the specified savepoint must be in the procedure.

v A rollback of a CALL statement from within a trigger will not rollback any

external actions effected by the procedures, such as writing to the file system.

v The procedure must not modify any federated table. This means that the

procedure must not contain a searched UPDATE of a nickname, a searched

DELETE from a nickname or an INSERT to a nickname.

v Result sets specified for the procedure will not be accessible.

BEFORE triggers can not be created if they contain a CALL statement that

references a procedure created with an access level of MODIFIES SQL DATA. The

execution of a CREATE TRIGGER statement for such a trigger will fail with error

(SQLSTATE 42987). For more about SQL access levels in routines see:

v “SQL access levels in routines” on page 40

v SQL in external routines

This procedure section explains how to create and invoke a trigger that contains a

CALL statement. The SQL required to call a procedure from a trigger is the same

SQL required to call a procedure from an SQL routine or dynamic compound

statement.

1. Write a basic CREATE TRIGGER statement specifying the desired trigger

attributes. See the CREATE TRIGGER statement.

2. In the trigger action portion of the trigger you can declare SQL variables for

any IN, INOUT, OUT parameters that the procedure specifies. See the

Chapter 11. Routine invocation 341

DECLARE statement. To see how to initialize or set these variables see the

assignment statement. Trigger transition variables can also be used as

parameters to a procedure.

3. In the trigger action portion of the trigger add a CALL statement for the

procedure. Specify a value or expression for each of the procedure’s IN,

INOUT, and OUT parameters

4. For SQL procedures you can optionally capture the return status of the

procedure by using the GET DIAGNOSTICS statement. To do this you will

need to use an integer type variable to hold the return status. Immediately after

the CALL statement, simply add a GET DIAGNOSTICS statement that assigns

RETURN_STATUS to your local trigger return status variable.

5. Having completed writing your CREATE TRIGGER statement you can now

execute it statically (from within an application) or dynamically (from the CLP,

or from the Control Center) to formally create the trigger in the database.

6. Invoke your trigger. Do this by executing against the appropriate data change

statement that corresponds to your trigger event.

7. When the data change statement is executed against the table, the appropriate

triggers defined for that table are fired. When the trigger action is executed, the

SQL statements contained within it, including the CALL statement, are

executed.

Run-time errors

If the procedure attempts to read or write to a table that the trigger also

reads or writes to, an error might be raised if a read or write conflict is

detected. The set of tables that the trigger modifies, including the table for

which the trigger was defined must be exclusive from the tables modified

by the procedure.

Example: Calling an SQL procedure from a trigger

This example illustrates how you can embed a CALL statement to invoke a

procedure within a trigger and how to capture the return status of the procedure

call using the GET DIAGNOSTICS statement. The SQL below creates the necessary

tables, an SQL PL language procedure, and an after trigger.

CREATE TABLE T1 (c1 INT, c2 CHAR(2))@

CREATE TABLE T2 (c1 INT, c2 CHAR(2))@

CREATE PROCEDURE proc(IN val INT, IN name CHAR(2))

LANGUAGE SQL

DYNAMIC RESULTSETS 0

MODIFIES SQL DATA

BEGIN

 DECLARE rc INT DEFAULT 0;

 INSERT INTO TABLE T2 VALUES (val, name);

 GET DIAGNOSTICS rc = ROW_COUNT;

 IF (rc > 0) THEN

 RETURN 0;

 ELSE

 RETURN -200;

 END IF;

END@

CREATE TRIGGER trig1 AFTER UPDATE ON t1

REFERENCING NEW AS n

FOR EACH ROW

WHEN (n.c1 > 100);

BEGIN ATOMIC

 DECLARE rs INTEGER DEFAULT 0;

342 Developing User-defined Routines (SQL and External)

CALL proc(n.c1, n.c2);

 GET DIAGNOSTICS rs = RETURN_STATUS;

 VALUES(CASE WHEN rc < 0 THEN RAISE_ERROR(’70001’, ’PROC CALL failed’));

END@

Issuing the following SQL statement will cause the trigger to fire and the

procedure will be invoked.

UPDATE T1 SET c1 = c1+1 WHERE c2 = ’CA’@

Calling procedures from the Command Line Processor (CLP)

You can call stored procedures by using the CALL statement from the DB2

command line processor interface. The stored procedure being called must be

defined in the DB2 system catalog tables.

To call the stored procedure, first connect to the database:

 db2 connect to sample user userid using password

where userid and password are the user ID and password of the instance where the

sample database is located.

To use the CALL statement, enter the stored procedure name plus any IN or INOUT

parameter values, as well as ’?’ as a place-holder for each OUT parameter value.

The parameters for a stored procedure are given in the CREATE PROCEDURE statement

for the stored procedure in the program source file.

SQL procedure examples

Example 1.

 In the whiles.db2 file, the CREATE PROCEDURE statement for the DEPT_MEDIAN

procedure signature is as follows:

 CREATE PROCEDURE DEPT_MEDIAN

 (IN deptNumber SMALLINT, OUT medianSalary DOUBLE)

To invoke this procedure, use the CALL statement in which you must

specify the procedure name and appropriate parameter arguments, which

in this case are the value for the IN parameter, and a question mark, ’?’, for

the value of the OUT parameter. The procedure’s SELECT statement uses

the deptNumber value on the DEPT column of the STAFF table, so to get

meaningful output the IN parameter needs to be a valid value from the

DEPT column; for example, the value ″51″:

 db2 call dept_median (51, ?)

Note: On UNIX platforms the parentheses have special meaning to the

command shell, so they must be preceded with a ″\″ character or

surrounded with quotation marks, as follows:

 db2 "call dept_median (51, ?)"

You do not use quotation marks if you are using the interactive mode of

the command line processor.

After running the above command, you should receive this result:

 Value of output parameters

 Parameter Name : MEDIANSALARY

 Parameter Value : +1.76545000000000E+004

 Return Status = 0

Chapter 11. Routine invocation 343

Example 2.

 This example illustrates how to call a procedure with array parameters.

Type phonenumbers is defined as:

CREATE TYPE phonenumbers AS VARCHAR(12) ARRAY[1000]

Procedure find_customers, defined below, has an IN and an OUT

parameter of type phonenumbers. The procedure searches for numbers in

numbers_in that begin with the given area_code, and reports them in

numbers_out.

CREATE PROCEDURE find_customers(

IN numbers_in phonenumbers,

IN area_code CHAR(3),

OUT numbers_out phonenumbers)

BEGIN

DECLARE i, j, max INTEGER;

SET i = 1;

SET j = 1;

SET numbers_out = NULL;

SET max = CARDINALITY(numbers_in);

WHILE i <= max DO

IF substr(numbers_in[i], 1, 3) = area_code THEN

SET numbers_out[j] = numbers_in[i];

SET j = j + 1;

END IF;

SET i = i + 1;

END WHILE;

END

To invoke the procedure, you can use the following CALL statement:

db2 CALL find_customers(ARRAY[‘416-305-3745’,

 ‘905-414-4565’,

 ‘416-305-3746’],

 ‘416’,

 ?)

As shown in the CALL statement, when a procedure has an input

parameter of an array data type, the input argument can be specified with

an array constructor containing a list of literal values.

 After running the command, you should receive a result like this:

Value of output parameters

 Parameter Name : OUT_PHONENUMBERS

 Parameter Value : [‘416-305-3745’,

 ‘416-305-3746’]

 Return Status = 0

C stored procedure example

 You can also call stored procedures created from supported host languages

with the Command Line Processor. In the samples/c directory on UNIX,

and the samples\c directory on Windows, DB2 provides files for creating

stored procedures. The spserver shared library contains a number of

stored procedures that can be created from the source file, spserver.sqc.

The spcreate.db2 file catalogs the stored procedures.

 In the spcreate.db2 file, the CREATE PROCEDURE statement for the

MAIN_EXAMPLE procedure begins:

344 Developing User-defined Routines (SQL and External)

CREATE PROCEDURE MAIN_EXAMPLE (IN job CHAR(8),

 OUT salary DOUBLE,

 OUT errorcode INTEGER)

To call this stored procedure, you need to put in a CHAR value for the IN

parameter, job, and a question mark, ’?’, for each of the OUT parameters.

The procedure’s SELECT statement uses the job value on the JOB column

of the EMPLOYEE table, so to get meaningful output the IN parameter

needs to be a valid value from the JOB column. The C sample program,

spclient, that calls the stored procedure, uses ’DESIGNER’ for the JOB

value. We can do the same, as follows:

 db2 "call MAIN_EXAMPLE (’DESIGNER’, ?, ?)"

After running the above command, you should receive this result:

 Value of output parameters

 Parameter Name : SALARY

 Parameter Value : +2.37312500000000E+004

 Parameter Name : ERRORCODE

 Parameter Value : 0

 Return Status = 0

An ERRORCODE of zero indicates a successful result.

 Comparing with the spclient program, notice that spclient has formatted

the result in decimal for easier viewing:

CALL stored procedure named MAIN_EXAMPLE

Stored procedure returned successfully

Average salary for job DESIGNER = 23731.25

Calling stored procedures from CLI applications

CLI applications invoke stored procedures by executing the CALL procedure SQL

statement. This topic describes how to call stored procedures from CLI

applications.

Before calling a stored procedure, ensure that you have initialized your CLI

application.

If the stored procedure being called is uncataloged, ensure that it does not call any

of the CLI schema functions. Calling CLI schema functions from uncataloged

stored procedures is not supported.

The CLI schema functions are: SQLColumns(), SQLColumnPrivileges(),

SQLForeignKeys(), SQLPrimaryKeys(), SQLProcedureColumns(), SQLProcedures(),

SQLSpecialColumns(), SQLStatistics(), SQLTables(), and SQLTablePrivileges().

To call a stored procedure:

1. Declare application host variables corresponding to each of the IN, INOUT, and

OUT parameters of the stored procedure. Ensure the application variable data

types and lengths match the data types and lengths of the arguments in the

stored procedure signature. DB2 CLI supports calling stored procedures with

all SQL types as parameter markers.

2. Initialize the IN, INOUT, and OUT parameter application variables.

3. Issue the CALL SQL statement. For example:

 SQLCHAR *stmt = (SQLCHAR *)"CALL OUT_LANGUAGE (?)";

Chapter 11. Routine invocation 345

For optimal performance, applications should use parameter markers for stored

procedure arguments in the CALL procedure string and then bind the host

variables to those parameter markers. If inbound stored procedure arguments

must be specified as string literals rather than parameter markers, however,

include the ODBC call escape clause delimiters { } in the CALL procedure

statement. For example:

 SQLCHAR *stmt = (SQLCHAR *)"{CALL IN_PARAM (123, ’Hello World!’)}";

When string literals and the ODBC escape clause are used in a CALL procedure

statement, the string literals can only be specified as IN mode stored procedure

arguments. INOUT and OUT mode stored procedure arguments must still be

specified using parameter markers.

4. Optional: Prepare the CALL statement by calling SQLPrepare().

5. Bind each parameter of the CALL procedure statement by calling

SQLBindParameter().

Note: Ensure each parameter is bound correctly (to SQL_PARAM_INPUT,

SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT), otherwise

unexpected results could occur when the CALL procedure statement is

executed. This would happen, for example, if an input parameter was

incorrectly bound with an InputOutputType of SQL_PARAM_OUTPUT.

6. Execute the CALL procedure statement using SQLExecDirect(), or if the CALL

procedure statement was prepared in step 4, SQLExecute().

Note: If an application or thread that has invoked a stored procedure is

terminated before the stored procedure completes, execution of the stored

procedure will also be terminated. It is important that a stored procedure

contain logic to ensure that the database is in both a consistent and desirable

state if the stored procedure is terminated prematurely.

7. Check the return code of SQLExecDirect() or SQLExecute() when the function

has returned to determine if any errors occurred during execution of either the

CALL procedure statement or the stored procedure. If the return code is

SQL_SUCCESS_WITH_INFO or SQL_ERROR, use the CLI diagnostic functions

SQLGetDiagRec() and SQLGetDiagField() to determine why the error occurred.

If a stored procedure has executed successfully, any variables bound as OUT

parameters may contain data that the stored procedure has passed back to the

CLI application. If applicable, the stored procedure may also return one or

more result sets through non-scrollable cursors. CLI applications should process

stored procedure result sets as they would process result sets generated by

executing SELECT statements.

Note: If a CLI application is unsure of the number or type of parameters in a

result set returned by a stored procedure, the SQLNumResultCols(),

SQLDescribeCol(), and SQLColAttribute() functions can be called (in this

order) on the result set to determine this information.

Once you have executed the CALL statement, you can retrieve result sets from the

stored procedure if applicable.

Note:

The numeric month and day parts of a DATETYPE data type value will appear to

be reversed in procedure result sets that are returned to DB2 CLI applications if

the values are not returned in ISO format. For example, this can happen if a local

format is used instead. To ensure that DATETYPE data type value information is

346 Developing User-defined Routines (SQL and External)

correctly intepreted by a client application, the procedures should be bound to the

database with a locale-independent DATETIME format such as ISO. For example:

v

db2set DB2_SQLROUTINE_PREPOPTS=“DATETIME ISO”

Note:

DB2 CLI packages are automatically bound to databases when the databases are

created or migrated.

References to functions

Each reference to a function, whether it is a UDF, or a built-in function, contains

the following syntax:

��

�

 function_name ()

,

expression

 ��

In the preceding syntax diagram, function_name can be either an unqualified or a

qualified function name. The arguments can number from 0 to 90 and are

expressions. Examples of some components that can compose expressions are the

following:

v a column name, qualified or unqualified

v a constant

v a host variable

v a special register

v a parameter marker

The position of the arguments is important and must conform to the function

definition for the semantics to be correct. Both the position of the arguments and

the function definition must conform to the function body itself. DB2 does not

attempt to shuffle arguments to better match a function definition, and DB2 does

not understand the semantics of the individual function parameters.

Use of column names in UDF argument expressions requires that the table

references that contain the columns have proper scope. For table functions

referenced in a join and using any argument involving columns from another table

or table function, the referenced table or table function must precede the table

function containing the reference in the FROM clause.

In order to use parameter markers in functions you cannot simply code the

following:

 BLOOP(?)

Because the function selection logic does not know what data type the argument

might turn out to be, it cannot resolve the reference. You can use the CAST

specification to provide a type for the parameter marker. For example, INTEGER,

and then the function selection logic can proceed:

 BLOOP(CAST(? AS INTEGER))

Some valid examples of function invocations are:

Chapter 11. Routine invocation 347

AVG(FLOAT_COLUMN)

 BLOOP(COLUMN1)

 BLOOP(FLOAT_COLUMN + CAST(? AS INTEGER))

 BLOOP(:hostvar :indicvar)

 BRIAN.PARSE(CHAR_COLUMN CONCAT USER, 1, 0, 0, 1)

 CTR()

 FLOOR(FLOAT_COLUMN)

 PABLO.BLOOP(A+B)

 PABLO.BLOOP(:hostvar)

 "search_schema"(CURRENT FUNCTION PATH, ’GENE’)

 SUBSTR(COLUMN2,8,3)

 SYSFUN.FLOOR(AVG(EMP.SALARY))

 SYSFUN.AVG(SYSFUN.FLOOR(EMP.SALARY))

 SYSIBM.SUBSTR(COLUMN2,11,LENGTH(COLUMN3))

 SQRT(SELECT SUM(length*length)

 FROM triangles

 WHERE id= ’J522’

 AND legtype <> ’HYP’)

If any of the above functions are table functions, the syntax to reference them is

slightly different than presented previously. For example, if PABLO.BLOOP is a table

function, to properly reference it, use:

 TABLE(PABLO.BLOOP(A+B)) AS Q

Function selection

For both qualified and unqualified function references, the function selection

algorithm looks at all the applicable functions, both built-in and user-defined, that

have:

v The given name

v The same number of defined parameters as arguments in the function reference

v Each parameter identical to or promotable from the type of the corresponding

argument.

Applicable functions are functions in the named schema for a qualified reference,

or functions in the schemas of the SQL path for an unqualified reference. The

algorithm looks for an exact match, or failing that, a best match among these

functions. The SQL path is used, in the case of an unqualified reference only, as the

deciding factor if two identically good matches are found in different schemas.

Exception: If there is an unqualified reference to a function named RID, and the

function is invoked with a single argument that matches a table-reference in the

FROM clause of the subselect, the schema is SYSIBM and the built-in RID function

is invoked.

You can nest function references, even references to the same function. This is

generally true for built-in functions as well as UDFs; however, there are some

limitations when column functions are involved.

For example:

 CREATE FUNCTION BLOOP (INTEGER) RETURNS INTEGER ...

 CREATE FUNCTION BLOOP (DOUBLE) RETURNS INTEGER ...

Now consider the following DML statement:

 SELECT BLOOP(BLOOP(COLUMN1)) FROM T

348 Developing User-defined Routines (SQL and External)

If column1 is a DECIMAL or DOUBLE column, the inner BLOOP reference

resolves to the second BLOOP defined above. Because this BLOOP returns an

INTEGER, the outer BLOOP resolves to the first BLOOP.

Alternatively, if column1 is a SMALLINT or INTEGER column, the inner bloop

reference resolves to the first BLOOP defined above. Because this BLOOP returns

an INTEGER, the outer BLOOP also resolves to the first BLOOP. In this case, you

are seeing nested references to the same function.

By defining a function with the name of one of the SQL operators, you can actually

invoke a UDF using infix notation. For example, suppose you can attach some

meaning to the "+" operator for values which have distinct type BOAT. You can

define the following UDF:

 CREATE FUNCTION "+" (BOAT, BOAT) RETURNS ...

Then you can write the following valid SQL statement:

 SELECT BOAT_COL1 + BOAT_COL2

 FROM BIG_BOATS

 WHERE BOAT_OWNER = ’Nelson Mattos’

But you can also write the equally valid statement:

 SELECT "+"(BOAT_COL1, BOAT_COL2)

 FROM BIG_BOATS

 WHERE BOAT_OWNER = ’Nelson Mattos’

Note that you are not permitted to overload the built-in conditional operators such

as >, =, LIKE, IN, and so on, in this way.

For a more thorough description of function selection, see the Function References

section in the Functions topic listed in the related links.

Distinct types as UDF or method parameters

UDFs and methods can be defined with distinct types as parameters or as the

result. DB2 will pass the value to the UDF or method in the format of the source

data type of the distinct type.

Distinct type values that originate in a host variable and which are used as

arguments to a UDF that has its corresponding parameter defined as a distinct

type, must be explicitly cast to the distinct type by the user. There is no host

language type for distinct types. DB2’s strong typing necessitates this, otherwise

your results can be ambiguous. Consider the BOAT distinct type which is defined

over a BLOB, and consider the BOAT_COST UDF defined as follows:

 CREATE FUNCTION BOAT_COST (BOAT)

 RETURNS INTEGER

 ...

In the following fragment of a C language application, the host variable :ship

holds the BLOB value that is to passed to the BOAT_COST function:

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS BLOB(150K) ship;

 EXEC SQL END DECLARE SECTION;

Both of the following statements correctly resolve to the BOAT_COST function,

because both cast the :ship host variable to type BOAT:

Chapter 11. Routine invocation 349

... SELECT BOAT_COST (BOAT(:ship)) FROM ...

 ... SELECT BOAT_COST (CAST(:ship AS BOAT)) FROM ...

If there are multiple BOAT distinct types in the database, or BOAT UDFs in other

schema, you must exercise care with your SQL path. Your results can otherwise be

ambiguous.

LOB values as UDF parameters

UDFs can be defined with parameters or results having any of the LOB types:

BLOB, CLOB, or DBCLOB. DB2 will materialize the entire LOB value in storage

before invoking such a function, even if the source of the value is a LOB locator

host variable. For example, consider the following fragment of a C language

application:

 EXEC SQL BEGIN DECLARE SECTION;

 SQL TYPE IS CLOB(150K) clob150K ; /* LOB host var */

 SQL TYPE IS CLOB_LOCATOR clob_locator1; /* LOB locator host var */

 char string[40]; /* string host var */

 EXEC SQL END DECLARE SECTION;

Either host variable :clob150K or :clob_locator1 is valid as an argument for a

function whose corresponding parameter is defined as CLOB(500K). For example,

suppose you have registered a UDF as follows:

 CREATE FUNCTION FINDSTRING (CLOB(500K, VARCHAR(200))

 ...

Both of the following invocations of FINDSTRING are valid in the program:

 ... SELECT FINDSTRING (:clob150K, :string) FROM ...

 ... SELECT FINDSTRING (:clob_locator1, :string) FROM ...

UDF parameters or results which have one of the LOB types can be created with

the AS LOCATOR modifier. In this case, the entire LOB value is not materialized

prior to invocation. Instead, a LOB LOCATOR is passed to the UDF, which can

then use SQL to manipulate the actual bytes of the LOB value.

You can also use this capability on UDF parameters or results which have a

distinct type that is based on a LOB. Note that the argument to such a function can

be any LOB value of the defined type; it does not have to be a host variable

defined as one of the LOCATOR types. The use of host variable locators as

arguments is completely orthogonal to the use of AS LOCATOR in UDF

parameters and result definitions.

Invoking scalar functions or methods

The invocation of built-in scalar functions, user-defined scalar-functions and

methods is very similar. Scalar functions and methods can only be invoked where

expressions are supported within an SQL statement.

Prerequisites

v For built-in functions, SYSIBM must be in the CURRENT PATH special register.

SYSIBM is in CURRENT PATH by default.

v For user-defined scalar functions, the function must have been created in the

database using either the CREATE FUNCTION or CREATE METHOD statement.

v For external user-defined scalar functions, the library or class file associated with

the function must be in the location specified by the EXTERNAL clause of the

CREATE FUNCTION or CREATE METHOD statement.

350 Developing User-defined Routines (SQL and External)

v To invoke a user-defined function or method, a user must have EXECUTE

privilege on the function or method. If the function or method is to be used by

all users, the EXECUTE privilege on the function or method can be granted to

PUBLIC. For more privilege related information see the specific CREATE

statement reference.

To invoke a scalar UDF or method:

Include a reference to it within an expression contained in an SQL statement where

it is to process one or more input values. Functions and methods can be invoked

anywhere that an expression is valid. Examples of where a scalar UDF or method

can be referenced include the select-list of a query or in a VALUES clause.

For example, suppose that you have created a user-defined scalar function called

TOTAL_SAL that adds the base salary and bonus together for each employee row

in the EMPLOYEE table.

 CREATE FUNCTION TOTAL_SAL

 (SALARY DECIMAL(9,2), BONUS DECIMAL(9,2))

 RETURNS DECIMAL(9,2)

 LANGUAGE SQL

 CONTAINS SQL

 NO EXTERNAL ACTION

 DETERMINISTIC

 RETURN SALARY+BONUS

The following is a SELECT statement that makes use of TOTAL_SAL:

 SELECT LASTNAME, TOTAL_SAL(SALARY, BONUS) AS TOTAL

 FROM EMPLOYEE

Invoking user-defined table functions

Once the user-defined table function is written and registered with the database,

you can invoke it in the FROM clause of a SELECT statement.

Prerequisites

v The table function must have been created in the database by executing

the CREATE FUNCTION.

v For external user-defined table functions, the library or class file

associated with the function must be in the location specified by the

EXTERNAL clause of the CREATE FUNCTION.

v To invoke a user-defined table function a user must have EXECUTE

privilege on the function. For more privilege related information see the

CREATE FUNCTION reference.

Restrictions

For restrictions on invoking user-defined table functions, see the CREATE

FUNCTION topics in the related links.

To invoke a user-defined table function, reference the function in the FROM clause

of an SQL statement where it is to process a set of input values. The reference to

the table function must be preceded by the TABLE clause and be contained in

brackets.

For example, the following CREATE FUNCTION statement defines a table function

that returns the employees in a specified department number.

 CREATE FUNCTION DEPTEMPLOYEES (DEPTNO VARCHAR(3))

 RETURNS TABLE (EMPNO CHAR(6),

 LASTNAME VARCHAR(15),

Chapter 11. Routine invocation 351

FIRSTNAME VARCHAR(12))

 LANGUAGE SQL

 READS SQL DATA

 NO EXTERNAL ACTION

 DETERMINISTIC

 RETURN

 SELECT EMPNO, LASTNAME, FIRSTNME FROM EMPLOYEE

 WHERE EMPLOYEE.WORKDEPT = DEPTEMPLOYEES.DEPTNO

The following is a SELECT statement that makes use of DEPTEMPLOYEES:

 SELECT EMPNO, LASTNAME, FIRSTNAME FROM TABLE(DEPTEMPLOYEES(’A00’)) AS D

352 Developing User-defined Routines (SQL and External)

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hard-copy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com®.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this email address to contact DB2 Customer Support. If you have a DB2

technical issue that the documentation does not resolve, contact your local IBM

service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English DB2 Version 9.5

manuals in PDF format and translated versions can be downloaded from

www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© IBM Corporation 1993, 2007 353

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

Table 48. DB2 technical information

Name Form Number Available in print

Administrative API Reference SC23-5842-00 Yes

Administrative Routines and

Views

SC23-5843-00 No

Call Level Interface Guide and

Reference, Volume 1

SC23-5844-00 Yes

Call Level Interface Guide and

Reference, Volume 2

SC23-5845-00 Yes

Command Reference SC23-5846-00 Yes

Data Movement Utilities Guide

and Reference

SC23-5847-00 Yes

Data Recovery and High

Availability Guide and Reference

SC23-5848-00 Yes

Data Servers, Databases, and

Database Objects Guide

SC23-5849-00 Yes

Database Security Guide SC23-5850-00 Yes

Developing ADO.NET and OLE

DB Applications

SC23-5851-00 Yes

Developing Embedded SQL

Applications

SC23-5852-00 Yes

Developing Java Applications SC23-5853-00 Yes

Developing Perl and PHP

Applications

SC23-5854-00 No

Developing User-defined Routines

(SQL and External)

SC23-5855-00 Yes

Getting Started with Database

Application Development

GC23-5856-00 Yes

Getting Started with DB2

installation and administration on

Linux and Windows

GC23-5857-00 Yes

Internationalization Guide SC23-5858-00 Yes

Message Reference, Volume 1 GI11-7855-00 No

Message Reference, Volume 2 GI11-7856-00 No

Migration Guide GC23-5859-00 Yes

Net Search Extender

Administration and User’s Guide

Note: The content of this

document is not included in

the DB2 Information Center

SC23-8509-00 Yes

Partitioning and Clustering Guide SC23-5860-00 Yes

Query Patroller Administration

and User’s Guide

SC23-8507-00 Yes

Quick Beginnings for IBM Data

Server Clients

GC23-5863-00 No

Quick Beginnings for DB2

Servers

GC23-5864-00 Yes

354 Developing User-defined Routines (SQL and External)

Table 48. DB2 technical information (continued)

Name Form Number Available in print

Spatial Extender and Geodetic

Data Management Feature User’s

Guide and Reference

SC23-8508-00 Yes

SQL Reference, Volume 1 SC23-5861-00 Yes

SQL Reference, Volume 2 SC23-5862-00 Yes

System Monitor Guide and

Reference

SC23-5865-00 Yes

Text Search Guide SC23-5866-00 Yes

Troubleshooting Guide GI11-7857-00 No

Tuning Database Performance SC23-5867-00 Yes

Visual Explain Tutorial SC23-5868-00 No

What’s New SC23-5869-00 Yes

Workload Manager Guide and

Reference

SC23-5870-00 Yes

pureXML Guide SC23-5871-00 Yes

XQuery Reference SC23-5872-00 No

 Table 49. DB2 Connect-specific technical information

Name Form Number Available in print

Quick Beginnings for DB2

Connect Personal Edition

GC23-5839-00 Yes

Quick Beginnings for DB2

Connect Servers

GC23-5840-00 Yes

DB2 Connect User’s Guide SC23-5841-00 Yes

 Table 50. Information Integration technical information

Name Form Number Available in print

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-01 Yes

Information Integration: ASNCLP

Program Reference for Replication

and Event Publishing

SC19-1018-02 Yes

Information Integration:

Configuration Guide for Federated

Data Sources

SC19-1034-01 No

Information Integration: SQL

Replication Guide and Reference

SC19-1030-01 Yes

Information Integration:

Introduction to Replication and

Event Publishing

SC19-1028-01 Yes

Appendix A. Overview of the DB2 technical information 355

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r5.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 353.

Displaying SQL state help from the command line processor

DB2 returns an SQLSTATE value for conditions that could be the result of an SQL

statement. SQLSTATE help explains the meanings of SQL states and SQL state class

codes.

To invoke SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

356 Developing User-defined Routines (SQL and External)

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

Accessing different versions of the DB2 Information Center

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you might have to also

change the regional settings of your operating system to the locale and language of

your choice.

Appendix A. Overview of the DB2 technical information 357

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Updating the DB2 Information Center installed on your computer or

intranet server

If you have installed the DB2 Information Center locally, you can download and

install updates that IBM might make available.

Updating your locally-installed DB2 Information Center requires that you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to download and apply updates.

2. Use the Update feature to see what updates are available. If there are updates

that you would like to install, you can use the Update feature to download and

install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, you have to mirror

the update site to a local file system using a machine that is connected to the

internet and has the DB2 Information Center installed. If many users on your

network will be installing the documentation updates, you can reduce the time

required for individuals to perform the updates by also mirroring the update

site locally and creating a proxy for the update site.
If update packages are available, use the Update feature to download the

packages. However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows Vista, the commands listed below must be run as an

administrator. To launch a command prompt or graphical tool with full

administrator privileges, right-click on the shortcut and then select Run as

administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.5 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

358 Developing User-defined Routines (SQL and External)

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.5 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser launches to display the stand-alone

Information Center.

3. Click the Update button (

). On the right hand panel of the Information

Center, click Find Updates. A list of updates for existing documentation

displays.

4. To initiate the download process, check the selections you want to download,

then click Install Updates.

5. After the download and installation process has completed, click Finish.

6. Stop the stand-alone Information Center.

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

Note: The help_end batch file contains the commands required to safely

terminate the processes that were started with the help_start batch file. Do

not use Ctrl-C or any other method to terminate help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely

terminate the processes that were started with the help_start script. Do not

use any other method to terminate the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click on DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv95 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

Appendix A. Overview of the DB2 technical information 359

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 tutorials

To view the tutorial, click on the title.

“pureXML™” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting

Guide or the Support and Troubleshooting section of the DB2 Information

Center. There you will find information on how to isolate and identify

problems using DB2 diagnostic tools and utilities, solutions to some of the

most common problems, and other advice on how to solve problems you

might encounter with your DB2 products.

 DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/udb/support.html

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

360 Developing User-defined Routines (SQL and External)

http://www.ibm.com/software/data/db2/udb/support.html
http://www.ibm.com/software/data/db2/udb/support.html

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 361

362 Developing User-defined Routines (SQL and External)

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country/region or send inquiries, in

writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

This document may provide links or references to non-IBM Web sites and

resources. IBM makes no representations, warranties, or other commitments

whatsoever about any non-IBM Web sites or third-party resources that may be

referenced, accessible from, or linked from this document. A link to a non-IBM

Web site does not mean that IBM endorses the content or use of such Web site or

© IBM Corporation 1993, 2007 363

its owner. In addition, IBM is not a party to or responsible for any transactions you

may enter into with third parties, even if you learn of such parties (or use a link to

such parties) from an IBM site. Accordingly, you acknowledge and agree that IBM

is not responsible for the availability of such external sites or resources, and is not

responsible or liable for any content, services, products, or other materials on or

available from those sites or resources. Any software provided by third parties is

subject to the terms and conditions of the license that accompanies that software.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including in some cases payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

364 Developing User-defined Routines (SQL and External)

This information may contain sample application programs, in source language,

which illustrate programming techniques on various operating platforms. You may

copy, modify, and distribute these sample programs in any form without payment

to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

Company, product, or service names identified in the documents of the DB2

Version 9.5 documentation library may be trademarks or service marks of

International Business Machines Corporation or other companies. Information on

the trademarks of IBM Corporation in the United States, other countries, or both is

located at http://www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

and have been used in at least one of the documents in the DB2 documentation

library:

Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside® logo, Intel Centrino®, Intel Centrino logo, Celeron®,

Intel Xeon®, Intel SpeedStep®, Itanium® and Pentium® are trademarks of Intel

Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 365

http://www.ibm.com/legal/copytrade.shtml

366 Developing User-defined Routines (SQL and External)

Index

Special characters
.NET

common language runtime
external routine development support 145

routine example 190

routines 144, 146, 156, 158

routines
compile and link options 160

.NET CLR routines
debugging 161

Numerics
32-bit support

external routines 123

64-bit support
external routines 123

A
about this book vii

ADMIN_CMD procedure 30

AIX
C routines

compile and link options 252

C++ routines
compile and link options 253

C++ stored procedures
building with configuration files 262

C++ user-defined functions
building with configuration files 263

IBM COBOL routines
building 277

compile and link options 272

Micro Focus COBOL routines
compile and link options 273

ALLOCATE CURSOR statement
caller routine 101

application development
routines 1

ASSOCIATE RESULT SET LOCATOR statement 101

auditing
transactions

using SQL functions 32

authorizations
for external routines 52, 332

B
backing up

external routine libraries 116

BASIC data types 321

BASIC language 319

BigDecimal Java data type 287

BIGINT
data type

OLE DB table function 328

routines in Java (DB2GENERAL) 294

user-defined functions (UDFs) 221

BIGINT (continued)
SQL data type

COBOL 269

Java 287

binary large objects (BLOBs)
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

User Defined Functions (UDFs)
C/C++ 221

binding
routines 52, 332

SQL procedures 102

BLOB-FILE COBOL type 269

BLOB-LOCATOR COBOL type 269

BLOBs (binary large objects)
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

user-defined functions (UDFs
C/C++ 221

built-in
routines 20

C
C

functions
parameter styles 211

procedures
example 194

parameter styles 208

result sets 242

XML support 194

XQuery support 194

routines 203

32-bit routines on a 64-bit database server 124

building 245, 251

building on UNIX 246

building on Windows 248

compile options on AIX 252

compile options on HP-UX 254

compile options on Linux 257

compile options on Solaris 259

compile options on Windows 261

creating 243

dbinfo structure as parameter 213

designing 205

development support 204

development tools 205

include file 206

null indicator parameters 207

parameter passing 213

parameter styles 207

parameters 206

PROGRAM TYPE clause 217

result sets 213

© Copyright IBM Corp. 1993, 2007 367

C (continued)
routines (continued)

scratchpad as function parameter 216

supported SQL data types in 218

syntax for passing arguments 228

C/C++ language
data types, OLE automation 321

functions
parameter styles 211

procedures
parameter styles 208

result sets 242

routines 203

32-bit routines on a 64-bit database server 124

building 245, 251

building on Windows 248

compile options on AIX 253

compile options on HP-UX 255

compile options on Linux 258

compile options on Solaris 260

compile options on Windows 261

creating 243

dbinfo structure as parameter 213

designing 205

development support 204

development tools 205

include file 206

null indicator parameters 207

parameter passing 213

parameter styles 207

parameters 206

PROGRAM TYPE clause 217

result sets 213

scratchpad as function parameter 216

supported SQL data types in 218

type decoration for routine bodies 240

C# .NET
routines

example 190

CALL procedures 339

from applications 340

from external routines 340

from SQL routines 341

from triggers 341

CALL statement
Command Line Processor 343

CASE statement 91

CAST FROM clause
data type handling 221

CHAR data type
COBOL 269

Java 287

OLE DB table function 328

routines, Java (DB2GENERAL) 294

user-defined functions (UDFs)
C/C++ 221

CHAR FOR BIT DATA data type 294

CLASSPATH environment variable 312

CLI (call level interface)
stored procedures

calling 345

CLOB-FILE COBOL type 269

CLOB-LOCATOR COBOL type 269

CLOBs (character large objects)
data type

COBOL 269

Java 287

CLOBs (character large objects) (continued)
data type (continued)

OLE DB table function 328

routines in Java (DB2GENERAL) 294

user-defined functions (UDFs) 221

CLP (command line processor)
terminating character 101

CLR (common language runtime)
procedures

returning result sets 150

routines 144

building 156, 158

compile and link options 160

creating 153, 154

design considerations 146

development support 145

development tools 146

examples of CLR procedures in C# 164

examples of CLR UDFs in C# 198

parameters 148

restrictions 152

security 151

XML support 190

XQuery support 190

CLR routines
.NET

debugging 161

COBOL data types
BLOB 269

BLOB-FILE 269

BLOB-LOCATOR 269

CLOB 269

CLOB-FILE 269

CLOB-LOCATOR 269

COMP-1 269

COMP-3 269

COMP-5 269

DBCLOB 269

DBCLOB-FILE 269

DBCLOB-LOCATOR 269

PICTURE (PIC) clause 269

USAGE clause 269

COBOL language
data types 269

external procedures
supported development software 269

IBM COBOL routines
building on AIX 277

building on Windows 279

compile options on AIX 272

compile options on Windows 275

Micro Focus routines
building on UNIX 278

building on Windows 280

compile options on AIX 273

compile options on HP-UX 274

compile options on Linux 275

compile options on Solaris 274

compile options on Windows 276

stored procedures 267

code pages
routines, conversion 337

column types
creating

COBOL 269

COM.ibm.db2.app.Blob 294, 299

COM.ibm.db2.app.Clob 294, 299

368 Developing User-defined Routines (SQL and External)

COM.ibm.db2.app.Lob 299

COM.ibm.db2.app.StoredProc 296

COM.ibm.db2.app.UDF 292, 297

command line processor (CLP)
creating routines 34

common language runtime
functions

examples 174

procedures
examples 180

returning result sets 150

routines 144

building 156, 158

creating 153, 154

Dbinfo structure usage 148

design considerations 146

development support 145

development tools 146

errors 162

examples 164, 174, 180

examples of CLR functions in C# 198

examples of CLR procedures in C# 164

parameters 148

restrictions 152

scratchpad 148

security 151

supported SQL data types in 146

COMP-1 data types
COBOL 269

COMP-3 data types
COBOL 269

COMP-5 data types
COBOL 269

comparison
of functional types of routines 15

compound SQL
SQL procedures 87

condition handlers
CONTINUE clause 86

SQL procedures
description 99

configuration parameters
javaheapsz configuration parameter 312

jdk11path configuration parameter 312

contexts
setting in multithreaded DB2 applications

SQLJ routines 289

CREATE FUNCTION statement
CAST FROM clause 221

LANGUAGE OLE clause 319

OLE automation routines 319

PARAMETER STYLE clause 211, 291

RETURNS clause 221

CREATE METHOD statement
PARAMETER STYLE clause 291

CREATE PROCEDURE statement
PARAMETER STYLE clause 208, 290

PROGRAM TYPE clause 217

with SQL procedures 101

CREATE ROUTINE statement
PARAMETER STYLE clause 207

creating
routines 6, 59, 66, 143, 243

C/C++ 205

common language runtime 153, 154

data server developer tool 35, 62

development tools for SQL routines 62

cross-platform support
Invoking 32-bit routines on a 64-bit database server 337

cursors
SQL procedures 88

XQuery 89

D
data server developer tool

creating routines 34, 35, 62

data type
ARRAY 300

data types
COBOL 269

conversion
between DB2 and COBOL 269

OLE automation types 320

Java 287

supported
COBOL, rules 269

DATE data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

DB2 Information Center
updating 358

versions 357

viewing in different languages 357

DB2_USE_DB2JCCT2_JROUTINE
specifying drivers 285

DB2GENERAL parameter style for external routines 124

DB2GENERAL routines 292

Java classes 295

COM.ibm.db2.app.Blob 299

COM.ibm.db2.app.Clob 299

COM.ibm.db2.app.Lob 299

COM.ibm.db2.app.StoredProc 296

COM.ibm.db2.app.UDF 297

stored procedures 296

user-defined functions 292, 297

DB2SQL parameter style for external routines 124

DBCLOB data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

user-defined functions (UDFs)
C/C++ 221

DBCLOB-FILE COBOL type 269

DBCLOB-LOCATOR COBOL type 269

dbinfo argument
table functions 133

DBINFO option
code pages 337

Debugging
.NET CLR routines 161

DECIMAL data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

user-defined functions (UDFs
C/C++ 221

Index 369

DECLARE statements
DECLARE CURSOR statement 91

declaring condition handlers in SQL procedures 91

declaring conditions in SQL procedures 91

declaring variables in SQL procedures 85, 91

distinct types
passing to routines 349

documentation
PDF or printed 353

terms and conditions of use 360

documentation overview 353

DOUBLE data type
Java 287

user-defined functions (UDFs
C/C++ 221

user-defined functions (UDFs)
C/C++ 221

dynamic SQL
comparison to SQL procedures 69

E
errors

routines
common language runtime 162

EXECUTE privilege
routines 52, 332

EXTERNAL NAME clause
CREATE FUNCTION statement 327

external procedures
COBOL

supported development software 269

external routines 124

32-bit support 123

64-bit support 123

comparison to SQL routines 67

creating 112, 143

deployment of libraries and classes 114

description 21

examples
JDBC 314

features 111

library and class files
backup and restore 116

library management 116

modifying library and class files 115

naming conflicts 115

overview 111

performance 116

security of library and class files 114

supported APIs and programming languages 21, 22, 117

F
FLOAT data type

COBOL 269

Java 287

OLE DB table function 328

routines, Java (DB2GENERAL) 294

user-defined functions (UDFs)
C/C++ 221

floating point
parameter 221

FOR statement 93

functions 10

functions (continued)
comparison

with other functional types of routines 15

external
features 131

invoking 347

Java
PARAMETER STYLE clause 291

parameters
PARAMETER STYLE clause 211

references to, syntax 347

row functions 13

scalar functions 12

selection 348

selection algorithm 348

table functions 13

uses of 30

G
GENERAL parameter style for external routines 124

GENERAL WITH NULLS parameter style for external

routines 124

global variable 57

GOTO statement 96

GRAPHIC data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

graphic host variables
routines 240

GRAPHIC parameter 221

H
help

displaying 357

for SQL statements 356

host variables
COBOL data types 269

how this book is structured vii

HP-UX
compile and link options

C routines 254

C++ routines 255

Micro Focus COBOL routines 274

I
IBM Software Development Kit (SDK)

developing external Java routines 283

IF statement 91, 92

infix notation
user-defined functions (UDFs) 348

Information Center
updating 358

versions 357

viewing in different languages 357

Int Java data type 287

INTEGER data type
COBOL 269

Java 287

OLE DB table function 328

370 Developing User-defined Routines (SQL and External)

INTEGER data type (continued)
routines

Java (DB2GENERAL) 294

user-defined functions (UDFs)
C/C++ 221

invoking
routines 331

stored procedures 339

UDFs 350

user-defined table functions 351

ITERATE statement 97

J
Java

building
JDBC routines 309

SQLJ routines 310

class files
placement 312

classes
updating 313

configuration parameters
javaheapsz 312

jdk11path 312

data types
BigDecimal 287

Blob 287

Double 287

Int 287

java.math.BigDecimal 287

Short 287

String 287

environment variables
CLASSPATH 312

functions
parameter styles 291

JAR files 313

methods
COM.ibm.db2.app.Blob 299

COM.ibm.db2.app.Clob 299

COM.ibm.db2.app.Lob 299

COM.ibm.db2.app.StoredProc 296

COM.ibm.db2.app.UDF 292, 297

parameter styles 291

procedures
parameter styles 290

routines 309

DB2GENERAL 292

designing 286

development tools 286

overview 283

parameter styles for external routines 124

parameters 289

restrictions 304

specifying drivers 285

supported development software 283

UNIX 284

stored procedures
JAR files 313

overview 283

table functions execution model 135, 305

UDFs (user-defined functions) 292

CALL statement for JAR files 313

FENCED 292

NOT FENCED 292

scratchpads 292

java.math.BigDecimal Java data type
description 287

javaheapsz configuration parameter
description 312

JDBC (Java database connectivity)
routines

Array data type 300, 314

building 284, 309

creating 307

development tools 286

examples 314

XML support 314

XQuery support 314

stored procedures 301

JDK_PATH configuration parameter 265

specifying
UNIX 284

jdk11path configuration parameter 312

K
keepfenced configuration parameter

updating 265

L
LANGUAGE OLE clause

CREATE FUNCTION statement 319

large objects (LOBs)
passing to routines 350

LEAVE statement 98

libraries
shared

rebuilding routine 264

Linux
C routines

compile and link options 257

C++ routines
compile and link options 258

Micro Focus COBOL routines
compile and link options 275

LOBs (large objects)
passing to routines 350

LONG VARCHAR data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

user-defined functions (UDFs)
C/C++ 221

LONG VARCHAR FOR BIT DATA data type
routines

Java (DB2GENERAL) 294

LONG VARGRAPHIC data type
COBOL 269

Java 287

OLE DB table function 328

parameter to UDF 221

routines
Java (DB2GENERAL) 294

LOOP statement 94

M
methods 14

Index 371

methods (continued)
comparison

with other functional types of routines 15

external
features 131

Java
PARAMETER STYLE clause 291

MODIFIES SQL DATA clause
SQL access levels in SQL routines 40

multi-threaded applications
SQLJ routines 289

N
notices 363

NUMERIC parameter 221

NUMERIC SQL data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

O
object instance

OLE automation routines 320

Object Linking and Embedding (OLE) 319

OLE automation
BSTR data type 321

class identifier (CLSID) 319

controllers 319

methods 319

OLECHAR data type 321

programmatic identifier (progID) 319

routines
defining 319

designs 319

invoking methods 320

object instances 320

SCRATCHPAD option 320

servers 319

string data types 321

OLE DB
data types

converting to SQL data types 328

rowset names, fully qualified 327

table functions
connection string in EXTERNAL NAME clause 325

CONNECTSTRING option 325

creating 325

user-defined 325

using server name 325

OLE routines
syntax for passing arguments 228

ordering DB2 books 356

overloading
routine names 335

P
parameter markers 79

examples 79

PARAMETER STYLE DB2GENERAL clause
Java routines 289

PARAMETER STYLE JAVA clause
Java routines 289

parameters
C/C++ routines 206

SQL procedure parameters 79

styles for external routines 124

passing
distinct types to routines 349

LOBs to routines 350

performance
applications

improvement using routines 1

external routines 116

routines 43

SQL procedures 104

PICTURE (PIC) clause in COBOL types 269

portability
routines 42

precompiling
SQL procedures 102

printed books
ordering 356

problem determination
online information 360

tutorials 360

procedures 9

ADMIN_CMD 30

C/C++
result sets 242

calling 339

from applications and external routines 340

from SQL routines 341

from triggers 341

common language runtime
examples of CLR procedures 164

comparison
dynamic compound SQL and SQL procedures 69

with other functional types of routines 15

effects of commits and rollbacks on XML parameters and

variables 88

Java
PARAMETER STYLE clause 290

parameters
PARAMETER STYLE SQL clause 208

receiving result sets 101

examples of CLR procedure in C# 164

references (syntax of call references) 338

returning result sets
returning result sets from CLR procedures 150

SQL 62

array support 77

components 74

compound statements 87

condition handlers 99

conditional statements 91

control flow statements 91, 92

designing 74

features 73

looping statements 93

overview 73

parameters 79

structure 75

uses 73

variable scope 87

variables 85

SQL transfer of control statements 96

XML parameters 86

372 Developing User-defined Routines (SQL and External)

procedures (continued)
XML variables 86

R
REAL SQL data type

COBOL 269

conversion
in C and C++ routines 221

in Java (DB2GENERAL) routines 294

Java 287

OLE DB table function 328

receiving
result sets

from an SQL routine 101

in JDBC applications and routines 302

in SQLJ applications and routines 303

REPEAT statement 95

restoring
external routine libraries 116

restrictions
routines 127

result sets
receiving from an SQL routine 101

receiving in JDBC applications and routines 302

receiving in SQLJ applications and routines 303

returning
.NET CLR procedures 150

JDBC stored procedures 301

SQL procedures 100

SQLJ stored procedures 301

RETURN statement 98

returning result sets
from JDBC stored procedures 301

from SQLJ stored procedures 301

RETURNS clause
CREATE FUNCTION statement 221

routines
acceptable SQL statements 40

altering 113

benefits 1

built-in 19, 20, 27

C/C++
32-bit routines on a 64-bit database server 124

building 245, 251

creating 243

description 203

designing 205

development support 204

development tools 205

graphic host variables 240

include file 206

null indicator parameters 207

parameter passing 213

parameter styles 207

parameters 206, 213

pass by reference 213

pass by value 213

performance 124

PROGRAM TYPE clause 217

result sets 213, 242

scratchpad as function parameter 216

sqludf_scrat structure 216

supported SQL data types in 218

xml data type support 140

classes 113

routines (continued)
CLR

errors 162

COBOL
xml data type support 140

code pages
conversion 337

common language runtime
building 156, 158

creating 153

description 144

design considerations 146

development support 145

development tools 146

errors 162

examples 164

examples of CLR functions (UDFs) 198

examples of CLR procedures in C# 164

examples of Visual Basic .NET CLR functions 174

examples of Visual Basic .NET CLR procedures 180

EXECUTION CONTROL clause 151

restrictions 152

returning result sets 150

scratchpad usage 148

security 151

supported SQL data types in 146

xml data type support 140

comparison 7, 15

of functional types 15

SQL and external 67

system-defined and user-defined 8

creating
data server developer tool 35

security 50

database administration 30

DB2GENERAL
COM.ibm.db2.app.Blob 299

COM.ibm.db2.app.Clob 299

COM.ibm.db2.app.Lob 299

description 292

Java classes 295

definers of 5

defining scratchpad structure 140

description 1

development tools 34

EXECUTE privilege 52, 332

external 19, 27, 29

32-bit and 64-bit support 123

authorizations for 52, 332

backup and restore of library and class files 116

C/C++ 203, 205, 245, 251

common language runtime 144, 153, 154, 156, 158

comparison to SQL 67

creating 112, 143

deployment of libraries and classes 114

description 21

features 111, 131

forbidden statements 127

Java 309

library management 116

modifying library and class files 115

naming conflicts 115

overview 1, 111

parameter styles 124

performance 116

restrictions 127, 131

security 114

Index 373

routines (continued)
external (continued)

SQL statement support 35

supported APIs and programming languages 21, 22,

117

updating Java routines 313

xml data type support 140

forbidden statements 127

function path 335

functional types of 8

functions 10

row functions 13

scalar functions 12

table functions 13

when to use 18

graphic host variables 240

implementations 19

built-in 20

comparison 29

sourced 20

SQL 20

interoperability 42

invoking 331

32-bit routines on a 64-bit database server 337

from other routines 42

security 50

issuing CREATE statements 101

Java 284

creating 306, 307

JAR files 313

JDBC 309

overview 283

restrictions 304

xml data type support 140

libraries 113

methods 14, 141

when to use 18

name 335

nested 336

NOT FENCED
security 50, 51

OLE automation
defining 319

overloading 335

overview 1

passing distinct types to 349

passing LOBs to 350

performance 43

portability 42

portability between 32-bit and 64-bit platforms 140

procedures 9, 141

when to use 18

reading conflicts 55

rebuilding shared libraries 264

receiving result sets 101

recursive 336

restrictions 127

scalar UDFs
overview 131

security 50, 51

sourced 19, 27, 29

SQL 19, 20, 27, 29

comparison to external 67

creating 66

development tools 62

overview 61

performance 104

routines (continued)
SQL (continued)

SQL statement support 35

syntax for passing arguments 228

system-defined 1, 3, 5, 7, 30

when to use 8

types 1, 3, 18

comparison 29

comparison of functional types 15

functional 8

supported SQL statements 35

user-defined 1, 3, 5, 6, 7, 31, 141

creating 59

determining which implementation to use 29

when to use 8

uses of 30, 31

WCHARTYPE precompiler option 240

writing 141

writing conflicts 55

row functions 13

row sets
fully qualified names, OLE DB 327

S
scalar functions 12

overview 131

processing model 133

SCRATCHPAD option
OLE automation routines 320

preserving state 136

user-defined functions (UDFs) 136

scratchpads
32-bit and 64-bit platforms 140

for UDFs and methods 136

Java UDFs 292

SDK for Java
specifying

UNIX 284

security
routines 50, 51

SET statement
setting variables in SQL procedures 85

shared libraries
rebuilding routine 264

short data type
Java 287

SMALLINT data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

user-defined functions (UDFs)
C/C++ 221

Solaris operating systems
Micro Focus COBOL routines

compile and link options 274

routines
C compile and link options 259

C++ compile and link options 260

sourced
routines 20

sourced routines 20

SQL (Structured Query Language)
in routines

SQL access levels in SQL-bodied routines 40

374 Developing User-defined Routines (SQL and External)

SQL (Structured Query Language) (continued)
parameter style for external routines 124

SQL data types
COBOL 269

converting to OLE DB data types 328

Java 287

routines
Java (DB2GENERAL) 294

supported in OLE automation 320

user-defined functions (UDFs)
C/C++ 221

SQL functions
comparison to SQL procedures 68

SQL statement support 35

table functions
that modify SQL data 32

SQL methods
SQL statement support 35

SQL procedural language
comparison of SQL PL and inline SQL PL 63

control flow statements 91

executing inline SQL PL 65

inline SQL PL
executing 65

overview 62

performance 104

SQL procedures 64

SQL procedures
ATOMIC compound statements 75

CALL statement 343

comparison to dynamic compound SQL 69

comparison to SQL functions 68

components 74

condition handlers 99

conditional statements 91

control flow statements 91, 92

creating 101

cursors 88

designing 74

features 73

labels 75

looping statements 93

FOR statement 93

LOOP statement 94

REPEAT statement 95

WHILE statement 95

NOT ATOMIC compound statements 75

overview 73

parameters 79

performance 104

precompile and bind options 102

returning result sets 100

rewriting as SQL UDFs 70

SQL statement support 35

SQLCODE and SQLSTATE variables 86

structure 75

transfer of control statements 96

GOTO statement 96

ITERATE statement 97

LEAVE statement 98

RETURN statement 98

uses 73

variables 85

SQL routines 20

comparison to external routines 67

creating 66

development tools 62

SQL routines (continued)
data server developer tool 62

overview 61

SQL statements
allowed in routines 35, 40

displaying help 356

looping statements 93

related to variables 91

transfer of control statements 96

SQL-result argument
table functions 133

SQL-result-ind argument
table functions 133

SQLCODE
variables in SQL procedures 86

sqldbchar data type
in C/C++ routines 221

SQLJ (embedded SQL for Java)
building routines 284, 310

routines
compile options on UNIX 311

compile options on Windows 311

connection contexts 289

creating 306

development tools 286

stored procedures
returning result sets 301

SQLSTATE
variables in SQL procedures 86

SQLUDF include file
C/C++ routines 206

statements
CREATE FUNCTION 59, 319

CREATE METHOD 59

CREATE PROCEDURE 59

stored procedures 9

AIX C++ configuration files 262

CALL statement 343

calling
CLI applications 345

COBOL 267

invoking 339

references (syntax of call references) 338

selection 338

selection algorithm 338

String Java data type 287

structured types
attributes

accessing attributes with methods 14

methods 14

system-defined
routines 5

T
table functions 13

Java execution model 135, 305

user-defined table functions 133

table user-defined functions (UDFs)
processing model 134

tables
access

routines reading and writing conflicts 55

table functions 13

terms and conditions
use of publications 360

Index 375

TIME data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

TIME parameter 221

TIMESTAMP data type
COBOL 269

Java 287

OLE DB table function 328

routines
Java (DB2GENERAL) 294

TIMESTAMP parameter 221

tools
routine development 34

transact SQL 9

troubleshooting
online information 360

tutorials 360

tutorials
troubleshooting and problem determination 360

Visual Explain 359

type decoration
C++ routine bodies 240

type mapping
OLE automation

BASIC types 321

U
UDFs (user-defined functions)

invoking 350

scalar
FINAL CALL 133

scratchpad portability between 32-bit and 64-bit

platforms 140

table 133

FINAL CALL 134

NO FINAL CALL 134

processing model 134

UNIX
C routines

building 246

Micro Focus COBOL routines
building 278

SQLJ routines
compile options 311

updates
DB2 Information Center 358

Information Center 358

USAGE clause in COBOL types 269

user-defined functions (UDFs)
AIX C++ configuration files 263

C/C++
arguments 221

BIGINT data type 221

BLOB data type 221

CHAR data type 221

CLOB data type 221

DBCLOB data type 221

DOUBLE data type 221

FLOAT data type 221

INTEGER data type 221

LONG VARCHAR data type 221

parameters 221

REAL data type 221

user-defined functions (UDFs) (continued)
C/C++ (continued)

SMALLINT data type 221

VARCHAR FOR BIT DATA data type 221

VARGRAPHIC data type 221

common language runtime UDFs
examples in C# 198

date parameters 221

DETERMINISTIC 136

FOR BIT DATA modifier 221

infix notation 348

Java
I/O restrictions 292

NOT DETERMINISTIC 136

OLE DB table functions 325

re-entrant 136

returning data 221

rewriting SQL procedures as UDFs 70

saving state 136

SCRATCHPAD option 136

table
invoking 351

SQL-result argument 133

SQL-result-ind argument 133

uses of 31

user-defined routines 6

V
VARCHAR data type

COBOL 269

Java 287

OLE DB table function 328

routines, Java (DB2GENERAL) 294

VARCHAR FOR BIT DATA data type
routines, Java (DB2GENERAL) 294

user-defined functions (UDFs), C/C++
C/C++ 221

VARGRAPHIC data type
COBOL 269

Java 287

OLE DB table function 328

routines, Java (DB2GENERAL) 294

user-defined functions (UDFs), C/C++
C/C++ 221

variables
SQL procedures 85, 91

Visual Explain
tutorial 359

W
wchar_t data type

handling in C and C++ routines 221

WCHARTYPE NOCONVERT precompiler option 240

WHILE statement 95

who should use this book vii

Windows operating systems
C/C++ routines

building 248

compile and link options 261

IBM COBOL routines
building 279

compile and link options 275

Micro Focus COBOL routines
building 280

376 Developing User-defined Routines (SQL and External)

Windows operating systems (continued)
Micro Focus COBOL routines (continued)

compile and link options 276

SQLJ routines
compile options 311

X
XA transaction 57

XML
data type 140

parameters
commits and rollbacks 88

procedures 86

variables in procedures 86

XQuery statements
calling from SQL 89

Index 377

378 Developing User-defined Routines (SQL and External)

����

Printed in USA

SC23-5855-00

Sp
in
e
in
fo
rm
at
io
n:

 DB
2

Ve
rs

io
n

9.
5

fo
r L

in
ux

, U
NI

X,

an

d
W

in
do

w
s

De
ve

lo
pi

ng

Us

er
-d

ef
in

ed

Ro

ut
in

es

(S

QL

an

d
Ex

te
rn

al
)

�
�

�

	Contents
	About this book
	Who should use this book
	How this book is structured

	Chapter 1. Overview of routines
	Routines
	Benefits of using routines
	Types of routines
	System-defined and user-defined routines
	System-defined routines
	User-defined routines
	Comparison of system-defined and user-defined routines
	Determining when to use system-defined or user-defined routines

	Functional types of routines
	Routines: Procedures
	Routines: Functions
	Routines: Scalar functions
	Routines: Row functions
	Routines: Table functions

	Routines: Methods
	Comparison of functional types of routines
	Determining what functional type of routine to use

	Implementations of routines
	Built-in routine implementation
	Sourced routine implementation
	SQL routine implementation
	External routine implementation
	Supported APIs and programming languages for external routine development
	Comparison of supported APIs and programming languages for external routine development
	Comparison of routine implementations
	Determining what routine implementation to use

	Usage of routines
	Administration of databases with system-defined routines
	Extension of SQL function support with user-defined functions
	Auditing using SQL table functions

	Tools for developing routines
	Data server developer tool routine development support

	SQL statements that can be executed in routines
	SQL access levels in routines
	Determining what SQL statements can be executed in routines

	Portability of routines
	Interoperability of routines
	Performance of routines
	Security of routines
	Securing routines

	Authorizations and binding of routines that contain SQL
	Data conflicts when procedures read from or write to tables
	Global variables and XA transactions

	Chapter 2. Developing routines
	Chapter 3. Overview of SQL routines
	SQL routines
	Tools for developing SQL routines
	SQL routine development in the data server developer tool

	SQL Procedural Language (SQL PL)
	Inline SQL PL
	SQL PL in SQL procedures
	Inline SQL PL and SQL functions, triggers, and compound SQL (dynamic) statements
	CREATE statements for SQL routines

	Determining when to use SQL routines or external routines
	Determining when to use SQL procedures or SQL functions
	Determining when to use dynamic compound SQL statements or SQL procedures
	Rewriting SQL procedures as SQL user-defined functions

	Chapter 4. Developing SQL procedures
	SQL procedures
	Features of SQL procedures
	Designing SQL procedures
	Parts of SQL procedures
	Structure of SQL procedures
	Array support in SQL procedures
	Parameters in SQL procedures
	Parameter markers
	Variables in SQL procedures (DECLARE, SET statements)
	XML and XQuery support in SQL procedures
	SQLCODE and SQLSTATE variables in SQL procedures
	Compound statements and scope of variables in SQL procedures
	Effect of commits and rollbacks on XML parameter and variable values in SQL procedures
	Cursors in SQL procedures
	Cursors for XQuery expressions in SQL procedures
	SQL PL logic elements in the SQL-procedure body
	Variable related statements
	Conditional statements in SQL procedures
	CASE statement in SQL procedures
	IF statement in SQL procedures

	Looping statements in SQL procedures
	FOR statement in SQL procedures
	LOOP statement in SQL procedures
	WHILE statement in SQL procedures
	REPEAT statement in SQL procedures

	Transfer of control statements in SQL procedures
	GOTO statement in SQL procedures
	ITERATE statement in SQL procedures
	LEAVE statement in SQL procedures
	RETURN statement in SQL procedures

	Condition handlers in SQL procedures
	Returning result sets from SQL procedures
	Receiving procedure result sets in SQL routines

	Creating SQL procedures
	Creating SQL procedures from the command line
	Customizing precompile and bind options for SQL procedures

	Improving the performance of SQL procedures

	Chapter 5. Overview of external routines
	External routines
	External routine features
	External routine creation
	External routine library and class management
	Deployment of external routine libraries and classes
	Security of external routine library or class files
	Resolution of external routine libraries and classes
	Modifications to external routine library and class files
	Backup and restore of external routine library and class files
	External routine library management and performance

	Supported APIs and programming languages for external routine development
	Comparison of supported APIs and programming languages for external routine development

	32-bit and 64-bit support for external routines
	Performance of routines with 32-bit libraries on 64-bit database servers
	External routine parameter styles
	Restrictions on external routines

	Chapter 6. Developing external routines
	External function and method features
	External scalar functions
	External scalar function and method processing model
	External table functions
	External table function processing model
	Table function execution model for Java
	Scratchpads for external functions and methods
	Scratchpads on 32-bit and 64-bit operating systems

	XML data type support in external routines
	Writing routines
	Creating external routines
	.NET common language runtime (CLR) routines
	Support for external routine development in .NET CLR languages
	Tools for developing .NET CLR routines
	Designing .NET CLR routines
	Supported SQL data types for the IBM Data Server Provider for .NET
	Parameters in .NET CLR routines
	Returning result sets from .NET CLR procedures
	Security and execution modes for CLR routines
	Restrictions on .NET CLR routines

	Creating .NET CLR routines
	Creating .NET CLR routines from DB2 Command Window

	Building .NET CLR routine code
	Building .NET common language runtime (CLR) routine code using sample build scripts
	Building .NET common language runtime (CLR) routine code from DB2 Command Window
	CLR .NET routine compile and link options

	Debugging .NET CLR routines
	Errors related to .NET CLR routines

	Examples of .NET CLR routines
	Examples of C# .NET CLR procedures
	Examples of Visual Basic .NET CLR functions
	Examples of Visual Basic .NET CLR procedures
	Example: XML and XQuery support in C# .NET CLR procedure
	Example: XML and XQuery support in C procedure
	Examples of C# .NET CLR functions

	C and C++ routines
	Support for external routine development in C
	Support for external routine development in C++
	Tools for developing C and C++ routines
	Designing C and C++ routines
	Include file required for C and C++ routine development (sqludf.h)
	Parameters in C and C++ routines
	Parameter styles supported for C and C++ routines
	Parameter null indicators in C and C++ routines
	Parameter style SQL C and C++ procedures
	Parameter style SQL C and C++ functions
	Passing parameters by value or by reference in C and C++ routines
	Parameters are not required for C and C++ procedure result sets
	Dbinfo structure as C or C++ routine parameter
	Scratchpad as C or C++ function parameter
	Program type MAIN support for C and C++ procedures

	Supported SQL data types in C and C++ routines
	SQL data type handling in C and C++ routines
	Passing arguments to C, C++, OLE, or COBOL routines
	Graphic host variables in C and C++ routines
	C++ type decoration
	Returning result sets from C and C++ procedures

	Creating C and C++ routines
	Building C and C++ routine code
	Building C and C++ routine code using sample bldrtn scripts
	Building routines in C or C++ using the sample build script (UNIX)
	Building C/C++ routines on Windows

	Building C and C++ routine code from DB2 Command Window
	Compile and link options for C and C++ routines
	AIX C routine compile and link options
	AIX C++ routine compile and link options
	HP-UX C routine compile and link options
	HP-UX C++ routine compile and link options
	Linux C routine compile and link options
	Linux C++ routine compile and link options
	Solaris C routine compile and link options
	Solaris C++ routine compile and link options
	Windows C and C++ routine compile and link options

	Building embedded SQL stored procedures in C or C++ with configuration files
	Building user-defined functions in C or C++ with configuration files (AIX)
	Rebuilding DB2 routine shared libraries
	Updating the database manager configuration file

	Chapter 7. COBOL procedures
	Support for external procedure development in COBOL
	Supported SQL data types in COBOL embedded SQL applications
	Building COBOL routines
	Compile and link options for COBOL routines
	AIX IBM COBOL routine compile and link options
	AIX Micro Focus COBOL routine compile and link options
	HP-UX Micro Focus COBOL routine compile and link options
	Solaris Micro Focus COBOL routine compile and link options
	Linux Micro Focus COBOL routine compile and link options
	Windows IBM COBOL routine compile and link options
	Windows Micro Focus COBOL routine compile and link options

	Building IBM COBOL routines on AIX
	Building UNIX Micro Focus COBOL routines
	Building IBM COBOL routines on Windows
	Building Micro Focus COBOL routines on Windows

	Chapter 8. Java routines
	Supported Java routine development software
	JDBC and SQLJ application programming interface support for Java routines
	Specification of an SDK for Java routine development (UNIX)
	Specification of a driver for Java routines
	Tools for developing Java (JDBC and SQLJ) routines
	Designing Java routines
	Supported SQL data types in Java routines
	Connection contexts in SQLJ routines
	Parameters in Java routines
	Parameter style JAVA procedures
	Parameter style JAVA Java functions and methods
	DB2GENERAL routines
	DB2GENERAL UDFs
	Supported SQL data types in DB2GENERAL routines
	Java classes for DB2GENERAL routines
	DB2GENERAL Java class: COM.IBM.db2.app.StoredProc
	DB2GENERAL Java class: COM.IBM.db2.app.UDF
	DB2GENERAL Java class: COM.IBM.db2.app.Lob
	DB2GENERAL Java class: COM.IBM.db2.app.Blob
	DB2GENERAL Java class: COM.IBM.db2.app.Clob
	Passing parameters of data type ARRAY to Java routines
	Returning result sets from JDBC procedures
	Returning result sets from SQLJ procedures
	Receiving procedure result sets in JDBC applications and routines
	Receiving procedure result sets in SQLJ applications and routines
	Restrictions on Java routines
	Table function execution model for Java

	Creating Java routines
	Creating Java routines from the command line

	Building Java routine code
	Building JDBC routines
	Building SQL routines
	Compile and link options for Java (SQLJ) routines
	SQLJ routine options for UNIX
	SQLJ routine options for Windows

	Deploying Java routine class files to DB2 database servers
	JAR file administration on the database server
	Updating Java routine classes

	Examples of Java (JDBC) routines
	Example: Array data type in Java (JDBC) procedure
	Example: XML and XQuery support in Java (JDBC) procedure

	Chapter 9. OLE automation routine design
	Creating OLE automation routines
	OLE routine object instances and scratchpad considerations
	Supported SQL data types in OLE automation
	OLE automation routines in BASIC and C++

	Chapter 10. OLE DB user-defined table functions
	Creating an OLE DB table UDF
	Fully qualified rowset names
	Supported SQL data types in OLE DB

	Chapter 11. Routine invocation
	Authorizations and binding of routines that contain SQL
	Routine names and paths
	Nested routine invocations
	Invoking 32-bit routines on a 64-bit database server
	Routine code page considerations
	References to procedures
	Procedure selection
	Calling procedures
	Calling procedures from applications or external routines
	Calling procedures from triggers or SQL routines
	Calling procedures from the Command Line Processor (CLP)
	Calling stored procedures from CLI applications

	References to functions
	Function selection
	Distinct types as UDF or method parameters
	LOB values as UDF parameters
	Invoking scalar functions or methods
	Invoking user-defined table functions

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

